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Cerebrospinal fluid proteomics define the 
natural history of autosomal dominant 
Alzheimer’s disease

Alzheimer’s disease (AD) pathology develops many years before the onset 
of cognitive symptoms. Two pathological processes—aggregation of the 
amyloid-β (Aβ) peptide into plaques and the microtubule protein tau into 
neurofibrillary tangles (NFTs)—are hallmarks of the disease. However, other 
pathological brain processes are thought to be key disease mediators of Aβ 
plaque and NFT pathology. How these additional pathologies evolve over 
the course of the disease is currently unknown. Here we show that proteomic 
measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked 
to brain protein coexpression can be used to characterize the evolution of 
AD pathology over a timescale spanning six decades. SMOC1 and SPON1 
proteins associated with Aβ plaques were elevated in AD CSF nearly 30 
years before the onset of symptoms, followed by changes in synaptic 
proteins, metabolic proteins, axonal proteins, inflammatory proteins and 
finally decreases in neurosecretory proteins. The proteome discriminated 
mutation carriers from noncarriers before symptom onset as well or better 
than Aβ and tau measures. Our results highlight the multifaceted landscape 
of A D p at hophysiology and its temporal evolution. Such knowledge will be 
critical for developing precision therapeutic interventions and biomarkers 
for AD beyond those associated with Aβ and tau.

AD is a devastating neurodegenerative disease with increasing preva-
lence in aging societies1. AD is currently defined at a research level by 
the presence of high levels of aggregated Aβ peptide and tau NFTs in 
the brain, either in the presence or absence of cognitive impairment2. 
Assessment of Aβ plaque and NFT neuropathological burden can be 
performed by positron emission tomography (PET) imaging using 
radioactive tracers that bind to plaques and tangles, or by molecular 
protein biomarkers in CSF, and more recently in blood, that are cur-
rently available at either a clinical or research level3–6. However, it is 
widely appreciated that AD is a complex brain disorder with multiple 
pathological alterations that occur during the prodromal stage of the 
disease in addition to Aβ and tau dyshomeostasis, many of which are 
not readily apparent by neuropathological examination7,8. These other 
pathological processes may mechanistically link Aβ and tau pathology 
and provide promising therapeutic targets for AD other than Aβ and tau. 

Although the landscape of AD pathophysiology has been extensively 
characterized through multiomic studies on post-mortem brain tissue, 
such as those conducted through the Accelerating Medicines Partner-
ship for Alzheimer’s Disease consortium8–10, limitations inherent in the 
study of molecular changes in brain tissue during life necessitate the 
development of biomarkers that can reflect the sequencing of these 
pathological changes over the course of the disease.

A key challenge to the study of AD prodromal changes is capturing 
these changes over the course of many years when people are other-
wise relatively young and healthy. Another challenge is characterizing 
these changes in those who may never develop symptoms during their 
lifetimes despite the presence of Aβ plaque and NFT neuropathology. 
One approach to address these challenges is to study individuals who 
carry an autosomal dominantly inherited AD (ADAD) mutation in the 
amyloid precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 
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noncarriers across the EYO continuum using a targeted quantitative 
mass spectrometry (MS) method called selected reaction monitoring 
mass spectrometry (SRM-MS)18,19. We used a recent large consensus 
protein coexpression analysis of AD brain in which 44 coexpression 
modules were generated from more than 8,600 proteins for biological 
interpretation of each biomarker8. By relating these proteins back to 
the AD brain coexpression modules with which they are associated, we 
were able to link these protein changes to multiple different AD brain 
pathological processes and estimate when and how these biomarkers 
change over the course of the disease. We also incorporated MS-based 
and enzyme-linked immunosorbent assay (ELISA) affinity measures of 
other high-value biomarker targets—such as Aβ and tau species—and 
different imaging and cognitive measures acquired in DIAN in the 
analysis to serve as benchmarks for the proteomic changes observed.

Results
Proteomics identifies early elevations in SMOC1 and the 
matrisome with subsequent cascading pathological changes
A summary of the measurements and cohort is provided in Table 1 and 
Supplementary Table 1. Our SRM-MS measures provided a relative 

(PSEN2) gene that leads to increased relative production of the Aβ42 
peptide throughout life and early brain Aβ plaque deposition11,12. ADAD 
mutations display nearly 100% disease penetrance, and the age of 
symptomatic onset is highly predictable based on the nature of the 
mutation and the family pedigree. The Dominantly Inherited Alzheimer 
Network (DIAN) observational study is a multisite worldwide effort to 
enroll and study individuals who carry ADAD mutations to increase 
understanding of the natural history of AD11,13,14. The DIAN observational 
study examines ADAD mutation carriers and their noncarrier family 
members using multiple assessments including imaging, cognitive, 
CSF and plasma measures, among others. Because of the relatively 
precise estimated year of disease onset (EYO) in ADAD mutation car-
riers, cross-sectional study assessments can provide highly valuable 
information on AD biomarker changes within a longitudinal framework.

Previous proteomic studies of sporadic AD CSF have revealed 
multiple proteins that are altered in later stages of the disease when 
individuals are cognitively impaired, and these proteins have been 
validated in multiple cohorts9,15–17. Based on these findings in late-onset 
AD (LOAD), we created a panel of 59 proteins and measured their 
CSF levels cross-sectionally in 286 ADAD mutation carriers and 184 

Table 1 | Study participants

Noncarriers (N = 230) Mutation carriers (N = 355)

n (%) Mean s.d. n (%) Mean s.d. P value

Agea 38.1 11.2 38.4 10.8 0.7

Sex (male) 96 (42) 158 (45)

Mutation

 APP 65 (18)

 PSEN1 264 (74)

 PSEN2 26 (7)

APOE genotype

 ε2/2 3 (1) 2 (1)

 ε2/3 22 (10) 35 (10)

 ε2/4 7 (3) 8 (2)

 ε3/3 134 (58) 215 (61)

 ε3/4 61 (27) 87 (25)

 ε4/4 3 (1) 8 (2)

EYOa −9.4 11.2 −7.4 10.9 0.01

SRM-MS
protein measurements

184 (80) 286 (81)

Aβ42/40 ratio 196 (85) 0.09 0.01 319 (90) 0.07 0.03 5.67 × 10−12

pTau181 (ng ml−1) 152 (66) 0.09 0.03 230 (65) 0.19 0.15 3.50 × 10−15

pTau202 (ng ml−1) 152 (66) 0.01 0.005 230 (65) 0.02 0.009 1.75 × 10−8

pTau205 (ng ml−1) 151 (66) 0.002 0.001 230 (65) 0.005 0.006 2.58 × 10−12

pTau217 (ng ml−1) 152 (66) 0.004 0.004 230 (65) 0.03 0.04 9.90 × 10−15

t-Tau (ng ml−1) 152 (66) 0.41 0.14 230 (65) 0.60 0.32 1.63 × 10−11

NEFL (pg ml−1) 192 (83) 250.5 148.1 304 (86) 510.0 529.3 8.92 × 10−11

PGRN (pg ml−1) 161 (70) 745.1 248.5 250 (70) 816.5 266.8 0.007

c-sTREM2 (pg ml−1) 151 (66) 3.3 1.34 242 (68) 4.0 1.6 5.73 × 10−5

FDG-PET (SUVR) 163 (71) 1.92 0.16 246 (69) 1.84 0.23 8.33 × 10−5

PIB-PET (SUVR) 165 (72) 1.06 0.17 238 (67) 1.95 1.08 2.98 × 10−23

MRI (mm3) 173 (75) 4.75 0.27 260 (73) 4.58 0.44 5.35 × 10−6

Cognitive composite 229 (99) 0.24 0.47 337 (95) −0.16 0.95 5.54 × 10−9

aCalculated at the sample level at time of assessment. Data were from DIAN data freeze 15. Additional trait data are available in Supplementary Table 1. Differences were assessed by two-sided 
t-test without correction for multiple comparisons. pTau202, tau phosphorylated at residue 202; SUVR, standardized uptake value ratio.
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protein abundance level among all subjects that could be modeled 
across EYO time points. We employed a Bayesian regression model 
incorporating a Markov chain Monte Carlo algorithm to estimate, at 
the 99% confidence level, protein level and other outcome differences 
between mutation carriers and noncarriers at 0.5 EYO intervals between 
–30 to –40 and +20 to +30, adjusting for shared genetic background20. 
Sex and apolipoprotein E (APOE) ε4 allele status—the strongest genetic 
risk factor for LOAD—did not significantly influence the results and were 
therefore not included in the final model. An example of the model fit 
and difference between carrier and noncarrier for two measures—the 
Aβ42/40 ratio and SPARC-related modular calcium-binding protein 1 
(SMOC1)—is shown in Fig. 1. A decrease in the Aβ42/40 ratio correlates 
with the development of Aβ plaques21. The SMOC1 protein has been 
shown to colocalize with Aβ plaques, and is one of the most strongly 
elevated proteins in asymptomatic AD cortex22. Each protein was placed 
within the context of the biological process to which it could be ascribed 
using a recently published consensus proteomic analysis of AD brain8. 
Of the 59 proteins measured by SRM-MS, 33 were significantly differ-
ent at the 99% credible interval between ADAD mutation carriers and 
noncarriers at some EYO time point, with most changing before onset 
of symptoms (Fig. 2 and Supplementary Information).

The biomarker changes could be conceptualized into five gen-
eral categories that evolved over the disease time course. The first 
category was characterized by proteins associated with an AD brain 
protein coexpression module we previously termed the ‘M42 matri-
some’ module8. The ‘matrisome’ refers to the ensemble of proteins 
associated with the extracellular matrix23. M42 matrisome contains the 
amyloid precursor protein (considered a surrogate measurement for 
total Aβ levels in MS-based proteomics of AD brain) as well as multiple 
proteins that have been shown to colocalize with Aβ plaques likely 
through interactions mediated by heparin-binding domains22,24–26. 
One of these proteins is apolipoprotein E (APOE), genetic variation 
in which has been shown to influence brain M42 matrisome levels8. 
Remarkably, SMOC1—a principal driver of M42 matrisome coexpres-
sion in brain—was found to be elevated in mutation carriers 29 years 
before the onset of symptoms and progressively increased throughout 
the disease course. The increase in SMOC1 levels preceded a significant 
decrease in absolute levels of CSF Aβ42 or Aβ42/40 ratio compared 
with noncarriers that is typically associated with the formation of 
Aβ plaques27, and before elevation in phosphorylated tau at residues 
181 and 217 (pTau181 and pTau217)—two markers that have also been 
shown to increase with initial brain Aβ deposition28–30. This finding was 
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Fig. 1 | Aβ42/40 ratio and SMOC1 level in CSF by EYO in ADAD. a,b, The ratio 
of CSF Aβ42 to Aβ40 peptide as a measure of Aβ brain deposition (a) in ADAD 
mutation carriers and noncarriers and (b) the difference between carriers and 
noncarriers, by EYO. One outlier was removed from a for visualization purposes. 
c,d, CSF level of SMOC1—an Aβ plaque-associated protein—(c) in mutation 
carriers and noncarriers and (d) the difference between carriers and noncarriers, 
by EYO. One outlier was removed from c for visualization purposes. EYO labels 
outside the range of –10 to 10 in a and c are removed to maintain research 

participant confidentiality. Periods of significant difference between carriers 
and noncarriers are highlighted in b and d (red indicates significantly increased 
levels in carriers, blue indicates significantly decreased levels in carriers). Lines 
represent the median of the posterior estimates at each EYO point for carriers 
and noncarriers. Shaded areas represent the 99% credible interval. Aβ42 and 
Aβ40 measurements were from the Fujirebio Lumipulse assay, whereas the 
SMOC1 measurement was from SRM-MS. L/H, ratio of endogenous peptide signal 
(light) to the isotopically labeled standard peptide signal (heavy).

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | August 2023 | 1979–1988 1982

Article https://doi.org/10.1038/s41591-023-02476-4

observed across different Aβ and tau assays used for measurement of 
these proteins (Extended Data Fig. 1), and before changes in Aβ plaque 
deposition were measurable by PET using the radiotracer Pittsburgh 
Compound-B (PIB-PET). We observed similar early elevation in the level 
of spondin 1 (SPON1), another member of the M42 matrisome module, 
although unlike SMOC1 elevation of SPON1 did not persist throughout 
the disease course.

A second category could be identified after matrisome changes 
that was characterized by an increase in the 14-3-3 family of proteins 
YWHAZ (1433Z), YWHAB (1433B) and YWHAG (1433G) associated 
with synaptic and neuronal coexpression, as well as multiple proteins 
associated with intermediary glycolytic metabolism including pyru-
vate kinase, l-lactate dehydrogenase B chain, fructose-bisphosphate 
aldolase A and phosphoglycerate mutase 1 that mapped to a diverse 
set of AD brain coexpression modules. Interestingly, although the 
14-3-3 proteins were significantly elevated at approximately −26 to 
−22 EYO, their levels did not begin to rapidly increase until −8 EYO, 
approximately the time at which neurofilament light chain (NEFL)—a 
well-known marker of neurodegeneration for multiple central and 
peripheral nervous system disorders31—also began to increase. The 
early elevations in proteins involved in glycolytic metabolism did 
not persist throughout the disease course, with a peak at approxi-
mately −17 EYO, followed by a period of similar levels compared with 
noncarriers until around symptom onset, when levels were again 
elevated. The early period of glycolytic metabolic change was asso-
ciated with elevation in other protein markers that may reflect an 
early compensatory neuroprotective response, such as progranulin 
(PGRN), aspartate aminotransferase, glia maturation factor beta and 
phosphatidylethanolamine-binding protein 1. PGRN is a secreted fac-
tor that has been shown to promote neuronal survival and integrity32. 
Aspartate aminotransferase acts as a scavenger of excess glutamate 
in the brain and is involved in redox metabolism and the regulation of 
hydrogen sulfide production important for neuroprotection33–35. Glia 
maturation factor beta is involved in the stimulation of neural regen-
eration36. Phosphatidylethanolamine-binding protein 1 is a negative 
regulator of the mitogen-activated protein kinase (MAPK) cascade 
and is also involved in the proper function of presynaptic cholinergic 
neurons in the central nervous system37. Interestingly, early elevation 
of these proteins coincided with a period of improved cognitive func-
tion in mutation carriers compared with noncarriers.

A third category of changes could be identified beginning at 
approximately −19 EYO with elevation in total tau (t-Tau) and tau phos-
phorylated at residue 205 (pTau205) levels, followed soon after by mild 
elevation in the cleaved soluble form of triggering receptor expressed 
on myeloid cells 2 (c-sTREM2) associated with microglial activation38,39, 
and eventual elevation in NEFL beginning at −10 EYO20. Elevated levels 
of pTau205 and NEFL have been associated with loss of white matter 
and axonal integrity40,41. The time span between the elevation in t-Tau 
and pTau205 levels and elevation in NEFL levels was, therefore, nearly 

10 years, suggesting a long period of evolving axonal and white mat-
ter changes. Elevation in NEFL was followed by a fourth category of 
changes beginning at approximately −6 EYO that was characterized by 
increases in inflammatory proteins osteopontin (SPP1), chitinase-3-like 
protein 1 (CHI3L1, also known as YKL-40), and more intense elevation 
in c-sTREM2. SPP1 is a multifunctional protein that has been associated 
with T lymphocyte and microglial activation42,43, whereas CHI3L1 is 
associated with astrocyte activation44,45. These inflammatory changes 
coincided with gross metabolic impairment as assessed by a decreased 
fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) 
signal, and the onset of cognitive decline. A fifth and final category of 
changes included the onset of brain atrophy and decreases in neuronal 
and neurosecretory proteins such as secretogranin-2, VGF, thy1 mem-
brane glycoprotein, and neuropentraxin and its receptor, suggesting 
frank synaptic and neuronal loss. A second phase of increased glycolytic 
metabolism was present during this period with elevation in proteins 
associated with the M7 MAPK/metabolism and M25 sugar metab-
olism brain modules including malate dehydrogenase, alpha- and 
gamma-enolase, pyruvate kinase and pyruvate kinase 2, peptidyl-prolyl 
cis–trans isomerase A and glyceraldehyde-3-phosphate dehydroge-
nase. A general scheme summarizing biomarker progression over the 
disease course is provided in Fig. 3. Additional rationale for categories 
is provided in the Supplementary Information.

The proteome strongly discriminates mutation carriers from 
noncarriers before symptom onset
We assessed the ability of SMOC1 and a composite of the targeted 33 
proteins significantly altered in ADAD mutation carriers to correctly 
categorize carriers from noncarriers across the disease time course 
compared with current and emerging pTau biomarkers (Fig. 4). Both 
SMOC1 and the proteome composite measure compared favorably 
with amyloid and tau biomarkers, particularly in the very early stages 
of the disease.

Discussion
In this study we used targeted proteomics to relate biomarker changes 
in AD CSF to brain pathological changes over the course of six decades. 
We found that SMOC1 and SPON1—two proteins from the M42 matri-
some AD brain coexpression module related to brain Aβ deposition—
were elevated in AD CSF nearly 30 years before the onset of symptoms, 
and before a significant decrease in CSF Aβ42 levels or Aβ42/40 ratio, 
increase in PIB binding or increase in levels of different pTau species 
related to Aβ plaque formation. SMOC1, like other M42 proteins, has 
been shown to colocalize with Aβ plaques22. It has also been shown 
to be elevated in the preclinical stage of sporadic AD and is increased 
in both AD CSF and plasma by affinity-based proteomic measure-
ment46,47. SMOC1 is therefore a promising biofluid AD biomarker of 
brain Aβ deposition that may be particularly useful in the context of 
early detection of Aβ plaques and assessment of their clearance with 

Fig. 2 | Categories of biomarker changes by EYO in ADAD. Differences between 
ADAD mutation carriers and noncarriers in levels of CSF biomarker proteins, 
imaging measures and cognitive function were modeled across the disease 
course by EYO. Heat represents significant differences between mutation carriers 
and noncarriers, with the color threshold set at the 99% credible interval (red, 
increased in carriers; blue, decreased in carriers). All CSF proteins were measured 
by MS except for PGRN, c-sTREM2 and NEFL, which were measured by ELISA 
as previously described20,38,68. Aβ42/40 ratio was measured by the Fujirebio 
Lumipulse ELISA assay. Additional biomarker measurements are provided 
in Extended Data Fig. 1. Biomarker measurements available in DIAN used to 
benchmark the targeted proteomic measurements are shown in gray italics. CSF 
proteins were mapped to the corresponding AD brain coexpression module as 
described in ref. 8. Unmapped proteins were not measured in brain. Targeted 
proteins are listed by their gene symbols. UniProt accessions for each targeted 
protein are provided in Supplementary Table 2. ALDOA, fructose-bisphosphate 

aldolase A; CALM2, calmodulin-2; ENO1, alpha-enolase; ENO2, gamma-enolase; 
FDG-PET precuneus, FDG-PET precuneus signal; GAPDH, glyceraldehyde-
3-phosphate dehydrogenase; GDA, guanine deaminase; GDI1, rab GDP 
dissociation inhibitor alpha; GMFB, glia maturation factor beta; GOT1, aspartate 
aminotransferase; ITGB2, integrin beta-2; LDHB, l-lactate dehydrogenase B 
chain; LDHC, l-lactate dehydrogenase C chain; MDH1, malate dehydrogenase, 
cytoplasmic; MFGE8, lactadherin; NPTXR, neuronal pentraxin receptor; 
NPTX2, neuronal pentraxin-2; PARK7, parkinson disease protein 7; PEBP1, 
phosphatidylethanolamine-binding protein 1; PGAM1, phosphoglycerate mutase 
1; PKM, pyruvate kinase; PKM2, pyruvate kinase 2; PIB-PET Cortex, PIB-PET total 
cortex signal; PPIA, peptidyl-prolyl cis–trans isomerase A; SCG2, secretogranin-2; 
t-Tau, tau peptide 181–190, a marker of total tau levels; THY1, thy1 membrane 
glycoprotein; TPI1, triosephosphate isomerase; VGF, neurosecretory protein 
VGF; YWHAB, 14-3-3 protein beta; YWHAG, 14-3-3 protein gamma; YWHAZ, 14-3-3 
protein zeta.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | August 2023 | 1979–1988 1983

Article https://doi.org/10.1038/s41591-023-02476-4

anti-Aβ immunotherapies. Further proteomic analysis of AD biofluids 
may reveal other promising M42 biomarker proteins.

The M42 matrisome class of proteins, of which Aβ is a member, 
may not only contain promising AD biomarkers, but also represent 
promising new therapeutic targets for the disease. M42 proteins may 

mediate the pathologic effects of Aβ plaques through either gain or loss 
of function as a consequence of physical interactions with plaques—
interactions which themselves may modulate the dynamics of plaque 
formation. APOE, which is the strongest common genetic risk factor for 
AD and is a member of the M42 matrisome module8,48, likely associates 
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with Aβ plaques through its heparin-binding domain similar to other 
M42 proteins. Notably, the Christchurch APOE mutation (APOEch) elim-
inates the ability of the protein to bind heparin, and this mutation has 
been shown to afford remarkable protection against ADAD49. The APOE 
ε2 allele, protective against LOAD, also has reduced heparin-binding 
activity49,50. Modulation of Aβ plaque interaction with other M42 pro-
teins may afford similar disease benefit. One of these M42 proteins, 
vascular endothelial growth factor receptor 1, is a receptor tyrosine 
kinase that activates the MAPK signaling cascade51. Early dysfunction 
in its biology may lead to downstream activation of MAPK as captured 
by the brain M7 MAPK/metabolism module, elevation of which we have 
shown previously to be associated with cognitive decline8. Other M42 
members such as SPON1 are involved in neurite development and may 
link Aβ to neuritic dystrophy52. Genetic variation in SPON1 has been 
linked to the rate of cognitive decline in AD53,54.

Whereas the first category of CSF biomarker changes was related 
to M42 proteins, the second category encompassed many proteins 
related to glycolytic metabolism that were associated with multiple 
different brain modules. In an early consensus AD brain proteomic 
study, we observed increased markers of glycolytic metabolism that 
appeared to be associated with astrocyte and microglial activation9. 
However, more recent AD brain proteomic work has suggested that 
coexpression modules associated with glycolytic metabolism are 
not necessarily specific to any single brain cell type9,46. Changes in 
glucose metabolism may be shared by multiple brain cell types. For 
instance, an increase in glycolysis in neurons in the presence of Aβ has 
been observed55, while microglia are also known to increase glycolytic 
flux as they engage Aβ plaques for phagocytosis39,56,57. Astrocytes have 
also been proposed to increase glucose metabolism in early stages of 
the disease58. The early increase in metabolic markers that followed 
the increase in M42 markers was associated with increases in other 
proteins likely associated with a compensatory response, and may 
represent a response by neurons or other cell types to stress induced 
by aggregated Aβ. Interestingly, the early elevation in metabolic 
markers did not persist throughout the disease course, but a second 
elevation occurred concurrently with the time of intense immune 
activation, as represented by increases in c-sTREM2, SPP1 and CHI3L1 
levels that immediately preceded metabolic impairment as indicated 
by a reduced FDG-PET signal, rapid neurodegeneration and cognitive 
decline. It is possible that the astroglial response during this period 
leads to a reduction in homeostatic metabolic support to neurons  
via a reduction in the astrocyte–neuron lactate shuttle59, with 

subsequent impairment of neuronal metabolism leading to a reduced 
FDG-PET signal. It is also possible that this second phase of elevated 
glycolytic metabolism may represent strong glial activation to  
dying neurons. Further studies using approaches that can resolve 
metabolic changes at the single cell level will likely be required to 
more precisely identify which cell types are driving the observed 
increased levels of metabolic markers in CSF at a given stage in the 
AD disease course.

The 33 proteins when considered together were better able to 
discriminate carriers from noncarriers compared with Aβ or pTau181, 
especially at early stages of the disease, and had similar classification 
performance to pTau217. Additional diagnostic information is likely 
available through proteomic measurements in CSF and plasma that 
provide greater coverage beyond the analysis presented here. Such 
multidimensional proteomic data will be important in subtyping and 
staging AD for precision medicine approaches to the disease.

Our findings provide a relative time frame between observed 
biomarker changes over the disease course. Absolute time estimates 
of biomarker changes will likely skew to earlier time points as the size 
of the DIAN cohort grows and estimates of biomarker differences 
between mutation carrier and noncarriers increase in confidence. 
However, given that our estimates were at the 99% credible interval, 
we do not expect most absolute time estimates to change dramati-
cally and that the relative ordering of marker changes will remain 
consistent with additional data. Autosomal dominantly inherited 
forms of AD and sporadic LOAD have been shown to have similar 
pathophysiology14,60, but it is possible that there may be differences 
between ADAD and LOAD that could influence the sequence and 
degree of biomarker changes observed. For instance, although multi-
ple neuropathologies are present in a substantial proportion of both 
ADAD and LOAD cases, ADAD cases tend to have a higher Aβ plaque 
and NFT burden, higher cerebral amyloid angiopathy burden, and 
lower Lewy body and microvascular disease burden compared with 
LOAD61. TAR DNA-binding protein 43 aggregation is also more com-
mon in aged individuals with LOAD62. Another difference is that ADAD 
is associated with overproduction of Aβ42, whereas LOAD is associ-
ated with reduced brain Aβ42 clearance12,63. Overproduction of Aβ42 
may increase the time between Aβ plaque formation and decreased 
CSF levels of this marker when compared with mutation noncarriers. 
It may also affect the point at which Aβ deposition plateaus in ADAD 
and LOAD49,64,65. In our study, we did not observe a significant effect 
of APOE ε4 on biomarker changes, consistent with the lack of effect 
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of APOE ε4 on disease onset previously observed in ADAD66. This is 
in contrast to LOAD, where APOE ε4 has a significant effect on AD 
biomarkers and disease onset67. Finally, although the DIAN cohort 
is quite young (average age 38 for carriers and noncarriers), LOAD 
biomarkers that may change many decades before symptom onset 
in mutation noncarriers could affect estimated differences between 
mutation carriers and noncarriers. Further studies on ADAD brain 
proteomics, and LOAD progression over the course of many decades 
through studies such as the Alzheimer’s Disease Neuroimaging Ini-
tiative, will be required to more fully examine potential differences 
between ADAD and LOAD.

Our study demonstrates how AD pathology evolves over the 
course of the disease, and suggests there may be at least three critical 
periods for therapeutic intervention in ADAD and also likely LOAD: 
(1) the onset of amyloid plaque formation 30 years before the onset 
of cognitive symptoms; (2) the onset of axonal and white matter  
integrity problems starting 19 years before symptoms; and (3) the 
strong inflammatory response beginning 6 years before symptoms 
that is proximate to cognitive decline and cortical atrophy. Targeting 
pathological changes in each category for therapeutic intervention 
will likely be most successful before, at or near the onset of such 
changes. Once an individual develops symptoms, a multitarget thera-
peutic approach will likely be required to optimally slow disease 
progression.
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Methods
Participants
Individuals at 50% risk of carrying an autosomal dominant Alzhei-
mer’s disease mutation in one of three genes (APP, PSEN1, PSEN2) were 
enrolled in the DIAN observational study (that is, mutation carriers 
and noncarriers from the same family). DIAN participants are assessed 
at baseline and at subsequent follow-up visits that occur every one 
to three years. Assessments included collection of body fluids (CSF, 
blood), clinical testing (Clinical Dementia Rating (CDR)), neuropsycho-
logical testing and imaging modalities (magnetic resonance imaging 
(MRI), PIB-PET and 18F-FDG) as previously described13,69–72. The insti-
tutional review board at Washington University in St Louis provided 
supervisory review and human studies approval. Participants or their 
caregivers provided informed consent in accordance with their local 
institutional review boards. Details on the number of participants 
and number of measurements for each trait analyzed in this study are 
provided in Supplementary Table 1, which was generated using scipy 
v.1.9.3. Data were from DIAN data freeze 15.

Clinical assessment and EYO
The presence of symptoms was assessed using the CDR71. Clinical 
evaluators were blinded to each participant’s mutation status. For every 
visit, a participant’s EYO was calculated based on their age at the visit 
relative to their mutation-specific expected age at symptom onset. The 
mutation-specific expected age of symptom onset was computed by 
averaging the reported age of symptom onset across individuals with 
the same specific mutation from the DIAN cohort as well as from the 
published literature, as previously described66. If the mutation-specific 
expected age at symptom onset could not be calculated because only 
single families with a mutation were available (8% of participants), the 
individual EYO was calculated from the age at which the parental cogni-
tive decline began (parental age of onset). The parental age of clinical 
symptom onset was determined by a semi-structured interview with the 
use of all available historical data. The EYO was calculated identically for 
both mutation carriers and noncarriers. As an example, if the expected 
age of onset for a particular ADAD mutation is 50 and two fraternal 
twins were aged 40, one of whom is a carrier for the mutation and one 
of whom is not, they would both have an EYO of −10. The unaffected 
mutation noncarrier family member therefore serves as a direct control 
to the mutation carrier, which can help control for subject-specific 
factors that may be shared between family members. Given the young 
age of the DIAN cohort (mean age 38), biomarker changes due to the 
potential development of sporadic LOAD in mutation noncarriers are 
unlikely to substantially influence the analysis and results reported 
in DIAN. Mutation status was determined using polymerase chain 
reaction-based amplification of the appropriate exon followed by 
Sanger sequencing13.

CSF and plasma sample collection
CSF and blood plasma were collected in the morning under fasting 
conditions. Blood was drawn into two 10-ml syringes precoated with 
0.5 M EDTA, then transferred to two 15-ml polypropylene tubes con-
taining 120 μl of 0.5 M EDTA. The samples were kept on wet ice until 
centrifugation. After venipuncture, CSF was collected by gravity drip 
into two 13-ml polypropylene tubes using standard lumbar puncture 
procedures (L4–L5) with an atraumatic Sprotte spinal needle (22G). 
Plasma and CSF were flash-frozen upright on dry ice. Samples collected 
in the United States were shipped overnight on dry ice to the DIAN 
biomarker core laboratory at Washington University, whereas samples 
collected at sites outside the United States were stored at −80 °C and 
shipped quarterly on dry ice to Washington University. At the core 
laboratory, the frozen samples were subsequently thawed, combined 
into a single polypropylene tube of plasma or CSF, and aliquoted (300 
or 500 μl) into polypropylene Corning microcentrifuge tubes (Thermo 
Fisher Scientific), after which they were again flash-frozen on dry ice 

and stored at −80 °C. DIAN CSF samples were shipped to Emory Uni-
versity for SRM-MS analysis.

Measurement of CSF protein levels by SRM-MS
Fifty-nine proteins previously identified as altered in AD CSF were tar-
geted for measurement by SRM-MS using the ratio of the endogenous 
proteotypic peptide level to an isotopically labeled heavy standard, 
according to best practices9,16,73. CSF proteins from 475 DIAN baseline 
samples and 65 quality controls (QC) were analyzed. The QCs were 
generated from a cohort of Emory subjects by pooling approximately 
50 individuals from one of three groups: a biomarker-positive group 
representing low Aβ and high t-Tau; a biomarker-negative group rep-
resenting high Aβ and low t-Tau; and a biomarker-intermediate group 
representing intermediate Aβ and t-Tau levels. The QCs were processed 
independently in parallel and analyzed identically to the DIAN CSF 
samples to ensure proper assay performance.

A 95-μl aliquot of CSF was reduced and alkylated with 2 μl of 0.5 M 
tris-2(-carboxyethyl)-phosphine (Thermo Fisher Scientific, catalog 
no. 77720), 5 μl of 0.8 M chloroacetamide (Sigma, catalog no. 22790) 
and 2.5 μl of 1 M ammonium bicarbonate (Sigma, catalog no. 09830) 
while heating at 90 °C for 10 min, followed by water bath sonication for 
15 min. Urea buffer (8 M) made with urea (Sigma, catalog no. U0631), 
10 mM Tris ( J.T. Baker, catalog no. 4109-06) and 100 mM NaH2PO4 
(Sigma, catalog no. S0751) at pH 8.5 was used as the denaturant. Urea 
buffer (105 μl) and Lys-C enzyme (5 μg, 1:20 enzyme to protein ratio; 
Wako, catalog no. 125-02543) were added for overnight digestion at 
room temperature. The urea was diluted to 1 M with 50 mM ammonium 
bicarbonate (615 μl) and trypsin (10 μg, 1:10 enzyme to protein ratio; 
Thermo Fisher Scientific, catalog no. 90058) was added for overnight 
digestion. Trypsin digestion was stopped by adding final concentra-
tion of 1% formic acid (FA; Thermo Fisher Scientific, catalog no. A117) 
and 0.1% trifluoroacetic acid (TFA; Thermo Fisher Scientific, catalog 
no. 85183).

Peptides were desalted with 30 mg C18 HLB 96-well plates (Waters, 
catalog no. 186008054) using a positive pressure system. Each HLB well 
was conditioned (1 ml of methanol) and equilibrated twice (1 ml of 0.1% 
TFA) before the samples were added. Each well was washed twice (1 ml 
of 0.1% TFA) and eluted twice (500 μl of 50% acetonitrile with 0.1% FA). 
A portion (450 μl) of the solid-phase extraction elution was transferred 
to new plates for targeted MS analysis. All samples and QCs were dried 
using a SpeedVac.

Samples were reconstituted in 40 μl of heavy standards (4 μl) and 
Promega 6 × 5 LC-MS/MS Peptide Reference Mix (50 fmol μl−1; Promega, 
catalog no. V7491) in mobile phase A (0.1% FA in water; Thermo Fisher 
Scientific, catalog no. LS118). Peptide eluents (20 μl) were separated on 
an AdvanceBio Peptide Map Guard column (2.1 × 5 mm, 2.7 μm; Agilent, 
catalog no. 851725-911) connected to an AdvanceBio Peptide analytical 
column (2.1 × 150 mm, 2.7 μm; Agilent, catalog no. 653750-902) by a 
1290 Infinity II system (Agilent) and monitored on an TSQ Altis Triple 
Quadrupole mass spectrometer (Thermo Fisher Scientific). Sample 
elution was performed over a 14-min gradient using mobile phase A 
(0.1% FA in water) and mobile phase B (0.1% FA in acetonitrile; Thermo 
Fisher Scientific, catalog no. LS120) at a flow rate of 0.4 ml min−1. The 
gradient was from 2% to 24% mobile phase B over 12.1 min, then from 
24% to 80% over 0.2 min, and held at 80% mobile phase B for 0.7 min. 
The mass spectrometer was set to acquire data in positive-ion mode 
using selected reaction monitoring acquisition. Three transitions were 
acquired for each target analyte, the cycle time set to 0.8 s, Q1 resolu-
tion to 0.7 full-width at half-maximum, Q2 resolution at 1.2 full-width 
at half-maximum, and collision-induced dissociation gas at 1.5 mTorr. 
Data were uploaded into Skyline-Daily v.22.2.1.351 for analysis. Total 
area ratios for each peptide were calculated by summing the area for 
each light (3) and heavy (3) transition and dividing the light total area 
by the heavy total area. Each batch included QCs at the beginning, end 
and after every 20 samples per plate. Using the coefficient of variation 
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for the 30 monitored Promega peptides, we estimated the lowest limits 
of detection to be between 1 and 10 femtomoles for each peptide. All 
peptide measurements had coefficients of variation less than 30%, 
with most less than 20% (Supplementary Table 2). We used the light 
peptide signal within a sample to determine sample quality. Based on 
our inspections, two DIAN identifiers were removed from our matrix 
because the sample quality was deemed unacceptable. A total of 470 
subjects with sufficient trait data were included in the final statistical 
analysis of the SRM protein measurements. Gene symbols for each 
targeted protein in this study were used to maintain consistency with 
brain proteomic data and to facilitate integration with other -omics 
data. UniProt accessions and peptide sequences for all targeted pro-
teins are provided in Supplementary Table 2.

NonSRM-MS molecular biomarker measurements
MS-based measurements of tau and pTau species used in this analysis 
have been previously described60. ELISA measurements of Aβ, tau 
and pTau were obtained using the Luminex, Fujirebio and Innotest 
platforms13. Plasma pTau181 and NEFL ELISA measurements were 
obtained on the Simoa HD-1 platform as previously described20. PGRN 
and c-sTREM2 measurements were obtained on the Meso Scale Discov-
ery platform as previously described38,68.

Imaging
Imaging protocols and data processing for MRI and PET studies in DIAN 
have previously been described in detail69,70. We used the precuneus 
region for cortical thickness and metabolic imaging analyses given that 
it has been shown to be the region most sensitive to early AD changes in 
ADAD69. Precuneus measurements were averaged across hemispheres. 
For PIB-PET, we used the total cortical mean signal. PET measurements 
were corrected for partial volume effects.

Cognitive measures
In this analysis we used the Mini Mental State Examination (MMSE) and 
a composite cognitive measure72. The cognitive composite measure 
was generated by converting four different cognitive outcomes meas-
ures into z-scores, then averaging the four z-scores into one composite 
measure. The outcome measures used for the composite were animal 
naming (DIAN variable ANIMALS), digit symbol substitution (DIAN 
variable WAIS), delayed logical memory (DIAN variable MEMUNITS) 
and the MMSE.

Statistical analysis
Bayesian modeling. We analyzed each participant’s first CSF and 
plasma measurement in this study. Measures for all protein biomark-
ers underwent log2 transformation to approximate normality before 
analysis. Measurements greater than five standard deviations from the 
mean after log2 transformation were removed before analysis. Inclusion 
of outliers did not significantly alter the analysis.

We carefully studied the variables that could be used to model the 
cross-sectional CSF and plasma outcomes. We did not include age in 
our model because it is highly correlated with EYO. Our ad hoc analysis 
also revealed that adding commonly utilized predictors, such as sex and 
APOE ε4 status, did not provide any additional benefit to our model 
for modeling phenotypic outcomes in AD. The independent variables 
in our final model included ADAD carrier/noncarrier status and EYO.

To better approximate the complex nonlinear relationships 
between the biomarkers and EYO, and according to previously pub-
lished work20, we modeled EYO using a restricted cubic spline trans-
formation with three knots at the 0.1, 0.5 and 0.9 quantiles (Formula 
1). The restricted cubic spline transformation decomposes EYO into 
one linear term and one cubic term, which ensures the resulting fitted 
curve is smooth and continuous at each quantile segment.

We used a Bayesian framework to analyze the relationship between 
biomarkers and the independent variables and achieve accurate and 

robust statistical inference from these family-based samples. The 
Bayesian framework can account for random effects induced by strong 
family relatedness. The Bayesian regression model was implemented 
by Markov Chain Monte Carlo (MCMC)—a powerful and robust MCMC 
algorithm called the Hamiltonian Monte Carlo algorithm. We imple-
mented the algorithm in R v.4.1.2.

Our primary objective of using the Bayesian method was to provide 
an estimation of the uncertainty that is associated with the unknown 
parameters in the generalized linear model (GLM). Through quantify-
ing this uncertainty, we aimed to derive insights into the changes in 
biomarker levels across EYO. Because our model was designed to be 
objective, we expect that the posterior distribution of the biomarker 
levels is not significantly impacted by the prior information. We used 
the default R package settings to implement flat or weak informative 
priors. Combined with the moderate sample size, this approach ena-
bled us to obtain posterior estimates that closely approximated the 
likelihood, aligning with our goals of utilizing the Bayesian framework. 
Furthermore, by plotting the fitted model, we were able to visualize 
that the expected biomarker levels at specific EYO produced by our 
Bayesian GLM aligned well with the observed data points, serving as 
a sanity check and confirming that the posterior distribution was not 
significantly influenced by the prior information. Therefore, we do 
not expect the results to change with different sets of noninformative 
priors or flat priors.

We applied the Bayesian GLMs with identify link function for con-
tinuous outcomes. Our independent variables of fixed effects included 
ADAD status, linear EYO term, cubic EYO term and the interaction effects 
between ADAD status and EYO (Formula 2). We selected weak informa-
tive Cauchy distribution (location parameter was 0 and scale parameter 
was 2.5) as the prior distribution of the regression coefficients and 
the intercept because our method aimed to utilize a more objective 
data-driven approach. For the MCMC simulation setup, we initialized 
eight Markov chains using four cores, and each Markov chain generated 
10,000 iterations, including a warmup period of 5,000 iterations that 
were discarded. We also kept every ten simulations for the post-warmup 
sampling realizations. To ensure that the 4,000 post-warmup samples 
were a reliable representation of the posterior estimates for both the 
main effects and the interaction effects, we meticulously examined 
and tracked the convergence of the parameter estimates. Finally, we 
estimated the two-sided Bayesian credible interval of the continuous 
outcomes for ADAD mutation carriers and noncarriers and the cred-
ible interval of the difference between carriers and noncarriers. The 
empirical P value was also estimated to measure the probability that 
carrier and noncarrier were different under the null hypothesis. All 
estimates were performed at each EYO in 0.5-unit increments. Results 
were visualized using ggplot2 (v.3.3.6) (Fig. 1) and in a heatmap (Fig. 2) 
generated using custom Python v.3.10.8 code with the packages seaborn 
v.0.12.1 and matplotlib v.3.6.2. The Bayesian GLMs were implemented 
using the open-source R package rstanarm (v.2.21.3).

Our study had two categorical outcomes, CDR global score and 
the MMSE score, which have ceiling and floor effects that could not 
be adequately handled using a Gaussian distribution (Formula 3). 
Therefore, we used Bayesian mixed-effect ordinal regression models 
with a cumulative link function to model the two categorical outcomes 
(Formula 3)74,75. We encoded CDR (CDR = 0, CDR = 0.5 and CDR ≥ 1) 
and MMSE (MMSE > 24, 19 ≤ MMSE ≤ 24, MMSE < 19) into three cat-
egories that generally correspond to cognitively normal, mild cog-
nitive impairment and dementia stages of AD. This led to a natural 
ordering for the encoded MMSE and CDR. We specified the ordinal 
regression with cumulative probabilities. We used a flat prior for the 
regression coefficients, and we used Student’s t distribution (degrees 
of freedom was 3, location was 0 and scale was 2.5) as the prior for the 
intercepts. With the same MCMC simulation setup (8 chains on 4 cores, 
each chain had 10,000 iterations with 5,000 warmups, kept every 10 
simulations), we estimated the probability of being in one category 
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and its credible interval at each EYO in 0.5-unit increments based on 
the 4,000 post-warmup posterior coefficient estimates. The Bayesian 
mixed-effects ordinal regression model was implemented using the 
open-source R package brms (v.2.18.0).

Formula 1:
splinefit = rcspline.eval(EYO, nk=3, norm = 2, pc = FALSE, 

inclx=TRUE)
Formula 2:
Formula = Outcome ~ EYO_Spline_Linear + EYO_Spline_Cubic + 

MUTATION + EYO_Spline_Linear * MUTATION + EYO_Spline_Cubic * 
MUTATION + (1 | MASTER_FAMID)

stan_BL <- stan_glmer(Formula, data, family=gaussian(), prior = 
cauchy(), prior_intercept = cauchy(), chains = 8, cores = 4, iter = 10,000, 
thin = 10)

Formula 3:
Formula = Encoded CDRGLOB ~ EYO_Spline_Linear + EYO_Spline_

Cubic + MUTATION + EYO_Spline_Linear * MUTATION + EYO_Spline_
Cubic * MUTATION + (1 | MASTER_FAMID)

stan_CDR <- brm(f, data = BL_traits_pep, family = cumulative, 
chains = 8, cores = 4, iter = 10,000,

thin = 10)
MMSE is modeled by replacing CDR with MMSE.

Classification
For the classification analysis, 313 subjects (188 mutation carriers, 125 
noncarriers) were analyzed who had measurements of Aβ42/40 ratio, 
pTau217, pTau181, SMOC1 and the panel of 33 proteins measured by 
SRM (proteome) at a given EYO. The participants were separated into 
10-year time windows spaced 2 years apart based on their EYO. All time 
windows without a minimum of 30 participants were excluded. For 
each 10-year time window, logistic regression classifiers with elastic net 
regularization were trained with fivefold cross-validation to estimate 
mutation status using Aβ42/40 ratio, pTau217, pTau181, SMOC1 and 
the proteome measure using Custom Python v.3.9 code and sklearn 
v.0.24.2. The best L1 ratio for regularization was selected using a five-
fold cross-validation procedure within the training set. Performance 
was assessed using the area under the receiver operating characteristic 
(ROC) curve (AUC) of the testing sets.

A nonparametric permutation procedure was used to compare 
performance of the logistic regression models trained using the pro-
teome and other biomarkers. Our null hypothesis was that across 
participants the proteome showed no difference in AUC compared with 
the other biomarkers. We computed the true difference in performance 
between the proteome and the other biomarkers. We then randomly 
permuted the estimation generated by the proteome and the other 
biomarkers for each participant and recomputed the difference in 
performance76. Significance was established using 1,000 permutations.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
DIAN trait data are available through request. Instruc-
tions can be found at https://dian.wustl.edu/our-research/
for-investigators/dian-observational-study-investigator-resources/
data-request-terms-and-instructions/. Source data are under con-
trolled access to protect mutation carrier confidentiality. Data requests 
will be reviewed based on scientific merit and feasibility, appropri-
ateness of the investigator’s qualifications and resources to protect 
the data, and appropriateness to DIAN goals/themes. De-identified 
DIAN data will be made available to investigators to conduct analyses 
after approval by the PI and the relevant DIAN Core Leader. The data 
request form can be found at https://dian.wustl.edu/our-research/
for-investigators/dian-observational-study-investigator-resources/

data-request-form/. Data access requests are typically processed within 
30–60 days.

Code availability
Code used for analyses in this study is available upon request.
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Extended Data Fig. 1 | Biomarker Changes by Estimated Year of Disease Onset in ADAD. Data is presented as described in Fig. 2, but includes additional 
measurements of Aβ and tau species. Biomarker measurements available in DIAN used to benchmark the targeted proteomic measurements are shown in gray italics.
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