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EPIGRAPH

Happiness can be found
in the darkest of times,
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ABSTRACT OF THE THESIS

Exploiting Geographical and Temporal Patterns for Personalized POI Recommendation

by

Kiran Kannar

Master of Science in Computer Science

University of California San Diego, 2018

Professor Julian John McAuley, Chair

Human behavior presents various temporal and geographical patterns that can be used to
model user preferences and enhance prediction in the task of POI recommendation. The task of
personalized next point-of-interest (POI) recommendation in Location-based Social Networks
(LBSNs) has been studied extensively in recent years. The challenge of modeling the interactions
of the user, current POI, and next POI presents the need to incorporate sequential dynamics
using methodologies like Markov chains and Metric embedding. Existing methods capture
these interactions by decomposing them into pairwise relationships. In this thesis, we apply
Personalized Ranking Metric Embedding (PRME) for personalized next POI recommendation

based on user’s check-in history in various LBSNs like Foursquare and Gowalla. We introduce

xii



methods to incorporate spatial and temporal patterns in this metric embedding model. Experiments
conducted on the above publicly available datasets indicate superior results demonstrating the

effectiveness of incorporating these behavioral patterns in the task of recommendation.
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Chapter 1

Introduction

With rapid advancements in technology, a growing number of mobile applications can
geo-tag information like photos and posts. Location-based Social Applications like Foursquare
and Yelp are increasingly used to check-in to locations the user has visited. The check-in history
represents not only the information about the locations the user has visited but also the intrinsic
user preferences and his mobility patterns.

With the growing popularity of these applications, personalization of recommendation
has become prominent. There are various approaches that look at the past user interactions
for predictive modeling of POI recommendation. In this thesis, we first consider the modeling
of sequential dynamics present in these user interactions. We consider the task of next Point-
of-interest (POI) recommendation and employ metric embedding techniques for learning these
dynamics. We seek to employ embedding spaces that can hold the meaningful relationships that
exist among the objects embedded in these spaces. We use two LBSN datasets across four cities
varying in their densities to interpret what the model has learned.

State-of-art techniques using matrix factorization [33] perform well in modeling pairwise
ranking, along with user preferences. On the other hand, Markov chain models like Factorized

Personalized Markov Chains (FPMC) [34] model the sequential dynamics (i.e user visits a



location after another) by factorizing a first-order transition matrix. FPMC models this complex
interaction between (user, current location, next location) by modeling the pair-wise relationships
between (user, next location) and (current location, next location).

The use of Euclidean distance metric in Personalized Ranking Metric Embedding [10]
provides a direct representation of relationships present in these interactions; objects close to each
other are similar to each other, or users often visit these nearby locations successively. These
embedding methods have become popular in fields like Natural Language Processing due to the
easy interpretability of the learned models.

Our work considers exploiting the use of geographical and temporal patterns present in
user movement. Users visit coffee shops in the morning before they get to work. Their commute
patterns to work occur consistently during the same morning and evening hours. They visit
different locations based on the time of the day. The distinctive weekend patterns also provide
useful information of user preferences, depending on the day of the week. Users also tend to
visit nearby locations from the current location; a coffee shop close to their office, or a pub at
a short travel distance from work. Locations have temporal patterns too that can be exploited;
many locations have peak hours during which they are most busy. Incorporating these influences
can make recommendations meaningful and relevant.

‘We summarize the contributions of this thesis as follows:

e We first demonstrate the superiority of Personalized Ranking Metric Embedding (PRME)
over other sequential models like Factorized Personalized Markov Chains (FPMC)[34] and

pair-wise, nonsequential ranking models like Bayesian Personalized Ranking (BPR)[33].

e We introduce simple extensions to PRME by accounting for location popularities and using

dual point technique to incorporate asymmetry in mobility directions.

e We then incorporate geographical and temporal patterns and investigate the performance of

these models. Based on a qualitative and quantitative analysis of the obtained results, we



see that the recommendations are superior in nature.

The remainder of this thesis is organized as follows: We first give a brief description of
some related work in chapter 2. We describe the datasets in chapter 3. We then elaborate on the
metric embedding models in chapter 4 and present the basic extensions to the model. We discuss
various temporal and spatial patterns in chapter 5 and 6 and also propose methods to incorporate
these influences. Chapter 7 details the experiments conducted and the results we obtained on the

LBSN datasets. We conclude and present some future work in Chapter 8.



Chapter 2

Related Work

2.1 General Recommendation

One of the most popular approaches to the general item recommendation task is col-
laborative filtering with matrix factorization [35][20]. This technique relies on modeling user
preferences by factorizing the rating matrix to user and item latent factor matrices in the same
shared space. An appropriate number of latent factors (or dimensions) is chosen to be retained
during the process of factorization by Singular Value Decomposition (SVD) of the rating matrix
R. The optimization problem has a nice closed form solution; however, it involves computing
inverses of huge matrices. Instead, Stochastic Gradient Descent (SGD) or Alternating Least
Squares is often used to find the optimal configuration of parameters.

In contrast to content-based methods, collaborative filtering techniques do not rely on
the explicit knowledge of item features. Rather, they model user preferences using the user and
item interactions. Memory-based collaborative filtering techniques use item-item and user-user
similarities to predict the rating[23]. Other collaborative filtering models like the Weighted
Regularized Matrix factorization model (WR-MF) [18] [30] add weights to the loss function to

increase the impact of positive feedback along with regularization to control overfitting.



These techniques also called as point-wise methods, however, assume that all of the data
is known; Any missing or unobserved data is considered as negative. The feedback can be explicit
interactions like item ratings given by the user. Implicit feedback relies on user clicks, views and
purchase history. In contrast to point-wise methods, pair-wise methods like Bayesian Personalized
Ranking (BPR) [33] make the assumption that users prefer the observed interactions over the
unobserved interactions, and optimize the pair-wise ranking of pairs of positive and negative
samples. These methods are preferred over Matrix Factorization (MF) as SVD overfits as the
number of dimensions increases.

BPR assumes that users prefer items they have interacted with over all items that they have
not. BPR optimizes for correctly ranking such pairs to provide each user with a personalized total
ranking >, of all items. The optimization criterion maximizes the posterior probability P(®| >,)
over model parameters ®. The ordering of every pair (i, j) for each user u is independent of all
other pairs. The individual probability for this particular pair preference is P(i >, j|®). The
loss function is approximated by the differentiable sigmoid &(x), which gives BPR-OPT, the

optimization criterion:

BPR-OPT= Y Ino(x;;)—A|0]? (2.1)

(,i,7) €Dy
where Dj is the training data of triples (u, i, j), with i and j as the positive and negative items
respectively. x;;; = x,; —x,; can be estimated using the individual components x,; obtained
through standard collaborative filtering techniques illustrated above. The optimization problem
uses SGD along with random uniform sampling of triples with replacement for maximization.

BPR is directly optimized for personalized ranking.

There are variants of BPR proposed for various scenarios: Factorized Personalized Markov

Chains (FPMC) [34] proposes S-BPR, which adapts pairwise ranking on the sequential check-in



history of the user. He et.al. propose Visual-BPR (VBPR) [16] incorporate visual signals into
BPR-MF to consider the visual appearance of the items for recommendation. Pan et.al. propose
GBPR [31] to extend the BPR-MF algorithm for incorporating group preferences by using a
group pairwise assumption. Other kinds of loss functions like WARP loss [42] have also been

used with some success.

2.2 Sequential Dynamics

One of the most common techniques to handle sequences of item interactions is Markov
Chains (MC)[36]. Factorized Personalized Markov Chain (FPMC) [34] is a combination of matrix
factorization and Markov chains, modeling user preferences as well as sequential dynamics.
However the use of the inner product in the model does not allow sufficient generalization; the
knowledge of close pairs (i, j) and (j, k) does not guarantee the closeness of the third pair (i,j).
One approach to this problem is learning a suitable distance metric that follows this triangular
inequality assumption, through metric learning to rank methods [28][49]. Another modeling
technique, Collaborative Metric Learning (CML)[17] uses metric learning to rank to learn a
distance metric that pulls positive items closer and pushes negative or irrelevant items further
away from the user using margin loss.

Some of the recent work in this area has been in the use of metric embeddings for the task
of recommendation. Chen et.al. proposed Logistic Markov Embeddings (LME) [7] for playlist
prediction, using the distances between songs in the metric space. Pairwise Ranking Metric
Embedding (PRME) [10] models use pairwise BPR loss to optimize the maximum a posterior.

Another approach to POI recommendation presents a unified space for user preferences
and sequential dynamics. The GME-S model [44] modells user preferences using time-decayed
latent embeddings and uses the information from successive POI check-in pairs to weigh each

transition, thereby incorporating sequential dynamics. Another recent research work, TransRec



[15] models the third-order interactions using a unified space; the method adopts techniques
from knowledge graph embeddings [6] with a user as a “relation” capturing transitions from one
item to another. The authors demonstrate the power of TransRec over models like FPMC and
PRME, especially in sparse datasets, with fewer parameters in comparison. However, in this
thesis, we use separate spaces to model different components of user interactions and therefore
use PRME as a base model. Other knowledge graph embeddings using translation-based methods
[41],[22],[43] have also been known to work well.

One of the most common ways to identify sessions in sequences is to consider the
inactivity time as the gap between two sessions. There has been some research on identifying
sessions based on temporal rhythms in user activities; identifying valleys in inter-activity density
distributions provides a better inactivity threshold than choosing an arbitrary threshold that does
not consider goal-directed user behavior [12]. Another useful macroscopic behavioral pattern in
consumption sequences is repeat consumption and abandonment; modeling these patterns [5][1]
is subject to availability of data on repeat consumption.

Other kinds of recommender systems [37] adopt exploration-exploitation technique
through Markov Decision Processes (MDP)[4], the downside of which is the requirement of
a deployed recommender system or a simulation of interactions in the recommender system.
Similar to Markov Chains, MDP-based recommender systems look at transitions between states,

but in the scope of an optimal policy that give long-term benefit.

2.3 Temporal Dynamics

Temporal dynamics can be crucial in understanding the evolving user preferences, in
terms of short-term and long-term dynamics. Some popular techniques use decaying time weights
[9] or exploitation of temporal signals in different ways in real-world systems like Netflix [19].

Sequential dynamics does not automatically include time. Sequence presents an order and



modeling sequential dynamics focuses on learning the intrinsic relationships present in the order.
However, human mobility is heavily influenced by the time of the activity. As we shall see in
chapter 5, the incorporation of these signals presents opportunities to learn various aspects of

temporal influence. Chapter 5 also goes through some of the related work in more detail.

2.4 Geographical Patterns

Geographical location and distance heavily influence human mobility patterns; users tend
to have a lot of check-in activity in their home region [8]. Additionally, the distance between
successive check-in pairs is usually small. Some of the recent work range from modeling the
influence of distance directly for POI recommendation [47] to identifying out-of-town regions that
a user is likely to visit [32]. The GTAG model (Geographical-Temporal influences aware Graph)
[51] encodes session nodes that connect POIs and users, along with edges between neighboring
POIs. The authors also propose a preference propagation algorithm to provide recommendations
within 6 propagation steps. A more detailed discussion of the past work is given in chapter 6,
where we discuss modeling some of the geographical patterns observed in the datasets.

Other influences include the use of categorical information in improving prediction
accuracy, either by explicitly mining user preferences over categories [24] or by a two step-
process of category prediction and further item recommendation [13]. In [3], the hierarchy
of category (primary and secondary category levels) is used to construct each user’s weighted
personal preferences across these category levels. The knowledge of friendship or social circles
can also improve prediction accuracies [47][8]. A detailed survey of many of these techniques
in terms of incorporating various influences, methodologies, and tasks is performed in [53]. An

experimental evaluation of these techniques is illustrated in [25].



Chapter 3

Datasets

We use variants of Foursquare and Gowalla datasets collected by researchers in the past. In
this chapter, we briefly describe the general characteristics of the datasets. An elaborate discussion
on specific patterns is made in subsequent chapters that elaborate on exploiting these patterns for
improving personalized recommendation. Foursquare is a local mobile application that provides
personalized recommendations of locations in the vicinity of a user based on their check-in
history, preferences and their interaction with the application. Gowalla is another location-based
social network that allows users to check into locations they visited. Gowalla was acquired by

Facebook and was shut down in 2012.

3.1 Foursquare

We use the Foursquare check-in dataset obtained by authors of [46]. The dataset ! is a
collection of check-ins over a period of 10 months (approximately April 2012 to February 2013).
Since Foursquare check-ins are personal and therefore not visible to public API, the authors gather
the check-in data through Twitter shares. The authors filter out users who have not checked-in at

least once a week, and items which cannot be associated with a Foursquare category. The details

lFoursquare: https://sites.google.com/site/yangdinggi/home/foursquare-dataset


https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Figure 3.1: Distribution of items with respect to user check-in counts in Foursquare and Gowalla

datasets (log-scale)

of the dataset collection process are outlined in the authors’ previous work[45].

The dataset statistics are outlined in table 3.1. We see that while all users have a high

minimum threshold of 100 check-ins due to the stringent filtering in data collection process, the
items have a long-tail distribution. This is confirmed by the distributions of number of users who
have visited the locations in figures 3.1a, 3.1b. The #user count and #venue count fields represent

the number of locations visited by a user and the number of users who visited a location and

respectively.
Table 3.1: Summary of datasets

Measure | Foursquare (TKY) | Foursquare (NYC) | Gowalla (SNAP) |
#Check-ins 573,703 227,428 6,442,892
#Users 2,293 1,083 107,092
#Venues 61,858 38,333 1,280,969
#User counts (max, min) (2991, 100) (2697,100) (2175,1)
#Venue counts (max, min) (12372, 1) (1147, 1) (5811,1)
Avg. #items /user 250.20 209.99 60.16
Avg. #users/item 9.27 5.93 5.03

We further filter the datasets to have at least 5 check-ins from each user and 5 check-ins

for each location. We then have 2,293 users and 15,177 venues in the FourSquare (TKY) dataset,

and 1,083 users and 9,989 venues in the FourSquare (NYC) dataset.

We also look at the top 10 categories with the most check-ins in the Foursquare data. The

10



data reported in table 3.2 is on the thresholded data, and the category listed is the lowest level
category in the category hierarchy, and not the primary category description available directly in
the dataset.?

Table 3.2: Top 10 categories with most check-ins in Foursquare datasets.

| Foursquare (TKY) | Foursquare (NYC) |

Train Station Home (private)
Metro Station Office
Noodle House Metro Station
Convenience Store Coffee Shop
Japanese Restaurant Bar
Electronics Store Train Station
Grocery Store Gym
Shopping Mall Park
Coffee Shop Neighborhood
Cafe Grocery Store

3.2 Gowalla

We use the Gowalla dataset 3 obtained by authors of [8]. The public check-in data is
collected over the period of February 2009 to October 2010. The dataset is also long-tailed as
seen in figure 3.1c. We create two subsets specific to two cities, San Francisco (SF) and San
Diego (SD), filtered on the geographical coordinates. The dataset statistics are outlined in table
3.3.We further filter out users and items with the same threshold of 5 as above. The Gowalla
SNAP dataset does not have categorical information. The subsets have much less user interaction

with items as indicated by the low average statistics.

2https ://developer.foursquare.com/docs/resources/categories
3http://snap.stanford.edu/data/loc-gowalla.html

11
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Table 3.3: Summary of Gowalla sub-datasets in two cities - San Francisco and San Diego

| Measure | Gowalla (SF) | Gowalla (SD) |

#Check-ins 185,120 31,989
#Users 4,355 1,218
#Venues 8,720 2,500
#User counts (max, min) (1925, 1) (1618, 1)
#Venue counts (max, min, avg) (5662, 1) (969, 1)
Avg. #items /user 28.35 18.59

Avg. #users/item 10.93 5.26

The behavioural rthythms of users and locations in these datasets is vastly different to
each other. We explain this in detail in subsequent chapters, as we illustrate incorporating these

dynamics into the task of POI recommendation.

12



Chapter 4

Models for Personalized POI

Recommendation

In this section, we present some preliminaries about the models we implemented, the
optimization criterion and the parameter learning techniques used. Our model extensions to
incorporate temporal and geographical patterns are inspired by the PRME model [10], which is

also explained in this section. Henceforth, we use locations, POI, and items interchangeably.

4.1 Problem Formulation

Given a set of users, U who interact with a set of locations, £, we model the next POI
prediction problem as follows:

Every user u € U marks a subset of locations as visited i.e. L* = (L{,LY,....L!

g ). These locations

are ordered according to the time they are visited. Given these sequences of all users, we need to
generate recommendations for each user by predicting what location each user is most likely to

go to. All notations used in this thesis are summarized in table 4.1

13



Table 4.1: Notations

Notation | Explanation

U L
u? i?j
LM

AW EQN©Y T X

Set of users and locations

user u € U, locations i, j € L

check-in history sequence of user u

Number of dimensions in embedding spaces

User preference space

Sequential space

Temporal space

Geographical space

Weekday space

Weekend space

User time space

Embedding in respective metric space P,S,T,G,A,B,U

Entry and exit vectors of location 7 in dual point sequential space
Squared Euclidean distances between points a and b in respective spaces
Geographical distance between two locations a and b

Weight of user preference space towards transition probability

Weight of sequential space

Weight of temporal space parameterized by location j and time ¢

Weight of geographic space parameterized by successive check-in location pair (i, j)
Location-Time graph

Location-Location graph

user embedding at time t in user time space C

Popularity of location j

Time threshold within which two check-ins as sequential j

Time difference between the check-in times of two consecutive check-ins at locations i, j
Regions formed by DBSCAN of location data

a specific region a

4.2 Modeling sequential information using Markov Chains

We treat user history as an ordered sequence. We can further divide this sequence into

multiple sessions based on various criteria including time gap between two successive check-ins,

and the distance between the two locations. While the user preferences are learned over the entire

user history, we can assume that the transition from one location to another does not depend upon

a check-in long past in time. This property of the transition depending only on the recent past is

referred to as the Markov property[36].
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In a stochastic model that describes a sequence, the transition probability to a location
depends only on present check-in location i.e. the future predictions can be based entirely on
present state, independent of the past. We can therefore model the transition from location /; to /; 41
for a user u as the transition probability P(l,1|l;) instead of P(l;11|L"), where L* = {I1,lp,--- ,1;}.

This is a first order Markov chain where,

P(lt+1|Lu) - P(lt+l|ll) 4.1)

Higher order Markov chains can be modeled with a memory of the order m to produce
m-order Markov chains. A memory of order m indicates that the future prediction relies on past

m locations i.e.

P(lH»l‘Lu) :P(lH»l‘ltvltflv”' 7ltfm+1) (42)

Modeling higher order Markov chains is hard due to the state space explosion by the curse of
dimensionality. We do not have sufficient data to learn the transition probabilities of all of these
states. However, as we shall see, modeling pairwise transitions performs well in the task of

ranking a list of items.

4.2.1 Factorized Personalized Markov Chains

Factorized Personalized Markov Chain (FPMC) algorithm [34] uses Tucker Decomposi-
tion [38] to decompose user-item interactions into a combination of pairwise interactions i.e. a
user triple (u, i, j) is factorized to interactions between the user and items (u,i) and (u, j), and
between the current item and previous item (i, j).

FPMC employs BPR for optimization in item recommendation, which makes (u, ) inter-

action redundant for a quadruplet (u, i, j,k) where the positive and negative samples are (u,1, j)
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and (u,i,k) respectively. Subsequently, the simplified model only considers the interactions
between the user and next item and the interaction between the items in successive check-in pair.

Factorization of the transition matrix reduces the number of parameters from |L|? to 2K|L|, where

K is the number of latent dimensions. Full parameterization is hard to achieve as the transition
data is highly sparse.

For each user u who has interacted with item i, the probability of transition to item j is

!

P(jluyi) o< (X, X;) + (Y3, Y5) (4.3)

~
~

where X,, is the user latent factor representation, and X s Y, YJ are item latent factor representations
respectively. We observe that the transition is dependent on two inner products: the user-
item interaction representing user’s general preferences (MF), and the item-item interaction
representing the sequential dynamics (MC).

However, the Achilles’ heel of FPMC is in the use of the inner product, which does not
satisfy triangular inequality. If two locations i and j are nearby, and j is also close to location
k, we expect i and k to be nearby as well. The inner product does not guarantee this property,

limiting the performance of FPMC.

4.3 Personalized Ranking Metric Embedding

Due to the limitations of the inner product, one methodology tries to find good metrics
using learning to rank models. Another methodology uses metric embeddings in the Euclidean
space. The distance in the Euclidean space can be directly interpreted as the closeness or similarity

between pairs of points in the space.
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4.3.1 Metric Embeddings and Partition Functions

A finite metric space is a set of points with non-zero distances between any two distinct

points in the space satisfying the triangular inequality. A metric space (X,d) is defined as:

X : set of points in the metric space

d:X xX—R

satisfying the three properties Vx,y,z € X
(1)d(x,y) =0 <= x=y

(2) d(x,y) =d(y,x) (symmetry)

(3) d(x,y)+d(y,z) > d(x,z) (Triangular Inequality)

If we can find a metric space where we can encode all items, then we can take advantage
of triangular inequality in determining the closeness of unknown pairs in data. For example,
assuming x and y are nearby and y and z are nearby, we can ascertain that x and z are guaranteed
to be nearby. The inner product does not satisfy this property. Therefore, we use a distance metric
that allows us to take advantage of the triangular inequality property, thereby alleviating data
sparsity.

The metric space is a vector space over R? where d is the number of dimensions of the
space. The most common embedding metric is the /;-metric that creates the Euclidean space. The
distance metric d(x,y) = || X (x) — X (y)||» i.e the [ norm

Some of the recent metric embedding work is rooted in using the Boltzmann distribution
to approximate to the most likely distribution of the given data. The Boltzmann distribution
is expressed in the form of probability distribution in statistical mechanics. The distribution

minimizes the free energy of states of a system, thereby maximizing their probability.
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It is expressed as:
e BEj
pi= (4.4)
Y e PE
k=1

where M is the number of states a system can be in, E; is the energy of the state j, and 3 is the
inverse temperature (i.e 3 = 1/7). The denominator is the canonical partition function, which
provides the probabilities of the various states in a particular canonical ensemble. The partition
function as seen above also acts as the normalizing constant. It can be shown that through this
distribution, we use an energy model where the total energy of the system is a constant [27].

Feng et.al [10] developed PRME, a novel pairwise metric embedding algorithm that
represents POIs in a low dimensional Euclidean latent space and ranks potential next POIs using
the Euclidean distance metric. The distance between two POlIs in the metric space directly
measures the strength of their transition (or sequential relation) i.e the transition probability.

PRME uses two latent spaces for modeling the components of user interactions. The
first space, P, learns the user preferences by modeling the user-item interactions in this metric
space. The second space S models the item-item interactions i.e. the sequential dynamics in
this metric space. The embeddings in the respective spaces are Kp and Kg-dimensional vectors
Xp(u),Xp(i),Xs(i). For simplicity, we use the notation K to represent the dimensions in both
spaces.

The transition probabilities in each space follow Boltzmann distribution. The transition

probability between a pair of items (i, j) can be expressed as,

o~ IIXs()—Xs(j)II3

PN = —55 (45)
IL| _ )

where Z(i) = Z ¢ IXs()=Xs (k)12 (4.6)
k=1

where, Z(i) is the normalization term, also called as the partition function. This is expensive to
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compute consider the number of locations in a LBSN is usually in the order of millions. The
model obviates this computation by employing pair-wise ranking >, ; to compare two locations j
and k based on the transition probabilities from a location i. Given an observed transition pair
(i, ), we assume that the user prefers this location over any k in an unobserved (i,k) transition
pair. Therefore for a user u, we can denote this preference order as, j >, ; k. Therefore, we
convert the prediction problem into a ranking task to generate a total order of all items through
pairwise preferences.

We can also express this as follows: The location j is preferred over k for a user u, if

As the normalizing constant is the same for both pairs (i, j) and (i,k) and we transformed the
optimization to a ranking problem, it is sufficient to just use the Euclidean distances in the
comparisons, instead of the complete exponent calculations. Given a user u and current POI i, the

transition from i to a location j is modelled using the transition probability P(j|u,i) as follows:

P(jlu,i) e — (oDl j+ (1 = ) D) (458)

where
D; , = || Xs(a) — Xs(b) |3 (4.9)
D}, = || Xp(a) — Xp(b)|13 (4.10)

The model hyper-parameter o controls the contribution of the personal space towards making the
prediction. Since /; norm is a distance metric, the model easily generalizes to unobserved pairs.
Finally, the authors use a time-gap threshold, T, to consider pairs as sequential. The

sequential space is considered only if the time difference between the two check-ins A (i, j) is
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less than or equal to the threshold. This is modeled as follows:

- D? for A (i, j) >t

u,J’

P(jlu,i) o< 4.11)
- (oc Dy i+ (1-a) D§j> , otherwise

The authors also introduce a variation of PRME incorporating geographical influence.
This model, referred to as PRME-G, uses the distance between the two locations d(i, j) as a

weighting factor.

_ Dﬁj? for A;(i,j) > 7

P(jluseq " 12
—wij (a D{;j +(1—a) DI.SJ), otherwise

wij = (1 +d(i,j))0'25 4.13)

4.3.2 Considering directionality

Inherent in user’s sequential patterns, is a sense of directionality that is not considered by
the metric embedding-based model. We can observe transitions like (Gym, Bar) or (Gym, Juice
bar), but the reverse transitions are highly unlikely. However, we do observe bidirectional pairs
like (home, office) and (station, platform). Inspired by the use of the dual-point model (LME) [7]
in playlist prediction, we incorporate a dual point embedding space for sequential dynamics. The
user preference space is inherently bidirectional as we learn to model user-location compatibility
through the latent features.

Therefore, each location i in the sequential space has a pair of embeddings - an entry
vector X> (i) and an exit vector X> (i) If a user moves from a location i to a location j, the model
should learn to place the entry vector X3 () of location j close to the exit vector X (i) of location

i. Thus, the transition probability is still modeled similar to PRME but differs in the calculation
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of distance in the sequential space. We refer to this model as PRME-DP:

-D? for A (i, j) >t

u,J’

P(jlu,i) o< (4.14)
P S :
— <0c D, ;+(1—a)D; i) , otherwise

L,

e

where, DiSJ- = HXXS(Z) —XS(j)H% (4.15)

4.3.3 Considering popularity of locations

We can boost the model by separately capturing the overall location popularity through
an additional model parameter f3; for each location j. We refer to this model as PRME-pop. The
transition probability is,

B,— DF for A (i, j) > 1

u,jo

P(jlu.i) = (10
Bj— (a Dﬁ,j +(1—o) D;.S:j), otherwise

4.4 Optimization and Learning

4.4.1 Optimization

FPMC optimizes the pair-wise tensor decomposition using Sequential Bayesian Personal-
ized Ranking (SBPR) [34] optimization criterion. PRME uses the same optimization technique.
In this section, we briefly describe the process.

The optimization process relies on the key assumption that if a user u transitions from a

location i to a location j, we can rank the location j higher than all locations he has not visited.

P(jlu,i) > P(klu,i)Vk € L—L,

We optimize the PRME model parameters by using the following maximum a posterior
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(MAP):
O =argmax [T [T [] [] P >uik)P(®) 4.17)
(C)

ucelUi€el, jeL, k¢L,
For differentiability, we consider the sigmoid of P(j >,; k) which is generally the Heaviside

non-differentiable function. Therefore,

0= argmin Y XY Y Y 102 6(puij—puir) —O) (4.18)

ueU icL, jeLyk¢L,

where Q(0) is the standard £, regularizer, and p, ; ; is the simplified notation for P(j|u,i)

4.4.2 Learning Algorithm

We can use stochastic gradient descent to learn the parameters. We use bootstrap sampling
to generate the quadruplet < u,i, j,k >. We first sample a user u and then an observed transition
pair (i, j) for the user. We then sample the negative item k accordingly.

The gradient update at every iteration is given as:

a u,i,j — Pu.i
®:®+n<6(pu,i,k_pu,i,j) (p ”jaep ”k>—2k®> (4.19)

where, 1 is the learning rate for the update step. The complexity of the algorithm is O(K|N||H|)
where N is the number of iterations required over K latent dimensions, given the number of

observed listening data-points as H.

44.3 PRME-DP

We add an additional regularizer ®(®) to the optimization criterion in order to constrain

the distance between the entry and exit vectors of locations. Ideally, the entry and exit vectors
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should be nearby, as they represent one item.

®(0) =Y DS, (4.20)

ieL
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Chapter 5

Incorporating Temporal Influences

Our activities through the day are influenced by time. On a weekday, we spend the nights
sleeping at home; in the morning, we leave to work, but not before getting a coffee at a coffee shop
or cafe close to work. At the end of the day, we hit the gym, and then maybe a pub or a restaurant,
before calling it a night. This activity time-line varies with each person, the time of the day, and
the day of the week. Some of our activities are also influenced by seasonal influences - ice skating
during winter, or beach days during hot summers. Many of our activities are in fact also bursts of
activities in short time gaps that together can be considered as a session. Therefore incorporating
the influence of time in our models is important. In this section, we describe some of the temporal
dynamics; we primarily concentrate on the Foursquare datasets while incorporating the temporal

influences.

5.1 Related Work

One of the earliest works with incorporating temporal influences in collaborative filtering
was by Koren [19]; he introduces the concept of local and global drifts of a user and proposes
time-aware latent factor models which incorporate time evolving user and item biases, as well

as drifting user preferences. The modeling choices involve piecewise (or bins) time periods or
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decay-based weighting. It also allows modeling sudden spikes or transient effects.

Most research on incorporating temporal influences divides time of the day into hour-
based slots. Some models like CARS [2] use the number of check-ins in each time slot as a
weighting feature. Other methods use the user-item-time cube to model interaction of a user with
an item at a particular time period. Some of these models use smoothing using related or similar
time slots [50] to solve the data sparsity problem. However, they are limited to using temporal
patterns as weighting mechanism.

Two key properties inherent in user check-in patterns through the day are non-uniformness
and consecutiveness. The number of check-ins varies through the day and check-in preferences at
consecutive slots are more similar than across large time-gaps. The LRT model [11] incorporates
these properties using time evolving latent user features (one per time slot) along with weighted
regularization of consecutive slot user features. A similar incorporation of time-aware user
preferences is adopted in [29] to extend the LME model [7] with long-term temporal dynamics in
song listening preferences of users. The user preference metric space uses the distance between
the song and specific user-time embedding.

Another key property with respect to locations is periodicity [8]. Users tend to visit
locations of a particular category consistently at the same time. A user visits pubs at night, and
gyms during the evening. The STELLAR model [55] uses time encoding to incorporate month,
weekday/weekend and hour temporal factors. The model uses similar tensor factorization as
FPMC, using an additional space for location-time interaction.

In [52], a probabilistic framework using kernel density estimate is employed to incorporate
the temporal context. The model uses the correlation of user check-ins to similar check-ins in
user’s social groups as well as similar check-ins at the particular time to alleviate data sparsity

caused by the use of user-time-POI cube.
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Figure 5.1: Distribution of check-ins over the time of day in FourSquare (TKY) dataset
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Figure 5.2: Distribution of check-ins over the time of day in FourSquare (NYC) dataset
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5.2 Temporal rhythms and dynamics

User’s daily activities vary across the time of the day. We plot the distribution of check-ins
across the time of the day in figures 5.1,5.2 for the Foursquare Tokyo (TKY) and New York
City (NYC) datasets. In both datasets, we first observe largely three peaks at approximately
8-9 am, 12 pm and 6-8 pm covering the morning, evening and lunch hours. The large volume
of check-ins at train stations as evidenced by table3.2 indicate significant commute during the
morning and evening peaks. These periods of time are also peak times for coffee shops (mornings)
and restaurants (evenings).

However, we see considerably different patterns on weekdays and weekends. On week-
ends, the curve is vastly different, indicating a late start in the day, but a gradual rise in user
activity through the day. Tokyo users seem to have an early end to the day on weekends, in
contrast to New York City users who have much more activities through late Friday and Saturday
evenings.

However, the behavior on Sunday abruptly changes to early fall in activity, preparing for
the week ahead. In both datasets, the highest peak of activities occurs on Mondays, although it is
in the evening in Tokyo, while it is in the morning for New York. The NYC dataset predominantly
has large activities during weekday morning revealing extensive commute check-ins at the rush
hour. New York city users also have a much higher rise in activities at the start of the day;
however, the patterns vary based on the day much more than Tokyo users who have considerably
similar rise and falls in activity through both weekdays and weekends. This could be attributed
however to the differences in the size of the two datasets, with the Tokyo dataset being denser.

We now look at the time-gaps between successive check-ins to estimate a suitable threshold
for our base PRME model and to also further develop our analysis. We first look at the cumulative
frequencies over the time differences between successive check-ins. From figure 5.3, we see that

roughly 75% of the successive check-ins happen within a day. However, we also see a significant
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Figure 5.3: CDF of time difference between successive check-ins in Foursquare datasets

number of check-in pairs with large time gaps spanning more than 200 hours. Clearly, these
check-ins should not be considered as sequential dynamics.

We now seek to obtain a reasonable threshold T that retains as many check-in pairs as
possible. From our analysis, we saw that 12 hours is a good threshold for Tokyo, and 16 hours is a
good threshold for New York City, retaining approximately two-thirds of the data. The percentage
of user pairs ignored at various thresholds is included in table 5.1.

Table 5.1: Percentage of user pairs ignored at various thresholds in Foursquare data

| © | Foursquare (TKY) (%) | Foursquare (NYC) (%) |
1 56.4 72.87

3 48.16 61.49

6 42.41 52.98

8 40.18 49.47

10 37.73 46.11

12 34.60 43.13

16 29.92 37.67

24 22.65 28.00

From figures 5.4a, 5.4b, we see that a high number of check-in pairs have an extremely
small time difference of less than 15 minutes. A lot of these pairs can be attributed to the daily
commute through train/subway in both cities. Since the dataset was filtered out of the suspicious

burst of check-ins [46], these check-ins can be considered relevant.
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Figure 5.4: Counts of check-ins pairs vs. time gap

Lastly, we note that the temporal behavioral patterns in Gowalla are harder to analyze

given the sparsity of the datasets. For reference, we include figures 5.5,5.6.

5.3 Modeling temporal influences

In this section, our goal is to exploit these temporal patterns to improve POI recommen-
dation. We primarily exploit the periodic nature of temporal dynamics by splitting time into 24
slots, one for each hour. We now have pentuples (u,1,j,k,t) including the negative sample k. Our
objective is for the model to learn that user u prefer j over k at time z. For reasons similar to the
FPMC and PRME embedding techniques, we perform canonical decomposition of this interaction

into pair-wise interactions.

5.3.1 Incorporating temporal patterns of locations

We first consider the location-time (LT) interaction. Many POIs have certain peak hours in
the day; for example, coffee shops tend to be busy in the mornings, pubs in the nights, and gyms
during evenings. Of course, each location has its individual temporal characteristics. Therefore

we create a new temporal space 7 where all time slots and locations are points embedded in this
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space. We incorporate the distance in this space, D]Tt into our final transition probability.

Puija > — (@ DL +v DS+ DI, ) (5.1)
where, o, v are the weights of user preference and sequential spaces.

e We first set y;; =y, where y € {0.001,0.01,0.1,1} This is a global weight common to all

location-time pairs. We refer to this model as LocTime(Static)

e We construct a Location-Time graph (LTG), Wy r where each edge between a location
and time has a weight equal to the observed number of check-ins at the location j at the
given time 7. The weighting parameter y;, for each location pair is therefore the normalized
number of check-ins (j,t).

Yjt = (5.2)

(a,b)EWLT
where Wy 7 is the set of all location-time pairs. We could also choose the normalize using
the degree of each node, i.e. Z= )  wj, instead of the global count. Our results
(J,b)EGLr

did not yield a significant increase in performance, and therefore we choose to retain the

simpler normalizer. We refer to this model as LocTime (LTG).

5.3.2 Incorporating type of day influences

From the temporal distributions in figures 5.1, 5.2, we see clear differences between
weekday and weekend activities. Therefore we split the LocTime space T into weekday space
A and weekend space B. The decision on the choice of space depends on whether the time of
next check-in 7 falls on a weekday or weekend. Unlike the sequence pairs, this distance doesn’t

depend on the time threshold and therefore is retained irrespective of the sequential preference.
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Puija = — (@D +v Df;+v; DI, ) (53)

where

. D’;{,, if weekday
Dj, = (5.4)
D%, if weekend

We refer to this model as DayType

5.3.3 Incorporating temporal influences in user preferences

Most locations show unimodal distributions with one high-volume time in a day (notable
exceptions include gyms). Unlike locations, as observed in the temporal rhythms, users have
multiple peaks in a day. Modeling user temporal preferences is therefore also relevant to improving
recommendation. Thus, users need individual embeddings for each time slot.

One way to incorporate these influences is to add a space similar to the location temporal
space C. We split (u,i, j,t) into (u, j), (i, j) and (u,t) interactions. We create embeddings X (u)

for each user u and time slot z.
Puijs o — (@D} +vDf;+yDY,) (5.5)

However, for a sample (u,1, j,k,t), the user-time influence component cancels out across
the positive and negative samples, reducing this version to PRME. It would also be erroneous
since the model tries to bring a user closer to multiple times in a day based on his preference, but
these times are not necessarily similar/closer, considering all users and general time similarities.

Having two times for positive and negative samples will fail for the same reason, aggravated by
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more data sparsity.

We, therefore, consider user preferences dependent on time and model user embeddings
u; for each hour 7 in a day. We emphasize that we do not create 24 new embedding spaces, rather
24 points per user. The hypothesis is that the user who prefers the same type of locations at
multiple times will have the corresponding user time embeddings close to each other, in turn,

close to the preferred location.

Puij o = ( oD, +BD; ,-) (5.6)

where DF . = ||XP () — X" (j)|3 (5.7)

u7j7t -

We refer to this model as UserTime

5.3.4 Complexity analysis

The new temporal spaces in LocTime and DayType increase space complexity in the order
of O(|L| +|T|), where |T| = 24. The number of parameters, therefore, continues to grow in the
order of the number of items. In the UserTime model, each user has 24 embeddings, instead of
one embedding in the preference space. As we shall see, this increase is problematic for sparse

datasets.
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Chapter 6

Incorporating geographical influence

The average user spends most of his time in a few locations like home and work and visits
locations in the vicinity of these locations. In the case where a user travels to a location far away
from his usual check-in region, the mobility of the user after this transition is within the vicinity of
this new location i.e. the travel itinerary. Therefore, modeling geographical influences is crucial
to the task of POI recommendation. In this section, we look at the geographical dynamics in the

cities across the datasets and propose metric embedding models to incorporate its influence.

6.1 Related Work

Human mobility exhibits periodic patterns of movement which are geographically limited
to few location areas[8]. The role of geography plays an important role in user interaction with
locations. Many of our daily activities are concentrated around a few representative locations like
“home” and “work”, the latent states of which can be modeled using Gaussian distributions.

In [50], [47], the authors notice that the user successive check-ins pairs follow power-law
distributions, the parameters of which can be obtained by linear regression. The studies in [21]
incorporate the geographical influence of neighboring POIs of current POI and consider ranking

based on Ordered Pairwise Classification (OWPC) criterion, instead of BPR.
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In [26], the authors model the geographical neighborhood of POIs at an instance and
region level and use weighted regularized matrix factorization to learn the geographical and user
preferences together. In [14], the authors study the fusing of sequential behavior with latent
behavioral patterns with the use of softmax function over the low-rank tensor factorization model
(FPMO).

The geographical influence can also be modeled by a two-dimensional check-in distri-
bution identified by the geographical coordinates of each location instead of merely looking at
the distance between successive check-in pairs. In [52], personalized two-dimensional check-in
probability density is estimated for each user based on kernel density estimation with a standard
two-dimensional normal kernel.

Another approach to consider spatial influences is the use of generative models. In SPORE
[40] model, the sequential and user preferences are fused in one latent space and the authors
propose asymmetric Locality Sensity Hashing (ALSH) to speed up online top-k recommendations.
In LCARS [48], a statistical mixture model is used to not only mine user preferences but to
also learn the local preference distribution over the latent topics obtained through the generative
process. On the other hand, LSARS [39] incorporates sentiment from reviews to generate crowd
preferences to model region-wise personal preferences.

Geo-Teaser [54] makes an additional assumption in pairwise ranking that users prefer
unvisited neighboring POIs over unvisited non-neighboring POIs. The model, therefore, incorpo-
rates the geographical influences through hierarchical pairwise ranking. Lastly, one of the more
recent works [32] moves away from POI recommendation to region recommendation problem to
predict a likely out-of-town region that a user is likely to visit. An approximate line-sweeping

based search algorithm is used to find the next optimal region a user is likely to visit
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6.2 Geographical dynamics

We first visualize our locations using their GPS (latitude, longitude) coordinates. We use
gmaps python API for visualization 1 From figures 6.1,6.2a, 6.2b, 6.2c, we observe that all of
these cities have hubs with large user check-ins. We also see check-ins aligned with commute
paths - road or rail routes. This is clearly seen in the FourSquare Tokyo dataset with a large

number of train station check-ins.

(a) Heatmap of check-ins (b) Scatter map of check-ins

Figure 6.1: Check-ins of Foursquare Tokyo dataset)

From the San Francisco data, we see that while there is a major hub with peak activity
count, there are several “mini”” hubs (shown in red in the heat map) far away from the major hub.
This indicates that there are “regions” with popular location(s) spread across the city, each with
its own characteristics. For example, it is evident that Castro street and Mission district are hubs
with popular locations. From the Tokyo dataset, the hubs are also well-connected by rail and road
transport, a unique characteristic serving the purpose.

From figure 6.2d, we see that most of the check-ins are within short distances; Roughly

80% of the successive check-in pairs are within 20 kilometers of each other.

"https://jupyter—gmaps.readthedocs.io/en/latest/
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Figure 6.2: Heatmaps of check-ins of various datasets in (a)-(c), and CDF of successive check-in
distances in (d)
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6.3 Incorporating geographical influences

We, therefore, want to incorporate these geographical influences to improve the accuracy
of POI recommendation. In this section, we discuss our proposed models.

Our incorporation of geographical influence either revolves around modeling these ge-
ographical influence through a metric space, where the distance corresponds to the similarity
between items or uses the explicit geographical distance between two locations d(i, j) as weight-
ing factors. One measure to calculate this distance is Haversine distance. It measures the
great-circle distance between two points on earth given their longitudes and latitudes, assuming a

spherical approximation of earth.

6.3.1 Incorporating inter check-in geographical distance
Let the Haversine distance between two successive check-ins (i, j) be denoted by d(i, j).
We add a component for this distance directly weighted per location.

1
p”7iaj°<_<an,j+VD§j>+YijW (6.1)

The best exponent obtained for the inverse distance measure was 0.25.

e We first set y;; =7, where Y € {0.001,0.01,0.1, 1} This is a global weight common to all

item pairs. We refer to this model as Geo-inv

e We construct the Location-location transition graph (L2TG), Wy where each directed edge
between two locations has a weight equal to the observed number of transitions between
the two locations. The weighting parameter v;; for each location pair is therefore the

normalized number of check-in transitions (i,j).

Yij = (6.2)

(a7b) eWrr
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where Wy, is the set of all location-location transitions. We refer to this model as Geo-

inv(L2TG).

6.3.2 Incorporating regional characteristics

Users who visit a location tend to also visit nearby locations. Therefore, we can assume
that locations in a neighborhood share some intrinsic characteristics particular to the neighborhood.
For example, the city of San Francisco Bay Area has multiple sub-regions each vastly different
from the other. We, therefore, cluster all points into M regions using Density-Based Spatial
Clustering of Applications with Noise (DBSCAN). The two parameters, € - radius of the cluster,
and minP - the minimum number of points in the cluster need to be fine-tuned suitably. We
visualized a subsample of the clustered data to arrive at the parameter values € = 0.007, minP = 10,
resulting in 38 clusters of the San Francisco dataset. In the case of FourSquare (Tokyo), we set
€ =0.005,minP = 10 and obtained 54 clusters. The outliers that aren’t clustered to any region do
not receive any regional influence.

We add new geographical space G for geographical influence of the region on the location.
Given the check-in pair (i, j), where i € r, and j € ry,, and 4,7, € R, |R| = M, we consider the
distance between the region’s embedding and the location’s embedding in the geographical space.

ThyJ

Puij >~ (@D} +vDS;+v; DG ;) (6.3)

We refer to this model as Geo-DBSCAN

6.3.3 Complexity analysis

Explicit use of geographical distances does not add additional space complexity unless the
location-location transition graph is used. The space complexity is in the order of the number of

distinct check-in pairs (or the edges of the graph) The new geographical space in Geo-DBSCAN
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increases space complexity in the order of O(|L| 4+ M) where M is the number of clusters.

6.3.4 A spatial-temporal fused model

We finally combine the best performing spatial and temporal models from above:

Pu,i,j < — ( o Dij —|-VD‘§j + Vit DJT'J’YZ']‘ D¢ ) (6.4)

ThyJ

We refer to this model as GeoTemp. We analyze the performance of these models in the next

chapter.
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Chapter 7

Experiments and Results

7.1 Experimental setup

7.1.1 Dataset preparation

For all our experiments, we used Foursquare and Gowalla datasets, a detailed description
of which is given in chapter 3. In this section, we use the following city abbreviations - TKY for
Tokyo, NYC for New York City, SF for San Francisco, and SD for San Diego.

For each user, we consider their last check-in or successive check-in pair as test data,
depending on the model. Correspondingly, the penultimate check-in or successive check-in
pair is considered as the validation data. The negative samples are chosen uniformly from the

unobserved items or item pairs.

7.1.2 Baselines methods

We use the following baselines to analyze the performance of our metric embedding
models.

Most Popular: This is a naive baseline but should perform better than a trivial random predictor.

41



The frequencies of user interactions are tabulated for every location, and the model always
predicts the most popular location for all users. There is no personalization involved.

BPR-MF: Bayesian Personalized Ranking (BPR-MF)[33] is a state-of-art pairwise ranking based
recommendation model using matrix factorization. However, it does not consider the sequential
interactions of the user.

FPMC: Factorized Personalized Markov Chains (FPMC)[34] considers the sequential dynamics
of user interaction, and decomposes these interactions into a combination of pairwise interactions
between the user and item, and item and item.

PRME: Personalized Ranking Metric Embedding (PRME)[10] differs from FPMC in the use of
metric spaces and distance metrics over inner products.

STELLAR (hour): We will consider a variant of STELLAR - Spatial-Temporal Latent Ranking
for Successive Point-of-Interest Recommendation [55]. We do not encode various levels of time,
but simply use the hour of the day.

PRME-G: the geographical variant of PRME will serve as a baseline for incorporating geograph-

ical influence.

7.1.3 Evaluation metrics

We consider three widely used evaluation metrics:
Area Under the ROC Curve (AUC): AUC measures how much we correctly rank a uniformly

drawn positive sample higher than a uniformly drawn negative sample.

1 1

LT,

W 1(ryj > rux)
“l je,

1
AUC = —
|l u;ll

where 7, is the hold-out testing set for each user u, r,,; is the rank of the item i for the user u. 1(x)
is an indicator function that returns 1 if the expression x evaluates to true. The AUC score does

not depend on the position of ordering; all incorrect orderings at any position in the list affect
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equally.
Hit Rate @50:

Hit Rate considers whether the item was ranked within the top 50 positions across all items.

HR@50 = — )" 1(r,; <50) (7.1)
|ﬂ| ucU

Mean Reciprocal Rank (MRR):
HR@50 = Z (ru,j < 50)— (7.2)

An item is considered relevant if it is ranked within the top 50 items. MRR considers the position

of the ranking. If the item does not appear in the top 50 ranks, we consider its contribution as 0.

7.1.4 Implementation Details

We used Stochastic Gradient Descent (SGD), Adam and Adagrad Optimizers within the
TensorFlow ! framework with Python. Adagrad optimizer performed well both in terms of speed
and the minimum found. The regularization parameters were chosen from the set {1le-1,le-2,
le-3,1e-4,5¢-1,1e-5,5e-5} and learning rate of 1 and le-4 for Adagrad and Adam respectively.
The regularization parameter for negative samples was set to 1/10th of the best value used from
the above set. The best values of regularization were chosen by grid search on validation data.
We tried various values of o for PRME and chose the values that gave the best results. The best
value of o obtained in PRME was used for subsequent models.

The embeddings were initialized using a random normal initializer with mean=0, standard
deviation=0.1. The number of latent dimensions, K was chosen to 10 for simplicity.

For models with temporal and geographical components, the best mixture coefficients

were usually either the mixture coefficients obtained in PRME or the value 1. We performed a

Thttps://www.tensorflow.org/
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grid search on a combination of values of hyper-parameters. The cluster hyper-parameters were
chosen by visualization and spread of locations across all clusters. With DBSCAN, we find an
optimal configuration of the cluster radius, minimum number of points and number of outliers it

produces. The code link is given below. 2

7.2 Experimental Results

7.2.1 Quantitative analysis

Tables 7.1, 7.2 present the performance of various models, without including temporal

and geographical influences.

Table 7.1: Pair-wise ranking results in various models for FourSquare datasets
(improvements with respect to PRME)

FourSquare (TKY) FourSquare (NYC)
AUC | HitRate | MRR | AUC | HitRate | MRR

Most Popular | 0.7784 | 0.1893 | 0.0747 | 0.6552 | 0.0757 | 0.0259

Model

BPR-MF 0.8633 | 0.2817 | 0.1201 | 0.9013 | 0.4423 | 0.2522
FPMC 0.8752 | 0.2957 | 0.1007 | 0.9039 | 0.4377 | 0.2600
PRME 0.9422 | 0.4924 | 0.2224 | 0.9146 | 0.5383 | 0.3768

PRME-pop 0.9415 | 0.5233 | 0.2416 | 0.9219 | 0.5503 | 0.3837
Improvement | -0.07% | 6.27% | 8.63% | 0.79% | 2.23% | 1.83%
PRME-DP 0.9453 | 0.5177 | 0.2397 | 0.9205 | 0.5410 | 0.3754
Improvement | 0.32% | 5.13% | 7.79% | 0.64% | 0.50% | -0.37%

The results are compared for the number of latent dimensions, K = 10. Most Popular
performs better than the trivial predictor by obtaining an AUC higher than 0.5. BPR-MF per-
forms better than this simple baseline, indicating the strong necessity to model user preferences.
However, across all datasets, we see that modeling just the user preferences through matrix
factorization is clearly not enough. Modeling sequential dynamics provides a significant boost to

all three metrics as evidenced by the performance of FPMC and PRME models.

Zhttps://github.com/KannarkkK/LocRec.git
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Table 7.2: Pair-wise ranking results in various models for Gowalla datasets (improvements with

respect to PRME)
Model Gowalla (SF)) Gowalla (SD)
AUC \ Hit Rate \ MRR AUC \ Hit Rate \ MRR
Most Popular | 0.7763 | 0.2704 | 0.1724 | 0.6694 | 0.2945 | 0.1806
BPR-MF 0.8619 | 0.3194 | 0.1034 | 0.8632 | 0.4650 | 0.1873
FPMC 0.8709 | 0.3066 | 0.1113 | 0.8600 | 0.4255 | 0.1797
PRME 0.8890 | 0.3260 | 0.1020 | 0.8788 | 0.5138 | 0.2120

PRME-pop 0.8919 | 0.4059 | 0.187 | 0.876 | 0.5223 | 0.2515
Improvement | 0.32% | 24.51% | 83.33% | -0.31% | 1.65% 18%

PRME-DP 0.8949 | 0.3273 | 0.1007 | 0.8702 | 0.5128 | 0.2276
Improvement | 0.66% | 1.55% | 0.60% | -097% | -0.19% | 7.36%

We note that the performance of PRME is higher than that of FPMC. The use of a
distance metric over inner product allows us to exploit the triangular inequality which provides
generalizability and boosts the performance. The performance of PRME on dense Foursquare
datasets is much stronger than that on sparse Gowalla datasets, indicating that PRME works better
on dense datasets. The best value of o in the Foursquare and Gowalla datasets was 0.4 and 0.5
respectively.

The improvement in the performance of metric embedding model with dual point vectors
in the sequential space supports our initial hypothesis that location mobility is directional to
an extent, and modeling this direction can boost prediction. The most sparse dataset, Gowalla
(SD) however does not indicate improvements in hit rate with the dual point model, strongly
necessitating the need for more data with the increased number of parameters. The number of
parameters in the sequential space is doubled with two vectors per point in the space. The use of
explicit popularity model parameter also improves model performance to an extent, at the cost of
adding |L| additional model parameters. Figure 7.1 presents the distributions of these additional
parameters.

From tables 7.3, 7.4, we see that incorporating temporal influences can significantly

boost prediction. While the incorporation of time with weighing all location-time pairs equally
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Figure 7.1: Box plot diagrams depicting distributions of popularity parameter of all items across
various datasets

Table 7.3: Pair-wise ranking results in temporal models for FourSquare datasets
(improvements with respect to PRME)

Model FourSquare (TKY) FourSquare (NYC)
AUC \ Hit Rate \ MRR AUC \ Hit Rate \ MRR

STELLAR 0.9446 | 0.4841 | 0.2065 | 0.9208 0.5485 | 0.2970

PRME 0.9422 | 0.4924 | 0.2224 | 0.9146 0.5383 | 0.3768

LocTime(static) | 0.9456 | 0.5138 | 0.2312 | 0.9317 0.5651 | 0.3603
Improvement 0.55% | 2.22% | 2.99% 1.87% 498% | -4.38%
LocTime(LTG) | 0.9504 | 0.5364 | 0.2343 | 0.9241 0.5621 | 0.3778
Improvement 0.55% | 2.22% | 2.99% 1.04% 4.42% | 0.26%

DayType 0.9480 | 0.5268 | 0.2414 | 0.9233 | 0.5568 | 0.3953
Improvement 0.55% | 2.22% | 2.99% | 0.9512% | 3.44% | 491%
UserTime 0.9324 | 0.4779 | 0.2150 | 0.9092 | 0.5411 | 0.3646
Improvement -1% -1.45% | -3.33% | -0.59% 0.53% | -3.24%

improved the performance, we see that the adaptive weights according to the normalized number

of check-ins is more useful. The split of the temporal space to weekday and weekend also
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Table 7.4: Pair-wise ranking results in temporal models for Gowalla datasets
(improvements with respect to PRME)

Model Gowalla (SF) Gowalla (SD)

AUC \ Hit Rate \ MRR AUC \ Hit Rate \ MRR
STELLAR 0.8963 | 0.3787 | 0.1230 | 0.8549 | 0.4617 | 0.1983
PRME 0.889 | 0.3260 | 0.1020 | 0.8788 | 0.5138 | 0.2120

LocTime(static) | 0.9063 | 0.4022 | 0.1146 | 0.8786 | 0.5329 | 0.2346
Improvement 1.95% | 23.37% | 12.35% | -0.02% | 3.72% | 10.66%

LocTime(LTG) | 0.8874 | 0.3344 | 0.1001 | 0.8732 | 0.5213 | 0.2231
Improvement -0.18% | 2.57% 1.86% | -0.64% | 1.46% | 5.23%

DayType 0.8878 | 0.3331 | 0.1024 | 0.8723 | 0.5043 | 0.2275
Improvement -0.13% | 2.18% | 0.39% | -0.74% | -1.85% | 7.31%
UserTime 0.8417 | 0.3359 | 0.1111 | 0.8350 | 0.4362 | 0.2007

Improvement -5.32% | 3.004% | 8.93% | -4.98% | -15.1% | -5.33%

Table 7.5: Pair-wise ranking results in geographical models for FourSquare datasets
(improvement with respect to PRME-G)

Model FourSquare (TKY) FourSquare (NYC)*
AUC | HitRate | MRR | AUC [ HitRate | MRR

PRME-G 0.9380 | 0.5006 | 0.2335 | 0.9147 | 0.5512 | 0.392

Geo-inv 0.9432 | 0.5177 | 0.2405 | 09186 | 0.5393 | 0.3689

Improvement 0.55% | 2.22% | 2.99% | 0.43% | -2.16% | -5.89%
Geo-L2TG 0.9446 | 0.5273 | 0.2095 | 0.9206 | 0.5448 | 0.3923
Improvement 0.71% | 5.33% -10% | 0.64% | -1.16% | 0.07 %
Geo-DBSCAN | 0.9502 | 0.5482 | 0.2275 | 09175 | 0.5393 | 0.3217
Improvement 6.08% | 9.51% | -2.57% | 0.31% | -2.17% | -17.9%

Table 7.6: Pair-wise ranking results in geographical models for Gowalla datasets
(improvement with respect to PRME-G)

Model Gowalla (SF)) Gowalla (SD)

AUC | HitRate | MRR | AUC | HitRate | MRR
PRME-G 0.8712 | 0.3014 [ 0.0820 | 0.8544 | 0.4766 | 0.2183
Geo-inv 0.8892 | 0.3223 | 0.1045 | 0.8630 | 0.4808 | 0.2231

Improvement 2.07% | 6.93% | 27.44% 1% 0.88% | 2.20%

Geo-L2TG 0.8918 | 0.3211 | 0.1027 | 0.8700 | 0.4984 | 0.2290
Improvement 237% | 6.54% | 25.24% | 1.83% | 4.57% 4.9%

Geo-DBSCAN | 0.8898 | 0.3446 | 0.1008 | 0.8714 | 0.5075 | 0.2227
Improvement 2.13% | 14.33% | 1.88% | 1.99% | 6.48% 2%
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Table 7.7: Pair-wise ranking results in geographical models for Foursquare (NYC) dataset
with time-gap threshold T = 14 (with improvements over PRME-G)

Foursquare (NYC))
Model AUC [ HitRate | MRR
PRME-G 0.9074 0.53 0.3819
Geo-inv 0.9175 | 0.5291 | 0.3738

Improvement 1.11% | -0.17% | -2.12%
Geo-L2TG 09171 | 0.5411 | 0.3834
Improvement 1.07% | 2.09% | 0.39%
Geo-DBSCAN | 09176 | 0.5475 | 0.3759
Improvement 1.12% | 3.30% | -1.57%

improved the performance to an extent; this confirms our hypothesis that the temporal influences
are different on weekdays and weekends and modeling this signal can be highly useful. However,
there is a slight deterioration in performance in comparison to LocTime(LTG) model, as the
temporal information is now split across two spaces; some locations have similar temporal patterns
regardless of the type of day, and check-ins pairs which are across the type of day are split across
either of the spaces. The temporal evolution of user preferences offered little improvement in
performance.

We also note that the performance degradation is the highest in the most sparse dataset -
Gowalla (SD). In fact, in both of the sparse Gowalla datasets, the adaptive location-time weighting
does not outperform other methods. The static weighted model LocTime(static) is also the only
model that outperformed STELLAR in these datasets.

From table 7.5, 7.6, we see that while PRME-G incorporates geographical influence, its
fused multiplicative model does not yield the best performance. Rather, the simple additive inverse
of the power of distance provides much better results. Similar to the use of the normalized number
of check-ins through the location-time graph, the use of the normalized number of transitions in
location-location graph further improves the performance, indicating the strong need for adaptive
weighting of the geographic space. Finally, the use of regions through DBSCAN provides the best

performance across all of these models, indicating the need to model neighborhood influences.
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We note that this method is dependent on the number and nature of clusters formed by DBSCAN.

A notable exception is the Foursquare(NYC) dataset that shows a reverse trend in geo-
graphical extensions. We note that all results in tables 7.5,7.6 were with time-gap threshold of 12
hours for simplicity. We increase the time-gap threshold to 14 hours, to accommodate more pairs
and repeat our experiments, the results of which are outlined in 7.7. We see that the geographical
models perform much better than the baseline and the deterioration of MRR with each model
has also decreased. As observed in figure 5.3b, the two-thirds of the data can be explained in
approximately 16 hours time gaps.

Finally, we fuse the temporal and geographical spaces to obtain the results in table 7.8.
We do not include the user temporal preference component as we did not obtain a significant
boost in performance. We see that the model performance does improve in terms of hit rate for
all datasets. The MRR, however, is impacted significantly for sparse datasets, which could be due

to the disproportionate increase in the number of parameters with respect to the data size.

Table 7.8: Pair-wise ranking results in combined model GeoTemp for all datasets

FourSquare (TKY)
AUC \ Hit Rate \ MRR

Foursquare (TKY) | 0.949 | 0.5125 | 0.1880
Foursquare (NYC) | 0.9259 | 0.5392 | 0.3067
Gowalla (SF) 0.9012 | 0.3299 | 0.1008
Gowalla (SD) 0.8777 | 0.5191 | 0.2286

Model

7.2.2 Qualitative analysis

We visualize the sequential space of location-time embedding model as an example
representation of points in the sequential space. From figure 7.2, we see that activities that are
performed in succession are closer in the sequential space - various classrooms and buildings of a
university, airport gates and terminal, and various stores of a shopping mall.

We also visualize the locations in the temporal space (see figure 7.4). For example, we see
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that many coffee shops are placed close to each other, indicating their peak times are similar. We
can extrapolate this similarity through the triangular inequality assumption of the distance metric
- two locations are close to an hour of the day implies they are closer to each other in the temporal
space. In the temporal models, we employ an additional regularizer to smoothen embeddings
across consecutive time slots. From the TSNE embedding (perplexity=5, learning rate =10) as

shown in figure 7.3, we see that the temporal space does mirror this similarity of successive times

Convenience Store
@nirport
@Bus Line IFast Food Restaurant Cohyenience Storg (Camera Store
Restaurant ® @Recordshop @Road 2
®Airport Terminal University® . sTrain Station @Arts & Crafts Store:
) A Office: Laundry Service, @lectronics Store _@Camera Store
Airport Terminal Metro Staton L v e @i Réburart
Eshopping Mall @shopping il
University © © gtiiobbyshop go
> 0 ¢ amera store
aHotel P College Classroom Sriobby stiop
4 @Airport Lounge Rest 7
oty SAirgort Gate o College Classroom @Movie Theater,
ATrain Station | College Classioom @ood® House @Vvedical Center d 'SEKE 2;'
- #Indian Restaurant 3
@Airport Gate’ #Airport Gate Grocery Store
Bairport Gate &
Train StationgAirport Terminal - Bus Station “College Classroom
WAirport Gate.

Light Rail Station, o
Convenience Store Bridge @sake Bar

(a) Airport terminal (b) College classroom (c) Plaza

Figure 7.2: Nearest neighbours of various locations in a sample sequential space

Figure 7.3: TSNE visualization of all hours of the day in a sample temporal space
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Figure 7.4: Nearest neighbours of various locations in a sample temporal space

We decided on the number of clusters based on knowledge of the cities and visualizing
a subsample of the clustered data points. The subsampled cluster maps can be found in figure
7.5. We note that the color is indicative of the nearby points sampled as one cluster, and does
not represent a unique cluster itself. We found DBSCAN to be susceptible to forming one large
cluster especially in cities with large number of establishments in smaller regions. For example,
the downtown area of SF gets modeled as one large cluster even with extremely small cluster
radius, due to the sheer number of establishments present in this area.

We ideally want a reasonably good clustering, both in terms of geographical neighborhood
characteristics as well successive check-in closeness. For example, locations in New Jersey close
to Manhattan area, well connected through the bridges, can still be clustered together, despite not
officially in the same region. Table 7.9 outlines the configurations that gave the “best” clusters for
all datasets. The outliers do not have a cluster associated with them and therefore do not receive

any regional influence in the Geo-DBSCAN model.

Table 7.9: DBSCAN configurations and results for various datasets.

Dataset minP € #clusters | # outliers
Foursquare (TKY) 10 0.005 0.1880 518
Foursquare (NYC) 10 | 0.0035 0.3067 3187
Gowalla (SF) 10 0.007 0.1008 566
Gowalla (SD) 10 0.005 0.2286 335
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Chapter 8

Conclusion

In this thesis, we first investigate various temporal and geographical patterns and rhythms
in user mobility data available in location-based social networks like Foursquare and Gowalla. We
then propose several ways to incorporate various geographical and temporal patterns to improve
the quality of prediction in the task of next POI recommendation. Our experiments show the
superior performance when these influences are accounted for. The superior performance of
combined spatial-temporal metric embedding model across datasets of varying datasets indicates
not only strong correlations between time and location but also that the model can capture these
patterns effectively. We also demonstrate the use of modeling directionality of user mobility
patterns; the improvement is most significant in dense datasets, highlighting the dependence of
the increased number of parameters in PRME to the amount of data available.

One interesting avenue for future work is in improving spatial clustering. Currently, the
validity of clusters from this step is done based on domain knowledge of the cities. DBSCAN does
not have the option to allow maximum points in clusters, which therefore does not preclude the
possibility of large clusters especially in heavy activity areas like city downtown areas. Another
avenue for research is learning distance metrics for incorporating temporal and geographic

influences, which currently is the Euclidean space.
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