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Abstract

Process-based simulation models are used to generate seasonal crop yield and

nitrate leaching datasets for several important crops. The simulated data is

then used to estimate novel three-input crop response functions that account

for the effects of interactions and feedback mechanisms in the whole plant-

water-nitrogen-salinity system. Comparisons with available field data show

that this appears to be a reliable approach for estimating analytical crop re-

sponse functions with water, nitrogen, and salinity as input factors. Results

also demonstrate the shortcomings of using simpler two-input functions. The

estimated functions are continuously differentiable and can be easily incorpo-

rated into comprehensive agricultural-economic-environmental optimization

models, thus facilitating greater utilization of process-based models by a

wider range of disciplines.
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1. Introduction1

Our ability to efficiently manage agricultural water has benefitted in re-2

cent years from the development of process-based simulation models that are3

capable of predicting the effects of varying conditions and management prac-4

tices on crop yield and the environment. Examples of such models include5

GLEAMS, EPIC, APSIM, SMCR N, CropSyst, SWAP, ENVIRO-GRO and6

HYDRUS (Knisel and Turtola, 2000; Williams et al., 1995; Keating et al.,7

2003; Zhang et al., 2010; Stöckle et al., 2003; Kroes et al., 2008; Pang and8

Letey, 1998; Šimůnek et al., 2008). Models such as these typically are based9

on the specific agronomic and biophysical processes that occur at the plant or10

plot level in short time steps throughout a growing season, and thus represent11

our best scientific understanding of those processes.12

These models are potentially very useful for researchers in other disci-13

plines who are investigating questions that require accurate representation14

of agronomic and biophysical processes, possibly at larger spatial and time15

scales. A prime example is economics which is often concerned with pre-16

dicting the effects of changes in environmental, economic, or regulatory con-17

ditions on grower behavior and welfare, usually at the farm level and over18

multiple growing seasons. Such predictions invariably require solving a math-19

ematical optimization problem that represents the grower’s decision-making20

process. Although it is possible to link an economic optimization model21

directly with an external process-based simulation model such that the eco-22

nomic model calls the simulation model each time the optimization routine23

needs to calculate a level or derivative of one of the simulated variables,24

this is uncommon in practice due to the requisite programming skills and25
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the substantial computational burden. A recent example of this approach26

is Lehmann et al. (2013) in which a genetic algorithm is used to bridge27

the models. Although the authors acknowledge that “the full potential of28

[process-based] models is only tapped when as many different management29

variables as possible are considered simultaneously” (p.56), they must limit30

their choice set to twelve discrete decision variables in order to achieve rea-31

sonable computation times. While a decision set of this dimension may be32

adequate for some single period problems, notwithstanding the lack of con-33

tinuous choice variables, multi-period problems can easily involve hundreds34

of decision variables (e.g. Baerenklau et al., 2008).35

A far more common approach that is more widely accessible, more com-36

putationally feasible, and allows for a richer set of decision variables is to37

embed in the economic model analytical functions that have been fitted to38

data generated either from field experiments or by the external simulation39

model. This amounts to an indirect linkage of the models via the analytical40

functions, as shown in Figure 1. A recent example of this approach is Finger41

(2012) who uses simulated yield data from CropSyst to estimate production42

functions that are then used to predict changes in water and fertilizer appli-43

cation rates by corn producers in response to changing economic conditions.44

In general terms, such crop response functions relate output variables (e.g.,45

crop yield, pollutant emissions) to the quantity and/or quality of at least one46

input factor. Crop yield functions have a long history, likely dating back to47

von Liebig’s “law of the minimum” in the mid-1800’s, and continue to play48

an important role in economic analysis of agricultural production (Hexem49

et al., 1978; Lanzer and Paris, 1981; Letey and Dinar, 1986; Griffin et al.,50
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1987; Berck and Helfand, 1990; Tembo et al., 2008). Tembo et al. (2008)51

provides an overview. Common applications include yield response to water,52

salinity, fertilizer, pesticide, or some combination of these.53

As concerns about the effects of agricultural pollution have increased,54

emission functions have been developed to augment crop yield functions55

(Tanji et al., 1979; Peralta et al., 1994; Pang and Letey, 1998; Knapp and56

Schwabe, 2008). With both yield and emission functions in hand, economic57

analysis can be extended to include not only market inputs and outputs but58

also the nonmarket effects of agricultural production on natural resources and59

environmental quality. In the case of nitrogen fertilizer, nitrate leaching typ-60

ically is estimated as a function of applied water and applied nitrogen. When61

the response functions are embedded in an economic optimization model, the62

effects of a fertilizer tax, for example, can be estimated on irrigation water63

use, fertilizer use, crop yield, farm income, nitrate leaching, and ultimately64

groundwater quality.65

Standard practice for empirical specification of such agri-environmental66

crop response functions has converged on two-input models, typically either67

water and salinity, or water and nutrients (as in Finger, 2012), or water68

and pesticides depending on the desired application.1 Incorporating mul-69

tiple inputs allows modeling of potentially important interaction effects on70

crop yield and pollutant emissions. For example, applied irrigation water71

1Here we refer to the variable inputs for which decisions must be made throughout
a growing season. Many other choices by a producer affect yield and emissions, such as
planting, harvest, and irrigation technologies. However standard practice is to treat these
as fixed factors of production and to estimate crop response functions conditionally on
these choices.
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is at least as important as applied nitrogen for determining nitrate leaching72

because water is the main transport medium for dissolved salts (Pang and73

Letey, 1998). Therefore, in areas where nitrate pollution is a potential threat74

to public health and the environment, proper evaluation of pollution control75

policies requires information on the response of both crop yield and nitrate76

leaching to both water and nitrogen. Another example is the effect of saline77

irrigation water on nitrate leaching. Total leached nitrogen has been shown78

to increase due to the effects of salinity stress on water and nutrient uptake79

(e.g., Pang and Letey, 1998; Ramos et al., 2011).80

We are not aware of any previously published crop response functions81

with three input factors, but such functions would be particularly useful82

for addressing persistent and emerging problems from irrigated agriculture.83

Therefore the purpose of this study is to develop, demonstrate, and test a84

methodology for estimating integrated crop response functions with three in-85

put factors; and to disseminate the estimated functions for several important86

crops that use water, nitrogen and salinity as inputs. In order to address87

the lack of field experimental data that would support estimation of such88

functions, we utilize simulations. Novel and generally applicable response89

functions are derived from the simulated data that account for the effects90

of interactions and feedback mechanisms in the whole plant-water-nitrogen-91

salinity system.92
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2. Methodology93

2.1. Function Inputs Specification94

Most studies estimate models of crop yield and nitrate leaching using95

applied water and nitrogen fertilizer as inputs (e.g., Helfand and House, 1995;96

Llewelyn and Featherstone, 1997). From an agronomic perspective, it is97

the combination of management practices like these and pre-existing soil98

conditions that determine yield and leaching; yet only a few studies include99

variables such as soil nitrogen stock as an additional input (Vickner et al.,100

1998; Mart́ınez and Albiac, 2006). Neglecting to account for soil conditions101

does not necessarily lead to biased estimation results but it does limit the102

transferability of the response functions to other regions or even to the same103

field under different conditions. Our crop response functions use available104

water, available nitrogen, and exposed salinity as inputs and are thus more105

general and transferrable. Below we show how to navigate between our input106

variables and those that are more commonly used.107

Water that is available for crop uptake includes irrigation (e.g., surface108

water, groundwater, recycled drainage water), precipitation, and initial water109

content in soil. Initial water content is relatively small compared to the110

amount of applied water, and thus can be assumed away from crop available111

water (Letey and Knapp, 1995). Denoting the remaining water sources as112

wi, i = 1, . . . , I (cm), crop-available water, w (cm), can be specified as the113

summation shown in equation (1).114

w =
I∑

i=1

wi (1)
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Crop-available nitrogen includes only inorganic nitrogen, mainly in the115

forms of ammonium and nitrate. Direct sources include soil, atmospheric116

deposition, irrigation, and fertilizer. Additionally, the process of mineral-117

ization can slowly convert organic nitrogen to ammonium and thus increase118

crop-available nitrogen. Following Pang and Letey (1998), it is assumed that119

nitrification is rapid so that all mineral nitrogen is NO3. Loss of nitrogen120

includes volatilization when inorganic fertilizers containing urea are applied121

to the field and denitrification when nitrate-nitrogen in soil is converted to122

nitrogen gas through microbial processes. Denoting the average seasonal123

denitrification rate as λ, the volatilization rate of applied inorganic fertil-124

izer as β, and the average seasonal mineralization rate of organic nitrogen125

as δ, equation (2) specifies crop available nitrogen n (kg/ha) as a function126

of soil inorganic nitrogen insoil (kg/ha), soil organic nitrogen onsoil (kg/ha),127

applied inorganic fertilizer infl (kg/ha) and organic fertilizer onfl (kg/ha),128

water source wi (cm) and its nitrogen concentration nw
i (kg/ha-cm), and the129

seasonal rate of atmospheric nitrogen deposition d (kg/ha). This equation130

includes the main processes in and above the root zone that can affect the131

nitrate leaching rate. Therefore our nitrate leaching functions focus on the132

amount of nitrate leached out of the root zone. Once this information is avail-133

able, further steps (beyond our analysis) can be taken to incorporate other134

processes in the unsaturated and saturated zones to simulate downstream135

nitrate emissions.136

n = (1− λ)

(
insoil + (1− β) infl + δ

(
onsoil + onfl

)
+

I∑
i=1

wi n
w
i + d

)
(2)
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A few models have been developed for predicting salt concentration of soil137

solution under intra-seasonal irrigation (Bresler, 1967; Knapp, 1984) and have138

been applied to studies on saline water irrigation (e.g., Knapp, 1992; Kan139

et al., 2002; Kan, 2008). Following Knapp (1992) and Kan et al. (2002), we140

adapt the salt balance model in Knapp (1984) to obtain the seasonal average141

for crop exposed salinity s (dS/m), as shown in equation (3). Here, ν (cm)142

is the field capacity for soil moisture, ssoil (dS/m) is the salt concentration143

of soil solution at the beginning of a growing season, w and wi are defined144

in equation (1), swi (dS/m) is the salt concentration of water source wi, and145

wup (cm) is the amount of water absorbed by crops. Crop exposed salinity146

equals the total amount of salt in the soil and from irrigation divided by the147

total amount of water that is not taken up by the crop.148

s =
ν ssoil +

∑I
i=1wi s

w
i

ν + w − wup

(3)

The crop response functions can be summarized as149

wup = Ψwup (w, n, s) (4)

nup = Ψnup (w, n, s) (5)

ry = Ψry (w, n, s) (6)

nl = Ψnl (w, n, s) (7)

where w, n, and s are defined above; and wup (cm), nup (kg/ha), ry, and150

nl (kg/ha) are respectively water uptake, nitrogen uptake, relative yield (the151

ratio of actual yield to maximum attainable yield), and nitrate leaching.152

8



2.2. Alternative Function Specification153

The crop response functions defined above depend on absolute values of154

water, nitrogen, and salinity. As Letey and Dinar (1986) point out, for pur-155

poses of transferring such relationships among different geographical areas, it156

is helpful if these inputs can be expressed in relative terms. We can achieve157

this by specifying local scaling factors and conducting function transforma-158

tions.159

Relative input values are equal to absolute input values divided by scaling160

factors, which are listed in Table 1. The three critical scaling factors for a crop161

in a certain region are maximum water uptake (i.e., potential transpiration)162

w∗
up (cm), maximum nitrogen uptake n∗

up (kg/ha), and the salinity critical163

value EC (dS/m), each of which depends on climate, soil conditions, and164

farming practices. Table 2 summarizes the scaling factors for corn, cotton,165

and small grains in our study region. These scaling factors can be derived for166

other regions of interest, and once this information is available, the functions167

we develop here are transferable to those regions.168

Take the relative yield function as an example. We can transform the169

relative yield function in equation (6) by using an appropriate set of scaling170

factors to get equation (8), a new function Ωry that only relies on relative171

input values. Since local climate conditions, soil conditions, and farming172

practices are incorporated into local values of w∗
up, n

∗
up, and EC, this func-173

tion is independent of these characteristics. The same is true for our water174

uptake, nitrogen uptake, and nitrate leaching functions when they are ex-175

pressed similarly in relative terms.176
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ry = Ψry(w, n, s)

= Ψry

(
rw · w∗

up, rn · n∗
up, rs · EC

)
= Ωry

(
rw, rn, rs | w∗

up, n
∗
up, EC

)
(8)

3. Data177

Data required for estimating our crop response functions include: applied178

water, applied nitrogen, soil nitrogen, soil salinity, crop water uptake, crop179

nutrient uptake, crop yield, and nitrate leaching. We are not aware of any180

field experiments that have generated a full set of data that could be used to181

simultaneously estimate the effects water, nitrogen and salinity on yield and182

leaching. This generally limited availability of field data is likely due to the183

high cost of experimentally quantifying the combined effects of multiple input184

factors on yield and solute leaching. This motivates our use of simulation185

models to generate the required data and our subsequent use of available186

field data to validate the approach.187

3.1. Model selection188

Many models have been developed to simultaneously deal with plant189

growth, water flow, and solute movement at the field level. Among those190

models, CropSyst, SWAP, ENVIRO-GRO, and HYDRUS contain salinity191

modules. The four models are similar in terms of their simulation capa-192

bilities and each has had its individual modules successfully tested under193

various empirical conditions (e.g., Pang and Letey, 1998; Stöckle et al., 2003;194
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Zhang et al., 2010; Bonfante et al., 2010). However, there are few evalu-195

ations of these models that simultaneously test both nutrient and salinity196

modules. One exception is a study by Pang and Letey (1998) that evaluates197

ENVIRO-GRO against field experiment data and demonstrates good agree-198

ment. ENVIRO-GRO might have been an ideal model for the purpose of this199

study, but the nitrogen module was subsequently modified and is no longer200

valid (J. Letey, personal communication). Another exception is a recent201

study by Ramos et al. (2011) that evaluates HYDRUS-1D using data from202

a field experiment in which corn is irrigated with water of varying nitrogen203

and salt concentrations. HYDRUS-1D is a software modeling environment204

for analysis of water flow and solute transport in variably saturated porous205

media (Šimůnek et al., 2008). It is used worldwide and has been shown to be206

reliable for modeling water flow and solute transport, especially for processes207

in soil and groundwater. The results in Ramos et al. (2011) show HYDRUS-208

1D to be an effective tool for simulating concentrations of both salinity and209

nitrogen species in soil, and thus we elect to use it here for datast generation.210

Ramos et al. (2011) do not utilize the active mechanism of root nutrient211

uptake in HYDRUS-1D, which is reasonable given their objective to simulate212

field conditions in a relatively simple way and to provide indicative values.213

Given our objective of quantifying crop yield and solute leaching, we need214

to include both active and passive root nitrogen uptake. We simulate the215

transport of two solutes (salt and nitrogen) in HYDRUS-1D. For salts we216

assume that there is no uptake by plant roots, while for nitrogen we utilize217

the compensated root water and nutrient uptake modules through both pas-218

sive and active mechanisms (as described in Šimůnek and Hopmans (2009)).219
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Simulation of active solute uptake with multiple solutes is a standard feature220

of the latest version of HYDRUS-1D.221

The outputs from HYDRUS-1D include estimated water uptake, solute222

uptake, and solute leaching but not crop yield. External functions thus223

are required to convert water and nutrients uptake from HYDRUS-1D into224

crop yield. Following Pang and Letey (1998), relative yield is specified as a225

function of relative water uptake and relative nitrogen uptake:226

ry = min [ryw, ryn] = min

[
wup

w∗
up

,Φ

(
nup

n∗
up

)]
(9)

Here Φ represents a quadratic relationship (Pang and Letey, 1998; Feng227

et al., 2005). Combining HYDRUS-1D outputs with the agronomic model228

in equation (9) allows us to generate a full set of estimates for crop water229

uptake, nitrogen uptake, nitrate leaching, and crop yield.230

3.2. Validation of Simulated Data231

To our knowledge, the best available field experiment data for validating232

this study are from a corn trial in Davis, California from 1973 to 1976 (Tanji233

et al., 1979). The field was treated with a wide range of water and nitrogen234

applications: four different rates of nitrogen fertilizer (0, 90, 180, and 360235

kgN/ha) and three different irrigation regimes (20, 60, and 100 cm), with236

each replicated four times. In addition, nitrogen in harvested grain and stover237

(i.e., nitrogen uptake) was accurately measured. See Tanji et al. (1979) and238

Broadbent and Carlton (1980) for detailed descriptions. This high quality239

dataset has been used previously for model validation (e.g., Tanji et al., 1979;240

Pang and Letey, 1998, 2000) and continues to be used in more recent work241
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(e.g. Knapp and Schwabe, 2008).242

Broadbent and Carlton (1980) report that the Davis corn field trial was243

established on Yolo fine sandy loam (alluvial, Typic Xerorthent). Therefore244

in the water flow module of HYDRUS-1D we select sandy loam under the245

soil catalog, which gives soil hydraulic parameters for typical soil types. The246

soil bulk density is assumed to be 1.40 Mg/m3 (Pang and Letey, 1998). The247

longitudinal dispersivity is assumed to be 20 cm and the molecular diffusion248

coefficient of nitrates and salts in free water is set to zero because the fluxes249

by diffusion are negligible compared to dispersive transport (Appendix H,250

Chang et al., 2005). Tanji et al. (1979) also report the maximum root depth251

for corn in the Yolo soil to be around 2.4 m so we use this value in the root252

growth module, where the logistic growth function is used to simulate root253

growth. The root growth factor is specified as 50% after half of the growing254

season. Because the field trial used nonsaline irrigation water and all plots255

received pre-irrigation prior to planting, initial soil salinity is assumed to be256

0.01 dS/m for all simulations.257

Results are presented in Figures 2 and 3. Linear regression equations258

are reported along with the coefficients of determination. Figure 2 displays259

field measured nitrogen uptake versus the simulated nitrogen uptake from260

the model of Tanji et al. (1979) and from HYDRUS-1D. The HYDRUS-1D261

model shows overall better performance than the widely used Tanji model.262

The slope coefficient is closer to one and the intercept term is closer to zero263

and quite small relative to the range of nitrogen uptake magnitudes. The264

null hypotheses that these coefficients are respectively equal to one and zero265

cannot be rejected at 95% confidence levels. Figure 3 compares field mea-266
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sured relative yield to the simulated relative yield calculated from equation267

(9). Although the fit is not as good as that for nitrogen uptake, it is still268

quite good given the complexities and uncertainties associated with the whole269

plant-water-nitrogen-salinity system. The simulation results also compare fa-270

vorably against the results reported by Pang and Letey (1998) in a test of the271

ENVIRO-GRO model against the same data, where the slope, intercept, and272

R2 for nitrogen uptake and relative yield are respectively [0.87, 22.55, 0.75]273

and [0.85, 0.05, 0.84]. Experimental data on nitrate leaching are not avail-274

able from the Davis trial so we cannot conduct a similar comparison for our275

simulated leaching results. However Ramos et al. (2011) demonstrate that276

HYDRUS-1D can accurately simulate soil water nitrate concentrations in a277

similar empirical setting. Overall these results suggest that our approach can278

be used to model nitrogen uptake and relative yield with acceptable levels of279

accuracy.280

3.3. Linearization of Nitrogen Uptake Curves281

Inputs for our HYDRUS-1D simulation include raw data on crops (e.g.,282

transpiration rate, salt tolerance, maximum root depth, maximum nitrogen283

uptake, and maximum water uptake) and soil (e.g., evaporation rate, hy-284

draulic properties, and solute transport parameters).2 We also must provide285

crop-specific uptake curves (daily potential uptake) for both water and nitro-286

gen. Most of this information can be obtained locally through either direct287

2Climate data (e.g., precipitation and average daily temperature) can be input directly
into simulation models, or it can be incorporated indirectly through other variable inputs.
We have shown in the previous section why the latter is a better approach for improving
the transferability of crop response functions.
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field measurement or indirect estimation methods. However there is little288

information on nitrogen uptake curves for crops other than the small grain289

forages that are discussed in Crohn et al. (2009). To bridge this gap, we290

use the available data on small grain forages to test the possibility of ap-291

proximating nitrogen uptake curves with a linear relationship that can be292

extended to a wider range of crops under the assumption that those uptake293

curves are approximately linear, as well.294

Figure 4 depicts the nitrogen uptake curves for eight small grain for-295

ages commonly grown in California in the winter months. These curves are296

based on the logistic function developed by Crohn et al. (2009), where the297

nitrogen content of a crop is a function of cumulative growing degree-days298

(GDD, or thermal time). For ease of comparison, and consistent with the299

literature (Crohn et al. (2009)), all curves in Figure 4 terminate with the300

maximum nitrogen uptake n∗
up = 250 kgN/ha and the harvest thermal time301

dharvest = 2500 GDD, which are common values for small grain crops in the302

San Joaquin Valley of California. In practice, the nitrogen uptake of a crop303

might be higher than the crop’s nitrogen content, since some nitrogen can304

be lost to the atmosphere. Here we assume that the nitrogen uptake and305

the nitrogen content of a crop are identical. The curves fall into two cate-306

gories: exponential for two ryegrass crops and sigmoid for the other crops.307

As Crohn et al. (2009) point out, the exponential curves are most likely due308

to forage quality and harvest schedule constraints. Sigmoid curves are widely309

recognized and applied.310

In order to investigate whether the shape of a nitrogen uptake curve311

significantly affects estimated total nitrogen uptake and relative yield, sim-312
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ulations of Swan oat (top curve in Figure 4), Longhorn oat (middle curve313

in Figure 4), and Bartali Italian ryegrass (bottom curve in Figure 4) with314

nonlinear uptake curves are compared to simulations for the same crops with315

linear uptake curves. For each crop, we specify combinations of five levels316

of available water ([0.25, 0.5, 1, 1.5, 2]× w∗
up), five levels of available nitrogen317

([0.25, 0.5, 1, 1.5, 2]×n∗
up), and five levels of exposed salinity ([0, 0.25, 0.5, 0.75, 1]×318

EC), which produces 125 input scenarios for each crop. EC is the critical319

value of soil salinity at which crop yield decreases to zero. It is calculated320

from the salt tolerance parameters of the crop following the approach in321

Maas and Hoffman (1977). The linear nitrogen uptake curve of a crop is322

constructed from the crop’s maximum nitrogen uptake, the harvest thermal323

time, and the cumulative thermal time over the season d (GDD), as shown324

in equation (10). All other HYDRUS-1D specifications are held constant for325

each pair of simulations.326

nd
up =

n∗
up

dharvest
d (10)

Figure 5 displays a comparison of the simulation results. Most results327

closely track the 45-degree line implying little discernible effect of linearizing328

the nitrogen uptake curve. The points that visibly lie off the 45-degree line329

are scenarios in which crops receive sufficient water with low salinity but little330

nitrogen, which rarely happens in practice. The t-statistics for the three re-331

lationships (not shown) suggest that the relative yields of Longhorn oat and332

Bartali Italian ryegrass are not statistically different from their linearized333

versions at the 95% level; the relative yield of Swan Oat is statistically differ-334

ent from its linearized version at the 95% level due to a very small standard335
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error on the slope coefficient, but the difference is not practically significant336

(about 1.3% of the estimated yield). We conclude that any nonlinear terms337

in a nitrogen uptake curve can be safely disregarded for our purposes, and338

thus adopt the linear relationship in equation (10) that can be applied to any339

crop for which an estimate of the maximum nitrogen uptake is available.340

4. Results341

We estimate the crop response functions in equations (4)-(7) for corn, cot-342

ton, and winter small grains using simulated datasets. For each crop, we spec-343

ify combinations of at least five levels of available water ([0.25, 0.5, 1, 1.5, 2]×344

w∗
up), five levels of available nitrogen ([0.25, 0.5, 1, 1.5, 2]× n∗

up), and six lev-345

els of exposed salinity ([0, 0.2, 0.4, 0.6, 0.8, 1]×EC), which produces at least346

150 input scenarios for each crop. Some of these input values may seem ex-347

treme, but they are selected in order to cover most, if not all, of a producer’s348

possible operating scenarios, including potentially stringent environmental349

regulations. The highest level of available water is double the maximum wa-350

ter uptake, taking into account that the operator might apply excess water351

to flush salts out of the root zone. The highest level of available nitrogen352

is also double the maximum nitrogen uptake, since both animal waste and353

commercial fertilizers tend to be over-applied to crop fields. And exposed354

salinity covers the entire range in which it is possible for a crop to grow.355

For each combination of input values, we use HYDRUS-1D and the agro-356

nomic model in equation (9) to simulate water uptake, nitrogen uptake, rel-357

ative yield, and nitrate leaching. We then use this data to estimate crop re-358

sponse and nitrate leaching as smooth functions of the input values. Drainage359
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water and salt leaching are beyond the scope of this paper but can be calcu-360

lated using mass balance relationships (see (Knapp and Baerenklau, 2006)).361

The forms of the water and nitrogen uptake and relative yield functions362

are developed from the traditional Mitscherlich-Baule functional form, which363

is discussed below. Because the estimation methods for these three func-364

tions are similar, we only present the procedure for estimating the crop rel-365

ative yield function in the following section. The nitrate leaching function366

is adapted from Knapp and Schwabe (2008). We use corn as an example to367

illustrate the whole estimation procedure.368

4.1. Relative Yield Function369

Various forms have been proposed for crop yield functions. Griffin et al.370

(1987) provide a thorough review of twenty traditional and popular functional371

forms. They also discuss guidelines for form selection, one of which pertains372

to application-specific characteristics. Since we expect the resulting functions373

in this paper to be incorporated into economic optimization models, continu-374

ous differentiability is a desirable property. Llewelyn and Featherstone (1997)375

compare five functional forms using corn yield data from the CERES-Maize376

simulator for western Kansas. Corn yield is estimated as a function of ni-377

trogen and irrigation water. Their results favor the Mitscherlich-Baule (MB)378

form over all other specifications. Shenker et al. (2003) measure the yield379

response of sweet corn to the combined effects of nitrogen fertilization and380

water salinity over a wide range of nitrogen and salinity levels. Two func-381

tional forms (Liebig–Sprengel and MB) are evaluated based on the measured382

data. The results suggest that either functional form can successfully predict383

water needs, nitrogen needs, and yield. Liebig–Sprengel is a minimization384
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function derived from von Liebig’s “law of the minimum”. It results in a step-385

wise response curve that is not differentiable. Therefore, MB is chosen as the386

base functional form for crop relative yield in this study. We also compare387

our MB function with quadratic and square root functions of corn using pair-388

wise P-tests, as used in Frank et al. (1990) and Llewelyn and Featherstone389

(1997). The MB function is found to be favored over the other functional390

forms.391

The traditional MB function is usually expressed as equation (11), where392

a calibrates the upper limit on yield and the bi are parameters for the input393

factors Xi. This function exhibits continuously positive marginal productiv-394

ities of input factors and allows for factor substitution.395

Y = a
∏
i

[
1− e−b1i (Xi+b0i )

]
(11)

Either absolute yield or relative yield can be the dependent variable, with396

a equal to the maximum attainable yield when estimating the absolute yield397

and equal to one when estimating the relative yield. Using this form, relative398

yield as a function of three inputs can be written as equation (12), where399

bw, bn, and bs are parameters for crop available water, available nitrogen, and400

exposed salinity.401

ry = Ψry (w, n, s)

=
[
1− e−b1w(w−b0w)

] [
1− e−b1n(n−b0n)

] [
1− e−b1s(s−b0s)

]
(12)

Our efforts to estimate equation (12) directly from the simulated data402

19



did not produce good results. Inspection of the simulated data for each403

salinity level revealed that relative yield is roughly “bell shaped” in the water404

dimension. We thus modify the water parameter in equation (12) so that it,405

too, is bell shaped. To do this, we use a parameterized variant of the logistic406

probability density function (preferred over the normal distribution because407

of its heavier tails) and define it as the water coefficient φ shown in equations408

(13) and (14).3 For each salinity level, the crop relative yield function is then409

defined as410

ry = ψry (w, n | s)

=
[
1− e−b1w(φ(w)w−b0w)

] [
1− e−b1n(n−b0n)

]
(13)

where411

φ (w) =
4ed1w+d0

(1 + ed1w+d0)2
+ d2 (14)

As shown in Figure 6, this approach produces very good results (R2 >412

0.99 for each salinity level). However it produces a set of coefficient estimates413

Υ ≡ {b1w, b0w, b1n, b0n, d0, d1, d2} and thus a yield function that is specific to414

each simulated salinity level. To get a single continuously differentiable yield415

function that operates over all water, nitrogen, and salinity levels, we note416

that each coefficient estimate is effectively a function of salinity so we proceed417

to estimate a parametric function of salinity for each coefficient. Salinity thus418

3The coefficient 4 is applied to approximately standardize the range of the function to
the [0, 1] interval.
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enters the yield function indirectly through its influence on the water and419

nitrogen parameters rather than directly as a separate multiplicative term.420

This approach also reduces the computational requirement by breaking421

down the problem into two subproblems. First, estimate equation (13) once422

for each value of s = [0, 0.2, 0.4, 0.6, 0.8, 1]×EC, each time using the subset of423

simulated data points that corresponds to the selected salinity value. These424

estimations produce the surfaces shown in Figure 6 for the case of corn. As425

noted by Griffin et al. (1987), convergence problems may arise when estimat-426

ing the (modified) MB functions during the first step of this procedure. We427

found that standard methods were sufficient for overcoming such difficulties.428

These include: (1) increasing iteration limits for the regression models, (2)429

specifying alternative starting values for the parameters, and (3) using data430

visualization as a complementary method for goodness-of-fit assessment (e.g.,431

Figures 6 and 9). Second, estimate each parameter Υi ∈ Υ as a polynomial432

function of salinity using the coefficient estimates from the first subproblem433

as data. Figure 7 depicts the regression curves for the case of corn. Again,434

agreement between the data and functions is generally very good. Finally,435

substitute the fitted polynomial equations into equations (13) and (14) to436

get the crop relative yield function with three input variables, as shown in437

equation (15). For the case of corn, this approach is verified by the excellent438

agreement between the simulated data and the fitted relative yield shown in439

Figure 8.440
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ry = Ψry (w, n, s)

=
[
1− e−b1w(s)(φ(w|d0(s),d1(s),d2(s))w−b0w(s))

] [
1− e−b1n(s)(n−b0n(s))

]
(15)

Table 3 summarizes the parameter estimates for the corn relative yield441

function. Each row shows the coefficients that specify each parameter Υi ∈ Υ442

as a polynomial function of salinity, as well as the R2 values for each polyno-443

mial regression. The last column shows the R2 value for a linear regression444

of the estimated relative yield from equation (15) versus the simulated data.445

As can be seen in the table, the R2 values are generally very good. Similary,446

Tables 4 and 5 summarize the parameter estimates for the corn water uptake447

function and nitrogen uptake function.448

4.2. Nitrate Leaching Function449

We use the same comparison tests as for the crop relative yield function450

to compare four forms of nitrate leaching functions (test results available451

upon request). A function adapted from Knapp and Schwabe (2008) outper-452

forms the quadratic, cubic, and square root functions, mainly because of its453

convex-concave properties and guarantee of a plateau maximum. In Knapp454

and Schwabe (2008), nitrate leaching is specified as a function of soil nitro-455

gen, applied nitrogen, infiltrated water, and a set of estimable parameters.456

Equation (16) shows their function with our notation.457

nl = ψnl (w, n | s) = ϑn · n
1 + e−ϑ1

w(w−ϑ0
w)

(16)
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Salinity is notably absent from this leaching equation. Thus the param-458

eter vector ϑ ≡ {ϑ1
w, ϑ

0
w, ϑn} implicitly applies to a fixed salinity level. To459

incorporate varying salinity levels, we again specify parameters as functions460

of salinity levels as in the crop relative yield functions. Our nitrate leaching461

function with three input factors is specified in equation (17).462

nl = Ψnl (w, n, s) =
ϑn(s) · n

1 + e−ϑ1
w(s)(w−ϑ0

w(s))
(17)

Here we adopt the same estimation procedure as for the crop relative yield463

functions. For the case of corn, first estimate equation (16) for each value of464

s = 0, 6, 12, 18, 24, 30 dS/m to get the surfaces shown in Figure 9. Second,465

estimate each parameter ϑi ∈ ϑ as a polynomial function of salinity. Figure466

10 depicts the regression curves. Finally, substitute the fitted polynomial467

equations into equation (16) to get the nitrate leaching function with three468

input variables, as shown in equation (17). Figure 11 demonstrates that the469

estimated nitrate leaching function fits the simulated data very well for the470

case of corn.471

Table 6 summarizes the parameter estimates for the corn nitrate leaching472

function. Each row shows the coefficients that specify each parameter ϑi ∈473

ϑ as a polynomial function of salinity, as well as the R2 values for each474

polynomial regression. The last column shows the R2 value for a linear475

regression of the estimated nitrate leaching from equation (17) versus the476

simulated data. As in Table 3, the R2 values are again very good. We477

follow the same procedure to estimate the response functions (water uptake,478

nitrogen uptake, relative yield, and nitrate leaching) for cotton and small479

grains. The estimation results are reported in Tables 7 and 8.480
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5. Discussions481

The datasets we use for estimating our crop response functions are sim-482

ulated from a hydrologic model consisting of water flow, solute transport,483

and root growth modules, in conjunction with a simple but effective ana-484

lytical agronomic model. Therefore, our crop response functions are able485

to account for the effects of interactions and feedback mechanisms in the486

whole plant-water-nitrogen-salinity system. Figures 12 and 13 present two487

examples illustrating the importance of using these integrated crop response488

functions as opposed to a traditional function with only two inputs.489

Figure 12 demonstrates the relationship between corn relative yield and490

available water under three different salinity levels (0.2, 2, and 10 dS/m),491

given a fixed level of available nitrogen (200 kg/ha). For each salinity level,492

the relative yield gradually increases to a plateau and then declines. This493

is consistent with the findings in Pang and Letey (1998) and Knapp and494

Schwabe (2008). With fixed nitrogen and excessive water, more nitrate is495

leached out of the root zone and thus less nitrogen is available for crop496

uptake. Moreover the figure demonstrates the significant effect of salinity on497

yield that would otherwise be omitted from a standard two-input (water and498

nitrogen) crop response model.499

Figure 13 demonstrates the relationship between nitrate leaching and500

available water under three different salinity levels (0.2, 2, and 10 dS/m),501

given a fixed level of available nitrogen (200 kg/ha). For each salinity level,502

nitrate leaching significantly increases when available water exceeds the plant503

uptake capacity and eventually reaches a plateau. Comparing the three504

curves shows that high salinity levels tend to generate high nitrate leaching.505
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The underlying mechanisms are well explained in Pang and Letey (1998):506

“Salinity leads to reduced plant growth, which leads to reduced evapotran-507

spiration, which leads to more leaching, which leads to salt removal from the508

root zone. However, the leaching also removes other chemicals such as N and509

pesticides. Reduced N leads to reduced plant growth, which leads to less510

evapotranspiration, which leads to more leaching, which leads to even less N511

in the root zone” (p. 1426). In short, the interactions and feedbacks between512

plant growth, evapotranspiration, and leaching are complex. Therefore im-513

portant information can be lost and incorrect nitrate leaching estimates can514

be generated if common two-input crop response functions are applied in515

cases where water, nitrogen, and salinity actually interact.516

One such case where it is important to account for interactions among all517

three factors is land-application of animal manure. The consolidation trend518

in animal agriculture has resulted in waste generation rates that far exceed519

the ability of crops to utilize waste nutrients as fertilizer (Gollehon et al.,520

2001). In the absence of regulation, the most cost-effective disposal option521

for farmers is to over-apply manure to crops, resulting in both groundwater522

and surface water pollution (Harter et al., 2002). Because animal manure523

usually contains high concentrations of nutrients and salts, both of which524

affect crop growth and the ability of crops to uptake nitrogen, evaluations525

of animal waste management practices and policies should be based on in-526

tegrated crop response functions that relate crop yield and pollutant emis-527

sion to water, nitrogen, and salinity. Such an application is demonstrated528

in Wang and Baerenklau (2014), where the crop response functions devel-529

oped here are incorporated into a dynamic environmental-economic model530
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for policy analysis. These crop response functions also would be useful more531

broadly for economic analyses of irrigated agriculture in arid and semi-arid532

regions where problems of water scarcity, excess nutrients, and high salinity533

commonly coexist.534

6. Conclusions535

Integrated models of agri-environmental systems are potentially very use-536

ful for evaluating proposed or anticipated changes in operating conditions537

(e.g., policies, technologies, prices, and climate). The ability to predict both538

economic and environmental outcomes within these models is crucial for mak-539

ing accurate evaluations. Although process-based simulations models poten-540

tially can be linked to economic optimization models in order to address541

these questions, this approach can be problematic and remains uncommon.542

Instead, analytical crop response functions have provided the foundation for543

such evaluations for many years, but have been limited to only one or two544

input factors largely due to the limited availability of data for estimation.545

This article uses a process-based model to generate simulated crop yield546

and nitrate leaching datasets that are then used to estimate novel three-547

input crop response functions for several important crops. The functions548

account for the effects of interactions and feedback mechanisms in the whole549

plant-water-nitrogen-salinity system, and thus facilitate greater utilization of550

the knowledge contained in process-based models by other disciplines. Com-551

parisons with available field data show that this appears to be a reliable552

approach for estimating integrated crop response functions with water, ni-553

trogen, and salinity as input factors. Comparisons with simpler two-input554
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functions demonstrate the shortcomings of those functions, which continue555

to be widely used in disciplines such as economics.556

Because the crop response functions developed here use available water,557

available nitrogen, and exposed salinity as inputs, they are more general than558

functions based only on the characteristics of applied inputs. It is straight-559

forward to navigate between our input variables and those that are more560

commonly used, provided sufficient information about soil characteristics is561

available. Furthermore we demonstrate how to express our inputs in relative562

terms to facilitate transfer of our crop response functions across different563

geographic areas.564

Acknowledgement565

The authors would like to thank Dr. Jirka Šimůnek of the University of566
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Table 1: Scaling factors for calculating relative value

Absolute Value Scale Relative value

Available water w Maximum water uptake w∗
up rw = w

w∗
up

[cm] [cm]

Available nitrogen n Maximum nitrogen uptake n∗
up rn = n

n∗
up

[kgN/ha] [kgN/ha]

Soil salinity s Salinity critical value EC rs = s
EC

[dS/m] [dS/m]
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Table 2: Scaling factors for corn, cotton, and small grains in the study region

Scale Corn Cotton Small Grains

Maximum water uptake w∗
up [cm] 63 68.48 40

Maximum nitrogen uptake n∗
up [kgN/ha] 300 187.50 250

Salinity critical value EC [dS/m] 30 53.85 85

*Data source: Maas and Hoffman (1977), Pang and Letey (1998), and Crohn
et al. (2009).
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Figure 1: Alternative approaches for linking process-based simulation models with opti-
mization models
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Figure 2: Field measured nitrogen uptake vs. simulated nitrogen uptake from Tanji et al.
(1979) model & from HYDRUS-1D
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Figure 3: Field measured relative yield vs. simulated relative yield from our model

44



0 500 1000 1500 2000 2500
0

50

100

150

200

250

Trical 2700 triticale

Swan oat

Longhorn oat

Ensiler oat

Dirkwin wheat

Cayuse oat

Big Daddy ryegrass

Bartali Italian ryegrass

Time (GDD)

C
ro

p
 N

it
ro

g
en

 C
o

n
te

n
t 

(k
g

N
/h

a)

Figure 4: Nitrogen uptake curves for eight small grain forages commonly grown in Cali-
fornia. Source: Crohn et al. (2009).
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Figure 5: Relative yield of the linearized crop vs. relative yield of Swan oat, Longhorn
oat, and Bartali Italian ryegrass
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Figure 6: Relative yield vs. available water and available nitrogen for corn when soil
salinity is 0, 6, 12, 18, 24, and 30 dS/m. Points: simulated data. Surfaces: fitted functions.
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Figure 7: Polynomial regression of water and nitrogen parameters in the relative yield
function for corn

48



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(x) = 1.0056x − 0.0003

R² = 0.9973

Simulated Relative Yield

F
it
te

d
 R

e
la

ti
v

e
 Y

ie
ld

Figure 8: Relative yield function for corn: simulated data vs. fitted data
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Figure 9: Nitrate leaching vs. available water and available nitrogen for corn when soil
salinity is 0, 6, 12, 18, 24,and 30 dS/m. Points: simulated data. Surfaces: fitted functions.
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Figure 10: Polynomial regression of water and nitrogen parameters in the nitrate leaching
function for corn
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Figure 11: Nitrate leaching function for corn: fitted data vs. simulated data
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Figure 12: Interactions of water, nitrogen, and salinity for corn relative yield
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Figure 13: Interactions of water, nitrogen, and salinity for corn nitrate leaching
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