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ABSTRACT OF THE DISSERTATION

What can be learned from Repository-Scale Public Mass Spectrometry Data?

by

Benjamin Pullman

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Nuno Bandeira, Chair

High-throughput tandem mass spectrometry has enabled the detection and identification

of over 75% of all human proteins predicted to result in translated gene products from an

available tens of terabytes of public data in thousands of datasets. This thesis explores what we

can learn from this, as well as the challenges that arise when considering proteomics data at a

repository scale. First, we will consider validating what is known, through resources to build,

curate, and explore both FDR-controlled and user submitted libraries. Second, we present a tool

that allows for an automation of application of strict community guidelines criteria to any set of

search results, including peak quality and novel FDR controls. Third, we introduce a method

to illuminate the extent of what is not yet known using a new clustering approach designed to

xii



explicitly model peptide diversity by explicitly modeling spectrum coelutions. Finally, fourth,

we developed a method for extremely fast single spectrum searches against spectrum repositories

consisting of billions of spectra to both confirm or refute knowledge base IDs as well as discover

similar spectra to those consistently unidentified.
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Chapter 1

ProteinExplorer: a repository-scale re-
source for exploration of protein detection
in public mass spectrometry datasets

Introduction

Sustained improvements to tandem mass spectrometry (MS/MS) instruments and their

application to the analysis of a broad range of protein samples have resulted in the generation of

a large volume of mass spectrometry data[1][2]. But while this increased capacity has allowed

for the community-wide exploration of the protein content of many types of samples, it has

also led to new challenges where the significance of an identification (e.g., peptide or protein)

made in the context of a single sample or dataset may not hold when considering aggregate

identifications from hundreds of datasets taken to express what is known by the community as

a whole. Since the vast majority of the true matches coincide across most datasets (i.e., most

human samples share many proteins, which are typically identified mostly by the same peptides)

but false matches are much more likely to be unique to each dataset (or at least less consistent

across datasets), this leads to a situation where the naïve union of discoveries across many

datasets would result in an uncontrolled increase in false discovery rates (FDR) – a problem that

affects any question referring to community-scale identifications, as is certainly the case for the

HUPO Human Proteome Project’s (HPP[3]) quest for reliable detection of translated protein

products.
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To address this issue, our MassIVE Knowledge Base (MassIVE-KB[4]) spectral library

applied strict spectrum, peptide and protein level FDR controls at the aggregate level for all search

results included in its construction. As such, its reanalysis of over 31 TB of human HCD data re-

sulted in the largest HCD spectral library to date, with 2.1+ million spectra of >1 million unique

peptide sequences mapped to >16,000 proteins and covering over 50% of all amino acid content

in the human proteome. But while MassIVE-KB’s identifications offer an FDR-controlled,

repository-scale route towards analysis of protein detection in datasets from many sources, it re-

mains cumbersome and time consuming to i) to explore the genomic or functional considerations

associated with different identifications and ii) inspect the evidence in support of the detection of

missing or dubious proteins whose translated expression has not been confirmed by mass spec-

trometry data. Our ProteinExplorer application addresses these issues by offering integrated and

intuitive access to exon and functional information mapped to peptide and protein identifications,

as well as integrating with synthetic peptide[5]/protein[6] expression resources and applying

official HPP criteria for detection of novel proteins[3]. In addition, ProteinExplorer provides

access to detailed provenance records for every single identification, thereby enabling seamless

direct access to the public datasets from which identifications were derived, as well as to the stan-

dardized search jobs that were used to generate the original identifications from the public mass

spectrometry data – an aspect that is often overlooked when aggregating results from multiple

datasets (i.e., access to the full set of search parameters and original search results). In particular,

the hundreds of public datasets in the current release of ProteinExplorer reported here already

include identifications from systematic reanalysis of multiple datasets that were incorporated

into previous HPP releases (PXD000529/MSV000080255[7], PXD000533/ MSV000080254[7],

PXD000561/MSV000079514[8], PXD000612/MSV000080701[9], PXD000865/MSV000079526[10],

PXD003947/MSV000080826[11]), thereby allowing for open access to inspect whether reanaly-

sis confirms the original reports after considering repository-scale FDR corrections.

To further support the validation of peptide and protein identifications beyond what

is supported in existing resources, ProteinExplorer facilitates the comparison of experimental
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spectra identified from public datasets to spectra of synthetic peptides (from the ProteomeTools[5]

project) or proteins (from the BioPlex[6] project) by including these in separate spectral libraries

(altogether covering over 19,000 proteins) and by providing a simple, one-click access to the

generation of interactive spectrum images for matching peptides in multiple libraries. Finally,

since there are multiple ways in which identifications may not be currently eligible to fully claim

detection of novel proteins (e.g., protein identifications with only one peptide or absence of

corroborating spectra of synthetic peptides), ProteinExplorer further incorporates a user library

entitled PrEdict (Protein Existence dictionary) where users can submit spectra in partial support

of the detection of novel proteins, and thus iteratively progress towards collaborative detection

of proteins across datasets. Illustrating how this feature supports community inspection of

evidence of detection and supports convergence towards a common consensus, the quality and

interpretation of these identifications has also been rated and sometimes commented in records

associated with each entry in the user library.

Methods

ProteinExplorer is built on the MassIVE Knowledge Base[4] (MassIVE-KB), a repository-

scale spectral library resulting from the reanalysis of 658 million MS/MS HCD spectra from

27,404 LC/MS runs in 227 datasets. In brief, spectra were searched with MS-GF+[12] database

search against the UniProt human reference proteome with isoforms as well as contaminants,

such as porcine trypsin. Variable modifications included in the searches were oxidation, N-term

acetylation, N-term Carbamylation, Pyro-glu, and deamidation were considered as variable

modifications and carbamidomethylation on Cysteine as a fixed modification. For the purpose

of the analysis reported here, only matches identified to canonical proteins, and not matches to

contaminants, isoforms, or TrEMBL were retained. Spectrum identifications were considered

to be ambiguous and removed from consideration if there were two or more peptides matching

the spectrum with scores passing FDR thresholds. FDR was applied at the spectrum level (0.1%

library-level FDR), length-specific peptide level (1% local FDR), and 1% protein-level FDR
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for all proteins matched by at least one unique peptide[13][14], which corresponds to 0.013%

protein-level FDR for proteins matched by 2+ peptides[15] (i.e., expect two false positive protein

identifications). In addition to the MassIVE-KB spectral library constructed from public datasets

of natural sequences, spectral libraries of synthetic peptide spectra were also constructed using

the same process and used to assess the correlation of fragmentation patterns with MassIVE-KB

spectra.

Protein metadata and functional information was integrated into ProteinExplorer from

both PhosphoSitePlus[16] and Uniprot[17], with the current release based on downloads on

March 26, 2018. Protein Existence (PE) classifications were downloaded from the neXtProt[18]

ftp (the 2018-01-17 release) and incorporated into ProteinExplorer as well (rare discrepancies

between UniProtKB and neXtProt due to lags in synchronization between database versions

were conservatively assigned a PE of 0 to remove those matches from consideration). In brief,

protein existence tiers are defined as PE1 if there is evidence at protein level, PE2 if evidence at

transcript level, PE3 if inferred from homology, PE4 if predicted and PE5 if uncertain; proteins

are also referred to as “missing” if classified as PE2, PE3 or PE4 and “dubious” if classified

as PE5[18]. To further assess the potential biological significance of peptides, all peptides

were mapped onto genomic exons included in reference human transcripts. Using a previously

described approach[16][17], we mapped all peptides in MassIVE-KB to exons in ENSEMBL

89[19][20] and annotated whether the peptide maps uniquely to an exon, covers a splice junction,

or is mapped to an exon at all (some peptides are not mapped due to differences between UniProt

and ENSEMBL sequences). The algorithms used to determine whether proteins were matched

by two or more HPP-compliant peptides are described in Supplementary Materials.

ProteinExplorer is developed as a community hub for examining the human proteome and

is built as a Java application with a JavaScript front-end and a RESTful API built with Tomcat to

fit in the ecosystem of the MassIVE repository and the ProteoSAFe parallel workflow engine; Pro-

teinExplorer can be accessed at https://massive.ucsd.edu/ProteoSAFe/protein_explorer_splash.jsp.

The underlying database is built in MySQL and contains tables for libraries, proteins, peptides,
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representatives (spectral library PSMs selected to best characterize a modified peptide at a given

precursor charge out of the set of all PSMs which pass FDR), provenance spectra (the PSMs

that pass FDR for each precursor), and comments. In particular, PSMs are stored in a way

that is independent of libraries, so when updates are made to a library, or even representatives,

it is unlikely that most PSMs will need to be updated. An overview of the ProteinExplorer

functionality and data sources is provided in Figure 1.1 and the full schema for the database is

provided in Figure 1.5.

The JavaScript user interface provides two views for exploring the proteome. The first is

a proteome-wide view with information about all proteins, which we call the proteome page,

and the second is a protein-centric view that contains amino-acid level coverage information

from libraries as well as metadata from community resources, we which title the protein page.

The proteome page consists of two panels. The first is a series of filters for protein accession

identifiers, as well as other common fields such as the Uniprot protein description, protein

existence (PE) information from neXtProt, and options to consider only specific public datasets.

Under these filter boxes is a table that displays all proteins that satisfy the search criteria specified

in the filter boxes. The table also provides a one-click option to separate protein information

per dataset, including dataset specific expression and peptide-uniqueness; the table is also

downloadable for offline processing (see supplementary materials for examples of how the

proteome view can be utilized).

The protein page provides a detailed view of each protein, including sequence coverage,

representatives, and provenance, as well as filters for library expression and functional informa-

tion overlays. This page is specific per protein and can also be filtered to show only combinations

of libraries (e.g. only the natural peptides). The coverage map superimposes sequence-level

expression for the protein with functional information from UniProt and PhosphoSitePlus, and is

interactive allowing for users to hover over amino acids for more information about metadata as

well as click on individual amino acids to filter the view to just peptides covering that amino acid.

As the interface displays ample information in a relatively small space, distinctions are made
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between different libraries by using different colors, which are fully customizable to be more

accessible to all users, using a color picker[21]. When two libraries overlap, we blend the colors

by simply averaging the RGB values for each color, allowing for an easy distinction between red,

blue, and their mix (purple). The final two subsections of the protein page provide interactive

and downloadable tables for the representative peptides for the library and for all the supporting

PSM provenance information for the protein. The representatives table includes information

about representative length, number of proteins that each peptide maps onto when considering

single amino acid variants, number of exons matched by each peptide, and the coordinates of

the peptide on the protein. The provenance table contains all information necessary to track

the peptide back to its original experiment as well as search task, including the filename, scan,

charge, search algorithm, and link to the search. These tables are all filterable, and any filter

made to any table is applied to the entire view, facilitating discovery by eliminating redundant

clicks.

Algorithm for finding HUPO proteins

Beyond simply listing the PE classification for every human protein, ProteinExplorer

was also designed to facilitate the assessment of HUPO Extraordinary Detection Claims[22]

by pre-calculating the required criteria for a novel protein to be considered detected: it must

contain two non-nested peptides of length 9 or greater, where each is uniquely mapped to the

undigested sequence of proteins from the same gene even when considering all human proteins

(and their isoforms) in the reference proteome, within a single amino acid variant (SAAV) of the

peptide sequence. To calculate the number of non-nested peptides, we maintain all the peptides

that only map uniquely to a given protein, and then sort all of these peptides for the protein

by their end coordinate, End[i], in increasing order and for cases where the end coordinate

matches, their start coordinate, Start[i], in increasing order as well. We then formulate a dynamic

programming algorithm with the following recurrence, MaxPeps[i] represents the number of

maximum number of non-overlapping peptides when including peptide i as part of the solution

6



and MaxScoreAtPep[i] represents the maximum number of non-overlapping peptides when using

peptide candidates up to and including peptide i, regardless of whether peptide i is included

in the solution or not. The maximum number of non-overlapping peptides will be at the final

position in MaxScoreAtPep.

Synthetics

In addition to the MassIVE-KB spectral library constructed from public datasets of non-

synthetic sequences, spectral libraries of synthetic peptide spectra were also constructed using a

similar process and used to assess the correlation of fragmentation patterns with MassIVE-KB

spectra. The first batch of synthetic peptide spectra was from the ProteomeTools project[5]

(PXD004732/MSV000080544) and the second batch of synthetic peptide spectra was from the

BioPlex project[6] (MSV000080679), considering only peptides from synthetic sequences in

runs where those were used as bait proteins for affinity purification mass spectrometry (AP-

MS); in addition, since there was evidence of carry-over between consecutive BioPlex mass

spectrometry runs, peptide identifications matching the bait sequence from the previous run were

also considered to be from synthetic sequences and were not included in the set of identifications

considered for detection of novel proteins.

To calculate similarity between a MassIVE-KB representative spectrum and a spectrum

from a synthetic peptide, we consider the maximum cosine between all MassIVE-KB PSMs

identified to the peptide sequence and all spectra of synthetic peptides assigned to the same

peptide sequence; before calculation of cosines, all spectra were preprocessed to remove precursor

ion peaks (and their neutral losses), as well as filtered to retain only peaks with intensity rank of

at least 10 in a window of +/-50 Da around the peak mass. In the one case where the observed

cosine was lower than what we would expect for spectral library matches at 1% false discovery

rate (at which most usually accepted high-resolution matches feature cosines of 0.6 or higher),

we conservatively manually inspected the peptide-spectrum match to confirm the agreement of

fragmentation between the synthetic and non-synthetic peptide spectra. See Figure 1.9 for the

7



spectra that are matched.

But since FDR thresholds, stringent as they may be, are still insufficient to guarantee

the correctness of every single identification (i.e., the error estimates do not indicate which

identifications are incorrect), ProteinExplorer also includes spectral libraries of synthetic peptides

to further establish trust in the identifications derived from MassIVE-KB’s large-scale analysis

of public proteomics data. As described before[4] and in the Methods section, ProteinExplorer

spectral libraries of synthetic peptides were derived from the ProteomeTools collection of

synthetic peptides5 (“ProteomeTools Synthetics” library under “Library selection”) and from

the BioPlex collection of AP-MS experiments[6], where synthetic genes were originally used to

analyze the protein interactions of the translated gene products (“BioPlex Synthetics” library

under “Library selection”). As illustrated in Figure 1.3a in the main text, since peptide sequences

matched to spectra in each library are shown in different colors on the protein coverage display,

it becomes straightforward to visually identify protein regions that are covered by peptides

from only one library (e.g., only synthetic peptides or only non-synthetic peptides). Conversely,

visual rendering of peptides from different libraries mapping to overlapping protein regions is

achieved by superimposing the colors selected for the corresponding libraries. By default, since

the MassIVE-KB no synthetics library (in-vivo expression) is shown in red, and ProteomeTools

and BioPlex are shown in blue, all regions matched by both in vivo and synthetic peptides are

thus shown in purple.

Sorting by either “Start AA” or by “Sequence” reveals pairs of PSMs assigned to the

same sequence but with representative PSMs from either “MassIVE-KB (no synthetics)” (in

vivo expression) or from synthetic peptides in either “ProteomeTools Synthetics” or in “BioPlex

Synthetics” (see Figure 1.3b in the main text). Finally, as illustrated in Figure 1.3c in the main

text, clicking on the spectrum icon on the leftmost column shows the MS/MS spectra supporting

each peptide identification, with fragment peaks annotated according to the assigned sequence

and with an interactive display allowing for comparison to theoretical masses, as well as other

features such as zooming in/out, consulting experimental peak masses and considering alternative
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explanations for the assigned peptide sequence (by changing the sequence atop the spectrum

image and clicking “Update Peptide).

Results

The high diversity of peptide sequences and expression patterns observed across many

datasets in repository-scale searches open up the possibility of investigating protein biology

in more detail by exploring patterns of protein expression across datasets (see Supplementary

Materials) as well as comprehensive coverage of genomic exons and functional sites. As shown

in Figure 1.2, multiple features are mapped onto a sequence coverage view of the protein

sequence and it is possible to highlight different aspects of the coverage by selecting between

different types of rendering of the protein sequence, with “Flat coverage” highlighting all amino

acids covered by at least one PSM, “Spectrum Coverage” highlighting amino acids on a color

scale based on how many PSMs covered it and “Peptide Coverage” and “Variants Coverage”

highlighting amino acids based on how many unique peptides or modified peptide variants cover

each site (respectively). This coverage view is then extended to facilitate the analysis of exon

matches and functional sites.

Peptide sequences are mapped to genomic coordinates[23][24] on ENSEMBL 89[19][20]

to i) determine whether the mapping is unique (and thus indicative of exon presence/absence)

and ii) whether the peptide is fully contained within an exon or it’s a junction peptide spanning

one or more exons. As such, filtering by “Unique Exon Match” or by “Exon Junction Match”

in the “Peptide Representatives” table (i.e., by requiring a minimum value of one on either of

these columns) would select only for peptides matching the corresponding category and update

the sequence coverage to highlight only the locations covered by the sequences of the selected

peptides. Sorting by “Start AA” or “End AA” in the “Peptide Representatives” table further

facilitates inspection of overlapping sequences and modification variants covering the same

protein regions.

Functional knowledge of modified sites was integrated from UniProt[17] and Phospho-
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SitePlus[16] are shown on the protein coverage view as underlines, with additional details shows

by hovering over annotated sites. These be further explored to examine if any of the peptides

contain modified variants of a site or whether modification or expression patterns vary across a

range of datasets. Clicking on the amino acid location in the protein coverage panel filters the

page for only sequences covering the site of interest. Upon filtering, the views renormalize the

expression levels to examine specific sites rather than global expression.

Beyond the sequence level understanding in the coverage view, the “Peptide represen-

tatives” table then provides additional information on these peptides including the diversity

of peptide sequences and modification variants covering the site and the MS/MS spectrum, as

well as their corresponding expression patterns in terms of both number of PSM identifications

(“Provenance Spectra” column) and number of datasets in which each peptide variant was de-

tected (“Dataset Occurrences” column), thereby facilitating the estimation of which peptides

are most representative of the protein (e.g., identified in the highest number of datasets), rather

than just peptides with large number of PSMs (which might also be explained by dataset-specific

protocols strongly selecting for some protein regions over others).

We illustrate this functionality by considering a disease-associated site annotated by

PhosphoSitePlus on protein P06733 (Figure 1.2) and examining the overlapping variants at

position 2[21]. As all views are filtered by clicking on this site, we see that there are 4058

PSMs in 114 variants that cover this site. Further filtering for acetylated peptide sequences by

entering "+42.011" in the filter box for the "Sequence" field in the "Peptide Representatives" table

reveals that, even though the original searches did not consider Lysine acetylation as a possible

modification, there were still 9 peptide variants covering this site and identified as modified

with N-terminal acetylation. Out of these, 3 variants account for over 90% of all observed

PSMs and are the most commonly observed across multiple datasets. Interestingly, selecting

for Asparagine deamidation (by filtering for "N+0.984") also reveals separate deamidation

on each of the three Asparagines on the most abundant peptide sequence covering the site

(DATNVGDEGGFAPNILENK), each of which is clearly supported by site-localizing peaks,
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as can be readily seen by clicking on the spectrum icon on the leftmost column of the peptide

representatives table.

ProteinExplorer also facilitates the design of targeted experiments. The standard course

of action in a targeted experiment is to first find a few unique precursors to the protein and then

find transitions, (i.e. precursor and ion pairs) that are frequently observed in a reproducible

manner. In the protein view it is possible to click on a site to see all covering peptides which

can then be further filtered to emphasize particular characteristics, e.g. selecting for a particular

dataset that might be illustrative of experimental conditions. Once a peptide is selected, one

can then rank PSMs and compare them side by side to pick transitions (see Supplementary

Materials).

Detection of PE2-4 and PE5 missing proteins

The inspection of evidence provided in support of the detection of PE2-4 and PE5

proteins (missing and uncertain/dubious proteins) is a core need of the Human Proteome Project’s

(HPP) goal of confirming the in vivo translation of proteins predicted from the human genome.

Establishing the detection of these proteins requires that the supporting identifications meet a

well-defined set of criteria for extraordinary detection claims[22], including verification of the

identifications using spectra of synthetic peptides, all of which are addressed in ProteinExplorer

as follows.

First, the requirements for proper estimation of false discovery rates at the spectrum,

peptide and protein levels are all guaranteed by the spectral library construction processes used

to assemble the MassIVE-KB spectral library from over 190 million PSMs identified from over

30 TB of human higher-energy collisional dissociation (HCD) data4. Second, the additional

requirements for peptide length of at least nine amino acids, unique protein matches even with

one single amino acid variation (SAAV), and detection of at least two non-contained peptides

were addressed in ProteinExplorer and are reflected in the protein page in the “# Matched Proteins

w/0-1 SAAV Mismatch”. As such, filtering on this column for peptides matching exactly one
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protein selects for all candidates potentially supporting the detection of missing proteins.

The final step in the confirmation of peptide identifications (matching fragmentation to

spectra of synthetic peptides) is implemented in ProteinExplorer by separately listing represen-

tative PSMs with matching sequences but from different libraries (the “Library” field in the

“Peptide Representatives” table). Further, clicking on the “View Only Overlaps” option under

the “Coverage Type” options (as shown in Figure 1.3) refines the protein coverage to render only

peptides matched by two or more libraries, thereby facilitating the visual selection of sequences.

Also in this view, it is possible to track every single PSM back to the scan number, raw file and

public dataset where the spectral data came from (data provenance), as well as trace every PSM

back to the search workflow, parameters, job and results from which the PSM was extracted

(analytical provenance). Both of these elements are critical to the evaluation of detection of

missing proteins and likely should be added as formal requirements for all HPP submissions.

Using all of these ProteinExplorer features to analyze identifications in the current release

of MassIVE-KB, we were able to detect 296 PE2-4 and 55 PE5 proteins with at least one

HPP-compliant peptide, with 107 missing (PE2, PE3 and PE4) and 23 dubious (PE5) proteins of

these identified with two or more peptides meeting all HPP criteria for peptide identifications (see

Figure 1.4a). We include PE5 proteins as we have found ample evidence for the detection of many

but continue to report them separately from the missing proteins. Out of these PE2-4 proteins, 60

(3 for PE5) had two or more peptides with matching spectra from synthetic peptides and 21 (4

for PE5) proteins had only one of the two peptides for which spectra of synthetic peptides were

available (see Table S2 which is split into two sheets for both missing and dubious proteins and

is further sortable by number of matching synthetics on the “HPP Non-overlapping Matching

Synthetics” column as well as containing chromosome location and a link to the ProteinExplorer

page where all MS/MS spectra for the peptides can be examined). The distribution of cosines

between MassIVE-KB representative spectra (identified from public datasets) and corresponding

spectra of synthetic peptides is shown in Figure 1.4b; spectra and rationale for approval are

provided in supplementary materials as well as can be browsed online for all matches with
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a cosine less than 0.6 for further examination (see Supplementary Materials and Figure 1.9).

While spectra of synthetic peptides were not available to validate all 107 PE2-4 and 23 PE5

protein identifications with 2+ HPP-compliant peptides, we note that out of 60*2+21=141

PE2-4 and 3*2+4=10 PE5 cases where matching sequences were present in both MassIVE-KB

and synthetic peptide collections, all spectrum matches confirmed the identifications – thereby

strongly suggesting that the vast majority of proteins currently detected with 2+ HPP-compliant

peptides will also be confirmed as soon as spectra of corresponding synthetic peptides become

available.

In addition to facilitating the confirmation of HPP criteria for detection of missing

proteins, ProteinExplorer also helps ascertain whether proteins are likely to ever generate enough

peptides meeting the current criteria. For example, protein H3BUK9 is currently identified

in MassIVE-KB by 26 distinct peptide variants (and further matched an additional 34 shared

peptides) and is matched by over 200 variants in ProteomeTools and Bioplex synthetics combined,

altogether accumulating 15 peptide sequences (of length 9 or longer) uniquely matching to this

protein – yet not a single one of these peptides is a unique match after considering a single amino

acid variation (see Figure 1.2).

Updating libraries with user-added spectra

Since many proteins in the human proteome have not yet been detected or have been

matched only to a degree that does not meet HPP guidelines, ProteinExplorer also supports

contributions to a user library entitled PrEdict (Protein Existence dictionary) constituting a

community resource of exploratory ‘peptide hints‘ that may eventually accumulate to the point

of fully supporting the detection of previously unobserved proteins. Submissions to the PrEdict

library can come from complete dataset submissions or from reanalyses of public datasets,

even if these have not yet been aggregated into repository-scale spectral libraries (or otherwise

guaranteed to meet repository-scale FDR thresholds, as is the case with MassIVE-KB spectral

library construction workflows)). That said, ProteinExplorer retains the full provenance of every
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PSM by linking it back to the dataset and specific context from where it was contributed (e.g.,

a dataset reanalysis), thereby providing a route for direct inspection of the quality of search

producing the PSM.

To demonstrate the potential utility of the ProteinExplorer PrEdict library, we added CID

spectra from the CPTAC colorectal dataset[25] (MSV000079852) in support of an additional 25

missing proteins, each matched by 2 non-overlapping peptides matching uniquely to the protein

sequence even when considering SAAVs (see Table S4). These PSMs were originally either

submitted with the dataset or identified by subsequent CCMS reanalysis using MS-GF+ database

search. As an example of the utility of manual revision of tentative spectra, we added a peptide

ARHSEAEATRAR that uniquely maps (including SAAV matches) to the protein A6NNA2,

a protein with 8 synthetic peptides (125 PSMs) but only a limited amount of observations in

natural data (1 peptide with 1 PSM). While the spectrum initially appears to have a fair amount

of unexplained ion current, it turns out that the highest intensity peaks can be explained as

doubly-charged ions for neutral losses from the unfragmented precursor. As such, the spectrum

was marked as a 4 star match and a comment was entered (and is directly attached to the spectrum

for immediate access by anyone inspecting it further) describing the reasons for the rating. All

spectra in all ProteinExplorer libraries can be rated and annotated in the same way, thereby

empowering the community to review all matches submitted in support of the detection of

missing proteins.

Entry point and global searches

Access to large-scale protein identifications usually starts with looking for proteins

matching criteria considered in the ProteinExplorer main query page, from where it is possible

to search for specific proteins with an accession or gene name, as well as by UniProt protein

description (see Figure 1.7). In addition, it is also possible to select for proteins by their neXtProt

PE level (e.g., all PE2 proteins predicted from known transcripts) or by dataset (e.g., all proteins

identified in the MSV000079514/PXD000561 reanalysis of the draft human proteome dataset).
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Searching by UniProt protein description facilitates selection of proteins from a common subset;

for example, querying for the most commonly expressed HLA protein can be achieved by

searching for “HLA-” in the protein description box to get a list of the 101 proteins that are

HLA related and have evidence in MassIVE-KB (see Figure 1.7a). The list can then be sorted

and further filtered by several additional fields shown in the protein list table, such as sorting

by decreasing number of peptides uniquely mapped to each protein (ranging from 86 to 0 in

this case), as well as by PE level, revealing that almost all PE genes are classified as PE1 with

hundreds to thousands of peptide spectrum matches (PSMs) revealing that the most observed

HLA protein in these results was P10316. The only exception with PE>1 was P01893 / HLA-H

which is classified as PE5, but clicking to “view only non-synthetic matches” promptly reveals

that even though the protein is identified with 3 unique non-synthetic peptide matches, none of

them meets the HPP criteria for detection of novel proteins. All results on the protein list table

can also be downloaded for further offline processing by clicking the “Export Filtered Results”

button immediately above the table header.

Exploring protein expression across datasets is also enabled by simply clicking the option

to “view dataset protein pairs”, which can combine with filtering for a specific protein to see

its varying expression across datasets. For example, filtering for the HLA protein with most

unique peptides (P01903, with 83 unique non-synthetic peptides) shows that it is detected in 55

datasets but with broad variation in the number of unique peptides identified per dataset (e.g.,

after sorting by decreasing “unique peptides per dataset”), each of which has substantially fewer

unique peptides than the total number observed across all datasets. Upon closer inspection of

the datasets with the most unique peptides for this protein, it emerges that while some of these

datasets correspond to similar protocols (e.g., following the typical trypsin digestion protocols),

others focus on less-common protocols that are likely to reveal a different peptide space, such as

neoepitopes (MSV000080517) or endogenous peptides (MSV000080859), thereby suggesting

that the selection of most representative peptides for a protein may depend on the tissue or type of

sample and protocols being used for data acquisition. Further filtering the list to get only matches
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to the draft proteome datasets (dataset accessions can be filtered using comma-separated lists of

datasets such as “MSV000079526,MSV000079514”) shows that the number of unique peptides

and exon matches observed in these reference datasets is more comparable, as is expected

from their similar tissue sources and experimental protocols. In contrast, the comparison with

MSV000080517 also reveals that the number of unique peptides does not always increase in

proportion to the numbers of PSMs, with the focus on neoepitopes capturing nearly twice as

many unique peptides while identifying less than half as many PSMs as the draft proteomes.

Designing targeted experiments

The design of targeted experiments to detect proteins and protein features (e.g., isoforms

or modification variants) across conditions or experiments[25] can be informed by the repository-

scale diversity of expression patterns observed across all datasets. Once a protein of interest is

selected, ProteinExplorer facilitates the selection of peptides to consider for targeted experiments

in a variety of ways.

If the user wants to develop a targeted experiment to see the expression of a protein, the

standard course of action is to first find a few unique representatives to that protein and then find

transitions, or precursor and ion pairs, that are frequently observed in a reproducible manner.

Simply setting the upper bound of the “#Matched Proteins” column to 1 initiates this process by

selecting only peptides that match uniquely to the protein; this also ensures that all subsequent

analysis is done for only these unique peptides (since the filters are applied to the entire page).

The list of representative peptides can then be sorted by number of PSMs using the

“Provenance Spectra” column to get a sense for the relative detectability of the multiple peptides

from the same protein. Alternatively, the representatives can also be sorted by decreasing number

of datasets where they were observed using the “Dataset Occurrences” column, which can be used

as an indication of consistency of observation under varying samples and experimental conditions.

Furthermore, ProteinExplorer can also highlight regions of the coverage map where there is a

high amount of diversity of peptide modification variants by setting the coverage to “Variant
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Level”, thereby highlighting protein regions more prone to (likely artefactual) modifications

which could complicate higher accuracy of protein quantification. Also, since the colors for the

coverage map are averaged in areas where the sequence is matched by peptides from multiple

libraries, the user could hone their search to include only variants that occur in multiple libraries,

and potentially have spectra of matched synthetic peptides.

Once a peptide is selected, peaks for the transitions must be decided upon. By clicking to

view the spectrum of the peptide representative, the user can find and select the most intense

peaks simply by visual inspection. However, when selecting transitions, it can also be useful

to look beyond the representative to consider a larger collection of PSMs for the same peptide

to assess consistency of peptide fragmentation, as well as possible inconsistent interferences.

The additional PSMs can be found using the “PSM Provenance” information right below the

representatives, where its spectrum images can show which peaks are consistently observed

across many PSMs and datasets. Further, the peaks can be compared to those in spectra of

synthetic peptides to confirm whether the ions and relative intensities are maintained between

synthetic and non-synthetic peptides.

Beyond developing experiments for targeting proteins, ProteinExplorer also facilitates

the application of the same methods for targeting functional sites. As shown above, to view

all representatives covering a functional site, the user simply has to click that functional site.

From here, a similar process can be taken, first looking at detectability and consistency for all

peptides covering the site of interest, and then deciding on a representative. If modifications

are involved, it could also be informative to first sort by PSM counts and then find the most

common version of the representative where the site of interest may or may not be modified,

and then compare the fragmentation patterns of the modified and unmodified peptide to select

the most informative peaks for analysis of the modified site. Similarly, experiments can also

be developed to look at genomic architecture such as exon-unique or exon-junction peptides.

Currently, we provide a supplementary table (Table S3) that shows a mapping from peptides to

proteins/exons which can be used to decide the peptides to target (e.g., by selecting peptides
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that are “Exon Unique” or “Exon Junction”). From these peptides, the user can then filter the

“Peptide Representatives” table on “Sequence” to find the location on the protein coverage and,

by filtering the representatives to cover the sequence of interest, allow for an understanding of the

diversity of sequence and modification variants in the peptide region as well as an understanding

of the PSMs and datasets where the exon or exon junction occurs.

Process to update libraries with user-added spectra

Peptide identifications can be added to the user library by clicking the “Add to Library”

link in any mzTab results view for any MassIVE dataset or reanalysis at http://massive.ucsd.edu/.

The reanalysis could be previously submitted or a newly run by the user. Clicking on the “Add to

Library” link redirects to an input form wherein the user can confirm the details of the selected

peptide, including resolution of modifications masses to Unimod accessions. Submitted peptides

are then mapped to the proteome to find all coordinates in all proteins matching the peptide

sequence and a SAAV-tolerant search is conducted over the entire proteome to determine whether

the peptide can be marked as an ‘HPP peptide’ and potentially used as supporting evidence for

detection of a novel protein. After completing the submission, the user is then redirected to the

protein page showing where the peptide was mapped and whether it overlaps with peptides from

other libraries (including potential matches to synthetic peptides); see Figure 1.8 for an overview

of the process.

Since submission of spectra to the user library is expected to be tentative in that the

protein identifications are uncertain (and peptide identifications have not passed repository-scale

FDR), it is important to allow for these PSMs to be rated and commented on by the community on

their potential to eventually stand in support of the detection of novel proteins. As such, users can

rate PSMs in any ProteinExplorer library on a scale of 1 to 4 stars, with 1 star indicating incorrect

match with a companion comment indicating alternative explanation, 2 stars indicating likely

incorrect match but without a companion alternative explanation (e.g., based on fragmentation

properties), 3 stars indicating partially correct identifications (e.g., incorrect site localization for
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post-translational modification) and 4 stars indicating agreement with reported identification.

Discussion

The identification of over 1.4 million modified human peptide variants from systematic

reanalysis of public mass spectrometry data has created new opportunities for understanding the

human proteome, but also brings new challenges for the meaningful and efficient exploration of

such a large number of identifications from a volume of data so large that would not be accessible

to the vast majority of proteomics labs. ProteinExplorer thus expands beyond other resources in

i) its ability to enable interactive exploration of multiple libraries in dynamically updated views

displaying expression and functional metadata and ii) by supporting the submission and curation

of spectrum identifications for missing/dubious proteins, thereby empowering the community to

add spectra to the PrEdict user library, as well as curate (i.e., rate and comment on) other spectra

which were also submitted as hints.

As a key example of the utility of ProteinExplorer to assist with the exploration of the

human proteome, we have also described how its features enable the inspection of evidence

submitted in support of the detection of novel proteins, and show how these select identifications

for dozens of proteins that are fully compliant with HPP guidelines, as well as detect many more

proteins whose peptide identifications match HPP guidelines but for which there are currently no

spectra of the same synthetic peptide sequences. Since it is thus expected that it will be common

for evidence in support of the detection of novel proteins to be accumulated over time as new data

becomes available (including data for spectra of synthetic peptides), ProteinExplorer supports

this iterative and collaborative process by allowing for the submission of PSMs to the PrEdict user

library that is shared by the whole community. Finally, progressing towards community-wide

consensus of which identifications to accept requires full transparency in complete provenance

records (from data, tools and search procedures, all the way to identifications) but should also

be supported by an interactive platform where (dis)agreements can be recorded and used to

eventually converge on a community-curated collection of reliably identified spectra, especially
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for cases of high biological relevance (e.g., binding regions in monoclonal antibodies) or for

evidence supposed to support the detection of novel proteins.
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Figure 1.1. ProteinExplorer was designed to facilitate the productive exploration of repository-
scale identification of tens of millions of peptide spectrum matches (PSMs) for over 1 million
distinct peptide sequences identified from 30+ TB of public mass spectrometry data.
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Figure 1.2. (a) For each protein, the sequence coverage display provides an easy view to
explore the spectrum, peptide and modified variants coverage with superimposed metadata from
UniProt and PhosphoSitePlus. In this example, we highlight UniProt amino acid modifications
and disease associated sites from PhosphoSitePlus as dashes below their associated site, with
secondary structure also shown above the protein sequence. (b) Modified peptide variants
covering a site that is disease-associated (from PhosphoSitePlus) and also a known modification
(from UniProt), as well as covered by modified peptide variants in MassIVE-KB.
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Figure 1.3. (a) ProteinExplorer facilitates comparison of spectra from different libraries (e.g., for
comparison of spectra from synthetic and natural sources) by providing an option to automatically
select only peptides with the same sequence in the two libraries; e.g., selecting ProteomeTools
and natural MassIVE-KB to allow for inspection of full compliance with HPP criteria. (b) List
of selected peptides with entries in multiple libraries, also displaying whether the peptides are
sufficiently long and do not match more than one protein even when allowing for single amino
acid variations (SAAVs). (c) Interactive Lorikeet panels render annotated PSMs for assessment
of matches to theoretical ions masses, as well as for inspection of correlated fragmentation
between spectra from synthetic and natural sources.
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Figure 1.4. (a) MassIVE-KB identifications with repository-scale FDR detect 365 protein
annotated by neXtProt at the level of protein existence 2 or higher (PE2+), out of which we
find that 63 PE2+ proteins were identified with 2+ non-nested peptides whose spectra matched
to spectra of synthetic peptides. (b) Cosine distribution for synthetic/natural matches for all
peptides supporting the detection of PE2+ proteins; all cases with cosine below 0.6 were manually
inspected and are shown and discussed in supplementary materials.
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proteins
accession VARCHAR(45)
gene VARCHAR(255)
description VARCHAR(200)
uniprot_pe TINYINT(3)
nextprot_pe TINYINT(3)
sequence VARCHAR(32000)
sequence_il VARCHAR(32000)
annotations_rendered MEDIUMTEXT
version VARCHAR(45)

Indexes

variants
sequence VARCHAR(255)
demodified VARCHAR(255)
precursor FLOAT
modifications VARCHAR(1000)
number_of_proteins INT(11)
number_of_proteins_mismatch INT(11)
exon_unique TINYINT(1)
splice_junction TINYINT(1)
exon_mapped TINYINT(1)
length INT(11)

Indexes

library
id INT(11)
name VARCHAR(255)
version INT(3)
date DATETIME
dataset_id VARCHAR(13)
active TINYINT(1)

Indexes

psm_provenance
id INT(11)
file_descriptor VARCHAR(255)
nativeid VARCHAR(255)
dataset_id VARCHAR(13)
charge INT(1)
original_search VARCHAR(63)
workflow_name VARCHAR(100)
url VARCHAR(1000)
variant_sequence VARCHAR(255)

Indexes

representatives
id INT(11)
active TINYINT(1)
library_id INT(11)
charge INT(1)
peaks MEDIUMTEXT
psm_id INT(11)
variant_sequence VARCHAR(255)

Indexes

provenance_representative
id INT(11)
psm_id INT(11)
representative_id INT(11)

Indexes

protein_datasets
id INT(11)
dataset_id VARCHAR(13)
accession VARCHAR(45)
unique_peptides INT(11)
exon_unique INT(11)
splice_junction INT(11)
exon_mapped INT(11)
psms_shared INT(11)
psms_unique INT(11)

Indexes

dataset_peptides
id INT(11)
dataset_id VARCHAR(13)
sequence VARCHAR(255)
number_of_proteins INT(11)
exon_unique TINYINT(1)
splice_junction TINYINT(1)
exon_mapped TINYINT(1)

Indexes

comments
task_id VARCHAR(63)
rating TINYINT(2)
comment TEXT
psm_id INT(11)

Indexes

protein_statistics
id INT(11)
protein_accession VARCHAR(45)
library_id INT(11)
unique_peptides INT(11)
exon_unique INT(11)
splice_junction INT(11)
exon_mapped INT(11)
peptides INT(11)
variants INT(11)
modifications INT(11)
datasets INT(11)
psms_shared INT(11)
psms_unique INT(11)
hupo_nonoverlapping INT(11)

Indexes

variant_mapping
id INT(11)
protein_accession VARCHAR(45)
variant_sequence VARCHAR(255)
aa_start INT(11)
aa_end INT(11)

Indexes

Figure 1.5. Database Schema. Complete schema of the MySQL database of ProteinExplorer.
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After applying a filter for 
SAAV mismatch 
proteins, all coverage for 
this protein disappears.

Figure 1.6. H3BUK9 is a protein that has many natural peptide matches in ProteinExplorer, but
they are all shared with other proteins.
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Figure 1.7. (a) The ProteinExplorer main page allows users to search for proteins by accession,
gene, neXtprot PE, and UniProt description. (b) The protein list panel shows all proteins
meeting the filtration criteria, either at the level of the whole repository or per dataset. (c) The
dataset option allows users to see and filter by dataset accessions to find dataset-specific protein
information, including unique peptide and exon counts.
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Figure 1.8. ProteinExplorer allows for user submission to shared community libraries. While
user libraries are not FDR-controlled in the same way as MassIVE-KB libraries, the flexibility
to share spectra of any PSMs facilitates the exchange of information and could help converge
towards collaborative accumulation of evidence supporting the detection of novel proteins. (a)
All public datasets are potential sources for submission of spectra to user libraries. (b) Dataset
results or reanalyses allow for inspection of PSMs and submission to the user libraries. (c) The
spectrum submission form curates the PSM for resolution of modifications (if needed) before
final submission to the library. (d) Submitted PSMs are mapped onto the proteome and shown
in both the coverage map and in the (e) representative and provenance sections. (f) Spectra in
the user library (and in all other libraries) can be rated and commented on by the community to
assess and promote consensus around the proposed identifications.
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Figure 1.9. These are two spectra from the same variant of a PE2 protein Q4KMG9 that has 2+
matching HPP peptides, but the cosine match for this example is lower than expected at 0.461.
However, this score can be explained due to a high intensity contaminant peak, though otherwise
the y-series y4+ through y9+ matches and many other fragmentations peaks correlate.
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Chapter 2

HPP-Inspector: automated community-
scale validation of novel protein discover-
ies

Introduction

Proteomics discoveries are increasingly supported by large datasets, including draft

proteome datasets such as PXD010154[26] and PXD016999[27], which consider dozens of

different tissues to develop a comprehensive view of the proteome. Rare discoveries are also

enabled by smaller-scale datasets focused on less-explored tissues, samples, or experimental

protocols too. These data have been fundamental to the Human Proteome Project (HPP) run

by the Human Proteome Organization (HUPO) is the largest community-scale proteomics data

science project to date, aiding in the goal of determining the existence and biological context

of protein products for every human gene. Since many datasets explore the same (or very

similar) biological samples, it is often the case that true discoveries are replicated across datasets

whereas false discoveries resulting from experimental variations are likely to be less consistent,

thus resulting in increased false discovery rates (FDRs). Recognizing this challenge, the HPP

introduced and frequently revised a set of guidelines that should be followed to establish the

reliability of protein identifications, especially in cases aiming to establish protein existence by

providing first-time evidence of detection of in vivo protein expression. The manual application

of the HPP guidelines has served the community well by reinforcing the robustness of the
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evidence provided in support of protein existence but its broader impact has been limited by

the lack of tools for automating their application to a broader scope and scale of search results.

HPP-Inspector was developed to automate the application of HPP guidelines to any search results

from any public dataset to a sharable, high-level summary of potential novel proteins, while

allowing complete provenance back to the dataset and the original search to validate the claims.

A key component of the reanalysis pipeline is approaches for assessing spectrum quality

or robustness of identifications. PeptideProphet[28] and Percolator[29] use spectrum attributes

to rescore PSMs, but the HPP guidelines require "high signal to noise” identifications directly

and may be diluted among other criteria in these approaches, whereas HPP-Inspector measures

this directly. Quality control approaches such as those recorded in qcML[30] are more focused

on determining the viability of an entire run, and are not focused on specifically understanding

single spectrum signal-to-noise. Determining HPP criteria at the sequence level for the guidelines

is also important, and the NeXtProt Uniqueness checker[31], does this by reports if a given input

sequence is unique to a given protein to satisfy HPP criteria, but does not consider spectrum

quality. Finally, while ProteinExplorer[32] also implements the HPP-matching tools, it is

designed to work only on highly curated data and requires time consuming steps to add new

datasets.

In difference from other tools, HPP-Inspector also implements both spectrum quality

rescoring as well as sequence-based criteria such considering SAAVs and determining the

maximal-scoring set of non-redundant peptides of length no less than 9 amino acids. HPP-

Inspector also implements comparison to synthetics, which are generally understood to be

the gold standard in validating identification. In addition to implementing criteria to filter

for high-signal to noise identifications and to filter out possible single amino acid variations

(SAAVs), HPP-Inspector also implements automated comparison of identifications to spectra of

synthetic peptides and allows for the comparison of different popular approaches for calculation

of protein FDR. Finally, HPP-Inspector also allows for the comparison of new search results to

identifications already provided in publicly available knowledge bases (such as the MassIVE-KB
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Knowledge Base[4]) to help assess the potential new contributions from new datasets and search

results.

Methods

Data inputs

HPP-Inspector is a workflow in the ProteoSAFe/MassIVE environment, accessible at

massive.ucsd.edu; the open-source code is also available on GitHub at https://github.com/

CCMS-UCSD/hpp_inspector (v1.12 at time of submission.) The first required input to the

workflow is a set of peptide identifications, preferably in the open mzTab[33] PSI format (e.g.,

as included in many ProteomeXchange complete dataset submissions) or from MassIVE-KB

libraries (described in "Running MassIVE-KB libraries through HPP-Inspector"). mzTab conver-

sion workflows are also available at MassIVE for identification files in either mzIdentML[34]

or TSV formats containing at least columns for MS run, spectrum identifier, peptide identifica-

tion, and PSM-score (see supplementary information for direct links to all workflows). Protein

identifications are not required since HPP-Inspector remaps all peptide sequences. The column

to use for Peptide Spectrum Match (PSM) scores can be selected on the HPP-Inspector input

form, as well as whether higher (e.g., number of matched ions) or lower (e.g., p-value) scores

correspond to better-scoring PSMs. For search results using public data available at MassIVE,

spectrum peaks will be automatically loaded from the MassIVE repository; otherwise, spectrum

files can be uploaded to a MassIVE user account and used as inputs to the workflow. The second

required input to the workflow is a UniProt FASTA file containing the protein sequences and

with protein headers containing the substring “GN=<gene(s)>” listing the genes that each

protein sequence is transcribed from. It is recommended to use UniProt Reference Proteomes

whenever possible; results presented here were obtained using the UniProt human reference

human proteome, release 2020-06[35] All sequences from the input are extracted and mapped to

the input proteome FASTA, allowing for a single amino acid mismatch (SAAV) for each peptide,

both expected and unexpected[36] using a previously described algorithm[32][4].

32

https://github.com/CCMS-UCSD/hpp_inspector
https://github.com/CCMS-UCSD/hpp_inspector


Spectral libraries containing reference spectra of synthetic peptides can also be provided

as input to assess the correlation of their MS/MS fragmentation with that of the input PSMs. The

file format supported for spectral libraries is a simple extension of the standard MGF format

(see supplementary information for details), as is currently implemented for releases of the

MassIVE-KB[4] spectral library. Multiple synthetic inputs can be considered for the same

precursor, and the highest similarity synthetic will be considered for the match.

Spectrum processing

Not all spectra that pass 1% PSM level FDR are high enough quality to be evidence for a

protein and HPP-Inspector automatically filters out low quality PSMs as well as matches variants

to synthetics, ensuring that spectra selected for further analysis are of sufficient quality, complete

details in Supplementary Information.

Global False Discovery Rate (FDR)

While the inputs are expected at 1% PSM level FDR, to ensure that the proteins we are

considering meet HPP criteria, they must also be controlled at protein level FDR as well. In

HPP-Inspector there are four ways to consider FDR. The first, traditional FDR, uses the summed

intensity of all variants, where a variant is defined as having the same sequence and summed

modification masses differing by <= 3 Daltons, that pass quality filters and uniquely map to a

canonical or contaminant protein. Contaminant proteins are included in this calculation as these

represent true positives of proteins existing in the matrix, even if not necessarily human. FDR

is then calculated for each protein, P, by considering the number of decoys divided by number

of targets for all proteins with score greater than or equal to the score of P. Picked FDR is also

considered, to avoid over-representation of decoys as is common in large datasets[15], and that

is calculated using the same input variants (see "FDR").

However, the HPP criteria also state that each protein must have 2+ non-nested peptides

that are uniquely mapping to a protein, even when considering SAAVs. Therefore, a new FDR,

HPP FDR is defined by considering the score for each as the maximum score for non-nested

33



peptides per protein, where peptide scores are the maximum variant per peptide. This directly

considers the best evidence for each protein as would be considered for HPP evidence, allowing

for equal consideration of targets and decoys according to later filters. Traditional FDR is run on

the proteins with non-zero scores. Finally, leftover FDR looks at the proteins that did not pass

HPP FDR (either because they did not have sufficient HPP peptides or did not pass the score

thresholds) and applies a picked FDR to these using the subset of all possible picked-pairs where

neither the target protein nor the decoy protein was identified using HPP FDR. The goal here is

to provide the maximum number of sensitive hints for follow up consideration.

Prioritizing future experiments

HPP-Inspector can help to prioritize future discovery and inform experiments by provid-

ing a way to curate and share results, to be further prioritized can also be further refined by an

expert. To prioritize, HPP-Inspector defines three categories. The first two stem from canonical

proteins with unique matches that pass global picked FDR but do not pass HPP FDR, the first

category is orphans - proteins with 1+ HPP peptides and the second is hints - proteins with 0

HPP peptides. For the orphans, the question becomes finding a suitable pair for the known HPP

peptide, and checking why there is no pair for the peptide. The hints might be worth following

up for different reasons, and to ensure the protein has unique peptides, and if so why they are

not sufficiently high quality to be considered. The final category is rejects - all other canonical

proteins that pass search FDR in the dataset but are not HPP/Orphans/Hints. These are proteins

that should not be prioritized from the current analysis.

Job augmentation and comparison

Any HPP-Inspector job is a valid input for another HPP-Inspector job, so it becomes

straightforward to examine the combined evidence of multiple searches, including recalculation

of novel proteins and application of all global FDRs in the combined input. This allows jobs to

be run in an incremental manner, without reconsidering computationally expensive steps in the

workflow.
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Additionally, there is a way to both compare a current job, J, to another job, J′, to

understand how new inputs change global protein calls. Five values are output, 1. the total

number of non-nested peptides in the union of the current search and the comparison, 2. the

number of non-nested peptides in the union of the current search and the comparison passing

HPP-FDR, 3. the number of additional non-nested peptides found from the reference and then 4.

the number of non-nested peptides that are just in the reference and 5. The number of non-nested

peptides only in the current job.

Workflow result views

Once the workflow is finished, the main results are presented as three interactive tables

to show the evidence provided at the protein, peptide, and PSM level. For any PSM evidence,

outputs are recorded as Universal Spectrum Identifiers (or USIs). This means that all evidence

can be readily shared outside of these result views for other users to examine - of course the

result view itself can also be shared - but having the USI provides a community-specific and

publishable link to PSM-level evidence in the workflow.

The entry point is the proteins view, where all proteins in the dataset that are found to

have HPP-compliant evidence can be found. For each protein, the HPP-compliant evidence is

in three categories - 1. peptides that map by sequence, 2. peptides that map by sequence and

match a synthetic by sequence, and 3. peptides that map by sequence and have a cosine value to

a synthetic that is above a certain threshold. For each of these categories, there are an additional

three characteristics - peptides that are unique to the new dataset, peptides that are unique to the

library, and the union of peptides that are in the new dataset and in the library. Also, the count of

HPP compliant proteins is given for each category - if for example the new dataset provided a

novel sequence, it must not be a subset or a superset of what is already in the library for it to

count towards calling the protein. This allows for a quick filter to see what proteins new inputs

to call.

Once a protein of interest is found, there is a link from each accession to the peptides
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view to see the evidence for the variants that support that protein. For each sequence, statistics

are shown such as how many PSMs support that sequence, what synthetics are provided for the

variants, and what the best cosine between any synthetic with that variants and the input PSMs.

Additionally, both the PSM for the variant with the highest database score and cosine score are

shown.

Reanalysis Approach

To demonstrate the HPP-Inspector workflow, a diverse array of datasets was reanalyzed.

For each dataset, spectra were searched with MS-GF+ database search against the UniProt human

reference proteome with isoforms(UniProt Consortium, 2021) as well as contaminants, such as

porcine trypsin. Variable modifications included in all searches were oxidation (M,+15.995),

N-term acetylation (+42.011), N-term carbamylation (+43.006), Pyro-glu (Q,-17.-27), and

deamidation (NQ, +0.984), and carbamidomethylation (C,+57.021) as a fixed modification. For

TMT10 datasets[37], the TMT mass tag (+229.163) on both N-term and lysine, for phospho-

rylation datasets, Phosphorylation (STY, +79.966) is included, and for SILAC datasets heavy

modifications on lysine and arginine are included. FDR was set to 1% at the spectrum level,

length-specific peptide level, and protein-level for each search.

Running MassIVE-KB libraries through HPP-Inspector

Apart from an mzTab input, HPP-Inspector supports MassIVE-KB collections natively

from workflow results views. To run an HPP-Inspector job with MassIVE-KB inputs, any output

collection of precursors from the subheader “View Library”, for example the Library Variants

Ambiguity Filtered which contains all precursors in MassIVE-KB from spectra have one a single

PSM that maps to that precursor and passes FDR(https://massive.ucsd.edu/ProteoSAFe/result.

jsp?task=e33a302ea7e94422bf2b122260d22cc6&view=ambiguity_library_view_split). The

collection can be downloaded by clicking the blue “Download” button in the header. This

downloaded TSV can then be input to HPPInspector. After running this HPP-Inspector job, the

resulting job can later be used as a reference when looking at how new datasets can be added to
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community knowledgebases (see Combinations and comparisons of multiple results sets.)

MassIVE-KB synthetic spectral libraries are also supported. These can be found for

the MassIVE-KB synthetic spectrum jobs which include both synthetic peptides as well as

recombinant proteins (see Matching to spectra of synthetic peptides). This input mgf can be

found in the “MGF Library” link in the sub-header for “Downloads” for any MassIVE-KB

synthetic job

Quality assessment of Peptide-Spectrum Matches (PSMs)

The quality of peptide-spectrum matches (PSMs) used to support protein identifications

was assessed in two main ways: (a) using statistics measuring how well the peptide matches the

spectrum and (b) using modified cosines to measure how well input spectra match to spectra of

synthetic peptides of the same amino acid sequence. The evaluation of the quality of PSMs was

based i) on how well the assigned peptide sequence explains the peaks in the spectrum (explained

intensity) and ii) on the number of spectrum peaks matching to b/y ions of the assigned peptide

sequence (#breaks).

Several spectrum filters were applied prior to explained intensity calculations to remove

peaks that are not directly informative about the sequence of the peptide assigned to the spectrum.

First, precursor peaks were removed from the spectrum, which are not informative about PSM

quality since these would match any peptide of the same precursor mass (a filter that was already

strictly applied by the database search algorithm). Precursor isotopes (primarily 13C isotopes)

were also removed from each spectrum, as well as commonly occurring precursor neutral losses:

losses of H2O and NH3 were removed from all spectra, loss of CH4OS (i.e., -64 Da) from

precursors of PSMs containing oxidized Methionine, and losses of H3PO4 and M-H3PO4-H2O

from precursors of PSMs containing phosphorylated residues. Second, if the PSM is annotated

with either TMT[37] or iTRAQ[38]) isobaric tags then the peaks corresponding to reporter ions

(including peaks for the unfragmented reporter group) are removed from the spectrum. Third,

immonium ions [http://www.matrixscience.com/help/fragmentation_help.html] are also removed

since these are only informative about the amino acid composition rather than the order of the
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amino acids on the peptide sequence. Fourth, low intensity “background noise” peaks were

filtered from each spectrum using a window filter, where a peak of mass M is retained if and only

if it ranks in the top K highest-intensity peaks out of all peaks with mass in the [M-50, M+50]

interval (K=8 was used for the results presented in the main text).

Filtered spectrum peaks were then annotated using the standard ion types for collisional

dissociation[39] b/y ions and their 13C isotopes and H2O/NH3 losses, as well as a ions. For

peptides containing phosphorylated residues, the additional neutral losses of neutral loss for both

H3PO4-H2O and H3PO4-H2O were also considered. Fragment charge states were considered

from 1 up to the precursor charge state.

To further improve the robustness of the explained intensity statistic to the rare presence

of very few high intensity unexplained peaks (likely caused by poorly understood sequence-

specific fragmentation events), the top E highest-intensity unexplained isotopic envelopes were

also removed from each spectrum. Isotopic envelopes of charge z were defined as sets of peaks

whose masses differ by 1/z, and envelope intensity was defined as the summed intensity of all

peaks in the envelope. E=2 was used for the results presented in the main text.

Explained intensity (EI) in a processed spectrum S is then calculated by dividing the

intensities of peaks annotated as peptide fragments by the total intensity of all peaks in S. A

minimum EI of 40% was required for a PSM to be considered high quality. Additionally, the

number of peptide sequence fragmentation points (#breaks) supported by either a b-ion or a

y-ion was also considered, and a minimum of 5 breaks was required for the results presented in

the main text.

Matching to spectra of synthetic peptides

An orthogonal way of evaluating the quality of PSMs is to assess their similarity to

experimentally-acquired spectra of synthetic peptides of the same amino acid sequence[36]. If

spectra of synthetic peptides are input to HPPInspector, these are also processed as described

in the previous section and are matched to processed spectra of input PSMs using a modified
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“annotated cosine” function computing the normalized dot product[40] only between (i) peaks

annotated to peptide ions in the spectrum of the synthetic peptide and (ii) peaks at corresponding

masses in the input spectrum to be matched to the spectrum of the synthetic peptide.

Annotated cosines reduce the impact of interfering unexplained peaks by focusing the

spectrum matching on the consistency of fragmentation patters between a PSM and the spectrum

of the matching synthetic peptide (I/Isoleucine and L/Leucine were considered indistinguishable

for all sequence comparisons). Two kinds of sequence matches were considered for the calcu-

lation of annotation cosines: (a) cases where the input PSM and the spectrum of the synthetic

peptide have the exact same peptidoform (i.e., the same sequence with the same modifications

on the same sites) and (b) cases of input PSMs with modifications that were matched to spectra

of synthetic peptides of the exact same amino acid sequence but without any modifications. In

the latter case the ion masses in the modified input PSM were properly shifted when matching

them to the corresponding ion masses in the spectrum of the unmodified synthetic peptide.

Results in the main text used version 2.0.15 of the synthetic peptides build of the

MassIVE-KB spectral library[4], as available at https://massive.ucsd.edu/ProteoSAFe/static/

massive-kb-libraries.jsp. This build contains spectra of 1,662,275 distinct precursors whose

spectra were collected from data acquired in the ProteomeTools[5] and BioPlex[6] (bait proteins

only) projects.

Finally, PSMs passed as input to HPPInspector were considered to be reliable enough to

support peptide identification only if they passed all the filters described above and either (a) had

explained intensity of at least 40% or (b) had an annotated cosine of at least 0.5 to a spectrum of

a synthetic peptide.

Key fields in output results tables

1. Explained intensity: the explained intensity (EI) for a peptide sequence is defined as the

maximum PSM EI for PSMs of all modified or unmodified variants of the same sequence

P. If at least one PSM for the peptide sequence has 5+ #breaks (i.e, it can support a high
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quality peptide identification) then EI is defined as the maximum EI over all PSMs for P

with #breaks ≥ T (T was set to 5 here), otherwise it is the defined as the maximum EI over

all PSMs for P.

2. #breaks: number of distinct peptide fragmentation points (e.g., “backbone breaks”) for

peptide P supported by at least one b-ion and/or one y-ion with fragment charge <=

precursor charge for the PSM with highest explained intensity (EI). If there is at least

one PSM for P with #breaks≥ T (T was set to 5 here), then only PSMs for P with T or

more breaks are considered for maximum EI, otherwise all PSMs for P are considered for

maximum EI.

3. Cosine to synthetics: the annotated cosine reported for a peptide sequence P and a spectrum

S of a synthetic peptide for P is defined as the maximum annotated cosine between S and

all PSMs for all modified or unmodified variants of P.

4. Precursor score: the precursor score for a peptide sequence P is defined as the maximum

PSM score for PSMs of all modified or unmodified variants of the same sequence. As with

EI, if at least one PSM for the peptide sequence has ≥ T #breaks (T was set to 5 here)

then precursor score is defined as the maximum precursor score over all PSMs for P with

#breaks ≥ 5, otherwise it is the defined as the maximum precursor score over all PSMs for

P.

5. #Genes Mapped: given a peptide P, this is number of genes generating canonical protein

sequences containing P or containing a peptide P′ that differs from P by at most one amino

acid (i.e., a Single Amino Acid Variation, or SAAV for short)

6. HPP compliant given a peptide P, this column indicates whether P is considered compliant

with HPP criteria at both (a) the sequence level and (b) the spectrum level. At the sequence

level, P must be at least 9 amino acids long and is required to have “#Genes Mapped”

reported at exactly 1. At the spectrum level, P is considered to have enough experimental
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evidence if at least one PSM across all variants with amino acid sequence P had #breaks

≥ T (T was set to 5 here) and either (a) had explained intensity of at least E (E was set to

40% here) or (b) had an annotated cosine of at least C to a spectrum of a synthetic peptide

(C was set to 0.5 here). If both the sequence and spectrum conditions are met, this field is

set to “Yes”. If the spectrum evidence does not meet the criteria the field is set to “No -

failed quality thresholds”, and if the sequence level conditions are not met, the field is set

to “No - 2+ SAAV protein matches”.

7. Database representative: PSM for peptide P with score equal to “Precursor score” as

defined above. If there are multiple PSMs with the same maximal score, then the PSM

that also has maximum explained intensity (EI) is selected as the representative. If there

are still multiple PSMs with the same maximal score and maximal EI then one of these

PSMs is arbitrarily selected as the representative PSM (deterministically set to the first

occurrence of one of these PSMs in the input files).

8. Synthetic representative: PSM for peptide P with highest annotated cosine to a spectrum of

synthetic peptide P (regardless of whether it passes spectrum quality thresholds). If there

are no spectra of synthetic peptides with a matching sequence then this is set to “N/A” and

the annotated cosine is set to -1.

Protein False Discovery Rate (FDR) methods

Protein sequences are considered using the same categorization as in Uniprot[35]: se-

quences are considered isoforms or canonical if the protein identifier begins with “sp|” and

contains or does-not-contain (respectively) a "-" in the UniProt protein identifier. Other sequences

in the UniProt reference human proteome [https://www.uniprot.org/proteomes/UP000005640]

(e.g., with identifiers starting with “tr|”) were also considered as non-canonical sequences and

were reported as isoforms in HPPInspector output tables. Contaminants are defined by the user

using a separate fasta file which typically includes protease protein sequences and other common

contaminants (e.g., human skin keratin protein sequences) known to be frequently detected in
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mass spectrometry samples. Target proteins are defined as all sequences in the fasta files passed

as input by the user, and Decoy proteins are defined as the reversed sequences of all Target

sequences (thus #targets = #decoys). When calculating protein False Discovery Rate (FDR),

only canonical proteins and contaminants were considered as targets and only their reversed

sequences were considered as decoys (matches to isoform sequences and their decoys were

discarded since those do not support the detection of canonical proteins). The outline of the

approaches used for protein FDR is as follows:

1. Traditional FDR. The FDR for the set of all proteins S with minimum protein score M is

defined as the number of decoys divided by the number of targets in S. Given a desired

protein FDR threshold T , this approach returns the largest-possible set S (i.e., the one with

the most target proteins) defined by the minimum protein score M∗ resulting in a protein

FDR that is at most T .

2. Picked FDR[15] Given a set of scored target and decoy proteins, each target protein P

defines a pair (P, decoy(P)) with its corresponding reversed-sequence decoy(P). Decoy(P)

is set to the reverse sequence of P in HPP-Inspector, but protein pairs can also be defined

for other approaches to derive decoy sequences from target sequences. The score of a pair

(P, decoy(P)) is set to the maximum score of P and decoy(P). For the purposes of FDR

estimation, a pair is considered a target match if P has the maximal score, and otherwise

the pair is considered a decoy match. Similarly to the Traditional FDR approach for a

desired protein FDR threshold T , the final set of targets/decoys is then defined as the

largest-possible set of pairs (i.e., the one with the most target proteins) defined by the

minimum pair score M∗ resulting in a set FDR that is at most T .

HPPInspector defines 4 ways to do FDR using these two FDR approaches, with each

way using a slightly different set of input variant precursors, protein scoring function, and FDR

algorithm. A variant precursor V = (p,m,z) is defined as a spectrum identification for amino

acid sequence p with summed modification masses m and precursor charge z.
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1. HPP FDR. Used to enforce FDR using only proteins with enough peptides meeting HPP

criteria to be considered candidate HPP proteins.

Input variants: Given the set of input variant precursors with “HPP compliant” = “Yes”

(see definition above), the score of each distinct peptide sequence P is set to the maximum

“Precursor score” (see definition above) across all variants with the same amino acid

sequence P.

Protein score: To find the score for each protein P, first define S as a non-nested subset of

peptides mapping to P such that no peptide in S is contained in any other peptide in S. The

score of a set of peptides is defined as the sum of the scores of the peptides in the set.

The score of protein P is set to the score of the maximum scoring non-nested subset of

peptides containing at least 2 peptides[36]. This set is constructed from the set of peptides

p1, . . . , pN mapping to protein P at amino acid coordinates (si,ei) with scorei for each

peptide pi. This set is used to construct a graph G with one peptide node ni with scorei

for each peptide pi. Edges between peptide nodes are added to G for all pairs of node ni

with coordinates (si,ei) and node n j with coordinates (s j,e j) such that si < s j and ei < e j.

Finally, G is also expanded with a source node with an edge to each of the peptide nodes

in the graph and with a sink node with an edge from each of the peptide nodes in the graph.

Using such a graph G constructed for a protein P, the HPP score of protein P is defined

as the maximum scoring path in G across all paths containing at least 2 nodes in addition

to the source and sink nodes. Since G is a directed acyclic graph, we used a dynamic

programming algorithm to guarantee that it efficiently calculates the maximum scoring

path across all possible paths in G. If there are no paths of the minimum required length

then the protein score is set to zero.

FDR approach: Run Traditional FDR on all proteins using the protein scores defined

immediately above.

2. Leftover Picked FDR. Used to construct the set of Orphan or Hint proteins detected
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with significant scores after global aggregation of input results, but still without enough

evidence of supporting peptides to pass HPP FDR.

Input variants: All variant precursors that pass quality filters and uniquely map to a

canonical or contaminant protein.

Protein score: To find the score for each protein P, first define all Peptide Precursors

mapping uniquely to protein P, where a Peptide Precursor is a tuple (p,z) where p is

the peptide amino acid sequence and z is the precursor charge state. For each Peptide

Precursor, define its score as the maximum sum of all non-redundant variant precursor

scores, where two variants Vi = (pi,mi,zi) and Vj = (p j,m j,z j) are considered redundant if

pi = p j, zi = z j and |mi−m j| ≤ 3 Da. The set of maximum-score subset of non-redundant

variant precursors can be found by constructing a graph for a set of variants mapping to

each Peptide Precursor (p,z) such that each node is a variant of p with precursor charge

z. Edges are added between variant precursor nodes Vi = (pi,mi,zi) and Vj = (p j,m j,z j)

if m j −mi > 3 Daltons. The maximum-scoring subset of non-redundant variants is then

defined as the set of nodes in a highest-scoring path in this directed acyclic graph. The

score of a protein P is then set to the sum of all mapped Peptide Precursor scores.

FDR approach: Run Picked FDR on the subset of all possible protein pairs where neither

the target protein nor the decoy protein were identified using HPP FDR.

3. Canonical Traditional FDR.

Input variants: All variant precursors that pass quality filters and uniquely map to a

canonical or contaminant protein.

Protein score: Protein scores are defined in the exact same way as for Leftover Picked

FDR.

FDR approach: Run Traditional FDR on all proteins.

4. Canonical Picked FDR
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Exactly the same as for “Canonical Traditional FDR”, but using the picked FDR approach

instead of Traditional FDR.

Combinations and comparisons of multiple results sets

HPPInspector allows for Input search results to be analyzed jointly with a previously-

constructed Reference results set in two ways: (i) comparison with the Reference set contrasts

identifications in the input set with the identifications in the Reference set, and (ii) combination

with the Reference set considers protein identifications if taking the union of peptide identifi-

cations in both the input and Reference sets. Importantly, FDRs are not recalculated for the

union with the reference set because this set can be composed of just peptide sequences, which

may not be associated with any identification scores (e.g., when comparing with peptide lists

from resources that do not provide such scores or when identification scores are not comparable

between the input and reference sets.) However, the Reference set may provide a previously de-

termined protein FDR, and if it does this can be filtered independently of the Input set FDR. The

reported combined-analysis results thus represent an upper-bound on the protein identifications

that may become significant if HPPInspector is run using the Reference set as additional input

search results (instead of being used as a separate independent Reference set)

For each protein, P, let Input-peps be the peptides from variants passing FDR in the input

search results and let Reference-peps be the peptides from the Reference set. The following

output results are then provided:

1. #HPP Peptides (Combined) Number of non-nested HPP peptides in the union of Input-peps

and Reference-peps, where the protein P does not necessarily pass FDR thresholds in

either Input or Reference. This is the upper bound on the number of peptides contributing

to HPP evidence for a protein considering both Input and Reference.

2. #HPP Peptides (Combined, Pass FDR) Number of non-nested HPP peptides in the union

of Input-peps and Reference-peps, where the protein P either passes FDR thresholds in

Input or the protein P has supplied HPP-FDR below the cutoff in Reference.
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3. #HPP Peptides (Reference Leftover FDR) Number of non-nested HPP peptides from

Reference, only if the protein P has supplied HPP-FDR above the cutoff in Reference but

has reported leftover FDR below the cutoff in Reference

4. #HPP Peptides (Reference HPP FDR) Number of non-nested HPP peptides from Reference,

only if the protein P has supplied HPP-FDR below the cutoff in Reference.

5. #HPP Peptides (Added Only) Number of non-nested HPP peptides that are in the Added

set that are not in the Reference set.

Each of the above categories is repeated for cases where (i) all peptides have matching

synthetic sequences and (ii) all peptides have a PSM that matches to a synthetic with an annotated

cosine above a certain threshold.

The following three use cases demonstrate how comparing input searches to References

can help to better understand the contribution of the Input search to the Reference, with the first

two cases being the set of merged results from the paper compared to community knowledge-

bases, and the third case showing the difference between what one dataset can contribute only

considering dataset FDR vs the impact of the dataset considering global FDR.

1. Compare merged results to KB results (https://proteomics2.ucsd.edu/ProteoSAFe/status.

jsp?task=f243b8bb11dc45b2996aae4a9487d38b)

In this use case, a set of searches all combined at a global 1% protein FDR is the Input

and is compared to the MassIVE-KB representatives as the Reference to understand the

upper-bound on the contribution from the Input set. In this example, the MassIVE-KB

representatives have variant-level scores as well as predetermined protein FDR, which can

additionally be filtered for.

2. Compare merged results to PeptideAtlas peptides (https://proteomics2.ucsd.edu/ProteoSAFe/

status.jsp?task=0a9893634f374fce9f82904950e63ade)
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In this use case, a set of searches all combined at a global 1% protein FDR is the Input

and is compared to the PeptideAtlas sequences as the Reference to understand the upper-

bound on the contribution from the Input set. Since only sequences are being used (as the

identification scores are not compatible) there is no FDR threshold for Reference set.

3. Compare one dataset (PXD003947) to merged results reference (https://proteomics2.ucsd.

edu/ProteoSAFe/result.jsp?task=41493daad358409e84259aac2fdc1922)

In this use case, a single dataset at 1% dataset-level FDR is the Input and compared to the

set of searches at a combined, pre-determined global 1% protein FDR as the Reference.

This elucidates how some proteins are lost when the FDR threshold for the dataset is

considered as compared to a set of searches.

Results

The UniProt/neXtProt categorization of five different levels of protein existence (PE)

reflect the amount of evidence supporting the detection of gene protein products: PE 1 means

“Evidence at the protein level” (18,407 proteins), PE 2 means “Evidence at the transcript level”

(1135 proteins), PE 3 means “Evidence based on homology” (195 proteins), PE 4 means

“Evidence based on prediction (gene models)” (13 proteins), PE 5 means “Evidence is uncertain”

(609 proteins), where the numbers in parentheses indicate current the number of proteins in

each category in the 2022 release of neXtProt. Proteins in categories PE 2, 3 and 4 are also

referred to as Missing Proteins (MPs). Mass spectrometry project seeking to discover missing

proteins typically start with the analysis of (i) protein extracts from tissues or fluids that are

less-commonly analyzed or (ii) protein or peptide extracts obtained using various separation

techniques seeking to improve the chances of detection of proteins that are otherwise difficult to

detect. The 35 ProteomeXchange[41] datasets analyzed here and listed in Table 2.1 thus span

a diverse collection of sample types, biological conditions and experimental protocols that are

commonly used for searching for missing proteins, including 8 datasets contributed by official
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C-HPP members or otherwise acquired for this specific purpose. Altogether, these datasets

provide 202,008,485 spectra from 2.5TB of data. Since 80% of datasets (94% of all spectra) were

submitted without any reusable identifications in standard open formats (i.e., mzIdentML[34]

or mzTab[33]), and to obtain comparable results from a standardized search protocol across all

datasets, all spectra were reanalyzed using MS-GF+[12] as described in the Methods section.

All reanalysis results have been attached to the original datasets (see Supplementary Table 1

for all RMSVs/RPXDs). The resulting 51,567,767 Peptide-Spectrum Matches (PSMs) were

matched to 3,492,532 distinct precursor variants (minimum of 495 to maximum of 1,696,363

per dataset) mapping to a combined 17,805 distinct non-decoy canonical proteins (maximum of

11,166 per search), accounting for nearly 87% of all canonical proteins and almost 93% of all PE

1 proteins with at least 1 unique sequence. As shown in Figure 2.1, earlier datasets contributed up

to 2014 quickly accounted for the detection of over 10,000 human proteins, with additional gains

being mostly slow and incremental except for two different kinds of experiments. First, C-HPP

participants found significant numbers of missing proteins by analyzing less-common tissues

and fluids, such as the 1026 new proteins reported in PXD003947’s quest for missing proteins

in human spermatozoa[11]. Second, enrichment and fractionation protocols allowed for deeper

exploration of low abundance proteins even in tissues and cell lines that had been analyzed

before, such as the 2,368 new proteins reported in PXD004452’s exploration of multiple cell

lines using extensive fractionation, various enzymes and peptide enrichment strategies[42].

But while many datasets consistently contributed detections of previously-missing pro-

teins, it is important to consider that any analysis (or reanalysis) of increasingly larger volumes

of data also creates more possibilities for false positive protein identifications (especially as

the set of still-missing proteins becomes smaller and smaller). To illustrate the impact of this

problem, Figure 2.1 also tracks the increase in false positive identifications across datasets by

accumulating both target and decoy identifications, thus revealing that the protein-level false

discovery rate for naively accumulated identifications was over 31%. The HPP-guidelines[36]

for discovery of missing proteins require addressing this problem with additional criteria for the
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identification of both peptides and proteins. As described below, HPP-inspector’s implemen-

tation of HPP guidelines criteria improved the quality of the results but also resulted in very

substantial reductions in the number of proteins supported by the data, with up to 1,524 proteins

lost for dataset PXD010025[43] and over 77% of all proteins lost for the secretome dataset

PXD005656[44] due to overall low identification numbers leading to fewer proteins having 2+

peptides.

Rigorous analysis of peptide-level results requires careful definitions for what is meant

by “peptide” identifications. The HPP-inspector workflow illustrated in Figure 2.2 uses three

different categories for this purpose. First, peptidoforms are identifications where specific post-

translational modifications are assigned to specific sites on the peptide sequence, such that the

same sequence with the same modifications on different sites constitute different peptidoforms.

Second, variants of a sequence are identifications of the same exact amino acid sequence with the

same summed modification masses. In this case, a single variant of a peptide P could represent

multiple peptidoforms with different site localizations of the same modifications and would also

group a peptidoform with a di-oxidized amino acid together with a peptidoform of the same

sequence with two singly-oxidized amino acids. Variant-level analysis is especially useful for

HPP-Inspector analysis because the input search results are typically not properly controlled for

errors in modification assignments (e.g., two single oxidations vs di-oxidation) and modification

site false localization rates[45]. Finally, peptide identifications of a sequence group together all

modified variants and all precursor charge states of the same amino acid sequence. Peptidoforms

and variants with different precursor charges are referred to as different peptidoform and variant

precursors, respectively. All categories group together identifications of sequences differing only

by Isoleucine (I) or Leucine (L) since these cannot be distinguished in almost all commonly used

mass spectrometry data acquisition protocols.

While additional controls are not necessary to guarantee a global 1% PSM-level FDR (the

union of PSMs aggregates both target and decoy matches so the FDR stays the same), it is still

necessary to recalculate precursor-level FDR when merging results from multiple searches. Since
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different peptidoforms of the same amino acid sequence P with the same modifications do not

contribute independent evidence for the observation of P, HPP-Inspector imposes precursor-level

FDR at the level of sequence variants (thus avoiding potential ambiguities with modification

masses or site localization). As required by the HPP guidelines[36], peptide identifications must

also meet two additional criteria beyond FDR: guideline 5a states that peptide identifications

should be made using “high signal-to-noise ratio and clearly annotated spectra” and guideline

9 states that peptide sequences should be at least 9 amino acids long and match only a single

protein sequence even when considering Single Amino Acid Variations (SAAVs). HPP-Inspector

implements guideline 5a using quality filters requiring that variants be represented by at least

one PSM with at least 40% explained intensity (EI) and containing enough fragment ions (either

b or y ions) to support identification of at least 5 peptide fragmentation points (#breaks, see

supplementary information for additional details). Starting from 3,492,532 variants passing

FDR in the union of search results for all 35 datasets, HPP-Inspector quality filters removed

171,855 variants (5% of all) from consideration. After imposing quality filters, HPP-Inspector

then imposes HPP filters implementing guideline 9, which further remove 497,703 variants (14%

of all) from consideration, mostly because of shared peptide sequences matching to 2 or more

proteins. Figure 2.3a shows the filtration impact of each of these filters using an UpSet plot[46]

showing the counts for each category where variants do/do-not meet each of the 4 criteria. A

total of 2,838,365 variants (81% of all) was thus retained after applying all filters.

The HPP guidelines also recommend that whenever possible, the reported variant PSMs

should also be matched to spectra of synthetic peptides to further establish the correctness

of novel discoveries. As such, HPP-Inspector also provides the option for users to input a

spectral library containing spectra from synthetic peptides (see Figure 2.2). If such a library is

available, HPP-Inspector matches the fragmentation of the annotated ion peaks in the spectral

library to the fragmentation pattern of the same peaks in the corresponding identification in

the input search results (see supplementary information for details). The current release of the

MassIVE-KB spectral library[4] (v2, available at https://massive.ucsd.edu/ProteoSAFe/static/
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massive-kb-libraries.jsp) containing reference spectra for 1,666,936 precursors was used for

the results reported here. HPP-Inspector considers two types of variant matching to determine

if a PSM from a synthetic peptide is eligible for matching to a reported PSM identification.

Type 1 matches consider only cases when the variant string is the same for both the reported

and synthetic peptide identifications, thus requiring that both PSMs be for the same peptide

sequence with the same summed modification masses. To increase the utility of spectra of

synthetic peptides for matching to PSMs of modified peptides, HPP-Inspector also considers

Type 2 matches where an identification PSM with amino acid sequence P is matched to all

library variants of the same sequence P regardless of modifications. If an identification PSM

can be evaluated using both Type 1 or Type 2 matches then the highest match cosine of both

types is reported. As shown in Figure 2.3b, HPP-Inspector finds that for high-quality (according

to quality filters) Type 1 matches the reported identification is confirmed for nearly all cases

(98.6%). As expected, the percentage of confirmed identifications drops slightly to 92.4% of

cases for most high-quality Type 2 matches. The major exception observed to the latter was

for reported identifications containing TMT modifications, where the changes in fragmentation

patterns introduced by the N-terminal labeling groups resulted in only 35.5% of cases being

confirmed by high-quality Type 2 matches. Using spectra of synthetic peptides for analysis of

low-quality identifications showed that significant fractions of low quality PSMs still matched the

fragmentation in the spectra of the corresponding synthetic peptide. Since matching to spectra of

synthetic peptides is an orthogonal assessment of PSM quality, HPP-Inspector allows for PSMs

with low EI or low #breaks with high cosine to spectra of synthetic peptides to also be considered

as evidence for novel discoveries (this can be enabled or disabled using a configurable option in

the workflow input form).

A natural response to the question of whether a gene protein product P has ever been

observed would be to consider whether P has ever been reported as detected in any published

proteomics study. However, considering the union of proteomics studies aggregates false positive

as well as true positive discoveries, and this usually results in unacceptably high false discovery
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rates (as shown by the 32% FDR in Fig 1 for the set of proteins from just 35 datasets). Figure 2.4

shows how the various levels of protein, peptide and PSM filters affect both the FDR and the

reported number of significant proteins. First, requiring that proteins be identified using only

peptides that map uniquely to protein products from a single gene eliminates 599 target proteins

identified by parsimony using shared peptide sequences mapping to protein products from 2+

genes. Second, applying the PSM quality filters above eliminates an additional 233 target

proteins from consideration, but also significantly reduces FDR from 31% to 22% (as expected

since decoy PSMs are expected to be of lower quality than true target PSMs). Third, requiring

that proteins be matched by HPP peptide sequences (i.e., at least 9 amino acids long and mapping

to products from only one gene even if considering one SAAV) substantially reduces the set of

discovered proteins – 386 proteins lost when requiring 1+ HPP peptide and an additional 955

proteins lost when requiring 2+ non-nested HPP peptides (see supplementary information for

details).

Two examples illustrate how HPP criteria affect the set of resulting proteins. In one case,

PE 1 protein sp|Q2VWA4|SKOR2_HUMAN is matched by 7 distinct variants (each of which

individually satisfying HPP criteria), with the variants mapping to amino acids 368-378, 425-448,

and 801-818 on the protein sequence. However, regions 368-378 and 801-818 each have only

a single low scoring PSM for the variant, whereas there are 5 nested, but much higher scoring

variants for the region 425-448 – this greatly increases the protein-level score for parsimonious

or canonical protein analyses but yields only a modest protein score when enforcing HPP crite-

ria. In another case, the PE 2 protein sp|Q6NXN4|D19P1_HUMAN is matched by 2 distinct

variants that satisfy HPP-criteria, and then also matched by TKM[+15.994915]GLYYSYFK/2.

However, this latter variant also maps to the PE 1 protein sp|Q6NUT2|D19L2_HUMAN with

sequence TEM[+15.994915]GLYYSYFK/2 and a E→K (-0.9414 Da) single amino acid vari-

ation (SAAV) on the second amino acid on the peptide sequence. Even though the PSMs

for this identification clearly match the TK version of the peptide much better than the TE

sequence, this is a known SAAV reported in neXtProt and is a case where the codons for the

52



two amino acids (K and E) differ by only one nucleotide, thus also constituting a Single Nu-

cleotide Polymorphism (SNP). Combining the SAAV information with the observation that

PE 1 protein sp|Q6NUT2|D19L2_HUMAN is also supported by over 200 variants (including

141 HPP-compliant variants), further supports the preferred interpretation of this peptide as a

less-surprising SAAV on PE 1 protein sp|Q6NUT2|D19L2_HUMAN instead of allowing it to

support a surprising novel discovery of PE 2 protein sp|Q6NXN4|D19P1_HUMAN.

Although these HPP requirements lead to a significant drop in sensitivity, the need for

enforcing these requirements is also supported by their very significant impact in reducing

FDR from 22% to 7%. Finally, enforcing 1% protein level FDR eliminates an additional 256

proteins to yield the final set of 15,376 proteins passing all quality and FDR requirements (an

aggregate loss of 2,429 proteins from the initial 17,805 reported in the 35 input datasets). The

additional requirement in the HPP guidelines to match the search PSMs to spectra of synthetic

peptides is only possible to evaluate for 13,876 proteins (90.2% of all passing all previous quality

filters), even when using the MassIVE-KB spectral library constructed from multiple datasets

containing data from synthetic peptide and protein sequences. That said, the robustness of the

HPP and quality filters implemented in HPP-Inspector is reinforced by the synthetics-confirmed

identification 13,767 proteins, corresponding to 99.2% of all with PSMs for 2+ HPP peptides

that can be matched to spectra of synthetic peptide sequences (with most of the unconfirmed

cases following the same patterns discussed above for the analysis of precursor identifications).

The low number of only 2 new missing proteins (MPs, i.e., proteins in categories PE 2,

3 and 4) reported in the HPP-Inspector analysis of the 35 datasets is not surprising because all

datasets were released before this year and their data has already been integrated in the updated

MassIVE-KB build integrated in the 2022 neXtProt release. However, the contributions of each

dataset to the discovery of novel proteins is best assessed by the number of MPs detected in the

datasets at the time when the datasets were released. HPP-Inspector evaluates these contributions

by also reporting results for historical versions of neXtProt, staring with the 2014 release. As

thus shown in Supplementary Table 1, we can see that several datasets contributed data for the
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discovery of dozens of novel MPs in the years when they were released, with up to 63 new

MPs first detected in 2017 in dataset PXD004452 (which considered various deep fractionation

protocols for the analysis of cell lines).

However, these two new MP are both due to isoforms that are potentially from read-

through transcripts, but which are not recorded as read-through. This is an issue when calling

the MP Q9Y4R7 from gene TTLL3, as the isoform P59998-2 is a readthrough-protein of

ARPC4-TTLL3, however is only considered a protein from the gene ARPC4, and since all

sequences unique to Q9Y4R7 to also map to P59998-2, these sequences appear to be not HPP

compliant as they map to multiple genes. A similar situation occurs with MP E9PB15, from

gene PTGES3L, when there is an isoform Q9BTE6-2 which is noted to be a read through from

PTGES3L-AARSD1, noted on the Uniprot website with manual curation[35]. In both cases,

since these isoforms contain read-through transcripts with other genes, these proteins would

never be called unless the gene is updated in Uniprot, or the guidelines do not consider isoforms

in determining uniqueness.

Since the novelty of discoveries in new datasets depends on the peptide and protein

observations already recorded in existing knowledge bases, it is important for HPP-Inspector

to be able to both compare and consider the integration of new identifications with existing

knowledge base identifications. This is implemented by allowing users to submit a collection

of reference knowledge base results, which can be provided either as a spectral library (e.g., in

MassIVE-KB format) or as a simple list of peptide sequences (see supplementary information

for details and use cases). When comparing to the original release of MassIVE-KB, the union

of new results from the 35 datasets would contribute new evidence for the detection of 662

additional proteins. Conversely, MassIVE-KB already contained evidence for 847 proteins not

observed in the 35 datasets so HPP-Inspector also reports that the combination of search results

could generate a combined set of 16,223 proteins using peptide identifications from both older

and more recent datasets. HPP-Inspector also reports results for three additional categories of

protein identifications that can be used to help prioritize future experiments seeking to reveal
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additional evidence for the identification of missing proteins. Starting from the set of proteins

with unique peptide matches that pass canonical picked FDR but do not pass HPP FDR (see

supplementary information for details), HPP-Inspector categorizes a protein P in this subset as

an Orphan if it is matched by at least one HPP peptide and as a Hint if it is matched by no HPP

peptides. In both cases, the detection of the proteins in specific samples from specific proteomics

studies, tissues or cell lines provides partial evidence of protein expression (or at least improved

detectability) under those conditions, which could be used to design additional experiments

on the same type of biological samples to hopefully acquire the additional missing evidence

to establish the discovery of the novel proteins. Even when considering the new results from

the 35 datasets in addition to proteins already identified in the original release of MassIVE-KB,

HPP-Inspector reports 670 Orphan proteins (including 70 MPs) and 282 Hint proteins (including

25 MPs), thus providing partial evidence and direction for follow up research with the potential

to identify 952 additional proteins, including potentially identifying 95 additional novel MPs.

Discussion

As the community gets closer to finding mass spectrometry evidence for the entire

translated proteome, HPP-Inspector allows for individual contributors to understand the impact

of their experiments in the context of community-scale knowledge. Many of the 35 datasets

came from different labs and represent different sample types, labeling protocols, etc. but all

can be analyzed in the same workflow. Further, while HPP-Inspector will inform the user of

what is likely sufficient for community scale knowledgebases, it will also provide directions

for follow up, in the forms of orphan and hints as well as show which precursors and proteins

have matching synthetics. And even if the quality is sufficient for the dataset-level analysis, the

workflow can be used to compare current results at the peptide level to community libraries.
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PXD004452PXD003947

Figure 2.1. Histogram shows the number of target proteins identified per search in each dataset
(blue bars) and the accumulated target proteins (blue line) for all searches of the 35 datasets,
adding searches in chronological order of the date of dataset submission to ProteomeExchange.
As new searches are addeded to the aggregate set of results, the protein-level False Discovery
Rate (FDR) steadily increases (red dotted line) at a rate higher than new protein identifications
since targets proteins generally coalesce (i.e., same proteins identified across many datasets) and
decoys do not (or do so at lower rates). The unfiltered acceptance of all results derived from all
datasets thus results in an unacceptably high 32% protein-level FDR.
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Figure 2.2. The overall process of HPP-Inspector from coalescing input PSMs, to applying
multiple levels of FDR, to the HPP-compliant output. Each step can be scrutinized by the user
through online tables and all PSMs, including their synthetic matches, can be shared through a
USI[47]. Additionally, the HPP-Inspector workflow outputs proteins that are not HPP-compliant
but can help inform future experiments about where unseen or missing proteins might be found.
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Figure 2.3. (A) UpSet[46] plot for all variant precursors to assess which of the 3,492,532
input precursors are HPP-compliant according to the four precursor-level categories of 1) Only
mapping to a single protein including single amino acid variants (SAAVs), 2) Having a PSM
for the variant precursor with more than 40% explained intensity, 3) 9+ amino acids in length,
and 4) Matching 5+ backbone breaks in the peptide. The bottom plot shows all the different
possible intersections between the categories, showing notably that around 78% of all variant
precursors satisfy all conditions. (B) shows all precursor variants have a match to a synthetic
PSM, breaking the matches down into two categories, precursor variants that pass PSM-quality
filters and those that do not. Among those that do, nearly all have high cosine to synthetics (1),
except for a small number where the TMT labelling caused the match to be lower quality (2)
and about half of that which have differing fragmentation for other reasons (3). A small number
of spectra matched synthetic sequences with high cosine but were lower quality (4) and others
both considered low quality and confirmed to have a low cosine to synthetics, implying some
difference in the fragmentation compared to what is expected for that precursor (5).
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Figure 2.4. The first bar shows the 17,805 proteins from the union of all search jobs, each at
1% parsimonious protein FDR, leading to a 31% FDR. The second bar still considers per search
FDR, but only considers uniquely matched proteins, still at 30% FDR but losing 599 targets. The
next bar imposes spectrum quality filters, still maintaining 16,973 targets, but reducing the FDR
to 21%. Requiring 1+ and 2+ HPP peptides further limits the number of targets, but ensures all
targets meet HPP criteria, however the FDR is still 7%. Finally, imposing an HPP-FDR of 1%
filters the set of proteins down to 15,376 total target proteins, that all pass HPP criteria
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Table 2.1. The 35 datasets are sorted chronologically by submission date and by the number
of proteins identified from each dataset using parsimonious, unique, and HPP False Discovery
Rate (FDR). Dataset-level FDR is recalculated over all searches of the subsets of data from each
dataset (e.g., separate searches for different tissues or cell lines), such that the reported numbers
represent 1% dataset-level FDR.

PX Dataset
Identifier Year #Spectra #PSMs #Variant

Precursors
#Proteins

Parsimony

#Proteins
unique

peptides

#Proteins
2+ HPP
peptides

PXD000442 2013 448,336 121,070 27,872 3,361 3,256 2,368
PXD000447 2013 354,332 82,901 23,148 3,254 3,146 2,258
PXD000443 2013 469,536 232,550 88,793 6,513 6,359 5,076
PXD000449 2013 969,814 293,870 52,984 4,802 4,724 3,350
PXD000263 2013 165,699 31,598 15,466 2,895 2,804 1,863
PXD000529 2013 1,546,542 568,384 135,196 7,700 7,544 6,392
PXD000533 2013 2,167,835 843,006 175,485 8,418 8,264 7,115
PXD000427 2014 394,324 100,431 21,154 2,916 2,809 1,687
PXD000603 2014 167,128 37,753 7,942 1,782 1,675 863
PXD000900 2014 14,292,385 3,062,728 349,881 6,211 6,151 5,705
PXD000547 2014 242,723 41,438 10,389 1,429 1,361 891
PXD000548 2014 333,713 45,624 14,649 1,976 1,904 1,296
PXD000754 2015 519,326 176,289 37,125 4,266 4,129 2,957
PXD001694 2015 2,228,403 111,604 26,158 3,106 3,009 1,807
PXD002255 2015 4,161,568 960,666 153,185 7,446 7,332 6,190
PXD001933 2015 530,308 189,295 47,231 5,534 5,386 4,160
PXD002428 2015 1,536,403 8,066 2,916 873 834 339
PXD003947 2016 2,568,210 1,077,954 161,284 5,021 5,009 4,147
PXD004785 2016 4,216,141 1,879,600 179,645 8,516 8,417 7,514
PXD004452 2017 22,284,971 8,250,139 1,376,655 13,571 13,415 12,788
PXD006798 2017 737,902 59,024 10,800 1,916 1,835 908
PXD006833 2017 8,370,043 2,758,725 380,278 11,230 11,035 9,945
PXD006465 2017 4,107,526 599,858 160,036 7,201 7,098 5,943
PXD006557 2017 796,492 20,694 1,844 558 511 137
PXD010025 2018 2,111,875 258,145 79,027 5,392 5,257 3,821
PXD009646 2018 1,773,164 45,100 17,883 1,878 1,803 1,286
PXD010142 2018 1,483,231 887,238 41,639 3,739 3,643 2,806
PXD010093 2018 946,983 70,912 31,924 3,250 3,215 2,250
PXD009737 2018 5,766,845 1,178,891 503,069 11,726 11,565 10,311
PXD005656 2018 94,891 1,923 491 150 135 35
PXD010154 2019 76,177,914 20,074,287 1,646,516 14,313 14,193 13,571
PXD004092 2019 7,104,983 2,599,552 285,481 9,852 9,760 8,833
PXD014083 2019 3,507,193 461,004 122,868 7,116 6,944 5,817
PXD014300 2020 374,729 144,935 33,053 3,894 3,769 2,566
PXD016999 2020 29,057,017 4,292,513 228,499 9,000 8,456 8,278
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Chapter 3

StrataCluster: a new approach to tandem
mass spectrometry clustering for accurate
estimation of the missing human proteome

Introduction

Mass spectrometry (MS) is the main technology for high throughput analysis of pro-

teomics samples[48], allowing for high throughput analysis of proteins and post-translational

modifications of cancer samples[49], protein biomarkers[50], and drug targets[51]. As such, there

have been systematic efforts in the proteomics community to create a mass spectrometry-based

blueprint of the human proteome to understand human biology and disease[8][10][26]. The

increasing quality of MS data and algorithms have enabled many impactful proteomics results

and the recently released blueprint of the human proteome, but have also led to the incorrect

perception that the problem of identification of tandem mass (MS/MS) spectra is mostly solved.

In difference from this, algorithms for clustering of MS/MS spectra have long indicated

that large fractions of MS data remain unidentified, but high error rates in mixing (incorrect

grouping of different peptides) and splitting (incorrect separation of spectra from the same

peptide) have significantly complicated the task of quantifying the portion of the human proteome

that still eludes current identification algorithms.

MS/MS clustering algorithms in mass spectrometry have traditionally been designed to

maintain cluster quality (all clusters should contain spectra which can be labeled as the same
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peptide) with the purpose for speeding up and improving the quality of searches while lowering

cluster redundancy somewhat, something which the algorithms have been shown to do accurately

and quickly[52][53][54][55][56][57]. We propose a novel formulation of the MS/MS spectra

clustering problem eliminating the ubiquitous assumption that each spectrum is generated from a

single peptide, and show that the StrataCluster algorithm results in clusters with > 15-fold less

mixing and > 17-fold less splitting than current state of the art approaches.

While it might seem that current algorithms can give decent lower bounds by changing

parameters to reduce cluster quality in exchange for fewer, and more representative clusters,

we found this not to be the case. It then becomes necessary to reconsider the approaches - to

attach equal emphasis on creating high quality, representative clusters (measured as mixing, and

defined it as the number of identifications in a given cluster) and at the same time, ensuring

that the number of clusters generated is not significantly higher than the number of underlying

molecules the spectra represent (splitting and it is defined as the number of overall identifications

as compared to the number of overall identified clusters).

StrataCluster results thus reveal that as much as 94% of the human proteome is currently

missed by typical data analysis protocols, including 69% of medium-abundance peptides detected

in multiple human tissues. Probing into this “missing proteome´´ using open-modification

search and spectral alignment algorithms further reveals two separate categories of missing

identifications.

First, the “gray proteome´´ (38% of all clusters) reveals hundreds of thousands of post-

translationally modified peptides that are routinely missed by typical search protocols and are

only partially recovered by open-modification searches. Accounting for even more clusters than

are typically identified (only 30%), we show that these define diverse collections of “peptide

families´´ aggregating many modified peptide variants, including many hypermodified peptides

found to be differentially-abundant across human tissues. Second, this analysis also revealed a

“dark proteome´´ (32% of all clusters) that are not significantly matched to any sequences in the

reference human proteome, even though over 130,000 of these also form peptide families with
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variants that also differ by known modification masses.

Finally, clustering results across the deep characterization of 29 human tissues reveals

very similar patterns of variation for both commonly-identified and missing-proteome peptides,

including tens of thousands of tissue and sample-specific hyperexpressed peptides, where only

36% are commonly identified and the remaining split into 35% gray proteome and 28% dark

proteome peptides. Overall, the analysis enabled by StrataCluster’s novel clustering approach

indicates that improved algorithms for analysis of the gray proteome have the potential to double

the number of medium abundance peptides identified in proteomics experiments, while also

showing that new approaches are necessary for analysis of the dark proteome (which still remains

almost as large as the current commonly-identified proteome).

In addition, StrataCluster’s detection of patterns of variation across tissues (including

sample-specific hyperexpression) and construction of peptide families detecting relationships

between identified and/or unidentified peptides can be used to both prioritize and facilitate the

follow up analyses that will be necessary for advancing the elucidation of the gray and dark

human proteomes.

Methods

Dissimilarity edges

Dissimilarity edges model spectrum-spectrum matches as potential containments instead

of as full spectrum relationships. The edge is defined by considers the top k peaks ranked

by intensity of one spectrum being present in all peaks of another (see Dissimilarity Edges

Supplement). Being a containment relationship, dissimilarity edges are directed as the top peaks

of one spectrum can appear in another, though the converse might not be true. If there are two

edges, one in each direction, that is referred to as a bidirectional dissimilarity edge, representing

cases where the two spectra likely are from same peptide (though cosine similarity is used to

confirm this). For bidirectional dissimilarity edges, most spectrum-spectrum pairs that share the

same peptide are captured. However, many spectrum-spectrum pairs can only be modeled as
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asymmetric dissimilarity edges indicating that only considering exact matches these relationships

would be either mischaracterized or missed. If there is only one dissimilarity edge between two

spectra, that is called a unidirectional dissimilarity edge and this represents cases where one

spectrum is a subset of another, potentially either due to co-elution or incomplete fragmentation.

Beyond the recovered spectrum-spectrum pairs that might have been lost when only considering

spectra that match exactly, dissimilarity edges allow for some algorithmic speedups, allowing us

to use a hashing technique (see Dissimilarity Graph SI) to find these edges, mitigating the need

for many costly spectrum-spectrum comparisons. This creates a reduction of comparisons by on

average 1000-fold, for bins with many precursors.

Clustering algorithm

To ensure that the output clusters are as non-redundant as possible, without sacrificing

sensitivity, spectra are clustered in a way that maintains a stratification within the cluster. First,

dissimilarity edges between all spectra within a given parent mass tolerance are constructed, using

a hashing process to speedup construction of the graph. Within each connected component, there

are three steps, first considering all spectra that have only bidirectional dissimilarity edges and

are at the same parent mass, then relaxing the constraint on parent mass, allowing matches that

are 1 isotope away, and finally allowing for unidirectional dissimilarity edges to be considered.

The first stage groups the many spectra that are nearly identical in the connected com-

ponent. While bidirectional dissimilarity edges can be extremely precise with < 0.1% error,

these edges are not sufficient to completely discriminate between two spectra at a large scale, as

with hundreds of millions edges in a clustering graph, 0.1% could quickly create an abundance

of mixing. To avoid this, the cosine similarity or the dot product of two normalized vectors

is added as an added criterion for similarity. To begin the clustering process, the unclustered

spectra in each connected component are first ordered by their best outgoing edge, based on

cosine similarity, with the intention of seeding the clusters with spectra that are as similar to

each other as possible. For each spectrum, form a new cluster with the two spectra of the highest
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cosine edge. Then repeatedly consider the spectrum that has the highest average cosine of at least

theta and a bidirectional dissimilarity edge to at least 80% (since at the given cosine threshold

the recall of all true edges is around 80%) of the spectra in the cluster and add them to the core

of each cluster, removing them from the unclustered set of spectra until there are no spectra to

add to the cluster. Finally, to find the representative of this cluster. Consider pairwise similarity

between all spectra in the cluster and set the spectrum that has the highest average pairwise

similarity is set to the first representative of the cluster. Repeat the process until all spectra are

considered, in all connected components.

The second stage considers spectra that should have been clustered but due to different

permutations in peaks and parent masses that can differ by an isotope, might have been missed.

The previous stage is repeated, however instead of considering unclustered spectra, only the

representatives for each cluster are considered and now allowing for one isotope difference in

parent mass between representatives. Order the clusters by size and for each cluster considered,

repeatedly add new clusters that contain a bidirectional edge to at least 80% to all representatives

and an average cosine of at least theta by adding the new cluster representative to the set of

representatives for the cluster and adding all the spectra to the set of core spectra. Repeat this

until all clusters are considered.

The final stage considered the unidirectional dissimilarity edges and all the containment

relationships that have not been considered, leaving many related clusters unconnected. For

unidirectional dissimilarity edges, projection cosine, a measure of spectrum containment17,

is used to better assess the quality of the match, even if the full spectrum cosine is not high.

When considering unidirectional dissimilarity edges, the working assumption is made that larger,

more homogeneous clusters are more likely to be the highest quality spectra for the peptide and

should be the cluster representative. Picking the cluster representative then determines if the

edge created is a subset (the spectrum with more peaks is a mixture) or a superset (the spectrum

with fewer peaks is missing signal). If there is a tie, the representative is chosen using minimum

KL divergence for superset edges, and maximum precursor intensity for subset edges. Order the
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clusters by size of the core and for each cluster, c, repeatedly add the cluster, c′, connected via

either any dissimilarity edge and with the highest average projection cosine to all representatives

of c of at least theta’, as follows: c becomes a satellite of c if the edges between c and c′ are

bidirectional, c′ becomes a weak satellite of c if the edges between c and c′ are unidirectional

with c′ being a subset of c, and finally c′ becomes a mixture of c if the edges between c and c′

are unidirectional with c′ being a superset of c. Repeat until no two clusters can be merged.

Database search

Both unclustered spectra from the dataset and cluster representatives from all tools are

representatives are searched using MSGF+[12] against the UniProt human reference proteome19

with isoforms and contaminants, including porcine trypsin. The results are filtered to a 1% PSM

and 1% precursor level FDR. Variable modifications included in the search were oxidation, N-

term acetylation, N-term carbamylation, Pyro-glu, and deamidation, and carbamidomethylation

on cysteine was considered as a fixed modification. A parent mass tolerance of 0.01 Da was used

and one missed cleavage was allowed. For the representative-level evaluation, the representatives

output from each algorithm are identified in the same manner as the spectrum-level results.

Evaluation criteria

To consider how StrataCluster compares to other algorithms, there are four criteria to

consider. The first, mixing, is the percentage of clusters that contain two or more top-scoring

distinct sequences, from searching the individual spectra. A cluster with one sequence is

considered pure. Distinct sequences (and not peptides) are considered since all algorithms to

be evaluated generally cluster within a narrow parent mass tolerance as the goal is not to score

mixing based on localization of modifications. The second, splitting, is the total number of

identified clusters divided by the total number of unique cluster representatives minus 1. This

assess how many extra clusters there are beyond the goal of having one cluster per molecule. The

third, precursors output, is the number of precursors from cluster representatives after accounting

for potential ambiguity with mass error vs deamidation and carbomylation vs acetylation. This
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measures overall sensitivity of the approach. Finally the fourth, adjusted unidentified precursors,

is the number of potential precursors left to identify. This is calculated as the number of

unidentified precursors divided by 1+splitting.

Cascade search

In order to reduce false positive identifications in searches allowing for unexpected

modifications, clusters representative spectra were first searched with MSPLIT spectra library

search[58] against the MassIVE-KB spectral library[4]. This search considers a smaller search

space (only peptides whose spectra have been confidently identified before) and has access

to the most information per peptide (i.e., peptide spectrum fragmentation is known a priori

and represented in the spectral library reference spectra per peptide). In addition, MSPLIT

searches are also able to identify mixture spectra containing peaks from co-eluting peptides.

Second, representative spectra that are not identified by MSPLIT are searched using the same

MSGF+[12] protocol described above to allow for the identification of precursors with no

representatives in the spectral library or with significantly different peptide fragmentation patters

(e.g., possibly due to co-elution with precursors not represented in the spectral library). Finally,

only representative spectra that are not identified by MSPLIT or MSGF+ are considered for

searching using MODa20 to consider the largest search space of peptides possibly containing

unexpected modification masses. In difference from similar open-modification search tools21

which search all spectra against all sequences in the protein database, this MODa search considers

only spectra that were not identified by MSPLIT/MSGF+ (thus reducing the chances of obtaining

false positive identifications with unexpected modifications when simpler explanations are

statistically significant in more restrictive searches) and only considering peptide sequences from

the same proteins that were identified by MSPLIT/MSGF+ (thus reducing the space of sequences

available for possible false positive identifications).
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Spectral networks analysis

Spectral networks are graphs defined on sets of spectra where each node represents

a spectrum in the set and edges represent the detection of significantly correlated peptide

fragmentation between the spectra of the connected nodes. For the analysis reported here, each

cluster defines one spectral network node corresponding to the cluster representative spectrum

and each node’s spectrum counts is set to the number of spectra in the corresponding cluster. As

previously described[59][60], Smith-Waterman[61]-like spectral alignment algorithms are used

to define the edges of a spectral network based on the detection of correlated fragmentation in

spectra of related peptide sequences differing by modifications, longer/short prefixes/suffixes or

amino acid polymorphism. Spectral alignment was only considered for pairs of nodes sharing at

least one short de novo sequence tag of length 3 in their top 50 sequence tags. When spectral

alignment was computed to define edges between nodes, it allowed for peak matches between

the aligned spectra regardless of the parent mass difference and used the normalized dot product

to assess the similarity of aligned spectra, as described before for the spectral networks definition

of molecular families[60].

Results

Stratified clustering framework

To build a clustering algorithm designed for characterizing the dark proteome sensitively

and without redundancy, it is necessary to devise a clustering framework that can categorize

the range of spectra seen for a given peptide, identified or not. Clustering moves away from

being designed for uniformity (i.e. only the most similar spectra) and towards a strategy that

stratifies spectra into three main components, as shown in Figure 3.1A. 1. The core, which is

where the high-quality spectra that define the representative of the spectra are located. 2. The

satellites, which are for low quality versions of the representatives from the core and 3. The

mixtures, which are like the core but instead have extra peaks, whether due to coelution or extra

noise peaks. The structure maintains all spectra associated with a peptide in the same cluster,
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without enforcing a homogenous similarity requirement for all types of spectra for membership

in clusters.

Comparison to other tools

StrataCluster performs well compared to the state of the art in clustering algorithms,

MaRaCluster[56], MSCluster[52][53], spectra-cluster[54][55], and GLEAMS[57]. All these

algorithms perform the task of spectral clustering using a form of agglomerative clustering.

MaRaCluster also explicitly handles the problem of coeluting peptides, in both the treatment

of spectrum-spectrum similarity measures as well as requiring complete-linkage when creating

clusters. MSCluster , spectra-cluster, and GLEAMS all do not consider coelutions in their

clustering. However, StrataCluster is the only algorithm specifically designed to find a lower

bound of the number of clusters while the others are designed for the task of reducing the

number of input spectra but maintaining all identifications in the output. Therefore, while all the

algorithms are concerned with mixing, StrataCluster also places high emphasis on splitting.

All the algorithms are used to cluster the HCD, tryptic, and non-synthetic spectra in

MSV000083508. To assess the quality of the clusters, both individual identifications for each

spectrum contained in each cluster (spectrum-level) and also the identification of the representa-

tives (representative-level) are considered. Comparing StrataCluster to other MS/MS clustering

algorithms, mixing and splitting are both significantly lower than the other tools, especially with

regards to splitting, as seen in Figure 3.1C. For the medium abundance clusters, those with 5+

spectra, the results, in Figure 3.1D and E, show that StrataCluster is able to maintain the low

mixing and splitting, while also producing the highest number of distinct representatives when

cluster representatives are searched in panel E. This shows that the stratified clustering process is

both, sensitive and specific even when only considering the cores of clusters.

Cascade search

StrataCluster results thus reveal that as much as 94% of the human proteome is currently

missed by typical data analysis protocols, including 69% of medium-abundance peptides, many
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of which occur in multiple tissues as seen in Figure 3.1B. To explore the space of possible

identifications for precursors that are routinely not identified by typical search protocols (i.e,

the MSGF+ protocol reported above) requires considering that peptides can be modified with

atypical/unexpected post-translational modifications or can have slight sequence variations such

as non-tryptic sequences or sequences with single amino acid polymorphisms. We explored

this search space in two ways: (i) cascade search allowing for unexpected modifications and (ii)

using spectral networks algorithms to define “families” of correlated peptide spectra (regardless

of whether they’re identified or not).

To assess this missing proteome, it is important to first confirm what can be confidently

identified in standard search protocols. Considering just unmodified peptides and peptides that

are modified with known sample handling modifications, just over 1/3 of clusters are identified.

Considering the spectrum level, propagating representative IDs over spectra, it appears that 50%

of spectra in medium abundance clusters are identified. The discrepancy between spectrum

counts and cluster counts here indicates, as expected that peptides commonly seen in other

experiments make up a significant portion of spectra considered but add less to the overall count

of peptides, showing the importance of clustering in assessing and prioritizing what is missing.

The rest of the identifications are in the “gray proteome“, unexpected modifications and the “dark

proteome“ or cases that are completely unmatched to anything found in the human proteome.

Unidentified proteome

The “gray proteome“ then consists of about 31% of medium abundance clusters, with

16% or 246,785 being identified by an open modification search. Many modified precursors

indicate a broad diversity of precursors missed in typical experiments. Further, nearly all the

additional open search clusters have modifications found are not those in the search space of

MSPLIT/MSGF+ of common sample handling mods, such as methanine oxidation and N-term

acetylation, and instead MODa is finding the majority mods that are post-translational, chemical

derivatives, and amino acid substitutions, accounting for more than half of all modified clusters.
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The second part of the “gray proteome“ wasn’t identified by open modification search

but are cases where there are clusters that are in peptide families with identified spectra. While

unidentified, nearly 60% of the time have a direct neighbor that is identified indicating that

the aligned spectral similarity is likely sufficient to understand what the potential identification

might be, with just one unexpected modification beyond what was in the original search space.

Since it is part of known peptide families, these clusters are considered unidentified diversity

and can help us understand the kinds of modifications that occur on these peptides (based on

the delta mass of the edges). The remaining 40% of clusters have an edge to a cluster that is not

identified, either due to other modifications – likely indicating something that is highly modified

and unlikely to be found without spectral networks analysis, but still traceable to something

identified.

24% of the remaining unidentified clusters are still in peptide families, just without any

identifications in the network, or unidentified networked, making up part of the “dark proteome“.

For these clusters, the topology of the network reveals “peptide families” even when none are

identified. The likely scenarios include clusters are cases of sequences and modifications either

from missing sequence space, or potentially spectra which when modified have substantially

different fragmentation patterns than their unmodified counterparts.

Understanding tissue specific expression

Using information from spectral networks, identifications for unidentified clusters that

were in the “grey proteome“ can be revealed, allowing for both an accurate assessment for

the total abundance of a protein as well as an understanding of modifications, when there are

potentially more than would be reasonable to find in a standard open search. Figure 3.3 shows

the diversity of putative modified versions of sequence DQNGTWEMESNENFEGYMK which

is uniquely mapped to protein P50120 and its isoforms, gene RBP2. RBP2 is a retinol-binding

protein with a fatty acid binding pocket and is implicated in a host of roles in metabolism[62].

DQNGTWEMESNENFEGYMK is a peptide at the start of the protein which covers part of
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the binding pocket. The network of diversity around this peptide originally has only a few of

the clusters identified, leaving many large clusters, containing 19 identified clusters out of 47,

corresponding to an 1174 identified spectra, out of the total 2714, leaving the majority of spectra

in the network unidentified, with likely most spectra from this peptide having 2+ modifications.

The identified spectra, those being from unmodified peptides and peptides with a smaller

number of modifications occur mostly in the illium, jejunum, and duodenum (illium and jejunum

are both considered small intestine in the dataset metadata). However, many of the unidentified

spectra with propogated IDs over the network appear tissue specific to the small intestine, and

appear to have labile mods. While follow up analysis is necessary to understand exactly what is

happening, the added labile mods could potentially correspond to bound ligands at the binding

pocket that are more prevalent deeper into the small intestine as compared to at the boundary

with the stomach.

Exploring tissue-specific expression for all clusters

To begin to understand the “dark proteome“ , differential sample-level expression can

provide clues as to what an unidentified cluster might be and help to prioritize future directions.

At the protein level, the initial analysis of this draft proteome showed that around 50% of proteins

appear to be housekeeping, or expressed in almost all tissues, many are tissue or group-specific1.

At the peptidoform level, we can consider both unmodified expression, likely corresponding to

protein-level expression, as well as expression of unexpected modifications, cases where some

specific proteoform might only be present in a select number of tissues, even if the most abundant

proteoform is not.

We consider “hyper-expression” of peptides, defined here as having over 10x the spectral

counts for one tissue as compared to the median spectral count for a cluster. The cases of

hyperexpression for unmodified spectra mostly fall in known proteins that have previously been

shown to be tissue specific such as many peptides from sp|P12883|MYH7_HUMAN in heart

tissue and sp|P01266|THYG_HUMAN in thyroid tissue.
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Nearly half of the 81,791 of hyper-expressed clusters are unidentified, corresponding

to highly abundant and tissue specific, and the relative identification rate of the tissue-specific

hyperexpression varies significantly from tissues like heart and brain, where nearly all the

hyperexpression is identified at the spectrum level (Figure 3.5B) to cases like bone marrow and

lung, with most of the hyperexpressed clusters being unidentified. Further, we see that number of

spectra continues to still not imply molecular diversity in this set, as the percentage of unidentified

hyperexpressed clusters and unidentified corresponding spectra can differ significantly, both

within the same tissue and between tissues, as stomach has more spectra in hyperexpressed

clusters than thyroid, but thyroid has twice as many clusters as stomach. This discrepancy shows

that StrataCluster is able to assist in assessment of follow up for all types of unidentified spectra,

from cases in networks with identified spectra to networks with unidentified spectra.

Similar hyper-expression can be found in modified clusters, indicating tissue specificity

for specific proteoforms as in Figure 3.5B. The peptide YI(C,305.076)ENQDSISSK from the

protein sp|P02768|ALBU_HUMAN, a protein which is highly expressed in liver tissue [63]

but also expressed in all tissues, is hyper-expressed in both lung and stomach tissue shown in

Figure 3.4B. The modification is known to be an indicator of oxidative stress as it forms disulfide

bonds with itself and with proteins to release two hydrogens that bind free oxygen to form

water, thus removing “free-floating” oxygen thus reducing oxidative stress[64]. Additionally,

this modified cystine is an important binding site on albumin, one of 4 disulfide bonds for

Albumin binding site I, binding to drugs such as aspirin, bilirubin, azapropazone, warfarin,

phenylbutazone, and tolbutamide[65].

Discussion

Lower bound clustering is a necessary tool in the systematic effort to understand the

human proteome. To further what is yet to be understood, it is imperative to have an accurate

count of the unknown. Further, breaking down the unknown by tissue we can then focus effort

on identifying and understanding issues from tissues. From these unidentified peptides in
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common tissues there are a multitude of follow up experiments that can be run to validate these,

from returning the set as a spectral library for further experimentation and searches to de-novo

assembly. And by clustering in a low-redundancy manner, it allows for better spectral networks

which can lead to better de-novo interpretation of the spectra[59].

Additionally, while we are currently using a lower bound clustering method and not

considering the mixture strata in each cluster, we could develop a method that could deconvolute

mixtures in clusters and cluster those again to reclaim more identifications. Through the decon-

volution of mixtures, we could gain more identifications than searching the mixtures on their

own as well as gain understanding of which peptides commonly coelute to guide experimental

design to avoid this.

Another direction is towards complete repository clustering. Instead of looking at clus-

tering homogenous experiments of 80 million spectra, we consider the entirety of MassIVE,

combining thousands of experiments with a total of billions of spectra that are more heteroge-

neous, including spectra from many instruments, fragmentation types, and collision energies

likely requiring new ideas in the similarity metrics but should be able to maintain the same

framework for clustering. Finally, treating this problem as completely unsupervised is not

necessary as there are now statistically controlled identifications at the repository scale[4] which

would allow us to start the clustering knowing some IDs and using that to help understand what

is left unidentified at the repository scale.

Supplemental methods

Human proteome data

To assess the clustering algorithm and compare to previously published tools, the analysis

is done using spectra from a public dataset deep LC-MS analysis of 30 histologically normal

human tissues, PXD010154 / MSV000083508 [26]. This dataset consists of 80,831,472 MS/MS

spectra over 1,934 files in 2.12TB, but our analysis was restricted only to spectra from trypsin-

digested proteins and fragmented using higher energy collisional dissociation (HCD), resulting
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in 68,140,357 MS/MS spectra used for all clustering experiments. The dataset was a partial

submission, and not submitted with identifications.

Mass spectrometry selection of precursors for tandem (MS/MS) mass spectrometry

Tandem mass spectrometry is used to provide additional evidence for the existence of a

molecule for precursor ions by further fragmentation. However, due to the presence of C13, N15,

and other naturally occurring isotopes, the signal for a given charged peptide (precursor) does

not exist completely in a single ion. For this reason, the mass spectrometer collects not just a

single peak, but a small window around the selected peak, to capture all isotopes and increase

the signal in the MS2. The set of all isotopes as well as the monoisotopic mass is called an

isotopic envelope. The theoretical isotopic envelope can be modeled using the presence of C13

in averagine, an average amino acid composition[66]. Each peak will be 1/z apart, as that is the

m/z of the difference of a charged C13-C12. The observed isotopic envelope in the MS1 will

differ slightly due to the chemical composition of the peptide, as it differs from averagine, and

also due to measurement errors.

The single selected precursor can be joined by other precursor ions that elute at the same

retention time and with m/z within the captured isolation window, called coelution. Coelutions

occur differently depending on chromatography and can vary across experiments, and samples

that are more similar such as the same tissue will have more similar coelutions as compared

to samples that are more different, such as from different tissues or other experimental differ-

ences[67]. The coelution causes an MS/MS spectrum to not contain fragments from a single

precursor, but potentially from a set of precursors. When an MS/MS spectrum contains multiple

precursors, this is defined as a mixture spectrum.

Mixture spectra are highly prevalent in the spectra from MSV000083508. Considering

the explained intensity in the isolation window (IWEI), defined to be the sum of the intensity of

peaks from the selected precursor ion and the other isotopes divided by the total intensity of all

ions in the isolation window (in the case of this dataset, +/- 0.85 m/z around the selected ion),
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Figure 3.6 shows that more than half of identified spectra (see Clustering Evaluation section).

have an IWEI < 0.8. This indicates that a large portion of the dataset has mixtures.

Mixture spectra cause difficulty for clustering as there is no way to directly assess the

precursor ion for each fragment ion. Therefore, when calculating a spectrum-spectrum similarity,

the standard assumption that this translates to a precursor-precursor similarity cannot always be

assumed.

Kullback-Leibler (KL) divergence

The Kullback-Leibler (KL) divergence function can be used to hypothesize if an isolation

window contains ions for more than one precursor without needing identifications. To use the KL

divergence function, both the observed isotopic envelope and theoretical isotopic envelope need

to be transformed into probability distributions.. To transform the theoretical isotopic envelope

into a probability distribution, Q, the L1-norm of the envelope is taken and then each normalized

peak intensity is added to the distribution, with an additional zero intensity before the first peak,

between each peak, and after the final peak, as in Figure 3.7-1A. The observed isotopic envelope

is transformed to the distribution, P, in a similar fashion. The difference is that all peaks outside

beyond the locations for where the theoretical peaks fall are added to the distribution before,

between, and after, as in Figure 3.7-1B.

In the calculation, peaks outside the theoretical isotopic envelope are penalized both

in having intensity in an unexpected part of the distribution and using intensity that would

otherwise have been from parts of the distribution where they should be matched. A perfect

score, indicating that there is a single precursor in the isolation window is 0.

To assess the meaning of the KL divergence, only identified MS2 spectra (see Clustering

Evaluation section) are considered. For identified MS2 spectra, the amount of mixing can be

approximated by the explained intensity of the given peptide, the intensity of peaks that can

be matched to fragment ions from the identified peptide over the sum of all peak intensities

in the MS2. Using this identification information, Figure 3.8-A shows a violin plot of the
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empirically-estimated MS2 explained intensity density for the binned KL divergence of each

spectrum. While there is a trend showing that spectra with higher KL tend to have lower MS2

explained intensity, this can be use to estimate mixing, but not an exact measure.

Further, as in Figure 3.8-B, even for cases where the average MS2 explained intensity is

40%, KL 2, 14% of precursors are lost when considering only spectra with KL < 2. While most

of these spectra likely are mixtures, not all are, so a KL filter alone is likely too conservative to

use prior to clustering, but can be useful as an additional consideration.

Another application of KL divergence can be to choose the correct monoisotopic peak

for a spectrum. In the dataset MSV000083508, 2.9% of the time the monoisotopic mass chosen

by the instrument did not match the monoisotopic match of the ID. To use KL divergence to

determine the peak, the empirical distribution P needs to be slightly altered to not consider

intensity between isotopic peaks, and then renormalized. If the envelope score is high, meaning

the observed isotopic envelope does not resemble the theoretical isotopic envelope, either the

precursor or charge was determined incorrectly and the different monoisotopic peaks can be

considered. Using the highest scoring monoisotopic peak, 70% of these incorrectly chosen

monoisotopic peaks can be corrected.

Dissimilarity edges

While KL divergence can help to identify mixture spectra, it is not specific enough

to be useful in removing mixtures completely. As such, it is necessary to directly model the

relationship between two spectra, with the expectation that there will be mixtures in the input

set. StrataCluster introduces the idea of a dissimilarity edge, a directed edge which represent the

containment of the some j of the top peaks of one spectrum k into all the peaks of the other. If

the edge matches in only one direction, that is called an unidirectional dissimilarity edge and

matches in both directions it is a bidirectional dissimilarity edge (see Figure 3.9).

MS2 spectra fragmented with HCD often contain non-discriminating peaks below 250

m/z, including immonium, a1-2, and b1-2 ions. Removing all peaks below 250 m/z before
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constructing dissimilarity edges ensures spectra that might share just these ions are not matched.

For the analysis of MSV000083508, setting k to 5 and j to 4 leaves very few false edges while

still maintaining high recall, for both unidirectional and bidirectional edges. Figure 3.10 shows

this precision and recall for both A. bidirectional and B. bidirectional and unidirectional edges,

when considering all pairs between spectra that share the same ID.

Constructing a graph where spectra are nodes and the edges are dissimilarity edges

(within a parent mass tolerance) as defined above will greatly number of future similarity

operations for each spectrum, without causing too many split clusters. Often times reducing the

false positive rate by over 1000x for cases where many spectra have the exact same parent mass

(see Figure 3.11.

Clustering the Dissimilarity Graph

To cluster the dissimilarity graph, StrataCluster considers each connected components

created from the above dissimilarity graph separately. The following steps are performed within

a single component.

Pseudo-clique clustering

Many spectra are nearly identical, and a key step to StrataCluster is to first group these

spectra together. The spectra grouped will all have the same parent mass and also bidirectional

similarity, as defined above. While bidirectional dissimilarity edges can be extremely precise

at < 0.1% error, these edges are not sufficient to completely discriminate between two spectra

at a large scale, as with hundreds of millions edges in a clustering graph, 0.1% could quickly

create an abundance of mixing. To avoid this, the cosine similarity or the dot product of two

normalized vectors is added as an added criterion to refine the similarity.

To perform the initial grouping, the edges are first refined as above. Next, the un-clustered

spectra in each connected component are first ordered by their best outgoing edge, based on

cosine similarity, with the intention of seeding the clusters with spectra that are similar to each

other as possible. Calculating precision and recall for edges on nodes that have at least one
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bidirectional edge, consider edges with a cosine threshold of 0.8 to ensure that only a small

fraction (<.05%) of edges drawn are incorrect - at the cost of recall being on average 60%

per peptide for all edges see Figure 3.12. While the recall is low, this will be compensated

for in a clustering step where 80% of edges must match between clusters when joining to the

pseudo-clique, since the recall is 60% over all edges at cosine 0.8, it is 80% recall per node,

allowing for about 20% true matches that do not have an edge to them.

The steps are in pseudo-code below:

1. Create a set of clusters, C, that is initially empty

2. For each spectrum, s, in all spectra in the connected component, S, with the same parent

mass as s that is not in a cluster, in this order do the following.

(a) Form a new cluster, c, with spectrum, s, as a spectrum in the core of that cluster.

(b) To add to the cluster. Let S’ be all spectra that have a bidirectional dissimilarity edge

to s.

i. For all s′ in S′: If s′ has a bidirectonal edge to all spectra in c, and an edge with

cosine greater than 0.8 to ≤ 80% of all spectra in c, add spectrum s′ to c and

remove s′ from the set of unclustered spectra.

(c) Finally, to find the representative of c. Consider pairwise similarity between all

spectra, s. The spectrum that has the highest average pairwise similarity is set to the

first representative of c.

(d) Update the core of c to the new s and add c to C.

Relaxed clique clustering

After the previous clique clustering step, all spectra which have nearly identical fragment

peaks and have the same parent mass are now in the same cluster. However, due to different

permutations in peaks and parent masses that can differ by an isotope, some spectra will not be

81



clustered together. In the next phase, the previous stage is repeated, but using the representatives

from before, and allowing for one isotope difference in parent mass between representatives to

match.

1. Order all the clusters, C, by size.

2. For each cluster c in C, do the following.

(a) Consider all clusters c′ which are connected to c via the representative of c and the

representative of c′ by having a bidirectional dissimilarity edge (same process as

above, just this time only with representative spectra) between the two representatives.

If all the representatives of c′ have a bidirectional edge to 80% of all representative

spectra in the core of c, add cluster c′ to c by adding the representatives of c′ to c and

add all spectra s′ to the core of c. Remove c′ from C. Repeat until all clusters c′ are

considered.

Affinity clustering

After the two rounds of clique clustering the unidirectional dissimilarity edges have not

been considered yet, so many clusters that contain other clusters will be unconnected. To finally

merge these clusters and complete the StrataCluster algorithm we apply an affinity clustering

step. For unidirectional dissimilarity edges, projection cosine, an unidirectional measure of

similarity[58], is used to refine the matches. Here, the measure is of the intensity of the spectrum

containment, even if the full spectrum cosine is not high. The plots below, for both precision

and recall for a projection cosine threshold illustrate the choice for these parameters, as at 0.6

projection cosine yields the maximum precision for the highest recall value (Figure 3.13).

Finally, in the StrataCluster algorithm, the assumption is made that larger, more homoge-

neous clusters are more likely to be the highest quality spectra for the particular peptide, and

should be the cluster representative. Picking the cluster representative then determines if the

edge created is a subset (the spectrum with more peaks is a mixture) or a superset (the spectrum

82



with fewer peaks is missing signal). If there is a tie, the representative is chosen using minimum

KL divergence for superset edges, and maximum precursor intensity for subset edges.

1. Order all the clusters, C, by size of the core.

2. For each cluster c in C, do the following, repeating until the following steps do not merge

any two clusters.

(a) Let C′ be clusters with at least one representative spectrum with edges to c.

(b) For each cluster c′ in C′, score c′ as the average proj cosine for edges between c and

c′ via the representatives of c and the representative of c′.

(c) Select the c′ with the highest score and add to c′ to c as follows:

i. c′ becomes a satellite of c if the edges between c and c′ are bidirectional.

ii. c′ becomes a weak satellite of c if the edges between c and c′ are directional

with c′ being a subset of c.

iii. c′ becomes a mixture of c if the edges between c and c′ are directional with c′

being a superset of c.

iv. Remove c′ from C (connectivity to the selected c′ is no longer considered)

The clusters are now finalized, and the first representative for each cluster is the cluster

representative for downstream analysis.
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Figure 3.1. a) Representation of the stratified cluster. The cluster is broken into three strata with
each representing different components, the core, which are the highest quality most similar
spectra, mixtures, which are cases that contain most of the peaks in the core but also extra
peaks, and satellites, which are mostly contained in the peaks of core spectra. Spectra are evenly
distributed between all three strata, with only 40% of spectra in the core strata. b) Number of
clusters identified for both all clusters, and clusters with 5 or more spectra, noted as medium
abundance clusters. For all clusters, the ID rate is only 6%, indicating the extent of what is
unidentified over all spectra. Over medium abundance clusters, the ID rate is 30%, much more
typical of standard proteomics experiments. c) The mixing and splitting for five clustering tools,
using all clusters, including singletons, and cluster identifications based on majority identification
in the cluster. d) The mixing and splitting as in c, except now considering only medium abundance
clusters. e) The ID loss for medium abundance clusters, considering number of clusters identified
by at least one component PSM as compared to the number of clusters identified when the
representatives are searched and also the number of variant precursors (ignoring potential +1
errors), showing StrataCluster maintaining the highest number of identifications, with also the
lowest splitting.
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Figure 3.2. a) Maestro cascade search allows for an understanding of the medium abundance
clusters, where first library search identifies clusters using MSPLIT searching the MassIVE-KB
library. Clusters that were not identified by MSPLIT are then run through MSGF+ searched
against the reference proteome. Finally, the yet unidentified clusters are run through an open
modification search using MODa on a smaller database of proteins previously found in either
MSGF+ or MSPLIT. Spectral networks are then constructed for the clusters. b)From the
identifications and spectral networks, the clusters are filed into three categories, commonly
identified peptides, which correspond to 37% of cluster identifications but nearly 50% of spectra
from the clusters, then the gray proteome, which is peptides that are not in standard search spaces
but which can likely be identified, and finally the dark proteome which is peptides where there is
no hint as to what the ID might be, corresponding to nearly 32% of clusters, but only 21% of
spectra.
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Figure 3.3. Example network where clusters with black text are identified in the cascade search
and clusters with green text are identified by the propagation of identifications. Clusters with
duplicate IDs because of charge, etc. are collapsed for easier readability. Relative abundance
for each cluster based on spectra counts is represented by size of the cluster, and each cluster is
split between either duodenum or other small intestine tissue. A lot of the spectral in the network
comes from unmodified spectra and common modifications, but there is also a lot of spectra
in clusters with 2+ mods, and additionally in highly modified clusters that are small intenstine
specific.
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Figure 3.4. a) For each category of clusters, with a minimum of 10 samples per cluster and at
least one outlier, defined spectral count expression 1.58 z-scores from the median, as the majority
tend to have a median log2FC around 0, indicating not much change in expression between
the unmodified sequence and the cluster variant. There are many outliers where the majority
of log2FC is at 0, indicating that the expression is consistent in many tissues, however, there
are a number of tissues where the expression is significant for that sample, as compared to the
unmodified variant. B) An example of this is for the unmodified sequence YIC+57ENQDSISSK,
5 variants are considered and many variants include large clusters that have considerably different
expression from the unmodified, here the variant is considered, and how much the expression
differs from the unmodified in specific tissues, as compared to all tissues, taking into account
both the number of unmodified spectra and the number of variant spectra. Some samples such as
Lung-P010740 and Stomach-P010739 show significant expression changes
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Figure 3.5. A. Percent of spectra per sample that are hyper-expressed (have a spectrum count for
that tissue of 10x the median tissue count in the cluster). Each sample is broken down further
by the percent of spectra that are in clusters in the known proteome, gray proteome, and dark
proteome. B. Cluster counts for hyper-expressed clusters per tissue, these generally are similar
to the spectrum counts.
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Figure 3.6. A histogram of explained intensity in the isolation window, using an isolation
window of 0.85 m/z around the selected precursor ion, for both identified and unidentified MS2
spectra in MSV000083508.

Figure 3.7. The left plot shows the theoretical distribution of isotopic peaks in an elution window,
and right plot shows how coeluting peaks can occur
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Figure 3.8. Left plot shows the MS2 explained intensity for different KL divergence values.
Right plot shows the relative percentage of MS2 spectra, PSMs, and peptide for different KL
divergence values

Figure 3.9. Illustration of a unidirectional dissimilarity edge with j=4, k=5. There are four peaks
shared between the top peaks of S1 and S2, but only 3 of the top peaks of S2 are in S1.
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Figure 3.10. Precision and recall for considering only bidirectional dissimilarity edges and both
unidirectional and bidirectional edges at different values of j and k ,where k = j+1. k=5 has the
highest precision, without significant loss of recall.

Figure 3.11. The left plot shows the amount of reduction in considered edges compared to all
pairs, the right plot shows the number of spectra in each bucket. These are both taken from a
subsample of the data.
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Figure 3.12. Precision and recall for different cosine thresholds for bidirectional edges. For the
number of edges considered, the difference between 0.988 and 0.998 is significant. Note that all
edges cannot be found determined with just bidirectional edges so the maximum recall is 0.8

Figure 3.13. Precision and recall for unidirectional edges at various projection cosine thresholds
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Chapter 4

Real-time modification-tolerant matching
of MS/MS spectra at the repository scale

Introduction

How can the interpretation of newly-acquired tandem mass (MS/MS) spectra be informed

by the billions of spectra acquired to date? This question is especially important for confirming

the identification of surprising but important novel peptides/proteins, or for spectra that remain

unidentified using standard methods. Furthermore, assessing the significance of novel identifi-

cations can benefit substantially from real time assessments of which tissues/datasets contain

the same or modified/homolog versions of any peptide of interest. Conversely, repository-scale

modification-tolerant matching is also an effective way to reject false positives by considering

less-surprising interpretations of the same spectra as modified/homolog variants of otherwise

commonly-detected peptides. We introduce a tool that enables these queries with near real time

modification-tolerant searching against spectral libraries and public datasets.

While MASST[68] made it possible to query against hundreds of millions of spectra

in the public GNPS[69] repository, this approach is not fast enough to be real time, requiring

2.5 CPU hours per open search query. The proposed approach is both able to query larger

repositories, such as the 3 billion+ spectra in MassIVE, but also do so interactively, requiring

usually less than 1 minute of user time for a standard open search query.

94



Methods

Spectrum notation

For each spectrum, S, define the spectrum parent mass as S.pm, and then for each peak

S[i] ∈ S, define each fragment m/z as S[i].mz and each fragment intensity as S[i].int.

Selecting files to run

The index is built with all publicly available datasets that are in MassIVE, including all

public datasets submitted to GNPS. All open source spectrum peak files readable by ProteoWiz-

ard[70] in these public datasets are read into the index. It can be the case that two open source

files are converted from the same RAW file, and care is taken to avoid using both by comparing

file names and paths. When the index is updated, only files not considered in the original index

will be used, as the workflow that finds which files allows for input files to be excluded.

Spectrum preprocessing and discretization

Before spectra are used in the indexing process, whether before they are added to the

index to be searched against, or as queries, there is a preprocessing steps to improve the quality of

the searches and to allow the spectra to inserted into or matched to the indexing data structures.

All preprocessing is applied to both the indexed and query spectra in an identical manner,

unless the index spectra are known to be prefiltered, as is the case with spectrum libraries such as

MassIVE-KB and the GNPS libraries, in which case no filters are applied but discretization steps

are still applied. The first peaks to remove are the precursor peaks since they do not provide

information about the spectrum fragmentation, where all peaks within 2 m/z of the precursor

are removed and also peaks within 2 m/z of the neutral losses of H20 and NH3 are removed.

Peaks below 200 m/z are removed in the proteomics indexes, to account for isobaric reporter

ions, immonium ions, and other nondiscriminating ions, but no minimum mz peak filter is set

for the small molecules indexes and this is configurable at the time of constructing the index.

Next, a window filter is then applied, briefly, each peak p is only kept if it is in the top k peaks

by intensity in the window from the p.mz− r to p.mz+ r, where r is the radius of the peak. In
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the indexes constructed, for proteomics data k is 8 and r is 50 and for small molecules k is 5 and

r is 50.

Once the peaks are filtered, the spectra are discretized, by binning both the m/z for each

peak as well as the intensity for each peak. This allows for both space saving in the index on

disk as well as being a necessary step for the indexing algorithm. Peak mz values are discretized

by first rounding each mz to the nearest multiple of 0.05 (this is a configurable parameter) for

the construction of the index. If multiple spectrum peaks have their mz rounded to the same

value then their summed intensities are assigned to the resulting peak with the rounded mz.

To discretize the intensity, first a square root transformation is applied to all peak intensities

to reduce the disproportionate influence of very high-intensity peaks (this is a configurable

parameter) are then the peak intensities are normalized such that the spectrum vector’s L2-norm

becomes 1.

The dynamic programming (DP) recursions used for indexing compute the highest

possible cosine to all theoretical spectra of Euclidian norm 1 =
√

∑s[i]∈s (s[i].int)2, which also

implies that ∑s[i]∈s (s[i].int)2 = 1. As such, the DP recursions track the accumulated sum of

squared peak intensities to guarantee that proper cosines are calculated between spectra of

Euclidian norm 1. To achieve this, spectrum peak intensities are represented by their squared

intensity when discretized into the bins used for peak indexing: a spectrum peak s[i] with intensity

s[i].int is thus discretized into a bin 1 ≤ n ≤ p such that n−1
p < s[i].int2 ≤ n

p . The value p is an

input parameter determining the resolution for representation of squared peak intensities and it

can take any value between 1 and 255 (only one byte is used to represent each peak intensity). If

the sum of bin-rounded squared peak intensities exceeds 1 for a spectrum then the spectrum is

filtered to include only enough highest intensity peaks for the sum of squared intensities to total

no less than 1.
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Building the index

Once normalized, the spectra are grouped by parent mass. For each unit parent mass,

all of the fragment peaks for each spectrum are combined and the peaks are bucketed first by

unit fragment m/z, then by bucketed rounded fractional parent mass (at 0.05 m/z, there are

20 sub-unit buckets), rounded fractional fragment m/z, and index bucket, n, corresponding to

⌈s.int · p⌉ =
⌈√

n
p

⌉
in each indexed spectrum, s. From here, all spectra containing a parent

mass, fragment m/z, intensity tuple are stored in an array, such that, Index[n,mz, pm] points to

the array of all spectra that have binned intensity of n, fragment m/z mz, and parent mass pm.

Querying the index: Finding the single peak bound

Once the peaks are normalized and the index is constructed, the next consideration is

how to use the index to determine the set of candidate spectra that could possibly match with

a cosine of at least θ to a query spectrum q with m peaks. As illustrated in Supp Fig DPTable,

the DP recursions explore the space T of all possible theoretical spectra of norm 1 to determine

whether a theoretical spectrum t ∈ T exists such that cosine(q, t)≥ θ . Initially T is unrestricted

and thus contains all possible spectra, which guarantees that q itself is contained in T and thus a

cosine of 1 is guaranteed to be possible (by definition of T ).

The spectrum query algorithm is designed to iteratively constrain the space of possible

theoretical spectra using an m-dimensional vector b, such that t[i].int ≤ b[i], for all t[i] ∈ t.

Starting with b[i] = 1 for all b[i] ∈ b, the algorithm iteratively reduces the b[i] bounds on

maximum peak intensities to progressively define a restricted space T R of theoretical spectra

until two important conclusions can be established:

• No theoretical spectrum t exists in T R with cosine(q, t)≥ θ .

• All theoretical spectra t that could possibly have cosine(q, t)≥ θ must be in T \T R and

must thus violate at least one of the b[i] constraints defining T R (i.e., at least one peak

t[i] ∈ t must have intensity t[i].int > b[i]).
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It is also important to note that since the cosine between q and t can only be affected by

peaks at mz values with non-zero intensity in q, the algorithm only needs to consider theoretical

spectra t with all of their intensity at the same mz values as q. If no such spectrum t exists in

T R that can have a cosine(q, t)≥ θ even when all intensity in t is in the same m dimensions as

q, then all other spectra t− such that t−[i]≤ b[i] and with norm < 1 in the same m dimensions

as q will have even less intensity to match to the peaks in q and thus cannot possibly have

cosine(q, t−)≥ θ .

The query algorithm is formally defined as follows:

• m: number of fragment peaks in q; i = 1 . . .m for all equations below.

• p: number of bins used to represent squared intensities; n = 0 . . . p for all equations below.

All discretized squared intensities below are in the scale n = 0 . . . p representing discretized

squared intensity 0 . . .1. As such, for any peak s[k] with intensity s[k].int in any spectrum

s, the corresponding discretized squared intensity is defined as s[k].dint = ⌈p× s[k].int2⌉

• b: a 1-dimensional array of size m, where b[i] is the upper bound of squared peak intensity

that theoretical restricted spectra t ∈ T R are allowed to use when matching a peak at

t[q[i].mz]] to q[i], such that t[q[i].mz]].dint ≤ b[i]; b is initialized to ∀i=1...mb[i] = p (rep-

resenting the maximal squared peak intensity of 1). At the conclusion of the spectrum

querying algorithm, any indexed spectrum s with at least one peak at m/z q[i].mz and

s[q[i].mz].dint > b[i] is considered a possible match to q and is passed to the next stage for

calculation of the full cosine.

• T R: set of all possible theoretical spectra t ∈ T R with spectrum peaks t[q[i].mz].int ≤ b[i]

• C: a 2-dimensional array where and C[n, i] = number of spectra s ∈ S with a peak at mz

q[i].mz and intensity s[q[i].mz].dint = n

• P: a 2-dimensional array of size m× p and
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P[n, i] = q[i] ·
√

n
p

• L: a 2-dimensional array where L[n, i] = maximum possible cosine between q[1], . . . ,q[i]

and all theoretical spectra t ∈ T R of sum squared norm n for all peaks matched to

q[1], . . . ,q[i]

L[n, i] =



0 if n = 0

P[n,1] if i = 1

maxn=k+ j L[k, i−1]+P[ j, i] if n > 0, i > 1 and ∀ j0 ≤ j ≤ b[i]

−∞ otherwise

• R: a 2-dimensional array where R[n, i] = maximum possible cosine between q[i], . . . ,q[m]

and all theoretical spectra t ∈ T R of sum squared norm n for all peaks matched to

q[i], . . . ,q[m]

R[n, i] =



0 if n = 0

P[n,m] if i = m

maxn=k+ j L[k, i+1]+P[ j, i] if n > 0, i < m and ∀ j0 ≤ j ≤ b[i]

−∞ otherwise

• M: a 2-dimensional array where M[n, i] is the maximum possible cosine between q and all

theoretical spectra of squared norm n with a peak of squared intensity i at m/z q[i].mz
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M[n, i] =



0 if n = 0

max1=k+n R[k, i+1]+P[n, i] if n > 0 and i = 1

max1= j+n L[ j, i−1]+P[n, i] if n > 0 and i = m

max1= j+k+n L[ j, i−1]+R[k, i+1]+P[n, i] if n > 0 and 1 < i < m

−∞ otherwise

The process for finding the theta bound starts by constructing the cost matrix C. For each

peak q in the query spectrum q (in Figure 4.3-1) with parent mass pmq, consider all peaks in the

index for all parent masses pmi (such that pmi is in the query range) that have fragment mass of

n and also the shifted peaks q+(pmq − pmi). Add the total count of spectra at each peak and

intensity into the corresponding cell in C. When constructing C, there is an optimization to not

use all parent mass bins. This is configurable but for the results in the indexes as constructed we

use one Da bin per every 10 Da. There is a trade off between potentially missing a large bin as

compared to the IO cost to load the index.

Next, each element in b is initialized to p (in Figure 4.3-2). From here, L and R are

constructed, ensuring that the amount of intensity considered for each peak, i, is no more than the

intensity in b[i] (in Figure 4.3-3,4). While finding L[n, i] and R[n, i] involves a maximum over two

variables, k and j, (and potentially another factor of p in the computation) this can be computed

incrementally from sum of squared peak intensity bins 0 to n and peaks from 0 to i in L and m to i

in R, when both k and j are saved for each bin. This optimization removes a multiplicative factor

of p from the run time and works as the incremental contribution to the cosine only depends on

the immediately preceding bins, as the rate of added contribution decreases monotonically as

more intensity is contributed due to the binning of the intensities. After L and R, update M, using

the updated intensities from L and R (in Figure 4.3-5). This can also be done incrementally so
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that the bestln and bestrn do not need to be considered for each cell, as the added contribution

from L and R also decreases monotonically similarity to L and R.

Once M is constructed, the next step is to determine which peak from the query to

allocate more intensity (in Figure 4.3-6). For each peak, consider the cost in candidates for each

decrement in cosine and pick the peak where the delta cosine divided by number of candidates is

highest. Remove the number of now added candidates from C[n, i], as to not count them twice.

Repeat the process of constructing L and R and then M, until the maximum cosine in M is less

than the user defined theta.

Querying the index: Using single peak bound to determine candidates

Once b is determined, the next step is to find all peaks from the index corresponding

to fragments in the index and to construct partial spectra. For each query peak, i, there can be

multiple matching m/z fragments in the index peaks at different parent masses (depending on

input parameters). Set P[i] to be the set of all fragments, parent mass tuples, ( f , pm) in the index

that have peaks that match q[i] in the following two ways:

1. Fragment peaks that have an m/z that is within a predefined tolerance, t of the peak, such

that |q[i].mz− f .mz| ≤ t regardless of parent mass differences.

2. Fragment peaks that have an m/z within tolerance and including potential parent mass

offsets, where d = q.pm− pm and |q[i].mz− f .mz−d| ≤ t.

Construct an empty set of partial result spectra, R, where each spectrum r contains m

peaks, initialized to all zero. These will be the partial candidates found from the index. From

the query, for each peak, i from 0 to m, fetch all candidates from the peaks in the index as

Cand[i] = ∀( f ,pm)∈P[i],n≤b[i]Index[n, f , pm]. Within Cand[i] it is possible for there to be cases

where the same spectrum is included twice, as it is possible for multiple fragments to match

because of a the peak tolerance or shifted peaks. In these cases, remove the redundancy by

keeping only the peak which has the highest potential contribution to the cosine, that is with
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intensity closes to q[i].int and disregard the other matched peaks. For each candidate in Cand[i],

add the matching peak intensity for the candidate at each r[i]toR, adding a new r to R if it was

missing.

For each peak found, consider the matched intensity between the query and the candidate

and calculate a upper bound on the potential cosine for the candidate r. There are three ways in

which the cosine can be incremented for each peak i. This allows us to calculate partial cosines

using the bounds from b, even if there is no matching peak at r[i], as the most conservative

estimate in all cases can be considered, if enough information is known about b[i], the intensity

can be estimated to be the highest amount of unseen intensity. Using this estimate of the cosine

upper bound, any partial spectrum r having estimated cosine less than θ does not need to be

considered further and will be removed from R. Note that sometimes it can be more efficient to

use a θ − ε bound instead of θ , as the extra candidates included in the additional ε amount of

potential cosine might be worth including as a way to reduce b further, so that the upper bound

on cosine can be more aggressive.

Querying the index: Filtering potential candidates using full spectrum information

For all spectra, r in R, that pass the previous filtering step, calculate the full spectrum

cosine between the discretized spectra for both the filtered result, r and query, q, allowing for

shifted peaks if allowed, and output all spectra that have a cosine greater than θ . These full

spectrum peaks are organized per spectrum, rather than per fragment peak, can be directly indexed

knowing the candidate number from the previous index. Once spectra with a full spectrum cosine

> θ are known, metadata about each spectra can be indexed by the candidate number similar to

the spectrum peaks. For the massive index, metadata included is the modified peptidoform and

also the charge in MassIVE Search, as well as MassIVE-curated tissue mappings per file.

Disk-based index data structures

All of the above processing can work with the data structures in memory, or also on

disk. Each index consists of seven categories of files on disk. The first, referred to as the “peak
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index”, contains spectra organized based on the peaks in the spectrum, where each parent mass,

fragment mass, intensity tuple is associated with all spectra containing that tuple. The second,

referred to as the “spectrum index” contains the all the peaks from each spectrum, grouped by

spectrum (and not by peak mz/intensity). The third, the “spectrum annotation index” contains

metadata about each spectrum. The fourth, the “filenames index” contains a list of all peak list

files used in the index. The fifth, the “annotations” is a non-redundant list of all metadata terms

used in the index. The sixth, the “file-level annotation index” contains metadata for each file,

that applies to all spectra in the file. The seventh, the “processing parameters” provides a list of

the preprocessing parameters used in the index.

1. Peak index: *.mxc The peak index consists of metadata plus two sections organizing

spectrum peaks. The the metadata, containing the number of parent mass sub-unit bins

(i.e. number of discrete bins between two units), the number of fragment mass sub-unit

bins, and the number of index bins, and then a 2000 dimensional vector of fragment unit

bins containing offsets to the index for each unit fragment peak. The two sections are each

repeated once per unit fragment bin and are as follows (shown in Figure 4.4):

(a) The first is an array of the pairs of peak triples and offsets, where each peak triple

is a 32 bit unsigned integer (bits 0-7 are the intensity index, 8-15 are the fractional

parent mass, and 16-23 are the fractional fragment tolerance, and 24-31 are set to 0).

The second array contains all the spectrum indices for spectra that contain a peak in

the unit parent mass, unit fragment mass bin, sorted by the peak triple for each index.

i. The difference of consecutive pointer values indicates the number of candidates

at a particular tuple of (sub-unit fragment mass, sub-unit parent mass, intensity

bucket) (i.e. number of bytes is 4 times this difference)

(b) The offsets from the first array correspond to the first position in this second array

where the spectra indices have that particular index triple.
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This allows us to only store the index for triples which are in the data, costing at most

3*peaks for each additional spectrum (adding an index + offset for each peak), though

likely much less, as the peak likely is not completely unseen.

2. Spectrum Index: *.mxs These files (one per parent mass unit Da) contain information for

all the spectra that have a parent mass in the unit parent mass for the file. There are two

arrays in this file:

(a) The first contains index-offsets to the start of all spectra in the second array, and is

guaranteed to have the same number of elements as there are spectra in the index at

the given unit parent mass.

i. The difference of consecutive pointer values indicates size of spectrum to read

(i.e. number of bytes is 4 times this difference)

(b) The second array contains all the information for each spectrum as follows:

i. Exact (non-binned, non-discretized) parent mass

ii. Binned parent mass

iii. Charge

iv. Scan number

v. File index number (referencing a line in filenames.txt)

vi. Peaks: an array of 32-bit integers, where bits 0-7 are the peak intensity, and bits

8-31 are the binned and discretized fragment mz

3. Spectrum Annotation Index: *.mxa These files (one per parent mass unit Da) contain

information about any annotations for the spectra. Generally, these will contain PSM

information. The design mirrors the *.mxs files, with two arrays as follows:

(a) The first contains offsets to the start of all spectra in the second, and is guaranteed to

have the same number of elements as there are spectra in the index at the given unit

parent mass.
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(b) The second array contains all the metadata for each spectrum, empty if the spectrum

does not contain any metadata. However, if the spectrum does contain metadata, the

metadata is represented as an array of triples containing of

i. the offset in bytes in the annotations.txt file

ii. the length in bytes of the annotation to read

iii. the offset in line numbers in the annotations.txt file

By representing annotations in a separate file from spectra we allow for changing annota-

tions without needing to rewrite the large spectrum peak files.

4. Filenames index: filenames.txt One filename per line of all peak list files in the index.

Filename is relative to where the code that constructs the index is run.

5. Annotations: annotations.txt One annotation string per line, annotation string can be

anything.

6. File-level annotation index: filenames.mxa Similar to annotation files except providing

metadata information per file, for cases where the file all has the same annotation and

keeping track per spectrum could be inefficient.

7. Processing parameters: processing.json Processing parameters for the index to ensure

queries are filtered as the index (can be overwritten with command line parameters):

(a) Index version

(b) Window filter parameters

(c) SNR parameters

(d) Minimum fragment m/z
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Results

Timings

To time the queries we launched single spectrum search requests to the indexing search

API by USI[47]. No spectra or index is preloaded or cached. The analog searches allow for

matches from 130 Da below the query parent mass to 200 Da above. For the MassIVE searches,

USIs from identified spectra in cHPP datasets are used and for the GNPS searches, GNPS library

spectra are used. While all searches are done in real time, it is important to consider the type of

searches and the reasoning behind which is used. As in Table 4.1, queries to libraries are all less

than a second, and queries against repositories are less than a second for exact searches, and less

than a minute for open searches.

Use case: Diversity of Detection

When presenting evidence for a novel protein existence, HPP criteria[36] require two,

high quality, non-nested peptides for as evidence for the protein, as discussed in Chapters 1 and

2 of this document. While sufficient FDR controls and manual analysis can help confirm that

the peptides are high quality, this repository scale search allows for a quick check among all

repository spectra if a) this spectrum matched to the peptide is present in other datasets and

if the fragmentation matches other datasets, adding weight that the peptide is likely real and

reproducible and b) if a very similar spectrum is found in another dataset with a different ID, it

calls into question the quality of the potential ID. For the protein sp|Q86X67|NUD13_HUMAN,

a newly PE1 protein, we confirmed by searching against the repository for one of the peptides

used to provide evidence for the missing protein, DASLLSTAQALLR. By searching one PSM

for DASLLSTAQALLR, mzspec:PXD003947:QEx2_006887:scan:28591:DASLLSTAQALLR/

2[11], we found over 80 matches with a cosine of > 0.7 in the MassIVE repository, most of

which have highly correlated fragment peaks and 6 PSMs matched that are identified (at the time

of publication many spectra in MassIVE are not yet identified as either they were not a complete

submission or have yet to be reanalyzed, but with a recent version of MassIVE this changes
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signficantly) have the same sequence. However, two PSMs match with a very similar cosine,

but to a different ID of GLDTISVTGNILR, and if we compare the mirror plot in Figure 4.1 we

see that while many fragments are shared such as y7, y8, y9, there are enough high intensity

fragments to justify that the original PSM is correct. While the PSM in question here was visually

of good quality, many remaining MP will not necessarily be, so having the ability to search for

consistent fragmentation could help in giving confidence to an ID for a difficult to call protein.

Use case: Finding Diversity and Occurrences of unidentified peptides

The indexing can also be used to help illuminate the dark proteome, showing which

datasets unknown spectra appear in, as well as with what mass offsets. In the case of the spectrum,

mzspec:PXD010154:01280_A05_P013164_S00_N33_R2:scan:2375[26], this is unidentified

in the original analysis (Chapter 3), but has over 2000 matches to unidentified spectra in 40

datasets. Additionally, this spectrum matches 570 spectra with a delta mass of +78 in nearly all

of the matching datasets, but some modification masses such at +46 are more dataset specific as

in Figure 4.2. This repository-scale search provides a way to begin to prioritize cases from the

dark proteome to examine.

Discussion

Efficient indexing and algorithms enable real-time, modification-tolerant, repository-scale

searches against billions of spectra enabling the use of full repositories to help confirm or reject

novel identifications and understand diversity of spectra. This search, as shown, can be used in

the context of all chapters of this thesis, making it a useful tool in the future exploration of mass

spectrometry data, summarizing the wealth of years of compute and thousands of researchers

globally in real time analysis.
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Figure 4.1. A plot[71] showing the a PSM for DASLLSTAQALLR and a PSM for GLDTISVT-
GNILR, which have a high cosine but enough unique peaks to likely be from different peptides
and show evidence for sp|Q86X67|NUD13_HUMAN.

Figure 4.2. A histogram of all matching spectra to the unidentified spectrum mzspec:PXD010154:
01280_A05_P013164_S00_N33_R2:scan:2375[26] showing the dataset and delta mass for each
match.
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Figure 4.3. The query vector q with m dimensions. 2. The vector b restricts the maximum
intensity considered from index spectra that have a peak at i. 3. The matrix L defines the
maximum accumulated cosine considering peaks from left to right. Here L[n+1, i] uses n−1
intensity from peaks 1 . . . i−1 and the remaining intensity from the purple peaks in the index
matching query peak q[i] at the given intensity. 4. The matrix R is the same as L except going
from m . . . i and reporting the accumulated cosine from right to left. 5. The matrix M shows
the maximum possible cosine for theoretical spectra of L2−norm 1. To calculate the maximum
possible cosine for spectra passing through the purple peaks in the index at i, the accumulated
cosine contributed from the peaks 0..i−1 from the left and the accumulated cosine contributed
from i+ 1 . . .m on the right. 6. Once M is calculated, it is possible to know the maximum
possible cosine from all spectra in T R and once this cosine is < θ , only spectra in the index
containing a peak i, above b[i] will be considered for further processing.
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Figure 4.4. The overview of the peak indexing data structures. For each parent mass unit Da,
there are three files, an index file (.mxc), a spectrum file (.mxs), and an annotation file (.mxa).
The process for moving from a single peak, at some parent mass, fragment mass, and intensity
to all the spectra containing that peak, and subsequently all annotations for these spectra are
considered below. To index the peak, first the unit fragment mass points to a sparse 3-dimensional
matrix with the binned sub-unit (fractional part, between the current mass m, inclusive, and the
next mass m+1, exclusive) fragment mass, parent mass, and intensity. That then points to an
index offset in the candidates where all the candidates containing that peak are listed. From there,
the spectra and annotations can be directly indexed by the previously found spectrum peak id.
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Table 4.1. Library exact searches help to determine the identity of of the input MS/MS spectrum
Library analog searches help to determine the what identifications are similar to the input spec-
trum, and at what delta mass they are found. Repository exact searches: find all matching MS/MS
spectra and the samples/tissues/datasets where they occur and confirm consistency of identifica-
tions across all datasets. Repository analog searches: find all variants of a peptide/molecule and
all datasets where they occur.

Median (s) St. Dev. (s)

MassIVE-KB (Library) Exact 0.32s 0.01s
Analog 0.78s 0.33s

GNPS
(Library)

Exact 0.30s 0.02s
Analog 0.38s 0.05s

MassIVE (Repository) Exact 0.48s 0.13s
Analog 56s 26s

GNPS (Repository) Exact 0.69s 0.67s
Analog 23s 19s
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