
Lawrence Berkeley National Laboratory
LBL Publications

Title
Pests, diseases, and aridity have shaped the genome of Corymbia citriodora

Permalink
https://escholarship.org/uc/item/5t51515k

Journal
Communications Biology, 4(1)

ISSN
2399-3642

Authors
Healey, Adam L
Shepherd, Mervyn
King, Graham J
et al.

Publication Date
2021

DOI
10.1038/s42003-021-02009-0

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5t51515k
https://escholarship.org/uc/item/5t51515k#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Pests, diseases, and aridity have shaped the
genome of Corymbia citriodora
Adam L. Healey 1,2✉, Mervyn Shepherd 3, Graham J. King 3, Jakob B. Butler 4, Jules S. Freeman 4,5,6,

David J. Lee 7, Brad M. Potts4,5, Orzenil B. Silva-Junior8, Abdul Baten 3,9, Jerry Jenkins 1,

Shengqiang Shu 10, John T. Lovell 1, Avinash Sreedasyam1, Jane Grimwood 1, Agnelo Furtado2,

Dario Grattapaglia8,11, Kerrie W. Barry10, Hope Hundley10, Blake A. Simmons 2,12, Jeremy Schmutz 1,10,

René E. Vaillancourt4,5 & Robert J. Henry 2

Corymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae

family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species).

Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa,

Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought,

poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we

sequenced and assembled the 408Mb genome of Corymbia citriodora, anchored into eleven

chromosomes. Comparative analysis with Eucalyptus grandis reveals high synteny, although

the two diverged approximately 60 million years ago and have different genome sizes (408

vs 641Mb), with few large intra-chromosomal rearrangements. C. citriodora shares an ancient

whole-genome duplication event with E. grandis but has undergone tandem gene family

expansions related to terpene biosynthesis, innate pathogen resistance, and leaf wax for-

mation, enabling their successful adaptation to biotic/abiotic stresses and arid conditions of

the Australian continent.
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Embedded within genomes are the footprints of climatic and
evolutionary history in which progenitor lineages have
undergone selection1. The detection of these footprints can

provide insight into the historic conditions experienced by
organisms of interest, with plant genomes in particular often
exhibiting distinct adaptive signatures due to their sessile nature2.
Forest trees, as some of the longest-lived plants and therefore
exhibiting strong local adaptation, are important for the renew-
able delivery of materials and energy worldwide, play a key role in
carbon cycling and storage, and affect rainfall patterns3.
Angiosperms (flowering plants) abound with tree species that
occur in most taxonomic orders4. However, our current insights
into the evolution of their genomes are primarily based on
comparative analysis of Northern Hemisphere deciduous taxa,
within families such as the Rosaceae5–7, Salicaceae8, Fagaceae9,10,
and Oleaceae11,12. Although Eucalyptus grandis was the second
forest tree genome to be assembled13, there has been little pro-
gress in unravelling key aspects of genome organization and
evolution within the predominantly Southern Hemisphere family
Myrtaceae to which it belongs. The Myrtaceae is a diverse, eco-
logically and economically important plant lineage (~5,700 spe-
cies; 132 genera14) that includes tree species such as clove
(Syzygium), guava (Psidium), tea-trees (Melaleuca and Leptos-
permum) and mangroves (Osbornia)15. It also includes the
globally grown eucalypts, which are endemic to Australia and
islands to its north16.

Eucalypts comprise over 800 species, belonging to three closely
related genera—Angophora, Corymbia, and Eucalyptus17. Euca-
lypts diverged from their closest Myrtaceae relative, Syncapieae,
approximately 65–68 million years ago (MYA)18 and radiated into
diverse environments undergoing rapid expansion immediately
after the Cretaceous, followed by domination during the
Paleocene-Eocene thermal maximum (~55 MYA) and climate
aridification in the mid-late Miocene (~15 MYA)19–21. Eucalyptus,
the largest genus, diverged from the Angophora-Corymbia lineage
~60 MYA, which roughly corresponds to the separation of the
Australian continent from Antarctica [83–45 MYA], at which time
the two had long separated from other Gondwana land
masses16,22. Eucalyptus is widely distributed across the Australian
continent but is largely consolidated in the more southern
bioregions23. In contrast, Corymbia and Angophora are largely
absent from most southern forests, having radiated through
coastal and sub-coastal regions of eastern Australia, with Cor-
ymbia also extending across the northern, tropical ‘top-end’ of
Australia24. These differences in the geographic range likely reflect
evolutionary, adaptive differences between the Angophora-Cor-
ymbia and Eucalyptus lineages. Climate niche adaptation is sig-
naled by field trials showing Corymbia species are typically more
cold-averse and drought tolerant than Eucalyptus25,26 and thrive
in a wide range of rainfall conditions (0.6–2.0m/year)27 and
marginal soils28. In terms of biotic environment, insects and
fungal diseases have represented the primary pest challenge for
both lineages, with genus-level differences in susceptibility often
evident29,30. The emblematic defensive strategy taken within the
Myrtaceae has been the generation of a diverse range of
terpenoids31, with complex profiles matching their diversity and a
corresponding expansion of the terpene synthase gene family32,33.

Here we present the genome assembly of C. citriodora subsp.
variegata (CCV), a new Myrtaceae reference sequence for a taxa
important for timber, pulp and paper, carbon sequestration, and
essential oil production in areas considered too marginal for other
productive species due to pests, diseases, and drought. Despite
their divergence and adaptive radiation across different biomes in
Australia, the genome structure among Eucalyptus grandis and
CCV is highly conserved (2n= 22). Corymbia has retained evi-
dence of an ancient (109 MYA) Myrtales whole-genome

duplication (WGD) event and exhibits post-divergence gene
family expansions related to terpene synthesis and biotic/abiotic
stress resistance. This new genome sequence will enable com-
parative genomic studies for the dominant hardwood taxa in the
Southern Hemisphere and will serve as a valuable resource for
further development of this strategic woody biomass resource for
manufacturing and bioenergy sectors.

Results
Genome assembly and annotation. Corymbia citriodora subsp.
variegata genotype CCV2-018 was selected for reference sequencing
due to its wide use as a parent in the spotted gum breeding program
of the Queensland Department of Agriculture and Fisheries, and its
use for the generation of interspecific hybrids for investigating pulp
and bioenergy production34. In brief, 129 Gb of raw data was
generated from two Illumina HiSeq2500 libraries (2 × 150 bp paired
end; insert sizes: 400 and 800 bp), representing ~320× sequencing
coverage of the genome. The genome assembly was generated using
a modified version of Arachne (v.20071016)35. Contig assembly and
initial scaffolding steps produced 37,263 contigs in 32,740 scaffolds
(N50 length: 132.6 Kb), totaling 563.0Mb. Gap patching on the
scaffolds was performed using ~25× PacBio reads (N50 length:
17,094 bp) and QUIVER (www.github.com/PacificBiosciences/
GenomicConsensus). Final scaffolding was completed using
SSPACE-Standard36 (Version 2.0) with Nextera long mate pair
libraries (insert size 4 Kb and 8 Kb), resulting in a 537.9Mb
assembly (16,786 scaffolds; 20,979 contigs) with a scaffold N50 of
312 Kb.

To anchor the scaffolds into chromosomes, the sequences were
ordered and oriented into 11 pseudomolecules (Fig. 1; Supple-
mentary Data File 1) using Corymbia genetic maps37. Three high-
density linkage maps were generated from two C. torelliana × C.
citriodora subsp. variegata hybrid crosses (CT2-050 × CCV2-054,
CT2-018 × CCV2-054) genotyped with Diversity Arrays
DArTseq technology38, and contigs were anchored to the marker
sequences using ALLMAPS39 (Supplementary Fig. 1). The
average Spearman correlation coefficient of centimorgan (cM)
positions for genetic map markers from all three linkage maps
and physical locations on scaffolds was 0.96. The pseudomole-
cules range in size from 24.8 Mb (Chromosome 9) to 55.7 Mb
(Chromosome 8). The total genome size of chromosome
anchored scaffolds (n= 4,033) was 412Mb (408Mb in contigs),
which is close to the estimated genome size of 370–390Mb, based
on flow cytometry40. Global genome heterozygosity was esti-
mated at ~0.5% through calling heterozygous SNPs against
repeat-masked bases in chromosomes. The evaluation of the
protein-coding annotation completeness with single-copy ortho-
logs on the assembly was undertaken using Benchmarking
Universal Single-Copy Orthologs (BUSCO; Supplementary
Table 1)41, receiving a 95.1% score, suggesting high quality and
completeness. In addition, 90% of derived single-copy genes in E.
grandis were also single copy on CCV chromosomes, suggesting
that pseudomolecule construction was complete and alternative
haplotypes had not been introduced into the main genome
assembly (Supplementary Fig. 2).

To annotate the genome, RNA was collected from five separate
tissues (expanded leaves [EL], unexpanded leaves [UL], flower
buds [FB], flower initials [FI], photosynthetic bark cortex [BA])
(Supplementary Figs. 3, 4) and was used for de novo gene model
prediction. The final annotation of protein-coding gene products
comprised 35,632 primary transcripts and 10,019 alternative
transcripts for a total of 45,651 transcript models. The set of
primary transcripts had a mean length of 3.4 Kb, a mean of 4.8
exons, with a median exon length of 176 bp and a median intron
length of 202 bp. The total amount of repetitive content captured
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in the pseudomolecules was 146.5 Mb, which represents ~35.8%
of the genome (Table 1). The repetitive content was primarily
comprised of Class I Retro transposable elements (19.48%) and
Class II DNA transposable elements (5.42%).

Comparative genome analysis. Divergence between Corymbia
and other woody angiosperm genomes42 (Eucalyptus grandis13,

Salix purpurpea [willow]43, Populus trichocarpa [poplar]8, Vitis
vinifera [grape]44) was investigated using the synonymous
mutation rate (Ks) among single-copy orthologous genes. All-on-
all Diamond alignment hits were filtered based on syntenic blocks
(as a complimentary measure to orthology), finding 9,410 synte-
nic orthogroups among the five genomes and 3,496 eucalypt-
specific (shared among E. grandis and CCV) gene families
(Fig. 2a; Supplementary Data File 2). Among the syntenic
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Fig. 1 Main genome features of Corymbia citriodora subspecies variegata (CCV). a The eleven chromosomes of CCV. Numbers along the outside track
denote chromosome length in megabases. b Gene density (gene number per megabase; 5–143). c Average expression (rpkm; 0.5–150) among collected
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Table 1 Assembly and genome statistics for Corymbia citriodora subspecies variegata (v2.1- Phytozome v13) and Eucalyptus
grandis (v2.0- Phytozome v13).

C. citriodora ssp. variegata E. grandis

Bases in chromosomes (Megabases [Mb]) 408 641
Number of scaffolds in chromosomes 4,033 4,952
Number of chromosomes 11 11
Contig N50 length 185.5 Kb 67.2 Kb
Scaffold N50 length 31.5Mb 57.5Mb
GC content 39.1% 39.3%
Repetitive content 35.78% 43.96%
Retro transposable elements (RNA; Class I) 19.48% 22.06%
DNA transposable elements (Class II) 5.42% 7.22%
Total number of primary gene models 35,632 36,349
Total number of transcript models 45,651 46,280
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orthogroups, 2,942 contained single-copy orthologs and were
used to estimate the synonymous substitution rate (Ks) within
Corymbia. Based on the median Ks peak among CCV and E.
grandis (0.1585) (Fig. 2b; Supplementary Data File 3) and esti-
mated divergence times based on the fossil record (57.2, 58.5, 64.6
MYA)16, the synonymous mutation rate (site/year) among
orthologs was estimated between 1.385 × 10−9 and 1.227 × 10−9.

While these mutation rates are consistent with those observed
within Salicaceae45, they are substantially slower (3.8–4.0 fold) than
SNP- based population estimates from E. grandis (4.93 × 10−9)46.
To investigate this result further, we calculated estimates of the
population mutation rate parameter for Corymbia from re-
sequencing data of the parental genotype (CCV2-018), as well as
four unrelated CCV genotypes (CCV2-019, CCV2-025, CCV2-045,
CCV2-046). The measures of population mutation rate (4Neμ)
obtained from the genotypes following maximum likelihood
estimators based on the shotgun sequence data ranged between
7.12 × 10−3 and 8.32 × 10−3 (average 7.86 × 10−3). For the purpose

of the comparison with E. grandis, we assumed an ancestral
population size of 112,421, which is consistent with the past
demographic history of that species46. On this basis, the mutation
rate per site per generation in CCV is estimated between 1.59 × 10−8

and 1.85 × 10−8, which is consistent with the Ks mutation result if a
generation time of about 15 years is assumed for CCV (1.85 × 10−8

/15 y= 1.23 × 10−9 site/year). However, it is worth noting that the
true generation time of CCV is unknown, as CCV undergoes mass
flowering47, and (unlike E. grandis) forms lignotubers through
which they can regenerate48.

Assuming the above assumptions are plausible, the nucleotide
diversity seems to be lower in CCV than in E. grandis, while the
overall chromosome recombination rates appear to be consistent
between both species (CCV= 2.85 cM/Mb; E. grandis= 2.98 cM/
Mb)49 (Supplementary Table 2). Other than recombination, one
factor that negatively correlates with diversity in genomes is the
density of targets for purifying selection, which has been often
approximated by the density of coding sequence50. In a scenario
in which long-term effective population size and recombination
remain equal between the species, the higher density of coding
sequences in CCV due to its smaller genome could be a
contributing factor for the reduction of its diversity. It might be
important to carry out a further detailed investigation if the
apparent reduction of diversity in CCV is predominantly an effect
of the increase in density of targets for selection due to changes in
chromosome size. An alternative explanation may relate to
differences in the ancestral population sizes or its patterns of
variation in comparison to E. grandis demographics.

Despite differences in their genome size and ~60 MYA
divergence, CCV and E. grandis have few large-scale intra-
chromosomal rearrangements and have retained large syntenic
blocks (Fig. 3; Supplementary Data File 4). Both species have 11
chromosomes (2n= 22), with chromosomes 1, 3, 5, and 7 being
largely 1:1 syntenic. Chromosomes 4, 8, 9, 10, and 11 contain
major inversions, and chromosomes 2 and 6 harbor inverted
intra-chromosomal translocations. These major chromosomal re-
arrangements have been previously described37, but chromosome
11 in the genome assembly was inverted relative to the genetic
map to maximize synteny with E. grandis. Within Myrtaceae, a
chromosome number of 11 (2n= 22) has been widely conserved
across most major clades, with some exceptions of polyploidy (2n
= 33,44,66 [3x,4x,6x]) occurring within Leptospermum, Psidium,
and Eugenia15. Globally, 71% (n= 25,357) of CCV genes were
retained in large intra-chromosomal syntenic blocks with E.
grandis and 86% average identity between protein sequences (top
hit among CCV and E. grandis primary proteins). An average of
17 syntenic blocks were detected on each chromosome.
Chromosome 3 was the most syntenic with 98% of genes
captured in six blocks and the largest block containing 89% of all
chromosome 3 genes (Table 2; Fig. 3; Supplementary Data File 4).
Chromosome 6, despite multiple inverted translocations, main-
tained 75.3% of genes in 19 syntenic blocks. The overall
correlation (r) between CCV and E. grandis chromosome sizes
is 0.88 (n= 11; p= 0.003).

Despite high synteny, Myrtaceae genomes vary considerably in
size13,15. Across the entire Myrtaceae family, the 1n genome size
range of diploids (based on flow cytometry) is approximately
fivefold, from 234Mb (Myrciaria glazioviana; pg/1C= 0.239) to
710Mb (Eucalyptus saligna; largest eucalypt; pg/1C= 0.735) and
1.1 Gb (Melaleuca leucadendra; pg/1C= 1.100)15,51,52. The dif-
ference in genome size between CCV (408Mb) and E. grandis
(641 Mb) was 233Mb, of which ~139Mb could be attributed to
repetitive content (35.8% vs 43.9%, respectively when compared
using the same pipeline). While this observation is consistent with
other plant genomes where repeat content contributes to genome
size differences53, comparisons between E. grandis and E. globulus
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Fig. 2 Orthologous gene groups among woody plant genomes. a Shared
orthogroups among Corymbia citriodora ssp. variegata, Eucalyptus grandis,
Populus trichocarpa, Salix purpurea, and Vitis vinifera. b Single-copy ortholog
synonymous substitution rate (Ks) comparisons to date the
Corymbia/Eucalyptus divergence. Blue line- Synonymous substitution rates
among CCV and EG orthologs. Yellow line- Synonymous substitution
rates among EG and VV orthologs. Red line- Synonymous substitution rates
among CCV and VV orthologs. Purple line- Synonymous substitution rates
among CCV and PT orthologs. Green line- Synonymous substitution
rates among EG and PT orthologs. PT Populus trichocarpa, CCV Corymbia
citriodora subsp. variegata, EG Eucalyptus grandis, VV Vitis vinifera.
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(section Symphyomyrtus; ~36 MYA divergence)13 showed a
genome size difference of 111Mb (i.e., 641Mb and 530Mb
respectively), the majority of which was attributable to non-
repetitive E. grandis specific sequences distributed throughout the
genome (88.7 Mb). Eucalyptus grandis compared to the more
distantly related, recently sequenced draft assembly of E.
pauciflora (subgenus Eucalyptus)53 found that while the genome
of E. pauciflora (594 Mb) was 16% smaller than E. grandis, its
repeat content was greater (44.77% versus 41.22%).

Whole-genome duplications. Following the eudicot gamma
WGD event (~140 MYA-paleohexaploidy)54, eucalypts under-
went a lineage-specific paleotetraploidy event (~109 MYA), which
coincides with the Myrtales divergence from other Rosids13,55

and is considerably older than other WGD events that have
occurred in poplar, Arabidopsis, and soybean45,56,57. Evidence of
this event is present in Corymbia, based on Ks values of syntenic
paralogous sequences. Ks values among intra-specific paralogs of
CCV, E. grandis and V. vinifera revealed a clear signal of the
shared eudicot paleohexaploidy event54 (Ks ~1.2) and the Myr-
tales specific paleotetraploidy event (Ks ~0.4) (Fig. 4a; Supple-
mentary Data File 5). Illustration of these paralogous pairs shows
a similar intra-chromosomal dispersion pattern within CCV
(Fig. 4b; Supplementary Data File 5) as E. grandis (Myburg
et al.13: Fig. 2b). KEGG pathway enrichments among Corymbia
paralogs within the Myrtales WGD peak (n= 528) showed sig-
nificant enrichment for the biosynthesis of unsaturated fatty acids
(P= 0.02), nitrogen metabolism (P= 0.03), plant-pathogen
interaction (P= 0.03), and sesquiterpenoid and triterpenoid
biosynthesis (P= 0.02) (Supplementary Data File 5; Supplemen-
tary Data File 6). The importance and prevalence of terpene
biosynthesis is well documented in the eucalypts as a mechanism
for mediation of abiotic/biotic stresses33. Unsaturated fatty acids
are a key component in the waxy leaf cuticle of Eucalyptus, which
not only protect against temperature stress through osmo-

regulation of water, but are also implicated in resistance to fun-
gal pathogens such as Myrtle rust (Austropuccinia psidii)58, which
threatens 1,285 species of Myrtaceae59.

Eucalyptus grandis chromosome 3 has previously been
identified as the most conserved, maintaining synteny with P.
trichocarpa chromosome XVIII despite being more than 100
million years diverged13. CCV chromosome 3 also maintains
this pattern, while other conserved syntenic blocks among
CCV and E. grandis were dispersed among multiple P.
trichocarpa chromosomes (e.g., CCV chromosome 5; Supple-
mentary Data File 6). Myburg et al.13 postulated that
chromosome 3 (and chromosome XVIII in P. trichocarpa)
each represent a single copy of the ancestral eudicot
chromosome A4. After the Myrtales-specific WGD, chromo-
some 3 homologs fused, as evidenced by all retention of
paralogs from the WGD residing on chromosome 3; a pattern
shared by CCV (Fig. 4b; Supplementary Data File 5). Myburg
et al.13 proposed that the maintenance of synteny between E.
grandis and P. trichocarpa was possibly due to either: (1)
favored preservation of perennial woody-habit genes, or (2)
introduced internal centromeres and telomeres (3 Mb and 74
Mb within E. grandis) that have repressed subsequent
recombination and gene expression13. To investigate this
possibility, differences in gene expression, recombination,
and synteny on CCV chromosome 3 were considered. We
observed no significant differences (ANOVA; P > 0.05) in the
average gene expression within chromosome 3 and other
chromosomes (Supplementary Fig. 7), nor higher repetitive
content. Looking broadly across all chromosomes, chromo-
some 3 had lower recombination than average (2.67 cM/Mb;
mean: 2.85 cM/Mb), but not the lowest rate (chromosome 5:
2.39 cM/Mb; Supplementary Table 2). The mean recombina-
tion rate of CCV is consistent with E. grandis, E. globulus, and
E.urophylla49, but it is worth noting that within E. globulus,
recombination rates for chromosomes 3 and 5 were signifi-
cantly less than other chromosomes, likely due to their large

Corymbia

Eucalyptus

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

Fig. 3 Intra-chromosomal syntenic blocks among Eucalyptus grandis and Corymbia citriodora subsp variegata. Numbers represent individual
chromosomes. Minimum number of genes per block is 25.

Table 2 Comparison of chromosome gene content and synteny between Corymbia citriodora subspecies variegata and Eucalyptus
grandis.

Chromosome Total # of
genes on Chr

Genes in
syntenic blocks

Percent genes in
syntenic blocks

Total number of
syntenic blocks

Number of genes in
largest
syntenic block

Percent of genes
captured by
largest block

1 2,436 2,235 91.7 25 426 17.5
2 3,246 2,810 86.6 23 677 20.9
3 2,618 2,574 98.3 6 2,297 87.7
4 2,234 1,684 75.4 11 403 18.0
5 2,958 2,373 80.2 13 746 25.2
6 3,427 2,582 75.3 19 906 26.4
7 2,478 2,206 89.0 15 1,523 61.5
8 3,923 3,298 84.1 29 600 15.3
9 1,792 1,463 81.6 13 422 23.5
10 2,099 1,874 89.3 19 335 16.0
11 2,497 2,258 90.4 17 710 28.4
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size. CCV chromosomes are more uniform in length than E.
grandis (CCV average chromosome length= 37.5 Mb; standard
deviation= 10 Mb) with similar differences in recombination
rate and number of crossover events (Supplementary Tables 2
and 3).

To investigate the possibility that conserved woody-habit genes
may require retention of syntenic order, all CCV chromosome 3
orthologs that are maintained within syntenic blocks in both E.
grandis and P. trichocarpa (chromosomes XVIII and VI [which
share synteny due to the Salicoid WGD event]) were extracted
(1:1:2; n= 173 genes) (Supplementary Fig. 8; Supplementary Data
File 7) and compared for enriched gene functions. The top KEGG
enrichment pathways for this gene set included phenylalanine
and tyrosine metabolism (P= 0.001; P= 0.003; respectively),

alkaloid biosynthesis (tropane and isoquinoline) (P= 0.02), and
glycerolipid metabolism (P= 0.02), each of which play critical
roles in plant primary and specialized metabolism (e.g., mono-
lignol biosynthesis), cell wall formation, defense and stress
signaling60–63. Regarding plant defense, quantitative trait loci
(QTLs) for fungal disease resistance have been repeatedly
reported on chromosome 3 in E. grandis from several
independent studies using different methods of genetic evaluation
in breeding populations, clearly demonstrating a major involve-
ment of this chromosome in the pathogen resistance response64.
While these results favor the syntenic maintenance of critical gene
functions on chromosome 3, gene order conservation needs to be
examined further across a larger cohort of woody angiosperm
genomes.

Intra-species Pairwise Paralogue Comparisons
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Fig. 4 Patterns of paralog retention in Corymbia resulting from whole-genome duplications (WGD). a Intra-species retained paralogous sequences from
the shared eudicot and Myrtales specific WGD events. Ks- synonymous mutation rate. Green distribution- Ks values among paralogous sequences within
E. grandis. Yellow distribution- Ks values among paralogous sequences within C. c.variegata. Purple distribution- Ks values among paralogous sequences
within Vitis vinifera. Gray box- paralogous sequences derived from the Myrtales WGD event. Pink Box- paralogous sequences derived from the Eudicot
WGD event. CCV Corymbia citriodora subsp. variegata, EG Eucalyptus grandis, VVVitis vinifera. b Corymbia chromosomal dispersal pattern of paralogs from
the eudicot and Myrtales WGD event. Lines between chromosomes represent intra-specific paralogous sequences that arose from each duplication.
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Corymbia gene family analysis. Comparative genomics between
CCV and E. grandis allowed investigation of gene family
expansions that had occurred since eucalypts diverged from other
Rosids, as well as expansions specific to CCV itself. Within our
constrained syntenic orthogroups, 124 had eucalypt-specific
expansions (orthogroups with >5 genes and >70% of genes
derived from both CCV and E. grandis) containing 1,494 genes
(735-CCV; 759-E. grandis). Functional KEGG pathway enrich-
ments within these expansions included the molecular processes
of phenylpropanoid biosynthesis (P= 0.00006), cyanoamino acid
metabolism (P= 0.006), pentose/glucuronate interconversions (P
= 0.01), isoflavonoid biosynthesis (P= 0.02), monoterpenoid
biosynthesis (P= 0.03), glucosinolate biosynthesis (P= 0.03), and
plant-pathogen interaction (P= 0.04) (Supplementary Table 4).
These expansions are consistent with general response mechan-
isms for biotic/abiotic stress, where carbohydrate pathway acti-
vation enables rapid signaling and energy for terpene and
secondary metabolite biosynthesis65–68.

Similarly, we characterized gene families that had undergone
species-specific expansions within E. grandis and CCV relative to
the other woody angiosperm genomes. Within E. grandis,
investigation of expanded gene families (orthogroups with at least
five genes and ≥50% derived from E. grandis) found 179 expanded
orthogroups containing 1,479 genes. KEGG pathway enrichment
analysis within this dataset found the greatest enrichments for
galactose metabolism (P= 0.00008), phenylpropanoid biosynthesis
(P= 0.006), flavonoid biosynthesis (P= 0.002), pentose and
glucuronate interconversions (P= 0.002), and alpha-linolenic acid
metabolism (P= 0.003) (Supplementary Table 5). Within CCV
(using the same criteria for expansion noted above), there were 75
expanded gene family orthogroups containing 501 genes. Func-
tional enrichments within these expanded gene families found
significant KEGG pathway enrichments relating to plant-pathogen
interaction (P= 0.003), phenylpropanoid biosynthesis (P= 0.003),
ether lipid metabolism (P= 0.02), sesquiterpenoid and triterpenoid
biosynthesis (P= 0.02), and cutin, suberine and wax biosynthesis
(P= 0.03) (Supplementary Table 6). Considering the substantial
overlap among significant KEGG enrichments between CCV and E.
grandis expansions, genes associated with these terms were mapped
to their closest ortholog among shared KEGG pathways (Supple-
mentary Figs. 9–12). We found that CCV and E. grandis both had
both similar (e.g., cutin and sesquiterpenoid biosynthesis) and
separate expansions (e.g., phenylpropanoid biosynthesis).

Specifically, when comparing overlaps among species-specific
expanded gene families within plant-pathogen interaction KEGG
pathways, CCV displayed signatures of expansion in gene families
that were absent in E. grandis (Supplementary Fig. 12). Gene
families with shared expansions in both CCV and E. grandis were
related to disease resistance protein 2 (rps2) and mitogen-
activated protein kinase kinase kinase 1 (mekk1), which are part
of separate stress response pathways within the cytoplasm. Mekk1
is a mitogen-activated protein kinase (MAPK) signal cascading
gene within the pathogen-associated molecular pattern triggered
immunity (PTI) pathway that is tightly associated with abiotic
stress response such as temperature, drought, salinity, as well as
wounding69. Rps2 is a resistance NB-LRR gene that upon
recognition with bacterial effector proteins, generates an
effector-triggered immune (ETI) response and can elicit a
localized hypersensitive response (HR) where cells undergo
programmed death to prevent pathogen spread70. Investigation
of CCV-specific gene family expansion revealed separate expan-
sions in the same pathogen interaction pathways: rpm1, fls2, and
bak1/bkk1. Similar to rps2, rpm1 is an R gene and elicits an ETI/
HR response upon detection of bacterial effector proteins71,72.
Fls2 and bak1 however, are part of the PTI immune response
pathway, both being plasma-membrane bound receptor kinases

that form a signaling complex, that upon activation, cascade
signals to cytoplasmic kinases as part of PTI responses. Fls2
recognizes a specific peptide sequence of bacterial flagellin, and
while bak1 is part of the same plasma membrane complex, it can
initiate signaling independently of fls2, recognizing the EF-Tu
bacterial receptors, lipopolysaccharides, peptidoglycans and
whose function is critical as part of the plant innate immune
response73,74.

Based on the prevalence of tandem gene arrays in E. grandis,
we investigated tandem gene duplication in CCV as a mechanism
for gene family expansion whose functions are enriched for
climate niche adaptation for hot season rainfall and semi-arid
environments75. CCV has a large number of tandemly duplicated
genes, with a similar number of arrays in extended syntenic
blocks as E. grandis (8,366 vs 8,679; 23% vs 24% of all genes,
respectively). This number is lower than previously reported for
E. grandis (n= 12,570)13, as we used MCScanX76 as our
standardized, more conservative, methodology for identifying
tandem repeats within each genome, as these can often be difficult
to define. As hypothesized, there was an 81% overlap (n= 408)
between CCV-specific gene family expansions and tandem
duplicates which were significantly enriched for the same KEGG
pathways, thus tandem gene duplication appears to be a major
mechanism of gene family expansion in eucalypts.

To estimate the relative ages of these gene family expansions,
comparisons within eucalypt-specific, CCV-specific and E.-
grandis specific expansions were investigated. First, CCV and E.
grandis genes derived from 1:1:1 orthogroups among Corymbia:
Eucalyptus:Vitis (outgroup) were used to visualize the Ks peak
when Corymbia-Eucalyptus diverged. Then, eucalypt-specific
(both CCV and E. grandis; V. vitis outgroup) expansions, CCV-
specific expansions, and E. grandis-specific expansions were
compared to find whether those expansions were relatively
younger or older than the Corymbia-Eucalyptus split. The
divergence peak among Corymbia and Eucalyptus genes occurs
at Ks ~0.15 (Fig. 5a; Supplementary Data File 8). The eucalypt
gene family expansions pre-date this divergence, with its main
peak spread between Ks ~0.2–0.4 (total= 550; CCV= 265; E.
grandis= 285). CCV-specific expansions displayed a bimodal
peak, with some expansions occurring prior to divergence (Ks
~0.21; n= 101) and others undergoing a relatively recent
expansion (Ks ~0.08; n= 132). These recent expansions suggest
a dynamic mechanism for increasing gene numbers where
function is enriched for sesquiterpenoid and triterpenoid
biosynthesis (P= 0.02) as well as cutin, suberine, and wax
biosynthesis (P= 0.03) (Supplementary Figs. 10–11; Supplemen-
tary Table 7). Plant cuticular wax compounds perform functions
essential for the survival of terrestrial plants, including limiting
non-stomatal water loss and gas exchange, protecting from
ultraviolet radiation77, and forming physical barriers to herbi-
vores and pathogens78. Eucalypts in particular require strong
defense mechanisms to protect leaves during development, as
young trees present large amounts of juvenile foliage making
them a target for insect and fungal pests79. Eucalyptus grandis and
CCV differ somewhat in wax morphology, with E. grandis
exhibiting sparser wax coverage and irregular structure compared
to Corymbia80. Concentrations of cuticular wax compounds in
eucalypts have been linked to water loss response, for instance, a
10-fold increase in concentrations of n-alkane (wax compounds)
was observed along an aridity gradient in both Eucalyptus and
Corymbia81. Leaf wax and water repellency have also been linked
to frost tolerance along an altitudinal cline in Eucalyptus82. The
expansion in CCV genes linked to wax biosynthesis and the
subsequent increase in concentration is likely selected for by the
highly seasonal and variable rainfall environments occupied by
CCV. However, the expansion of this gene family may be species-
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rather than genus-specific given the variation wax concentrations
exhibited across species of Eucalyptus and Corymbia81.

Terpenes, in addition to regulating growth and developmental
processes83, contribute chemical barriers to herbivory84,85,
pollinator attraction,86, and thermotolerance87. The largest
terpene synthase subfamily in CCV is TPS-a (responsible for
sesquiterpene biosynthesis), which has undergone a recent
expansion since diverging from Eucalyptus (Fig. 5b; Supplemen-
tary Data File 8). The TPS-b1 subfamily (responsible for
monoterpene synthesis), was also generally expanded in Cor-
ymbia, based on the CCV-expanded orthogroups. The majority of
terpenes synthesized by the two subfamilies are volatile and
responsible for attracting pollinators and for plant defense via
tritrophic interactions88. However, some sesquiterpenes are non-
volatile phytoalexins that directly protect against fungal and
bacterial pathogens89. Similarly, E. grandis specific expansions
occurred post-divergence (Ks ~0.06; n= 296), with gene function
enrichments related to sesquiterpenoid/triterpenoid biosynthesis
(TPS-a) (P= 0.02) and glycan degradation (P= 0.03) (Supple-
mentary Table 8). These CCV and E. grandis lineage-specific gene
family expansions are likely due to selective pressures in
environmental niches occupied by these two genera and appear
to provide evidence of concerted evolution in eucalypts, but
requires investigation of more species to lend support. In
particular, genes involved in terpene biosynthesis have undergone
separate but parallel expansions via tandem gene duplication32.

Discussion
The generation of a high-quality de novo sequenced genome for
Corymbia citriodora subsp. variegata has provided the opportu-
nity to understand how evolutionary history has contributed to
genome evolution within the Myrtaceae, an important and
diverse group of angiosperms that have radiated across the
Southern Hemisphere. After the gamma paleohexaploidy WGD
(140 MYA) and divergence from other Rosids, Myrtales (the
taxonomic order to which Myrtaceae belongs) underwent another
lineage-specific WGD tetraploidy event (109 MYA). Paralogous
sequence retention in the CCV genome underpins the importance
of this event, finding functional enrichments for genes involved in
pathogen inhibition, heat tolerance, and desiccation resistance, as

well as pollinator attraction via unsaturated fatty acid metabolism
and wax and terpene biosynthesis. This ancestral state of the
eucalypt progenitor has been maintained even after Corymbia and
Eucalyptus diverged, where large gene families responsible for
mono- and sesqui-terpenes synthesis, leaf cuticle wax synthesis,
and stress response pathways have expanded further. After the
ancient tetraploidy event, most Myrtaceae underwent diploidi-
zation, and with few exceptions maintained a haploid chromo-
some number of eleven whilst exhibiting large differences in
genome size (234–1110Mb)15.

Within the eucalypts, Corymbia and Eucalyptus diverged ~60
MYA but nonetheless maintained synteny among their chromo-
somes despite also undergoing large chromosomal inversions
(chromosomes 2,4,6,8,9,10 and 11) and translocations (chromo-
somes 2 and 6). Seventy-one percent of genes were captured in
large syntenic blocks between the two genomes, with chromo-
some 3 being the most conserved. This conservation of chro-
mosome 3 also extends to Northern Hemisphere P. trichocarpa
(chromosomes XVIII and VI) and may be a result of the required
synteny of conserved genes with related critical functions, which
warrants further investigation. Throughout their evolutionary
histories, both CCV and Eucalyptus have undergone gene family
expansions whose function mainly relates to biotic and abiotic
stress response. These gene family expansions have occurred in
both separate (phenylpropanoid biosynthesis) and shared enzy-
matic pathways (cutin and terpenoid biosynthesis), while CCV
also shows unique signatures of expanded key signaling compo-
nents within the PTI pathway. While a number of these gene
family expansions are shared, there is evidence of concerted and
parallel evolution within CCV and E. grandis where gene families
related to terpene biosynthesis (TPS-a) have expanded via tandem
duplication in both species since they diverged.

The sequencing and description of the CCV genome will help
inform future conservation efforts, molecular breeding, and glo-
bal deployment of this taxa. In addition to Australia, Corymbia
has been deployed to plantations in China, India, Sri Lanka,
South Africa, Congo, and Kenya90. More recently, it has been
successfully established in Brazilian plantations for hardwood,
charcoal, and essential oil production and can outperform
Eucalyptus in areas negatively impacted by climate-driven abiotic/
biotic stresses91. Eucalyptus breeding programs and resources are
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well established, and knowledge regarding the stability of the
Corymbia genome in terms of synteny, recombination, and tan-
dem duplication will accelerate molecular breeding for both taxa
and allow genomic resources already established for Eucalyptus
(e.g. 60 K SNP chip, SSR markers)92 to be more easily transferable
to other eucalypts. The release of additional Myrtaceae reference
genomes will hopefully enable more extensive insights into evo-
lutionary history based on comparative genomics across this
important and diverse lineage of plants.

Methods
Illumina DNA library construction and sequencing. Genomic DNA was
extracted93 from leaf tissue of Corymbia citriodora subsp. variegata genotype
CCV2-018. Approximately 100 nanograms of DNA was sheared to 500 and 800 bp
using the Covaris LE220 (Covaris), then size selected with SPRI beads (Beckman
Coulter). DNA fragments were treated with end-repair, A-tailing, and ligation of
Illumina compatible adapters (IDT, Inc) using the KAPA-Illumina library creation
kit (KAPA biosystems). The prepared libraries (insert sizes 400 and 800 bp) were
quantified using the next-generation sequencing KAPA Biosystem library qPCR
kit, run on a Roche LightCycler 480 qPCR instrument. The two PCR-free Illumina
libraries were multiplexed into pools then prepared for sequencing with a TruSeq
paired-end cluster kit (v3) and Illumina cBot instrument to generate a clustered
flowcell for sequencing. Sequencing of the flowcell was performed on the Illumina
HiSeq2500 platform using a TruSeq SBS sequencing kit (v3) following a 2×250
indexed run recipe.

PacBio library preparation and sequencing. Genomic DNA was sheared using
the Covaris g-tube 20 Kb centrifugation protocol and purified using a 0.45X
Ampure PB purification step. Single-stranded DNA fragments were removed using
an exonuclease treatment, followed by DNA damage repair, end repair, and
SMRTbell adapter ligation. In addition, a second exonuclease step removed failed
ligation products (SMRTbell template prep kit 1.0). Ligated fragments were then
the size selected for those >7 Kb in length (as short fragments are preferentially
sequenced) then sequenced on the RSII instrument using P6-C4 chemistry and 4-h
movie lengths. Reads were then processed using SMRTPortal (version 2.3.0) RS
subreads protocol with default filtering settings (min subread length: 50; min
polymerase read quality: 75; min polymerase read length: 50).

RNA collection and sequencing. RNA was isolated from five tissue types:
expanding and fully expanded leaves, flower buds and initials, and the outer
chlorophyllous layer of bark cortex (Supplementary Fig. 3)94. Tissues were
obtained from the CCV2-054 genotype (genetic map parent)37 and immediately
preserved in a cryogenic shipping unit in the field for transport and storage prior to
extraction. Total RNA was prepared using Ambion RNAquenous kit with Ambion
RNA Isolation aid and the standard protocol (Life Technologies Australia Mul-
grave Vic). Total RNA was shipped to AGRF (Melbourne, Australia) for library
preparation (TruSeq® Stranded mRNA Sample, Illumina) and sequencing. A total
of 75 Gb of RNA-seq was generated across all five libraries, 25 Gb of 100 bp single-
end reads, and 50 Gb of 100 bp of paired end reads.

Genome assembly. Contig assembly and initial scaffolding were conducted using
Illumina paired-end reads. A total of 462,039,870 reads (representing ~163×
genome coverage) were assembled Arachne (v.20071016)35, modified to handle
larger datasets (data IO/sort functions/increased number of reads/alignments in
memory). Arachne assembly parameters: macliq=800, remove_duplicate_r-
eads=True, correct1_passes=1, BINGE_AND_PURGE_2HAP=True, max_bad_-
look=1000. Contig assembly and initial scaffolding steps produced 37,263 contigs
into 32,740 scaffolds, totaling 563.0 Mb. Scaffold N50 length of the assembly was
132.6 Kb, with 1,430 scaffolds larger than 100 Kb. The resulting scaffolds were
screened against bacterial proteins, organelle sequences, GenBank nr and removed
if found to be a contaminant. In addition, scaffolds were removed if they were (a)
repetitive, defined as scaffolds less than 50 Kb consisting of >95% 24mers that
occur four or more times in scaffolds >50 Kb, (b) contained only unanchored RNA,
(c) <1 Kb in length, or (d) alternative haplotypes, defined as scaffolds <10 kb that
align to scaffolds >10 Kb scaffolds with at least 95% identity and 95% coverage.

PacBio patching. Gaps in the assembly were patched using ~25× sequencing
coverage of PACBIO filtered subreads. Gaps were patched by first breaking scaf-
folds into contigs. Contigs <1 Kb were excluded from the gap patching process.
Subsequently, 1 Kb of the sequence was trimmed off the contig ends and the
trimmed portion was broken into 100 mers. The 100 mers were aligned to the
PACBIO reads using the short read aligner bwa95, and individual PACBIO reads
were mapped to scaffolds indicated by the 100mer alignments. QUIVER was used
to assemble gap crossing reads for gaps with more than 5 filtered subreads crossing
them. The resultant assembled sequence was used to patch the gap. A total of 3,149

gaps were patched, with a total loss of 55,511 bases from the raw assembly due to
the presence of negative gaps in the assembly. Mis-assemblies were assessed by
identifying gaps where 5 or more PACBIO reads have >1 Kb regions of the read
aligning to two different scaffolds. A total of 166 mis-joins were identified and the
breaks made, with the associated join being made using the reads that indicated a
break. A total of 485 additional joins were made using the PACBIO reads. Addi-
tional scaffolding of the genome was performed using SSPACE-Standard (Version
2.0) with Nextera long mate pair prepared libraries (Insert size 4 and 8 Kb).
SSPACE scaffolding was performed using default parameters and no extension (x
= 0).

Anchoring scaffolds to linkage maps. The retained assembly from the gap pat-
ched assembly and SSPACE scaffolding were anchored into pseudomolecules using
the ALLMAPs pipeline39. Three individual genetic maps were generated repre-
senting each parent of the two pedigrees (male map- CCV2-054, female maps-
CT2-050 and CT2-018). The use of a ‘marker binning’ procedure, and stringent
criteria for the inclusion of markers, resulted in robust marker orders in the linkage
maps evidenced by high rank-order correlations among shared markers37. The
sequence of each marker was used to anchor (and orient, if a second marker was
available) contigs with matching sequence onto specific linkage groups, with a
greater weighting given to the order of markers from CCV.

ALLMAPs incorporates a methodology for computing a scaffold order that
maximizes collinearity across a collection of maps and generates outputs of ordered
and orientated scaffolds. The pipeline was run using the default settings, except that
filtering was applied so that linkage groups with <20 markers were removed from
the analysis, joins between scaffolds were padded with 100 N, and a weighting of 1
(i.e., highest confidence of marker order) was applied to the CCV2-054 map, and a
weighting of 2 was applied to both of the C. torelliana maps. A lower weighting
applied to the C. torelliana was used to allow for a higher likelihood of the
possibility of marker reordering in the nonfocal species. Similarity searches aimed
at matching DArT-seq markers sequence tags from the genetic maps with scaffolds
were determined by using the blastn program from BLAST96 where a threshold e-
value of 1 × 10−10 was used as a cutoff and only the best match was taken.
Chromosomes and subsequent tracks in Fig. 1 were created using Circa (http://
omgenomics.com/circa).

Single-copy gene analysis. Eucalyptus grandis protein sequences were re-aligned
to the E. grandis genome sequence using BLAT97 (-noHead -extendThroughN
t=dnax q=prot) to find single-copy genes sequences. 20,256 single-copy genes
were identified within E. grandis (no tandem duplications, no gene splice variants,
90% gene coverage, 85% gene identity, >300 bp). Aligned to CCV (using the same
BLAT parameters), 16,245 proteins were found similar (>75% ID; 90% coverage),
of which 14,911 were also present in single copy (92%) in the CCV assembly and of
those 90% were present on pseudomolecules.

Protein-coding gene classification and annotation. Adequate RNA mapping for
transcript assembly and protein prediction was verified (88% average mapping
across tissues), as well as global sequence identity between genotypes (97% global;
98% CDS). Transcript assemblies were made from ~260M pairs of 2 × 100 stran-
ded paired-end Illumina mRNA-seq reads using PERTRAN as used in other plant
genome annotations98. 99,336 transcript assemblies were constructed using
PASA99 from mRNA-seq transcript assemblies above. Loci were determined by
transcript assembly alignments and/or EXONERATE alignments of proteins from
arabi (Arabidopsis thaliana), soybean, poplar, tomato, Kitaake rice, brachy, aqui-
legia, eucalyptus, grape, and Swiss-Prot proteomes to the repeat-soft-masked
genome assembly using RepeatMasker100 with up to 2 Kb extension on both ends
unless extending into another locus on the same strand. Repeat library consists of
de novo repeats by RepeatModeler101 on the CCV genome. Gene models were
predicted by homology-based predictors, FGENESH+102, FGENESH_EST (similar
to FGENESH+, EST as splice site and intron input instead of protein/translated
ORF), and GenomeScan103, PASA assembly ORFs (in-house homology con-
strained ORF finder) and from AUGUSTUS via BRAKER1104. The best-scored
predictions for each locus were selected using multiple positive factors including
EST and protein support, and one negative factor: overlap with repeats. The
selected gene predictions were improved by PASA. The improvement includes
adding UTRs, splicing correction, and adding alternative transcripts. PASA-
improved gene model proteins were subject to protein homology analysis to above-
mentioned proteomes to obtain Cscore and protein coverage. Cscore is a protein
BLASTP score ratio to MBH (mutual best hit) BLASTP score and protein coverage
is the highest percentage of protein aligned to the best of homologs. PASA-
improved transcripts were selected based on Cscore, protein coverage, EST cov-
erage, and its CDS overlapping with repeats. The transcripts were selected if its
Cscore was larger than or equal to 0.5 and protein coverage larger than or equal to
0.5, or it had EST coverage, but its CDS overlapped with repeats less than 20%. For
gene models whose CDS overlaps with repeats for more than 20%, its Cscore was at
least 0.9 and homology coverage was at least 70% to be selected. The selected gene
models were subject to Pfam analysis and gene models whose proteins were more
than 30% in Pfam. TE domains were removed along with weak gene models.
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Incomplete gene models, models where there was low homology support without
fully transcriptome support, short single exons (<300 BP CDS) without a protein
domain, or a lack of good expression gene model, were manually filtered out.

Syntenic blocks. All pairwise BLAST hits were calculated with Diamond105 either
separately, or within the Orthofinder106 program. Hits were then culled to the top
two hits within each haplotype (so, if a diploid is mapped to a diploid, four hits
would be retained for each gene; if it were mapped to a tetraploid, eight hits would
be retained). All hits with a bit score <50 were dropped.

Initial orthogroup inference: A separate run of Orthofinder was made for each
pair of genomes using the culled BLAST results. Only those hits within
‘orthogroups’ were retained.

Initial block construction: Blocks were formed using MCScanX from the culled
and orthogroup-constrained BLAST results, allowing 5× as many gaps in the
alignment as 50% of the minimum block size (MBS, default= 10). Block were then
pruned with DBSCAN to blocks with MBS hits within a fixed gene-rank radius 5×
MBS. All orthogroups are then ‘completed’, where igraph expanded the orthogroups
to include all possible combinations among genomes. These blast hits were then
pruned with dbscan with identical parameters as above. Block cleaning and
extension: To fill potential gaps in blocks left by the stochastic nature of varying
orthogroup connectivity, we pull all blast results that passed the score threshold
(agnostic to orthogroup identity) that were within a 100-gene radius of any syntenic
block and re-form blocks with MCScanX with the same parameters as above.

Syntenic orthology inference: All BLAST results were culled to those within a
50-gene rank radius of any syntenic block for all genomes. Orthofinder was run on
this entire set, and BLAST hits were parsed into orthologs, paralogs, or un-
clustered homologs. By default, hits that were not in an orthogroup (neither
orthologs or paralogs) with a score <50 or <50% of the best bit score for that gene
-by- unique genome combination were dropped from this dataset.

Gene family analysis and mutation rate. Single-copy gene orthologs and gene
family expansions were characterized using Orthofinder (v2.2.7)106. All on all
protein sequences from C. citriodora, E. grandis, S. purpurea, P. trichocarpa, and V.
vinifera were performed using Diamond105, then clustered into orthogroups using
Orthofinder. Single-copy orthologs were determined as clusters containing one
protein sequence from each of the five species. Protein alignments among species
were performed using MAFFT (v7.464)107 and the coding sequence was extracted
using a pal2nal108 perl script. Pairwise synonymous mutation rates were calculated
from coding sequences using PAML109 codeml. Ks mutation rate/site/year (R) was
calculated as: R= Ks/(2 * divergence age). Estimates of population mutation rate
(4Neµ) was obtained from the CCV parental library and four unrelated genotypes
(CCV2-019;−025;−045;−046) following maximum likelihood estimators based on
the alignment of shotgun sequence data110 to the CCV genome sequence, using
bwa mem (version 0.7.17-r1188)95. Upper and lower confidence bounds of esti-
mates per chromosome were extracted per diploid genotype. At each position in
the chromosome we count the four different nucleotides, n: = (nA,nC,nG,nT), and
such a quartet of counts was called a profile, while the sum of counts, n= nA+ nC
+ nG+ nT, was the coverage of the profile’s position. Heterozygous profile posi-
tion were taken as those passing SNP calling using the GATK (version 3.8)
program111 following the best practices pipeline112, while homozygous profile
positions were taken using the minimum depth of 4. The neutral mutation rate (µ)
per base pair per generation (year) was re-estimated based on these estimates of
population mutation rate from shotgun data, assuming a generation time of 15
years in CCV and an ancestral population size equals to 112,421, which was
suggested previously to be consistent with the demographic past of the related
species of E. grandis46.

Paralogs and whole-genome duplication. Paralogs among C. citriodora, E.
grandis, and V. vinifera (outgroup) were extracted from orthogroup and ortholog
information generated from Orthofinder. Pairwise Ks substitution rates among
paralogs for each species were calculated using codeml. Corymbia paralog gene
pairs underlying the eucalypt specific peak (0.33–0.45) were extracted and inves-
tigated for GO and KEGG pathway enrichment.

Differential tissue expression. Tissue-specific RNA libraries were aligned to the
indexed Corymbia genome using STAR113 (v2.5.3a; parameters: -out-
FilterMultimapNmax 7 -outFilterMismatchNmax 4). Gene count tables were
exported and analyzed using the edgeR package114 to obtain reads per kilobase
million (rpkm) expression values for each tissue. Normalized gene counts were
verified using a heatmap to ensure expression among related tissues was consistent.

Gene family expansions. Eucalypt, Eucalyptus, and Corymbia specific gene family
expansions (as defined in “Results”) were isolated from Orthofinder orthogroups.
Pairwise Ks values among sequences were calculated using codeml within each of
the three classes of gene family expansion to investigate which families had
accumulated relatively more or less synonymous mutations than Corymbia-Euca-
lytpus single-copy orthologs. Terpene genes were defined using best BLAT97 hits
among Corymbia proteins to sequences from Kulheim et al.33. The unrooted

terpene gene family tree was generated using FastTree115 (v2.1.10) and visualized
using iTOL116, from MAFFT107 aligned Corymbia terpene transcript sequences.

GO and KEGG pathway enrichment analysis. Gene ontology (GO) enrichment
analysis was carried out using topGO, an R Bioconductor package117 with Fisher’s
exact test; only GO terms with a P < 0.05 were considered significant. To identify
redundant GO terms, semantic similarity among GO terms were measured using
Wang’s method implemented in the GOSemSim, an R package118. KEGG119

pathway enrichment analysis was performed based on hypergeometric distribution
test and pathways with P < 0.05 were considered enriched.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Additional work to support the findings of this manuscript can be found in the
supplementary data section. Raw Illumina (paired end and mate pair) and PacBio reads
are available from the National Center for Biotechnology Information Short Read
Archive (SRA) under accession: PRJNA234431. Additional CCV resequencing genotypes
are available from SRA under accessions: PRJNA333377, PRJNA333376, PRJNA333375,
PRJNA333374. Illumina RNASeq data are available at NCBI under BioProject:
PRJNA629009. The genome assembly and annotation are freely available at Phytozome
(https://phytozome-next.jgi.doe.gov/info/Ccitriodora_v2_1). This Whole Genome
Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession
JABURB000000000. The version described in this paper is version JABURB0100000000.
All relevant data are available upon request from the corresponding author (Adam
Healey).
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