
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Graph Construction using the dK-Series Framework

Permalink
https://escholarship.org/uc/item/5tb4f2mn

Author
Tillman, Balint

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5tb4f2mn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Graph Construction using the dK-Series Framework

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Networked Systems

by

Balint Tillman

Dissertation Committee:
Professor and Chancellor’s Fellow Athina Markopoulou, Chair

Chancellor’s Professor David Eppstein
Professor Carter T. Butts

2019

Portion of Chapter 2 and Chapter 3 c© 2019 IEEE
All other materials c© 2019 Balint Tillman

DEDICATION

To my friends and family
who were there to support me through this work

and helped me to overcome obstacles along the way.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xii

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Our Work in Perspective . 5

1.3.1 Prior Work on Undirected Graph Construction 5
1.3.2 Prior Work on Directed Graph Construction 9
1.3.3 Dissertation Contributions: The 2K+ Framework 10

2 Undirected Graph Construction 16
2.1 Introduction . 16
2.2 2K Construction: JDM . 17

2.2.1 Realizability . 17
2.2.2 Algorithm for 2K Construction . 18
2.2.3 Connections to Related Work . 24
2.2.4 Space of Realizations . 25

2.3 2K with additional constraints . 27
2.3.1 2K+S: Target JDM and Clustering 27
2.3.2 2K+#4: NP-Hardness for JDM with fixed number of triangles . . . 33
2.3.3 2K+A: Targeting JDM and Node Attributes 38
2.3.4 2K+CC: Number of Connected Components 41

2.4 Computational hardness of dK-series . 60
2.4.1 Definitions . 60
2.4.2 NP-Hardness for 3K distributions . 62

iii

2.4.3 Extending to d > 3 . 66
2.5 Simulations for Real-World Undirected Graphs 72
2.6 Summary . 78

3 Directed Graph Construction 79
3.1 Introduction . 79
3.2 Directed 2K Construction . 81

3.2.1 Realizability . 82
3.2.2 Algorithm for D2K Construction . 84
3.2.3 Space of realizations . 86
3.2.4 Importance sampling . 87

3.3 D2K with additional constraints . 88
3.4 Simulations for Real-World Directed Graphs 90
3.5 DAG Construction . 98

3.5.1 DAG1K Construction . 100
3.5.2 DAG2K Construction . 103
3.5.3 D2K+L: Level Graphs . 106

3.6 Simulations for Real-World Directed Acyclic Graphs 108
3.7 Summary . 111

4 Graph Construction from Embeddings 113
4.1 Introduction . 113
4.2 Background on Graph Embeddings . 116
4.3 Proposed Framework: NPM . 117

4.3.1 The Neighborhood Partition Matrix (NPM) Problem 117
4.3.2 Extensions of NPM . 121
4.3.3 Tasks and Metrics . 126

4.4 Evaluation . 130
4.4.1 Experiment Setup . 130
4.4.2 Graph Construction Task . 131
4.4.3 Graph Embeddings Tasks . 133

4.5 Summary . 134

5 Conclusion 138

Bibliography 140

iv

LIST OF FIGURES

Page

1.1 Overview of graph construction problems, and the relation between them. An
arrow from P1 to P2 means that problem P2 fixes more properties and bidi-
rectional arrows show equivalence between problems under certain conditions.
The contributions made in this dissertation are highlighted in gray. 10

2.1 Example of running 2K Simple. The algorithm starts from nodes with only
free stubs (left). In each iteration it creates one edge by connecting 2 free
stubs and updates corresponding JDM entries until the graph is complete
(right). 17

2.2 All possible cases of adding an edge (v, w) between node v (of degree k) and
node w (of degree l). Blue color nodes are without free stubs and grey color
indicates nodes that have remaining free stubs. 20

2.3 Generation of all non-isomorphic graph instances with 7 nodes. 26
2.4 A JDM-preserving double-edge swap is a rewiring of edges (a,b), (c,d) to (a,d),

(b,c), where a,b,c,d are four distinct nodes (to avoid self-loops) and (a,d), (b,c)
are not present before rewiring (to avoid multi-edges). If deg(a) = deg(c) then
the swap obviously preserves the JDM of the graph. It is referred to as JDM-
preserving double-edge swap and it is used in MCMC to transform graph
G to other realizations G’ with the same JDM, while targeting other properties. 28

2.5 Approach for targeting clustering during 2K construction. 2K Simple runs
with the target JDM, but we control the order in which to add edges, this
results in either low (right) or high (left) clustering. 29

2.6 Relation of average clustering coefficients, c̄ and sortedness parameter, S. . . 30
2.7 On the left is a graph with a coloring. On the right is a realization of

JDM-ColorG where the edges from the coloring nodes represent the previ-
ous coloring and the degree one nodes are represented by clouds. On the
bottom we show the JDM-ColorG for the example graph. 33

2.8 Example of two graphs, (a) and (b), with the same Joint Degree Matrix
(JDM) and different Joint occurrence of Attributes Matrix (JAM) based on
colors (black, blue) as attributes, thus different JDAMs. 39

2.9 Space of JDM realizations with up to k� CCs is connected under JDM-
preserving double-edge swaps (shown on right). A sequence of double-edge
swaps (represented by arrows on left) exists to transform a graph realization
A to B (or B to A), while using at most k� CCs. 42

v

2.10 Example execution of Find-MinCC algorithm. 44
2.11 Case 1, subcase 1: (u, u1) is blue (top), (u, u1) is black (bottom). 50
2.12 Case 1, subcase 2: (u, u1) is blue (top), (u, u1) is black (bottom). 51
2.13 Case 2, subcase 1: (v, v1) is blue and two configurations of blue cut-paths. . 52
2.14 Case 2, subcase 1: (v, v1) is black and possible configurations of blue (red)

cut-paths. 52
2.15 Case 2, subcase 2: blue cut-path is on wvpyv 53
2.16 Case 2, subcase 2: blue cut-path is on vwpvy, (u, u1) is red or black. 54
2.17 Case 2, subcase 3: 2 black edges . 54
2.18 Case 3, subcase 1: possible cases when cut-path is uw(p)vy 55
2.19 Case 3, subcase 1: possible cases when cut-path is wuu1(p)yv 55
2.20 Case 3, subcase 2: possible cases when cut-path is uw(p)vy 56
2.21 Case 3, subcase 2: possible cases when cut-path is uu1(p)yv 56
2.22 Case 3, subcase 2: possible cases when cut-path is uu1(p)yv 57
2.23 Case 3, subcase 3: possible cases depending on the color of (u, z) edge. . . . 57
2.24 On the left is a graph with a colored triangle edge partition. In the middle,

there is a realization of 3K-Triangle-PartitionG with the edges corresponding
to the partitioning colored appropriately and most of the edges to degree one
nodes omitted. On the right is the non-zero entries of 3K-Triangle-PartitionG
grouped into constraints for edges, nodes and the root node. 64

2.25 A schematic overview of the forest realization of dK-PartitionG with m/
(d

2

)
trees, where every tree has a root with degree d, the first level nodes have
degree di and there are d of them for each tree. Finally every di node connects
to di − 1 degree-1 nodes. 67

2.26 An example to assign degree-labeled subgraphs for 4K: (a) stars excluding
degree-4 node for each di node; (b) stars including degree-4 node for each
di node; (c) subgraphs in trees for each edge (vi, vj) in G: for 4K, there are
only two options: using a 3-paths ending on degree-1 node connected to di or
dj ; (d) subgraphs in trees for each triangle (vi, vj , vk) in G: for 4K, degree-1
nodes are not used hence each triangle counts only once. 68

2.27 A schematic overview of the tree realization of dK-PartitionG, it has a root

with degree m/
(d

2

)
, and degree two nodes to separate subtrees with roots of

degree d+ 1 (previously d). 71
2.28 Average degree-dependent clustering coefficient for the FB Princeton graph.

Figure shows c̄(k) for the original graph, G, and for a realization produced by
2K Simple, 2K+year, 2K+dorm, 2K + S = 0.57 and 2K + S = 1. 76

3.1 Defining Directed 2K, to capture degree correlations in a directed graph: top
left, Directed 1K; bottom left, Bipartite 1K with non-chords (shown in dashed
line); bottom right, Directed 2K (D2K); top right: Directed 2.1K. 80

3.2 New cases in Algorithm 3.1, while attempting to add (v, w) edge. 83
3.3 Realizations of the same D2K input without JDAM-preserving double-edge

(or C6) swaps that would not use any self-loops. The edges along the directed
4-cycle must change their direction simultaneously. 87

vi

3.4 Results for Twitter graph: Directed Degree Distribution, Degree Correlation,
Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Be-
tweenness Centrality, Expansion, Average Neighbor Degree, DSP and top 20
Eigenvalues . 94

3.5 Results for p2p-Gnutella08 graph: Directed Degree Distribution, Degree Cor-
relation, Dyad-, Triad Census, Shortest Path Distribution, K-core distribu-
tion, Betweenness Centrality, Expansion, Average Neighbor Degree, DSP and
top 20 Eigenvalues . 95

3.6 Results for Wiki-Vote graph: Directed Degree Distribution, Degree Correla-
tion, Dyad-, Triad Census, Shortest Path Distribution, K-core distribution,
Betweenness Centrality, Expansion, Average Neighbor Degree, DSP and top
20 Eigenvalues . 96

3.7 Results for AS-Caida graph: Directed Degree Distribution, Degree Correla-
tion, Dyad-, Triad Census, Shortest Path Distribution, K-core distribution,
Betweenness Centrality, Expansion, Average Neighbor Degree, DSP and top
20 Eigenvalues . 97

3.8 Specifying DAG1K and DAG2K: ODDS and bipartite representation with
non-chords (dashed lines) defined by topological order. 99

3.9 Example: flow network corresponding to ODDS from Fig. 3.8. Non-chords
from ODDS are the missing edges between vouti and vinj . The maximum flow
is shown in red and it includes edges with flow = capacity. 101

3.10 Network Flow HyperGraph for DAG2K using input from Fig. 3.8. The max-
imum flow is shown in red (flow = capacity). 105

3.11 D2K+L input example: ODDS and levels, the corresponding JDAM, Skeleton
Graph, Reduced Skeleton Graph and realization. 107

3.12 Cit-HepTh results . 109
3.13 Cit-HepPh results . 110
3.14 cit-Patents results . 111

4.1 An overview of our approach: given a real graph, the NPM is measured for a
partition P , to capture the graph’s local neighborhood structure. This NPM
is the input to our construction problem and it is used in the following tasks:
(1) Graph Construction, (2) Graph Reconstruction, (3) Link Prediction, (4)
Node Classification. (The icon of Lock is used to represent an example node
attribute to be used as a binary label for the node classification task.) 115

4.2 An example for the decomposition of NPM into degree sequence problems
(DSi, BDSi,j) for a simple graph with its nodes partitioned into two parts
(V0 = {v0, v1}, V1 = {v2, v3}). The union of the edges from the degree se-
quence realizations return the input graph. 118

4.3 Example graph with 3-coloring and a realizable NPM input with prescribed
number of triangles per node. 123

4.4 Graph Construction Task. Evaluation of various NPM models and graph
embeddings on how well they match three real graphs, G, w.r.t. various
graph construction metrics (clustering coefficients, leading eigenvalues, degree
correlations). 136

vii

4.5 Precision@k for top-k recommendations. Top subfigures: Graph Recon-
struction Task (up to k = |E|). Bottom subfigures: Link Prediction (up
to k = 5000). 137

viii

LIST OF TABLES

Page

2.1 Real-life topologies used for evaluation. 72
2.2 Graphs are constructed targeting different properties of 6 different original

topologies. Graph properties are averaged over 20 runs. Last two columns
report the time for the Construction algorithms and for MCMC to target c̄(k). 74

3.1 Input graphs from SNAP [49] . 90
3.2 Summary of results: showing improvements by fixing more properties. Labels:

”.” - no improvement, ”-” - decreased accuracy, ”+” - increased accuracy,
”Exact” - matched by definition. 93

3.3 Running time of ODDS methods on random DAGs with different number of
nodes and density. Reported average time is over 20 runs in seconds (s) and
using a NetworkX -based implementation [40]. 103

3.4 Test citation networks from SNAP [49] with their sizes and D2K+L average
construction time (over 20 runs). 108

3.5 Effects of level assignments: number of levels assigned, number of unique
in/out degrees, resulting partition size and average part size. 110

4.1 Datasets used in evaluation: number of nodes (|V |) and edges (|E|); average
degree, number of (unique) degrees and labels (for node classification task),
NPM construction time. 131

4.2 MAP values for Graph reconstruction / Link prediction tasks for different
methods (d = 128) . 134

4.3 Micro, Macro F1 values for Node classification task for different methods
(d = 128) . 134

ix

LIST OF ALGORITHMS

Page

2.1 2K Simple . 19
2.2 NeighborSwitch(node w,w′) . 19
2.3 2K+S . 31
2.4 2K Simple Attributes . 40
2.5 Find-MinCC(G) . 45

3.1 D2K Simple . 83

4.1 NPM Construction . 119
4.2 Heuristic for Partitions with d parts . 121

x

ACKNOWLEDGMENTS

This work would have not been possible with the guidance and support of my advisor, Prof.
Athina Markopoulou. I am grateful for her invitation to work on this problem, which led me
to explore and push the boundaries of what is possible within the dK-series framework. I
would also like to thank Prof. Carter T. Butts and Prof. David Eppstein for both serving on
my defense committee and their collaboration and support throughout the past years. Thank
you to my collaborators: Dr. Minas Gjoka for introducing me to the first problems discussed
in this dissertation and Dr. William E. Devanny for our collaboration on the NP-Hardness
results. Thanks to past and current students from my lab for their support and helpful
insights: Dr. Blerim Cici, Dr. Luca Baldesi, Dr. Omer Nebil Yaveroglu, Dr. Anastasia
Shuba, Emmanouil Alimpertis, Evita Bakopoulou, Milad Asgari, Janus Varmarken, Hieu
Van Le. Thank you to Prof. Aparna Chandramowlishwaran and Prof. Ardalan Amiri Sani
for their service on my candidacy committee. Thank you is also in order for my mentors and
coworkers at Google: Sam Aldrin, Dr. Sriram Natarajan, Alexandru Mosoi, Dr. Jonathan
Halcrow and Dr. Bryan Perozzi.

I have greatly appreciated all the funding support from the University of California, Irvine
through the Networked Systems Fellowship and the Henry Samueli Fellowship; the National
Science Foundation Awards 1526736 and 1028394; and Google for the summer internships,
this work could not have been accomplished without these sources.

I would also like to thank IEEE to give permission to use previously published work in
this dissertation. Portions of this dissertation’s text are a reprint of the material as it
appears in Balint Tillman, Athina Markopoulou, Minas Gjoka, and Carter T. Butts: “2K+
graph construction framework: Targeting joint degree matrix and beyond”, IEEE/ACM
Transactions on Networking, 27(2):591-606, April 2019. Athina Markopoulou listed in this
publication directed and supervised research which forms the basis for the dissertation.

Last but not least, I would like to thank all my friends near and far for their presence and
support throughout this journey. I would like thank my family for their support and patience
that allowed me to focus on this work for the past years.

xi

CURRICULUM VITAE

Balint Tillman

EDUCATION

Doctor of Philosophy in Networked Systems 2019
University of California, Irvine Irvine, California, USA

Master of Science in Software Development
and Technology 2014
IT University of Copenhagen Copenhagen, Denmark

Bachelor of Science in Business Information
Technology 2012
Corvinus University of Budapest Budapest, Hungary

RESEARCH EXPERIENCE

Graduate Research Assistant 2014–2019
University of California, Irvine Irvine, California, USA

Visiting Researcher 2014
University of California, Irvine Irvine, California, USA

Visiting Researcher 2014
University of Amsterdam Amsterdam, Netherlands

TEACHING EXPERIENCE

Teaching Assistant for EECS215 2015, 2018
University of California, Irvine Irvine, California, USA

Teaching Assistant for SAD1 and SGDS 2013
IT University of Copenhagen Copenhagen, Denmark

xii

ABSTRACT OF THE DISSERTATION

Graph Construction using the dK-Series Framework

By

Balint Tillman

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2019

Professor and Chancellor’s Fellow Athina Markopoulou, Chair

It is often desirable to generate random graphs that exhibit certain prescribed properties,

for example, for simulation or anonymization of real-world graphs. In this dissertation, we

adopt and build on the dK-series modeling framework and we make the following three sets

of contributions. First, we focus on undirected graphs, and we provide a flexible approach

for generating simple undirected graphs with the exact target joint degree matrix (JDM),

which we refer to as 2K graphs, in linear time in the number of edges. Our 2K construction

algorithm imposes minimal constraints on the graph structure, which allows us to target

additional graph properties, namely node attributes (2K+A), clustering (both average clus-

tering, 2.25K, and degree-dependent clustering, 2.5K) and number of connected components

(2K+CC). We show that realizability of exact 2.25K, 2.5K and in general dK-series for any

d ≥ 3 is NP-Complete. Second, we also define the problem of directed and directed acyclic

2K graph construction (D2K, DAG2K), we provide necessary and sufficient conditions for

realizability, we develop efficient construction algorithms for D2K and solve DAG2K in the

special case of level graphs (D2K+L). We evaluate our approach by creating synthetic graphs

that target real-world graphs both undirected (such as Facebook) and directed (such as Twit-

ter) and we show that it brings significant benefits, in terms of accuracy and running time,

compared to state-of-the-art approaches.

xiii

Third, we propose a new approach for graph construction with a prescribed local neighbor-

hood structure. To capture that structure, we define the Neighborhood Partition Matrix

(NPM): given a node partition, NPM specifies the number of edges from each node to each

part of the partition. Our goal is to construct simple graphs that exhibit a given NPM, if

that is realizable. NPM can also be thought of as graph embedding, where each dimension

corresponds to a part in the partition. This key observation allows us to create graph realiza-

tions from these embeddings with guarantees such as degree sequences, degree correlations,

etc. The main strength of the NPM approach is its generality: (i) it bridges the gap between

classic graph realization (for degree sequences and other structural properties) and graph

embeddings; (ii) it allows arbitrary node partitions, thus includes prior models as special

cases. We describe the main approach for undirected graphs and we extend it to directed

graphs and graphs with non-chords. We evaluate strategies for NPM based on different node

partitions and we compare against baselines w.r.t. targeted graph properties and graph

embedding tasks, namely, graph reconstruction, link prediction and node classification.

xiv

Chapter 1

Introduction

1.1 Motivation

It is often desirable to generate synthetic graphs that resemble real-world networks with

regards to certain properties of interest. For example, researchers often want to simulate

a process on a realistic network topology but they may not have access to a real-world

network; or they may want to generate several different realizations of graphs of interest. In

this dissertation, we target both directed and undirected graphs including, but not limited

to, online social networks.

There is a large body of work, in classic literature [23],[42],[41],[64], as well as more recently

[52],[57], [24], on generating realizations of undirected graphs that exhibit (exactly) target

structural properties such as a degree sequence or a joint degree matrix. In this dissertation,

we adopt the dK-series framework [52],[57], which describes graphs in terms of a series of

frequencies of degree-labeled induced subgraphs of increasing size, thus providing an elegant

way to trade off accuracy (in terms of graph properties) vs. complexity (of the algorithms

generating graph realizations with those properties). Construction of 1K-graphs (i.e. graphs

1

with a target degree sequence) is well understood: efficient algorithms and realizability

conditions are known since Havel-Hakimi [42],[41]. Construction of 2K-graphs (graphs with

a target joint degree matrix) has been studied in parallel by several researchers, namely

Amanatidis et al. [73], Czabarka et al. [16], and our group [34]. For d > 2, which is necessary

for capturing the clustering exhibited in social networks, we recently proved that the problem

is NP-hard [19] and we developed efficient heuristics [34]. In contrast, construction of directed

graphs was not as well developed: results were known for construction of graphs with a target

directed degree sequence [30], [29], but the notion of directed degree correlation, or directed

dK-series for d ≥ 2, has not been previously defined.

In this dissertation, we present a general algorithmic framework that allows us to construct

synthetic graphs with an exact target JDM (which we refer to as “2K” graphs) and potentially

additional properties (which we refer to as “2K+” graphs). The core of our 2K+ framework

is an algorithm that can provably create synthetic undirected graphs with the exact target

JDM, and it does so efficiently (i.e. in linear time in the number of edges), while imposing

minimal constraints on the graph structure (i.e. it can potentially create any 2K realization).

We exploit the latter feature to impose additional properties during construction, namely

node attributes (2K+A), clustering (both average clustering, 2.25K, and degree-dependent

clustering, 2.5K) and number of connected components (2K+CC).

We also extend the 2K framework, for the first time, to directed graphs. We define two

notions of degree correlation in directed 2K graphs: directed 2K (D2K) and its special case

D2.1K. D2K includes the notion of directed degree sequence (DDS) and maps directed graphs

to bipartite undirected graphs to also express degree-correlation via a joint degree-attribute

matrix (JDAM) for the bipartite graph. This problem definition lends itself naturally to

techniques we previously developed for undirected 2K [34], which we exploit to develop (i)

necessary and sufficient realizability conditions and (ii) an efficient algorithm that constructs

graph realizations with the exact target D2K. In addition, we also extend this approach to

2

acyclic graphs and solve a special case of level graphs (D2K+L).

Finally, we present a new graph construction problem which we call the Neighborhood Par-

tition Matrix (NPM) problem. The input to the problem is NPM with corresponding

partition P , which captures the local neighborhoods in the following sense: NPM [i, j] cap-

tures the number of edges form node i to nodes in part j of P . This is a generalization

of Degree Spectra Matrix (DSM) [9] and Neighborhood Degree List (NDL) [8] from par-

titioning nodes by degree (which only captures specific structural properties) to arbitrary

partitions. This generalization allows us to utilize NPM as a graph embedding problem with

arbitrary dimensions. This bridges the gap between two previously disconnected literatures:

the classical graphical construction and graph embeddings, allowing us to leverage existing

techniques and applications of both. To the best of our knowledge, we are the first to propose

such graph construction-based models as graph embeddings. More specifically, our method

is flexible with regards of node partitioning compared DSM or NDL, while the fundamental

building blocks of these methods are very similar. This means that many related works that

DSM and NDL builds on can be also used in our context. We highlight the relation to other

graph construction problems and we discuss extensions of NPM to capture other properties,

in addition to NPM, clustering coefficients, directed graph construction.

1.2 Problem Statement

When constructing a synthetic graph that resembles a real graph G, we have to specify

several aspects of the problem.

First, we have to choose the properties of G that should be preserved: this is in itself

a challenging research question. We adopt the systematic framework of dK-series from

Mahadevan et al. [52], which was introduced to characterize the properties of a graph

3

using a series of probability distributions specifying all degree correlations within d-sized,

simple, and connected subgraphs of a given graph G. In this framework, higher values of

d capture progressively more properties of G at the cost of more complex representation of

the probability distribution. The dK-series exhibit two desired properties: inclusion (a dK

distribution includes all properties defined by any d′K distribution, ∀d′ < d) and convergence

(nK, where n = |V | specifies the entire graph, within isomorphism). 1

Second, we have to define in what sense the synthetic graph should resemble the original one.

In this dissertation, we produce simple graphs that exhibit the target properties exactly. This

is different from the stochastic approach presented by [22] (target properties are achieved in

expectation) or the configuration model in [3] (graphs could be multigraphs as well).

Depending on how probabilistic construction is performed, its realizations may be associated

with JDMs that are far from the target, which may or may not be desirable in practice.

While our focus in this dissertation is on exact construction, we note that probabilistic and

deterministic construction are complementary approaches in a broader graph construction

toolkit and can be used together. Exact construction can facilitate probabilistic construction

by, for example, first simulating JDMs from a target distribution and then construction

graphs satisfying those simulated JDMs (if necessary, filtering out unfeasible JDMs as a

form of rejection sampling). Many approaches to probabilistic simulation of complex network

distributions (e.g. those based on Markov chain Monte Carlo or related methods) are fairly

expensive, and exact construction may be faster (provably on the order of the number of

edges) for large graphs.

Third, we have to specify what realizations with the target properties can be achieved and

how: at least one (if such exists), all possible realizations (and the corresponding sampling

1A study of how well dK-series match real-world graphs was conducted by Orsini et al. in [57]. Six
real-world undirected graphs were considered and compared to synthetic graphs produced by dK-series in
terms of a range of graph properties (from local to global, targeted and non-targeted). The paper [57]
demonstrated the convergence of dK-series for these graphs and properties, for d ≤ 2.5, in the overwhelming
majority of the cases.

4

method), a subset of realizations, etc.

A dK-construction problem takes as input the target properties2 (i.e. the dK-series and

potentially additional properties), and addresses the three following subproblems.

• Realizability: Provide necessary and sufficient conditions such that there exist simple

graphs with these target properties.

• Construction: Design an algorithm that generates at least one such graph realization.

• Space of realizations: Characterize the space of all graph realizations with these

target properties and provide ways to sample from them.

In the next subsections, we discuss in detail the dK-series framework [52] and summarize

prior work.

1.3 Our Work in Perspective

1.3.1 Prior Work on Undirected Graph Construction

Consider an undirected graph G = (V,E), with n = |V | nodes and m = |E| edges. Let

deg(v) be the degree of node v. Let Vk be the set of nodes that have degree k, also referred

to as degree group k.

0K Construction. 0K describes graphs with a prescribed number of nodes and edges. This

notion corresponds to simple Erdős-Rényi (ER) graphs with fixed number of edges.

2We use � to denote the target properties, that the constructed graph should have; absence of � denotes
the actual values for the constructed, or partially constructed, graph.

5

1K Construction. In an undirected graph G, a node v has degree deg(v), Dk = |Vk| is

the number of nodes of degree k, k = 1, ..., dmax, where dmax is the maximum degree in the

graph. The degree sequence is simply:

DS = {deg(v1), deg(v2), ..., deg(v|V |)} (1.1)

In the dK-series terminology, the degree sequence specifies 1K. Degree sequences have been

studied since the 1950s, thus we only focus on the most relevant results. The realizability

conditions for degree sequences were given by the Erdős-Gallai theorem [23], and first algo-

rithm to produce a single realization by Havel-Hakimi [42],[41]. The space of simple graph

realizations of 1K distributions is connected over double edge swaps preserving degrees [64].

More recently, importance sampling algorithms were proposed in Blitzstein et al. [12] and

Genio et al. [18].

2K Construction. A Joint Degree Matrix (JDM) is given by the number of edges between

nodes of degree k and l 3:

JDM(k, l) =
∑
v∈Vk

∑
w∈Vl

1{(v,w)∈E} (1.2)

Degree assortativity is a scalar that is often used to summarize JDM. A given 2K (JDM)

also fixes 1K (the degree vector Dk):

Dk = |Vk| =
1

k

dmax∑
l=1

JDM(k, l) (1.3)

as well as the number of edges m = |E|, and the number of nodes n = |V | in the graph, thus

0K.

3In case of k = l, this notation returns twice the number of edges within degree group k, resulting in
minor differences in notation from related work.

6

Realizability conditions for undirected 2K were provided by Amanatidis et al. [73][4]. Al-

gorithms for generating realizations of a target JDM were provided in Czabarka et al. [16],

Gjoka et al. [34] and Stanton and Pinar [63]. The algorithms presented in [4] and [63] are

designed to produce restricted realizations that exhibit the Balanced Degree Invariant (BDI)

property, which evenly spreads edges between degree groups. In [16] and [34], the algorithms

have non-zero probability to produce any realization of a 2K distribution. Bassler et al. [9]

introduced an importance sampling algorithm. We provide an overview of the relation of

these algorithms in Section 2.2.3.

W.r.t. sampling, the space of 2K-graphs with a realizable JDM was shown to be closed

under JDM-preserving double edge swaps [16, 4], 4 and can be used to generate approximate

probability samples for 2K. However, fast mixing has not been proved for 1K or 2K, apart

from special classes of realizations [28] [27]. We further discuss these types of swaps in Section

2.2 in relation to graph properties like number of connected components and clustering.

dK, d > 2 Construction. While algorithms of known time complexity exist for d ≤ 2,

Monte Carlo Markov Chain (MCMC) approaches are typically used for d > 2. Several

attempts were made to find polynomial time algorithms to produce 3K graphs [52] or 2K

realizations with prescribed (degree-dependent) clustering coefficient[33],[34] and [57], but a

member of our team and collaborators recently proved that checking realizability of these

inputs is NP-Complete [19].

Annotated graph construction was proposed by Dimitropoulos et al. in [21] that considered

degree correlations, however the proposed construction method will generate graphs with

self-loops or multi-edges initially. An additional step removes these extra edges to make the

graph simple and finally the largest connected component of the graph is returned.

4In [4] an induction proof is provided that shows swaps to reduce the symmetric difference between any
two realizations until the difference disappears, a simple example is shown in Fig. 2.4. In [16] a different
approach is shown where a swap sequence is given to reach a BDI realization and later to reduce the problem
to a union of unipartite (1K) and bipartite degree sequence problems which have known solutions.

7

Partition Adjacency Matrix problem (PAM) is another relaxation of JDM construction by

Erdős et al. [24], where the number of edges are defined over a partition of nodes (not

necessarily forming degree groups) and each part of the partition is associated with a degree

sequence. In [24], a construction algorithm was shown to solve the problem for any bipartition

and other special cases. However, there is no general solution available for PAM and it

is believed that even the realizability question is NP-Complete. The Bipartite Partition

Adjacency Matrix (BPAM) was recently proposed by Czabarka et. al. [17]. The authors

consider a PAM problem with a bipartition of parts such that every realization of a BPAM

would be bipartite, we use a similar idea in our D2K construction. BPAM with any set of

non-chords can be solved with high probability using a high-order polynomial time algorithm.

Last but not least,we highlight the two most relevant and equivalent problems to our pro-

posed method in Chapter 4. The Degree Spectra Matrix (DSM) [9] and the Neighborhood

Degree List (NDL) [8] construction problems.

Definition 1.1. Given an undirected graph G(V,E), DSM is a |V | × dmax matrix, where

dmax is the largest degree in G, s.t. DSM [i, j] is the number of edges from node i to nodes

with degree j.

Definition 1.2. Given an undirected graph G(V,E), NDL is a set of list, where each node

i in V with degree k has a list of length k, where items are the degrees of i’s neighbors.

Both problems describe essentially the same input in different formats, and both decompose

into uni- and bipartite degree sequence problems. In [9], DSM is used to sample JDM

realizations, while the authors of [8] show that the space of realizations for NDL/DSM is

connected over double-edge swaps. NDL/DSM are special cases of NPM where the partition

of nodes are by degrees. In [8], the authors provide a sufficient characterization for NDL

with a unique realization.

8

1.3.2 Prior Work on Directed Graph Construction

We extend the taxonomy of dK-series, from undirected graphs to also describe properties of

directed graphs.

Directed 0K. There is a simple extension of ER graphs to generate directed graphs as

well, which we use in our evaluation. In addition, we consider the UMAN model [43], which

captures the number of mutual, asymmetric, and null dyads in a graph: UMAN can be

thought of as 0K with fixed numbers of mutual and unreciprocated edges.

Directed 1K. In a directed graph, a node v has both in and out degree (dinv , d
out
v) and the

directed degree sequence can be expressed as follows.

DDS = {(dinv , doutv), v ∈ V } (1.4)

It is well known from Gale’s work [30], that any directed graph can be mapped 1-1 to an

undirected bipartite graph, where each node v of the directed graph is split in two nodes vin

and vout, and the undirected edges across the two (in and out) partitions of the bipartite

graph correspond to the directed edges in the directed graph. A self loop (v, v) in the directed

graph corresponds to a “non-chord” (vin, vout) in the bipartite graph. We further discuss

this transformation and provide examples in Section 3.2.

Construction algorithms are known for a bipartite degree sequence with [30], or without

non-chords, and therefore for the corresponding directed graphs with or without [29] self-

loops, respectively. More recently, an importance sampling algorithm was provided for D1K

in [48]. In general, Tutte’s gadget [70] can also solve DS, BDS, DDS problems with any set

of non-chords as pointed out by Erdős et. al [26]. However, this approach does not scale

well because of its O(|V |4) complexity.

9

Figure 1.1: Overview of graph construction problems, and the relation between them. An
arrow from P1 to P2 means that problem P2 fixes more properties and bidirectional arrows
show equivalence between problems under certain conditions. The contributions made in
this dissertation are highlighted in gray.

1.3.3 Dissertation Contributions: The 2K+ Framework

The proposed 2K+ framework not only constructs graphs with an exact target JDM but

also targets additional properties. This dissertation unifies and extends a number of our

previously disconnected results, which have partially appeared in conferences and workshops,

on construction of undirected (2K [33][35], 2.25K [34], 2.5K [33], 2K+CC [66]) as well as

directed graphs (D2K, D2.1K [67]). Figure 1.1 depicts an overview of the problem space

including past work and our contributions.

10

2K Construction. JDM realizations have been studied independently and in parallel by

several groups. The problem was spearheaded by Amanatidis et al. first in an unpublished

manuscript in 2008 (on the realizability conditions), and in a more recent arxiv in 2015 [4]

(on construction algorithms for balanced and single connected component realizations). It

was followed by Stanton and Pinar in 2012 [63] also targeting BDI realizations and a proof

for connected space that was found to have flaws. Around the same time, construction

algorithms that could also produce non-balanced realizations were developed by two other

groups: Czabarka et al. [16] in 2015, and by Gjoka et al. in 2013 [33] and 2015 [34] (ours).

The common idea behind all construction algorithms is to add one edge at the time so as

to not exceed node degrees or JDM; algorithms vary on if/how they violate any of these

two properties and on when/how to correct it using local rewiring; which is always possible

for realizable JDMs. In addition to independently developing one of the 2K algorithms

in [33, 34], our contribution in this part lies in the particular order in which we add and

rewire edges, which is necessary for being able to target additional properties and enable a

framework beyond just 2K.

Use cases: The 2K distribution captures properties such as differential mixing by degree,

which can be important for modeling phenomena such as diffusion. In particular, in a

degree-conditioned random graph, high-degree nodes are proportionally more likely to be

adjacent to each other than to low-degree nodes; this produces a core in the network, and

high connectivity among hubs (particularly where the degree distribution is highly skewed),

leading to rapid hub-based diffusion. In real networks, however, one may see other mixing

patterns involving, for example, higher or lower levels of assortative degree mixing, or entirely

different patterns (e.g. a tendency for degree-1 nodes to mix with each other, producing large

numbers of isolated dyads). Matching the 2K distribution ensures that these properties are

accurately represented. It is interesting to note that 2K can match these properties. while

1K cannot, while having the same linear complexity O(|E|).

11

Clustering: 2.25K and 2.5K. 2K (JDM) in itself does not capture clustering, which is an

essential property of several real-world graphs such as online social networks. 3K captures a

very strong notion of clustering, whose construction we recently showed to be NP-hard [19].

Our main motivation behind the 2K+ construction work was to efficiently generate graphs

with a target JDM and some notion of clustering and we targeted two such notions: average

clustering c̄ and average degree-dependent clustering c̄(k).

In total there are four main clustering definitions we consider in this dissertation:

• The global clustering coefficient is defined as the three times the number of triangles

divided by the number of two paths, that is equivalent to the following:

cG =

∑
v∈V tv∑

v∈V
(deg(v)

2

) , (1.5)

where tv is the number of triangles touching node v.

• The local clustering coefficient captures the inter-connectivity of a node’s neighbor-

hood:

cv =
tv(deg(v)
2

) . (1.6)

• We define the degree-dependent clustering coefficient for degree k is defined as the

average of local clustering coefficients of degree k nodes:

c̄(k) =

∑
v∈Vk

cv

|Vk|
=

∑
v∈Vk

tv

|Vk| ·
(k

2

) . (1.7)

• The average clustering coefficient is defined as the average of local clustering coefficients

12

of all nodes:

c̄ =

∑
v∈V cv
|V |

. (1.8)

In the 2.25K problem, we develop a construction approach to target JDM and c̄ [34]. In the

2.5K problem, we develop a hybrid construction and MCMC approach to target JDM and

c̄(k) [34, 33], efficiently. The heuristic nature of our approaches is justified by the hardness

of 2K construction with any notion of clustering and the computational hardness of the

dK-series for fixed d ≥ 3 [19] as we include these results here as well.

Use cases: 2.25K and 2.5K distributions capture clustering, which is also important for dif-

fusion: it is well known that clusters are the obstacle to information cascades over networks.

Online social networks exhibit high clustering (e.g., compared to random graphs) and this

is one of the main motivations for this work: producing synthetic graphs that resemble real,

large online social network graphs in reasonable time. As we will see in the evaluation re-

sults, prior MCMC-based approaches targeting clustering on large online social networks do

not converge in weeks, while our 2.25K and 2.5K construction converged on the order of

minutes.

Number of Connected Components: 2K+CC. A single connected component (which

we refer to as 1CC) can be targeted in addition to the degree sequence [64, 71], or in

addition to a target JDM [4]. Our result builds on and extends Amanatidis et al. [4] to

target minimum number of connected components for a given JDM, and we show that the

space of those realizations is connected under JDM-preserving double-edge swaps; a one-page

abstract is at [66] and the extended version and proofs are provided in this dissertation.

Node Attributes: 2K+A. In order to capture attributes in addition to structural proper-

ties, we were the first to define and target the Joint Degree-Attribute Matrix (JDAM), which

captures correlation between node degrees and attributes. We show that our 2K construction

13

algorithms gracefully extends to JDAM construction [34]. This is useful not only for incor-

porating attributes into the model, but also for imposing additional structure by properly

assigning the attributes in JDAM, such as bipartite JDAMs and community membership.

D2K Construction. We have applied our 2K approach to define and solve the directed

2K graph construction problem. We also show several extension (similar to 2K), such as

D2.1K that captures average neighbor degree, a heuristic to target number of mutual edges

(reciprocated edges in directed graphs) and balanced realizations. The observations used to

show how to construct D2K balanced realizations are also used to provide an importance

sampling algorithm for D2K based on work from Bassler et al. [9].

DAGdK-series. We describe results for directed acyclic graph construction. First we show

a simple reduction to network flow problems to solve Ordered Directed Degree Sequence

problem for simple graphs. Second we highlight possible approaches to solve the general

DAG2K construction problem (ODDS and degree correlations) and finally, provide a special

case for D2K with level assignments where every realization will be both acyclic and confirm

to a level assignment similar to graph drawings.

Neighborhood Partition Matrix: NPM. We present a new graph construction problem

which we call the Neighborhood Partition Matrix (NPM) problem. The input to the problem

is NPM with corresponding partition P , which captures the local neighborhoods in the

following sense: NPM [i, j] captures the number of edges form node i to nodes in part j of

P . This is a generalization of Degree Spectra Matrix (DSM) [9] and Neighborhood Degree

List (NDL) [8] from partitioning nodes by degree to arbitrary partitions. We highlight the

relation to other graph construction problems and we discuss extensions of NPM to capture

other properties, in addition to NPM, clustering coefficients, directed graph construction.

Compared to other graph embedding methods discussed in Section 4.2, NPM has two quali-

tative advantages: (i) it creates graph realizations that exhibit exactly the target properties

14

(such as degree sequences, degree correlations, etc); (ii) it is more interpretable. NPM also

has some technical differences, i.e. the embedding vectors have integer instead of continu-

ous values. Compared to graph construction, the decomposition of NPM leverages efficient

approaches but generalizes beyond partitioning by degree only. In our evaluation, we show

that NPM outperforms baseline graph embedding methods for graph construction and graph

reconstruction, for several datasets, and performs comparable to baselines on link predic-

tion and node classification tasks. Thus, the NPM model brings qualitative improvements

(flexibility and interpretability), while also achieving better or – in the worst case – similar

performance w.r.t. all tasks.

15

Chapter 2

Undirected Graph Construction

2.1 Introduction

In this chapter, we focus of the undirected dK-series. First, we consider 2K graph construc-

tion: we define necessary and sufficient conditions for realizability and we provide a simple,

efficient algorithm to construct realizations. We exploit the flexibility of our 2K algorithm

and we develop heuristics to generate 2.25K graphs and speed up 2.5K targeting MCMC

samplers. We also extend our method to the combination of degrees and attributes, called

JDAM (2K+A). We show that it is possible to efficiently construct 2K realizations with

minimum number of connected components and that the space of realizations are connected

over double-edge swaps below a target number of connected components. Finally we show

that the realizability problems for dK-distributions are NP-Complete for fixed d ≥ 3.

The outline of this chapter is as follows. Section 2.2 defines and solves the basic 2K-

construction problem, while Section 2.3 extends it to the 2K+ framework for 2K with

additional properties (2.25K, 2.5K, 2K+A, 2K+CC). Section 2.4 provides the proofs for

the computational hardness of dK-series for d ≥ 3. Section 2.5 provides a comparison to

16

Figure 2.1: Example of running 2K Simple. The algorithm starts from nodes with only free
stubs (left). In each iteration it creates one edge by connecting 2 free stubs and updates
corresponding JDM entries until the graph is complete (right).

state-of-the-art methods when targeting several real-world undirected graphs. Section 2.6

summarizes this chapter.

2.2 2K Construction: JDM

In this section, the input is the target JDM�, and the goal is to create a (at least one) simple

undirected graph with N nodes that exhibits that exact JDM�, if it is realizable.

2.2.1 Realizability

Not every target JDM is realizable (or “graphical”): there does not always exist at least one

simple graph with this exact property. Necessary and sufficient conditions for a target JDM

to be realizable, have been developed independently [4, 63, 16, 34] and are the following:

17

I ∀k, JDM(k, k) ≤ |Vk| · (|Vk| − 1)

II ∀k, l, k 6= l, JDM(k, l) ≤ |Vk| · |Vl|

III ∀k : |Vk| =
∑
l
JDM(k,l)

k , and it is an integer.

These conditions are necessary and describe intuitive conditions for inputs to be realizable.

Violating the first condition would necessarily result in a multi-graph or graphs with self-

loops, since it describes the number of edges contained in a complete graph for a degree

group. Similarly the second condition describes a complete bipartite graph between a pair

of degree groups. The third condition ensures that size of degree groups are integers and

gives the number of nodes with certain degree. Sufficiency of these conditions are shown by

a constructive proof of our algorithm.

2.2.2 Algorithm for 2K Construction

2K Simple receives a target JDM� as input and creates a simple undirected graph with

JDM�. It is summarized next and is illustrated in the example of Fig. 2.1.

The initialization phase is depicted in the leftmost column of Fig. 2.1. We create |V | =

n nodes, labeled by their degree; note that |V | and D�k can be found from JDM�(k, l).

Following the configuration model approach, we assign k free stubs to every node v ∈ Vk

according to their degree. Stubs are the “half” edges shown in the top-left part of Fig.

2.1, originally free, i.e. not connected to any other nodes. We also initialize all entries of

JDM(k, l) to zero.

Then the algorithm proceeds in iterations by adding one edge at a time until JDM matches

JDM�. More specifically, we pick two nodes v and w from degree groups Vk and Vl respec-

tively, s.t. JDM(k, l) has not reached its target yet (i.e. JDM(k, l) < JDM�(k, l) in line 2

18

Algorithm 2.1 2K Simple

Input: JDM�

Initialize:
a: Create |V | nodes; each v ∈ V has deg(v) free stubs
b: Set JDM(k, l) = 0 for every (k, l) ∈ JDM�
Add Edges:
1: for (k, l) ∈ JDM�(k, l)
2: while JDM(k, l) < JDM�(k, l)
3: Pick any nodes v ∈ Vk and w ∈ Vl

s.t. (v, w) is not an existing edge
4: if v does not have free stubs:
5: v′: node in Vk with free stubs
6: NeighborSwitch(v,v′)
7: if w does not have free stubs:
8: w′: node in Vl with free stubs
9: NeighborSwitch(w,w′)
10: add edge between (v, w)
11: JDM(k, l)++ ; JDM(l, k)++
Output: simple undirected graph with JDM = JDM�

of Algorithm 2.1 and (v, w) is not an edge. Then the algorithm connects two of their stubs

to create an edge. Furthermore, the algorithm should be able to add an edge even if one or

both nodes do not have free stubs. In that case, Lemma 2.3 guarantees that we will always

be able to perform edge rewiring, which we refer to as NeighborSwitch, so as to free stubs

for v and/or w.

More specifically, a NeighborSwitch for a given node w frees a stub for node w and preserves

the current JDM without creating multi-edges or self-loops. It does so, if also given a node

w′ with the same degree as w and a free stub. First, we find a neighbor t of w such that

t is not a neighbor of w′, then removing edge (w, t) and adding edge (w′, t). The following

pseudocode summarizes a NeighborSwitch, which is also illustrated in Fig. 2.2.

Algorithm 2.2 NeighborSwitch(node w,w′)

1: find t: neighbor of w and not neighbor of w′

2: remove edge (w, t)
3: add edge (w′, t)

19

Figure 2.2: All possible cases of adding an edge (v, w) between node v (of degree k) and
node w (of degree l). Blue color nodes are without free stubs and grey color indicates nodes
that have remaining free stubs.

Correctness. 2K Simple terminates and constructs a simple undirected graph with the

exact JDM�.

Proof. In each iteration, 2K Simple adds exactly one edge making sure that JDM values

never exceed target JDM� value: i.e. JDM(k, l) ≤ JDM�(k, l). Starting from an empty

graph, the algorithm adds |E| edges and then terminates with JDM = JDM�. Lemma

2.1 shows that the algorithm will not get stuck, i.e. if we have not reached the target, it is

possible to find v ∈ Vk, w ∈ Vl nodes where an edge can be added. There are three cases

depending on whether v, w have free stubs or not:

Case 1. Add a new edge between v, w nodes w/free stubs, no local rewiring needed.

Case 2. Add a new edge between a node v w/out free stubs and a node w w/free stubs.

Lemma 2.2 shows that there is v′ ∈ Vk w/free stubs and Lemma 2.3 shows that Neighbor-

Switch can be applied for v, v′ and it will free up a stub for v. Then (v, w) edge can be added

without further rewiring.

We have to consider whether NeighborSwitch operation can add (v, w) edge if k = l and

w = v′ such that it remains possible to add it after the switch. Node t used during the

switch is different from w, thus the edge added during the switch is different from (v, w).

20

Case 3. Add a new edge between v, w nodes w/out free stubs. Similar to Case 2. application

of Lemma 2.2 gives v′ ∈ Vk and w′ ∈ Vl w/free stubs for v, w respectively. NeighborSwitches

can be then applied to v, v′ and w,w′. The resulting free stubs for v, w can be used to add

(v, w).

Subsequent applications of NeighborSwitches will not add (v, w) even if k = l, because the

first switch clearly uses v′ 6= w and the second can be handled as in Case 2.

Lemma 2.1. If JDM(k, l) < JDM�(k, l), then an edge can be added between Vk and Vl .

Proof. This follows from realizability conditions [I] and [II]. Let us assume that it is not

possible to add a new edge between nodes in Vk and Vl. This implies that nodes in Vk and

Vl and current edges build a complete bipartite graph (or complete graph if k = l):

JDM(k, l) = JDMmax(k, l) =


|Vk| · |Vl|, if k 6= l

|Vk| · (|Vk| − 1), if k = l

(2.1)

Since JDM� for a realizable JDM�(k, l) ≤ JDMmax(k, l), ∀(k, l), which leads to a con-

tradiction with JDM(k, l) < JDM�(k, l). �

Lemma 2.2. If JDM(k, l) < JDM�(k, l), there is at least one node xk ∈ Vk with free stubs

of degree k and one node xl ∈ Vl with free stubs.

Proof . Let us assume that there is no node of degree k with free stubs. This means that

every node x ∈ Vk has k connected stubs and zero free stubs. This happens in two cases:

• ∀m, JDM(k,m) = JDM�(k,m), which contradicts JDM(k, l) < JDM�(k, l).

• ∃m : JDM(k,m) > JDM�(k,m), which contradicts the algorithm’s invariant that

∀(k, l), JDM(k, l) ≤ JDM�(k, l) (lines 2 and 9 of 2K Simple algorithm).

21

This is a contradiction. So does assuming that no xl of degree l, k 6= l has free stubs. �

Lemma 2.3. NeighborSwitch is possible to execute and it is JDM preserving if w,w′ ∈ Vk

and deg(w′) < deg(w).

Proof. Since deg(w′) < deg(w), there exists a node t (t 6= w′, t ∈ Vl, where k could be

equal to l), which is a neighbor of w but not a neighbor of w′. Therefore, it is possible to

remove edge (w, t) and add edge (w′, t) without creating multi-edges or self-loops. Since

a NeighborSwitch removes exactly one edge (w, t) and adds exactly one edge (w′, t), the

number of edges between nodes of degree k (i.e. w,w′ ∈ Vk) and nodes of degree l (i.e.

t ∈ Vl) will remain the same, before and after the switch, therefore the value of JDM(k, l)

will not change. The NeighborSwitch is JDM preserving, and no updates to JDM are

needed. �

Lemma 2.3 guarantees that, if construction has not terminated, there will always be at least

one suitable t (neighbor of w but not neighbor of w′) to perform the NeighborSwitch. In

case there are multiple such neighbors t, picking any one of those candidates to perform the

NeighborSwitch will work, since they all preserve the JDM. Although the choice of eligible

neighbor, t, to perform the NeighborSwitch does not affect the correctness of the algorithm,

it may affect the exact (not asymptotic) running time and the properties of the resulting

realization. In our implementation, we purposely pick one random such neighbor, to avoid

introducing bias in the structure of realizations.

Running Time. The running time of 2K Simple is O(|E| · dmax), i.e. linear in the number

of edges.

Proof. In each iteration of the while loop, one edge is always added, until we add all |E|

edges. However, we have to consider how much time it takes to pick nodes (v, w) and the

cost of NeighborSwitch operations.

22

Naively chosen node pairs would become an issue for dense graphs, since there could be

NeighborSwitches that remove previously added edges or add edges between the two degree

groups. A simple solution is to keep track of JDM�(k, l) − JDM(k, l) many node pairs

where edges can be added in a set P . For every pair of k, l, it is possible to initialize P

by passing through at most JDM�(k, l) node pairs. A new (v, w) node pair can simply be

chosen as a (random) element from P . If a neighbor switch for v ∈ Vk (and similarly to w),

rewires a neighbor t ∈ Vl, then P = P \ (v′, t) ∪ (v, t) maintains available node pairs in P .

Note: (v′, t) might not be in P . This ensures that |P | ≥ JDM�(k, l)− JDAM(k, l). These

simple set operations can be done in constant time, and building P takes O(E + V) time

over all partition class pairs. Finally we remove (v, w) from P once the edge is added.

It takes O(dmax) time to choose a neighbor, t, of a node without free stubs, v, for Neighbor-

Switch, because the sets of neighbors can be at most |dmax| and set difference takes linear

time in the size of sets. Keeping track of nodes with free stubs allows us to pick v′ for Neigh-

borSwitch in constant time. In the worst case, there are at most two NeighborSwitches per

new edge, hence the running time is O(|E| · dmax).

A tighter upper bound can be obtained by counting the running time of a NeighborSwitches

for each degree group. We can express the number of edges E as a sum of stubs attached

over nodes in each degree group k: |E| =
∑
kDk · k/2 . In the worst case that each of

these stubs will need a neighbor switch during an edge addition, the running time would be

O(
∑
kDk · k · (k− 1)/2) = O(

∑
kDk

(k
2

)
), which is the number of paths of length two in the

graph.

Space complexity. The input size proportional to the number of nonzero elements of the

JDM, that is O(d2
max). The algorithm produces a graph that requires O(V + E) space,

while using temporary data structures. Therefore, 2K Simple uses the minimum space as

it is required to store the final output graph. The details of the space requirements are as

23

follows.

2K Simple requires constant look up time for nodes with free stubs, this can be achieved by

storing an array of sets, where each set contains the nodes with free stubs for a given degree

group. The size of this data structure is initially O(V) and decreases over the execution of

the algorithm.

As discussed in the proof, 2K Simple also maintains pairs of nodes (set P) for candidates

to add edges. The size of P is O(JDM(k, l)) for a given k, l degree group pair and

O(
∑
JDM) = O(E) over all iterations of the algorithm. (This is easiest to see in the

example of targeting k-regular graphs, where P stores a set of |E| candidate pairs initially,

and we can keep track of nodes with free stubs in a single set of size O(V).)

2.2.3 Connections to Related Work

2K Simple adds an edge at a time while maintaining the following invariant for every k, l :

JDAM(k, l) < JDM�(k, l) and ∀v ∈ Vk : deg(v) ≤ k. This idea was also presented

independently in [4]. Another approach, followed by [4], [63] and [16], is to add all edges

between Vk, Vl according to JDM�(k, l) without considering degrees. This could create

nodes with higher degree than their assigned degree group requires, which can then be

resolved by using NeighborSwitch operations. Special realizations with the BDI property

can also be constructed using these ideas: [4] adds further restriction to the first approach

such that at every edge addition the BDI property is maintained, while [63] provides an

algorithm using the second approach, where no NeighborSwitch operations are required.

The common idea behind all 2K construction algorithms is to add one edge at the time so

as to not exceed node degrees or JDM; algorithms vary on if/how they violate any of these

two properties and on when/how to correct it using local rewiring (NeighborSwitch in our

24

terminology); which is always possible for realizable JDMs. Please see Section 1.3.3 for a

timeline. The particular order used in which 2K Simple adds and rewires edges is essential

for being able to target additional properties, during construction, thus enabling a framework

beyond just 2K.

2K Simple’s run time complexity is comparable to other proposed 2K algorithms. Interest-

ingly, it is even comparable to 1K construction algorithms that produce any 1K realization

with non-zero probability [12, 18]. Indeed, O|E| is the minimum required to construct a

graph with |E| edges.

2.2.4 Space of Realizations

The order in which 2K Simple adds edges is unspecified. The algorithm can produce any

realization of a realizable JDM, with a non-zero probability. Considering all possible edge

permutations as the order in which to add the edges, the ones where no neighbor switch is

required correspond to all the possible realizations. Unfortunately, the remaining orderings

are difficult to quantify, thus the current algorithm cannot sample uniformly from all real-

izations with a target JDM during construction. We experimentally show that 2K Simple

can construct all possible graphs with up to seven nodes, while 2K BDI can produce much

less.

We use the library NetworkX [20] to generate all 1044 non-isomorphic graph instances that

contain seven nodes. We should note that the number of such graph instances increases

exponentially with size e.g. for n=24 it is ∼ 1.95 × 1059 [1]. For this reason we use in

our experiment a small size of n=7 that gives 1044 instances. For each graph instance we

calculate the corresponding JDM, which results in 768 unique JDM matrices (because there

are cases where several graph instances correspond to the same JDM matrix). Fig. 2.3(a)

shows the frequency of JDM matrices. We see that 598 matrices appear only once. Therefore,

25

(a) Frequency of JDM matrices. (b) Cumulative number of unique graphs
with seven nodes.

Figure 2.3: Generation of all non-isomorphic graph instances with 7 nodes.

if a generator received as input one of those JDM matrices it would always produce the same

graph. On other extreme, two JDM matrices appear 6 times each. Therefore, if a generator

received as input one of those JDM matrices it could produce either of the 6 corresponding

graphs.

We conduct the following experiment. In each iteration, we feed the three algorithms with all

768 JDM matrices and we observe how many unique matrices each algorithm has generated,

cumulatively since the first iteration. Fig. 2.3(b) shows the results. We observe that both

simple graph construction algorithms (2K Simple and 2K BDI) generate 768 unique graphs

in the first iteration; 2K Configuration generates less graph instances due to multi-edges,

which we removed. As the number of iterations increases, we observe that both 2K Simple

and 2K Configuration reach 1044 (i.e. the total number of unique graphs corresponding to

the 768 unique JDMs) in less than 100 iterations. However, the 2K BDI algorithm is unable

to create more than 837/1044 (=80%) unique graphs after 200 iterations, due to the BDI

constraint, discussed in Section 1.3.

Fortunately, once one realization is constructed (using 2K Simple), it is possible to sample

from the space of all realizations, using edge-rewiring. In particular, it has been shown that

JDM realizations are connected via 2K-preserving double-edge swaps [16],[4]. This method

26

is typically used by MCMC approaches that transform one realization to another by rewiring

edges so as to preserve target properties.

In the next subsections, we exploit the flexibility of 2K Simple and we extend it to target

additional properties, in addition to JDM�. In Section 2.3.1 we control (approximately)

the average clustering by controlling the order in which edges are added. In Section 2.3.3 we

impose (exactly) node attributes by exploiting the flexibility in the number of degree groups

with the same assigned degree. In Section 2.3.4 we consider the space of realizations with a

target number of connected components.

2.3 2K with additional constraints

2.3.1 2K+S: Target JDM and Clustering

We proved that the realizability of JDM and a fixed number of triangles is NP-Complete

[19] in Section 2.3.2. This motivated us to design efficient heuristics that target different

notions of clustering (namely 2.25K when average clustering c̄�, is targeted and 2.5K when

degree-dependent clustering c̄�(k), is targeted).

MCMC Approach. In the original dK-series paper [52], 2K-preserving 3K-targeting was

attempted via the classic JDM-preserving double edge swap as follows. Starting from a JDM

realization, randomly select edges (a, b) and (c, d) such that deg(a) = deg(c) and a,b,c,d are

four distinct nodes (to avoid self-loops) and (a,d), (b,c) are not present before rewiring (to

avoid multi-edges), as in Fig. 2.4. If deg(a) = deg(c) then the swap obviously preserves the

JDM of the graph. It is referred to as JDM-preserving double-edge swap and it is used

in MCMC to transform graph G to other realizations G’ with the same JDM, while targeting

other properties. Here, we perform a double-edge swap iff it brings the graph closer to the

27

Figure 2.4: A JDM-preserving double-edge swap is a rewiring of edges (a,b), (c,d) to (a,d),
(b,c), where a,b,c,d are four distinct nodes (to avoid self-loops) and (a,d), (b,c) are not
present before rewiring (to avoid multi-edges). If deg(a) = deg(c) then the swap obviously
preserves the JDM of the graph. It is referred to as JDM-preserving double-edge swap
and it is used in MCMC to transform graph G to other realizations G’ with the same JDM,
while targeting other properties.

target 3K (according to a well-defined distance metric), accept the rewiring. Unfortunately,

this happens with a very small probability and the naive MCMC approach was very slow in

practice, taking weeks or months to produce a single realization for large graphs.

We improved the 2K-preserving clustering-targeting MCMC by carefully selecting candidate

edges to swap so as to control the number of triangles: select edges with low number of

shared partners to create triangles, select random edges to destroy triangles. The rationale

is that it is easier to destroy than create triangles. Although this reduced the running from

weeks to days we still faced scalability problems.

Construction Approach. We modify 2K Simple so as to control the order in which edges

are added and create the target clustering during the 2K construction, not with MCMC after

that. Let E′ be any permutation (order) of possible node pairs {v, w}. We follow the order

in E′ when we consider adding edges in Algorithm 2.1, line 3: if two node pairs E′i = (vi, wi)

and E′j = (vj , wj) are s.t. i < j, then edge (vi, wi) will be considered for addition (line 5 in

2K+S) before (vj , wj). The key question is: what is the right order E′ of adding edges so as

to control clustering?

Figure 2.5 depicts our approach. We assign every node v ∈ V to a coordinate rv randomly

selected from a one-dimensional coordinate system (0, 1). We define the distance of v and

w as dist(v, w) = min(|rv − rw|, 1 − |rv − rw|). If we add edges in increasing distance,

28

Figure 2.5: Approach for targeting clustering during 2K construction. 2K Simple runs with
the target JDM, but we control the order in which to add edges, this results in either low
(right) or high (left) clustering.

we connect nodes near each other, thus creating many triangles among nearby nodes in the

coordinate system (as on the right side of the figure). If we add edges in random order, we

create very few triangles (as shown on the left side of the figure). If we control the fraction

of edges that are added in increasing distance vs. at random, we can control the clustering.

2.25K: Targeting JDM and Average Clustering

We introduce the notion of sortedness, S, to control the order of E′ in which we add edge

during graph construction. Two node pairs E′i and E′j are inverted in an order E′ iff (i <

j) and dist(vi, wi) > dist(vj , wj). We define the sortedness of a list E′ as the fraction of

non-inverted node pairs:

S = sortedness(E’) = 1− number of inversions in list E’

|E′|(|E′| − 1)/2
∈ [0, 1]. (2.2)

We experimented with the effect that an order of node pairs E′ has on the structure of the

generated graph and we found that the sortedness S is positively correlated with the average

29

(a) Erdős-Rényi generator,
n = 100,m = 483, p = 0.1

(b) Powerlaw-Cluster generator,
n = 100,m = 196, p = 0.1

(c) Facebook Caltech network,
n = 769,m = 16, 656

Figure 2.6: Relation of average clustering coefficients, c̄ and sortedness parameter, S.

clustering coefficient, c̄, of the graph; see details on tuning parameter S. Fig. 2.6 shows an

example of the correlation between the sortedness parameter, S, and average clustering coeffi-

cient for three types of graph inputs: two graph models (Erdős-Rényi, Powerlaw-Cluster[44])

to generate two graph instances and we select one real-world network, Facebook Caltech [69].

For each graph instance, with n nodes and m edges, we calculate its JDM and set it as our

target. We then generate 105 graphs with sortedness and parameter S values varied between

[0,1], and record the average clustering coefficient c̄ of each generated graph. Fig. 2.6 shows

that, for a fixed JDM�, by setting parameter S between 0 and 1, we can also control the

average clustering coefficient c̄� of the produced graph between min(c̄) and max(c̄). We use

function y = sin(x·π
2·max(c̄)

) to approximate the observed relation between parameter S and

c̄. Therefore, setting parameter S = s roughly corresponds to an average graph instance

with average clustering coefficient equal to
2·max(c̄)·arcsin(s)

π . It is also intuitively expected

[33], that values of sortedness(E′) close to 0 produce graph instances with minimum cluster-

ing over all graph instances on average. Values of sortedness(E′) close to 1 produce graph

instances with maximum clustering over all graph instances on average.

Algorithm. Next, we present an algorithm to achieve exactly a target JDM� and approxi-

mate clustering by controlling the sortedness S of adding nodes. In the first stage, it attempts

to add edges using a given order E′ of all possible node pairs defined by order(List, S). The

30

Algorithm 2.3 2K+S

Input: JDM�, S
Stage 1:
1: E = {}
2: E′ = order({(v, w) : ∀v, w ∈ V }, sortedness = S)
3: forall {v, w} ∈ E′ do
4: v ∈ Vk, w ∈ Vl
5: if JDM(k, l) < JDM�(k, l) and

deg(v)k and deg(w)l do
6: E ← E ∪ {v, w}
7: JDM(k, l)++ ; JDM(l, k)++
Stage 2:
8: if

∑
JDM(k, l)

∑
JDM�(k, l) do

9: Finish graph construction using 2K Simple

function order(List, S) (used in line 2 of Algorithm 2.3) determines the order of node pairs

E′, that will be considered for addition, so as to (approximately) set as S the sortedness of

the input List.

Similarly to 2K Simple, it only adds edges if the current JDM(k, l) value does not exceed

the target JDM�(k, l). Differently than 2K Simple, it has an additional constraint: it adds

edges between two nodes (v, w) only if there are free stubs to connect the nodes (deg(v) < k,

deg(w) < l). Therefore at the end of the first stage, despite considering all possible node

pairs, there might be some nodes with free stubs, since we do not allow multi-edges or self-

loops. In Stage 2, we use algorithm 2K Simple, starting from the partially built graph at

the end of Stage 1: we add edges between any remaining nodes with free stubs and complete

the graph. It follows directly from the properties of 2K Simple, that this will produce the

exact JDM�.

Running Time. The time complexity of 2K+S is similar to 2K Simple for adding edges (i.e.

O(|E|·dmax)), plus the time for the function order(List, S). If naively implemented, the time

to sort the input list E′ is O(|E′|log(|E′|)). However, the list E′ is consumed by lines 4-7 in

Algorithm 2.3), which require at most |E| edges that pass the condition in Line 5. Therefore,

we argue that we do not need to enumerate all elements of E′ because only some of the node

31

pairs in E′ will not be rejected by the condition in Line 5. In practice, we observed that

enumerating the first k|E| node pairs of list E′, where k is some small number, suffices to add

the overwhelming majority of edges in the graph. The small number of remaining edges (if

any) will be taken care of by Stage 2. Furthermore, we use the coordinate system rv to sort

nodes in each degree group k which takes time O(
∑
kDklog(Dk)). After this initial sorting

phase, each node v can find its closest k neighbors in linear time. In summary, the running

time of a smart implementation of the function order(List, S) that returns k|E| elements

is O(k|E| +
∑
kDklog(Dk)). The expression is dominated by the term k|E| in real-world

graphs, which makes the running time approximately linear in the number of edges.

Space Complexity. Naive implementation of 2K+S would require to generate all possible

edges taking O(|V |2) space. An improved implementation only adds O(|E|) edges which

reduces the space complexity to the overall O(|V |+ |E|).

2.5K: Target JDM� and Degree-Dependent Clustering

Targeting c̄�(k) is even more challenging than targeting c̄�. Our intuition from MCMC

was that it is difficult to find a double edge swap that creates triangles while it is easier to

destroy triangles. Therefore, we propose to (1) create a 2K realization with many triangles

(such as a 2K+S with S = 1) and (2) use the improved MCMC described above to destroy

triangles. This indeed worked well in practice in terms of targeting c̄�(k) and running time.

This idea is evaluated in Section 2.5.

32

Figure 2.7: On the left is a graph with a coloring. On the right is a realization of JDM-ColorG
where the edges from the coloring nodes represent the previous coloring and the degree one
nodes are represented by clouds. On the bottom we show the JDM-ColorG for the example
graph.

2.3.2 2K+#4: NP-Hardness for JDM with fixed number of tri-

angles

It is possible to realize graphs with a target JDM as forests [66, 68] or trees [5] in polynomial

time. In this section, we show that realizability of the JDMs of graphs with no triangles is

much harder. We define this problem as the following:

Problem 2.1. 2K+#4-REAL

Input: a JDM and a number t ∈ N of triangles

Output: yes if there is a graph that realizes the JDM and has t triangles, no otherwise

33

Given a graph G with n nodes we will create a JDM with poly(n) nodes that can be realized

with the same number of triangles as G if and only if G is 3-colorable. The key idea is that

every realization of this JDM will contain a copy of G as a subgraph and we use additional

nodes and the number of triangles to represent valid coloring.

For a graph G, we construct JDM-ColorG as depicted in Figure 2.7 above. First the degrees

we will use are di = si + deg(vi) + 1 where si = (i+ 1)n for each node vi ∈ G. Because the

deg(vi) are all less than n, we know si < di < si+1 and so each node in G corresponds with

a unique degree in JDM-ColorG. We also use two additional degrees: 1 and n. We set the

constraints as follows:

Edge constraints, for each edge (vi, vj) in G:

JDM(di, dj) = 1 (2.3)

Coloring constraints, to create coloring gadget we use degree n:

∀vi JDM(n, di) = 1 (2.4)

Equal degree constraint, to create equal degree for coloring nodes:

JDM(n, 1) = 2n (2.5)

Unique degree constraints, to create unique degrees for each node vi:

∀vi JDM(di, 1) = si (2.6)

34

The remaining entries of JDM are all set to zero. An example is shown for the construction

of JDM-ColorG in Figure 2.7.

Lemma 2.4. In any realization of JDM-ColorG, there is exactly one node for each degree

di, there are 2n+
∑
si nodes with degree one, and 3 nodes with degree n.

Proof. We can compute the number of nodes with each degree: ∀i, |Vi| =
∑
j=1

JDM(i,j)
i .

The nodes with degree di have an edge for each neighbor of vi in G totalling deg(vi) such

edges, 1 edge to the coloring gadget from JDM(n, di) = 1, and several edges to degree one

nodes from JDM(di, 1) = si. All together these sum to exactly di. Therefore there is only

one node with degree di.

nodes with degree one appear only in JDM(n, 1) and JDM(di, 1) for each di, summing

shows that there are 2n+
∑
si such nodes.

The nodes with degree n have n edges to the nodes in G and 2n edges to degree one nodes

from JDM(n, 1). Since their degree is n, the number of such nodes is 3n/n = 3.

We refer to the three nodes of degree n as the coloring nodes.

Lemma 2.5. If G is 3-colorable, then JDM-ColorG is realizable.

Proof. Create a new graph G′ as follows:

• For each node vi in G, create a node v′i and connect v′i to si new degree one nodes

• For each edge u, v in G, connect u′ and v′ with an edge

• Add 2n isolated nodes

• Add three new nodes r, g, and b

35

• For each red node v in the 3-coloring of G, connect v′ to r

• For a green node v in the 3-coloring of G, connect v′ to g

• For a blue node v in the 3-coloring of G, connect v′ to b

• Connect each isolated node to one of r, g, and b such that deg(r) = deg(g) = deg(b) = n

Since each node in G′ only connects to one coloring node, their original neighbors, and si

degree one nodes, nodes vi will have di = si + deg(vi) + 1. The nodes r, g, and b each have

degree n. The remaining nodes of G′ all have degree one.

To show that G′ satisfies the edge constraints of the JDM, we now correspond the edges of

G′ with the entries in JDM-ColorG. The edge between the nodes of degrees di and dj occurs

between v′i and v′j . Every node v′ in G′ has one edge to a coloring node and the coloring

nodes have a total of 2n degree one neighbors. Further for each v′i, the node of degree di,

has si neighbors of degree one. This accounts for all the edges in G′ and each group of edges

is now identified with an entry of the JDM.

Since G had a valid coloring, the edges from nodes in v′ to coloring nodes can not participate

in any triangles. Also degree one nodes are not able to form triangles. So the only triangles

in G′ are copies of triangles in G. Thus G′ is a realization of JDM-ColorG.

Lemma 2.6. If JDM-ColorG is realizable, then G is 3-colorable.

Proof. Suppose there is a graph G′ that realizes JDM-ColorG. Because of Lemma 2.4, G′

has n nodes with the degrees di, 3 nodes with degree n, and 2n +
∑
si nodes with degree

1. For every edge vi, vj in G, there is an edge in G′ between the unique nodes of degree di

and dj , thus G′ has a copy of G as a subgraph.

Since the number of triangles in G and G′ are equal and G′ has a copy of G, there are no

triangles involving the coloring nodes.

36

Associate the colors red, green, and blue with the three degree n nodes in G′. We can

assign each vi the color of the degree n node neighbor of the degree di node. Two adjacent

nodes in G cannot be assigned the same color otherwise there is a triangle between the two

corresponding nodes in G′ and the coloring node. So G has a proper 3-coloring.

Based on these two lemmas together, we can conclude:

Theorem 2.1. 2K+#4-REAL is NP-Complete.

Proof. By Lemma 2.5 and Lemma 2.6, 2K+#4-REAL is NP-Hard. It is also in NP because

a graph that realizes a distribution and has the given number of triangles is a verifiable

witness by simply counting triangles and computing the JDM .

There are triangle free graphs where 3-Coloring remains NP-Hard [51], thus our reduction

also includes the case to realize JDMs as triangle free graphs.

JDM is a special case of Joint-Degree and Attribute Matrix (JDAM) [34] and Partition

Adjacency Matrix (PAM) [24]. The JDAM problem relaxes the constraint for every Vk

to have nodes with different degree. PAM problem relaxes this problem such that every

part of the partition has an arbitrary degree sequence, instead of nodes with the same

degrees. Realizability of JDAM and PAM problems with fixed number of triangles remains

NP-Complete.

NP-Hardness of 2K+Clustering

In this section, we consider implications of Theorem 2.1 targeting to clustering of 2K real-

izations. We consider the clustering coefficients defined in Section 1.3.3: global clustering,

local clustering, average clustering and degree-dependent clustering.

37

The number of two-paths (simple paths of length two) in every realization of a given JDM are

equal, since realizations have the same degree distribution that specifies this number. The

realizability of JDM with fixed cG and JDM with fixed number of triangles are equivalent

problems and our previous result directly applies to this problem.

The realizability of JDM with fixed local, or degree-dependent clustering coefficients are

equivalent to the realizability of JDM with the number of triangles assigned to each node or

degree group respectively. We can easily apply the previous proof strategy to these problems

with a proper assignment of triangles. The key observation is that during our reduction we

create degree groups with a single node (|Vdi | = 1) for every node, vi, in G. The assignment

of number of triangles is equivalent to the number of triangles in G for each node. Degree 1

nodes can not form triangles and degree n (coloring) nodes are not allowed to form triangles

to ensure valid coloring during the reduction. For both cases we can assign 0 triangles either

per degree group or for each individual node. Our reduction still carries through with these

modifications, which leads to the conclusion that realiability of JDM with fixed local or

degree dependent clustering is NP-Complete.

Average clustering coefficient requires the consideration of the NP-completeness of 3-Coloring

on triangle free graphs. As we have shown earlier, realizability of JDM with 0 triangles

remains NP-Complete, hence realizability of JDM with c̄ = 0 is also NP-Complete.

2.3.3 2K+A: Targeting JDM and Node Attributes

JDM vs. JAM. JDM only describes correlations between the degrees of connected nodes.

However, in many contexts, capturing correlations of node attributes in the network model

better characterizes the graph [45, 21, 60]. For example, in social networks, the similarity of

attributes between two nodes often affects the creation of an edge between them. We assume

that there is a set of categorical attributes with p possible values. Each node v ∈ V can be

38

Figure 2.8: Example of two graphs, (a) and (b), with the same Joint Degree Matrix (JDM)
and different Joint occurrence of Attributes Matrix (JAM) based on colors (black, blue) as
attributes, thus different JDAMs.

assigned to only one categorical attribute. Let Ai be the set of nodes that have attribute

i, for i = 1, ..., p. We can define the Joint occurrence of Attributes Matrix (JAM) as the

number of edges connecting nodes in Ai with nodes in Aj .

JAM(i, j) =
∑
v∈Ai

∑
w∈Aj

1{{v,w}∈E}. (2.7)

However, JAM alone does not capture the network structure. In Fig. 2.8, we show a toy

example. The graphs in Fig. 2.8(a) and Fig. 2.8(b) have the exact same JDM but different

JAM . And conversely, examples of networks with the same JAM and different JDM can be

constructed as well.

JDAM. We propose to incorporate correlations of node attributes on top of the JDM ma-

trix as follows. If Vk is the set of nodes that have degree k for k = 1, ..., dmax and Ai

the set of nodes that have attribute i, for i = 1, ..., p, then let the degree-attribute group

B{k,i} = {v|v ∈ Vk, v ∈ Ai} be the set of nodes that have degree k and attribute i. The

number of degree-attribute groups is at most dmax · p. We define the Joint Degree and

occurrence of Attributes Matrix (JDAM) as the number of edges connecting nodes in B{k,i}

39

Algorithm 2.4 2K Simple Attributes

Input: JDAM�

Init: JDAM({k, i}, {l, j}) = 0, ∀ ({k, i}, {l, j}) ∈ JDAM�
1: for ({k, i}, {l, j}) ∈ JDAM�({k, i}, {l, j})
2: while JDAM({k, i}, {l, j}) < JDAM�({k, i}, {l, j})
3: Pick any nodes v ∈ V{k,i} and w ∈ V{l,j}

s.t. (v, w) is not an existing edge
4: if v does not have free stubs:
5: v′: node in V{k,i} with free stubs

6: NeighborSwitch(v,v′)
7: if w does not have free stubs:
8: w′: node in V{l,j} with free stubs

9: NeighborSwitch(w,w′)
10: add edge between (v, w)
11: JDAM({k, i}, {l, j})++ ; JDAM({l, j}, {k, i})++
Output: simple graph with JDAM = JDAM�

with nodes in B{l,j} for degree-attribute groups {k, i} and {l, j}.

JDAM({k, i}, {l, j}) =
∑

v∈B{k,i}

∑
w∈B{l,j}

1{{v,w}∈E}. (2.8)

Example JDAMs are shown in Fig. 2.8. A JDAM is similar to JDM, but each row now

describes not only a degree k but a degree-attribute pair {k, i}; and similarly for the columns.

Section 2.3.3 describes the algorithm for targeting a given JDAM and the details are provided

below.

It turns out that 2K Simple can be gracefully extended to construct a simple graph with

a target JDAM� as shown in Algorithm 2.4. We can observe that our proofs (and others

from related work) depend on the fact that within a degree group degrees are equal among

nodes, however these proofs do not have restrictions on how many times a degree group

appears with the same degree. We can apply and trivially extend earlier results including

sufficient and necessary conditions for realizability, construction algorithms, existence of BDI

realizations, importance sampling algorithm extensions from JDM , connectivity of space of

40

realizations over JDAM preserving double-edge swaps and MCMC properties.

The running time and space complexity analysis follows 2K Simple. The only change is

that the JDAM input has a size of O((dmax · p)2), where a sparse representation is better

characterized by the number of non-zero JDAM entries or O((number of observed node degree

and attribute combinations)2).

2.3.4 2K+CC: Number of Connected Components

In this section, we target the number of connected components (CC), in addition to the

JDM – a property which has not been explicitly targeted or characterized in the past. An

algorithm for constructing graphs with a realizable JDM and a single CC, if such exist, has

been provided in [4]. However, there may be JDM realizations with a different number of

connected components k, s.t. 1 ≤ kmin ≤ k ≤ kmax. Our main result on this problem is the

following:

Theorem 2.2. The space of simple, undirected graphs with a target JDM and no more than

k� number of CCs is connected under a sequence of JDM-preserving double-edge swaps.

There are counterexamples that show that the above statement is not true for fixed k, i.e,

realizations with exactly k CCs are not necessarily connected under double-edge swaps.

However, we show that the JDM realizations with a number of CCs up to a maximum target

number, k ≤ k�, is connected over double-edge swaps.

Figure 2.9 depicts how every pair of realizations, (A,B), can be reached via a sequence of

JDM-preserving double-edge swaps where every intermediate realization has less than the

maximum of A and B’s number of CCs. Lemma 2.7 uses double-edge swaps that merge CCs

and decrease k. Therefore both A and B can be transformed to A′, B′ with the same JDM

and the minimum number of CCs, kmin. Lemma 2.8 guarantees that A′ and B′ can also be

41

Figure 2.9: Space of JDM realizations with up to k� CCs is connected under JDM-preserving
double-edge swaps (shown on right). A sequence of double-edge swaps (represented by arrows
on left) exists to transform a graph realization A to B (or B to A), while using at most k�

CCs.

transformed to each other via the same types of swaps.

Lemma 2.7. There exists a JDM-preserving double-edge swap sequence that transforms any

JDM realization to a realization with minimum number of CCs, such that there is no double-

edge swap that increases the number of CCs.

Lemma 2.8. The space of JDM realizations with minimum number of CCs, kmin, is con-

nected under JDM-preserving double-edge swaps.

In the following subsections, we prove Lemma 2.7 and Lemma 2.8 and finally we show that

there always exists a balanced and minimum number of connected component realizations

(BDI) of any JDM.

Proof of Lemma 2.7

First, we show how to construct a realization with minimum number of connected com-

ponents from any JDM realization using JDM-preserving double-edge swaps (while not in-

creasing the number of connected components at any step). The main algorithm and the

notation follows the Valid Tree Construction algorithm described by Amanatidis et al. in [4],

42

but the key difference is that the modified algorithm starts from a JDM realization (instead

of a V − 1 “valid” edges) and only uses JDM-preserving double-edge swaps to construct a

realization with minimum number of connected components. This change will require some

adjustments in the algorithm and in the certificate that is produced to show that there is no

realization with less than c number of connected components.

We use the following notation:

• Vi is a degree group (nodes with degree i) V= ∪Vi.

• F ⊂ V, and A is a partition of F .

Define a weighted graph Gcert.(V ′, E′, w) with a node for each element Ai in A and one node

for each Vx /∈ F , assign the following edges and weights:

• If ∃Vx ∈ Ai and ∃Vy ∈ Aj such that JDM(x, y) > 0, then add edge (i, j) with weight

w(i, j) = 1.

• If Vx, Vy /∈ F , then add edge (x, y) with weight w(x, y) = JDM(x, y).

• If Vx /∈ F and JDM(x, x) > 0 add self-loop with weight w(x, x) = JDM(x, x).

• For any Ai, Vx, add an edge with weight w(i, x) =
∑
z:Vz∈A JDM(z, x), if w(i, x) > 0.

Given a realization G(V,E) of a JDM with minimum number of connected components (c ≥

1), we can construct Gcert.(V ′, E′, w) for every F , A combination, by collapsing nodes corre-

sponding to A and Vi, then the following inequality holds
∑
e∈E′ w(e) ≥ |A|+

∑
Vi /∈F |Vi|−c

in the constructed weighted graph, that has at most c components. This follows from the

existence of the realization. If there is partition F and c, where the above inequality doesn’t

hold, it is a certificate to show that there is no realization with c connected components.

43

Figure 2.10: Example execution of Find-MinCC algorithm.

We refer to the modified algorithm from [4] as Find-MinCC here. Find-MinCC finds a swap

sequence instead of building a partial realization of a spanning tree for input JDM. Fig. 2.10

shows a simple example to highlight the intuition behind how the algorithm uses double-

edge swaps to move and break cycles to connect different connected components in a JDM

realization.

Theorem 2.3. The Find-MinCC algorithm finds a realization with the minimum number of

connected components of JDM in polynomial time.

Proof. It is trivial to show, that if G0 is a forest or a single connected component realization,

then the algorithm found a minimum number of connected component realization. Consider

the three cases of Algorithm Find-MinCC.

First, we show that the algorithm terminates after polynomial many iterations: The recursion

can only go to depth k - the number of distinct degrees - using Case 3, because at that

point Case 2 will happen and the algorithm terminates. On the other hand, we will shortly

show, that when Case 1 happens at depth j, then Case 1 will happen j consecutive times

and the number of connected components will be decreased by one in G0. This means that

the while-loop can iterate at most O(k|V |), using 2k iterations to merge pairs of connected

components (loosely upper bounded by |V |).

44

Algorithm 2.5 Find-MinCC(G)

begin
V= ∪ki=1Vi; j=0; G=G0
while G0 is not connected or not a forest:

begin
Oj = {v : nodes on cycles in Gj}
Cj = {Vi : Oj ∩ Vi 6= ∅}
Pj = {Vi : Vi intersects at least two connected

components of Gj}
Zj = {e ∈ Gj : at least one endpoint of e is in some
Vi ∈ Pj}

Case 1: If Cj ∩ Pj 6= ∅
pick u, v in some Vi ∈ Cj ∩ Pj from different

components in G and u ∈ Oj ∩ Vj ;
j = max(j-1,0); Gj = G ∪ Pj ∪ Zj ; G = Gj ;
pick x: neighbor of u from a cycle in G;
pick y: neighbor of v in G;
remove xu, yv from G; add xv, yu to G;

Case 2: else if Pj = ∅
let K1, K2, ..., Kλ be components of Gj
let Ai =Vx : Vx ⊂ V (Ki) for 1 ≤ i ≤ λ;
let F = ∪λi=1Ai; let A = {Ai, ..., Aλ};
output (F,A); G ∪ji=0 Pi ∪

j
i=0 Zi; terminate

Case 3: else Gj+1 = Gj \ Pj ;G = Gj+1; j = j + 1
end
output G0;
end

Similar to [4], we notice that if G0 is not a realization with minimum number of connected

components, then for any j such that a Gj is constructed by the algorithm we have Oj 6= ∅

(and thus Cj 6= ∅). G0 either is a forest or contains cycles. Also any Gj if created will have

Oj−1 ∈ V (Gj), because otherwise Case 1 would happen. Intuitively cycles are preserved as

j increases.

Case 1. First, notice that Case 1 is exactly a JDM-preserving double-edge swap, thus any

realization after performing these swaps will be a realization of the same JDM as the input

graph. The argument is similar to [4]: the number of connected components will decrease

by 1 in G0, if Case 1 happens at Gj . Notice that two components that got connected of

45

G = Gj , K,K
′, must be subgraphs of the same connected components in Gj−1 otherwise

they would have been connected in an earlier iteration (i.e. when G was still Gj−1). After

the double-edge swap, we call G′j−1 the graph that got back Pj−1, Zj−1 (i.e. the nodes and

edges previously removed in at j − 1 depth). The key observation is that, in G′j−1, a new

cycle is created for some v from Vi ∈ Pj−1, because v was on a path connecting K,K ′ in

Gj−1 before. This will result in another Case 1 in G′j−1 until j reaches 0 and results in a

decrease of number of connected components by one in G0. Notice that differently from [4],

we first add back the Pj−1, Zj−1 and then perform the double-edge swap, in order to ensure

that v has neighbors to perform double-edge swaps with at G′j−1.

Case 2. The analysis of Case 2 is the same as Case 3 in [4], except we already know that

all the required edges are present. Let K1, K2, Kλ be the connected components of Gj and

let A and F be defined as in the algorithm. This assignment makes sense for Gj : if a node

v ∈ Vx is in Ki then all nodes of Vx are also in Ki (since Pj = ∅). If we consider the current

graph, G0, all cycles in G0 are contained in the subgraph of G0 induced by nodes of ∪iKi.

Following the proof from [4], we only have to notice that, if we identify all Ai with one single

node to get H from G0, H will have c connected components but contains no cycles. That

means |E(H)| = |V (H)| − c, to have c′ = c− 1 connected components it changes the above

equality to |E(H)| < |V (H)| − c′, but we also know that |V (H)| = |A| +
∑
Vi /∈F |Vi|, and

|E(H)| = 1
2

∑
i:Vi /∈F

∑
j:Vj /∈F JDM(i, j) +

∑
i:Vi /∈F

∑λ
x=1

∑
y:Vy∈Ax JDM(i, y).

In conclusion, if we use (F,A) to construct the weighted graph Gcert.(V ′, E′, w) as before,

then
∑
e∈E′ w(e) < |A|+

∑
Vi /∈F |Vi| − c

′, showing that no realization exists with less than

c connected components. �

The running time of Find-MinCC will depend on the number of connected components of

G and the minimum number of connected components achievable c. An input realization

can be constructed in O(k|E|) time. Each iteration in Find-MinCC can be easily done in

46

O(|E| + |V |) time using Tarjan’s bridge finding algorithm to identify nodes in cycles and

using sets appropriately to do operations for O,C, P, Z. Find-MinCC runs in O(k|V ||E|)

which dominates the input construction time. However, 2K Simple returns with realizations

using c′ connected components, this results in a better overall running time of O(k(c′−c)|E|)

and O(k|E|) running time if we assume that c′− c is some small constant. The Find-MinCC

algorithm can be efficiently applied for realizations that have close to minimum number of

connected components for a target JDM.

Since Find-MinCC only used JDM-preserving double-edge swaps without increasing the

number of connected components at any step, the union of the swaps used during the algo-

rithm will transform the input realization to a minimum number of connected component

realization.

Proof of Lemma 2.8

In this section we show that every pair of JDM realizations with minimum number of con-

nected components are connected over double-edge swaps. Again, this can be shown by using

the proof for the space of JDM realizations from [4]. Here we have to make an additional

constraint, such that during every double-edge swap the number of connected components

will not increase.

The proof is based on induction on the size of the symmetric difference, k, between two JDM

realizations with MinCC (G,G′). The key idea follows the results from [4], however, here

we have to consider the number of connected components at every step. First we start by

several simple observations and definitions about the problem.

We use a red-blue graph to describe the symmetric difference of edges where red represents

edges only in G, blue represents edges only in G′, black edges are present in both G,G′ and

edges not present in either graphs will be left empty. Red (blue) path is defined as a simple

47

path in the red-blue graph that only contains red (blue) and black edges.

There are two simple but crucial points, shown by Amanatidis et al. [4] and others in earlier

work: (1) the number of red and blue edges for a node is the same and (2) there always

exists a red-blue circuit decomposition for the red-blue graph using red and blue edges, i.e.

the symmetric difference. Our proof is similar to proofs based on alternating red-blue cycles

for degree sequences, but our cases also correspond to cases found in [4].

Similar to Amanatidis et al. [4], our proof is based on pairing nodes, that can be defined

as two nodes from the same degree group on an alternating red-blue cycle of distance 2

(along the cycle). It is trivial to see that double-edge swaps around these nodes will be

JDM-preserving.

There is only one case where the number of connected components would increase after

performing a double-edge swap: v − w − p − u − z (where p is the only (simple) path

between w, u). A double-edge swap using w, z would return new paths v − z and a new

w−p−u−w cycle, thus increasing the number of connected components. For simplicity, we

will call these configurations red and blue “cut-paths” depending on whether they appear in

red or blue graphs. However, degree 1 nodes cannot participate in a cycle, thus any double-

edge swap using two degree one nodes will maintain the number of connected components.

This observation will significantly shorten our proof since it means, that we can apply any

available double-edge swap from Amanatidis et al. [4] to handle degree 1 nodes; for the rest

of this discussion we assume that the pairing nodes have at least degree 2.

Double-edge swaps across different components cannot increase the number of connected

components, only decrease if at least one edge was initially in a cycle. This observation also

simplifies our proof, since double-edge swaps of this nature can be done without additional

consideration of the connected components and solved by Amanatidis et al. [4].

The proof will show that starting from any symmetric difference (k ≥ 4), we can reduce this

48

difference by at least 2 using double-edge swaps while both red and blue graphs preserve

the number of connected components. In the main part of the proof, pairing nodes have

degree at least two, thus when a cut-path exists, there is going to be a usable node either

on the cut-path or another neighbor which we can pick. The following cases show that in

every configuration (independently whether the neighbor has red, blue or black edge), we

can progress to decrease k using double-edge swaps that preserve the number of connected

components.

Base case k = 4: The red-blue graph will only contain a single alternating 4-cycle, 0 < k < 4

is not possible. Since both realizations have the same CC, both red or blue double-edge swaps

along the 4-cycle will maintain the number of connected components for both the red and

blue graphs.

We break our cases into 3 main groups depending on the availability of pairing nodes and

the length of alternating cycles where pairing nodes exist:

Case 1: If k > 4 and there are pairing nodes (u,v) in a 4-cycle: we have to consider red and

blue cut-paths of the type discussed earlier around these nodes. There are two configurations

of red and blue cut-paths that would cause an increase in CC if naive double-edge swaps

were executed. This means that u,v do not share neighbors in the same colored graph.

Subcase 1: Red and blue cut-paths meet at a non-pairing node (x): depending on whether

the first edge on blue cut-path from u to u1 is blue or black we have to cases that we can

handle similarly as shown in Fig. 2.11.

If (u, u1) is blue, perform blue double-edge swap (u, u1), (v, x) → (v, u1), (u, x), this re-

sults in (v, u1) is blue or black depending whether (v, u1) was red or empty before; and

(u, x) becoming black from red. In addition, we can perform another red double-edge swap

(u, u2), (v, w)→ (v, u2), (u,w) that behaves the same way as the first swap.

49

Figure 2.11: Case 1, subcase 1: (u, u1) is blue (top), (u, u1) is black (bottom).

If (u, u1) is black, perform blue double-edge swap (u, u1), (v, x)→ (v, u1), (u, x), this results

in (v, u1) is blue (in this case (v, u1) has to be empty before); (u, u1) becoming red from black;

and (u, x) becoming black from red. In addition, we can perform another red double-edge

swap (u, u1), (v, w)→ (v, u1), (u,w) that removes all the red and blue edges.

Subcase 2: Red and blue cut-paths meet at a pairing node (v): since no paths cross the

other pairing node u, and u has degree at least 2, there will be either two neighbors (one

with red u2 and one with blue edge u1) or a neighbor with black edge. This case is very

similar to the previous subcase 1, and swaps are shown in Fig. 2.12.

If (u, u1) is blue, perform blue double-edge swap (u, u1), (v, x) → (v, u1), (u, x), this re-

sults in (v, u1) is blue or black depending whether (v, u1) was red or empty before; and

(u, x) becoming black from red. In addition, we can perform another red double-edge swap

(u, u2), (v, w)→ (v, u2), (u,w) that behaves exactly the same way as the first swap.

If (u, u1) is black, perform blue double-edge swap (u, u1), (v, x)→ (v, u1), (u, x), this results

in (v, u1) is blue (in this case (v, u1) has to be empty before); (u, u1) becoming red from black;

50

Figure 2.12: Case 1, subcase 2: (u, u1) is blue (top), (u, u1) is black (bottom).

and (u, x) becoming black from red. In addition, we can perform another red double-edge

swap (u, u1), (v, w)→ (v, u1), (u,w) that removes all the red and blue edges.

In all of these subcases the double-edge swaps will decrease k by 4, because we resolve the

4-cycle without creating more red or blue edges. More importantly, these double-edge swaps

will not increase the number of connected components in neither the red nor the blue graph.

Case 2: If k > 4 and there exists pairing nodes (u,v) on an alternating cycle with length

more than 4: We are only interested in the two neighbors along the cycle for each node u,v:

x,y and the shared one: w. Here we have 3 major subcases depending on whether 0,1 or 2

black edges are formed along the cycle:

Subcase 1: there are no black edges: u, v have at least one neighbor difference, depending

on whether it is y or another neighbor v1 there are different cases, as follows:

If v has a blue neighbor, v1, not on the cycle: we can perform a blue double-edge swap

(v, v1), (u,w) → (v, w), (u, v1); this makes (v, w) black and (u, v1) blue ((u, v1) was not red

51

Figure 2.13: Case 2, subcase 1: (v, v1) is blue and two configurations of blue cut-paths.

Figure 2.14: Case 2, subcase 1: (v, v1) is black and possible configurations of blue (red)
cut-paths.

since that would be handled by case 1 with an alternating 4-cycle). This swap preserves

the number of components if the blue cut-path goes through wu(p)yvv1, or uw(p)v1vy and

in any other case we could have performed the blue double-edge swap along the cycle. In

addition, this decreases k by 2 without change in the red graph. Two examples shown in

Fig. 2.13.

If v has a black neighbor, v1, and red cut-path on xupwv1, blue cut-path on wv(p)yvv1 or

vwpb1vy: we can perform a blue double-edge swap (v, v1), (u,w)→ (v, w), (u, v1); this makes

(v, w) black and (u, v1) blue, (v, v1) red. Now perform red double-edge swap (v, v1), (u, x)→

(v, x), (u, v1), this makes (u, v1) black, (v, x) red. These swaps preserve the number of

connected components as shown in Fig. 2.14 top and middle.

52

Figure 2.15: Case 2, subcase 2: blue cut-path is on wvpyv

If v has a black neighbor v1, and red cut-path on uxpv1vw, blue cut-path on wv(p)yvv1:

we can perform a blue double-edge swap (v, v1), (u,w) → (v, w), (u, v1); this makes (v, w)

black and (u, v1) blue, (v, v1) red. Now perform red double-edge swap (v, v1), (u, x) →

(v, x), (u, v1), this makes (u, v1) black, (v, x) red. These swaps preserve the number of

connected components as shown in Fig. 2.14 bottom.

Remaining subcases are symmetric from the point of view of u using its neighbors con-

nected through red or black edges. All of these cases are maintaining number of connected

components while decreasing k by 2.

Subcase 2: There is only 1 black edge: The single edge present leads to symmetric cases,

here we consider the black edge present between (v, x).

If blue cut-path is on wvpyv, the naive double-edge swap using only blue edges would create

a cycle, but using blue double-edge swap (v, x), (u,w)→ (v, w), (u, x), maintain CC as shown

in Fig. 2.15.

If blue cut-path is on vwpvy, u will have either a red or black neighbor u1 where (v, u1) is

empty. In either case, first perform red double-edge swap (u, u1), (v, w)→ (u,w), (v, u1), this

makes (u,w) black, (v, u1) red. If (u, u1) was red we can stop here, otherwise (u, u1) became

blue after the swap. However, we can now perform a blue double-edge swap (u, u1), (v, x)→

(u, x), (v, u1), this makes (u, x) and (v, u1) black, (v, x) red. Cases shown in Fig. 2.16.

53

Figure 2.16: Case 2, subcase 2: blue cut-path is on vwpvy, (u, u1) is red or black.

Figure 2.17: Case 2, subcase 3: 2 black edges

Subcase 3: there are 2 black edges: Double-edge swaps using pairing nodes will not affect

connectivity, example shown in Fig. 2.17.

After performing any of these subcases the number of connected components will not change,

but we have decreased k by 2 in every case.

Case 3: No pairing nodes exists: We can create pairing nodes without increasing the number

of connected components. There will be a red, (u, x), and blue, (v, y), edge with same degree

endpoints (u,v) and (x,y) in either a single large cycle (longer than 4) or 2 alternating-cycles.

(u, y) and (v, x) can be only black or empty, otherwise there would be available pairing nodes.

u, v will have at least one neighbor difference in both red and blue graphs.

Subcase 1: there is no black edge between endpoints: if trivial swaps increase CC, we can

focus on blue cut-paths and blue connectivity and perform only blue double-edge swaps and

use symmetric cases for red connectivity.

If cut-path is uw(p)vy, then there exists another neighbor of u not connected to v (in blue

54

Figure 2.18: Case 3, subcase 1: possible cases when cut-path is uw(p)vy

Figure 2.19: Case 3, subcase 1: possible cases when cut-path is wuu1(p)yv

graph), u1. We can perform blue double-edge swap (u, u1), (v, y) → (v, u1), (u, y), that

makes (v, u1) and (u, y) blue; when (u, u1) was black it turns red, and when (v, u1) was red

it turns black. The double-edge swap creates pairing nodes x,y without change in k and other

pairing nodes u,v at an increase in k by 2 when (u, u1) was black while (v, u1) was empty

(before the swap), Fig. 2.18. If cut-path is wuu1(p)yv, then the same blue double-edge swap

can be performed using the first node u1 on path, as shown in Fig. 2.19.

Subcase 2: there is a single black edge between endpoints, (v, x) (symmetric cases exists

if for (u, y)): If blue edges are from different components blue double-edge swap (using

blue edges only) is viable and creates pairing nodes y,x, without increasing k or number of

components. (u, y) is always empty and u, v have the same neighbors in the blue graph. Now

we consider if they are in the same component in blue graph and where the blue cut-paths

occur:

If cut-path is uw(p)vy, then there exist another blue or black neighbor of u, u1 not con-

55

Figure 2.20: Case 3, subcase 2: possible cases when cut-path is uw(p)vy

Figure 2.21: Case 3, subcase 2: possible cases when cut-path is uu1(p)yv

nected to v, and not on any critical blue path. We can perform blue double-edge swap:

(u, u1), (v, x) → (v, u1), (u, x), this makes (u, x) black, (v, x) red. If (u, u1) was blue, then

this creates pairing nodes x,y, while not increasing k. If (u, u1) was black and (v, u1) was

empty, then this creates two pairing nodes x,y and u,v while increasing k by 2. If (v, u1)

was red, only pairing nodes are x,y and k was not increased. Of course, the number of

components have not changed. Cases shown in Fig. 2.20.

If cut-path is uu1(p)yv where u1 is not connected to v, we can perform blue double-edge

swap: (u, u1), (v, y)→ (v, u1), (u, y), that makes (u, y), (v, u1) blue, (u, u1) red if (u, u1) was

black initially. It creates pairing nodes, x,y without increasing k. When (u, u1) was black,

it also creates u,v pairing nodes and k increases by 2, Fig. 2.21.

If cut-path is uu1(p)xv where u1 is not connected to v, we can perform blue double-edge

swap: (u, u1), (v, x) → (v, u1), (u, x), that makes (u, x) black, (v, u1) blue, (v, x) red, and

(u, u1) red if (u, u1) was black initially. It creates pairing nodes, x,y without increasing k.

When (u, u1) was black, it also creates u,v pairing nodes and k increases by 2, Fig. 2.22.

56

Figure 2.22: Case 3, subcase 2: possible cases when cut-path is uu1(p)yv

Figure 2.23: Case 3, subcase 3: possible cases depending on the color of (u, z) edge.

Subcase 3: there are two black edges between endpoints: We discuss the possible cases

from the point of view of v’s neighbors in the red graph, however there are symmetric cases

for u as well. v has at least one red neighbor, z:

If z has no edge to u, then the red double-edge swap (v, z), (u, y) → (v, y), (u, z) makes

(u, y) blue, (y, v) black, (v, z) red; and it creates pairing nodes: x,y. The swap maintains

the number of components and does not increase k, Fig. 2.23 top. If z has a black edge

to u, then the blue double-edge swap (v, x), (u, z) → (v, z), (u, x) makes (v, x), (u, z) red

and (v, z), (u, x) black; and it creates pairing nodes: x,y. The swap maintains the number of

components and does not increase k, Fig. 2.23 middle. Main case 2 will decrease k afterwards

by 2 (4-cycles are not present since that would mean x,y were already pairing nodes). If z

has a red edge to u, then there must exist a black neighbor v1 that is not connected to u;

and the red double-edge swap (v, v1), (u, y) → (v, y), (u, v1) makes (u, y), (v, v1) blue, (y, v)

black, (u, v1) red; and it creates pairing nodes: x,y and u,v. The swap maintains the number

of components and increases k by 2, Fig. 2.23 bottom.

57

In all subcases for case 3, the two pairs of pairing nodes can be handled sequentially x,y first

(main case 2) without changing u’s or v’s edges connecting to their neighbors except x, y.

Then the pairing nodes, u,v can be resolved by main case 2, thus decreasing k by 2=+2-4.

�

2K+MinCC+BDI: Balanced realizations for 2K+MinCC

In this section, we follow the notation from Czabarka et al. [16]. A graph, G, has a node

partition according to their degree V0 to Vdmax . Vi is the set of nodes with degree i. For every

Vj , set Aj(j) := JDM(j, j)/|Vj | and for i 6= j, Aj(i) := JDM(i, j). Now define ∀i, sG(v)i

for every v ∈ Vj as the number of edges from v to nodes with degree i. A realization

is balanced if for all i, j pairs sG(v)i ∈ {bAj(i)c, dAj(i)e} for all v ∈ Vj . Identically it

is balanced if the floor of the difference from the average connectivity (defined by matrix

A) of every node is 0, formally we define CG the difference from balanced for a node v

to a degree group i as cG(v, i) := b‖Adeg(v)(i) − sG(v)i‖c; and for a degree group j as

CG(j) =
∑
v∈Vj

∑dmax
i=1 cG(v, i).

Balanced realizations of JDMs always exists as shown in [16]. Here we show that Lemma 4

and Corollary 5 from [16] can be applied with minor modifications to find balanced realiza-

tions of 2K with minimum number of connected components.

Lemma 2.9. If ∃u, v ∈ Vj : sG(u)i < bAj(i)c < sG(v)i or dAj(i)e handled similarly) for a

simple graph, G , then ∃w,w′ ∈ Vi : {(v, w), (v, w′)} ∈ E, {(u,w), (u,w′)} /∈ E and w,w′ 6=

u; ∃z, z′ ∈ Vk, k 6= i or ∃z ∈ Vk, z′ ∈ Vk′ , k, k
′ 6= i : {(u, z), (u, z′)} ∈ E, {(v, z), (v, z′)} /∈ E

and z, z′ 6= v.

Proof. From the initial conditions follow that u, v ∈ Vi, deg(u) = deg(v) = i and sG(v)i −

sG(u)i ≥ 2. Since the sum of sG(v) equals to i and every value is an (non-negative), integer,

58

in worst case (sG(v)i−sG(u)i = 2) there ∃k 6= i such that sG(v)k−sG(u)k = 2 or ∃k, k′ 6= i

such that sG(v)k − sG(u)k = 1 and sG(v)k′ − sG(u)k′ = 1.

It follows from the previous statement, that ∃w,w′ ∈ Vi such that {(v, w), (v, w′)} ∈

E, {(u,w), (u,w′)} /∈ E; and ∃z, z′ ∈ Vk, or ∃z ∈ Vk, z
′ ∈ Vk′ such that {(u, z), (u, z′)} ∈

E, {(v, z), (v, z′)} /∈ E.

We have to consider whether w,w′ 6= u and z, z′ 6= v: if w = u, then i = j and (u, v) ∈ E

(z = v handled similarly). By removing (u, v) edge, the difference sG(v)i − sG(u)i remains

the same, which means that there exists w,w′ 6= u.

We just showed, that Lemma 4 in [16] has the option for both u, v to choose between two

nodes for the RSO.

Theorem 2.4. If CG(j) 6= 0, there are nodes u, v ∈ Vj and an RSO vw, uz → vz, uw

transforming G into G′ such that C ′G(j) < CG(j); ∀l 6= j, C ′G(l) = CG(l) and |CC(G′)| ≤

|CC(G)|.

Proof. Now that there are at least two neighbors for both u, v two use in an RSO while

applying Lemma 4 [16], we can identify cases to maintain number of connected components,

based on the path between u, v and w, z:

Case 1. There is no path between u, v, i.e. u, v are in different connected components. Any

RSO will not increase the number of connected components, thus |CC(G′)| ≤ CC(G)|.

Case 2. There is a path v−w− p− z− u (where p is a simple path between w, z). An RSO

using w, z would return a new path v − z − p− w − u thus |CC(G′)| = CC(G)|.

Case 3. There is a path w− v− p− u− z (where p is a simple path between v, u). An RSO

using w, z would return a new path z − v − p− u− w thus |CC(G′)| = CC(G)|.

59

Case 4. There is a path v−w− p− u− z (where p is a simple path between w, u). An RSO

using w, z would return new paths v − z, w − p− u. If there are no other paths connecting

these subgraphs, then |CC(G′)|+ 1 = CC(G)|. However, using our previous observation, we

can use w′ that would lead to a path w′− v−w− p− u− z. This is in fact Case 3 using w′

instead of w.

These extensions to Lemma 4 do not change Corollary 5 in [16]; which means that application

of Corollary 5 will result in the necessary sequences to return balanced realizations without

increasing number of connected components. If the input G was already a MinCC realization,

then the resulting G′ will be both MinCC and balanced realization.

2.4 Computational hardness of dK-series

In this section, we provide the proofs for the NP-Completeness of dK-series for d ≥ 3. We

first be the definition of relevant and problems used in our reductions, then we show the

NP-Completeness of 3K realizability, followed by the proofs for dK-series for d > 3.

2.4.1 Definitions

A 3K-distribution is a distribution on graphs that can be described by two tensors: 4 and

∧. 4(i, j, k) counts the number of triples of nodes u, v, and w forming triangles such that

u ∈ Vi, v ∈ Vj , and w ∈ Vk. ∧(i, j, k) counts the number of triples of nodes u, v, and w

forming wedges, an induced two-path, where u ∈ Vi, v ∈ Vj , and w ∈ Vk and v is the middle

node of the two-path. The tensors have some symmetries arising from the automorphisms of

the subgraphs: 4(i, j, k) = 4(j, k, i) = 4(k, j, i) and ∧(i, j, k) = ∧(k, j, i). The probabilities

are uniform over the graphs that satisfy these constraints, i.e. have the prescribed number

60

of triangles and wedges between nodes of the correct degrees. These satisfying graphs are

called the 3K-graphs. A natural question is: are there any 3K-graphs? If there is such a

graph we say it realizes the distribution. Formally we define the problem as:

Problem 2.2. 3K-REAL

Input: a 3K-distribution

Output: yes if there is a graph that realizes the 3K-distribution, no otherwise

Similarly, we can define realizability problems for any dK-distribution.

Our main problems used in our reductions are the following:

Problem 2.3. TRI-EDGE-PARTITION

Input: a graph G

Output: yes if G can be edge partitioned into triangles, no otherwise

Problem 2.4. EPn

Input: a graph G, and a positive integer n

Output: yes if G can be edge partitioned into Kn subgraphs (complete graphs with n nodes),

no otherwise

TRI-EDGE-PARTITION is the special case for EPn where n = 3. EPn is NP-Complete for

fixed n values, where n ≥ 3.

A 1K-distribution from a 3K-distribution

3K-graphs for a given 3K-distribution have the same degree distribution and we can compute

this 1K-distribution from a given 3K-distribution using the following equations [52]

61

When k > 1:

D(k) =

∑
l

∑
m
∧(m, k, l) +4(m, k, l)

k(k − 1)
(2.9)

And for when k = 1:

D(1) =
∑
l

2∧(1, l, 1) +
∑
m 6=1
∧(1, l,m) +4(1, l,m)

l − 1
(2.10)

We can view the resulting 1K-distribution as a relaxation of the 3K-distribution, because

the 1K-graphs are a superset of the 3K-graphs.

2.4.2 NP-Hardness for 3K distributions

In this section, we will show it is NP-hard to recognize the 3K distributions of trees by

reducing from the problem of edge partitioning a graph into triangles. Recall a 3K distri-

bution is described by two tensors, 4 and ∧, of dimension d× d× d where 4(i, j, k) counts

the number of triangle induced subgraphs where one node has degree i, another has degree

j, and the third has degree k and ∧(i, j, k) counts the number of induced wedge subgraphs

where the first node has degree i, the middle point node has degree j, and the third node

has degree k.

Given an input instance of the triangle edge partitioning problem, a graph, G, with n nodes

and m edges, we will create a 3K distribution, 3K-Triangle-PartitionG, as follows. The

degrees we will use in 3K-Triangle-PartitionG will be 1, 4, m/3, and an additional degree for

62

each node of G, vi, of di = m/3 + 1 + i. The two tensors for 3K-Triangle-PartitionG are set

as follows:

For each edge, vivj in G, we set:

∧(di, 4, dj) = 1 (2.11)

And for each node, vi, we set:

∧(4, di, 1) =
deg(vi)

2
(di − 1) (2.12)

∧(1, di, 1) =
deg(vi)

2

(
di − 1

2

)
(2.13)

∧(m/3, 4, di) =
deg(vi)

2
(2.14)

Finally we set the root constraint:

∧(4,m/3, 4) =

(
m/3

2

)
(2.15)

All the other entries of ∧ and 4 are zero.

In the following proofs, It is useful to know the 1K-distribution computed from

3K-Triangle-PartitionG.

Lemma 2.10. The 1K distribution of every realization of 3K-Triangle-PartitionG is the

following: |V4| = m/3, |Vm/3| = 1, |Vdi| = deg(vi)/2 and |V1| = m2/3 +
∑
i
deg(vi)

2 i.

Proof. We can compute these values by repeatedly applying the equations from Section 2.4.1:

63

Figure 2.24: On the left is a graph with a colored triangle edge partition. In the middle, there
is a realization of 3K-Triangle-PartitionG with the edges corresponding to the partitioning
colored appropriately and most of the edges to degree one nodes omitted. On the right is
the non-zero entries of 3K-Triangle-PartitionG grouped into constraints for edges, nodes and
the root node.

|V4| =
∑
i,j

∧(di, 4, dj)/12 +
∑
i

∧(m/3, 4, di)/6 =
∑

e∈E(G)

1/6 +
∑
i

deg(vi)

12
= m/3

|Vm/3| = ∧(4,m/3, 4)/

(
m/3

2

)
= 1

|Vdi| = (2∧(4, di, 1) + ∧(1, di, 1)) /

(
di
2

)
=

(
(di − 1)

deg(vi)

2
+
deg(vi)

2

(
di − 1

2

))
/

(
di
2

)
=
deg(vi)

2

(
di − 1 +

(
di − 1

2

))
/

(
di
2

)
=
deg(vi)

2

|V1| =
∑
i

∧(1, di, 4) + 2∧(1, di, 1)

di − 1
=
∑
i

(di − 1)
deg(vi)

2 + d(vi)
(di−1

2

)
di − 1

=
∑
i

(di − 1)
deg(vi)

2 +
deg(vi)

2 (di − 1)(di − 2)

di − 1

=
∑
i

deg(vi)

2
(di − 1) =

∑
i

deg(vi)

2
(m/3 + i) = m2/3 +

∑
i

deg(vi)

2
i

64

Lemma 2.11. If G is edge partitionable into triangles, then 3K-Triangle-PartitionG is real-

izable.

Proof. Let T1, T2, ..., Tm/3 be an edge partitioning of G into triangles.

Create a new graph G′ as follows:

• Create m2/3 +
∑
i
deg(vi)

2 i degree one nodes, one degree m/3 node, and m/3 degree

four nodes.

• For each node in G, vi, create deg(vi)/2 nodes of degree di and connect each of them

to di − 1 of the degree one nodes.

• Connect all of the degree four nodes to the degree m/3 node.

• For each triangle, T = {(vi, vj), (vj , vk), (vk, vi)}, connect three nodes one of degree

di, one of degree dj , and one of degree dk to the same node of degree four, where none

of these nodes have been connected to any degree four node.

An example of this construction is shown in Figure 2.24.

Because every edge, (vi, vj), is in exactly one triangle, there will be two nodes one of degree di

and one of degree dj sharing a degree four node as a common neighbor and so ∧(di, 4, dj) = 1.

The nodes of degree four can also be at the center of a wedge between the degree m/3 node

and a degree di node. There is one wedge of this type for each node of degree di and so

∧(m/3, 4, di) =
deg(vi)

2 . Each node of degree di is connected to one nodes of degree four

and di − 1 nodes of degree one, and so ∧(4, di, 1) =
deg(vi)

2 (di − 1). The degree m/3 node

has m/3 neighbors of degree four so ∧(4,m/3, 4) =
(m/3

2

)
. Lastly the degree di nodes can

also be in the center of wedges with degree one node neighbors. These use up the remaining

degree of each di node which gives ∧(1, di, 1) =
deg(vi)

2 (di − 1).

65

The nodes of degree di can only be at the center of a wedge if the neighbors are degree

four or one. All the wedges of this form have already been counted. The degree four nodes

can only be at the center of the wedge if the neighbors are m/3 and d − i, but these have

also been counted. Also the degree one nodes cannot be at the center of a wedge subgraph.

Therefore the constructed graph realizes 3K-Triangle-PartitionG.

Lemma 2.12. If 3K-Triangle-PartitionG is realizable, then G is edge partitionable into tri-

angles.

Proof. For each node of degree four with neighbors of degree m/3, di, dj , and dk, in a graph

that realizes 3K-Triangle-PartitionG, create a set of edges T = {(vi, vj), (vj , vk), (vk, vi)}.

These three edges exist in G because there is only a wedge between a node of degree di, a

node of degree four, and a node of degree dj if there is an edge in G. These sets of edges

all form triangles and each edge appears in exactly one set, or otherwise we would have too

many of that type of wedge. So these edge sets partition the edges of G into triangles.

Theorem 2.5. The problem of recognizing the 3K distributions of trees is NP-complete.

Proof. By Lemma 2.11 and Lemma 2.12, the problem is NP-hard. It is also in NP because a

graph that realizes the distribution can be verified by simply computing its 3K distribution.

2.4.3 Extending to d > 3

We extend the proof idea from triangle edge partitioning to d-sized complete graph partition-

ing, the EPn problem. This idea shows the strong relation between subgraph partitioning

and the dK-series. 2K remains in polynomial time, however 3K and above is NP-Complete

for the dK-series, similar to how EPn is also only NP-Complete at n ≥ 3.

66

Figure 2.25: A schematic overview of the forest realization of dK-PartitionG with m/
(d

2

)
trees, where every tree has a root with degree d, the first level nodes have degree di and
there are d of them for each tree. Finally every di node connects to di − 1 degree-1 nodes.

Our construction follows the strategy from the 3K case as shown in Section 2.4.2 and applies

it to higher d. However, the realizable instances will be forests instead of trees. This is not a

fundamental difference from previous arguments, our goal with this change is to simplify the

proof by minimizing the different subgraph counts that describe a forest realization instead of

a tree that merges parts of the forest. We outline the modifications needed for this reduction

for tree realization only in Section 2.4.3, which includes the reduction from Section 2.4.2 as

a special case with d = 3.

From a given graph, G and d, we construct a dK-distribution, called dK-PartitionG. First,

we denote the used degrees: 1, d and ∀vi ∈ V : di = d+ 1 + i.

We denote the connected d-sized degree-labeled subgraph counts of H as dK-PartitionG(H),

here we consider a more abstract view compared to Section 2.4.2. The assignments are pos-

sible to compute in polynomial time and space for fixed d. Figure 2.25 provides a schematic

overview of the forest realization of dK-PartitionG, and Figure 2.26 provides the main cases

of subgraph counts fit into a realization for 4K-distribution:

First, we focus on star subgraphs centered around each di, there will be only two types of

such graphs without or with a degree d node, we assign
(di−1
d−1

)
· deg(vi)

d−1 and
(di−1
d−2

)
· deg(vi)

d−1

67

Figure 2.26: An example to assign degree-labeled subgraphs for 4K: (a) stars excluding
degree-4 node for each di node; (b) stars including degree-4 node for each di node; (c)
subgraphs in trees for each edge (vi, vj) in G: for 4K, there are only two options: using
a 3-paths ending on degree-1 node connected to di or dj ; (d) subgraphs in trees for each
triangle (vi, vj , vk) in G: for 4K, degree-1 nodes are not used hence each triangle counts only
once.

respectively. Figure 2.26 (a)-(b) shows an example for a single tree, however each di node

appears in
deg(vi)
d−1 trees.

Second, we can assign proper counts for every Kp subgraph of G, where 2 ≤ p ≤ d − 1.

Figure 2.26(c) shows an example for 4K-distribution with p = 2, i.e. edges in G and Figure

2.26(d) shows the example for p = 3, i.e. triangles in G. It is important to notice that

p = d − 1 complete subgraphs have only assigned as dK-PartitionG(H) = 1. Formally, we

can describe the assignments of dK-PartitionG(H) in the following way:

• We construct a rooted tree, T with node d and for each vi ∈ Kp add di nodes connected

to d and finally connect sufficient number of degree-1 nodes to di nodes as described

above.

• We have to count degree labeled subgraphs, H, of T with size d, such that each H

contains d5, every di nodes and all combinations of number of degree-1 nodes used from

di nodes. The number of such configurations of H is a combination with replacement to

choose d− p− 1 degree-1 neighbors for each di nodes (total p). Following the notation

of [?], this is (
(p
d−p−1

)
) =

(d−p−1+(p−1)
d−p−1

)
=
(d−2
d−p−1

)
, which captures the number of

5node d has only degree p during this construction, but we replace that p with value d for
dK-PartitionG(H).

68

different configurations of H, but not the assignment for dK-PartitionG(H).

• We can assign dK-PartitionG(H) =
∏
i

(di−1
f(H,di)

)
where f(H, di) returns the number of

degree-1 nodes attached to di in H, and i is the index of nodes in Kp.

Finally, we set every other entry in dK-PartitionG to 0.

The number of nodes with for different degrees are the following: |V1| =
∑
i
deg(vi)
d−1 · (di−1),

|Vd| = m/
(d

2

)
, |Vdi | =

deg(vi)
d−1 . Although, these values can be calculated in principle for any

fixed d, we have not found a simple closed form description. This is due to the different

possible configurations of H and the normalization required by these configuration. The

most straightforward way to compute 1K-distribution, is to compute 3K-distributionfrom

dK-PartitionG while being careful about double-counting wedges for dK-PartitionG and use

equations show in Section 2.4.1. However, even this approach requires the enumerate all

possible configurations of H.

Note that the size of dK-PartitionG is polynomial in |V |, since the number of complete

subgraphs is O(|V |p) for each 2 ≤ p ≤ d − 1 in G(V,E) and the different configurations of

subgraphs of each tree T is O((d−2)d−3) where d is a fixed constant (d ≥ 3) and independent

of the size of G. The order of polynomial and the constants quickly grow for higher values of

d, however, we consider fixed constant d values as in the dK-seriesand it would be considered

in increasing order (1K, 2K, 3K, 4K, 5K, etc.) rather than an arbitrary large value of d such

as d = 200.

Lemma 2.13. If G can be edge partitioned into Kd subgraphs, then dK-PartitionG is real-

izable.

Proof. Given a valid edge partition of G into Kd subgraphs {H1, ..., Hm/(d2)
} we can con-

struction a realization of dK-PartitionG:

69

• Create m/
(d

2

)
number of degree d nodes; ∀vi ∈ V,

deg(vi)
d−1 number of degree di nodes.

• For each node of degree di, we connect them to di − 1 degree 1 nodes.

• For each Hj and for every endpoint vi ∈ Hj , we connect di nodes (that have not been

connected to a degree d node) to the same d degree node.

By construction, the degrees of these nodes as they are intended to be and matching of

dK-PartitionG. If we consider the counts of d-sized connected subgraphs, we can easily

verify that the constructed graph has the correct dK-PartitionG.

Lemma 2.14. If dK-PartitionG is realizable, then G can be edge partitioned into Kd sub-

graphs.

Proof. Given a realization of dK-PartitionG, we can assign the edge partitioning for G into

Kd subgraphs in the following way: every degree d node connects to exactly d nodes with di

degrees. These nodes can be matched back to nodes in G by their degrees, furthermore these

nodes are forming a complete subgraph of size d in G. The edges of these Kd subgraphs

are only used once, since otherwise the realization would contain more than the prescribed

number of d-sized subgraphs from dK-PartitionG, hence the proposed edge partitioning is

valid.

Theorem 2.6. The realizability problem of the dK-distributionof forests or realizability of a

dK-distributionis NP-complete for any constant d ≥ 3.

Proof. Based on Lemmas 2.13 and 2.14, dK-PartitionG has a realization if and only if the

EPd instance is a yes instance. Because any realization can be verified in polynomial time by

70

Figure 2.27: A schematic overview of the tree realization of dK-PartitionG, it has a root

with degree m/
(d

2

)
, and degree two nodes to separate subtrees with roots of degree d + 1

(previously d).

counting d-sized connected subgraphs, the realizability of a dK-distributionis NP-complete.

Tree Realizations

It is possible to extend the construction of dK-PartitionG, such that realizable instances

always form a tree instead of a forest with m/
(d

2

)
trees. We follow the idea from Section

2.4.2 and extend dK-PartitionG with a single node of degree m/
(d

2

)
; the previously degree d

nodes will have degree d+ 1; and finally we add c = bd−3
2 c ·m/

(d
2

)
degree 2 nodes.

We use the node with degree m/
(d

2

)
to the merge the independent trees of the forest re-

alization into a single tree. We use degree-2 nodes to separate the subtrees using simple

paths of bd−3
2 c nodes between degree m/

(d
2

)
and degree d + 1 nodes. This ensures that no

information is shared by d-sized subgraphs in dK-PartitionG between two subtrees rooted

at degree d+ 1 nodes. A schematic overview of this construction is shown in Figure 2.27.

The assignments of H configurations that include nodes with these new degrees has to

be added to dK-PartitionG. However, these counts follow previous arguments and it is

possible to mechanically define them based on the previous construction of dK-PartitionG.

71

Table 2.1: Real-life topologies used for evaluation.

Dataset |V | |E| Avg Deg. c̄ # dorms # years
FB: Rice [69] 4 087 184 828 90.45 0.294 10 22

FB: Princeton [69] 6 596 293 320 88.94 0.237 57 27
FB: UCSD [69] 14 948 443 221 59.30 0.227 40 23

FB:New Orl. [72] 63 392 816 884 25.77 0.222 - -
amazon0601 [49] 403 364 2 443 309 12.11 0.42 - -
youtube-links[55] 1 134 894 2 987 623 5.26 0.081 - -

The number of degree-1 nodes (
∑
i
deg(vi)
d−1 · (di − 1)) has to be also adjusted along with

di = max(d,m/
(d

2

)
) + 1 + i for each vi ∈ V ; this is to ensure that di degrees are greater than

both d and m/
(d

2

)
.

2.5 Simulations for Real-World Undirected Graphs

In this section, we perform simulations targeting properties of real-world undirected graphs,

and we evaluate the performance of different construction algorithms in practice.6 This is

also a use-case of our work: people often need to produce topologies that resemble graphs

like the online social networks listed in Table 2.1. The main finding of this evaluation is

that our construction algorithms can target 2K+clustering well, and orders of magnitude

faster than prior MCMC state-of-the-art: reducing the time from days and weeks (or not

even terminating for large graphs, to minutes and tens of seconds.

Datasets

We evaluate all proposed algorithms in terms of accuracy and efficiency on a variety of real-

world topologies. Table 2.1 summarizes the topologies, which are divided in two groups.

6The algorithms were implemented in Python using NetworkX [40] and executed on an AMD Opteron
2.4Ghz machine. A C++ implementation would be potentially faster by a constant factor especially, if
combined with a more recent, faster CPU. We also contributed our software to NetworkX [32]. However,
the focus in this section, is the comparison of different algorithms.

72

Those in the first group are relatively smaller (i.e. up to 15K nodes) Facebook university

networks (Rice, Orinceton, UCSD) that come with several annotated node attributes. The

second group consists of larger graphs (i.e. more than 60K nodes) without node attributes

(FB: New Orleans, amazon0601, youtube-links).

First, we compute the properties (JDM, clustering, etc) of the original real topology (last line

in each topology), then we use different construction algorithms to target those properties

(listed on the lines above). For each topology, we construct 20 realizations with different

algorithms: 2K Simple, 2K+S with two different values of the clustering parameter S (S = 1

and another S selected to target c̄), and 2K Simple Attributes where node attributes are

“dorms” and “year of admission”. Table 2.2 reports the properties of the original and

constructed graphs, including properties explicitly targeted (c̄ and the degree assortativity

for dorms, and year) and non-targeted ones (average shortest path length, average closeness,

number of maximal cliques), averaged over realizations.

The last two columns report the time (in sec) to construct the graph. The second column

from the end (“Construction”) refers to the time it takes for the construction algorithm to

terminate. The last column (“MCMC”) refers to the additional time that our improved

MCMC would use, starting from the realization the construction algorithm produced, to

further target degree-dependent clustering within NMAE < 2%.

Properties

Here we examine whether targeting either c̄ or attributes, in addition to JDM, brings the

constructed graphs closer to the original w.r.t. other non-targeted properties as well. For the

first three small graphs, we observe that the average shortest path and average node closeness

of graphs produced by 2K Simple is already close to the original graph. Thus, targeting c̄

does not match better the non-targeted properties or the assortativity of node attributes,

73

Table 2.2: Graphs are constructed targeting different properties of 6 different original topolo-
gies. Graph properties are averaged over 20 runs. Last two columns report the time for the
Construction algorithms and for MCMC to target c̄(k).

Topology Graph Graph properties Constr.MCMC
Avg Node Value Number of Assortativity Time Time
c̄ Sh.P. Closn. Cliques Dorms Year (sec) (sec)

FB Rice

2K Simple 0.06 2.33 0.43 425K 0.01 0.01 2.52 9091
2K+S=1.0 0.53 2.74 0.37 11.5M 0.01 0.01 20 193
2K+S=0.52 0.29 2.68 0.38 3.1M 0.01 0.01 21 249
2K+dorm 0.13 2.38 0.43 793K 0.42 0.09 3.45 773
2K+year 0.09 2.36 0.43 500K 0.08 0.28 3.43 2249
original 0.29 2.44 0.41 1.1M 0.42 0.28 - -

FB Princeton

2K Simple 0.04 2.49 0.40 530K 0.00 0.01 3.69 16K
2K+S=1.0 0.55 2.97 0.34 29.0M 0.00 0.01 29 274
2K+S=0.570.24 2.97 0.34 9.8M 0.00 0.01 27 331
2K+dorm 0.10 2.56 0.40 751K 0.09 0.27 5.70 2324
2K+year 0.08 2.59 0.39 755K 0.05 0.45 5.32 2157
original 0.24 2.67 0.38 1.3M 0.09 0.45 - -

FB UCSD

2K Simple 0.01 2.86 0.35 438K 0.00 0.01 4.90 66K
2K+S=1.0 0.63 3.39 0.30 3.7M 0.00 0.01 46 920
2K+S=0.61 0.23 3.46 0.29 5.4M 0.00 0.01 43 1656
2K+dorm 0.03 2.88 0.35 526K 0.25 0.05 8.45 30K
2K+year 0.02 2.89 0.35 476K 0.02 0.36 7.52 42K
original 0.23 2.98 0.34 743K 0.25 0.36 - -

FB: New Orl.

2K Simple 0.00 3.89 0.26 760K - - 18.65 524K
2K+S=1.0 0.58 4.46 0.23 1.5M - - 79 3150
2K+S=0.74 0.30 4.56 0.22 2.4M - - 74 9360
original 0.22 4.35 0.24 1.5M - - - -

amazon0601

2K Simple 0.00 4.84 0.21 2.4M - - 53 ∞
2K+S=1.0 0.61 6.04 0.17 637K - - 239 ∞
2K+S=0.73 0.42 5.92 0.17 1.1M - - 214 ∞
original 0.42 6.39 0.16 1.0M - - - -

youtube-links

2K Simple 0.00 4.64 0.22 2.9M - - 71 ∞
2K+S=0.69 0.14 5.07 0.18 2.4M - - 955 ∞
2K+S=1.0 0.21 4.82 0.20 2.2M - - 1073 ∞
original 0.08 5.34 0.19 3.3M - - - -

which stays close to zero. However, targeting a given attribute significantly improves c̄ and

the assortativity of the second attribute (e.g. 2K+dorms in Princeton) in addition to exactly

achieving assortativity for “Dorms”, also improves c̄ from 0.04 to 0.08 and assortativity for

74

the attribute “Year” from 0.01 to 0.27 when compared to 2K Simple.

In the three larger graphs, targeting a higher c̄ than what is achieved by 2K Simple brings

the average path length and closeness significantly closer to the original graph. For example,

in the amazon0601 topology 2K Simple achieves an average node closeness of 0.21, whereas

2K + S = 0.73 achieves 0.17 which is closer to the real value of 0.16. Finally, for all graphs,

the property “Number of Cliques” does not consistently improve by targeting either c̄ or

attributes.

Efficiency

The time needed to generate a graph using either of our three construction algorithms is

similar, which is expected since they all run in linear time in |E|. For example, it takes tens

of seconds to generate synthetic graphs for all Facebook topologies of Table 2.1 even when

we target maximum clustering (i.e. 2K+S = 1.0). As a baseline for comparison, we also

targeted 2K + c̄ (i.e. 2.25K) with MCMC using double edge swaps, which is the previous

state-of-the-art. With naive MCMC, it took approximately a day to generate synthetic

graphs with the target c̄ for the smallest topologies (Rice and Princeton); while simulations

for the bigger graphs did not finish after several days.

Recall that the last column of Table 2.2 reports the time that a 2K-preserving MCMC needs

to target the degree-dependent clustering of the original graph (2.5K), starting from the

realization constructed by our (2K or 2.25K) construction algorithm. We observe that the

time for the MCMC to target 2.5K increases as we decrease the average clustering in the

generated graphs. We also observe that the larger the graph, the worse the MCMC matches

the graph. For example, in the largest examples (Amazon, Youtube graphs), our improved

MCMC did not successfully target 2.5K in these cases. One reason behind is that the cost

of local updates and number of swaps is large for large graphs.

75

Figure 2.28: Average degree-dependent clustering coefficient for the FB Princeton graph.
Figure shows c̄(k) for the original graph, G, and for a realization produced by 2K Simple,
2K+year, 2K+dorm, 2K + S = 0.57 and 2K + S = 1.

Finally, we observe that construction targeting maximum average clustering (i.e. 2K+S = 1)

has a faster MCMC than 2.25K construction, if the end goal is to follow up construction with

MCMC to target 2.5K. Figure 2.28 further elaborates on this point by zooming in on the FB

Princeton graph: the blue graph is the real 2.5K (c̄(k)) of the original graph; all other curves

plot the c̄(k) achieved by all other construction methods. 2K Simple, 2K+year, 2K+dorm

achieve low clustering (c̄ = 0.04, 0.1, 0.08), much lower than the original graph (c̄ = 0.24).

2K + S = 0.57 matches average clustering (c̄ = 0.24) but not c̄(k). 2K + S = 1 significantly

overshoots the real c̄(k) in most degree groups. These realizations serve as starting point for

the 2.5K-targeting MCMC, at the end of which c̄(k) is within NMAE < 2% of the target

c̄(k). The yellow graph on top shows the c̄(k) at the end of 2K + S = 1 (i.e. maximum

clustering); it turns out that starting from there and using MCMC is the fastest (274 sec)

in Table 2.2), because it is easier to destroy rather than create triangles with MCMC. The

purple graph corresponds to 2.25K (2K + S = 0.57), which does not match the degree-

dependent clustering compared to the original graph and takes longer to fix with MCMC

(331sec) in Table 2.2.

76

Discussion

The benefits of our approach, compared to prior MCMC approaches are two-fold: (i) accu-

racy, i.e. how well we match 2K (exactly), and average clustering c̄ (approximately) and

(ii) construction running time. As we can see in Table 2.2, both approaches and MCMC

can achieve close to c̄ (column 2), if allowed to run long enough. However, as it can be

seen in the last two columns of Table II, our running time is on the order of seconds or up

to tens of seconds, while MCMC running time varies from 100s of seconds (minutes) up to

hundreds of thousands of seconds (several weeks); in the cases of the larger graphs (amazon,

youtube), the MCMC approach does not even converge to the target (thus ∞ time). The

magnitude of the reduction of running time depends on the graph characteristics, and is

amplified when the target graphs (i) are large (i.e. large |V |, |E|), (ii) exhibit high clustering

(e.g. see original c̄ in Table 2.2), and (iii) are sparse (as indicated by their average degree in

Table 2.1).

The Facebook university graphs all have almost the same c̄ and are ordered in increasing

size and sparsity in Table 2.1: Rice, Princeton, UCSD, New Orleans. In Table 2.2, we can

see that the corresponding difference in running time is in the same order, i.e. amplified

with size and sparsity. The amazon dataset is an order of magnitude larger and sparser

but has a higher target average clustering than the Facebook networks. In this case, the

MCMC never converges (indicated by ∞ time in the last column of Table 2.2), while our

algorithms still terminate on the order of minutes. The reason is that it is highly unlikely

to create triangles by chance (MCMC or pure 2K), compared to our more structured 2K+

construction (where we create as many triangles as we can using 2K+S = 1), then we destroy

triangles using an improved MCMC). Fig. 2.28 shows an example of how sortedness was

used to overshoot degree-dependent clustering before applying MCMC. Therefore, targeting

sparser graphs with higher clustering is more challenging for the MCMC approach, while

2K+S was significantly faster. Sparse (pairs of) degree groups tend to have low clustering

77

if we only consider 2K (not 2K+S). We have not experimented with datasets where the

graph is dense and the target clustering is low (but realizable); our intuition is that even 2K

construction would achieve close to target clustering in that case, since it tends to generate

graphs with low clustering. Finally, sparsity can affect the running time of our algorithm

in practice (asymptotically it is still O(|E| · dmax)) in a different way: sparse graphs might

require fewer NeighborSwitches (the most expensive operation in our algorithm) compared

to dense graphs.

2.6 Summary

In this chapter, we have considered 2K and additional constraints. We have provided an

efficient way to construct simple undricted graphs (2K Simple), that exhibit exactly a target

degree correlations and potentially additional properties, including: clustering (2.25K and

2.5K), number of connected components (2K+CC), node attributes (2K+A). We have devel-

oped efficient heuristics (2K+S) and MCMC approaches for 2.25K and 2.5K and we showed

that the realizability problem for such distributions are NP-Complete. Furthermore, we have

shown that the realizability for dK-distributions for any fixed d ≥ 3 are also NP-Complete.

Our results pushed the boundary of what was previously possible to target efficiently within

the dK-series from just degree sequences and degree correlations to additional properties.

This is necessary in order to target real-world graphs such as online social networks. We have

shown that including triangles (or clustering coefficients) lead to NP-Complete problems and

provided efficient heuristics. However, we were able to show positive results on the number

of connected components.

78

Chapter 3

Directed Graph Construction

3.1 Introduction

In this chapter, we consider directed graphs in general, and directed acyclic graphs (DAGs)

as a special case. To the best of our knowledge, we are the first to define and target directed

degree correlations, which we refer to as directed 2K (D2K) [67]. In our main approach, D2K,

we represent directed graphs as bipartite graphs with non-chords and we target the bipartite

JDAM to construct simple directed graphs. In our second approach, we further restrict the

notion of directed degree correlation to D2.1K, to capture in-, out-degree correlations for a

partition of nodes into the same degree groups (nodes with the same in and out degree);

we show that D2.1K can be solved targeting JDAM with a more granular partitioning of

attributes. In addition to the above contributions, which first appeared in [67], in this chapter

we also (i) provide a heuristic to target the number of mutual edges in a directed graph and

(ii) we show that D2K and D2.1K always have BDI realizations, similarly to the undirected

case of 2K. For the special case of DAG construction, we develop : (i) a flow-based approach

for DAG1K construction (i.e. DAGs with a target degree sequence) that is more efficient

79

Figure 3.1: Defining Directed 2K, to capture degree correlations in a directed graph: top
left, Directed 1K; bottom left, Bipartite 1K with non-chords (shown in dashed line); bottom
right, Directed 2K (D2K); top right: Directed 2.1K.

than previous methods; and (ii) we solve a special case of DAG2K, namely level graphs.

The outline of this chapter is as follows. Section 3.2 describes the core idea of D2K construc-

tion including realizability conditions, an efficient construction algorithm and an importance

sampling algorithm. Section 3.3 describes extensions of D2K such as D2.1K, number of

mutual edges and balanced realizations. Section 3.4 evaluates the convergence of directed

dK-series on real-world graphs. Section 3.5 defines the extension of dK-series to DAGs.

Section 3.5.1 describes a simple network flow-based approach to improve efficiency of re-

alizability and construction of DAG1K graphs. Section 3.5.2 describes the current state

of the possible approaches to solve DAG2K and we show a solution for a special case of

level graphs (D2K+L). Section 3.6 evaluates the convergence of DAGdK-series on real-world

graphs. Section 3.7 summarizes this chapter.

80

3.2 Directed 2K Construction

Our goal in this chapter is to go beyond just directed degree sequence and capture directed

degree correlation. One approach would be to simply consider the degree correlations be-

tween in and out degrees in a directed graph, as shown in Fig. 3.1-bottom rightmost matrix.

Alternatively it is possible to work with the equivalent representation of a directed graph as

an undirected bipartite graph without non-chords (Fig. 3.1-bottom left), and define degree

correlations there. We partition in and out nodes by their degree, essentially considering

that nodes in the bipartite graph can have an attribute that takes two values, “in” or “out.”

We can now define degree correlation using the Joint Degree-Attribute Matrix (JDAM), as

shown on Fig. 3.1-bottom right. This leads to a JDAM with two attribute values, such that

∀k, l = 1, ..., dmax degrees and i ∈ {in, out} attribute values JDAM({k, i}, {l, i}) = 0, i.e.,

because the bipartite graph has no edges between two “in” or two “out” nodes. Furthermore,

the number of non-chords will be noted as f({k, i}, {l, j}), where k, l ∈ {1, ..., dmax} and

i 6= j ∈ {in, out}; f can be computed by passing through the directed degree sequence once

and counting the number of entries with in-degree k and out-degree l.

We note that this notion of Bipartite JDAM is a special case of JDAM and inherits all the

properties known for JDAM . It allows us to get rid of the directionality of the edges and

handle a regular undirected JDAM using the 2K+A algorithm previously defined. For D2K,

the main challenge is to show that the non-chords described by the directed degree sequence

can be avoided. In summary we define the D2K problem as follows, and an example is shown

on Fig. 3.1.

D2K. The input is two target properties, namely the JDAM�({k, i}, {l, j}) with two at-

tribute values (in and out) and the directed degree sequence DDS�. The goal is to construct

a simple directed 2K-graph with these target properties (construction) if such realizations

exist (realizability).

81

3.2.1 Realizability

Recall that in our D2K definition, nodes are partitioned into at most 2dmax parts V{k,in},

V{k,out}, k = 1, ..., dmax, according to the distinct combinations of degrees and attributes

they exhibit and JDAM({k, i}, {l, j}) is indexed accordingly. For example, on Fig. 3.1

bottom-right, each node belongs to one of four parts V{0,in} = {v ∈ V : din = 0}, V{1,out} =

{v ∈ V : dout = 1}, V{1,in} = {v ∈ V : din = 1}, V{2,in} = {v ∈ V : din = 2}, and the

JDAM is 3x3 (by removing rows and columns corresponding to any V{0,i}, since there are

no edges using these parts of any partition).

We define the necessary and sufficient conditions for a target D2K, i.e., JDAM�({k, i}, {l, j})

and DDS�, to be realizable as the following:

I ∀k, l, i : JDAM({k, i}, {l, i}) = 0

II ∀k, l, i, j, if JDAM({k, i}, {l, j}) > 0, JDAM({k, i}, {l, j})+f({k, i}, {l, j}) ≤ |V{k,i}|·

|V{l,j}|

III ∀k, i : |V{k,i}| =
∑
{l,j}

JDAM({k,i},{l,j})
k = number of times k appears in DDS as i.

These are generalizations of the conditions for an undirected JDM, JDAM to be realizable,

and they are clearly necessary. The first condition states that every realization of the target

JDAM is bipartite, i.e. there should be no edges between two nodes both in “in” or “out”

parts. The second condition considers edges between two (“in” and “out”) parts and states

that the number of edges defined by the JDAM({k, i}, {l, j}) plus the number of non-chords

(shown as f({k, i}, {l, j})) should not exceed the total number of edges possible in a complete

bipartite graph across the two parts. The last condition ensures that the target JDAM and

the target DDS are consistent: the number of nodes with in (or out) degree k should be

the same whether computed using the JDAM or the DDS. The conditions are shown to be

82

Figure 3.2: New cases in Algorithm 3.1, while attempting to add (v, w) edge.

Algorithm 3.1 D2K Simple

Input: DDS�, JDAM�

Initialization:
a: Create G with nodes, partition, stubs using DDS�

b: Add non-chords to G using DDS�

Add Edges:
1: for ({k, i}, {l, j}) ∈ JDAM�({k, i}, {l, j})
2: while JDAM({k, i}, {l, j}) < JDAM�({k, i}, {l, j})
3: Pick any nodes v ∈ V{k,i}, w ∈ V{l,j}

s.t. (v, w) is not a non-chord or existing edge
4: if v does not have free stubs:
5: v′: node in V{k,i} with free stubs

6: NeighborSwitch(v,v′)
7: if NeighborSwitch fails, v := v′

8: if w does not have free stubs:
9: w′: node in V{l,j} with free stubs

10: NeighborSwitch(w,w′)
11: if NeighborSwitch fails, w := w′

12: add edge between (v, w)
13: JDAM({k, i}, {l, j})++; JDAM({l, j}, {k, i})++
Output: directed graph representation of G

sufficient via the constructive proof of the algorithm. Necessity of these conditions for simple

graph construction are trivial.

83

3.2.2 Algorithm for D2K Construction

First, we create a set of nodes V , where |V | = 2|DDS|, we assign stubs, non-chords to each

node and partition nodes, as specified in the target directed degree sequence DDS�. We also

initialize all entries of JDAM to 0.

Then the algorithm proceeds by connecting two nodes (one from “in” and one from “out”

side, because of Condition I, thus adding one edge (v, w) at a time, that (i) do not form an

edge (ii) do not have a non-chord between them (to avoid self-loops in the directed graph

representation) and (iii) for whom the corresponding entry in the JDAM has not reached its

target. The added complexity from JDAM construction lies in the non-chords and the fact

that NeighborSwitch operation can “fail”. This failure means that there is no suitable node

to perform NeighborSwitch with due to a non-chord constraint. However, in these cases

another edge can be added as shown in Fig. 3.2. Next, we prove that this is indeed always

the case.

Proof. Condition I ensures that every realization is bipartite, Condition II guarantees that

two nodes can be always chosen to add an edge following the arguments in Lemma 2.1

and Condition III ensures that at least one node exist with a free stub in every part of

the partition if JDAM({k, i}, {l, j}) < JDAM�({k, i}, {l, j}) using Lemma 2.2. Now, we

show that every iteration can proceed by adding a new edge to the graph. The cases are

identical to 2K Simple as long as NeighborSwitch operation can be executed without using

non-chords. This leads to two additional cases:

Case 4. Add a new edge between a node w w/out free stubs and a node v w/free stubs (or

w/out free stubs where NeighborSwitch is possible) where NeighborSwitch is not possible

for w using w′ without using any non-chords. In this case w′ has the same neighbors as w

except the one for which it has an assigned non-chord. In this case w′ is not connected to v

84

and it is possible to add {w′, v} edge ({w′, v} is clearly not an edge since then v would be

also connected to w or w could have done a NeighborSwitch).

Case 5. Add a new edge between two nodes (v, w) w/out free stubs, where neither can do a

NeighborSwitch with v′ and w′ respectively. We break this case into two subcases, based on

whether nodes v′, w′ (with free stubs) form a non-chord.

Case 5a. v′, w′ is not a non-chord. This means that we can add a new edge between v′, w′.

It is easy to see that v′, w′ edge is not already present, because otherwise v and w could have

performed a NeighborSwitch.

Case 5b. v′, w′ is a non-chord. This case is not possible when v, w are not able to perform

NeighborSwitches at the same time. Without loss of generality, let’s say that v connects to

every neighbor of v′ and w′. This means that no NeighborSwitch is available for v. Now,

if we want to construct w such that it can’t perform a NeighborSwitch with w′, w would

connect to every neighbor of w′; however, this would include v too, and clearly that edge

doesn’t exist. Contradiction.

This concludes our proof and shows that the algorithm will terminate and generate a bipartite

graph after adding |E| edges without using non-chords.

Running Time. Since the algorithm is essentially the same as before, the running time is

O(|E| · dmax). The only difference is when a NeighborSwitch fails to free up stubs, we use

a node with free stubs. However, this takes only a constant operation when compared to

2K Simple. The final directed graph can be constructed from the bipartite representation by

collapsing nodes with non-chords and assigning directions to edges appropriately, this takes

O(|V |+ |E|) time.

Space Complexity. The D2K Simple algorithm requires an additional O(|V |) space com-

pared to 2K Simple to store non-chords. However, the overall space complexity remains

85

unchanged: O(|V |+ |E|).

3.2.3 Space of realizations

The algorithm for the directed case has the same properties for generating any realization

as 2K Simple. In this section we focus on double-edge swaps for MCMC-based sampling.

D2K is a special case of an undirected JDAM, and thus inherits the property that JDAM

realizations are connected via 2K-preserving double-edge swaps [16],[4] if non-chords are

allowed (equivalently, self-loops in directed graphs). However, we cannot use the known

swaps to sample from the space of simple directed graphs.

The space of simple realizations of directed degree sequences (D1K) is connected over double

edge swaps, that preserve (in and out) degrees, and triangular C6 swaps. If the difference

between two realization is the orientation of a directed three-cycle, then the triangular C6

swap consists of edge rewirings such that the orientation of the cycle is reversed in a single

step. The sufficiency of only these two types of swap was shown in [25]. The necessity

of these swaps also carries over to (simple) directed 2K realizations. However, Fig. 3.3

shows a counterexample (a directed 4-cycle) where the classic swaps are not sufficient to

transform one realization to the other, thus requiring a more complex swap. We leave it as

an open question whether tight upper bounds can be derived on the swap size for Directed

2K realizations.

There are possibly other cases where swaps must be more complex and include more edges at

once, for example larger directed cycles with specific in/out degree order. In this dissertation,

we do not provide tight upper bounds on the number of self-loops (in the directed graph

representation) or the size of swaps required, but we do emphasize that no multi-edges are

required and the number of self-loops are of course bounded by |V |.

86

Figure 3.3: Realizations of the same D2K input without JDAM-preserving double-edge (or
C6) swaps that would not use any self-loops. The edges along the directed 4-cycle must
change their direction simultaneously.

3.2.4 Importance sampling

In the previous section, we have showed that MCMCs are not possible using the “usual”

double-edge swaps or any small fixed sized swaps (e.g, like triangular C6 swaps used for

D1K). However, we will shortly show how to extend Bassler et al. [9] results to work with

D2K inputs. The key observation is already present in Lemma 2.9, that we will reuse in

Section 3.3 to construct balanced realizations of D2K inputs. If we can show that there

are always two options to pick a neighbor to perform some local switch, we can avoid the

non-chords during the algorithms.

Bassler’s paper [9] is built on the idea that after partial assignments from node to degree

groups, the rest of a bipartition between degree group k-l admits a balanced realization.

In Theorem 2. and 3. in [9], we can easily apply the previous observation about two

options, since in these theorems when a local rewiring happens the difference in degrees

is always at least two. With these observations, it is possible to sample Degree Spectra

Matrices (matrix with |V | × dmax, entry describes number of edges from node to degree

group) correpsonding to D2K inputs. The rest of the arguments would be verbatim from

[9] and essentially follow as before: the degree spectra matrices will decompose to bipartite

degree sequence problems (with single non-chords per nodes) per degree group pairs. The

importance sampling from these bipartite sequences are well understood [12, 18] and the

union of these bipartite sequences return realizations to the original D2K input as in [9].

87

The possibility to sample from degree spectra matrices of D2K instances tells us something

about the space of realizations too. It shows us that space of D2K realizations have “is-

lands” where double-edge swaps and triangular C6 swaps are sufficient to connect any pair

of realizations and these “islands” are the union of realizations of degree spectra matrices

where two degree spectra matrices are neighbors through double-edge (or triangular C6)

swap. However, this degree spectra matrix sampling still doesn’t specify the maximum swap

size that is required to get from D2K realizations to another, i.e. our previous claim about

larger required swaps for the space to be connected still holds.

3.3 D2K with additional constraints

We show three examples that capture more information of graphs by imposing more re-

strictions on the realizations. The first approach, D2.1K, fixes average in (and out) degree

neighborhoods in directed graphs; the second approach, D2K+M, is a simple heuristic to

achieve high number of mutual edges in realizations, the third approach considers Balanced

Degree Invariant D2K realizations. Other properties can be considered as well, similarly to

the undirected graph construction.

D2.1K: correlation between (in, out) degree pairs. Instead of working with the

bipartite representation, we can work directly with the directed graph, as in Fig. 3.1-top

right. We partition nodes by both their in and out degrees (dinv , d
out
v), and we can define the

joint degree matrix to capture the number of edges JDM((kin, lout), (min, nout)), between

nodes with (kin, lout) and (min, nout) degrees.

D2.1K is a natural extension of the undirected 2K and captures a more restrictive notion

of degree correlation than our main D2K definition. We use the notation D2.1K, since it

already contains the information for a corresponding D2K. D2.1K fixes the average degree

88

neighborhoods, since for a given node, v, (with known in degree) D2.1K describes the in

degrees of nodes that connect to v (similarly to out degrees as well). This is not specified

in D2K, since it doesn’t consider the in and out degree at the same time. However, we can

also observe that D2.1K can be transformed into a D2K instance with additional attributes.

D2K with additional attributes (D2K+A) is the same kind of generalization used to get from

JDM to JDAM, and our results from D2K carry over to D2K+A. If we use the additional

attribute to capture the nodes’ in and out degree, then the resulting D2K+A instance is

equivalent to D2.1K. Therefore a simple extension of D2K Simple can solve D2.1K instances.

D2K+M: Number of Mutual Edges. This work was motivated by the observation that,

in sparse graphs, D2K produced an order of magnitude less mutual (reciprocated) edges than

in the original social networks. We use a heuristic approach to target number of mutual edges

in a directed graph during construction, by greedily adding mutual edges when permitted

by degree and JDAM constraints. In D2K Simple line 12-13, we can check if the non-chord

pairs of v, w can form an edge and add it if possible. We denote this approach as D2K+M or

D2.1K+M following the notation from UMAN where “M” represents the number of mutual

edges in a graph. This heuristic works well in practice as shown in Section 3.4, but exact

solutions might be difficult to achieve.

D2K+BDI: Balanced Realizations. We can find a swap sequence from any D2K realiza-

tion to a balanced realization for D2K graphs using our observation from Section 2.3.4. Since

there will be two nodes to pick from at every double-edge swap when applying Lemma 4 from

[16], it is possible to avoid self-loops while transforming a D2K realization to a D2K+BDI.

Since every node has one non-chord assigned, we can simply pick a node for the double-edge

swap that does not from a non-chord.

Lemma 3.1. If CG(j) 6= 0, then there are nodes u, v ∈ Vj and an RSO vw, uz → vz, uw

transforming G into G′ such that C ′G(j) < CG(j) and ∀l 6= j, C ′G(l) = CG(l) if every node

participates in exactly one non-chord.

89

Table 3.1: Input graphs from SNAP [49]

Name #Nodes #Edges Generation (sec)
p2p-Gnutella08 6,301 20,777 0.474

Wiki-Vote 7,115 103,689 1.894
AS-Caida 26,475 57,582 2.066
Twitter 81,306 1,768,135 44.884

Proof. As shown in Lemma 2.9, there are at least two neighbors for both u, v two use in an

RSO while applying Lemma 4 [16]. We can find an RSO without using non-chords, since u

has exactly one non-chord, it can pick (at least) one of w,w′ and similarly v can pick one of

z, z′ for an RSO.

As before, we can apply Lemma 4 and Corollary 5 from [16] in combination with the previous

lemma to produce a balanced realizations for any realizable D2K inputs.

3.4 Simulations for Real-World Directed Graphs

We have the same simulation setup as in Section 2.5. We compare realizations generated

by Directed ER (D0K), UMAN, Directed Degree Sequence (D1K), Directed 2K, Directed

2K+M, Directed 2.1K, Directed 2.1K+M with the corresponding target properties captured

on input graph (G). Since we are the first to introduce D2K, we focus on how well D2K

targets various graph properties, rather on evaluating the algorithm efficiency.

We used examples of directed graphs from SNAP [49]: p2p-Gnutella08, Wiki-Vote, AS-Caida

(without customer relations), Twitter. Table 3.1 provides an overview of the graphs (without

self-loops and multi-edges) used in our experiments and reports the average time to construct

realizations using D2K for these examples. In the rest of this section, we consider several well

known graph properties as listed below with brief descriptions where appropriate. A subset

of these properties were also used by Orsini et. al. [57] to study the convergence of dK-series

90

for undirected networks and we report those that are more natural for directed graphs, such

as the triad census. We average results over 20 realizations for every construction method

and specific property.

1. Dyad Census counts the different configurations for every pair of nodes: ”mutual” -

edges in both direction, ”asymmetric” - edge only in one direction and ”null” - no edge

present.

2. Triad Census counts the non-isomorphic configuration for every triplet of nodes. A

complete list of configurations and naming conventions can be found in [43]. Configu-

rations are identified by three numbers (mutual, asymmetric, and null counts) and a

letter in case of different non-isomorphic configuration with the same number of edges.

For example ”003” is a triplet of nodes where none of the edges are present, ”030C” is

a directed 3-cycle and ”300” is a triplet of nodes where all directed edges are present.

3. Dyad-wise Shared Partners for pairs of nodes can be defined in three ways for directed

graphs: using independent two-paths, using shared outgoing neighbors or using shared

incoming neighbors between pairs of nodes [62]. Dyad-wise shared partners (DSP)

count node pairs by the number of shared partners appearing in a network.

4. Average Neighbor Degree captures the average degree of a nodes’ neighbors, and we split

this property for in - and out degrees. Similarly, we refer to Expansion for directed

graphs as the ratio of the first hop and second hop neighborhoods’ sizes going out,

or coming in to a node. These properties capture similar aspects of a network, but

expansion excludes any mutual edges or edges between nodes in the first hop neighbors.

5. Betweenness Centrality CDF, Shortest Path Distribution, K-Core Distribution, Eigen-

values

Results. The size of these graphs matches the inputs by definition. We can also observe

91

in Fig. 3.4 that Directed Degree Distributions and Degree Correlations are captured by

D2K, D2.1K as expected by definition. On the other hand, D0K, D1K and UMAN capture

Degree Correlations poorly, thus D2K graphs have a chance to capture other properties more

accurately than D0K or D1K.

Dyad Census is not well captured for Twitter, as we can see in Fig. 3.4. However, there are

order of magnitude improvements in the number of mutual edges between D2.1K (123,040.4)

and D2K (3,628.7), D1K (2,155.95) or D0K (233.05). Of course, UMAN preserves this

property by definition. D2K+M and D2.1K +M does not meet the target exactly since the

current implementation is a heuristic, but it significantly boosts the number of mutual edges.

Triad Census is surprisingly well captured by UMAN, the reason being the exact match

for the Dyad Census in the previous point. On the other hand, a convergence can be seen

between dK-series generators with significant improvements in dense triadic structures from

D1K to D2K and from D2K to D2.1K. Targeting the mutual edges helps D2K and D2.1K

in the dense triadic structures like “201”, “210” or “300”.

Dyad-wise Shared Partners follow similar trends to other properties, such that D2.1K is

significantly more accurate than D2K. D2K improves over D1K in terms of ”outgoing shared

partners” but that improvement decreases at ”independent two-paths” and disappears at

”incoming shared partners”.

Expansion is again best approximated by D2.1K and D2.1K even matches Average Neighbor

Degree exactly if marginalized by degrees as in Fig. 3.4. D2K also follows the general shape of

these distributions but includes larger error, while D1K has systematic difference compared

to G.

Betweenness Centrality CDF has no significant improvements after matching degree distri-

butions with D1K in Twitter; other examples reached target closer with D1K. Interestingly

UMAN performs almost identically to D0K, even though the number of mutual edges is

92

Table 3.2: Summary of results: showing improvements by fixing more properties. Labels:
”.” - no improvement, ”-” - decreased accuracy, ”+” - increased accuracy, ”Exact” - matched
by definition.

Property UMAN→D1K D1K→D2K D2K→D2.1K
Degree Distribution Exact Exact Exact
Degree Correlation + Exact Exact

Dyad Census - + +
Triad Census + + +

Betweenness Centrality + . .
Shortest Path Distribution + + +

Eigenvalues + + +
DSP + + +

Expansion + + +
Avg. Neighbor degrees + + Exact

S. Connected Components . . .
K-Core Distribution + . +

significantly different.

Shortest Path Distribution has slow convergence to target across different methods, but the

average shortest path is shorter than the observed in G.

K-Core Distribution is best captured by D2.1K, and there is a small improvement from D1K

to D2K using Twitter. However, the dense core using D1K or D2K is almost an order of

magnitude lower core index. Targeting mutual edges for D2K helps in reconstructing better

structure in terms of coreness, and gets the results closer to D2.1K.

Eigenvalues of Twitter is again best targeted by D2.1K. There is a difference between leading

eigenvalues in graph realizations of the other methods but starting at the second eigenvalue

the difference between D1K and D2K quickly decreases. D2K+M shows significantly lower

error than D2K.

Table 3.2 gives an overview of how network properties are affected by the different dK graph

construction methods for the other remaining networks, results are presented in Figures 3.5-

3.7. The Twitter network showcased most of our general findings, but individually some

93

Figure 3.4: Results for Twitter graph: Directed Degree Distribution, Degree Correlation,
Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Betweenness Central-
ity, Expansion, Average Neighbor Degree, DSP and top 20 Eigenvalues

94

Figure 3.5: Results for p2p-Gnutella08 graph: Directed Degree Distribution, Degree Corre-
lation, Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Betweenness
Centrality, Expansion, Average Neighbor Degree, DSP and top 20 Eigenvalues

95

Figure 3.6: Results for Wiki-Vote graph: Directed Degree Distribution, Degree Correlation,
Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Betweenness Central-
ity, Expansion, Average Neighbor Degree, DSP and top 20 Eigenvalues

96

Figure 3.7: Results for AS-Caida graph: Directed Degree Distribution, Degree Correlation,
Dyad-, Triad Census, Shortest Path Distribution, K-core distribution, Betweenness Central-
ity, Expansion, Average Neighbor Degree, DSP and top 20 Eigenvalues

97

of these networks have characteristics that makes them different from Twitter, e.g. p2p-

Gnutella08 does not contain any mutual edges. The most interesting question is whether

D2K or D2.1K capture network properties more accurately. The answer is yes in most cases,

but it might not be a significant improvement in targeting certain properties.

Local structures are generally better captured by D2K and even more precisely for D2.1K,

but global properties might not be significantly affected depending on the original network.

However, this result is not surprising, since one of the main assumptions of the dK-series is

that it is not necessary to target high d values for every graph [57].

3.5 DAG Construction

We build on and extend the dK-series [52] and directed dK-series [67]. Recall that 0K/D0K

are ER graphs with fixed number of edges; 1K/D1K graphs have a specified degree sequence

(DS or DDS, respectively); 2K/D2K graphs have a specified joint degree matrix. Also recall

the inclusion property of dK-series: fixing 2K (JDM), fixes 1K (the degree sequence is the

marginal of JDM), which in turns fixes 0K (the average node degree). Next, we provide

analogous definitions, specifically for directed acyclic graphs (DAGs).

DAG0K: This is a trivial extension of the ER model for DAGs. We want to construct

graphs with n nodes (in a target topological order) and m number of edges, s.t. edges only

point from node vi to vj if i < j in the topological order.

DAG1K: The input to this problem is an Ordered Directed Degree Sequence (ODDS), i.e.,

a directed degree sequence (in and out-degree pairs) but the order of the sequence matters

since this a DAG: every realization of an ODDS must be a DAG with a topological ordering

that corresponds to the ODDS ordering. This definition is consistent with the notation from

98

Figure 3.8: Specifying DAG1K and DAG2K: ODDS and bipartite representation with non-
chords (dashed lines) defined by topological order.

Karrer and Newman [47].

ODDS = {(din1 , d
out
1), (din2 , d

out
2), ..., (dinn , d

out
n)} (3.1)

DAG2K. In this chapter, we go beyond ODDS and also target degree correlation of DAGs.

We define the input of the DAG2K problem as a target ODDS and the target directed degree

correlations. We represent directed degree correlations with a bipartite JDAM , where the

partition corresponds to (degree, in/out) pairs, as in [67] and as elaborated upon in the

following example.

Fig. 3.8 shows an example DAG and its corresponding ODDS and bipartite representa-

tion of degree correlations. The topological order of this DAG, (a, b, c, d), defines ODDS:

{(0; 1), (1; 2), (1; 1), (2; 0)}, i.e., the ordered sequence of (in; out) degrees of nodes in that

order. The D2K of any directed graph (not only DAGs) can be described [67] as shown

on the right side of Fig. 3.8: (i) by split every node v into vini , v
out
i parts; (ii) no edge is

allowed (non-chords) between the in and out parts of the same node i, in order to avoid

self loops; (iii) edges are allowed only between out to in nodes, so that the bipartite graph

can be mapped 1-1 to a directed graph; and (iv) the bipartite JDAM defines the number of

99

edges between (degree, in/out) partitions. In order to represent specifically DAG2K in this

framework, we also prohibit backward edges in the topological order: there can be no edges

allowed between vouti , vinj , if i > j in the ODDS order; these forbidden edges or “non-chords”

are shown in dashed lines on the top right of the figure.

3.5.1 DAG1K Construction

The state-of-the-art in DAGs with a specified ordered directed degree sequence was the one

proposed by Karrer and Newman [47] and reviewed in Section 1.3: a configuration model-

based construction that allows multi-edges but no self-loops.

Here, we follow a different approach: using a network flow reduction for a directed degree

sequence (DDS), originally suggested in [54]. We extend it to DAGs by incorporating non-

chords corresponding to the topological order inherent in ODDS, as discussed in the previous

section. Fig. 3.9 shows the flow network for the example of Fig. 3.8. More formally, for any

target ODDS with n nodes, we can define a flow network, F , that essentially extends the

bipartite graph discussed in the previous section, as follows:

• Split every node vi, i = 1, ..., n that appears in ODDS into vouti , vini , with out and in

degrees douti , dini , respectively.7

• Add directed edges from out to in nodes, as permitted by the ODDS order: i.e., add

edges (vouti , vinj), i = 1, ..., n, j = i+ 1, ..., n. Set the capacity of all these edges to 1.

• Add source node, s, and connect it to all out nodes: add edges (s, vouti) with

capacity(s, vouti) = douti , i = 1, ..., n.

• Add sink node, t, and connect all in nodes to it: add edges (vini , t) with capacity(vini , t) =

7Nodes with in or out degree zero could be removed from the flow network, since they will not increase
any flow. However, this won’t improve the worst case running time.

100

Figure 3.9: Example: flow network corresponding to ODDS from Fig. 3.8. Non-chords from
ODDS are the missing edges between vouti and vinj . The maximum flow is shown in red and
it includes edges with flow = capacity.

dini , i = 1, ..., n.

A trivial and necessary realizability condition for any ODDS is that the sum of in-degrees is

equal to the sum of out-degrees.

Theorem 3.1. Consider an ODDS with
∑n
i=1 d

out
i =

∑n
i=1 d

in
i and construct the corre-

sponding flow network F . The ODDS has a simple realization, G, if and only if F has a

maximum flow value
∑n
i=1 d

out
i .

Proof. → Assume that ODDS has at least one simple realization, G, then we need to show

that the maximum flow of F is equal to
∑n
i=1 d

out
i . Indeed, there exists a topological order

of nodes ({a1, ..., an}) in G that corresponds to the ODDS; then all edges in G, (ai, aj),

have a corresponding pair, (vouti , vinj), in F . We set a flow in F using this topological order,

as follows:

• ∀i, f low(s, vouti) = douti , and flow(vini , t) = dini

• ∀i, j : flow(vouti , vinj) = 1, if edge (ai, aj) is present in G.

Since G is a realization of ODDS, there are exactly douti outgoing edges set to flow = 1 for

every vouti node in F and similarly there is exactly dini incoming edges set to flow = 1 for

101

every vini node in F . This means that the flow is valid.
∑n
i=1 d

out
i is also the maximum flow

value, since every edge out of s has flow = capacity.

← Now assume that the maximum flow of F has value
∑n
i=1 d

out
i

8; we need to show that

ODDS has at least one simple realization, G. In this case, every vouti node has exactly douti

outgoing edges set to flow = 1, similarly every vini node has exactly dini incoming edges

set to flow = 1. We can construct a realization, G, first by removing s and t and then by

merging nodes vouti to vini , while only keeping edges between these nodes with flow = 1.

By construction, F and G do not contain self-loops or edges violating the topological order.

Since capacities between in and out nodes are 1, no multi-edges are necessary, hence G is a

simple realization of ODDS.

The running time depends on the network-flow algorithms and also the gadget’s size. Our

flow network uses O(|V |) nodes and O(|V |2) edges. The running time is O(|V |3) using

FIFO Push-Relabel max-flow algorithm [36], which can also be parallelized [7]. Network

flow algorithms run in time that is comparable to degree sequence (DS, DDS) construction

algorithms on dense graphs.

Tutte’s gadget, reviewed in Section 1.3 can also be used to generate simple ODDS realiza-

tions. However, its time complexity is order of magnitudes higher, since the gadget’s size is

O(|V |2) nodes and O(|V |3) edges. To construct a realization with |V | nodes, we would need

to solve a maximum cardinality matching problem on Tutte’s gadget, that runs in O(|V |4)

using the algorithm presented in [53]. The gadget’s size gets larger as we decrease the density

of the graphs. We have experimentally evaluated this trade-off on random DAG0K graphs

and we show the results in Table 3.3.

Sampling from ODDS realizations is possible using MCMC methods, since the space

of simple ODDS realizations are connected using ODDS-preserving double-edge swaps, as

8There is always an integral maximum flow assignment, since all capacities are integers.

102

Table 3.3: Running time of ODDS methods on random DAGs with different number of nodes
and density. Reported average time is over 20 runs in seconds (s) and using a NetworkX
-based implementation [40].

Graph Network-flow Tutte’s gadget Network-flow Tutte’s gadget
Density 50 nodes 50 nodes 100 nodes 100 nodes

0.10 0.026s 9.989s 0.146s 178.020s
0.25 0.038s 8.284s 0.171s 153.932s
0.50 0.039s 5.776s 0.183s 114.155s
0.75 0.043s 4.107s 0.195s 81.899s
0.90 0.040s 2.969s 0.196s 51.041s

shown by Carstens [13]. This can be an alternative method to construct realizations by edge

rewiring in cases when an input graph is available.

3.5.2 DAG2K Construction

We defined the input of DAG2K as a target ODDS and a target directed degree correlation

together, and we formulated the problem as a special case of D2K [67], by imposing

non-chords not only between the in and out parts of the same node, but also due to the

topological order. However, DAG2K turns out to be significantly more challenging than

D2K, and existing D2K algorithms from [67] do not solve general inputs of DAG2K, due

to the multiple non-chords per node. Next, we review three other related approaches and

explain why they cannot solve DAG2K in general.

First, we note that DAG2K is a special case of the BPAM (Bipartite Partition Adjacency

Matrix) problem: non-chords are defined by ODDS while the JDAM input corresponds to

the BPAM . However, BPAM has only been solved with high probability using a high order

polynomial time algorithm [17], and there is no known deterministic and efficient algorithm

yet.

A second approach is to run local search methods, such as MCMC, starting from DAG1K

103

realizations and targeting the desired DAG2K, for example by rewiring in the ODDS realiza-

tions or enumerating maximum flow assignments in the network-flow gadget. This approach

is justified by the fact that (i) DAG2K graphs are a subset of DAG1K graphs and (ii) DAG1K

graphs are known to be connected over double-edge swaps [13]. However, it would require

the enumeration of all DAG1K graphs for DAG2K inputs that are not realizable.

Third, we considered a hypegraph extension to our network-flow gadget for DAG1K to

directed hypergraphs for DAG2K. Fig. 3.10 shows an example based on the input of Fig.

3.8: we add new nodes to represent JDAM and we replace edges with between vouti , vinj

with hyper-edges to capture flow contributions to both degrees and JDAM . More formally,

the network flow hypergraph, H, can be defined for given a ODDS and JDAM input

as follows:

• Split every node vi, i = 1, ..., n that appears in ODDS into vouti , vini , with out and in

degrees douti , dini , respectively.

• Add node pk,l, for every pairs of part of the partitions where {k, out}, {l, in}.

• Add directed hyper-edges from out and pk,l to in nodes, as permitted by the ODDS

order: add edges (vouti , px, v
in
j), i = 1, ..., n, j = i + 1, ..., n, x = {douti , dinj }. Set

capacities of these edges to 1.

• Add source node, s, and connect it to all out nodes: add edges (s, vouti) with

capacity(s, vouti) = douti , i = 1, ..., n.

• Connect s to all pk,l nodes: add edges (s, pk,l) with

capacity(s, pk,l) = JDAM({k, out}, {l, in}), for every {k, out}, {l, in} pairs.

• Add sink node, t, and connect all in nodes to it: add edges (vini , t) with

capacity(vini , t) = dini , i = 1, ..., n.

104

Figure 3.10: Network Flow HyperGraph for DAG2K using input from Fig. 3.8. The maxi-
mum flow is shown in red (flow = capacity).

When H has an integral maximum-flow solution, it is easy to see using the proof technique in

previous section, whether DAG2K is realizable or not as a simple DAG. However, max flows

in hypergraphs could have non-integral values.9 We tried rounding non-integral solutions

and found that (i) the target degree correlation or the ODDS can be easily achieved but

(ii) it remains open to find a rounding scheme that achieves both.

Although none of the aforementioned approaches can solve DAG2K in general, they can still

be used to solve special DAG2K inputs (e.g., DAG2K hypergraphs with integral max flow

value) or as heuristics without guarantees of deterministic construction or running time (e.g.,

MCMC, BPAM). Next, we turn our attention to a subset of realizable D2K inputs, whose

every realization is a DAG and existing D2K algorithms can be used for construction.

9H is a Leontief Directed Hypergraph (LDH) as defined in [14], more precisely a 2-LDH, since every
edge has at most two tails and one head. A 2-LDH has a totally unimodular incident matrix (and an
integral extreme point solution to the corresponding linear programming) if and only if it does not have odd
pseudocycles. However, H could have odd pseudocycles as defined in [14], and we can also confirm through
simulations that it is easy to generate incident matrices for H that are not totally unimodular.

105

3.5.3 D2K+L: Level Graphs

We now consider a special interesting case of DAGs: directed acyclic graphs with level

assignment: every node is assigned a level and edges only point from earlier to later levels.10

Level graphs can be used to create a “compact” visualization of DAGs and have been studied

in the graph drawing community [10], [6]. Level assignments can be modeled by adding non-

chords, not just between vouti and vinj if i > j in ODDS, but also between nodes in the same

level. This can be incorporated into DAG1K and our network-flow reduction still holds.

Defining D2K+L. Next, we show that D2K+L is a special case of D2K (whose input

is DDS and JDAM) with additional attributes to further partition nodes into levels. The

node partition in the bipartite representation corresponds to the node’s degree, in/out label

and node’s level assignment. Fig. 3.11 shows an example input of D2K+L. We represent

degrees with letters k, l, level assignments with i, j, and parts of the partition as {k, in, i} or

{l, out, j}.

Realizability: The sufficient conditions for such D2K+L input to be realizable as DAGs

are the following:

• Realizability conditions hold for D2K input [67].

• and the JDAM ’s reduced skeleton graph, RSG, is a DAG.

Construction: Since D2K+L is a special case of D2K (with further level partitioning), the

D2K algorithm presented in [67] can be used to construct a simple realization. We observe

that if RSG is a DAG, then non-chords only appear where JDAM({k, in, i}, {l, out, i}) = 0

and every realization is a DAG; see Lemma 3.2. This allows us to use JDAM algorithms for

10Please note that level assignment is more restrictive than topological ordering, since it prohibits edges
within levels with multiple nodes. Topological ordering is a level assignment with k = n levels, i.e. single
node per level.

106

Figure 3.11: D2K+L input example: ODDS and levels, the corresponding JDAM, Skeleton
Graph, Reduced Skeleton Graph and realization.

construction and sampling using double-edge swap-based MCMC or importance sampling

algorithm.

To prove the above statements, we need to extend the definition of Skeleton Graphs from

[24] to the D2K case, and we define the Reduced Skeleton Graph (RSG) of a D2K’s JDAM.

Fig. 3.11 shows an example of transforming a specific input JDAM to RSG.

Definition 3.1. We define the Skeleton Graph of D2K’s JDAM , where each part of a

partition {k, in/out, i} for every degree k and level assignment i has a node and a directed

edge from {l, out, j} to {k, in, i} if JDAM({l, out, j}, {k, in, i}) > 0.

Definition 3.2. We define the Reduced Skeleton Graph (RSG) of a JDAM as the directed

graph representation of D2K’s JDAM , where nodes in the Skeleton Graph of D2K’s JDAM

with the same level assignment i (e.g, {k, in, i}, {l, out, i}) are merged into node i; we pre-

serve the direction of edges but remove multi-edges.

Lemma 3.2. If RSG is a DAG, then every realization of the D2K input is also a DAG.

107

Table 3.4: Test citation networks from SNAP [49] with their sizes and D2K+L average
construction time (over 20 runs).

Dataset Name #Nodes #Edges Generation time
Cit-HepTh 27,751 351,500 8.5 sec
Cit-HepPh 34,529 419,528 10.6 sec

cit-Patents 2,745,762 13,965,410 12.22 min

Proof. Let us assume that there is at least one realization, G, that is not a DAG, i.e., it has

a cycle C. Edges along this cycle, C, must contribute to entries to the corresponding JDAM

and its skeleton graph, SG. When we merge SG nodes during the RSG construction, we

merge nodes from G with the same attribute values. C will be preserved as a cycle in

RSG iff nodes along C had different attribute values. RSG might have multiple cycles (and

self-loops) when C has fewer attribute values than nodes. In both cases, this leads to a

contradiction since we assumed RSG is a DAG.

3.6 Simulations for Real-World Directed Acyclic Graphs

Setup. We experimentally evaluate our DAGdK algorithms when targeting real-world ci-

tation networks available from SNAP [49]. We had to do pre-processing to ensure that our

test graphs were indeed DAGs: (i) we removed edges that appeared to create cycles (based

on publication date) from the Cit-HepTh and Cit-HepPh networks; (ii) we removed nodes

that did not have date from the cit-Patents network. Next, we report the final graph sizes

and the construction time for D2K+L (averaged over 20 realizations).

For each of the three networks, we first compute ODDS and we assign a level for each node

using the Longest-Path algorithm [10] to compute D2K+L. Then, we generate 20 different

realizations, using DAG0K, DAG1K and D2K+L inputs for each graph. We implemented

D2K+L based on the JDM implementation from NetworkX [40]. We found that our network-

flows did not scale beyond 10,000 nodes for DAG1K using the NetworkX implementation,

108

Figure 3.12: Cit-HepTh results

thus could not finish the construction of our test graphs. We have used MCMC sampling

for ODDS with O(|E|) steps starting from the input graph to generate DAG1K instances

for evaluation.

Effect of Level Assignment on the resulting DAG. The Longest-Path algorithm assigns

the minimum number of levels [10], but it does not minimize the size of the overall partition

defined by the JDAM . This is due to the fact that JDAM is based on the combination

of level assignment and unique degrees as discussed in Section 3.5.2. In the next table, we

report the number of levels, unique in/out degree groups and size of the partition generated.

For the first two smaller graphs, parts of the partition are smaller (average size: 2.92-4.66),

making it more likely to fix subgraphs. Cit-Patents has only 31 levels assigned resulting in

a partition into larger parts (average size: 873.09), which leaves more flexibility to construct

realizations from a larger space.

109

Figure 3.13: Cit-HepPh results

Table 3.5: Effects of level assignments: number of levels assigned, number of unique in/out
degrees, resulting partition size and average part size.

Name #Levels #In-deg. #Out-deg. Partition size Avg. Part size
Cit-HepTh 302 282 153 16454 2.92
Cit-HepPh 167 264 166 12919 4.66

cit-Patents 31 256 324 4905 873.09

Network Properties of generated DAGs. In Fig. 3.12,3.13,3.14, we report results for

the three citation networks. We report several graph properties, some of them explicitly

targeted during construction (degree distribution, degree correlation) and some of them not

(shortest path distribution and leading eigenvalues); we compared these properties between

the synthetic and the original graphs. The degree distributions and degree correlations were

explicitly targeted and exactly achieved by DAG1K and D2K+L, respectively, as expected.

The DAG1K graphs are better than DAG0K graphs, but do not achieve the target degree

correlation; the relatively small difference from target can be due to how long the MCMC

110

Figure 3.14: cit-Patents results

sampler was running in our experiments. W.r.t. to other properties that were not explic-

itly targeted by our DAGdK algorithms (shortest paths, leading eigenvalues, and others not

reported due to lack of space, such as triad census, average neighbor degree, betweenness

centrality), we saw that they are better approximated for higher d. In summary, we con-

firm that the DAGdK-series converges to the (targeted and non-targeted) properties as d

increases.

3.7 Summary

We have extended the undirected dK-series to directed graphs by defining directed 2K prob-

lem (D2K): the input of directed degree sequence and degree correlations together. We have

shown the necessary and sufficient conditions to decide realizability and we have developed

111

an efficient algorithm based on techniques from Chapter 2. We have also shown that the

importance sampling algorithm defined by Bassler et al. [9] can be applied to D2K as well.

Finally we have shown several extensions of D2K (such as D2.1K, number of mutual edges

and balanced realizations) and we evaluated the convergences of the directed dK-series on

real-world graphs.

In addition, we presented methods for generating DAGs with a prescribed ordered degree

sequence and degree correlations. For the DAG1K problem, we provided a new algorithm

that is orders of magnitude faster than previous approaches. For DAG2K, we showed that

previous approaches do not apply but we also identified a family of D2K inputs that admit

only acyclic realizations, thus previously known D2K algorithms can efficiently construct

and sample these DAGs. We evaluated the effectiveness of our algorithms in construct-

ing synthetic DAGs that resemble real-world citation networks. Along the way, we made

connections between several graph construction problems, some of which were previously

disconnected, which can hopefully enable the (re)use of algorithms.

112

Chapter 4

Graph Construction from Embeddings

4.1 Introduction

Independently of the previously discussed graph construction literature, there is also a grow-

ing body of work on graph embeddings, or latent representations of graphs, which are widely

used for tasks such as graph reconstruction, link prediction, and node classification. For

example, in link prediction, we may be able to observe some of the edges of the graph, and

we want to predict the missing ones; or we may want to predict new edges that are likely to

be formed over time. In node classification, we may know the attributes of some nodes, and

want to classify the remaining ones based on the graph structure. In graph reconstruction,

the goal is to create a graph with maximum edge overlap with the original graph. Fig. 4.1

depicts an overview of the tasks.

In this chapter, we propose a new approach that bridges the gap between these two previously

disconnected bodies of work: the classic graph construction models and more recent notions

of graph embeddings from machine learning. This leads to a more general model than either

of the two approaches alone, and allows us to leverage and combine existing techniques and

113

applications for a variety of tasks.

More specifically, we are interested in representations that can be used for generating graphs

that exhibit target local properties. To that end, we define the Neighborhood Partition

Matrix (NPM), which captures the local neighborhood structure of a graph in the following

sense. Given an arbitrary node partition P , NPM [i, j] specifies the number of edges from

node i to nodes in part j of P . We then define the NPM construction problem as follows:

given an input NPM, generate simple graph realization(s) that have that NPM exactly, if

such realizations exist. Fig. 4.1 presents an overview of our intended use of NPM: given a

real graph with a defined node partition P , the NPM of the real graph is measured. We

use this given NPM as input to perform different tasks, namely: graph construction, graph

reconstruction, link prediction, and node classification.

We note that NPM generalizes node partitioning by degree only (which was the case e.g. in

the Degree Spectra Matrix (DSM) [9] and in the Neighborhood Degree List (NDL) [8]) to

arbitrary node partitions. This generalization allows us to pose, for the first time, NPM con-

struction as a graph embedding problem with arbitrary dimensions, where each dimension

corresponds to a part in the partition. This results in an interpretable embedding based on

the meaning of the node partition. We demonstrate the generality of the NPM framework,

by considering different strategies of partitioning nodes to compute NPM. We also establish

connections between NPM and other graph construction problems, which we leverage to de-

compose the NPM problem into a union of degree sequence problems. This, in turn, enables

us to solve NPM efficiently for realizability and construction, and to provide approaches for

sampling. Furthermore, we discuss extensions of NPM to capture other properties: (i) for

clustering coefficients, we prove the NP-Hardness of NPM with prescribed number of tri-

angles per node; (ii) for NPM with directed graph construction and NPM with non-chords

(i.e. forbidden edges), we show how to solve them efficiently.

Compared to other graph embeddings, NPM has two qualitative advantages: (i) it creates

114

Figure 4.1: An overview of our approach: given a real graph, the NPM is measured for a
partition P , to capture the graph’s local neighborhood structure. This NPM is the input
to our construction problem and it is used in the following tasks: (1) Graph Construction,
(2) Graph Reconstruction, (3) Link Prediction, (4) Node Classification. (The icon of Lock
is used to represent an example node attribute to be used as a binary label for the node
classification task.)

graph realizations that exhibit exactly the target properties (such as degree sequences, degree

correlations, etc); (ii) it is more interpretable. NPM also has some technical differences, i.e.

the embedding vectors have integer instead of continuous values. Compared to graph con-

struction, the decomposition of NPM leverages efficient approaches but generalizes beyond

partitioning by degree only. In our evaluation, we show that NPM outperforms baseline graph

embedding methods for graph construction and graph reconstruction, for several datasets,

and performs comparable to baselines on link prediction and node classification tasks. Thus,

the NPM model brings qualitative improvements (flexibility and interpretability), while also

achieving better or – in the worst case – similar performance w.r.t. all tasks.

The outline of the rest of the chapter is as follows. Section 4.2 provides additional background

for this chapter. Section 4.3.1 defines the Neighborhood Partition Matrix construction prob-

lem and introduces the main concepts. Section 4.3.2 extends NPM construction to include

additional constraints, such as local clustering, directed graphs and non-chords. Section 4.3.3

describes the tasks (graph construction, graph reconstruction, link prediction, node classifi-

cation) and the respective metrics for evaluation. Section 4.4 evaluates the performance of

NPM with different partitions against baseline methods. Section 4.5 concludes the chapter.

115

4.2 Background on Graph Embeddings

Graph embeddings are latent variable models that capture low dimensional representations

of graphs. They are used to perform machine learning tasks such as node classification,

link prediction, clustering or visualization of embeddings to highlight underlying structure

of graphs; some of these tasks are depicted on Fig.4.1. Using the definition from [38]:

Definition 4.1. Given a graph G(V,E), a graph embedding is a mapping f : v → y ∈ Rd

∀v ∈ V , s.t. d� |V | and the function f preserves some proximity measure defined on G.

In the graph embedding framework, graphs are usually generated by using an operator (such

as dot product) of two embedding vectors between all pairs of nodes and by returning top

recommended edges. In contrast to the graph construction methods, the constructed graphs

might only have certain properties in expectation. The interpretation of graph construction

inputs is clear from their targeted properties, while embedding dimensions usually do not

carry specific meaning. However, graph embeddings are easier to extend to weighted graphs,

which is a missing property of most studied graph construction models. Last but not least,

graph embeddings are the underlying model for important machine learning tasks such as

node classification, link prediction, etc.

Graph embeddings are rooted in the well-studied matrix representations such as Locally

Linear Embeddings [61] or Laplacian Eigenmaps [11], that use the eigen structure of the

adjacency matrix (or a derived matrix) and take eigen vectors as the embedding or other

matrix factorization methods [2]. HOPE [58] is a method that attempts to preserve higher

order proximities of nodes in terms of similarity matrices and uses generalized Singular Value

Decomposition to scale more efficiently. More recently, random walk-based methods become

preferred such as DeepWalk [59] or node2vec [39], where embeddings are learned based on

sequences generated by random walks in local neighborhoods of nodes.

116

4.3 Proposed Framework: NPM

4.3.1 The Neighborhood Partition Matrix (NPM) Problem

In this section, we present a new approach for generating graphs with a target local neigh-

borhood structure. To capture that structure, we define the Neighborhood Partition Matrix

(NPM), of a graph G, as follows:

Definition 4.2. Given an undirected graph G(V,E) and an arbitrary partition P of the

nodes into d parts, NPM of G is a |V | × d matrix, such that NPM [i, j] specifies the total

number of edges from node i to nodes in part j of P.

A strength of our proposed NPM model is the flexibility it provides to define arbitrary

partitions. We considered the following list of partitions: random partitions into d parts;

degrees; community detection algorithms from literature such as [56]; k-core decomposition;

connected components. The Degree Spectra Matrix (DSM) [9] and Neighborhood Degree

List (NDL) [8] are special cases of NPM with a node partition by degrees. Furthermore,

arbitrary partitions allow us to interpret NPM as a graph embedding. This bridges the gap

between two previously disconnected bodies of literature: the classical graphical construction

and graph embeddings, while leveraging existing techniques and applications of both.

We define the NPM graph construction problems as follows:

• Realizability: Given a target NPM and P , decide whether it is realizable, i.e. whether

there exist a simple graph with this exact NPM, when nodes are partitioned by P .

• Construction: Design an algorithm that constructs at least one graph realization

with the target NPM and P .

• Sampling: Sample from the space of all graph realizations that exhibit the target

117

Figure 4.2: An example for the decomposition of NPM into degree sequence problems (DSi,
BDSi,j) for a simple graph with its nodes partitioned into two parts (V0 = {v0, v1}, V1 =
{v2, v3}). The union of the edges from the degree sequence realizations return the input
graph.

NPM and P .

Realizability and Construction

We show the decomposition of the NPM problem into a union of independent degree sequence

problems as shown in Algorithm 4.1 and Fig. 4.2:

• DSi is the degree sequence problem for nodes in part i (Vi), i.e. the degrees of nodes

in Vi towards Vi.

• BDSi,j is the bipartite degree sequence problem for nodes in parts i, j (Vi, Vj), i.e.

the degrees of nodes in Vi towards Vj and the degrees of nodes in Vj towards Vi.

Theorem 4.1. An NPM input is realizable if and only if every degree sequence problem (DSi

and BDSi,j) is realizable.

Proof. If NPM is realizable, then any realization of an NPM also provides a realization for

the degree sequence problems by taking the induced subgraph by Vi for DSi or by Vi, Vj for

BDSi,j without the edges within the same parts (excluding edges between Vi nodes or Vj

nodes).

118

Algorithm 4.1 NPM Construction
Given NPM , P
Create graph G(V,E) and nodes: v ∈ Vi for each part i in P
for every pair of i, j parts of P :

if i = j:
Unipartite degree sequence problem (DS)
DSi = {NPM [v, i]|v ∈ Vi}
Gi(Vi, Ei)← realization of DSi
E ← E ∪ Ei

if i 6= j:
Bipartite degree sequence problem (BDS)
BDSi,j = {NPM [v, j]|v ∈ Vi}, {NPM [v, i]|v ∈ Vj}
Gi,j(Vi ∪ Vj , Ei,j)← realization of BDSi,j
E ← E ∪ Ei,j

return G

Conversely, if the degree sequence problems are realizable, then the union of any realization

of the degree sequence problems returns an NPM realization. This is trivial to see, since we

construct these degree sequences from the NPM with the correct degree for each node to

every partition.

The decomposition of NPM is similar to DSM [9] and NDL [8], but we make the crucial

observation that Theorem 4.1 is independent of the partition of nodes. Algorithm 4.1 is

parallelizable, since NPM has O(
(d

2

)
) independent degree sequence problems, where realiz-

ability is solved by applying Erdős-Gallai [23] and Gale-Ryser theorems [30] and construction

is done using Havel-Hakimi algorithms [42, 41, 30].

Sampling realizations

Importance sampling algorithms exist for the unipartite and bipartite degree sequence prob-

lems from NPM which run in O(|V ||E|) [12, 18, 48]. In addition, it is also possible to sample

NPM realizations using MCMC approaches. For this purpose, we need to show that the space

of NPM realizations is connected over a simple edge-rewiring. We define NPM-preserving

119

double-edge swaps as changing edges {(u, v), (w, x)} to {(u, x), (w, v)} where (1) u, v, w, x

are four distinct nodes (to avoid self-loops) and (2) (u, x), (w, v) were not edges before (to

avoid multi-edges) and (3) u,w are in the same part of the partition and v, x are from the

same partition, possibly different from u and w’s part. It is clear that such a swap will

preserve the degree of each node to the appropriate parts of the partition.

Theorem 4.2. The space of NPM realizations are connected over NPM-preserving double-

edge swaps.

Proof. We use the decomposition of NPM into degree sequences from Theorem 4.1: given two

realizations of NPM and their respective induced subgraphs for the degree sequence problems,

these subgraphs are connected over degree-preserving double-edge swaps [64], [25]. However,

the degree-preserving double-edge swaps are also NPM-preserving double-edge swaps, hence

the union of these swaps will connect any two NPM realizations.

Relation to Embeddings

Regardless of the partition defined, there is a clear interpretation of the resulting NPM. A

node’s integer vector from the NPM describes how many edges connect to different parts

of the partition. This is different from other embedding methods where it is usually a real

embedding vector that points to a position in a d-dimensional space. Structural similarity

of nodes is present in our method, since two nodes with exactly the same vectors will be

connected to the same partitions the same number of times.

NPM encodes node level constraints, but graph construction algorithms have also implicit

constraints for edges during construction, when we restrict NPM realizations to be simple

graphs. These implicit constraints make NPM different from most graph embedding meth-

ods, where pairwise operators of embedding vectors are independent of each other. This

leads to a limitation of NPM as a graph embedding, namely that an entire graph has to

120

be constructed multiple times to compute an edge probability. While NPM construction

is scalable and highly parallelizable, it is admittedly more complex than running a simple

operator on two embedding vectors.

Finally, in the context of graph embeddings, it is desirable to partition the nodes into exactly

d parts. If the selected partitioning method for NPM is not flexible to produce partitions

with exactly d parts, we use a partition agnostic heuristic to change the partition to have d

parts, as shown in Algorithm 4.2.

Algorithm 4.2 Heuristic for Partitions with d parts

Given P , d
while Number of parts of P 6= d:

if Number of parts of P > d:
Merge two smallest parts of P

if Number of parts of P < d:
Split largest part of P into two parts

return P

4.3.2 Extensions of NPM

We extend the basic NPM model to target additional structural properties such as local

clustering coefficients, directed NPM and NPM with non-chords (i.e. edges not allowed to

be present in any realization).

NPM with local clustering coefficients

In the context of dK-series, it has been shown that realizability of JDM with target number

of triangles is an NP-Complete problem [19]. Here, we show that the realizability of NPM

with local clustering coefficients, i.e. using an additional dimension to capture number of

triangles attached to each node, is also NP-Complete. We adapt the proof strategy showed in

121

[19] for JDM with target number of triangles, and we use the well-known Graph 3-Coloring

problem [31] in our reduction.

The input to this version of the NPM is the previously defined NPM with partition P and

the number of triangles, ti, attached to node i. The output for the decision version is whether

there exist a simple realization with these constraints.

Theorem 4.3. Realizability of NPM with prescribed number of triangles per node is NP-

Complete.

Proof. This problem is NP-Hard by Lemma 4.1 and Lemma 4.2, and a realization serves as

a verifiable witness by measuring the NPM instance in polynomial time.

We define the following NPM for a given graph, G(V,E), as shown in Fig. 4.3:

• For each node v ∈ V , use three nodes: v1, v2, v3; use coloring nodes: c1, c2, c3 and

stabilizing nodes: s1, s2, s3.

• Create a partition of nodes as Pv = {v1, v2, v3} for each node v ∈ V , and Pc =

{c1, c2, c3}, Ps = {s1, s2, s3}.

• For i = 1, 2, 3, if (u, v) ∈ E, set NPM [ui,Pv] = 1 and NPM [vi,Pu] = 1, and for each

node v ∈ V : NPM [vi,Pc] = 1, NPM [vi,Ps] = 1, NPM [ci,Pv] = 1, NPM [si,Pv] =

1, and remaining NPM entries are 0.

• For each node v ∈ V , t
vi

= tv + deg(v) for i = 1, 2, 3; tv is the number of triangles

attached to node v in G.

• For each coloring node c, t
ci

= 0 for i = 1, 2, 3.

• For each stabilizing node s, t
si

= |E| for i = 1, 2, 3.

122

Figure 4.3: Example graph with 3-coloring and a realizable NPM input with prescribed
number of triangles per node.

Lemma 4.1. If G is 3-colorable (red, green, blue), then NPM with prescribed number of

triangles per node is realizable.

Proof. Given G, we perform the following steps:

• Copy G three times: G1(V 1, E1), G2(V 2, E2), G3(V 3, E3) and add three coloring

(c1, c2, c3) and stabilizing nodes (s1, s2, s3).

• Define partition P where parts correspond to the copies of nodes ofG: Pv = {v1, v2, v3}

for each node v ∈ V , and Pc = {c1, c2, c3}, Ps = {s1, s2, s3}.

• Add edges (si, vi) for all v ∈ V and i = 1, 2, 3.

123

• For a red node in G, vr, add edges to connect vr’s copies to coloring nodes:

(v1
r , c

1), (v2
r , c

2), (v3
r , c

3).

• For a green node in G, vg, add edges to connect vg’s copies to coloring nodes:

(v1
g , c

2), (v2
g , c

3), (v3
g , c

1).

• For a blue node in G, vb, add edges to connect vb’s copies to coloring nodes:

(v1
b , c

3), (v2
b , c

1), (v3
b , c

2).

We show that the union of G1, G2, G3 with the coloring and stabilizing nodes is a realization

of the NPM defined earlier. It is clear that the partition and the number of nodes is correct.

We have to confirm that all the edges are captured by the NPM and the embedding vectors

are correct: since every edge (u, v) ∈ E is copied three times, NPM [ui,Pv] = 1 (and

NPM [vi,Pu] = 1 for i = 1, 2, 3). In our construction, every coloring node connects to

exactly one copy of a node from G (NPM [ci,Pv] = 1 for i = 1, 2, 3). Similarly, every

stabilizing node connects to exactly one copy of a node from G (NPM [si,Pv] = 1 for

i = 1, 2, 3). We have not added any other edges, hence the remaining entries of NPM are 0.

We make three observations to show that the constructed graph has the target number of

triangles per node: (1) a valid coloring implies that coloring nodes do not form triangles,

(2) a stabilizing node connects to every node in the same copy and creates |E| triangles,

(3) nodes in a copy of G preserve the attached triangles and get deg(v) additional triangles

from the stabilizing nodes. This takes into account all edges and triangles in the graph and

exactly matches the input.

Lemma 4.2. If NPM with prescribed number of triangles per node is realizable, then G is

3-colorable.

Proof. We denote a realization of NPM as G∗. We argue that G∗ contains 3 copies

(G1, G2, G3) of G as subgraphs. Each stabilizing node connects to every part (except col-

124

oring) with one edge and has |E| triangles, a stabilizing node can only achieve this many

triangles if it connects to nodes in the same copy of G from the three different possible

copies. This means that we can label nodes in G∗ depending on which stabilizing nodes they

connect to. The stabilizing nodes are required to ensure the three copies of G as subgraphs

of G∗, without these nodes, it would be possible to construct realizations where the copies

intertwine and G∗ would not have the copies of G.

Given the coloring part Pc, we assign a color to c1, c2, c3, then we assign a color for each

v ∈ V 1 according to their connections to the coloring nodes. The coloring is valid since

coloring nodes do not form any triangles (t
ci

= 0).

There are heuristics and local search methods (MCMC [33], simulated annealing [57], tabu

search [75]) that can achieve clustering coefficients close to target in many scenarios. In this

dissertation, we do not evaluate NPM with local clustering coefficients due to the practical

considerations of running an MCMC from realizations with low clustering as shown in [33].

Directed NPM (DNMP)

We provide a definition to extend NPM to represent directed graphs by their in and out

degrees of nodes separately, which we refer to as Directed NPM (DNPM).

Definition 4.3. Given a directed graph G(V,E) and two partitions Pin, Pout with d1 and d2

parts, DNPM is a |V | × (d1 + d2) matrix, such that if j < d1, NPM [i, j] counts the number

of edges coming into node i from nodes in part j of Pout; or NPM [i, j] counts the number

of edges going from node i to nodes in part j of Pin, if j ≥ d1.

Similar to NPM and Theorem 4.1, DNPM is decomposable into directed degree sequence

problems or equivalently into bipartite degree sequence problems with non-chords (to avoid

125

self-loops) as described in Section 1.3. Realizability and graph construction can be done effi-

ciently based on directed degree sequence results [29]. The space of realizations is connected

for simple DNPM realizations using double edge swaps and additional triangular C6 swaps

[25].

In the above definition Pin and Pout can be the same partition. The two partitions for in

and out degrees allow for more flexibility in graph construction, this concept is related how

D2K was modeled in [67]. DNPM always preserves D1K (directed degree sequence) and with

the right partition D2K.

NPM with non-chords

Above, we elaborated on directed NPM realizations, which impose a special case of non-chord

constraints. However, we observe that the realizability and graph construction problems for

NPM with arbitrary non-chords can be solved by applying Tutte’s gadget [70] for the degree

sequence problems and sampling is possible using methods developed by Jerrum, Sinclair,

Vigoda [46] or a simplified method for degree sequences with non-chords in [26] to get

approximate random realizations. Details are omitted due to lack of space.

4.3.3 Tasks and Metrics

In Section 4.3.1, we described how to answer the realizability question and provided a con-

struction algorithm for NPM. Here, we describe (i) the different tasks NPM can be used

for and (ii) the corresponding evaluation metrics, appropriate for each task; these metrics

will be assessed in the Evaluation section (4.4). Next, we describe the relation of NPM

to classic graph construction problems and the setup for evaluating NPM in this context.

Then, we describe how NPM can be used as a graph embedding for graph reconstruction,

126

link prediction and node classification tasks. A schematic example is provided for each task

in Fig. 4.1. For each task, the input is a real graph and the NPM computed from it based

on a node partition P .

Graph Construction

The main goal in classic graph construction problems and the dK-series is to construct

an ensemble of graphs that resemble real-world graphs. This is done by targeting certain

properties such as degree sequences or joint degree matrices and observing similarity on a set

of other properties such as eigenvalues, clustering coefficients, shortest path distributions for

the constructed realizations. NPM by definition targets the following properties: the degree

sequence of a graph (
∑d
j=0NPM [i, j] is the degree of node i), the partition-labeled two

path distribution and the mixing matrix according to the partition or PAM. If the partition

of nodes is by degree, then NPM preserves 2K; and the degree-labeled two paths which is

part of 3K in dK-series terminology.

We have described in Section 4.3.1 how to sample NPM realizations for this task using an

MCMC approach.

Graph Reconstruction

The main goal of this task is to exactly reconstruct a graph given an NPM input computed

from the same graph. We evaluate the correctness of the reconstruction by the following

metrics as defined in [38]:

127

Precision@k captures the correctness of the top k predicted edges, Epred(1 : k):

Precision@k =
|Epred(1 : k) ∩ Eobs|

k
, (4.1)

where Eobs = E for graph reconstruction, i.e. the input graph.

MAP estimates the precision for every node and computes the average over all nodes, as

follows:

MAP =
∑
i∈V

∑
k Precision@k(i) · I{Epredi(k) ∈ Eobsi}

|{k : Epredi(k) ∈ Eobsi}|
/|V | (4.2)

Here,

Precision@k(i) =
|Epredi(1 : k) ∩ Eobsi|

k
, (4.3)

and Epredi and Eobsi are the predicted and observed edges for node i.

NPM has the limitation that edges in every realization are 0-1 choices, i.e. an edge exists

or an edge does not exist. To differentiate between edges for top-k prediction, our approach

is to use the empirical probability for each edge occurring over multiple realizations. We

approximate these probabilities by using MCMC sampling algorithm to generate multiple

pseudo-random instances and measure the empirical probabilities for every edge to occur.

Edges that are constrained by the NPM are going to have probability 1 (they must occur in

every realization), while edges that have low probability to occur are the ones that are less

constrained by the NPM.

128

Link Prediction

The main goal of link prediction is to suggest new edges that are not observed in the input

graph. This evaluation is performed with a train and test split of edges of the real graph,

then compute an NPM input on the training edges and evaluate predicted edges against the

test edges using Precision@k and MAP, where Eobs is set to the test edges. We use empirical

edge probabilities for top k recommendations as described for graph reconstruction.

Node Classification

The main goal of this task is to use the embedding vectors in NPM for each node as a feature

vector for a node classification. Nodes are labeled with some attributes (e.g. gender in social

networks). The NPM is computed for the input real graph and a classifier is trained on a

training set of nodes and we use following metrics as defined in [38] to evaluate the classifier

on a test set:

Macro-F1, in a multi-label classification task, is the average F1-score of all labels, i.e.

macro-F1 =

∑
l∈L F1(l)

L
, (4.4)

where F1(l) is the F1-score for label l and L is the set of labels.

Micro-F1 calculates F1 globally by counting the total true positives, false negatives and

false positives, giving equal weight to each instance. It is defined as follows:

micro-F1 =
2 · P ·R
P +R

, where P =

∑
l∈L TP (l)∑

l∈L(TP (l) + FP (l))
;R =

∑
l∈L TP (l)∑

l∈L(TP (l) + FN(l))

(4.5)

129

are precision (P) and recall (R) respectively. TP (l), FP (l) and FN(l) denote the number of

true positives, false positives and false negatives, respectively, among the instances associated

with the label l.

4.4 Evaluation

4.4.1 Experiment Setup

In this section, we quantitatively evaluate NPM, following the pipeline depicted in Fig. 4.1.

We find that it outperforms graph embedding baselines on the graph construction task,

while it performs comparably to baselines on embedding tasks (graph reconstruction, link

prediction, node classification).

Datasets. Table 4.1 provides an overview of the publicly available datasets used in our

experiments. We focus on undirected graphs without non-chords. As a pre-processing step,

we remove any self-loops and isolates to ensure realizability of the targeted NPM. In Table

4.1, we also report the time averaged over 20 runs required to sequentially construct pseudo

random realizations of NPM based on degree partition, i.e. these times include the time

to run an MCMC sampler as well. Pseudo random NPM realizations were constructed in

1435 seconds for the Youtube graph used in [38] with 1,138,499 nodes and 2,990,443 edges.

However, the GEM library [37] was not able to handle evaluation without falling back to

subsampling nodes, for this reason we use smaller graphs.

We have executed our algorithms using Python 2.7 on a machine with an 48 core AMD

Opteron 2.4Ghz processor. We have used NetworkX [40], igraph (Python version) [15],

GEM [37] and node2vec [50].

Methods. We considered and evaluated several node partitions: random assignment, com-

130

Table 4.1: Datasets used in evaluation: number of nodes (|V |) and edges (|E|); average de-
gree, number of (unique) degrees and labels (for node classification task), NPM construction
time.

Name Rice [69] BlogCatalog [74] Hep-Th [49] Astro-ph [49]
|V | 4,087 10,312 9,875 18,771
|E| 184,828 333,983 25,973 198,050
Avg. degree 90.45 64.78 5.26 21.1
No. of degrees 348 576 55 234
No. of labels 3 39 - -
Const. time 10sec 28sec 2sec 11sec

munity detection algorithms available from igraph [15] and degree-based partitions, with the

heuristic applied to achieve exactly d parts. Here, we report results for the following parti-

tions: degree sequence (NPM RND 1); DSM or NPM with degree-based partition where d =

#unique degrees (values shown in Table 4.1) (NPM degree d), NPM with degree-based parti-

tion where d = 128 (NPM degree 128), NPM with partition from leading eigenvectors-based

community detection algorithm [56] where d = 128 (NPM eigen 128). We also evaluate

baseline embedding methods: HOPE, Laplacian Eigenvectors (LAP) and node2vec (with

default parameters [37] and d = 128).

Tasks and Metrics. We consider the tasks of Section 4.3.3: the results for graph construc-

tion are presented in Section 4.4.2 and the results for the graph embedding tasks (graph

reconstruction, link prediction, node classification) are presented in Section 4.4.3. The per-

formance metrics are task-specific and have been described in detail in Section 4.3.3.

4.4.2 Graph Construction Task

In this section, we demonstrate how well NPM can target graph properties using the follow-

ing setup: we read each input graph, assign a partition, compute the corresponding NPM

input and construct 20 realizations using implementation based on NetworkX [40] combined

with an MCMC sampler. In addition to NPM realizations, we construct realizations for

131

graph embedding methods that contain the top |E| number of edges recommended from the

embedding.

We present our results for all our test graphs and construction methods in Fig. 4.4. Due to

lack of space, we omit results for several graph properties that we have evaluated, such as

degree distributions and shortest paths, since the former is exactly targeted by any realization

of NPM and the latter is mostly met by random graphs with the small-world property.

Since NPM preserves degree sequences, we expect it to capture degree correlations. While

this is not true with d = 1, i.e. degree sequences, NPM eigen captures a fair amount of the

target degree correlations without specifically targeting it using d = 128, see Fig. 4.4(b).

By definition, NPM degree preserves degree correlations exactly when d = #unique degrees.

However, we also observe that using only d = 128 by merging parts of the partition is still

a viable option even if it introduces some error as for Astro-Ph in Fig. 4.4(d). When the

number of unique degrees is less than 128 and we split parts of the partition, we also preserve

degree correlations exactly as shown for Hep-Th in Fig. 4.4(c).

NPM-based graph construction (depending on the partition method and d) targets the lead-

ing eigenvalues of the adjacency matrix reasonably well. This is interesting, since NPM does

not directly target this property and in other related work for dK-series, eigenvalues are

usually not well captured (after the leading eigenvalue) [57], [67]. This improvement could

be because NPM uses node level information opposed to partition level information (such as

2K or D2K).

In Fig. 4.4, we observe that clustering is not well captured for most graphs (except BlogCat-

alog), this is expected for random realizations of NPMs consistently with what prior work has

shown this phenomena in relation with the dK-series. As we mentioned in Section 4.3.2, this

can be improved using heuristics and MCMC to better target clustering coefficients. How-

ever, we should note that NPM performs best for BlogCatalog in the next section, which

132

suggests that targeting clustering coefficients is a good direction.

Graph embedding methods perform poorly compared to NPM due to the many isolates in

their realizations. This leads to significant differences for the observed metrics in this section.

The performance varies among embedding methods but they are all outperformed by our

proposed NPM method.

4.4.3 Graph Embeddings Tasks

Here, we demonstrate that NPM with using only 128 dimensions (NPM eigen 128 and

NPM degree 128) performs comparable to other baseline methods. We vary the ensem-

ble size, i.e. the number of realizations generated (1 vs. 100) by NPM to produce edge

probabilities for graph reconstruction and link prediction tasks as discussed in Section 4.3.3.

These ensembles are not required for node classification (embedding vectors are directly used

as features), hence we omit them from Table 4.3. We have used an 80%-20% train-test split

for link prediction and node classification.

Table 4.2 shows that in terms of MAP, NPM performs comparable for graph reconstruction

on several datasets, outperforms node2vec on all datasets but only outperforms HOPE for

BlogCatalog for link prediction. Lower performance on link prediction could be due to that

NPM only captures edges present in the training graph, but if no edges are present across

partitions, it will never construct them during tests.

In terms of Precision@k, we observe that sampling more realizations boosts performance

(across datasets) as shown in Fig. 4.5. This confirms our expectation from Section 4.3.1.

NPM outperforms all the evaluated graph embedding methods on the BlogCatalog graph

(where clustering was close to real graph) for graph reconstruction and link prediction.

In other datasets, NPM comes mostly second to HOPE in both tasks. We see similar

133

Table 4.2: MAP values for Graph reconstruction / Link prediction tasks for different methods
(d = 128)

Name Rice BlogCatalog Hep-Th Astro-Ph
NPM eigen 1 0.31/0.09 0.37/0.05 0.03/0.02 0.03/0.02
NPM eigen 100 0.31/0.05 0.48/0.09 0.05/0.02 0.03/0.04
NPM degree 1 0.34/0.04 0.33/0.05 0.30/0.00 0.15/0.01
NPM degree 100 0.30/0.02 0.36/0.07 0.36/0.01 0.21/0.01
LAP 0.31/0.13 0.06/0.01 0.28/0.16 0.20/0.20
HOPE 0.46/0.30 0.46/0.04 0.15/0.10 0.15/0.16
node2vec 0.06/0.02 0.08/0.02 0.11/0.02 0.03/0.01

Table 4.3: Micro, Macro F1 values for Node classification task for different methods (d = 128)

Name Rice BlogCatalog
NPM eigen 0.572, 0.392 0.236, 0.103
NPM degree 0.573, 0.391 0.217, 0.096
LAP 0.555, 0.345 0.194, 0.048
HOPE 0.559, 0.356 0.186, 0.042
node2vec 0.597, 0.466 0.370, 0.200

performance for node classification across different methods (in this case node2vec dominates)

but NPM-based methods slightly outperform LAP and HOPE.

4.5 Summary

We have proposed a novel way of looking at graph construction methods using node neigh-

borhoods. Our model, Neighborhood Partition Matrix (NPM) generalizes previous work

in graph construction, by extending the notion of degree groups intro arbitrary parts, and

includes them as special cases [9], [8]. NPM can be used as a flexible framework, by choos-

ing different node partitions. When used as a graph embedding, NPM has the following

advantages: (1) the embedding dimensions become more interpretable and (2) there can be

deterministic guarantees on local graph properties (such as degree sequence, degree corre-

lation) - with the right choice of partition. We have also proposed extensions of NPM to

include properties such as clustering coefficients and DNPM for directed graphs. NPM’s

134

performance is superior or – at worst– comparable to baseline graph embedding methods,

while NPM has the previously mentioned qualitative improvements for graph construction.

135

(a) The real graph, G, is Rice.

(b) The real graph, G, is BlogCatalog.

(c) The real graph, G, is Hep-Th.

(d) The real graph, G, is Astro-Ph.

Figure 4.4: Graph Construction Task. Evaluation of various NPM models and graph
embeddings on how well they match three real graphs, G, w.r.t. various graph construction
metrics (clustering coefficients, leading eigenvalues, degree correlations).

136

Figure 4.5: Precision@k for top-k recommendations. Top subfigures: Graph Reconstruc-
tion Task (up to k = |E|). Bottom subfigures: Link Prediction (up to k = 5000).

137

Chapter 5

Conclusion

In this dissertation, we have developed algorithms that construct synthetic graphs that

resemble real-world graphs. This work builds on and extends a large body of literature on

generating realizations of undirected graphs in terms of well-defined structural properties,

such as a degree sequence or a joint degree matrix.

Our 2K+ framework advances the state-of-the-art in modeling and simulation of complex

networks, especially in the context of online social networks that exhibit high clustering and

are affected by node attributes. It provides an efficient way to construct simple, undirected,

directed and directed acyclic graphs, that exhibit exactly a target degree correlation and

potentially additional properties, including: clustering, number of connected components,

node attributes for undirected and average neighbor degree, number of mutual edges or

balanced realizations for directed graphs, etc. Key strengths of this work include: (1) a

principled approach to graph construction, with exact guarantees when possible (2K, 2K+A,

2K+CC, D2K) and efficient heuristics when necessary (e.g. the 2.25K, 2.5K and 3K+

problems are NP-hard, thus motivating heuristics); (2) extensibility to target additional

properties by exploiting the insights we developed, namely the under-defined nature of the

138

2K algorithm (e.g. order of adding edges), manipulating attributes in JDAM, speeding up

MCMC, and connections between all these related problems; (3) efficiency: the time for

constructing large graphs, in practice, reduced from weeks and days to minutes and seconds.

We have also contributed our implementations to the Python NetworkX library, both for

undirected [32] and for directed [65] graphs.

We have also proposed a novel way of looking at graph construction methods using node

neighborhoods partitioned into d parts. This notion generalizes degree groups and our model,

Neighborhood Partition Matrix (NPM), includes previous work as special cases [9], [8]. In ad-

dition, NPM can be used as a framework by assigning different partitions of nodes in graphs.

In the context of graph embeddings, NPM has several interesting properties, namely (1) the

embedding dimensions become more interpretable and (2) there can be strong guarantees on

local graph properties (such as degree sequence, degree correlation) - with the right choice of

partition. We have also discussed extensions of NPM with global properties such as cluster-

ing coefficients and DNPM for directed graphs. NPM’s performance is comparable to other

baseline graph embedding methods while NPM has the previously mentioned qualitative

improvements for graph construction.

139

Bibliography

[1] Simple Graph: http://mathworld.wolfram.com/SimpleGraph.html.

[2] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola. Dis-
tributed large-scale natural graph factorization. In Proceedings of the 22nd international
conference on World Wide Web, pages 37–48. ACM, 2013.

[3] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In
Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages
171–180. Acm, 2000.

[4] G. Amanatidis, B. Green, and M. Mihail. Graphic realizations of joint-degree matrices.
arXiv preprint arXiv:1509.07076, 2015.

[5] G. Amanatidis, B. Green, and M. Mihail. Connected realizations of joint-degree matri-
ces. Discrete Applied Mathematics, 2018.

[6] C. Bachmaier, A. Gleißner, and A. Hofmeier. Dagmar: Library for dags. Department
of, 2012.

[7] D. A. Bader and V. Sachdeva. A cache-aware parallel implementation of the push-relabel
network flow algorithm and experimental evaluation of the gap relabeling heuristic.
Technical report, Georgia Institute of Technology, 2006.

[8] M. D. Barrus and E. A. Donovan. Neighborhood degree lists of graphs. Discrete
Mathematics, 341(1):175–183, 2018.

[9] K. E. Bassler, C. I. Del Genio, P. L. Erdős, I. Miklós, and Z. Toroczkai. Exact sampling
of graphs with prescribed degree correlations. New Journal of Physics, 17(8):083052,
2015.

[10] O. Bastert and C. Matuszewski. Layered drawings of digraphs. In Drawing graphs,
pages 87–120. Springer, 2001.

[11] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding
and clustering. In Advances in neural information processing systems, pages 585–591,
2002.

[12] J. Blitzstein and P. Diaconis. A sequential importance sampling algorithm for generating
random graphs with prescribed degrees. Internet Mathematics, 6(4):489–522, 2011.

140

[13] C. Carstens. A uniform random graph model for directed acyclic networks and its effect
on motif-finding. Journal of Complex Networks, 2(4):419–430, 2014.

[14] C. R. Coullard and P. H. Ng. Totally unimodular leontief directed hypergraphs. Linear
algebra and its applications, 230:101–125, 1995.

[15] G. Csardi and T. Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems:1695, 2006.

[16] É. Czabarka, A. Dutle, P. L. Erdős, and I. Miklós. On realizations of a joint degree
matrix. Discrete Applied Mathematics, 181:283–288, 2015.

[17] E. Czabarka, L. A. Szekely, Z. Toroczkai, and S. Walker. An algebraic monte-carlo algo-
rithm for the bipartite partition adjacency matrix realization problem. arXiv preprint
arXiv:1708.08242, 2017.

[18] C. I. Del Genio, H. Kim, Z. Toroczkai, and K. E. Bassler. Efficient and exact sampling
of simple graphs with given arbitrary degree sequence. PloS one, 5(4):e10012, 2010.

[19] W. Devanny, D. Eppstein, and B. Tillman. The computational hardness of dk-series.
In NetSci 2016, 2016.

[20] N. Developers. Networkx. networkx. lanl. gov, 2010.

[21] X. Dimitropoulos, D. Krioukov, A. Vahdat, and G. Riley. Graph annotations in model-
ing complex network topologies. ACM Trans. Model. Comput. Simul., 19(4):17:1–17:29,
Nov. 2009.

[22] S. Dorogovtsev. Networks with desired correlations. arXiv preprint cond-mat/0308336,
2003.

[23] P. Erdős and T. Gallai. Gráfok elő́ırt fokú pontokkal. Mat. Lapok, 11:264–274, 1960.

[24] P. L. Erdős, S. G. Hartke, L. van Iersel, and I. Miklós. Graph realizations constrained
by skeleton graphs. arXiv preprint arXiv:1508.00542, 2015.

[25] P. L. Erdős, Z. Király, and I. Miklós. On the swap-distances of different realizations of a
graphical degree sequence. Combinatorics, Probability and Computing, 22(03):366–383,
2013.

[26] P. L. Erdős, S. Z. Kiss, I. Miklós, and L. Soukup. Constructing, sampling and counting
graphical realizations of restricted degree sequences. arXiv preprint arXiv:1301.7523,
2013.

[27] P. L. Erdos, I. Miklós, and Z. Toroczkai. A decomposition based proof for fast mixing
of a markov chain over balanced realizations of a joint degree matrix. SIAM Journal
on Discrete Mathematics, 29(1):481–499, 2015.

[28] P. L. Erdős, I. Miklós, and Z. Toroczkai. New classes of degree sequences with fast
mixing swap markov chain sampling. arXiv preprint arXiv:1601.08224, 2016.

141

[29] D. R. Fulkerson et al. Zero-one matrices with zero trace. Pacific J. Math, 10(3):831–836,
1960.

[30] D. Gale et al. A theorem on flows in networks. Pacific J. Math, 7(2):1073–1082, 1957.

[31] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete graph
problems. Theoretical computer science, 1(3):237–267, 1976.

[32] M. Gjoka. 2k simple implementation in networkx. https://networkx.github.

io/documentation/latest/reference/generated/networkx.generators.joint_

degree_seq.joint_degree_graph.html, 2016.

[33] M. Gjoka, M. Kurant, and A. Markopoulou. 2.5 k-graphs: from sampling to generation.
In INFOCOM, 2013 Proceedings IEEE, pages 1968–1976. IEEE, 2013.

[34] M. Gjoka, B. Tillman, and A. Markopoulou. Construction of simple graphs with a
target joint degree matrix and beyond. In 2015 IEEE Conference on Computer Com-
munications (INFOCOM), pages 1553–1561. IEEE, 2015.

[35] M. Gjoka, B. Tillman, A. Markopoulou, and R. Pagh. Efficient construction of 2k+
graphs. In NetSci 2014, 2014.

[36] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988.

[37] P. Goyal and E. Ferrara. Gem: A python package for graph embedding methods. Journal
of Open Source Software, 3(29):876.

[38] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance:
A survey. Knowledge-Based Systems, 2018.

[39] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864. ACM, 2016.

[40] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics,
and function using NetworkX. In Proceedings of the 7th Python in Science Conference
(SciPy2008), pages 11–15, Pasadena, CA USA, Aug. 2008.

[41] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear
graph. i. Journal of the Society for Industrial and Applied Mathematics, 10(3):496–506,
1962.

[42] V. Havel. Poznámka o existenci konecnych grafu. Časopis pro pěstováńı matematiky,
80(4):477–480, 1955.

[43] P. W. Holland and S. Leinhardt. Local structure in social networks. Sociological method-
ology, 7:1–45, 1976.

142

https://networkx.github.io/documentation/latest/reference/generated/networkx.generators.joint_degree_seq.joint_degree_graph.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.generators.joint_degree_seq.joint_degree_graph.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.generators.joint_degree_seq.joint_degree_graph.html

[44] P. Holme and B. J. Kim. Growing scale-free networks with tunable clustering. Physical
review E, 65(2):026107, 2002.

[45] D. R. Hunter, M. Handcock, C. Butts, S. M. Goodreau, and M. Morris. ergm: A
package to fit, simulate and diagnose exponential-family models for networks. Journal
of Statistical Software, 24(3), 2008.

[46] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM (JACM),
51(4):671–697, 2004.

[47] B. Karrer and M. E. Newman. Random graph models for directed acyclic networks.
Physical Review E, 80(4):046110, 2009.

[48] H. Kim, C. I. Del Genio, K. E. Bassler, and Z. Toroczkai. Constructing and sampling
directed graphs with given degree sequences. New Journal of Physics, 14(2):023012,
2012.

[49] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[50] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

[51] F. Maffray and M. Preissmann. On the np-completeness of the k-colorability problem
for triangle-free graphs. Discrete Mathematics, 162(1):313–317, 1996.

[52] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat. Systematic topology analysis and
generation using degree correlations. In ACM SIGCOMM Computer Communication
Review, volume 36, pages 135–146. ACM, 2006.

[53] S. Micali and V. V. Vazirani. An o(
√
|V ||e|) algorithm for finding maximum matching

in general graphs. In Foundations of Computer Science, 1980., 21st Annual Symposium
on, pages 17–27. IEEE, 1980.

[54] M. Mihail. On generating graphs with prescribed degree sequences for complex net-
work modeling applications. In 3rd Workshop on Approximation and Randomization
Algorithms in Communication Networks, 2002, 2002.

[55] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement
and analysis of online social networks. In IMC, 2007.

[56] M. E. Newman. Finding community structure in networks using the eigenvectors of
matrices. Physical review E, 74(3):036104, 2006.

[57] C. Orsini, M. M. Dankulov, P. Colomer-de Simón, A. Jamakovic, P. Mahadevan, A. Vah-
dat, K. E. Bassler, Z. Toroczkai, M. Boguñá, G. Caldarelli, et al. Quantifying random-
ness in real networks. Nature communications, 6, 2015.

143

http://snap.stanford.edu/data

[58] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity preserving
graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1105–1114. ACM, 2016.

[59] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM, 2014.

[60] J. J. Pfeiffer III, S. Moreno, T. La Fond, J. Neville, and B. Gallagher. Attributed graph
models: modeling network structure with correlated attributes. In Proc. of WWW,
2014.

[61] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

[62] T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock. New specifications
for exponential random graph models. Sociological Methodology, 36:99–154, 2006.

[63] I. Stanton and A. Pinar. Constructing and sampling graphs with a prescribed joint
degree distribution. Journal of Experimental Algorithmics (JEA), 17:3–5, 2012.

[64] R. Taylor. Constrained switchings in graphs. University of Melbourne, Department of
Mathematics, 1980.

[65] B. Tillman. D2k simple implementation in networkx. https://github.com/networkx/
networkx/pull/3551, 2019.

[66] B. Tillman and A. Markopoulou. On the number of connected components of joint
degree matrix realizations. In abstract submitted to NetSci 2018, 2018.

[67] B. Tillman, A. Markopoulou, C. T. Butts, and M. Gjoka. Construction of directed
2k graphs. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, pages 1115–1124, New York, NY,
USA, 2017. ACM.

[68] B. Tillman, A. Markopoulou, M. Gjoka, and C. T. Butts. 2k+ graph construction
framework: Targeting joint degree matrix and beyond. IEEE/ACM Transactions on
Networking, 27(2):591–606, April 2019.

[69] A. Traud, P. Mucha, and M. Porter. Social Structure of Facebook Networks. Arxiv
preprint arXiv:1102.2166, 2011.

[70] W. T. Tutte. A short proof of the factor theorem for finite graphs. Canad. J. Math,
6(1954):347–352, 1954.

[71] F. Viger and M. Latapy. Efficient and simple generation of random simple connected
graphs with prescribed degree sequence. In International Computing and Combinatorics
Conference, pages 440–449. Springer, 2005.

144

https://github.com/networkx/networkx/pull/3551
https://github.com/networkx/networkx/pull/3551

[72] B. Viswanath, A. Mislove, M. Cha, and K. Gummadi. On the evolution of user inter-
action in facebook. In Proc. WOSN, 2009.

[73] Y. Amanatidis and B. Green and M. Mihail. Graphic realizations of joint-degree ma-
trices. Unpublished manuscript, 2008.

[74] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.

[75] Y. Zhu, Y.-R. Song, and Y.-W. Li. A tabu search optimization algorithm with 2.5 k
null model. In 2018 37th Chinese Control Conference (CCC), pages 1082–1086. IEEE,
2018.

145

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Problem Statement
	Our Work in Perspective
	Prior Work on Undirected Graph Construction
	Prior Work on Directed Graph Construction
	Dissertation Contributions: The 2K+ Framework

	Undirected Graph Construction
	Introduction
	2K Construction: JDM
	Realizability
	Algorithm for 2K Construction
	Connections to Related Work
	Space of Realizations

	2K with additional constraints
	2K+S: Target JDM and Clustering
	2K+#: NP-Hardness for JDM with fixed number of triangles
	2K+A: Targeting JDM and Node Attributes
	2K+CC: Number of Connected Components

	Computational hardness of dK-series
	Definitions
	NP-Hardness for 3K distributions
	Extending to d > 3

	Simulations for Real-World Undirected Graphs
	Summary

	Directed Graph Construction
	Introduction
	Directed 2K Construction
	Realizability
	Algorithm for D2K Construction
	Space of realizations
	Importance sampling

	D2K with additional constraints
	Simulations for Real-World Directed Graphs
	DAG Construction
	DAG1K Construction
	DAG2K Construction
	D2K+L: Level Graphs

	Simulations for Real-World Directed Acyclic Graphs
	Summary

	Graph Construction from Embeddings
	Introduction
	Background on Graph Embeddings
	Proposed Framework: NPM
	The Neighborhood Partition Matrix (NPM) Problem
	Extensions of NPM
	Tasks and Metrics

	Evaluation
	Experiment Setup
	Graph Construction Task
	Graph Embeddings Tasks

	Summary

	Conclusion
	Bibliography

