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A B S T R A C T

Background: The obesity epidemic brought a need for accessible methods to monitor body composition, as excess adiposity has been associated with
cardiovascular disease, metabolic disorders, and some cancers. Recent 3-dimensional optical (3DO) imaging advancements have provided opportunities
for assessing body composition. However, the accuracy and precision of an overall 3DO body composition model in specific subgroups are unknown.
Objectives: This study aimed to evaluate 3DO’s accuracy and precision by subgroups of age, body mass index, and ethnicity.
Methods: A cross-sectional analysis was performed using data from the Shape Up! Adults study. Each participant received duplicate 3DO and dual-
energy X-ray absorptiometry (DXA) scans. 3DO meshes were digitally registered and reposed using Meshcapade. Principal component analysis was
performed on 3DO meshes. The resulting principal components estimated DXAwhole-body and regional body composition using stepwise forward linear
regression with 5-fold cross-validation. Duplicate 3DO and DXA scans were used for test–retest precision. Student’s t tests were performed between 3DO
and DXA by subgroup to determine significant differences.
Results: Six hundred thirty-four participants (females ¼ 346) had completed the study at the time of the analysis. 3DO total fat mass in the entire sample
achieved R2 of 0.94 with root mean squared error (RMSE) of 2.91 kg compared to DXA in females and similarly in males. 3DO total fat mass achieved a
% coefficient of variation (RMSE) of 1.76% (0.44 kg), whereas DXA was 0.98% (0.24 kg) in females and similarly in males. There were no mean
differences for total fat, fat-free, percent fat, or visceral adipose tissue by age group (P > 0.068). However, there were mean differences for underweight,
Asian, and Black females as well as Native Hawaiian or other Pacific Islanders (P < 0.038).
Conclusions: A single 3DO body composition model produced accurate and precise body composition estimates that can be used on diverse populations.
However, adjustments to specific subgroups may be warranted to improve the accuracy in those that had significant differences.
This trial was registered at clinicaltrials.gov as NCT03637855 (Shape Up! Adults).

Keywords: body composition, three-dimensional optical, diversity, DXA, accuracy
Introduction

Obesity has been a growing epidemic for the past few generations
and has led to the need for more accessible methods to monitor
adiposity [1–3]. Excess adiposity is linked to the development of car-
diovascular disease, type 2 diabetes, and up to 20% of cancers [4–6].
BMI is generally used to classify obesity. However, BMI only uses
Abbreviations: 3DO, 3-dimensional optical; LSC, least significant change; MD, mean
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height and weight and does not account for muscle or FM, and
therefore, it is a poor method for nutritional assessment on an indi-
vidual level. Instead, body composition methods have been developed
to quantify FM and FFM (lean soft tissue þ bone masses) to charac-
terize health status [7,8]. Furthermore, regional body composition such
as visceral adipose tissue (VAT) has shown to be a better predictor than
BMI for adverse outcomes such as type 2 diabetes (OR: 2.17 vs. 1.66)
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Francisco; UHCC, University of Hawaii Cancer Center; VAT, visceral adipose tissue.
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and hypertension (OR: 2.08 vs. 1.77) [9]. Studies have also shown
ethnic differences when it comes to fat distribution such as higher
levels of VAT in Japanese-Americans compared with their ethnic
counterparts [10] as well as age-related differences [11].

Imaging methods such as MRI and CT are among criterion methods
for regional body composition [12,13]. However, these methods are
expensive; require trained/certified technicians; use ionizing radiation
(CT), limiting frequent use; and have limited access outside clinical
settings. DXA, air displacement plethysmography (ADP), and BIA are
among the more accessible modalities developed for body composi-
tion, but they also have limitations including requiring trained tech-
nicians (DXA and ADP), ionizing radiation (DXA), physiological
calibration assumptions (BIA), and lack of regional/compartmental
compositions (ADP) [14–16]. The ideal method would include total
and regional composition to be accurate in subgroups by sex, BMI, age,
and ethnicity; free of ionizing radiation; self-operating; and low cost to
operate.

In the last 2 decades, body shape defined in detail using 3-dimen-
sional optical (3DO) imaging has been intensely explored as a health
descriptor [17]. 3DO scanners generally output a detailed 3D mesh
with over 100,000 sample points that represents the person’s body
shape and automated anthropometric estimates (ie, circumferences,
lengths, surface areas, and volumes) [18–20]. From the early days until
now, researchers validated the accuracy and precision of the automated
anthropometry to criterion methods (eg, tape measurements to cir-
cumferences/lengths, underwater weighing or ADP to total volume)
[20–22]. Researchers also showed that these automated anthropometric
estimates, some of which would be difficult and tedious to obtain
manually, were predictive of DXA FM and FFM [23–26].

Since 3DO anthropometry was as good if not better than manual
measurements, as health descriptors, researchers attempted to create
more advanced shape descriptors using the 3DO mesh to utilize the
entire body. Since then, the methodology to obtain these body shape
descriptors have improved by incorporating automated processing
methods, pose-independent body composition models, a 2D image to
3D mesh pipeline, and agnostic body composition models across
multiple 3DO scanners so that the models were no longer device
specific [27–30].

Although much has been accomplished in this field in a short
amount of time, body composition models created for 3DO scanners
have not been interrogated for accuracy as a function of age, BMI, and
ethnicity. Our hypothesis was that body shape is deterministically
defined by the underlying distributions of fat and muscle, and when
properly modeled, should accurately represent regional fat even when
body shapes differ by sex, age, BMI, and ethnicity. The objective of
this study was to evaluate the 3DO’s total and regional body compo-
sition accuracy and precision in a diverse population stratified by sex,
age, BMI, and ethnicity as compared to DXA.
Methods

Study design
Shape Up! Adults was a cross-sectional study of healthy adults

(NIH R01 DK109008, clinicaltrials.gov NCT03637855). This study
was designed to investigate the associations between body shape and
composition with various health markers. Participants underwent a
series of measures that included whole-body 3DO scans, DXA scans,
blood serum tests, and functional strength tests.
658
Participants
Participants were recruited at Pennington Biomedical Research

Center (PBRC), University of Hawaii Cancer Center (UHCC), and
University of California, San Francisco (UCSF). All participants pro-
vided informed consent. The study protocol was approved by the
Institutional Review Boards at PBRC (IRB study #2016-053), UCSF
(IRB #15-18066), and the University of Hawaii Office of Research
Compliance (CHS #2017-01018). Volunteers were prescreened over
the phone and were deemed ineligible if they were pregnant, breast-
feeding, had missing limbs, nonremovable metal, previous body-
altering surgery (eg, breast augmentation, liposuction), hair that
could not be contained in a swim cap, were unable to stand still for 1
min, or unable to lay still for 3 min.

Pretesting preparations included an 8-h fast (water and prescribed
medications were allowed) and no strenuous exercise 24 h prior to the
study visit. Participants were stratified by age (18–39, 40–59, �60 y),
ethnicity (non-Hispanic White [White], non-Hispanic Black [Black],
Hispanic, Asian, and Native Hawaiian or Other Pacific Islander
[NHOPI]), sex, and BMI (<18.5 [underweight], 18.5–24.9 [normal
weight], 25–29.9 [overweight], >30 [obese] kg/m2) according to the
World Health Organization [31]. Participants self-reported their
ethnicity from the 5 ethnic subgroups. Height and weight were
measured on a SECA 274 Stadiometer.
DXA
Participants received duplicate whole-body DXA scans with a

Hologic Discovery/A or Horizon system according to International
Society for Clinical Densitometry guidelines with repositioning [32].
Participants were scanned once, asked to get off the table, and laid back
on the table for the second scan. The Hologic Whole-Body Phantom
was scanned 10 times at each site with UCSF considered the gold
standard site. Ratios between the gold standard site and the other sites
were calculated. An ANOVA with a Dunnett test was applied to
determine mean difference (MDs) between the sites and the gold
standard site. There were no differences between UCSF and PBRC.
There was a correction factor of 1.05036 between UCSF and UHCC for
%fat. The Hologic Block Phantom was scanned daily for quality
control to ensure the system did not fall out of calibration. No other
corrections were needed. All scans were analyzed at UHCC by a single
certified technologist using Hologic Apex version 5.6 with the
NHANES Body Composition Analysis calibration option disabled
[33]. Outputs included whole-body and regional FM and FFM
measures.
3DO surface scans
Participants changed into form-fitting tights, a swim cap, and a

sports bra if female. Duplicate 3DO surface scans were taken on the
Fit3D ProScanner version 4.x within 10 min of each other and with
repositioning. Participants grasped telescoping handles on the scanner
platform and stood upright with shoulders relaxed and arms positioned
straight and abducted from their torso. The platform rotates once
around and takes approximately 45 s for the completion of the scan.
Final point clouds were converted to a mesh connected by triangles
with approximately 300,000 vertices and 600,000 faces to represent the
body shape. Previous validation studies showed good agreement and
precision for Fit3D’s automated anthropometry in comparison to
manual circumference measurements [19,22,24].

http://clinicaltrials.gov
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3DO meshes were registered and digitally reposed by Meshcapade.
Their algorithm registers each mesh to a 110,000-vertex template with
full anatomical correspondence. This means each vertex corresponds to
a specific anatomical location across all registered meshes. Without the
registration, the number of vertices and their locations would be
random. Thus, the variance would not be comparable for analysis.
Meshcapade’s methods can be read in detail in Loper et al. [34]. All
meshes were digitally reposed to a T-pose, where the person was
standing straight, arms were brought horizontal and in plane with the
body, and arms and legs were straightened. Previous work showed that
reposing the mesh to a standardized position and pose reduced the
precision error by approximately 50% [29].

Statistical shape modeling
Since vertices in the 3D meshes are highly correlated with neigh-

boring vertices, principal component analysis was performed on the
registered meshes to orthogonalize and reduce the dimensionality of
the data so that fewer variables were needed to describe the data’s
variance while creating sex-specific statistical shape models [35]. The
resulting outputs were principal components (PCs) that could be used
for analysis.
FIGURE 1. Female manifold regression images of different ethnic groups that we
free mass (ie, 46.6 y, 25.4 kg, and 46.1 kg, respectively). This means each mesh, in
– 3DO) are displayed to examine how different ethnic groups differ in body shape
Bold print indicates a significant difference (P < 0.05) in total and regional fat ma
DXA, dual-energy X-ray absorptiometry.
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Manifold regression images stratified by ethnicity and sex (Fig-
ures 1 and 2) were created by adjusting the PCs with the mean FM,
FFM, and age, shown in Table 1 [3]. The adjusted PCs were then
averaged and inverted back into coordinate space (x, y, and z) to obtain
the image. The manifold images were a demonstration on how average
body shape may differ by ethnicity when FM, FFM, and age are the
same. With this visual example, regional MDs were added to show how
different ethnic groups may hold FM and FFM from other ethnic
counterparts. P values for the regional differences were also displayed
on the images.

Mean images (Figures 3 and 4) stratified by sex, BMI, and ethnicity
were created by averaging the PCs of the specific strata and inverting
back into coordinate space to show a generalized average shape of that
group. Groups with <1 participant did not have a mean image.

Statistical analysis
Stepwise forward linear regression with 5-fold cross-validation was

used to predict DXA body composition with the PCs. The reported
results were the average result of the 5 folds. The independent variables
were the PCs and demographics (ie, age and BMI) (PCþDEMO
model), whereas the dependent variables were DXA whole-body and
re adjusted with the overall sample mean age and DXA total fat mass and fat-
theory, has the same age, fat, and fat-free masses. Regional differences (DXA
and composition even though they have the same total fat and fat-free masses.
sses between DXA and 3DO by Student’s t test. 3DO, 3-dimensional optical;
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regional body composition measures. PC-only models were created
first and then adjusted with age and BMI as potential covariates for the
PC þ DEMO models. Only variables with a significance of P < 0.5
remained in each model. Results were reported with R2 and RMSE.
This model used the entire Shape Up! Adults cohort and was similar to
previous models presented with an incomplete sample [28,29,35].

Test–retest precision, also known as short-term precision, was
performed on the duplicate DXA and 3DO meshes. The %CV and
RMSE were used to quantify the test–retest precision defined by Glüer
et al. [36]. Subgroup precision was calculated using standard deviation
between test–retest scans and averaged by group because RMSE be-
tween 2 scans could not be solved. Differences between subgroups
were compared within the strata of age, BMI, and ethnicity with a
1-factor ANOVA. A P value < 0.05 was considered statistically
significant.

The accuracy of 3DO total FM, FFM, and %fat was evaluated at the
subgroup level with the stratifications mentioned previously. MDs were
calculated between 3DO estimates from the PC þ DEMO model and
DXA (3DO – DXA). Paired Student’s t test determined if the differ-
ences were statistically significant (P < 0.05). If significant, the %MD
FIGURE 2. Male manifold regression images of different ethnic groups that wer
free mass (ie, 43.5 y, 20.9 kg, and 66.6 kg, respectively). This means each mesh, in
– 3DO) are displayed to examine how different ethnic groups differ in body shape
Bold print indicates a significant difference (P < 0.05) in total and regional fat ma
DXA, dual-energy X-ray absorptiometry.
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would be calculated [(DXA – 3DO) / DXA� 100]. Percent MDs under
2% were considered small, 2% to 5% moderate, and >5% large. All
analyses were performed in R version 4.2.1 (R Core Teams).

Results

At the time of this analysis, 883 participants were available. Two
hundred forty-nine participants were excluded for different study
protocol (n¼ 181), dropouts (n¼ 7), missing or unusable 3DO scan (n
¼ 48), or invalid DXA scan (n ¼ 13) (Supplemental Figure 1). After
exclusions, 634 participants remained in the analysis (Table 1). In total,
225, 302, and 108 participants were recruited from UCSF, PBRC, and
UHCC, respectively. The female and male ethnic distributions were
similar to NHANES for White and Black participants. However, the
Shape Up! Adults recruitment had about 10%more Asian and 10% less
Hispanic participants compared with NHANES [37].

The first 3 PC modes captured 95% of the shape variance in each of
the female and male shape models. 3DO PC-only equations were
highly correlated to DXA body composition values (Table 2). 3DO
total FM and FFM in females achieved R2s of 0.94 and 0.92 with
e adjusted with the overall sample mean age and DXA total fat mass and fat-
theory, has the same age, fat, and fat-free masses. Regional differences (DXA
and composition even though they have the same total fat and fat-free masses.
sses between DXA and 3DO by Student’s t test. 3DO, 3-dimensional optical;



TABLE 1
Sample characteristics by age group and BMI category

Female

Ages 18–39 y Ages 40–59 y Ages �60 y Overall

Underweight Normal Overweight Obese Underweight Normal Overweight Obese Underweight Normal Overweight Obese Underweight Normal Overweight Obese

(N ¼ 9) (N ¼ 44) (N ¼ 38) (N ¼ 38) (N ¼ 10) (N ¼ 43) (N ¼ 33) (N ¼ 36) (N ¼ 6) (N ¼ 39) (N ¼ 26) (N ¼ 24) (N ¼ 25) (N ¼
126)

(N ¼ 97) (N ¼ 98)

Age (y)
Mean
(SD)

24.3 (5.98) 28.0
(5.93)

29.3 (5.75) 31.1
(5.77)

52.5 (4.55) 49.6
(5.57)

52.1 (5.81) 48.3
(5.61)

66.3 (2.73) 66.4
(5.33)

66.4 (3.79) 64.6
(3.34)

45.7 (17.8) 47.2
(16.7)

47.0 (16.2) 45.6
(14.2)

[Min,
Max]

[18.0, 35.0] [18.0,
39.0]

[19.0, 39.0] [18.0,
39.0]

[42.0, 56.0] [41.0,
59.0]

[40.0, 59.0] [40.0,
59.0]

[62.0, 70.0] [60.0,
89.0]

[60.0, 75.0] [60.0,
71.0]

[18.0, 70.0] [18.0,
89.0]

[19.0, 75.0] [18.0,
71.0]

Ethnicity
Asian 3 (33.3%) 8 (18.2%) 10 (26.3%) 6 (15.8%) 5 (50.0%) 14

(32.6%)
6 (18.2%) 7 (19.4%) 1 (16.7%) 14

(35.9%)
6 (23.1%) 2 (8.3%) 9 (36.0%) 36

(28.6%)
22 (22.7%) 15

(15.3%)
Black 0 (0%) 9 (20.5%) 6 (15.8%) 11

(28.9%)
1 (10.0%) 7 (16.3%) 9 (27.3%) 6 (16.7%) 1 (16.7%) 7 (17.9%) 6 (23.1%) 9 (37.5%) 2 (8.0%) 23

(18.3%)
21 (21.6%) 26

(26.5%)
Hispanic 1 (11.1%) 12

(27.3%)
4 (10.5%) 6 (15.8%) 0 (0%) 7 (16.3%) 6 (18.2%) 5 (13.9%) 0 (0%) 3 (7.7%) 2 (7.7%) 2 (8.3%) 1 (4.0%) 22

(17.5%)
12 (12.4%) 13

(13.3%)
NHOPI 0 (0%) 3 (6.8%) 6 (15.8%) 7 (18.4%) 0 (0%) 4 (9.3%) 3 (9.1%) 4 (11.1%) 0 (0%) 1 (2.6%) 0 (0%) 1 (4.2%) 0 (0%) 8 (6.3%) 9 (9.3%) 12

(12.2%)
White 5 (55.6%) 12

(27.3%)
12 (31.6%) 8 (21.1%) 4 (40.0%) 11

(25.6%)
9 (27.3%) 14

(38.9%)
4 (66.7%) 14

(35.9%)
12 (46.2%) 10

(41.7%)
13 (52.0%) 37

(29.4%)
33 (34.0%) 32

(32.7%)
Height (cm)
Mean
(SD)

163 (7.98) 164 (6.29) 163 (7.98) 162 (6.76) 163 (7.09) 164 (6.86) 163 (5.14) 163 (6.21) 164 (5.13) 160 (7.45) 160 (8.29) 161 (5.57) 163 (6.76) 163 (7.05) 162 (7.32) 162 (6.27)

[Min,
Max]

[151, 176] [151, 180] [149, 181] [146, 174] [155, 177] [150, 181] [154, 171] [147, 176] [157, 173] [144, 178] [149, 190] [151, 171] [151, 177] [144, 181] [149, 190] [146, 176]

Weight (kg)
Mean
(SD)

45.3 (5.94) 58.3
(5.93)

72.5 (7.31) 98.4
(20.3)

45.6 (4.95) 59.2
(7.71)

73.2 (5.91) 98.1
(19.6)

47.3 (4.20) 54.8
(5.81)

70.2 (9.02) 87.2
(7.91)

45.9 (5.03) 57.5
(6.76)

72.1 (7.41) 95.5
(18.3)

[Min,
Max]

[38.6, 55.4] [44.5,
72.5]

[60.9, 88.8] [70.5,
153]

[35.4, 53.0] [44.2,
75.2]

[61.0, 85.0] [66.3,
146]

[42.2, 52.3] [41.7,
67.6]

[60.0, 103] [73.6,
102]

[35.4, 55.4] [41.7,
75.2]

[60.0, 103] [66.3,
153]

BMI (kg/m2)
Mean
(SD)

17.0 (1.11) 21.7
(1.81)

27.1 (1.18) 37.5
(6.73)

17.1 (1.26) 21.9
(1.88)

27.5 (1.22) 36.8
(6.51)

17.6 (0.905) 21.4
(1.92)

27.4 (1.33) 33.6
(3.11)

17.2 (1.11) 21.7
(1.86)

27.3 (1.24) 36.3
(6.11)

[Min,
Max]

[14.8, 18.4] [18.6,
24.8]

[25.1, 29.6] [30.0,
51.9]

[14.2, 18.4] [18.7,
24.9]

[25.2, 29.9] [30.1,
53.1]

[16.0, 18.4] [18.6,
24.4]

[25.1, 29.6] [30.0,
40.9]

[14.2, 18.4] [18.6,
24.9]

[25.1, 29.9] [30.0,
53.1]

Total FM (kg)
Mean (SD) 10.7 (2.81) 16.4

(3.93)
24.3 (4.12) 39.7

(13.1)
9.49 (2.08) 17.5

(4.21)
27.5 (3.64) 40.3

(9.91)
10.9 (1.74) 17.0

(3.89)
26.6 (4.16) 36.7

(6.64)
10.3 (2.31) 17.0

(4.01)
26.0 (4.18) 39.2

(10.6)
[Min, Max] [7.20, 14.6] [8.31,

27.4]
[11.9, 32.7] [22.7,

72.7]
[6.30, 12.2] [9.31,

27.2]
[18.6, 35.0] [27.9,

67.8]
[9.08, 13.1] [10.4,

25.5]
[16.4, 34.7] [22.4,

48.9]
[6.30, 14.6] [8.31,

27.4]
[11.9, 35.0] [22.4,

72.7]
Total FFM (kg)
Mean
(SD)

34.4 (3.64) 42.0
(4.55)

47.9 (5.37) 58.6
(9.14)

36.1 (4.71) 41.6
(5.45)

45.7 (4.32) 56.6
(9.88)

36.1 (3.42) 37.9
(4.51)

43.2 (8.26) 50.4
(4.00)

35.5 (3.98) 40.6
(5.17)

45.9 (6.15) 55.9
(9.02)

[Min,
Max]

[30.0, 41.6] [28.9,
52.5]

[39.8, 61.3] [42.1,
80.4]

[28.6, 43.6] [30.9,
53.8]

[37.1, 53.2] [37.1,
77.5]

[32.2, 40.9] [29.0,
47.5]

[33.7, 75.6] [42.4,
58.0]

[28.6, 43.6] [28.9,
53.8]

[33.7, 75.6] [37.1,
80.4]

Percent body fat (%)
Mean
(SD)

23.5 (3.91) 27.9
(5.19)

33.6 (4.43) 39.6
(5.89)

20.9 (4.23) 29.5
(5.03)

37.5 (3.66) 41.4
(3.37)

23.3 (2.93) 30.9
(5.61)

38.3 (5.48) 41.9
(4.76)

22.4 (3.90) 29.4
(5.36)

36.2 (4.90) 40.8
(4.88)

[Min,
Max]

[18.8, 29.6] [15.2,
37.6]

[17.2, 39.2] [28.7,
53.3]

[12.6, 27.1] [18.7,
39.3]

[30.3, 45.2] [34.9,
48.3]

[18.2, 26.6] [20.4,
44.8]

[26.6, 45.6] [30.5,
48.6]

[12.6, 29.6] [15.2,
44.8]

[17.2, 45.6] [28.7,
53.3]

VAT (kg)
Mean
(SD)

0.11 (0.03) 0.17
(0.07)

0.30 (0.10) 0.57
(0.31)

0.11 (0.03) 0.29
(0.14)

0.56 (0.20) 0.82
(0.28)

0.13 (0.07) 0.36
(0.18)

0.65 (0.19) 0.80
(0.23)

0.11 (0.04) 0.27
(0.16)

0.48 (0.22) 0.72
(0.30)

[Min,
Max]

[0.05, 0.15] [0.07,
0.34]

[0.11, 0.51] [0.09,
1.37]

[0.06, 0.17] [0.08,
0.61]

[0.24, 1.14] [0.31,
1.32]

[0.07, 0.23] [0.08,
0.90]

[0.30, 1.14] [0.49,
1.22]

[0.05, 0.23] [0.07,
0.90]

[0.11, 1.14] [0.09,
1.37]

Males
(N ¼ 2) (N ¼ 37) (N ¼ 59) (N ¼ 34) (N ¼ 1) (N ¼ 82) (N ¼ 32) (N ¼ 38) (N ¼ 1) (N ¼ 22) (N ¼ 22) (N ¼ 17) (N ¼ 4) (N ¼ 82) (N ¼ 113) (N ¼ 89)

Age (y)
Mean
(SD)

29.0 (5.66) 26.6
(5.47)

29.6 (6.11) 30.4
(5.84)

48.0 (NA) 43.8
(18.1)

48.9 (5.78) 49.6
(6.20)

67.0 (NA) 67.6
(5.71)

65.9 (4.78) 63.6
(3.20)

43.3 (18.5) 43.8
(18.1)

42.1 (15.5) 45.0
(13.7)

[Min,
Max]

29.0 [25.0,
33.0]

25.0
[18.0,
37.0]

30.0 [19.0,
39.0]

32.0
[18.0,
39.0]

48.0 [48.0,
48.0]

42.0
[18.0,
79.0]

48.5 [40.0,
59.0]

50.0
[40.0,
59.0]

67.0 [67.0,
67.0]

66.0
[60.0,
79.0]

64.5 [60.0,
77.0]

62.0
[60.0,
71.0]

40.5 [25.0,
67.0]

42.0
[18.0,
79.0]

38.0 [19.0,
77.0]

44.0
[18.0,
71.0]

Ethnicity
Asian 2 (100%) 9 (24.3%) 18 (30.5%) 7 (20.6%) 0 (0%) 9 (28.1%) 8 (21.1%) 0 (0%) 7 (31.8%) 5 (22.7%) 2 (11.8%) 2 (50.0%) 32 (28.3%)

(continued on next page)
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TABLE 1 (continued )

Female

Ages 18–39 y Ages 40–59 y Ages �60 y Overall

Underweight Normal Overweight Obese Underweight Normal Overweight Obese Underweight Normal Overweight Obese Underweight Normal Overweight Obese

(N ¼ 9) (N ¼ 44) (N ¼ 38) (N ¼ 38) (N ¼ 10) (N ¼ 43) (N ¼ 33) (N ¼ 36) (N ¼ 6) (N ¼ 39) (N ¼ 26) (N ¼ 24) (N ¼ 25) (N ¼
126)

(N ¼ 97) (N ¼ 98)

22
(26.8%)

22
(26.8%)

17
(19.1%)

Black 0 (0%) 8 (21.6%) 8 (13.6%) 9 (26.5%) 1 (100%) 16
(19.5%)

7 (21.9%) 8 (21.1%) 1 (100%) 3 (13.6%) 8 (36.4%) 6 (35.3%) 2 (50.0%) 16
(19.5%)

23 (20.4%) 23
(25.8%)

Hispanic 0 (0%) 8 (21.6%) 9 (15.3%) 5 (14.7%) 0 (0%) 12
(14.6%)

2 (6.3%) 3 (7.9%) 0 (0%) 1 (4.5%) 1 (4.5%) 1 (5.9%) 0 (0%) 12
(14.6%)

12 (10.6%) 9 (10.1%)

NHOPI 0 (0%) 2 (5.4%) 6 (10.2%) 4 (11.8%) 0 (0%) 2 (2.4%) 1 (3.1%) 4 (10.5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (2.4%) 7 (6.2%) 8 (9.0%)
White 0 (0%) 10

(27.0%)
18 (30.5%) 9 (26.5%) 0 (0%) 30

(36.6%)
13 (40.6%) 15

(39.5%)
0 (0%) 11

(50.0%)
8 (36.4%) 8 (47.1%) 0 (0%) 30

(36.6%)
39 (34.5%) 32

(36.0%)
Height (cm)
Mean
(SD)

164 (12.7) 176 (7.61) 176 (7.02) 176 (9.37) 175 (NA) 176 (7.45) 174 (6.07) 177 (7.18) 151 (NA) 175 (7.21) 175 (7.35) 176 (7.66) 163 (12.1) 176 (7.45) 175 (6.79) 177 (8.10)

[Min,
Max]

[155, 173] [162, 190] [159, 192] [147, 202] [175, 175] [159, 192] [163, 188] [161, 190] [151, 151] [159, 188] [155, 188] [158, 187] [151, 175] [159, 192] [155, 192] [147, 202]

Weight (kg)
Mean
(SD)

47.1 (9.23) 67.9
(8.28)

85.1 (8.95) 110 (17.2) 56.1 (NA) 69.2
(8.22)

82.5 (7.21) 110 (17.4) 41.5 (NA) 68.0
(7.57)

83.2 (8.46) 113 (15.4) 48.0 (8.04) 69.2
(8.22)

84.0 (8.41) 110 (16.8)

[Min,
Max]

[40.6, 53.7] [51.4,
81.2]

[63.9, 104] [70.6,
149]

[56.1, 56.1] [51.4,
90.2]

[69.1, 97.6] [88.4,
174]

[41.5, 41.5] [54.1,
82.4]

[62.1, 100] [79.4,
149]

[40.6, 56.1] [51.4,
90.2]

[62.1, 104] [70.6,
174]

Weight (kg/m2)
Mean
(SD)

17.5 (0.735) 21.9
(1.79)

27.5 (1.50) 35.4
(4.76)

18.4 (NA) 22.3
(1.78)

27.1 (1.43) 34.8
(4.38)

18.2 (NA) 22.2
(1.82)

27.2 (1.30) 36.3
(4.37)

17.9 (0.627) 22.3
(1.78)

27.3 (1.44) 35.3
(4.51)

[Min,
Max]

[17.0, 18.0] [18.7,
25.0]

[25.0, 30.0] [30.1,
49.2]

[18.4, 18.4] [18.6,
25.0]

[25.0, 29.5] [30.1,
52.6]

[18.2, 18.2] [18.6,
24.6]

[25.0, 29.9] [30.3,
47.3]

[17.0, 18.4] [18.6,
25.0]

[25.0, 30.0] [30.1,
52.6]

Total FM (kg)
Mean
(SD)

8.93 (2.98) 11.0
(3.39)

18.7 (5.50) 29.9
(10.6)

8.30 (NA) 12.6
(4.21)

19.1 (4.04) 31.7
(9.03)

5.01 (NA) 14.4
(4.16)

20.1 (3.56) 34.3
(8.70)

7.79 (2.55) 12.6
(4.21)

19.1 (4.78) 31.6
(9.58)

[Min,
Max]

[6.82, 11.0] [5.13,
20.0]

[9.05, 29.4] [11.9,
45.9]

[8.30, 8.30] [5.13,
26.5]

[7.44, 27.3] [20.5,
66.5]

[5.01, 5.01] [7.33,
21.5]

[14.3, 26.7] [20.5,
48.9]

[5.01, 11.0] [5.13,
26.5]

[7.44, 29.4] [11.9,
66.5]

Total FFM (kg)
Mean
(SD)

38.4 (6.28) 57.2
(7.35)

66.7 (7.76) 81.0
(9.72)

48.0 (NA) 56.9
(7.17)

63.5 (6.59) 77.9
(10.9)

35.7 (NA) 54.3
(6.11)

62.9 (7.15) 78.4
(9.41)

40.1 (6.51) 56.9
(7.17)

65.1 (7.46) 79.1
(10.2)

[Min,
Max]

[33.9, 42.8] [43.7,
73.0]

[47.2, 86.0] [65.1,
108]

[48.0, 48.0] [40.6,
73.0]

[50.4, 78.2] [62.6,
106]

[35.7, 35.7] [40.6,
67.8]

[46.4, 74.2] [58.6,
99.4]

[33.9, 48.0] [40.6,
73.0]

[46.4, 86.0] [58.6,
108]

Percent body fat (%)
Mean
(SD)

18.6 (2.65) 16.0
(4.26)

21.8 (5.57) 26.4
(7.16)

14.7 (NA) 18.0
(5.08)

23.1 (4.53) 28.7
(4.63)

12.3 (NA) 20.7
(4.58)

24.3 (3.57) 30.1
(4.97)

16.1 (3.47) 18.0
(5.08)

22.6 (5.02) 28.2
(5.84)

[Min,
Max]

[16.7, 20.5] [9.91,
25.1]

[10.6, 32.8] [13.6,
38.6]

[14.7, 14.7] [9.03,
32.6]

[10.2, 31.5] [20.3,
38.6]

[12.3, 12.3] [11.5,
31.6]

[16.6, 31.6] [20.7,
38.4]

[12.3, 20.5] [9.03,
32.6]

[10.2, 32.8] [13.6,
38.6]

VAT (kg)
Mean
(SD)

0.20 (0.01) 0.23
(0.047)

0.33 (0.09) 0.52
(0.22)

0.22 (NA) 0.32
(0.16)

0.49 (0.16) 0.79
(0.32)

0.16 (NA) 0.46
(0.18)

0.69 (0.24) 0.91
(0.29)

0.20 (0.03) 0.32
(0.16)

0.45 (0.20) 0.72
(0.32)

[Min,
Max]

[0.20, 0.21] [0.16,
0.33]

[0.18, 0.63] [0.22,
1.04]

[0.22, 0.22] [0.16,
0.91]

[0.17, 0.73] [0.29,
1.64]

[0.16, 0.16] [0.20,
0.91]

[0.29, 1.22] [0.35,
1.31]

[0.16, 0.22] [0.16,
0.91]

[0.17, 1.22] [0.22,
1.64]

Abbreviations: NA, not applicable; NHOPI, Native Hawaiian and other Pacific Islanders; SD, standard deviation; VAT, visceral adipose tissue.
Body composition values measured from dual-energy X-ray absorptiometry.
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RMSEs of 2.91 kg and 2.76 kg, whereas males achieved R2s of 0.94
and 0.94 with RMSEs of 3.04 kg and 2.97 kg, respectively. Female and
male 3DO %fat had moderate correlations with DXA (R2: 0.75 and
0.73; RMSE: 3.82% and 3.31%, respectively). Regional 3DO FM and
FFM estimates (ie, arms, legs, and trunk) had moderate to strong
correlations with DXA (R2 range: 0.79–0.95, RMSE range: 0.27–1.86
kg) for females and males. After possible adjustments for age and BMI
as covariates (PC þ DEMO), there were marginal improvements to the
R2s and RMSEs.
FIGURE 3. Female mean body shape images stratified by BMI and ethnicity.
derived. BMI, body mass index.
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3DO test–retest precision was comparable to DXA (Table 3). 3DO
total FM and FFM achieved a %CV (RMSE) of 1.76% (0.44 kg) and
0.96% (0.44 kg) in females, whereas DXA had a %CV (RMSE) of
0.98% (0.24 kg) and 0.59% (0.27 kg), respectively. In females, 3DO
VAT, arm FM, and trunk FM (%CV: 4.4%, 2.72%, and 1.55%; RMSE:
0.02 kg, 0.04 kg, and 0.18 kg, respectively) achieved better test–retest
precision than DXA (%CV: 8.08%, 3.16%, and 2.04%; RMSE: 0.03
kg, 0.05 kg, and 0.23 kg, respectively). Test–retest precision in males
showed similar results. However, only 3DO VAT had better test–retest
NA indicates that there was � 1 participant, so a mean image could not be
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precision than DXA in males. When comparing the precision across
subgroups of age, BMI, and ethnicity with 1-factor ANOVA, there
were no significant differences for all 3DO whole-body and regional
body composition outputs (data not shown, P > 0.06).

When comparing 3DO total FM, FFM, %fat, and VAT to DXA by
age subgroups (Table 4), there were no MDs in either females or males
(P > 0.068). For the BMI subgroups (Table 5), females with under-
weight had significant differences for total FM, FFM, and %fat (MDs:
1.23 kg,�1.23 kg, and 3.12%, respectively, P< 0.014) as well as %fat
for the females with obesity (MD ¼ �0.79%, P ¼ 0.023). There were
no MDs across the male BMI subgroups (P > 0.314). In the ethnicity
subgroups (Table 6), female Asian, Black, and NHOPI subgroups had
MDs in total FM (MDs: 0.64 kg, �0.81 kg, �1.55 kg%, respectively),
FIGURE 4. Male mean body shape images stratified by BMI and ethnicity. NA in
BMI, body mass index.
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FFM (MDs:�1.6 kg, 1.7 kg, and 3 kg%, respectively), and %fat (MDs:
1.38%,�1.11%, and�2.24%, respectively) (P< 0.017). Additionally,
the male NHOPI subgroup had MDs for total FM, FFM, and %fat
(MDs: �1.45 kg, 1.45 kg, and �1.88%, respectively; P < 0.038). If
ethnicity was added to the model (data not shown), differences in
ethnicity subgroups were no longer significant (P > 0.99). However,
underweight females still had a MD (P ¼ 0.029).

Average shape images were created for both males and females by
ethnic group (Figures 1 and 2) to show MDs by region. Asians had
significant differences in the trunk and arm measures, Blacks had
differences in the head measures, and NHOPIs had differences in the
head and leg measures. Although difficult to see in the figures, Black
females on average had longer legs and shorter torsos, whereas NHOPI
dicates that there was � 1 participant, so a mean image could not be derived.



TABLE 2
3D optical body composition models from stepwise forward linear regression to estimate to DXA body composition (mean results from 5-fold cross-validation)

Sex Outcome PC-only PC þ Demographics

Variable Coefficient R2 RMSE Variable Coefficient R2 RMSE

Females Total FM Intercept 26.5689 0.94 2.91 Intercept 16.4494 0.94 2.88
PC1 0.1282 PC1 0.1108
PC2 2.0930 PC2 1.5903
PC3 -1.0575 PC3 -0.7970
PC4 0.7487 PC4 0.5483
PC5 0.5329 PC5 0.4035
PC6 -0.4188 PC6 -0.2978
PC7 -1.3200 PC7 -0.9192
PC9 -0.4824 PC9 -0.7256
PC10 1.6580 PC10 1.1085
PC11 1.8068 PC11 1.4661
PC13 -2.7090 PC13 -2.3351

BMI 0.3597
Total FFM Total Mass - Total Fat Mass 0.92 2.76 Total Mass - Total Fat Mass 0.92 2.63
Percent Fat Total Fat Mass / Total Mass 0.75 3.82 Total Fat Mass / Total Mass 0.75 3.76
VAT Intercept 0.4516 0.72 0.15 Intercept 0.3334 0.78 0.14

PC2 0.0408 PC2 0.0431
PC3 -0.0226 PC3 -0.0254
PC4 0.0151 PC4 0.0142
PC5 -0.0332 PC5 -0.0252
PC6 0.0554 PC6 0.0417
PC7 0.0349 PC7 0.0382
PC8 -0.0680 PC8 -0.0931
PC12 -0.0809 PC12 -0.0301
PC13 -0.0348 PC13 -0.0569
PC14 -0.0489 PC14 -0.0555
PC15 -0.0570 PC15 -0.0490

Age 0.0028
Arm FM Intercept 1.6889 0.86 0.34 Intercept 0.6964 0.87 0.33

PC1 0.0073 PC1 0.0058
PC2 0.1508 PC2 0.1023
PC3 -0.0723 PC3 -0.0508
PC4 0.0354 PC4 0.0242
PC7 -0.0391 PC7 -0.0176
PC8 -0.0928 PC8 -0.0755
PC10 0.0857 PC10 0.0553
PC11 0.1248 PC11 0.0901
PC13 -0.0635 PC13 -0.0259
PC14 0.1282 PC14 0.0937

BMI 0.0356
Arm FFM Intercept 2.4555 0.81 0.27 Intercept 1.7392 0.81 0.27

PC1 0.0159 PC1 0.0141
PC2 0.0791 PC2 0.0423
PC4 -0.0283 PC4 -0.0308
PC5 0.0653 PC5 0.0427
PC6 -0.0587 PC6 -0.0469
PC7 0.0945 PC7 0.0748
PC8 -0.0871 PC8 -0.0601
PC9 0.0919 PC9 0.0999
PC11 -0.0678 PC11 -0.0745
PC12 0.1752 PC12 0.1223
PC13 0.1557 PC13 0.1900
PC14 0.1555 PC14 0.1657

BMI 0.0253
Leg FM Intercept 4.9806 0.89 0.77 Intercept -0.7249 0.9 0.7

PC1 0.0301 PC1 0.0225
PC2 0.3257 PC2 0.0640
PC3 -0.1496 PC3 -0.0395
PC4 0.1742 PC4 0.0844
PC5 0.2336 PC5 0.1576
PC6 -0.3811 PC6 -0.3458
PC7 -0.6359 PC7 -0.5000
PC8 0.2286 PC8 0.3740
PC9 -0.1582 PC9 -0.1925
PC10 0.6106 PC10 0.3756
PC11 0.4500 PC11 0.2694
PC13 -0.6444 PC13 -0.4967

Age 0.0090
BMI 0.1886

Leg FFM Intercept 7.6220 0.86 0.69 Intercept 2.1961 0.88 0.61
PC1 0.0535 PC1 0.0432
PC2 0.2321 PC2 -0.0418
PC3 -0.0540 PC3 0.0506
PC4 -0.0477 PC4 -0.0836
PC5 0.2668 PC5 0.1021
PC6 -0.2926 PC6 -0.1679
PC12 0.5220 PC12 0.2473
PC13 0.2352 PC13 0.3576
PC14 0.4598 PC14 0.3194

Age -0.0064
BMI 0.2051

Trunk FM Intercept 12.2398 0.95 1.45 Intercept 12.2398 0.95 1.45
PC1 0.0523 PC1 0.0523

(continued on next page)
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TABLE 2 (continued )

Sex Outcome PC-only PC þ Demographics

Variable Coefficient R2 RMSE Variable Coefficient R2 RMSE

PC2 1.1211 PC2 1.1211
PC3 -0.6125 PC3 -0.6125
PC4 0.3434 PC4 0.3434
PC6 0.3615 PC6 0.3615
PC8 -0.7211 PC8 -0.7211
PC10 0.3308 PC10 0.3308
PC11 0.6288 PC11 0.6288
PC13 -1.3325 PC13 -1.3325
PC15 -0.5152 PC15 -0.5152

Trunk FFM Intercept 23.3186 0.9 1.55 Intercept 15.7269 0.9 1.56
PC1 0.1303 PC1 0.1205
PC2 0.7044 PC2 0.3419
PC3 -0.3264 PC3 -0.1800
PC4 -0.2970 PC4 -0.3386
PC5 0.3798 PC5 0.2091
PC6 0.1300 PC6 0.2489
PC7 0.6023 PC7 0.6429
PC8 -0.5750 PC8 -0.3958
PC11 0.4349 PC11 0.1498
PC12 0.7638 PC12 0.5748
PC13 0.2979 PC13 0.4630
PC14 0.7890 PC14 0.6475
PC15 0.5148 PC15 0.4326

BMI 0.2745
Males Total FM Intercept 23.4226 0.94 3.04 Intercept 24.2945 0.94 2.85

PC1 -0.1924 PC1 -0.1883
PC2 2.0747 PC2 1.9407
PC3 -1.4689 PC3 -1.3345
PC4 -1.2207 PC4 -1.2314
PC5 0.9020 PC5 0.9058
PC6 0.6394 PC6 0.5996
PC7 -2.3710 PC7 -1.8262
PC8 0.9488 PC8 0.8188
PC9 -1.5091 PC9 -1.6708
PC10 -1.4176 PC10 -0.6422
PC11 2.8085 PC11 2.6083
PC12 2.0674 PC12 1.5622
PC14 1.1338 PC14 1.1794
PC15 -1.2783 PC15 -1.1086

Age -0.0311
Total FFM Total Mass - Total Fat Mass 0.94 2.97 Total Mass - Total Fat Mass 0.95 2.63
Percent Fat Total Fat Mass / Total Mass 0.73 3.31 Total Fat Mass / Total Mass 0.77 3.17
VAT Intercept 0.5050 0.73 0.14 Intercept 0.3881 0.75 0.14

PC1 -0.0025 PC1 -0.0024
PC2 0.0360 PC2 0.0382
PC3 -0.0256 PC3 -0.0280
PC4 -0.0489 PC4 -0.0390
PC5 0.0712 PC5 0.0616
PC6 0.0489 PC6 0.0401
PC7 0.0919 PC7 0.0633
PC9 -0.0505 PC9 -0.0340
PC10 0.0453 PC10 0.0206
PC11 0.0859 PC11 0.0641
PC13 -0.0786 PC13 -0.0813
PC14 0.0598 PC14 0.0437
PC15 0.0984 PC15 0.0930

Age 0.0030
Arm FM Intercept 1.4169 0.86 0.3 Intercept 1.4169 0.86 0.3

PC1 -0.0109 PC1 -0.0109
PC2 0.1403 PC2 0.1403
PC3 -0.0888 PC3 -0.0888
PC4 -0.0633 PC4 -0.0633
PC5 0.0538 PC5 0.0538
PC7 -0.1132 PC7 -0.1132
PC8 0.0640 PC8 0.0640
PC11 0.1479 PC11 0.1478
PC12 0.1454 PC12 0.1454
PC15 -0.0818 PC15 -0.0818

Arm FFM Intercept 4.3909 0.79 0.43 Intercept -2.2843 0.88 0.36
PC1 -0.0246 PC1 -0.0089
PC2 0.1095 PC2 -0.1596
PC3 0.0468 PC3 0.1405
PC4 0.0861 PC4 0.2015
PC5 -0.2594 PC5 -0.1733
PC6 -0.1831 PC6 -0.1072
PC7 0.2161 PC7 0.1650
PC8 -0.1722 PC8 -0.2115
PC9 0.2050 PC9 0.3574
PC11 -0.3739 PC11 -0.4795
PC12 0.1182 PC12 -0.0916
PC14 -0.2356 PC14 -0.1463
PC15 0.1522 PC15 0.1853

Age 0.0070
BMI 0.2198

(continued on next page)
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TABLE 2 (continued )

Sex Outcome PC-only PC þ Demographics

Variable Coefficient R2 RMSE Variable Coefficient R2 RMSE

Leg FM Intercept 3.8794 0.88 0.7 Intercept 3.8794 0.88 0.7
PC1 -0.0329 PC1 -0.0329
PC2 0.3032 PC2 0.3032
PC3 -0.2220 PC3 -0.2221
PC4 -0.1629 PC4 -0.1629
PC7 -0.8775 PC7 -0.8775
PC8 0.1725 PC8 0.1725
PC9 -0.3007 PC9 -0.3007
PC10 -0.4316 PC10 -0.4316
PC11 0.4213 PC11 0.4213
PC12 0.4360 PC12 0.4360
PC15 -0.6294 PC15 -0.6294

Leg FFM Intercept 11.0904 0.84 0.84 Intercept 6.5031 0.85 0.81
PC1 -0.0678 PC1 -0.0537
PC2 0.2644 PC2 0.0743
PC4 0.0760 PC4 0.1364
PC5 -0.4727 PC5 -0.4295
PC6 -0.4029 PC6 -0.3450
PC11 -0.2748 PC11 -0.2650
PC12 0.4749 PC12 0.3277
PC14 -0.3186 PC14 -0.2001

BMI 0.1572
Trunk FM Intercept 11.6548 0.94 1.66 Intercept 12.2359 0.94 1.54

PC1 -0.1024 PC1 -0.1009
PC2 1.1661 PC2 1.1352
PC3 -0.8335 PC3 -0.8090
PC4 -0.7817 PC4 -0.7977
PC5 0.8185 PC5 0.8424
PC6 0.5521 PC6 0.5651
PC7 -0.3729 PC7 -0.2483
PC8 0.4690 PC8 0.3791
PC9 -0.8747 PC9 -0.9111
PC10 -0.5862 PC10 -0.4334
PC11 1.6527 PC11 1.5991
PC12 0.9004 PC12 0.7377
PC14 0.8207 PC14 0.7938

Age -0.0152
Trunk FFM Intercept 32.6704 0.91 1.86 Intercept 18.9138 0.91 1.83

PC1 -0.1891 PC1 -0.1519
PC2 0.9060 PC2 0.3550
PC3 -0.2653 PC3 -0.0705
PC4 0.3630 PC4 0.5238
PC5 -0.5713 PC5 -0.3227
PC6 -0.7049 PC6 -0.4851
PC7 1.2259 PC7 1.1442
PC11 -0.6362 PC11 -0.6084
PC12 0.8325 PC12 0.1553
PC14 -0.6104 PC14 -0.4821

BMI 0.4737

Abbreviations: DXA, dual-energy X-ray absorptiometry; PC, principal component; RMSE, root mean squared error; VAT, visceral adipose tissue.
PC-only: stepwise forward linear regression with only PCs as possible predictors of DXA body composition outputs.
PCþDemographics: stepwise forward linear regression with PCs, age, and BMI as possible predictors of DXA body composition outputs.
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females held more mass in the torso, compared with their Asian
counterparts. White males were taller on average, whereas NHOPIs
held more mass in their abdomen on average, compared with other
ethnicities.
TABLE 3
Test–retest precision of 3D optical and DXA in %CV (RMSE) (n ¼ 639)

Variable DXA Female 3DO Female DXA Male 3DO Male

Total FM, kg 0.98 (0.24) 1.76 (0.44) 1.37 (0.28) 2.93 (0.60)
Total FFM, kg 0.59 (0.27) 0.96 (0.44) 0.55 (0.36) 0.91 (0.60)
Percent Fat, % NA (0.33) NA (0.66) NA (0.31) NA (0.74)
VAT, kg 8.08 (0.03) 4.40 (0.02) 6.88 (0.03) 4.78 (0.02)
Arm FM, kg 3.16 (0.05) 2.72 (0.04) 3.43 (0.04) 3.99 (0.05)
Arm FFM, kg 2.14 (0.05) 2.57 (0.06) 1.89 (0.08) 1.94 (0.08)
Leg FM, kg 1.47 (0.07) 2.90 (0.14) 2.34 (0.08) 4.29 (0.14)
Leg FFM, kg 1.13 (0.08) 1.95 (0.14) 1.18 (0.13) 1.22 (0.13)
Trunk FM, kg 2.04 (0.23) 1.55 (0.18) 2.42 (0.25) 3.03 (0.31)
Trunk FFM, kg 1.16 (0.26) 1.52 (0.34) 1.07 (0.34) 1.20 (0.38)

Abbreviations: 3DO, 3-dimensional optical; CV, coefficient of variation;
DXA, dual-energy X-ray absorptiometry; RMSE, root mean squared error;
VAT, visceral adipose tissue.
Discussion

In this study, 3DO body composition accuracy and precision were
evaluated at the subgroup level of age, BMI, and ethnicity. Accuracy of
subgroups was compared to DXA, whereas precision was an intragroup
comparison. The analysis showed MDs in accuracy among females
with underweight, NHOPI females and males, and Asian and Black
females, whereas all other groups showed no differences. We detected
no significant differences in precision among the subgroups. Differ-
ences between 3DO and DXA body composition measures were not
observed in 19 out of the 24 subgroups that were evaluated. However, it
is worth noting that 3 of the 5 subgroups where differences were
observed were among female ethnicity subgroups. However, it is
important to keep in mind the differences with small to moderate %
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MD. Specific equations may be needed for those groups with
differences.

Overall, the accuracy and precision were similar to previous work
done by our group on interim analysis of the cohort that used the Fit3D
[29]. The previous publication reported total FM R2s of 0.90 and 0.95



TABLE 4
3D optical vs. DXA body composition by age group

Sex Groups n Variable Mean Difference % Mean Difference P

Female Young 126 Total FM -0.28 N.S. 0.303
Middle Aged 119 Total FM 0.05 N.S. 0.828
Senior 89 Total FM -0.03 N.S. 0.901
Young 126 Total FFM 0.28 N.S. 0.303
Middle Aged 119 Total FFM -0.05 N.S. 0.828
Senior 89 Total FFM 0.03 N.S. 0.901
Young 126 %Fat -0.23 N.S. 0.559
Middle Aged 119 %Fat 0.19 N.S. 0.566
Senior 89 %Fat 0.04 N.S. 0.932
Young 126 VAT -0.01 N.S. 0.204
Middle Aged 119 VAT 0.02 N.S. 0.068
Senior 89 VAT -0.01 N.S. 0.438

Male Young 127 Total FM -0.01 N.S. 0.960
Middle Aged 93 Total FM 0.25 N.S. 0.373
Senior 61 Total FM -0.36 N.S. 0.288
Young 127 Total FFM 0.01 N.S. 0.960
Middle Aged 93 Total FFM -0.25 N.S. 0.373
Senior 61 Total FFM 0.36 N.S. 0.288
Young 127 %Fat 0.03 N.S. 0.923
Middle Aged 93 %Fat 0.35 N.S. 0.261
Senior 61 %Fat -0.37 N.S. 0.384
Young 127 VAT -0.00 N.S. 0.893
Middle Aged 93 VAT 0.01 N.S. 0.508
Senior 61 VAT -0.01 N.S. 0.589

Abbreviations: 3DO, 3-dimensional optical; DXA, dual-energy X-ray absorptiometry; %Fat, percent fat; N.S., not significant; VAT, visceral adipose tissue.
Mean differences ¼ 3DO – DXA; P value: Student’s t test between 3DO and DXA
PCþDemo model was used in this comparison. FM, FFM, and VAT are measured in kg.
Young (18–39 y old), middle aged (40–59 y old), senior (�60 y old).
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for males (n ¼ 159) and females (n ¼ 202), respectively, which was
similar to the current analysis. The follow-up analysis used 3 different
3DO scanners to build an agnostic model and reported total FM R2s of
0.93 and 0.94 for males and females, respectively [28]. However, we
had not previously presented subgroup analysis due to the limited
statistical power.
TABLE 5
3D optical vs. DXA body composition by BMI

Sex Groups n Variable

Female Underweight 24 Total FM
Normal 119 Total FM
Overweight 94 Total FM
Obese 96 Total FM
Underweight 24 Total FFM
Normal 89 Total FFM
Overweight 94 Total FFM
Obese 96 Total FFM
Underweight 24 %Fat
Normal 119 %Fat
Overweight 94 %Fat
Obese 96 %Fat
Underweight 24 VAT
Normal 119 VAT
Overweight 94 VAT
Obese 96 VAT

Male Underweight 3 Total FM
Normal 80 Total FM
Overweight 112 Total FM
Obese 85 Total FM
Underweight 3 Total FFM
Normal 80 Total FFM
Overweight 112 Total FFM
Obese 85 Total FFM
Underweight 3 %Fat
Normal 80 %Fat
Overweight 112 %Fat
Obese 85 %Fat
Underweight 3 VAT
Normal 80 VAT
Overweight 112 VAT
Obese 85 VAT

Abbreviations: 3DO, 3-dimensional optical; BMI, body mass index; DXA, dual-
visceral adipose tissue.
Mean differences ¼ 3DO - DXA; P value: Student’s t test between 3DO and DX
PCþDemo model was used in this comparison. FM, FFM, and VAT are measure
BMI classifications: Underweight (BMI<18.5), Normal (18.5–24.9), Overweight (2
* p-values less than 0.05.
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In the female underweight group, there was a large difference be-
tween 3DO and DXA for total FM and a moderate difference for FFM
(%MD ¼ 12% and �3.4%, respectively). The %MD was proportion-
ately higher despite a small difference due to the lower FM in the
underweight group (approximately 10 kg). Another factor could be
ethnicity because models were not initially adjusted for this. Female
Mean Difference %Mean Difference P

1.23 12 0.014*
-0.01 N.S. 0.958
-0.13 N.S. 0.610
-0.54 N.S. 0.099
-1.23 -3.4 0.014*
0.01 N.S. 0.958
0.13 N.S. 0.610
0.54 N.S. 0.099
3.12 — 0.010*
-0.10 N.S. 0.785
-0.18 N.S. 0.616
-0.79 — 0.023*
-0.01 N.S. 0.772
-0.01 N.S. 0.238
0.01 N.S. 0.286
0.00 N.S. 0.988
2.97 N.S. 0.155
0.11 N.S. 0.701
-0.06 N.S. 0.779
-0.16 N.S. 0.633
-2.97 N.S. 0.155
-0.11 N.S. 0.701
0.06 N.S. 0.779
0.16 N.S. 0.633
7.12 N.S. 0.168
0.21 N.S. 0.601
-0.06 N.S. 0.804
-0.29 N.S. 0.356
-0.04 N.S. 0.407
-0.01 N.S. 0.347
0.01 N.S. 0.380
0.00 N.S. 0.936

energy X-ray absorptiometry; %Fat, percent fat; N.S., not significant; VAT,

A
d in kg.
5–29.9), Obese (BMI � 30)



TABLE 6
3D optical vs. DXA body composition by ethnic group

Sex Groups n Variable Mean Difference %Mean Difference P-Value

Female Asian 80 Total FM 0.64 3.5 0.017*
Black 70 Total FM -0.81 -2.6 0.015*
Hispanic 47 Total FM 0.36 N.S. 0.386
NHOPI 28 Total FM -1.55 -5.4 0.003*
White 107 Total FM 0.01 N.S. 0.980
Asian 80 Total FFM -0.64 -1.6 0.017*
Black 70 Total FFM 0.81 1.7 0.015*
Hispanic 47 Total FFM -0.36 N.S. 0.386
NHOPI 28 Total FFM 1.55 3 0.003*
White 107 Total FFM -0.01 N.S. 0.980
Asian 80 %Fat 1.38 — 0.006*
Black 70 %Fat -1.11 — 0.010*
Hispanic 47 %Fat 0.63 N.S. 0.305
NHOPI 28 %Fat -2.24 — 0.002*
White 107 %Fat -0.01 N.S. 0.979
Asian 80 VAT -0.00 N.S. 0.908
Black 70 VAT -0.02 N.S. 0.189
Hispanic 47 VAT 0.01 N.S. 0.627
NHOPI 28 VAT -0.00 N.S. 0.942
White 107 VAT 0.01 N.S. 0.362

Male Asian 71 Total FM 0.29 N.S. 0.360
Black 62 Total FM 0.42 N.S. 0.164
Hispanic 32 Total FM -0.65 N.S. 0.226
NHOPI 16 Total FM -1.45 -6.5 0.038*
White 98 Total FM -0.01 N.S. 0.958
Asian 71 Total FFM -0.29 N.S. 0.360
Black 62 Total FFM -0.42 N.S. 0.164
Hispanic 32 Total FFM 0.65 N.S. 0.226
NHOPI 16 Total FFM 1.45 1.9 0.038*
White 98 Total FFM 0.01 N.S. 0.958
Asian 71 %Fat 0.50 N.S. 0.258
Black 62 %Fat 0.57 N.S. 0.093
Hispanic 32 %Fat -0.57 N.S. 0.374
NHOPI 16 %Fat -1.88 — 0.013*
White 98 %Fat -0.08 N.S. 0.789
Asian 71 VAT -0.01 N.S. 0.421
Black 62 VAT -0.03 N.S. 0.105
Hispanic 32 VAT 0.02 N.S. 0.159
NHOPI 16 VAT 0.02 N.S. 0.669
White 98 VAT 0.02 N.S. 0.159

Abbreviations: 3DO, 3-dimensional optical; DXA, dual-energy X-ray absorptiometry; %Fat, percent fat; NHOPI, Native Hawaiian or other Pacific Islander; N.S.,
not significant; VAT, visceral adipose tissue.
Mean differences ¼ 3DO - DXA; P value: Student’s t test between 3DO and DXA
PCþDemo model was used in this comparison. FM, FFM, and VAT are measured in kg.
* p-values less than 0.05.
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Asians, Blacks, and NHOPIs had MDs, and 44% of the underweight
group were either Asian or Black. However, after adjustment for
ethnicity, 3DO still overestimated total FM in underweight females.
Thus, our models may not have seen enough shape variance in the
underweight sample (underrepresentation) or other unique shape fea-
tures from this group. The female subgroup with obesity also had a MD
in %fat (�0.79%). However, this MD was very small, especially in a
group with the highest mean %fat (41%). Since the difference was
small and the total FM and FFM were not significant, the %fat dif-
ference may have been due to chance. It is worth noting that females
with obesity may exhibit greater shape variability due to differences in
how fat is distributed throughout their bodies. Specifically, the location
of fat deposition may vary among the abdomen, hips, or appendages
[38]. The largest differences were seen in the NHOPI group for both
males and females. The differences may be driven by the low repre-
sentation in comparison to other ethnic groups. In addition, differences
in shape can also be driving these differences. Certain shape charac-
teristics in Asian, Black, and NHOPI participants could be different
from the majority of the group, which led to under- or overestimations
as shown in Figure 1.

Compared with other studies that reported the accuracy by sub-
groups, Graybeal et al. [39] examined the accuracy of 3DO body
composition estimates derived from smartphone-based applications
(apps) with respect to the 4C model. For the HALO app, the authors
reported a MD for total FM in males (MD: 2.1 kg; P< 0.001) but not in
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females (MD: 0.2 kg). In addition, they reported MDs for total FM in
Whites and Blacks (MD: 0.9 kg and 1.0 kg, respectively; P < 0.05). In
comparison to the current study, we did not observe MDs by sex or in
the White ethnic group. However, we also reported MDs in the Black,
female ethnic group. It is worth pointing out that our criterion was
DXA, whereas Graybeal et al. used the 4C model.

Although not related to the Fit3D, other investigators have explored
novel methods of using 2D imaging for body composition from
accessible smartphone technology. The 2D methods generally capture
an image(s) of a person and utilize machine learning methods to esti-
mate body composition values to criterion methods such as DXA or the
4C model. Our previous study used 2D images taken from consumer-
grade cameras and used the silhouettes to create a 3D mesh, which was
used to estimate the body composition. We reported total FM R2s of
0.96 and 0.94 in male and female test sets, respectively [30]. Nana et al.
[40] reported 3DO body composition accuracy by sex from another
smartphone app, Body Composition Technologies, with respects to
DXA. The authors reported a %fat MD of 0.1% and �0.1% for males
and females, respectively, which was similar to our findings. Farina
et al. [41] developed a method to estimate DXA body composition
using demographics and lateral surface image occupancy. The authors
achieved R2s of 0.97 and 0.95 for females and males, respectively,
which was marginally better than ours. However, our sample size was
about 5.4 times larger. Aside from traditional, commercial 3DO scan-
ners, 2D methods showed promising results. Further investigation is
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warranted to evaluate the 2D methods’ ability to monitor changes and
accuracy across different ethnic, age, and BMI subgroups.

Other groups have also examined the precision of 3DO devices.
Tinsley et al. [42] evaluated the precision the Fit3D ProScanner, Styku
S100, Naked, and Size Stream SS20. Although the precision reported
was not broken into subgroups, the overall precision of the devices
achieved a %CV that ranged from 2.5% to 4.3% for total FM and 0.7%
to 1.4% for total FFM with the Fit3D ProScanner at the high end for
FM and FFM. Compared to the results in Table 3, our modeling method
achieved a lower %CV with a larger sample size. Additionally, we did
not observe differences in precision by subgroups using our models.
The precision of the device/model will determine the ability to monitor
smaller changes [43]. Additional evaluation of subgroup precision is
necessary to validate the monitoring of FM and FFM changes in spe-
cific subgroups using commercial body composition systems.

The strength of the study was the scrutiny at the subgroup level.
Although other studies have looked at accuracy by sex, BMI, and
ethnicity, the current analysis examined more strata. In addition, only a
single equation was needed for the majority of the subgroups that were
explored. A subgroup-specific equation may be needed for those with
MDs. However, there were also limitations. Some subgroups were
underrepresented (ie, NHOPI and underweight). As such, the outcomes
and interpretations of these groups should be cautioned as they were
not as powered. The current analysis was completed with a healthy
sample, so the results may not be applicable to patients with body
composition-altering diseases. Future work can focus on populations
with diseases that need constant body composition monitoring
(younger populations [birth to 17 y]), and more accessible 3DO
methods such as apps from smartphones [44,45].

In conclusion, 3DO body composition has advanced greatly in ac-
curacy and precision in recent years. This work provides further insight
of 3DO’s ability to estimate body composition. Although 19 of the 24
subgroups had MDs from DXA, the majority of the subgroups did not
display MDs using a single 3DO body composition model. Specific
equations for the 5 subgroups that hadMDsmay improve the agreement.
Beyond clinical settings, the accessibility and safety of these devices are
appealing for those that want to monitor body composition frequently.
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