
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Submodular Inequalities for the Path Structures of the Capacitated Fixed-Charge Network
Flow Problems

Permalink
https://escholarship.org/uc/item/5t17357f

Author
Tezel, Birce

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5t17357f
https://escholarship.org
http://www.cdlib.org/

Submodular Inequalities for the Path Structures of the Capacitated Fixed-Charge

Network Flow Problems

By

Birce Tezel

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alper Atamtürk, Chair

Professor Philip Kaminsky

Professor Satish Rao

Fall 2017

Abstract

Submodular Inequalities for the Path Structures of the Capacitated Fixed-Charge

Network Flow Problems

by

Birce Tezel

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Alper Atamtürk, Chair

Capacitated fixed-charge network flow problems (CFCNF) are used to model a

variety of problems in telecommunication, facility location, production planning and

supply chain management. We model CFCNF as a linear mixed-integer program and

study the polyhedral structure of various path networks.

We investigate capacitated path substructures and derive strong and easy-to-compute

path cover and path pack inequalities. These inequalities are based on an explicit char-

acterization of the submodular inequalities through a fast computation of parametric

minimum cuts on a path, and they generalize the well-known flow cover and flow pack

inequalities for the single-node relaxations of fixed-charge flow models. Computational

results demonstrate the effectiveness of the inequalities when used as cuts in a branch-

and-cut algorithm.

Moreover, we consider single item lot-sizing problems with backlogging and in-

ventory bounds and fixed costs (LSBIB). Using the underlying fixed-charge network

structure of LSBIB, we derive explicit path pack inequalities that are proposed in

this thesis. These inequalities are generalizations of the valid inequalities proposed by

Atamtürk and Küçükyavuz (2005) for lot-sizing problems under the existence of back-

logging. Furthermore, we propose extensions of these inequalities where the binary

variables for inventory and backlogging are lifted. Finally, we present computational

results suggest that show the effectiveness of both path pack and extended path pack

inequalities when used in a branch-and-cut algorithm.

1

Dedication

This thesis is dedicated to my parents who loved and supported me through it all.

i

Acknowledgements

I am thankful to my advisor, Alper Atamtürk for his guidance. His research vision

always directed me to the right things at the right time and my thesis would not have

come together without him. I am also very grateful to my co-author Simge Küçükyavuz

for all her feedback and contributions to our paper together. Moreover, I would like

to thank my committee members Philip Kaminsky and Satish Rao for their feedback

and support.

ii

Contents

1 Introduction 1

1.1 Polyhedral analysis terminology . 2

1.2 Capacitated fixed-charge network flow problems 3

1.3 Flow cover and flow pack inequalities 3

1.4 Submodular inequalities . 4

1.5 Lifting valid inequalities . 6

2 Submodular Path Inequalities for the Capacitated Fixed-Charge Net-

work Flow Problem 9

2.1 Capacitated fixed-charge network flow on a path 10

2.2 Submodular path inequalities . 12

2.3 Lifting submodular path inequalities 18

2.3.1 Superadditive valid lifting function 20

2.3.2 Dual lifting function . 25

2.3.3 Lifting coefficients . 25

2.4 Computational study . 27

3 Path Cover and Path Pack Inequalities for the Capacitated Fixed-

Charge Network Flow Problem 36

3.1 Capacitated fixed-charge network flow on a path 38

3.2 Submodular inequalities on paths . 40

3.2.1 Equivalence to the maximum flow problem 41

3.2.2 Computing the coefficients of the submodular inequalities 43

3.3 The strength of the path cover and pack inequalities 50

3.4 Computational study . 66

4 Path Pack Inequalities for Lot-sizing Problems with Backlogging and

Inventory Bounds 72

4.1 Lot-sizing Problems with Inventory and Backlogging Bounds 73

4.2 Path pack inequalities . 75

4.2.1 Explicit inequalities for LSBIB 77

4.2.2 Finding violated inequalities . 82

iii

4.3 Inventory and backlog fixed charge variables 82

4.3.1 Strength of lifted inequalities 98

4.3.2 Finding violated inequalities . 104

4.4 Computational Study . 106

5 Summary of Thesis and Conclusions 111

Appendices 116

A Equivalency of P ′ to the maximum flow problem 117

B Proofs from Chapter 2 120

B.1 Proof of Theorem 2.6 . 120

B.2 Proof of Theorem 2.7 . 122

B.3 Proof of Theorem 2.10 . 124

B.4 Proof of Theorem 2.11 . 125

B.5 Observations on superadditive functions 126

B.6 Convex lower-bound of fL
j (z) . 128

C Equivalency of (F3.2) to the maximum flow problem 132

D Proofs from Chapter 3 134

D.1 Proof of Lemma 3.3 . 134

D.2 Proof of Lemma 3.4 . 135

D.3 Proof of Lemma 3.5 . 136

D.4 Proof of Lemma 3.6 . 136

E Lot Sizing with Inventory Bounds and Fixed Costs 138

iv

List of Figures

1.1 A single node network . 4

2.1 Nodes and arcs of a path set. 11

2.2 Equivalency of P ′ to the maximum-flow problem. 13

2.3 Representation of cases (i), (ii) and (iii) in Lemma 2.1. 15

2.4 Path set example. 16

2.5 Path set example. 19

3.1 Fixed-charge network representation of a path. 39

3.2 An example of an sN − tN cut. 43

3.3 A lot-sizing instance with backlogging. 47

4.1 Fixed-charge network representation of a path. 75

B.1 Two different representations of the functions ϕ̄(z) and ϕj(z). 126

B.2 Representation of Case 1.1. 129

B.3 Representation of Case 1.2. 129

B.4 Representation of Case 2.1. 130

B.5 Representation of Case 2.2.1. 131

B.6 Representation of Case 2.2.2. 131

E.1 A lot-sizing example with inventory bounds. 144

v

List of Tables

2.1 Comparison of submodular path inequalities (spi) and lifted generalized

submodular path inequalities (lspi), n = 50. 30

2.2 Effect of path length on the performance of lspi. 32

2.3 Comparison of lifted submodular path inequalities (lspi) with lifted

flow cover inequalities (fc) and uncapacitated path inequalities (uc). . 34

2.4 Experiments with CPLEX flow cover, flow path and MCF cuts. 35

3.1 Effect of path size on the performance. 68

3.2 Effect of path cover (cov) and path pack (pac) inequalities when used

separately and together (spi). 70

3.3 Comparison of path inequalities applied to paths (spi) versus applied

to merged paths (mspi). 70

3.4 Effectiveness of the path inequalities when used together with CPLEX’s

network cuts. 71

4.1 Performance of lifted submodular path inequalities. 108

4.2 Performance of each class of lspi broken down. 109

4.3 Marginal contribution of path pack inequalities to CPLEX’s network cuts.110

vi

Chapter 1

Introduction

Given a graph with demand/supply nodes and arcs with upper bounds on flow, the

capacitated fixed-charge network flow problem (CFCNF) aims to find a subset of arcs

such that the flow balance on each node is conserved and flow capacities are not ex-

ceeded. In this thesis, we model CFCNF as a mixed-integer program. We propose

valid inequalities and analyze their strength both theoretically and computationally.

The research in this thesis has roots in the seminal paper by Wolsey (1989). In this

paper, the author proposes submodular inequalities (see Section 1.4) that are valid for

any CFCNF. While submodular inequalities are quite general and make no assumptions

on the network structure, computing their coefficients require solving many maximum

flow problems. Due to their implicit coefficients, using them in a branch-and-cut algo-

rithm requires a significant amount of computational effort. As a result, the strength

of these inequalities have not been analyzed for general network structures.

In this thesis, we focus on path networks and propose a linear-time algorithm to

express submodular inequalities explicitly. All of the chapters are concluded with an

extensive computational study. In Chapter 2, we study on simple paths and propose

path pack inequalities. Then, we generalize path pack inequalities by a simultaneous

lifting procedure. In Chapter 3, we generalize the simple path by adding arcs (j+1, j)

to the consecutive nodes in the path. In addition to the path cover inequalities for these

path structures, we propose a second class of submodular inequalities and refer to them

as path pack inequalities. We show that path cover and path pack inequalities reduce

to flow cover and flow pack inequalities when the underlying network consists of a single

node. In Chapter 4, we extend the research of Atamtürk and Küçükyavuz (2005) on

lot-sizing problems with inventory bounds by considering backlogging arcs. Using the

path structure of this problem, we propose eleven classes of path pack inequalities

parametrically. Then, we extend these inequalities by incorporating the binary fixed-

charge variables associated with inventory and backlogging arcs. The computational

results prove that path cover and path pack inequalities and their extensions are quite

useful while solving fixed-charge network flow problems.

1

In the remainder of this chapter, we give a brief background information on poly-

hedral analysis using the definitions from Wolsey and Nemhauser (1999) and Wolsey

(1998). Following the basics in Section 1.1, we introduce a mixed-integer programming

formulation for the capacitated fixed-charge networks in Section 1.2. In Sections 1.3

and 1.4, we introduce the existing flow cover, flow pack and submodular inequalities

which are referred to often in this thesis. In Section 1.5, we go over the lifting process

of valid inequalities.

1.1 Polyhedral analysis terminology

We first start by describing mixed-integer programming (MIP) as

max{cx+ hy : Ax+Gy ≤ b, x ∈ Zn, y ∈ Rp}

where Zn is the set of integer n-dimensional vectors and Rp is the set of real p-

dimensional vectors. In a MIP A,G and b are the parameter set and x, y are the

decision variables. The feasible set of MIP is defined by

S = {x ∈ Zn, y ∈ Rp : Ax+Gy ≤ b}

and we call the set

SLP = {x ∈ Rn, y ∈ Rp : Ax+Gy ≤ b}

the linear programming (LP) relaxation of the feasible set S.

Following definitions are directly cited from Wolsey and Nemhauser (1999).

Definition Convex hull of S is the set of all points that are convex combinations of

points in S.

Definition A polyhedron P ⊆ Rn is the set of points that satisfy a number of linear

inequalities; that is, P = {x ∈ Rn : Ax ≤ b}, where (A, b) is an m× (n+ 1) matrix.

Definition x ∈ P is an extreme point of P if there do not exist x1, x2 ∈ P , x1 ̸= x2

such that x = 1
2
x1 + 1

2
x2.

Definition A set of points x1, . . . , xk ∈ Rn is affinely independent if the unique solu-

tion of
∑k

i=1 αix
i = 0,

∑k
i=1 αi = 0 is αi = 0 for i = 1, . . . , k.

Definition A polyhedron P is of dimension k if the maximum number of affinely

independent points in P is k + 1 and it is represented by dim(P) = k.

Definition A polyhedron P ⊆ Rn is full-dimensional if dim(P) = n.

2

Definition The inequality πx ≤ π0 (or (π, π0)) is called a valid inequality for P if it

is satisfied by all points in P .

Definition If (π, π0) is a valid inequality for P , and F = {x ∈ P : πx = π0}, F is

called a face of P .

Definition A face F of the polyhedron P is called a facet of P if dim(F) = dim(P)−1.

The inequality describing F is then a facet-defining inequality or a facet.

1.2 Capacitated fixed-charge network flow problems

Let G = (N,A) be a directed graph with nodes N and arcs A and |N | = n, |A| = a.

Let E+
j = {(i, j) ∈ A : i ∈ N} and E−

j = {(j, i) ∈ A : i ∈ N} for all j ∈ N . Let the

demand value at node j ∈ N be dj (where dj < 0 indicates j is a supply node). Define

the binary variable xt to be 1 if arc t ∈ A is used and the variable yt to be the flow

through arc t, which has a capacity of ct.

The mathematical programming representation of capacitated fixed-charge network

problems can be represented by the following feasibility set:∑
t∈E+

j

yt −
∑
t∈E−

j

yt ≤ dj, j ∈ N,

(PG) 0 ≤ yt ≤ ctxt, t ∈ A,

xt ∈ {0, 1}, t ∈ A.

We represent the feasible set of the capacitated fixed charge network flow problem on

underlying network G by PG.

1.3 Flow cover and flow pack inequalities

In this section, we introduce the well known flow cover inequalities of Padberg et al.

(1985) and flow pack inequalities of Atamtürk (2001). Consider a single-node capaci-

tated fixed charge network flow problem with the feasible set

P =
{
y ∈ Rn

+, x ∈ Bn :
∑
t∈E+

yt −
∑
t∈E−

yt ≤ d, yt ≤ ctxt for t ∈ E+ ∪ E−}.
See Figure (1.1) for a graph representation of P . Let S+ ⊆ E+, S− ⊆ E− and L− ⊆
E−\S−. The set pair (S+, S−) is called a flow cover if

∑
t∈S+ ct−

∑
t∈S− ct = d+λ and

λ > 0. Similarly, the pair (S+, S−) is called a flow pack if
∑

t∈S+ ct−
∑

t∈S− ct = d−µ

and µ > 0.

3

d

E
+

E
−

Figure 1.1: A single node network

Let (S+, S−) be a flow cover, then the inequality∑
t∈S+

(
yt + (ct − λ)+(1− xt)

)
≤ d+

∑
t∈S−

ct +
∑
t∈L−

λxt +
∑

t∈E−\(L−∪S−)

yt (1.1)

is valid for P . Inequality (1.1) is referred to as a generalized flow cover inequality.

van Roy and Wolsey (1986) show that if d > 0, maxt∈S+ ct > λ and ct > λ for t ∈ L−

and S− = ∅, then inequality (1.1) is a facet of the convex hull of P .

Let (S+, S−) be a flow pack and let L+ ⊆ E+ \ S+, then the inequality∑
t∈S+

yt +
∑
t∈L+

(
yt −min{ct, µ}xt

)
≤ ct +

∑
t∈S−

(ct − µ)(1− xt) +
∑

t∈E−\S−

yt (1.2)

is valid for P and is referred to as a flow pack inequality.

1.4 Submodular inequalities

Definition A set function v on a set S = {1, . . . , s} is submodular if

v(A) + v(B) ≥ v(A ∪B) + v(A ∩B)

for all A,B ⊆ S.

Proposition 1.1. Let ρj(A) = v(A ∪ {j}) − v(A). The function v is submodular if

and only if

ρj(A) ≥ ρj(B)

for all A ⊆ B ⊆ S \ {j}.

Next, we summarize some of the main results in Wolsey (1989). Let G(V,A) be

a capacitated fixed-charge network and let N ⊆ V be a subset of nodes and define

E+ = {(i, j) ∈ A : i /∈ N, j ∈ N}, E− = {(i, j) ∈ A : i ∈ N, j /∈ N} and let

E := E+ ∪ E−.

Let S+ ⊆ E+ and L− ⊆ E−. Define the set function v(S+, L−) (or v(C) in short

4

notation) by the following optimization problem:

v(S+, L−) = max
∑
t∈E

atyt

s.t.
∑
t∈E+

j

yt −
∑
t∈E−

j

yt ≤ dj, j ∈ N,

0 ≤ yt ≤ ct, t ∈ E,

yt = 0, t ∈ (N+ \ S+) ∪ L−,

where at ∈ {0, 1} for t ∈ E+ and at ∈ {0,−1} for t ∈ E−. Let ρt(S
+, L−) be

ρt(S
+ \ {t}, L−) = v(S+, L−)− v(S+ \ {t}, L−)

for t ∈ S+ and

ρt(S
+, L− \ {t}) = v(S+, L−)− v(S+, L− \ {t})

for t ∈ L−. For convenience, we represent the sets (S+, L−) as a single let:

C := S+ ∪ L−

and

ρt(C) := v(C ∪ {t})− v(C).

Wolsey (1989) proves that v(S+, L−) is submodular on the set E and shows that

the inequalities∑
t∈E

atyt ≤ v(C)−
∑
t∈S+

ρt(E \ {t})(1− xt)−
∑
t∈L−

ρt(E \ {t})xt

+
∑

t∈E+\S+

ρt(C)xt +
∑

t∈E−\L−

ρt(C)(1− xt)

and∑
t∈E

atyt ≤ v(C)−
∑
t∈S+

ρt(C \ {t})(1− xt)−
∑
t∈L−

ρt(C \ {t})xt

+
∑

t∈N+\S+

ρt(∅)xt +
∑

t∈E−\L−

ρt(∅)(1− xt)

are valid for the capacitated fixed-charge network feasible set PG.

5

1.5 Lifting valid inequalities

Given a valid inequality (π, π0) for polyhedron P , lifting is the procedure of extending

this inequality to higher dimensions. The notion of lifting was first introduced by

Gomory (1969) and then generalized and formally described in Wolsey (1976), Zemel

(1978) and Balas and Zemel (1978). Lifting proved to be very useful in solving integer

programs more efficiently; however, in most cases, the coefficients of the lifted valid

inequalities depend on the sequence of the variables being lifted. Obtaining the lifting

coefficients require solving a separate optimization problem. As a result, sequence

dependence creates a computational burden for the lifting procedure. For binary integer

programs, Wolsey (1977) showed that if the lifting function is super-additive then the

coefficients are independent from the sequence of lifting. This result was generalized

for mixed binary integer programs by Gu (1994) and Gu et al. (2000), and for general

mixed integer programs by Atamtürk (2004).

Gu et al. (1999) provide the analytical form of the lifting function of flow cover

inequalities, introduce a valid super additive lifting function and present computational

results to show the effectiveness of lifting. In the next section, we introduce a procedure

to obtain a valid super additive lifting function for submodular path inequalities. Next,

we describe the general lifting procedure for mixed binary integer programs.

Let X = {x ∈ Bp, y ∈ Rq : Ax+Gy ≤ d; lj ≤ yj ≤ uj, j ∈ J} be the feasible set

of a mixed binary integer program where B = {0, 1} and index sets I and J contain

binary and continuous variables respectively. Size of d ism×1, A = {aij}i=1,...,m, j=1,...,p

and G = gij i=1,...,m, j=1,...,q. Let C i, i = 0, . . . , t be a partition of the variables I ∪ J .

We define a restriction of X by setting a subset of the variables to one of their bound

values bj. Note that, bj ∈ {0, 1} for j ∈ I and bj ∈ {lj, uj} for j ∈ J . Let the restricted

feasible set associated with partition j be represented as Xj.

X0 = {(x, y) ∈ X : xj = bj, j ∈ I \ C0, yj = bj, j ∈ J \ C0}.

Let ∑
j∈I∩C0

αjxj +
∑

j∈J∩C0

βjyj ≤ π (1.3)

be a valid inequality for X0. We would like to extend this valid inequality by adding

the variables in (I ∪ J) \ C0 and obtain an inequality of the form∑
j∈I∩C0

αjxj +
∑

j∈J∩C0

βjyj +
∑

j∈I\C0

αj(xj − bxj) +
∑

j∈J\C0

βj(yj − byj) ≤ π.

that is valid for X.

In order to reach this inequality, lifting is carried out by steps. At each step, a par-

6

tition of variables Ci are lifted simultaneously. Unfortunately, the resulting coefficients

are usually dependent on the sequence in which these partitions are lifted. Without

loss of generality, we assume variables in Ci are lifted in ith order. Then the valid

inequality obtained after ith lifting sequence is valid for the restricted feasible set

X i = {(x, y) ∈ X : xj = bxj , j ∈ I \ (∪i
k=0C

k), yj = byj , j ∈ J \ (∪i
k=0C

k)}.

Given the valid inequality for set X i−1:∑
j∈I∩C0

αjxj +
∑

j∈J∩C0

βjyj +
∑

j∈I∩(∪i−1
k=1C

k)

αj(xj − bxj) +
∑

j∈J∩(∪i−1
k=1C

k)

βj(yj − byj) ≤ π

lifting problem for set Ci aims to find coefficients (αj, βj), j ∈ Ci such that∑
j∈I∩C0

αjxj +
∑

j∈J∩C0

βjyj +
∑

j∈I∩(∪i
k=1C

k)

αj(xj − bxj)

+
∑

j∈J∩(∪i
k=1C

k)

βj(yj − byj) ≤ π (1.4)

is valid for X i. We also define the ith lifting function associated with inequality as:

fi(z) = min π −
[∑
j∈I∩C0

αjxj +
∑

j∈J∩C0

βjyj

+
∑

j∈I∩(∪i−1
k=1C

k)

αj(xj − bxj) +
∑

j∈J∩(∪i−1
k=1C

k)

βj(yj − byj)
]

s.t.
∑

j∈I∩(∪i−1
k=0C

k)

alj(xj − bxj) +
∑

j∈J∩(∪i−1
k=0C

k)

glj(yj − byj) ≤ d′l − zl,

l = 1, . . . ,m,

lj ≤ yj ≤ uj, j ∈ J,

xj ∈ {0, 1}, j ∈ I,

xj = bxj , j ∈ I \ (∪i−1
k=0C

k),

yj = byj , j ∈ J \ (∪i−1
k=0C

k).

where d′l = dl −
∑

j∈I\C0 aljb
x
j −

∑
j∈J\C0 gljb

y
j and z ∈ Zi with

Zi =

{
z ∈ Rm : ∃(x, y) ∈ X i :

∑
j∈I∩Ci

alj(xj − bj) +
∑

j∈J∩Ci

glj(yj − bj) = zl l = 1, . . . ,m

∑
j∈I∩(∪i−1

k=0C
k)

alj(xj − bxj) +
∑

j∈J∩(∪i−1
k=0C

k)

glj(yj − byj) ≤ d′l − zl l = 1, . . . ,m

}
.

7

Let Z = Z1 × . . .× Zt.

Proposition 1.2 (Gu et al. (1999)). Inequality (1.4) is valid for X i for a choice of

(αj, βj), j ∈ Ci if and only if hi(z) ≤ fi(z) for any z ∈ Zi where

hi(z) = max
∑

j∈I∩Ci

αj(xj − bj) +
∑

j∈J∩Ci

βj(yj − bj)

s.t.
∑

j∈I∩Ci

alj(xj − bj) +
∑

j∈J∩Ci

glj(yj − bj) = zl l = 1, . . . ,m

xj ∈ {0, 1} j ∈ I ∩ C i

lj ≤ yj ≤ uj j ∈ J ∩ Ci.

Definition Lifting function f(z) of the valid inequality (1.3) is defined as f(z) = f1(z)

for all z ∈ Z.

Definition Lifting of valid inequality (1.3) is sequence independent if f(z) = fi(z) for

i = 2, . . . , t.

Definition A function f is super-additive on Z if

f(z1) + f(z2) ≤ f(z1 + z2)

for all z1, z2, z1 + z2 ∈ Z.

It is shown in the literature that, if f(z) is super additive on Z, then lifting is

sequence independent. Unfortunately, super-additivity of f(z) is very uncommon.

Definition Function g is called valid super additive lifting function if it is super addi-

tive and g(z) ≤ f(z) for all z ∈ Z.

Proposition 1.3. If g is a valid super additive lifting function and (αj, βj) for j ∈ Ci

ensure that hi(z) ≤ g(z) for all z ∈ Z and i = 1, . . . , t, then inequality (1.4) is valid

for X.

8

Chapter 2

Submodular Path Inequalities for

the Capacitated Fixed-Charge

Network Flow Problem

Given a directed graph with demand and supply on the nodes, and capacity, fixed and

variable cost of flow on the arcs, the capacitated fixed-charge network flow (CFNF)

problem is to choose a subset of the arcs and route the flow on the chosen arcs while

satisfying the supply, demand and capacity constraints, so that the sum of fixed and

variable costs is minimized. There are numerous polyhedral studies on the fixed-charge

network flow problem. However, few give explicit valid inequalities that simultaneously

make use of the path substructures of the network as well as the arc capacities, which

is the goal of the current chapter.

For the uncapacitated fixed-charge network flow problem, van Roy and Wolsey

(1985) give flow path inequalities that are based on path substructures. Rardin and

Wolsey (1993) introduce a new family of dicut inequalities and show that they describe

the projection of extended multicommodity formulation onto the original variables of

fixed-charge network flow problem. Ortega and Wolsey (2003) present a computational

study on the performance of path and cut-set (dicut) inequalities. For the capacitated

fixed-charge network flow problem, almost all known valid inequalities are based on

single-node relaxations. Padberg et al. (1985), van Roy and Wolsey (1986) and Gu

et al. (1999) give flow cover, generalized flow cover and lifted flow cover inequalities.

Stallaert (1997) introduces a complementary class of flow cover inequalities; Atamtürk

(2001) describes lifted flow pack inequalities. Both uncapacitated path inequalities

and capacitated flow cover inequalities are highly valuable in solving a host of practical

problems and are part of the suite of cutting planes implemented in modern mixed-

integer programming solvers.

The path structure arises naturally in network models of the lot-sizing problem.

Atamtürk and Muñoz (2004) introduce valid inequalities for the capacitated lot-sizing

9

problems with infinite inventory capacities. Atamtürk and Küçükyavuz (2005) give

valid inequalities for the lot-sizing problems with finite inventory and infinite pro-

duction capacities. Van Vyve (2013) introduces valid inequalities for uncapacitated

fixed charge transportation problems. Van Vyve and Ortega (2004) and Gade and

Küçükyavuz (2011) give valid inequalities and extended formulations for uncapacitated

lot-sizing with fixed charges on stocks.

In this chapter we consider a generic path relaxation, with supply and/or demand

nodes and capacities on all incoming and outgoing arcs. First, by exploiting the path

substructure of the network, we provide an explicit description of the submodular

inequalities introduced by Wolsey (1998). An important consequence of the explicit

derivation is that the coefficients of these submodular path inequalities can be computed

efficiently. In particular, we show that all coefficients of an inequality can be computed

by solving max-flow/min-cut problems over the path in linear time. For a path with a

single node, the inequalities reduce to the flow cover inequalities introduced by Padberg

et al. (1985). We give sufficient and necessary facet-defining conditions. Then we

generalize the inequalities further by superadditive lifting using an approximate multi-

dimensional lifting function. Finally, we demonstrate the effectiveness of the proposed

inequalities when used as cuts in a branch-and-cut algorithm.

Outline

The remainder of this chapter is organized as follows: In Section 2.1, we describe the

CFNF problem on a path, its formulation and the assumptions we make. In Section 2.2,

we review the submodular inequalities of Wolsey (1998) and introduce the submodular

path inequalities. In Section 2.3, we generalize the submodular path inequalities by

superadditive lifting. In Section 2.4, we present some computational results depicting

the effectiveness of the valid inequalities proposed.

2.1 Capacitated fixed-charge network flow on a path

Let G = (N ′, A) be a directed path with nodes N ′ partitioned into sets N and {sN , tN},
where sN and tN are source and sink nodes and V are the path nodes (see Figure 2.1).

Let N = {k, . . . , ℓ} and the path arcs be I := {(k, k + 1), (k + 1, k + 2), . . . , (ℓ− 1, ℓ)}.
Define a := |A| and n := |N |. Without loss of generality, we assume that node k has

an incoming path arc (k − 1, k) and node ℓ has an outgoing path arc (ℓ, ℓ + 1) with

zero capacity (represented by dotted lines in Figure 2.1).

For each node j ∈ N , let E+
j = {(sN , i) ∈ A : i = j} and E−

j = {(i, tN) ∈ A :

i = j}. Let the union of such sets be denoted by E+ := {(sN , i) ∈ A : i ∈ N} and

E− := {(i, tN) ∈ A : i ∈ N}. Finally, let E := E+ ∪ E− with e := |E|.
In this chapter, we consider simple directed paths where sets E+

j and E−
j for all

j ∈ N are mutually exclusive. In other words, the arcs in I form the unique directed

10

. . .k k + 1 ℓ

E+

k

E−

k

dk dk+1
dℓ

E−

k+1
E−

ℓ

E+

ℓ

(k, k + 1) (ℓ− 1, ℓ)

E+

k+1

N

(k + 1, k + 2)

sN

tN

Figure 2.1: Nodes and arcs of a path set.

path from node k to node ℓ. For any graph, if need be, one can construct such a

relaxation by duplicating arcs t ∈ E+
i ∩ E−

j as t+ ∈ E+
i and t− ∈ E−

j for i, j ∈ N .

Let the demand at node j ∈ N be dj. We call a node j ∈ N a demand node if

dj ≥ 0 and a supply node if dj < 0. Define the binary variable xt to be 1 if arc t ∈ E

is open, 0 otherwise; and the variable yt to be the flow through arc t, with capacity

of ct. We refer to the flow of path arc (j, j + 1) as ij, and denote the corresponding

capacity by uj. We let [k, ℓ] := {t ∈ Z : k ≤ t ≤ ℓ} and let d(T) =
∑

j∈T dj for a given

T ⊆ V . For notational convenience, we refer to d([k, ℓ]) as dkℓ. Let c(S) =
∑

t∈S ct,

y(S) =
∑

t∈S yt, x(S) =
∑

t∈S xt and (a)+ = max{0, a}. Moreover, let us denote the

convex hull of a formulation P as conv(P).

Let the path-set relaxation (PG) of CFNF problem on G be

ij−1 + y(E+
j)− y(E−

j)− ij ≤ dj, j ∈ N, (2.1)

(PG) 0 ≤ ij ≤ uj, j ∈ N, (2.2)

0 ≤ yt ≤ ctxt, t ∈ E, (2.3)

xt ∈ {0, 1}, t ∈ E. (2.4)

In order to avoid trivial cases we make the following assumptions:

(A.1) uj > 0 for j ∈ I (otherwise, it = 0 and arc t can be removed from the graph),

(A.2) ct > 0 for t ∈ E (otherwise yt = 0 and arc t can be removed from the graph and

the problem decomposes into two subproblems defined on two simple paths),

(A.3) for all t ∈ E, G′ = (V,A\{t}) with corresponding feasible set PG′ ̸= ∅ (otherwise

xt = 1).

It follows from the assumptions that the dimension of PG is e + a (i.e., PG is full

dimensional).

11

2.2 Submodular path inequalities

In this section, we review the submodular inequalities of Wolsey (1989) and derive

their explicit form for the path networks. Let S+ ⊆ E+ and L− ⊆ E−. Sets S+ and

L− can be partitioned into sets S+
j and L−

j for j = k, . . . , ℓ where S+
j = S+ ∩ E+

j and

L−
j = L− ∩ E−

j .

Now, we consider the following formulation introduced by Wolsey (1989) for the

path structure G:

v(S+, L−) = max
∑
t∈E

atyt (2.5)

s.t. ij−1 + y(E+
j)− y(E−

j)− ij ≤ dj, j ∈ N, (2.6)

0 ≤ ij ≤ uj, j ∈ I, (2.7)

(P ′) 0 ≤ yt ≤ ct, t ∈ E, (2.8)

yt = 0, t ∈ (E+ \ S+) ∪ L−, (2.9)

where at ∈ {0, 1} for t ∈ E+ and at ∈ {0,−1} for t ∈ E−. Define the sets K+ := {t ∈
E+ : at = 1} and K− := {t ∈ E− : at = 0}. In this section, we choose K+ = S+ and

K− = L−. We make the following additional assumption:

(A.4) The sets S+ and L− are selected such that the formulation P ′ is feasible.

Proposition 2.1 (Wolsey (1989)). The set function v : 2|E
+| × 2|E

−| → R defined

through (2.5)-(2.9) is submodular.

It follows from Corollary 8 of Wolsey (1989) that the submodular inequality∑
t∈S+(yt + ρt(S

+ \ {t}, L−)(1− xt)) +
∑

t∈L− ρt(S
+, L− \ {t})xt (2.10)

≤ v(S+, L−) +
∑

t∈E−\L− yt,

where

ρt(S
+ \ {t}, L−) = v(S+, L−)− v(S+ \ {t}, L−), t ∈ S+

and

ρt(S
+, L− \ {t}) = v(S+, L−)− v(S+, L− \ {t}), t ∈ L−

is valid for PG. Observe that inequality (2.10) requires computing ρt(S
+ \ {t}, L−) for

t ∈ S+ and ρt(S
+, L− \ {t}) for t ∈ L−, which can be done by solving |S+ ∪ L−| + 1

optimization problems. Next, we investigate the structure of P ′ in order to obtain the

explicit form of submodular inequalities.

Proposition 2.2. The optimization problem P ′ is equivalent to a maximum flow

problem from source sN to sink tN .

12

ℓk k + 1

tN

sN

. . .

dk

dk+1

dℓ

S
+

k
S
+

k+1

S
+

ℓ

(a) v(S+, L−).

ℓk k + 1

tN

sN

. . .

dk

dk+1

dℓ

S
+

k
S
+

k+1
\ {t}

S
+

ℓ

(b) v(S+ \ {t}, L−).

ℓk k + 1

tN

sN

. . .

dk

dk+1

dℓ

S
+

k
S
+

k+1

S
+

ℓ

ct

(c) v(S+, L− \ {t}).

Figure 2.2: Equivalency of P ′ to the maximum-flow problem.

Proof. By Proposition A.1 and Remark A.1 in Appendix A, the decision variables yt,

for t ∈ E− such that at = −1 can be assumed to be zero in the optimization problem

P ′. Then, the problem defined by (2.5)-(2.9) reduces to:

max
{
y(S+) : ij−1 + y(S+

j)− y(L−
j)− ij = bj, j ∈ N,

0 ≤ bj ≤ dj, j ∈ N, (2.7)− (2.9)
}
,

where bj represents the flow on the dummy demand arc of node j.

There are numerous algorithms for solving maximum flow problems for general

graphs in polynomial time. However, one can solve the maximum flow problem on

path graphs in linear time. In Figure 2.2, we present three different arc sets that we

solve the maximum flow on.

Definition If v(S+, L−) = dkℓ, then S
+ is called a path cover.

Observation 1. Let S+ be a path cover. A minimum cut associated with v(S+, L−)

is defined by the source and sink partitions {sN , k, . . . , ℓ} and {tN}. Informally, this

minimum cut passes below the path (see Figure 2.3a for a representation).

Obtaining an explicit form of inequality (2.10) requires finding the optimal objective

value v(S+, L−) as well as the values v(S+ \ {t}, L−) for all t ∈ S+ and v(S+, L− \ {t})
for all t ∈ L−. By definition 2.2, v(S+, L−) is equal to dkℓ if S+ is a path cover. In

the next lemma, we identify minimum cuts associated with values v(S+ \ {t}, L−) for

t ∈ S+ and v(S+, L− \ {t}) for t ∈ L−.

Lemma 2.1. Let S+ be a path cover. At least one minimum cut associated with

v(S+ \ {t}, L−) for t ∈ S+ and v(S+, L− \ {t}) is defined by one of the following

source-sink partitions:

(i) {sN , k, . . . , ℓ} and {tN} (informally, minimum cut is the same as v(S+, L−); see

Figure 2.3a),

13

(ii) {sN , k, . . . , lb} and {lb + 1, . . . , ℓ, tN} for some lb ∈ [k − 1, j − 1] (informally,

minimum cut goes above the path at most once through an arc (lb, lb+ 1); see

Figure 2.3b),

(iii) {sN , k, . . . , lb, rb, . . . , ℓ} and {lb + 1, . . . , rb − 1} for some rb ∈ [j + 1, ℓ + 1]

(informally, if minimum cut goes above the path, then it goes below the path at

most once through an arc (rb− 1, rb); see Figure 2.3c).

Proof. For t ∈ S+ observe that dropping an arc t ∈ S+
j may cause a decrease in the

maximum flow from sN to tN (see the change from Figure 2.2a to Figure 2.2b) . If

there is a positive decrease in the maximum flow, then at least one minimum cut has to

pass above node j. Any cut that does not pass above node j has a value greater than

or equal to dkℓ due to the assumption that the value of minimum cut before dropping

arc t is equal to dkℓ. If there is no decrease in the maximum flow, then minimum cut

will remain unchanged with a value dkℓ.

Now suppose that a minimum cut after dropping arc t goes above the path through

more than one path arc. We refer to the nodes that are below this minimum cut

as [lb1 + 1, rb1 − 1] and [lb2 + 1, rb2 − 1] for rb2 > lb2 ≥ rb1 > lb1. Suppose

j ̸∈ [lbp + 1, rbp − 1] for some p = 1, 2. For a minimum cut to go above the path at

path arc (lbp, lbp+1), it is required to have ulbp +
∑

i∈[lbp+1,rbp−1] c(S
+
i) < dlbp+1,rbp−1.

However, the assumption of v(S+, L−) = dkℓ implies that ulbp+
∑

i∈[lbp+1,rbp−1] c(S
+
i) ≥

dlbp+1,rbp−1. Therefore, we reach a contradiction.

The proof follows the same steps for t ∈ L− (see the change from Figure 2.2a to

Figure 2.2c).

Let λj represent the total excess flow capacity that can be sent through arcs in I

and S+ to node j after satisfying all the demands di, i ∈ N .

Definition Let S+ be a path cover. The excess flow capacity λj is the difference

between the value of a minimum cut where node j is included in the sink partition

(informally, a minimum cut that passes through arcs in S+
j) and dkℓ. The excess values

λj can be calculated by

λj = min
(lb),(rb):k−1≤(lb)<j<(rb)≤ℓ+1

{dk(lb) + u(lb) + c(∪rb−1
j=lb+1S

+
j) + d(rb)ℓ} − dkℓ. (2.11)

Remark 2.1. If S+ is a path cover, then λj ≥ 0 for all j ∈ N .

Proposition 2.3. Let S+ be a path cover. Then,

ρt(S
+ \ {t}, L−) = (ct − λj)

+, t ∈ S+,

ρt(S
+, L− \ {t}) = −min{ct, λj}, t ∈ L−.

14

.k lb rb ℓj

S+

k S+

ℓ

iℓ

S+

j \ {t}

dk dlb dj drb dℓ

v(S+ \ {t}, L−)

(a)

.k lb rb ℓj

S+

k S+

ℓ

iℓ

dk dlb dj drb dℓ

S+

j \ {t}

v(S+ \ {t}, L−)

(b)

.k lb rb ℓj

S+

k S+

ℓ

iℓ

dk dlb dj drb dℓ

S+

j \ {t}

v(S+ \ {t}, L−)

(c)

Figure 2.3: Representation of cases (i), (ii) and (iii) in Lemma 2.1.

Proof. First, notice that the value v(S+, L−) will change if and only if at least one of

the flow balance constraints (2.6) can no longer be satisfied at equality. Let t ∈ S+
j

and suppose ct ≤ λj. Then, the excess flow that can be sent to node j will cover any

flow that will be lost due to cancellation of arc t. Otherwise, all the excess capacity

will be used up to satisfy demand dj and the remaining unsatisfied demand will cause

a decrease of (ct − λj) in the objective function (2.5). Similarly, let t ∈ L−
j . Dropping

t from L−
j corresponds to adding an arc from node j to tN . Now, we can potentially

increase the objective function value by pushing more flow through S+. The largest

flow that can be pushed out of node j is λj, when merged with the capacity constraint

of arc t, the increase in the objective function value becomes min{λj, ct}.

Definition 2.2 and Proposition 2.3 lead to the following explicit description of the

submodular inequalities for path substructures.

Corollary 2.4. Let S+ be a path cover, then inequality (2.10) can be stated explicitly

as

y(S+) +
∑
j∈N

∑
t∈S+

j

(ct − λj)
+(1− xt) ≤ dkℓ +

∑
j∈N

∑
t∈L−

j

min{λj, ct}xt + y(E− \L−). (2.12)

We refer to inequality (2.12) as the submodular path inequality. Note that if ct ≤ λj
for some t ∈ L−

j , j ∈ N , then excluding arc t from the set L− provides a stronger

submodular path inequality since yt ≤ ctxt.

15

a b c

da = 5 db = 10 dc = 8

c1 = 10 c2 = 20 c3 = 25

ua = 7 ub = 4

c4 = 13 c5 = 5

Figure 2.4: Path set example.

Remark 2.2. Observe that the flow cover inequalities of Padberg et al. (1985) are

special cases of the submodular path inequalities (2.12). Suppose the path consists of

a single node N = {j} with demand d := dj > 0. Then the S+ ⊆ E+
j is a path cover

if λ := c(S+)− d > 0 and the resulting submodular path inequality

y(S+) +
∑
t∈S+

(ct − λ)+(1− xt) ≤ d+ λx(L−) + y(E− \ L−)

is the flow cover inequality.

Example 1. Consider the path consisting of the three nodes in Figure 2.4. Suppose

we select path N = {a, b, c} and S+ = {1, 2, 3}, L− = {4, 5}. Then, λa = 5, λb = 12

and λc = 21 and the resulting submodular path inequality is

y1 + y2 + y3 + 5(1− x1) + 8(1− x2) + 4(1− x3) ≤ 23 + 12x4 + 5x5. (2.13)

For N = {b}, S+ = {2} and L− = {4}, we have λ = 10 and the corresponding

submodular path inequality is

y2 + 10(1− x2) ≤ 10 + 10x2 + i2, (2.14)

which is the flow cover inequality for node b with the same set selection (S+, L−).

Notice that calculating λj for some j ∈ N using Equation (2.11) has a complexity

of O(|S+|+ |N |). However, we can compute all λj for j ∈ N in the same complexity as

well by using the minimum cut descriptions in Lemma 2.1. In particular, we compute

all values λj, j ∈ N simultaneously by using both a forward and a backward recursive

formula. In a forward pass, we calculate, for all j ∈ [k, ℓ], the minimum cut value αj for

nodes [k, j] that goes through S+
j . In a backward pass, we calculate, for all j ∈ [k, ℓ],

the minimum cut value βj that goes through S
+
j for nodes [j, ℓ]. Then,

λj = αj + βj − c(S+
j)− dkℓ,

16

where αj for j ∈ [k, ℓ] is

αj = min{αj−1, dk(j−1) + uj−1}+ c(S+
j),

with αk−1 = 0 and βj for j ∈ [k, ℓ] is

βj = min{βj+1, d(j+1)ℓ}+ c(S+
j),

with βℓ+1 = 0.

Proposition 2.5. All values λj, for j ∈ N , can be computed in O(|S+|+ |V |) time.

Next, we provide necessary and sufficient conditions under which the submodular

path inequalities are facet defining for conv(PG).

Theorem 2.6. For S+ ⊆ E+ and L− ⊆ E−, let S+ be a path cover for V . Then,

the following conditions are necessary for inequality (2.12) to be facet-defining for

conv(PG).

1. ρt(S
+ \ {t}, L−) < ct for all t ∈ S+,

2. ρt(S
+, L− \ {t}) > −ct for all t ∈ L−,

3. if L− = ∅, then maxt∈S+ ρt(S
+ \ {t}, L−) > 0,

4. for p := max{j ∈ [k, ℓ] : S+
j ∪ L−

j ̸= ∅}, at least one of the following holds:

(i) c(S+
p) < dpℓ or

(ii) maxt∈S+
p
ρt(S

+ \ {t}, L−) > 0 (i.e., maxt∈S+
p
ct > λℓ) or

(iii) L−
p ̸= ∅,

5. if αj = dk,j−1 + uj−1 + c(S+
j) for some j ∈ [k + 1, ℓ], then ∪ℓ

i=jS
+
i is not a path

cover for V̄ = {j, . . . , ℓ}.

Proof. See Appendix B.1.

Theorem 2.7. For S+ ⊆ E+, L− ⊆ E−, let S+ be a path cover for V . If dj ≥ 0,

for all j ∈ N , then the necessary conditions in Theorem 2.6 along with the condition

maxt∈S+
j
ct > λj for j ∈ N are sufficient for inequality (2.12) to be facet-defining for

conv(PG).

Proof. See Appendix B.2.

17

2.3 Lifting submodular path inequalities

In this section, we first generalize the submodular path inequalities and then give

a sequence independent lifting procedure a la Gu et al. (1999). Let S+ ⊆ E+ and

L− ⊆ E− be defined as in Section 2.2. We select a new subset of outgoing arcs

S− ⊆ E− \ L−. In this section, we let K+ = S+ and K− := L− ∪ S−. In other words,

we select the objective function coefficients

at =

1, t ∈ S+,

−1, t ∈ E− \ (S− ∪ L−),

0, otherwise.

For convenience, let L−− := E− \ (S− ∪ L−).

Definition The pair (S+, S−) is called a generalized path cover if v(S+, L−) = dkℓ +

c(S−).

For a generalized path cover (S+, S−) the optimization problem (2.5)-(2.9) and

inequality (2.10) lead to the generalized submodular path inequality

y(S+) +
∑
j∈N

∑
t∈S+

j

(ct − λj)
+(1− xt) ≤ dkℓ + c(S−) +

∑
j∈N

λjx(L
−
j) + y(L−−), (2.15)

where

λj = αj + βj − c(S+
j)− dkℓ − c(S−

j)

and αj for j ∈ [k, ℓ] is

αj = min{αj−1, dk(j−1) + c(∪j−1
i=kS

−
i) + uj−1}+ c(S+

j),

with αk−1 = 0 and βj for j ∈ [k, ℓ] is

βj = min{βj+1, d(j+1)ℓ + c(∪ℓ
i=j+1S

−
i)}+ c(S+

j),

with βℓ+1 = 0.

Example 2. Consider the path N = {a, b, c} in Figure 2.5. For S+ = {1, 2, 3, 4},
L− = {8} and S− = {5, 6, 7}, we have λa = 3, λb = 6 and λc = 9. Then, the

corresponding generalized submodular path inequality is

y1 + y2 + y3 + y4 + 7(1− x1) + (1− x2) + (1− x4) ≤ 21 + 9x8. (2.16)

18

a b c

da = 2 db = 2 dc = 2

c1 = 10 c2 = 7 c4 = 10

ua = 8 ub = 4

c6 = 5 c7 = 5

c3 = 3

c5 = 5

c8 = 12

Figure 2.5: Path set example.

In order to strengthen inequality (2.15), we lift it by introducing variables xt, t ∈ S−

simultaneously into the submodular path inequality:

y(S+) +
∑
j∈N

∑
t∈S+

j

(ct − λj)
+(1− xt) ≤ dkℓ +

∑
t∈S−

(
ct + θt(1− xt)

)
+
∑
j∈N

λjx(L
−
j) + y(L−−). (2.17)

Let K be the set of variables used for simultaneous lifting. We select at most one arc

from S−
j for each j ∈ N to include in K. Denote the arcs in K using the subscript

tj := S−
j ∩K and let K = {tk, , ..., tℓ}. For convenience, we refer to the capacity, flow

and fixed-charge variables of arc tj as cj, yj and xj respectively.

Proposition 2.8 (Gu et al. (1999)). Let the function f(z) be defined by (2.18)-(2.22),

h(z) be defined by (2.23)-(2.26), and set Z be defined by (2.27). If the lifting coefficients

θ are selected such that h(z) ≤ f(z) for any z ∈ Z, and f(z) is superadditive, then

inequality (2.17) is valid for PG.

The function f(z) is called the lifting function for inequality (2.17) and is defined

as

f(z) = min G(x,y) (2.18)

s.t. ij−1 + y(S+
j)− y(E−

j \ S−
j)− ij ≤ dj + c(S−

j)− zj, ∀j ∈ N, (2.19)

0 ≤ ij ≤ uj, ∀j ∈ N, (2.20)

0 ≤ yt ≤ ctxt, ∀t ∈ E, (2.21)

xt ∈ {0, 1}, ∀t ∈ E, (2.22)

where

G(x,y) := dkℓ+ c(S
−)+

∑
j∈N

λjx(L
−
j)+ y(L

−−)− y(S+)−
∑
j∈N

∑
t∈S+

j

(ct−λj)
+(1−xt)

19

is the difference between the right and the left hand sides of inequality (2.15). We call

function h(z) the dual lifting function and it is defined as

h(z) := max
∑
tj∈K

θj(xj − 1) (2.23)

s.t. yj − cj = −zj, tj ∈ K, (2.24)

0 ≤ yj ≤ cjxj, tj ∈ K, (2.25)

xj ∈ {0, 1}, tj ∈ K. (2.26)

Finally, the feasible region of the vector z is:

Z =
{
z ∈ Rv : ∃(x, y, i) : yj − cj = −zj, tj ∈ K,

yt = ct, t ∈ S− \K, (2.19)− (2.22)
}
. (2.27)

Definition (Gu et al. (1999)) A function Φ(z) is a superadditive valid lifting function

of f(z) if Φ(z) ≤ f(z) for all z ∈ Z and is superadditive.

Proposition 2.9 (Gu et al. (1999)). Let Φ(z) be a superadditive valid lifting function.

If the lifting coefficients θ satisfy h(z) ≤ Φ(z) for any z ∈ Z, then inequality (2.17) is

valid for PG.

2.3.1 Superadditive valid lifting function

In this section, we provide a superadditive valid lifting function for f(z). We tackle the

multidimensionality of f(z) by decomposing it with respect to j ∈ N . Notice that the

path arc flows ij, j = k, . . . , ℓ−1 are the only terms binding constraints (2.19) together.

Therefore, we first duplicate the path arc flow variables, ij, j = k, . . . , ℓ− 1 into i1j and

i2j . Then, we add a constraint that enforce them to be equal. This procedure leads to

the following formulation

f(z) = min G(x,y)

s.t. i1j−1 + y(S+
j)− y(E−

j \ S−
j)− i2j ≤ dj + c(S−

j)− zj, j ∈ N, (2.28)

0 ≤ isj ≤ uj, j ∈ N, s = 1, 2, (2.29)

i2j = i1j , j ∈ N \ {ℓ}, (2.30)

(2.21)− (2.22).

A Lagrangian relaxation

Now, constraints (2.30) are the only constraints that bind the subproblems for each

node j ∈ N together. We employ a Lagrangian relaxation w.r.t. (2.30) to decompose

the problem:

20

fL(z,µ) = G(x,y) +
ℓ−1∑
j=k

µj(i
1
j − i2j)

s.t. (2.21)− (2.22), (2.28)− (2.29).

Notice that the relaxed formulation above is now decomposable

fL(z,µ) =
ℓ∑

j=k

fL
j (zj, µj−1, µj),

where

fL
j (zj, µj−1, µj) = min Hj(x,y) (2.31)

s.t. i1j−1 + y(S+
j)− y(E−

j \ S−
j)− i2j ≤ dj + c(S−

j)− zj, (2.32)

0 ≤ yt ≤ ctxt, t ∈ E+
j ∪ E−

j , (2.33)

xt ∈ {0, 1}, t ∈ E+
j ∪ E−

j , (2.34)

i1j−1 ≤ uj−1, (2.35)

i2j ≤ uj, (2.36)

and

Hj(x,y) := dj+c(S
−
j)+λjx(L

−
j)+y(L

−−
j)−y(S+

j)−
∑
t∈S+

j

(ct−λj)+(1−xt)+µji
2
j−µj−1i

1
j−1.

From Lagrangian duality, fL(z,µ) ≤ f(z) for any µ. We pick µi to be 1 for all i ∈ [k, ℓ]

and µk−1 = 0 for simplicity. Therefore, in the remainder of this chapter, we refer to

fL
j (zj, µj−1, µj) as f

L
j (zj).

Let S++
j = {t ∈ S+

j : ct > λj}, let S++
j ∪ L−

j := {v1, v2, . . . , vrj} where cvi ≥ cvi+1

and rj := |S++
j ∪ L−

j |. In formulation (2.31)-(2.36), we observe three conditions that

hold in at least one of its optimal solutions. First, yt for t ∈ E+
j \ S+

j do not appear

either in Hj(x,y) or in constraint (2.32) and therefore, can be assumed to be zero.

Second, if t ∈ S++
j , then either yt > ct − λj or yt = 0. Third, if t ∈ L−

j , then either

yt = 0 or yt = ct.

While optimizing fL
j (zj), we first set yt = ct for all t ∈ S++

j and yt = 0 for all

t ∈ L−
j . If the flow balance constraint (2.32) is violated, then we decrease the flow of

arcs in S++
j and increase the flow of variables in L−

j in the order of v1, v2, . . . , vrj .

Let mpj = mint∈S++
j

{ct} and pj be the largest index such that cvpj = mpj, Mj,i =∑i
k=1 cvk andMj,0 = 0. Let mj = uj−1+uj+c(S

+
j \S++

j)+c(L−−
j), mlj = min{λj,mj}

and φj,i = max{0, cvi+1
− (mpj − λj)−mlj} for i = pj, . . . , rj − 1.

21

We may assume that the path arc (j − 1, j) is in S+
j \ S++

j and path arc (j, j + 1)

is in L−−
j since they appear in formulation (2.31)-(2.36) with same coefficients. The

variables ct − yt for t ∈ L−−
j (thus uj − i2j included) and yt for t ∈ S+

j \ S++
j (thus

i1j−1 included) appear together in formulation (2.31)-(2.36). Therefore, without loss of

generality, we can merge these variables into a new variable w and assume that the

corresponding arcs are always open:

w = i1j−1 + (uj − i2j) + y(S+
j \ S++

j) + c(L−−
j)− y(L−−

j).

Then, the formulation (2.31)-(2.36) can be simplified as:

fL
j (zj) = min d̂j − w − c(L−

j) + λjx(L
−
j)− y(S++

j)−
∑

t∈S++
j

(ct − λj)(1− xt) (2.37)

s.t. w + y(S++
j) + c(L−

j)− y(L−
j) ≤ d̂j − zj, (2.38)

0 ≤ yt ≤ ctxt, t ∈ S++
j ∪ L−

j , (2.39)

xt ∈ {0, 1}, t ∈ S++
j ∪ L−

j , (2.40)

0 ≤ w ≤ mj, (2.41)

where d̂j = dj + uj + c(E−
j). Moreover, letting

λ̄j := uj−1 + c(S+)−
(
dj + c(S−

j)
)
, j ∈ N (2.42)

we observe that

d̂j = mj +Mj,rj − λ̄j.

Theorem 2.10. The function fL
j (z) can be expressed as:

fL
j (z) =

z + iλj −Mj,i, if Mj,i − λ̄j ≤ z ≤Mj,i − λ̄j + λj, i ∈ [0, pj − 1]

(i+ 1)λj − λ̄j, if Mj,i + λj − λ̄j ≤ z ≤Mj,i+1 − λ̄j, i ∈ [0, pj − 1]

z + iλj −Mj,i, if Mj,i − λ̄j ≤ z ≤Mj,i − λ̄j +mlj, i ∈ [pj, rj − 1]

z + (i+ 1)λj −Mj,i − φj,i −mlj, if

Mj,i − λ̄j +mlj < z ≤Mj,i − λ̄j +mlj + φj,i, i ∈ [pj, rj − 1]

(i+ 1)λj − λ̄j, if

Mj,i − λ̄j +mlj + φj,i ≤ z ≤Mi+1 − λ̄j, i ∈ [pj, rj − 1]

z −Mj,rj + rjλj, if Mj,rj − λ̄j ≤ z ≤ d̂j.

(2.43)

Proof. See Appendix B.3.

Remark 2.3. If λj = λ̄j, then fL
j (z) is the same as the lifting function of the flow

cover inequality provided in Gu et al. (1999).

22

Remark 2.4. In equation (2.42), the incoming flow from up-stream nodes {k, . . . , j−1}
is ij−1 = uj−1 and there is no flow being pulled from down-stream nodes {j+1, . . . , ℓ}.
Therefore, λ̄j ≥ λj and the domain of fL

j (z) includes [0,∞).

The function fL
j (zj) is not necessarily superadditive and does not satisfy the con-

ditions in Proposition 2.9. Therefore, we construct a lower-bound on fL
j that is su-

peradditive on R+ ∪ {0}. Gu et al. (1999) propose a slightly different version of the

following superadditive valid lifting function for flow cover inequalities:

ψj(z) =

z + iλj −Mj,i Mj,i − λ̄j ≤ z ≤Mj,i − λ̄j + λj, i ∈ [0, pj − 1]

(i+ 1)λj − λ̄j Mj,i + λj − λ̄j ≤ z ≤Mj,i+1 − λ̄j, i ∈ [0, pj − 1]

z + iλj −Mj,i Mj,i − λ̄j ≤ z ≤Mj,i − λ̄j +mlj + φj,i, i ∈ [pj, rj − 1]

(i+ 1)λj − λ̄j Mj,i − λ̄j +mlj + φj,i < z ≤Mj,i+1 − λ̄j, i ∈ [pj, rj − 1]

z −Mj,rj + rjλj Mj,rj − λ̄j ≤ z ≤ d̂j.

(2.44)

If the path consists of a single node as in flow cover inequalities, then ψj(z) is super-

additive. However, when there are multiple nodes in V , the superadditivity of both

fL
j and ψj depends on where the z = 0 case lies. Therefore, we examine the function

fL
j case by case. Let the index Tj be Tj = min{1 ≤ i ≤ rj : Mj,i − λ̄j ≥ 0} if

Mj,rj − λ̄j ≥ 0, and Tj = rj otherwise.

Theorem 2.11. The function ψj(z) ≤ fL
j (z) is superadditive if Tjλj − λ̄j ≤ 0.

Proof. See Appendix B.4.

Note that if Tjλj − λ̄j > 0, then ψj is not superadditive since ψj(0) > 0. Under this

case, we obtain a different superadditive lower bound. Using Lemma 2.2, we find the

largest convex lower-bound of fL
j (z), ϕj(z), such that ϕj(0) ≤ 0 is the superadditive

lower estimation.

Lemma 2.2 (Hille and Phillips (1957) p. 237). A convex function ϕ : R+ ∪ {0} → R
with ϕ(0) ≤ 0 is superadditive.

The generic form of the largest convex lower-bound of fL
j (z) that has a non-positive

value at zero is

ϕj(z) =

τλj−λ̄j−Γ

Mj,τ−λ̄j
z + Γ, 0 ≤ z ≤Mj,τ − λ̄j,

λj

cji+1
(z −Mj,i + λ̄j) + iλj − λ̄j, Mj,i − λ̄j ≤ z ≤Mj,i+1 − λ̄j, i ∈ [τ, rj − 1]

z −Mj,rj + rjλj, Mj,rj − λ̄j ≤ z ≤ d̂j,

(2.45)

23

where Γ is the value of ϕj(0) = min{0, fL
j (0)} and τ is the smallest index that ensures

the slope of linear function connecting points (0,Γ) and (Mj,τ − λ̄j, ϕj(Mj,τ − λ̄j)) is

the smallest compared to the slope of next linear pieces of ϕj. The values of Γ and τ

depend on the parameters of the problem (see Appendix B.6 for explicit descriptions).

Let Φj(z) be the superadditive lower bound of fL
j . In summary, Φj(z) takes two

different forms and it has the following description:

Φj(z) =

{
ψj(z) if Tjλj − λ̄j ≤ 0,

ϕj(z) otherwise.

For each node j ∈ N , the lower bounding function Φj(zj) is superadditive. Therefore,∑ℓ
j=k Φj(zj) is superadditive as well. Furhermore, since inequality (2.15) is valid for

PG, f(0) ≥ 0. On the contrary, the approximation
∑ℓ

j=k Φj(0) can be less than zero.

Then, we can construct a tighter superadditive valid lifting function Φ(z) by:

Φ(z) = max

{ ℓ∑
j=k

Φj(zj), 0

}
≤ f(z).

Note that since
∑ℓ

j=k Φj(zj) is superadditive, max{
∑ℓ

j=k Φj(zj), 0} is superadditive

as well, due to Observation 5 in Appendix B.5. Example 2 (cont). Recall that

path N = {a, b, c} for the set selection S+ = {1, 2, 3, 4}, L− = ∅ and S− = {5, 6, 7}
have λa = 3, λb = 6 and λc = 9. However note that the upper bounds λ̄a = 3,

λ̄b = 11 and λ̄c = 11. The sets S++
j ∪ L−

j are S++
a ∪ L−

a = {1}, S++
b ∪ L−

b = {2} and

S++
c ∪ L−

c = {4, 8} with va,1 = 1, vb,1 = 2 and vc,1 = 8, vc,2 = 4 since c8 > c4. The

cardinalities of sets S++
j ∪L−

j are ra = rb = 1 and rc = 2 and the cumulative capacities

are Ma,va,1 = 10,Mb,vb,1 = 7 and Mc,vc,1 = 12,Mc,vc,2 = 12 + 10 = 22. We also have

pa = 1, pb = 1 and pc = 2. The values mj for j = a, b, c are ma = 8,mb = 8+8+3 = 19

and mc = 8. Finally, the modified demand values are d̂a = d̂b = 2 + 8 + 5 = 15 and

d̂c = 2 + 5 + 12 = 19.

Let us now examine the decomposed functions fL
j (z) for Example 2. Using the

values calculated in Section 2.3.1, we observe that

fL
a (z) =

{
0 0 ≤ z ≤ 7

z − 7 7 ≤ z ≤ 15
, fL

b (z) =
{
z − 1 0 ≤ z ≤ 15, and

fL
c (z) =

−2 0 ≤ z ≤ 1

z − 3 1 ≤ z ≤ 10

7 10 ≤ z ≤ 11

z − 4 11 ≤ z ≤ 19.

24

Note that Ta = Tb = Tc = 1 and Taλa − λ̄a = 0 ≤ 0, Tbλb − λ̄b = −5 ≤ 0 and

Tcλc − λ̄c = −2 ≤ 0. Therefore, ψa(z), ψb(z) and ψc(z) are all superadditive. We also

observe that under this parameter set, fL
j (z) = ψj(z) for j = a, b, c. We then have

Φj(z) = ψj(z) for j = a, b, c.

2.3.2 Dual lifting function

In this section, we investigate the explicit form of the dual lifting function h(z). First,

notice that the optimization problem defined by (2.24)-(2.26) is decomposable with

respect to each arc tj ∈ K. Therefore, we write it as a sum of single dimensional

functions hj(zj):

h(z) =
∑
tj∈K

hj(zj),

where

hj(zj) = max θj(xj − 1)

s.t. yj − cj = −zj,
0 ≤ yj ≤ cjxj,

xj ∈ {0, 1}.

Remark 2.5. The function h(z) is decomposable with respect to j ∈ N as well, by

the construction of the lifting set K.

Functions hj(zj) are the same as the dual lifting function of single node flow cover

inequalities. Therefore, we directly use the result of Gu et al. (1999) to analytically

evaluate it.

Theorem 2.12 (Gu et al. (1999) Theorem 4).

hj(zj) =

{
0 0 ≤ zj < cj,

−θj zj = cj,

with θj ≤ 0.

2.3.3 Lifting coefficients

Using Proposition 2.9, we construct the lifting coefficients θ such that

ℓ∑
j=k

hj(zj) ≤ max

{ ℓ∑
j=k

Φj(zj), 0

}
. (2.46)

25

Theorem 2.12 shows that the function takes a nonzero value only if zj = cj. Observe

that if zj ̸= cj for all j ∈ N , then inequality (2.46) implies 0 ≤ max
{∑ℓ

j=k Φj(zj), 0
}

and does not provide any information on the lifting coefficients θ. Let us now examine

the case where zi ̸= ci for i ̸= j and zj = cj for some j ∈ N . Using Theorem 2.12,

inequality (2.46) can be written as

ℓ∑
j=k

hj(zj) = −θj ≤ max
{
0,Φj(cj) +

∑
m̸=j

Φk(zm)
}
, z : zj = cj, zm ̸= cm,m ̸= j,

(2.47)

for each j ∈ N . Inequality (2.47) implies that −θj should be less than or equal to all

possible values of the right hand side, equivalently:

−θj ≤ min
zj=cj ,zm ̸=cm, m ̸=j

{
max

{
0,Φj(cj) +

∑
m̸=j

Φm(zm)
}}

. (2.48)

Since Φi(zi) is a non-decreasing function, inequality (2.48) can be simplified as

−θj ≤ max
{
0,Φj(cj) +

∑
m̸=j

Φm(0)
}
. (2.49)

Let us now examine the vector z where zi = ci and zj = cj and zm ̸= cm for any m ̸= i

and m ̸= j. Then, using Theorem 2.12, inequality (2.46) becomes:

− θj − θi ≤ max
{
0,Φi(ci) + Φj(cj) +

∑
m̸=i,j

Φm(zm)
}
,

∀z : zi = ci, zj = cj, zm ̸= cm,m ̸= i, j. (2.50)

Since Φm(zm) is a non-decreasing function, we can replace the right hand side of in-

equality (2.50) with its smallest value:

−θj − θi ≤ max
{
0,Φi(ci) + Φj(cj) +

∑
m̸=i,j

Φm(0)
}
. (2.51)

Proposition 2.13. Inequality (2.51) provides a smaller lower bound on θi + θj than

bounds of θi and θj in inequality (2.49) summed. Equivalently,

max
{
0,Φi(ci) + Φj(cj) +

∑
m̸=i,j

Φm(0)
}
≥ max

{
0,Φj(cj) +

∑
m̸=j

Φm(0)
}

+max
{
0,Φi(ci) +

∑
m̸=i

Φm(0)
}
. (2.52)

26

Proof. Recall that Φj(0) ≤ 0 and Φj(zj) is a non-decreasing function. Hence,

Φi(ci) + Φj(cj) +
∑
m̸=i,j

Φm(0) ≥ Φj(cj) +
∑
m̸=j

Φm(0),

Φi(ci) + Φj(cj) +
∑
m̸=i,j

Φm(0) ≥ Φi(ci) +
∑
m̸=i

Φm(0),

Φi(ci) + Φj(cj) +
∑
m̸=i,j

Φm(0) ≥ Φj(cj) +
∑
m̸=j

Φm(0) + Φi(ci) +
∑
m̸=i

Φm(0).

Proposition 2.13 implies that the constraints provided in (2.49) are tighter than the

constraints provided by (2.51). Using the same argument, one can easily show that as

the number of components of vector z such that zj = cj is increased, the constraints

enforced on the coefficients θ by inequality (2.46) get weaker.

Theorem 2.14. Lifted generalized submodular path inequality (2.17) where θj =

−max
{
0,Φj(cj) +

∑
k ̸=j Φk(0)

}
is valid for PG.

Proof. Selecting θj as the lower bound given in (2.49) guarantees that inequality (2.46)

is satisfied, due to the tightness argument in Proposition 2.13. Then, inequality (2.17)

is valid for the feasibility set PG from Proposition 2.9.

Example 2 continued: We now calculate the lifting coefficients for arcs in S− =

{5, 6, 7}. From Theorem 2.14, we have θ5 = −max{0,Φa(5) + Φb(0) + Φc(0)} =

−max{0, 0−1−2} = 0, θ6 = −max{0,Φa(0)+Φb(5)+Φc(0)} = −max{0, 0+4−2} =

−2 and θ7 = −max{0,Φa(0) + Φb(0) + Φc(5)} = −max{0, 0− 1 + 2} = −1. Then, we

lift inequality (2.16) using Theorem 2.14 and obtain

y1 + y2 + y3 + y4 + 7(1− x1) + (1− x2) + (1− x4) ≤ 21− 2(1− x6)− (1− x7) + 9x8.

2.4 Computational study

We test the effectiveness of the submodular path inequalities when used as cuts in

a branch-and-cut framework. The computational experiments were carried out on

a Linux workstation with 2.93 GHz Intel R⃝CoreTM i7 CPU and 8 GB of RAM. The

branch-and-cut algorithm was implemented in C++ using Concert technology of CPLEX

(version 12.5) with one hour time limit and 1 GB memory limit. We set the number

of threads to one in the computations.

We test the submodular path inequalities on networks where the nodes form a

simple path, and each node has a fixed number of incoming and outgoing arcs and

27

nonnegative demands, which is typical in production planning problems. Given fixed

cost ft and variable cost pt associated with an arc t ∈ E, and variable and fixed

inventory holding costs hj and sj for a path arc j, we solve the following mixed integer

optimization problem:

min
∑
t∈E

(
ftxt + ptyt

)
+
∑
j∈N

(
hjij + sjzj

)
s.t. ij−1 + y(E+

j)− y(E−
j)− ij = dj, j ∈ N,

0 ≤ yt ≤ ctxt, t ∈ E,

0 ≤ ij ≤ ujzj, j ∈ N,

xt ∈ {0, 1}, t ∈ E,

zj ∈ {0, 1}, j ∈ N,

where yt and ij are the flow values on a non-path arc t ∈ E and a path arc j ∈ N

respectively, and xt and zj are the binary variables representing whether these arcs are

being used or not.

Finding violated submodular path inequalities

Given a path and a feasible solution (x∗,y∗, i∗) to the LP relaxation with fractional x∗,

the separation problem aims to find sets S+, L− and S− that maximize the violation∑
t∈S+

[
y∗t + (ct − λj)

+(1− x∗t)
]
− dkℓ − c(S−)−

∑
t∈L−

λjx
∗
t −

∑
t∈L−−

y∗t .

We use the knapsack relaxation based heuristic separation strategy described in (Wolsey

and Nemhauser, 1999, pg. 500) for flow cover inequalities to choose sets S+ and S−

with a knapsack capacity dkℓ. Then, we add arc t ∈ E− \ S− to L− if λjx
∗
t < y∗t and

λj < ct.

Instance Generation

The data we used for computational experiments has the following properties: There

are v nodes on the network and each node has a single non-path incoming arc and a

single non-path outgoing arc. Demand is drawn from integer uniform between 1 and

19. The parameter c ∈ {2, 3, 4, 5} controls the tightness of arc capacities compared

to the average demand of all nodes and f ∈ {100, 200, 500, 1000} controls how large

the fixed costs are compared to inventory holding costs. The capacities of non-path

incoming, non-path outgoing and path arcs are drawn from integer uniform with bounds

[0.75 × c × d̄, 1.25 × c × d̄], 2 × [0.75 × c × d̄, 1.25 × c × d̄] and [0.75 × c × d̄, c × d̄]

respectively where d̄ is the average demand. Similarly, fixed costs of non-path incoming

and non-path outgoing and path arcs are generated from integer uniform with bounds

28

[0.9× f × h̄, 1.1× f × h̄], [0.2× f × h̄, 0.5× f × h̄] respectively where h̄ is the average

inventory holding cost. Path arcs have fixed and variable costs of f and 10, respectively.

Variable ordering costs of non-path incoming and outgoing arcs are generated from

integer uniform at the interval [81, 119] and −1× [160, 240]. Five random instances are

generated for each (v, c, f) combination.

Preprocessing

In order to tighten the capacities of an instance we apply the following preprocessing

steps for all arcs that have positive variable costs.

1) ūj = min{uj, (dj+1)
+ + uj+1 + c(E−

j+1)}, for j ∈ N

2) c̄t = min{ct, (dj)+ + ūj + c(E+
j)} for all t ∈ E+

j , j ∈ N .

We report a number of performance measures in the following tables. Let zINIT

be the optimal objective function value of the LP relaxation with no valid inequali-

ties added, zROOT be the optimal objective function value of the LP relaxation after

adding the violated cuts at the root node. Moreover, let zUB be the objective function

value of the best feasible solution found within the time/memory limit. We report the

percentage gap improvement (gap imp = 100× zROOT−zINIT

zBEST−zINIT
), the initial gap (init gap

= 100× zUB−zINIT

zUB
), and the root gap (root gap = 100× zUB−zROOT

zUB
). Moreover, we re-

port the number of violated cuts added (cuts), the number of branch and bound nodes

explored (nodes) and the elapsed time for solving an instance (time) in seconds. If

the instance is not solved within the time/memory limit, then we report in parentheses

the average percentage gap between the best lower bound and the best integer solution

endgap and the number of instances with a positive end gap unslv. We round all the

values to the nearest integer except for percent gaps. Each row reports the average

values for init gap, gap imp, cuts, nodes, time and endgap over five instances. The

user cuts are added only at the root node of the branch and bound tree.

In Table 2.1, we compare submodular path inequalities (2.12) (columns spi) with

lifted generalized submodular path inequalities (2.17) (columns lspi) for instances

with 50 nodes. To see first the effect of the proposed inequalities alone, in this experi-

ment, all built-in CPLEX cuts are disabled. We enumerated all paths in the graph and

for each path we used the separation heuristic explained above to find violated sub-

modular path inequalities. Observe that both spi and lspi perform better for smaller

f values. These results in the table suggest that submodular path inequalities alone

reduce the integrality gap on average by 61% and that the generalized submodular

path inequalities improve the gap reduction by another 15% on average. Furthermore,

we observe that the number of nodes, the average solution times and the number of

unsolved instances decrease substantially. Table 2.1 shows the positive impact of sub-

modular path inequalities and their generalizations very clearly. In the remainder of

computational study, we use lspi for the experiments.

29

Table 2.1: Comparison of submodular path inequalities (spi) and lifted generalized
submodular path inequalities (lspi), n = 50.

gap imp % cuts nodes time (endgap:unslv)

c f
init

gap
spi lspi spi lspi spi lspi spi lspi

2

100 11.3 85.7 98.6 163 267 703 10 1 1
200 10.2 69.6 74.8 500 618 641429 170959 230 88
500 13.2 62.4 66.9 436 527 43400 12615 25 21
1000 15.8 60.7 66.6 373 507 57140 21795 23 21

3

100 84.7 71.9 98.7 95 173 3469 4 1 1
200 17.2 73.8 91 206 346 379879 349 78 3
500 18.4 51.8 58.4 398 558 7646575 1799858 2088 (0.2:2) 617
1000 20.3 49.1 55.6 346 449 2701397 744416 669 244

4

100 14.9 69.7 99.1 73 131 366 3 0 0
200 87.7 69.1 96.2 108 201 12000 19 2 1
500 20.1 48.2 54.9 417 494 8907851 3775955 2134 (1.3:3) 1093
1000 23.6 42.7 49.3 403 450 5298416 2077797 1304 (0.1:1) 628

5

100 7.7 61.1 99.3 68 113 746 3 0 0
200 47.9 67.1 97.9 88 148 19829 6 3 0
500 25.6 51.7 62.8 312 383 10264838 2583423 2064 (1.5:3) 688
1000 27 41.8 48.5 435 490 6378901 4765505 1495 (0.6:1) 1272 (0.3:1)

Average 27.8 61.0 76.2 276 366 2647309 997045 632 (0.2:1) 292 (0.0:0)

30

Although enumerating all the paths for a given network shows the full potential of

the inequalities, it is too time consuming except for small cases. Therefore, in Table

2.2, we examine the effect of path size on the computational effectiveness of lspi. We

use the same instances (n = 50) and separation heuristic as in Table 2.1. In columns

= 1, we select all paths of size 1 whereas in columns ≤ k, we enumerate all paths of sizes

1, 2, . . . , k. Note that column ≤ n corresponds to enumerating all simple paths of all

sizes. The results in Table 2.2 underline the diminishing rate of returns with path size.

Clearly, we find more violated inequalities with longer paths; however, the increase in

the gap improvement diminishes. The tradeoff between searching for more paths and

solution time and quality is most visible in the time column: the elapsed time first

decreases and then increases with increasing efforts for finding paths. Therefore, in the

remainder of the experiments, in order to find a balance between time spent for finding

paths and the solution quality, for each given extreme point solution, we stop searching

for paths if we fail to find violated inequalities for four consecutive path sizes.

31

Table 2.2: Effect of path length on the performance of lspi.

gap imp % cuts time

c f
init

gap
= 1 ≤ 2 ≤ 3 ≤ 4 ≤ n = 1 ≤ 2 ≤ 3 ≤ 4 ≤ n = 1 ≤ 2 ≤ 3 ≤ 4 ≤ n

2

100 11.3 82.4 95.2 98.5 98.6 98.6 104 183 227 247 267 0 0 1 1 1
200 10.2 58.1 70.3 72.9 74.3 74.8 140 269 367 433 618 1299 258 71 100 88
500 13.2 49.9 61.4 65.0 66.2 66.9 124 224 298 361 527 142 14 7 7 21
1000 15.8 53.2 62.3 65.0 66.3 66.6 121 212 274 326 507 29 11 8 8 21

3

100 84.7 86.7 97.6 98.7 98.7 98.7 86 142 163 171 173 0 0 0 0 1
200 17.2 78.9 89.3 90.6 90.8 91.0 132 240 292 325 346 21 1 1 1 3
500 18.4 48.3 55.9 57.9 58.3 58.4 152 262 358 410 558 1944 895 479 511 617
1000 20.3 43.5 51.9 54.7 55.3 55.6 143 243 309 355 449 279 232 204 198 244

4

100 14.9 91.5 99.0 99.1 99.1 99.1 81 118 128 130 131 0 0 0 0 0
200 87.7 85.5 95.1 95.7 95.9 96.2 97 159 183 192 201 0 0 0 1 1
500 20.1 47.7 52.7 54.5 54.9 54.9 176 285 364 416 494 2273 1952 951 1166 1093
1000 23.6 42.0 46.3 48.3 49.1 49.3 157 252 315 365 450 1703 659 408 570 628

5

100 7.7 92.6 99.7 99.3 99.3 99.3 77 104 111 112 113 0 0 0 0 0
200 47.9 89.6 97.5 97.7 97.7 97.9 91 134 144 146 148 0 0 0 0 0
500 25.6 57.0 60.4 62.2 62.6 62.8 168 267 327 354 383 1197 1360 1096 708 688
1000 27.0 41.5 45.9 47.7 48.3 48.5 169 263 328 383 490 1291 1147 1114 1029 1272

Average 27.8 65.5 73.8 75.5 76.0 76.2 126 210 262 295 366 636 408 271 269 292

32

We next compare lspi with lifted single node flow cover (fc) and uncapacitated

path inequalities (uc). The results with the lifted flow cover inequalities are reported

in Table 3.3 under columns fc and are equivalent to inequality (2.17) where the path

size is equal to one. Under columns uc, we report the uncapacitated path inequalities

of van Roy and Wolsey (1985) that are of the form

y(S+) ≤
ℓ∑

j=k

djℓx(S
+
j) + y(E−), (2.53)

where N = [k, ℓ] is the path and S+ ⊆ E+. We enumerate all paths in a given instance

and given a fractional solution (x∗, y∗) we use a simple comparison to select set S+ as

S+
j = {t ∈ E+

j : y∗t > djℓx
∗
t} where S+

j = S+ ∩ E+
j .

We observe in Table 3.3 that lspi helps to reduce the integrality gap by additional

11% and 45% on average compared to fc and uc, respectively. However for some

instances, where both f and c are large, uc performs better than both lspi and fc.

A positive effect of larger c on the performance of uc is expected since these cases are

closer to being uncapacitated.

Although Table 3.3 clearly shows the positive impact of exploiting the path struc-

ture together with the arc capacities, in the final computational experiment, we test

the marginal contribution of lspi over CPLEX fixed-charge network cuts, namely

flow cover, flow path and multi-commodity flow cuts. In Table 2.4, we present the

results of the experiments where we use both lspi and CPLEX flow cover, flow path

and MCF cuts under columns lspix, and the results with only CPLEX flow cover,

flow path and MCF cuts under columns cpx. The positive effect of lspi is most

apparent for smaller f values. On average, gap improvement increases by 3% when

lspi is used. The presence of lspi decreases the number of branch and bound nodes

explored by 50% and increases the number of instances that is solved to optimality

within time/memory limit. Under the cuts column we present total number of cuts

flow, flow path and MCF cuts added. On average, 74% of all the cuts added in lspix

are user cuts (i.e., lspi). Furthermore, we observe that total number of flow, flow

path and MCF cuts added decreases by 38% on average under the presence of lspi.

Although, we observe that lspix took a few more seconds to terminate the algorithm

on average, in 56% of the instances lspi terminated the algorithm faster than cpx.

33

Table 2.3: Comparison of lifted submodular path inequalities (lspi) with lifted flow cover inequalities (fc) and uncapacitated
path inequalities (uc).

gap imp % cuts nodes time (endgap:unslv)

c f init gap lspi fc uc lspi fc uc lspi fc uc lspi fc uc

2

100 11.3 98.6 82.4 2.4 267 104 1 10 1955 16805127 1 0 1548 (0.7:1)
200 10.2 74.8 58.1 35.7 618 140 241 170919 9295457 13166197 80 1299 (0.5:2) 1835 (2.5:5)
500 13.2 66.9 49.9 49.1 522 124 1268 12622 973479 1404240 9 142 896
1000 15.8 66.6 53.2 47.1 507 121 1164 21795 185758 594313 13 29 407

3

100 84.7 98.7 86.7 0 173 86 0 4 117 1228852 0 0 101
200 17.2 91 78.9 11.6 345 132 37 350 131633 13026690 2 21 1264 (4.7:5)
500 18.4 58.4 48.3 55.1 558 152 1516 1965086 13529271 5499897 661 1944 (1.0:3) 3312 (2.0:4)
1000 20.3 55.6 43.5 50.7 444 143 1782 745041 2052371 2319528 226 279 2275 (0.8:2)

4

100 14.9 99.1 91.5 0 131 81 0 3 29 50625 0 0 5
200 87.7 96.1 85.5 3.1 199 97 7 19 512 3460744 1 0 335
500 20.1 54.9 47.7 63.8 494 176 1071 3775955 15171027 5572322 1080 2273 (1.4:4) 2704 (0.6:3)
1000 23.6 49.3 42 60.4 450 157 1984 2077797 12365215 1867691 570 1703 (0.1:1) 2026 (0.5:2)

5

100 7.7 99.3 92.6 0 113 77 0 3 18 32383 0 0 4
200 47.9 97.9 89.6 0.2 148 91 1 6 1097 1392639 0 0 138
500 25.6 62.8 57 46.2 383 168 305 2678953 8274212 13353250 704 1197 (1.2:2) 2396 (3.0:5)
1000 27 48.5 41.5 68 488 169 1977 4864049 9775043 1973802 1189 (0.2:1) 1291 (1.5:2) 2226 (0.5:3)

Average 27.8 76.2 65.5 30.8 365 126 710 1019538 4484825 5109269 284 (0.0:0) 636 (0.4:1) 1342 (1.0:2)34

Table 2.4: Experiments with CPLEX flow cover, flow path and MCF cuts.

gap imp % cuts nodes time (endgap:unslv)

n c f init gap cpx lspix cpx lspix cpx lspix cpx lspix

50

2

100 11.3 94.2 99.6 170 330 67 3 0 1
200 10.2 86.8 87.9 184 680 122456 8393 22 7
500 13.2 85.4 82.4 146 666 9528 2261 2 6
1000 15.8 80.5 81.5 130 605 12676 3277 2 6

3

100 84.7 91.2 99.8 138 229 22 1 0 0
200 17.2 92.9 97.4 197 374 707 43 0 1
500 18.4 78.7 79.7 152 603 819590 146769 123 58
1000 20.3 79.2 77.2 147 589 319068 87354 47 36

4

100 14.9 90.4 99.7 119 191 18 1 0 0
200 87.7 94.3 99.2 156 258 38 3 0 0
500 20.1 82.6 83.2 159 559 186654 39244 28 17
1000 23.6 79 76.8 142 566 297505 95019 42 37

5

100 7.7 92.6 99.8 106 173 11 2 0 0
200 47.9 92.8 99.7 141 208 22 2 0 0
500 25.6 86.2 87.9 193 433 211945 22408 34 8
1000 27 81.6 80.3 151 583 521651 153655 74 53

75

2

100 10.4 90 99.4 223 447 201 4 0 1
200 10 87.2 90.6 266 909 1202846 13022 323 18
500 13.9 79.1 76.3 187 824 1694669 812991 420 689
1000 14 82.3 82.5 210 855 247773 38970 57 35

3

100 502.8 90.3 99.6 209 361 289 1 0 1
200 18.7 91.7 97.8 269 494 3814 75 1 2
500 17.1 79.9 79.5 231 944 8210162 5065675 1560 (0.9:2) 2437 (0.2:2)
1000 20.5 73.8 73.1 212 766 10467362 4429938 2021 (0.8:2) 1906 (0.0:1)

4

100 14.3 92.4 99.9 185 300 27 1 0 1
200 124.9 92.4 99.6 235 370 411 4 0 1
500 21.4 78.1 79.4 244 816 11526938 5609289 2055 (2.2:4) 2134 (1.1:3)
1000 24.6 75.9 76.8 222 889 8378586 5032511 1392 (1.8:3) 2312 (0.7:3)

5

100 7.7 94.1 100 165 262 19 0 0 0
200 61.2 90.2 99.8 201 330 136 3 0 1
500 24.4 87.7 89.9 289 699 4926824 255153 1224 (0.1:1) 106
1000 27.2 79.5 80.2 217 809 10433607 3940582 1690 (1.7:3) 1492 (0.6:1)

Average 42.5 86.0 89.3 187 535 1862363 804896 347 (0.2:0) 355 (0.1:0)

35

Chapter 3

Path Cover and Path Pack

Inequalities for the Capacitated

Fixed-Charge Network Flow

Problem

Given a directed multigraph with demand or supply on the nodes, and capacity, fixed

and variable cost of flow on the arcs, the capacitated fixed-charge network flow (CFNF)

problem is to choose a subset of the arcs and route the flow on the chosen arcs while

satisfying the supply, demand and capacity constraints, so that the sum of fixed and

variable costs is minimized.

There are numerous polyhedral studies on the fixed-charge network flow problem. In

a seminal paper Wolsey (1989) introduces the so-called submodular inequalities, which

subsume almost all valid inequalities known for capacitated fixed-charge networks.

Although the submodular inequalities are very general, their coefficients are defined

implicitly through value functions. In this chapter, we give explicit valid inequalities

that simultaneously make use of the path substructures of the network as well as the

arc capacities.

For the uncapacitated fixed-charge network flow problem, van Roy and Wolsey

(1985) give flow path inequalities that are based on path substructures. Rardin and

Wolsey (1993) introduce a new family of dicut inequalities and show that they de-

scribe the projection of an extended multicommodity formulation onto the original

variables of fixed-charge network flow problem. Ortega and Wolsey (2003) present a

computational study on the performance of path and cut-set (dicut) inequalities.

For the capacitated fixed-charge network flow problem, almost all known valid in-

equalities are based on single-node relaxations. Padberg et al. (1985), van Roy and

Wolsey (1986), Gu et al. (1999) give flow cover, generalized flow cover and lifted flow

cover inequalities. Stallaert (1997) introduces a complementary class to generalized

36

flow cover inequalities and Atamtürk (2001) describes lifted flow pack inequalities.

Atamtürk et al. (2016) give generalizations of flow cover inequalities from three parti-

tions. Both uncapacitated path inequalities and capacitated flow cover and flow pack

inequalities are highly valuable in solving a host of practical problems and are part of

the suite of cutting planes implemented in modern mixed-integer programming solvers.

The path structure arises naturally in network models of the lot-sizing problem.

Atamtürk and Muñoz (2004) introduce valid inequalities for the capacitated lot-sizing

problems with infinite inventory capacities. Atamtürk and Küçükyavuz (2005) give

valid inequalities for the lot-sizing problems with finite inventory and infinite produc-

tion capacities. Van Vyve (2013) introduces path-modular inequalities for the unca-

pacitated fixed charge transportation problems. These inequalities are derived from a

value function that is neither globally submodular nor supermodular but that exhibits

sub or supermodularity under certain set selections. Van Vyve and Ortega (2004)

and Gade and Küçükyavuz (2011) give valid inequalities and extended formulations

for uncapacitated lot-sizing with fixed charges on stocks. For uncapacitated lot-sizing

with backlogging, Pochet and Wolsey (1988) and Pochet and Wolsey (1994) provide

valid inequalities and Küçükyavuz and Pochet (2009) give an explicit description of

the convex hull.

Contributions

In this chapter we consider a generic path relaxation, with supply and/or demand

nodes and capacities on incoming and outgoing arcs. By exploiting the path substruc-

ture of the network and introducing notions of path cover and path pack we provide

two explicitly-described subclasses of the submodular inequalities. The most impor-

tant consequence of the explicit derivation is that the coefficients of the submodular

inequalities on a path can be computed efficiently. In particular, we show that the

coefficients of these inequalities can be computed by solving max-flow/min-cut prob-

lems parametrically over the path. Moreover, we show that all of the coefficients can

be computed with a single linear-time algorithm. For a path with a single node, the

inequalities reduce to the well-known flow cover and flow pack inequalities. In ad-

dition, the path cover and path pack inequalities dominate flow cover and flow pack

inequalities for the corresponding single node relaxation of a path obtained by merging

the path into a single node. We give necessary and sufficient facet-defining conditions.

Finally, we report on computational experiments demonstrating the effectiveness of the

proposed inequalities when used as cuts in a branch-and-cut algorithm.

Outline

The remainder of this chapter is organized as follows: In Section 3.1, we describe

the capacitated fixed-charge flow problem on a path, its formulation and the assump-

tions we make. In Section 3.2, we review the submodular inequalities, discuss their

37

computation on a path, and introduce two explicit subclasses: path cover inequalities

and path pack inequalities. In Section 3.3, we analyze sufficient and necessary facet-

defining conditions. In Section 3.4, we present computational experiments showing the

effectiveness of the path cover and path pack inequalities compared to other network

inequalities.

3.1 Capacitated fixed-charge network flow on a path

Let G = (N ′, A) be a directed multigraph with nodes N ′ and arcs A. Let sN and tN be

the source and the sink nodes of G. Let N := N ′ \{sN , tN}. Without loss of generality,

we label N := {1, . . . , n} such that a directed forward path arc exists from node i to

node i + 1 and a directed backward path arc exists from node i + 1 to node i for each

node i = 1, . . . , n − 1 (see Figure 3.1 for an illustration). In Remarks 3.1 and 3.2, we

discuss how to obtain a “path” graph G from a more general directed multigraph.

Let E+ = {(i, j) ∈ A : i = sN , j ∈ N} and E− = {(i, j) ∈ A : i ∈ N, j = tN}.
Moreover, let us partition the sets E+ and E− such that E+

k = {(i, j) ∈ A : i /∈ N, j =

k} and E−
k = {(i, j) ∈ A : i = k, j /∈ N} for k ∈ N . We refer to the arcs in E+

and E− as non-path arcs. Finally, let E := E+ ∪ E− be the set of all non-path arcs.

For convenience, we generalize this set notation scheme. Given an arbitrary subset of

non-path arcs Y ⊆ E, let Y +
j = Y ∩ E+

j and Y −
j = Y ∩ E−

j .

Remark 3.1. Given a directed multigraph G̃ = (Ñ , Ã) with nodes Ñ , arcs Ã and a

path that passes through nodes N , we can construct G as described above by letting

E+ = {(i, j) ∈ Ã : i ∈ Ñ \ N, j ∈ N} and E− = {(i, j) ∈ Ã : i ∈ N, j ∈ Ñ \ N} and

letting all the arcs in E+ be the outgoing arcs from a dummy source sN and all the

arcs in E− to be incoming to a dummy sink tN .

Remark 3.2. If there is an arc t = (i, j) from node i ∈ N to j ∈ N , where |i− j| > 1,

then we construct a relaxation by removing arc t, and replacing it with two arcs t− ∈ E−
i

and t+ ∈ E+
j . If there are multiple arcs from node i to node j, one can repeat the same

procedure.

Throughout the chapter, we use the following notation: Let [k, j] = {k, k+1, . . . , j}
if k ≤ j and ∅ otherwise, c(S) =

∑
t∈S ct, y(S) =

∑
t∈S yt, (a)

+ = max{0, a} and

dkj =
∑j

t=k dt if j ≥ k and 0 otherwise. Moreover, let dim(A) denote the dimension of

a polyhedron A and conv(S) be the convex hull of a set S.

The capacitated fixed-charge network flow problem on a path can be formulated as

a mixed-integer optimization problem. Let dj be the demand at node j ∈ N . We call

a node j ∈ N a demand node if dj ≥ 0 and a supply node if dj < 0. Let the flow on

forward path arc (j, j+1) be represented by ij with an upper bound uj for j ∈ N \{n}.
Similarly, let the flow on backward path arc (j + 1, j) be represented by rj with an

upper bound bj for j ∈ N \ {n}. Let yt be the amount of flow on arc t ∈ E with an

38

. . .1 2 n3

d1 d2 d3
dn

b1 b2 b3 bn−1

u1 u2 u3 un−1

sN

tN

cti

ctk

Figure 3.1: Fixed-charge network representation of a path.

upper bound ct. Define binary variable xt to be 1 if yt > 0, and zero otherwise for all

t ∈ E. An arc t is closed if xt = 0 and open if xt = 1. Moreover, let ft be the fixed

cost and pt be the unit flow cost of arc t. Similarly, let hj and gj be the costs of unit

flow, on forward and backward arcs (j, j+1) and (j+1, j) respectively for j ∈ N \{n}.
Then, the problem is formulated as

min
∑
t∈E

(ftxt + ptyt) +
∑
j∈N

(hjij + gjrj) (3.1a)

s. t. ij−1 − rj−1 + y(E+
j)− y(E−

j)− ij + rj = dj, j ∈ N, (3.1b)

0 ≤ yt ≤ ctxt, t ∈ E, (3.1c)

0 ≤ ij ≤ uj, j ∈ N, (3.1d)

(F3.1) 0 ≤ rj ≤ bj, j ∈ N, (3.1e)

xt ∈ {0, 1}, t ∈ E, (3.1f)

i0 = in = r0 = rn = 0. (3.1g)

Let P be the set of feasible solutions of (F3.1). Figure 3.1 shows an example network

representation of (F3.1).

Throughout we make the following assumptions on (F3.1):

(A.1) The set Pt = {(x, y, i, r) ∈ P : xt = 0} ̸= ∅ for all t ∈ E,

(A.2) ct > 0, uj > 0 and bj > 0 for all t ∈ E and j ∈ N ,

(A.3) ct ≤ d1n + c(E−) for all t ∈ E+,

(A.4) ct ≤ bj−1 + uj + (dj)
+ + c(E−

j), for all j ∈ N, t ∈ E+
j ,

(A.5) ct ≤ bj + uj−1 + (−dj)+ + c(E+
j) for all j ∈ N, t ∈ E−

j .

39

Assumptions (A.1)–(A.2) ensure that dim
(
conv(P)

)
= 2|E| + |N | − 2. If (A.1) does

not hold for some t ∈ E, then xt = 1 for all points in P . Similarly, if (A.2) does not

hold, the flow on such an arc can be fixed to zero. Finally, assumptions (A.3)–(A.5)

are without loss of generality. An upper bound on yt can be obtained directly from the

flow balance equalities (3.1b) by using the upper and lower bounds of the other flow

variables that appear in the same constraint. As a result, the flow values on arcs t ∈ E

cannot exceed the capacities implied by (A.3)–(A.5).

Next, we review the submodular inequalities that are valid for any capacitated

fixed-charge network flow problem. Furthermore, using the path structure, we provide

an O(|E|+ |N |) time algorithm to compute their coefficients.

3.2 Submodular inequalities on paths

Let S+ ⊆ E+ and L− ⊆ E−. Wolsey (1989) shows that the value function of the

following optimization problem is submodular:

v(S+, L−) = max
∑
t∈E

atyt (3.2a)

s. t. ij−1 − rj−1 + y(E+
j)− y(E−

j)− ij + rj ≤ dj, j ∈ N, (3.2b)

0 ≤ ij ≤ uj, j ∈ N, (3.2c)

0 ≤ rj ≤ bj, j ∈ N, (3.2d)

(F3.2) 0 ≤ yt ≤ ct, t ∈ E, (3.2e)

i0 = in = r0 = rn = 0, (3.2f)

yt = 0, t ∈ (E+ \ S+) ∪ L−, (3.2g)

where at ∈ {0, 1} for t ∈ E+ and at ∈ {0,−1} for t ∈ E−. Let Q denote the set of

feasible solutions of (F3.2).

We call the sets S+ and L− that are used in the definition of v(S+, L−) the objective

sets. For ease of notation, we also represent the objective sets as C := S+ ∪ L−.

Following this notation, let v(C) := v(S+, L−), v(C \ {t}) = v(S+ \ {t}, L−) for t ∈ S+

and v(C \{t}) = v(S+, L−\{t}) for t ∈ L−. Similarly, let v(C∪{t}) = v(S+∪{t}, L−),

for t ∈ S+ and v(C ∪ {t}) = v(S+, L− ∪ {t}) for t ∈ L−. Moreover, let

ρt(C) = v(C ∪ {t})− v(C)

be the marginal contribution of adding an arc t to C with respect to the value function

v. Wolsey (1989) shows that the following inequalities are valid for P :∑
t∈E

atyt +
∑
t∈C

ρt(C \ {t})(1− x̄t) ≤ v(C) +
∑

t∈E\C

ρt(∅)x̄t, (3.3)

40

∑
t∈E

atyt +
∑
t∈C

ρt(E \ {t})(1− x̄t) ≤ v(C) +
∑

t∈E\C

ρt(C)x̄t, (3.4)

where the variable x̄t is defined as

x̄t =

{
xt, t ∈ E+

1− xt, t ∈ E−.

In fact, inequalities (3.3) and (3.4) are also valid for fixed-charge network flow formu-

lations where the flow balance constraints (3.1b) are replaced with constraints (3.2b).

However, in this chapter, we focus on formulations with flow balance equalities (3.1b).

We refer to submodular inequalities (3.3) and (3.4) derived for path structures as

path inequalities. In this chapter, we consider sets S+ and L− such that (F3.2) is

feasible for all objective sets C and C \ {t} for all t ∈ C.

3.2.1 Equivalence to the maximum flow problem

Define sets K+ and K− such that the coefficients of the objective function (3.2a) are:

at =

1, t ∈ K+

−1, t ∈ K−

0, otherwise,

(3.5)

where S+ ⊆ K+ ⊆ E+ and K− ⊆ E− \ L−. We refer to the sets K+ and K− as

coefficient sets. Let the set of arcs with zero coefficients in (3.2a) be represented by

K̄+ = E+ \ K+ and K̄− = E− \ K−. Given a selection of coefficients as described

in (3.5), we claim that (F3.2) can be transformed to a maximum flow problem. We

first show this result assuming dj ≥ 0 for all j ∈ N . Then, in Appendix C, we show

that the nonnegativity of demand is without loss of generality for the derivation of the

inequalities.

Proposition 3.1. Let S+ ⊆ E+ and L− ⊆ E− be the objective sets in (F3.2) and

let Y be the nonempty set of optimal solutions of (F3.2). If dj ≥ 0 for all j ∈ N ,

then there exists at least one optimal solution (y∗, r∗, i∗) ∈ Y such that y∗t = 0 for

t ∈ K̄+ ∪K− ∪ L−.

Proof. Observe that y∗t = 0 for all t ∈ E+ \ S+, due to constraints (3.2g). Since

K̄+ ⊆ E+ \ S+, y∗t = 0, for t ∈ K̄+ from feasibility of (F??). Similarly, y∗t = 0 for all

t ∈ L− by constraints (3.2g).

Now suppose that, y∗t = ϵ > 0 for some t ∈ K−
j (i.e., at = −1 for arc t in (F3.2)).

Let the slack value at constraint (3.2b) for node j be

sj = dj −
[
i∗j−1 − r∗j−1 + y∗(E+

j)− y∗(E−
j \ {t})− y∗t − i∗j + r∗j

]
.

41

If sj ≥ ϵ, then decreasing y∗t by ϵ both improves the objective function value and

conserves the feasibility of flow balance inequality (3.2b) for node j, since sj − ϵ ≥ 0.

If sj < ϵ, then decreasing y∗t by ϵ violates flow balance inequality since sj − ϵ < 0.

In this case, there must exist a simple directed path P from either the source node sN
or a node k ∈ N \ {j} to node j where all arcs have at least a flow of (ϵ − sj). This

is guaranteed because, sj < ϵ implies that, without the outgoing arc t, there is more

incoming flow to node j than outgoing. Then, notice that decreasing the flow on arc t

and all arcs in path P by ϵ− sj conserves feasibility. Moreover, the objective function

value either remains the same or increases, because decreasing yt by ϵ−sj increases the
objective function value by ϵ − sj and the decreasing the flow on arcs in P decreases

it by at most ϵ − sj. At the end of this transformation, the slack value sj does not

change, however; the flow at arc t is now y∗t = sj which is equivalent to the first case

that is discussed above. As a result, we obtain a new solution to (F3.2) where y∗t = 0

and the objective value is at least as large.

Proposition 3.2. If dj ≥ 0 for all j ∈ N , then (F3.2) is equivalent to a maximum

flow problem from source sN to sink tN on graph G.

Proof. At the optimal solution of problem (F3.2) with objective set (S+, L−), the

decision variables yt, for t ∈ (E+ \ S+) ∪ K− ∪ L− can be assumed to be zero due

to Proposition 3.1 and constraints (3.2g). Then, these variables can be dropped from

(F3.2) since the value v(S+, L−) does not depend on them and formulation (F3.2)

reduces to

v(S+, L−) = max
{
y(S+) : ij−1 − rj−1 + y(S+

j)− y(K̄−
j)− ij + rj ≤ dj, j ∈ N,

(3.2c)− (3.2f)
}
. (3.6)

Now, we reformulate (3.6) by representing the left hand side of the flow balance con-

straint by a new nonnegative decision variable zj that has an upper bound of dj for

each j ∈ N :

max
{
y(S+) : ij−1 − rj−1 + y(S+

j)− y(K̄−
j)− ij + rj = zj, j ∈ N,

0 ≤ zj ≤ dj, j ∈ N, (3.2c)− (3.2f)
}
.

The formulation above is equivalent the maximum flow formulation from the source

node sN to the sink node tN for the path structures we are considering in this chapter.

Under the assumption that dj ≥ 0 for all j ∈ N , Proposition 3.1 and Proposition 3.2

together show that the optimal objective function value v(S+, L−) can be computed

by solving a maximum flow problem from source sN to sink tN . We generalize this

42

1 2 3 4 5

d1 d2 d3 d4 d5

c2 c4 c5

u1

b1

u2

b2

u3 u4

b3 b4

c7 c9c8 c10c6

c1 c3

(a) A path graph with E+ = [1, 5] and E− = [6, 10].

1 2 3 4 5

d1 d2 d3 d4 d5

c2 c4 c5

u1

b1

u2

b2

u3 u4

b3 b4

c7 c9

(b) An sN − tN cut for set S+ = {2, 4, 5}, L− = {10} and K̄− =
{7, 9, 10}.

Figure 3.2: An example of an sN − tN cut.

result in Appendix C for node sets N such that dj < 0 for some j ∈ N . As a result,

obtaining the explicit coefficients of submodular inequalities (3.3) and (3.4) reduces

to solving |E| + 1 maximum flow problems. For a general underlying graph, solving

|E| + 1 maximum flow problems would take O(|E|2|N |) time (e.g., see King et al.

(1994)), where |E| and |N | are the number of arcs and nodes, respectively. In the

following subsection, by utilizing the equivalence of maximum flow and minimum cuts

and the path structure, we show that all coefficients of (3.3) and (3.4) can be obtained

in O(|E|+ |N |) time using dynamic programming.

3.2.2 Computing the coefficients of the submodular inequali-

ties

Throughout the chapter, we use minimum cut arguments to find the explicit coefficients

of inequalities (3.3) and (3.4). Figure 3.2a illustrates an example where N = [1, 5],

E+ = [1, 5], E− = [6, 10] and in Figure 3.2b, we give an example of an sN − tN cut

for S+ = {2, 4, 5}, L− = {10} and K̄− = {7, 9, 10}. The dashed line in Figure 3.2b

represents a cut that corresponds to the partition {sN , 2, 5} and {tN , 1, 3, 4} with a

value of b1 + d2 + c7 + u2 + c4 + b4 + d5. Moreover, we say that a cut passes below node

j if j is in the source partition and passes above node j if j is in the sink partition.

Let αu
j and αd

j be the minimum value of a cut on nodes [1, j] that passes above and

below node j, respectively. Similarly, let βu
j and βd

j be the minimum values of cuts on

nodes [j, n] that passes above and below node j respectively. Finally, let

S− = E− \ (K− ∪ L−),

43

where K− is defined in (3.5). Recall that S+ and L− are the given objective sets. Given

the notation introduced above, all of the arcs in sets S− and L− have a coefficient zero

in (F3.2). Therefore, dropping an arc from L− is equivalent to adding that arc to S−.

We compute α
{u,d}
j by a forward recursion and β

{u,d}
j by a backward recursion:

αu
j = min{αd

j−1 + uj−1, α
u
j−1}+ c(S+

j) (3.7)

αd
j = min{αd

j−1, α
u
j−1 + bj−1}+ dj + c(S−

j), (3.8)

where αu
0 = αd

0 = 0 and

βu
j = min{βu

j+1, β
d
j+1 + bj}+ c(S+

j) (3.9)

βd
j = min{βu

j+1 + uj, β
d
j+1}+ dj + c(S−

j), (3.10)

where βu
n+1 = βd

n+1 = 0.

Let mu
j and md

j be the values of minimum cuts for nodes [1, n] that pass above and

below node j, respectively. Notice that

mu
j = αu

j + βu
j − c(S+

j) (3.11)

and

md
j = αd

j + βd
j − dj − c(S−

j). (3.12)

For convenience, let

mj := min{mu
j ,m

d
j}.

Notice that mj is the minimum of the minimum cut values that passes above and

below node j. Since the minimum cut corresponding to v(C) has to pass either above

or below node j, mj is equal to v(C) for all j ∈ N . As a result, the minimum cut (or

maximum flow) value for the objective set C = S+ ∪ L− is

v(C) = m1 = · · · = mn. (3.13)

Proposition 3.3. All values mj, for j ∈ N , can be computed in O(|E|+ |N |) time.

Obtaining the explicit coefficients of inequalities (3.3) and (3.4) also requires finding

v(C \ {t}) for t ∈ C and v(C ∪ {t}) for t /∈ C in addition to v(C). It is important to

note that we do not need to solve the recursions above repeatedly. Once the values mu
j

and md
j are obtained for the set C, the marginals ρt(C \ {t}) and ρt(C) can be found

in O(1) time for each t ∈ E.

We use the following observation while computing the marginal values ρt(C) and

ρt(C \ {t}) as a function of mu
j and md

j for t ∈ E+
j ∪ E−

j and j ∈ N .

Observation 2. Let c ≥ 0 and d := (b− a)+, then,

44

1. min{a+ c, b} −min{a, b} = min{c, d},

2. min{a, b} −min{a, b− c} = (c− d)+.

In the remainder of this section, we give a linear-time algorithm to compute the

coefficients ρt for inequalities (3.3) and (3.4) explicitly for paths.

Coefficients of inequality (3.3): Path cover inequalities

Let S+ and L− be the objective sets in (F3.2) and S− ⊆ E− \ L−. We select the

coefficient sets in (3.5) as K+ = S+ and K− = E− \ (L− ∪ S−) to obtain the explicit

form of inequality (3.3). As a result, the set definition of S− = E− \ (K− ∪ L−) is

conserved.

Definition Let the coefficient sets in (3.5) be selected as above and (S+, L−) be the

objective set. The set (S+, S−) is called a path cover for the node set N if

v(S+, L−) = d1n + c(S−).

If we assume that the set (S+, S−) is a path cover for N , then by definition,

v(C) = m1 = · · · = mn = d1n + c(S−)

in inequality (3.3). After obtaining the values mu
j and md

j for a node j ∈ N using

recursions in (4.3)–(4.6), it is trivial to find the minimum cut value after dropping an

arc t from S+
j :

v(C \ {t}) = min{mu
j − ct,m

d
j}, t ∈ S+

j , j ∈ N.

Similarly, dropping an arc t ∈ L−
j results in the minimum cut value:

v(C \ {t}) = min{mu
j ,m

d
j + ct}, t ∈ L−

j , j ∈ N.

Using Observation 2, we obtain the marginal values

ρt(C \ {t}) = (ct − λj)
+, t ∈ S+

j , j ∈ N

and

ρt(C \ {t}) = min{λj, ct}, t ∈ L−
j , j ∈ N

where

λj = (mu
j −md

j)
+, j ∈ N.

On the other hand, all the coefficients ρt(∅) = 0 for arcs t ∈ E \ C. First, notice

that, for t ∈ E+ \ S+, v({t}) = 0, because the coefficient at = 0 for t ∈ E+ \ S+.

45

Furthermore, v({t}) = 0 for t ∈ E− \ L−, since all incoming arcs would be closed for

an objective set (∅, {t}). As a result, inequality (3.3) for the objective set (S+, L−) can

be written as

y(S+) +
∑
j∈N

∑
t∈S+

j

(ct − λj)
+(1− xt) ≤ d1n + c(S−)

+
∑
j∈N

∑
t∈L−

j

min{ct, λj}xt + y(E− \ (L− ∪ S−)). (3.14)

We refer to inequalities (3.14) as path cover inequalities.

Remark 3.3. Observe that for a path consisting of a single nodeN = {j} with demand

d := dj > 0, the path cover inequalities (3.14) reduce to the flow cover inequalities

(Padberg et al., 1985, van Roy and Wolsey, 1986). Suppose that the path consists of

a single node N = {j} with demand d := dj > 0. Let S+ ⊆ E+ and S− ⊆ E−. The

set (S+, S−) is a flow cover if λ := c(S+)− d− c(S−) > 0 and the resulting path cover

inequality

y(S+) +
∑
t∈S+

(ct − λ)+(1− xt) ≤ d+ c(S−) + λx(L−) + y(E− \ L−) (3.15)

is a flow cover inequality.

Proposition 3.4. Let (S+, S−) be a path cover for the node set N . The path cover

inequality for node set N is at least as strong as the flow cover inequality for the single

node relaxation obtained by merging the nodes in N .

Proof. Flow cover and path cover inequalities differ in the coefficients of variables xt
for t ∈ S+ and t ∈ L−. Therefore, we compare the values λj, j ∈ N of path cover

inequalities (3.14) to the value λ of flow cover inequalities (3.15) and show that λj ≤ λ,

for all j ∈ N . The merging of node set N in graph G is equivalent to relaxing the

values uj and bj to be infinite for j ∈ [1, n− 1]. As a result, the value of the minimum

cut that goes above the merged node is m̄u = c(S+) and the value of the minimum

cut that goes below the merged node is m̄d = d1n + c(S−). Now, observe that the

recursions in (4.3)–(4.6) imply that the minimum cut values for the original graph G

are smaller:

mu
j = αu

j + βu
j − c(S+

j) ≤ c(S+) = m̄u

and

md
j = αd

j + βd
j − dj − c(S−

j) ≤ d1n + c(S−) = m̄d

for all j ∈ N . Recall that the coefficient for the flow cover inequality is λ = (m̄u−m̄d)+

and the coefficients for path cover inequality are λj = (mu
j − md

j)
+ for j ∈ N . The

fact that (S+, S−) is a path cover implies that md
j = d1n + c(S−) for all j ∈ N .

46

Since m̄d = md
j and mu

j ≤ m̄u for all j ∈ N , we observe that λj ≤ λ for all j ∈ N .

Consequently, the path cover inequality (3.14) is at least as strong as the flow cover

inequality (3.15).

1 2 3 4

c1 = 15 c2 = 35 c3 = 30 c4 = 10

d1 = 10 d2 = 10 d3 = 5 d4 = 15

u1 = 10 u2 = 10 u3 = 20

b1 = 15 b2 = 15 b3 = 10

Figure 3.3: A lot-sizing instance with backlogging.

Example 3.1. Consider the lot-sizing instance in Figure 3.3 where N = [1, 4], S+ =

{2, 3}, L− = ∅. Observe that mu
1 = 45, md

1 = 40, mu
2 = 65, md

2 = 40, mu
3 = 60,

md
3 = 40, and mu

4 = 45, md
4 = 40. Then, λ1 = 5, λ2 = 25, λ3 = 20, and λ4 = 5

leading to coefficients 10 and 10 for (1 − x2) and (1 − x3), respectively. Furthermore,

the maximum flow values are v(C) = 40, v(C \ {2}) = 30, and v(C \ {3}) = 30. Then,

the resulting path cover inequality (3.14) is

y2 + y3 + 10(1− x2) + 10(1− x3) ≤ 40, (3.16)

and it is facet-defining for conv(P) as will be shown in Section 3.3. Now, consider the

relaxation obtained by merging the nodes in [1, 4] into a single node with incoming arcs

{1, 2, 3, 4} and demand d = 40. As a result, the flow cover inequalities can be applied

to the merged node set. The excess value for the set S+ = {2, 3} is λ = c(S+)−d = 25.

Then, the resulting flow cover inequality (3.15) is

y2 + y3 + 10(1− x2) + 5(1− x3) ≤ 40,

and it is weaker than the path cover inequality (3.16).

Coefficients of inequality (3.4): Path pack inequalities

Let S+ and L− be the objective sets in (F3.2) and let S− ⊆ E− \ L−. We select the

coefficient sets in (3.5) as K+ = E+ and K− = E− \ (S− ∪ L−) to obtain the explicit

form of inequality (3.4). As a result, the set definition of S− = E− \ (K− ∪ L−) is

conserved.

Definition Let the coefficients in (3.5) be selected as above and (S+, L−) be the

objective set. The set (S+, S−) is called a path pack for node set N if

v(S+, L−) = c(S+).

47

For inequality (3.4), we assume that the set (S+, S−) is a path pack for N and L− = ∅
for simplicity. Now, we need to compute the values of v(C), v(E), v(E \ {t}) for t ∈ C

and v(C ∪{t}) for t ∈ E \C. The value of v(C ∪{t}) can be obtained using the values

mu
j and md

j that are given by recursions (4.3)–(4.6). Then,

v(C ∪ {t}) = min{mu
j + ct,m

d
j}, t ∈ E+

j \ S+
j , j ∈ N

and

v(C ∪ {t}) = min{mu
j ,m

d
j + ct}, t ∈ S−

j , j ∈ N.

Then, using Observation 2, we compute the marginal values

ρt(C) = min{ct, µj}, t ∈ E+
j \ S+

j , j ∈ N

and

ρt(C) = (ct − µj)
+, t ∈ S−

j , j ∈ N

where

µj = (md
j −mu

j)
+, j ∈ N.

Next, we compute the values v(E) and v(E \ {t}) for t ∈ C. The feasibility of

(F3.1) implies that (E+, ∅) is a path cover for N .

By Assumption (A.1), (E+\{t}, ∅) is also a path cover for N for each t ∈ S+. Then

v(E) = v(E \ {t}) = d1n and

ρt(E \ {t}) = 0, t ∈ S+ ∪ L−.

Then, inequality (3.4) can be explicitly written as

y(S+) +
∑
j∈N

∑
t∈E+

j \S+
j

(yt−min{ct, µj}xt) ≤c(S+)

+ y(E− \ S−)−
∑
j∈N

∑
t∈S−

j

(ct − µj)
+(1− xt). (3.17)

We refer to inequalities (3.17) as path pack inequalities.

Remark 3.4. Observe that for a path consisting of a single nodeN = {j} with demand

d := dj > 0, the path pack inequalities (3.17), reduce to the flow pack inequalities

(Atamtürk, 2001). Let (S+, S−) be a flow pack and µ := d − c(S+) + c(S−) > 0.

Moreover, the maximum flow that can be sent through S+ for demand d and arcs in

S− is c(S+). Then, the value function v(S+) = c(S+) and the resulting path pack

inequality

48

y(S+) +
∑

t∈E+\S+

(yt −min{ct, µ}xt) ≤ c(S+)

+ y(E− \ S−)−
∑
t∈S−

(ct − µ)+(1− xt) (3.18)

is equivalent to the flow pack inequality.

Proposition 3.5. Let (S+, S−) be a path pack for the node set N . The path pack

inequality for N is at least as strong as the flow pack inequality for the single node

relaxation obtained by merging the nodes in N .

Proof. The proof is similar to that of Proposition 3.4. Flow pack and path pack

inequalities only differ in the coefficients of variables xt for t ∈ E+ \ S+ and t ∈ S−.

Therefore, we compare the values µj, j ∈ N of path pack inequalities (3.17) to the

value µ of flow pack inequalities (3.18) and show that µj ≤ µ for all j ∈ N . For the

single node relaxation, the values of the minimum cuts that pass above and below the

merged node are m̄u = c(S+) and m̄d = d1n + c(S−), respectively. The recursions in

(4.3)–(4.6) imply that

mu
j = αu

j + βu
j − c(S+

j) ≤ c(S+) = m̄u

and

md
j = αd

j + βd
j − dj − c(S−

j) ≤ d1n + c(S−) = m̄d.

The coefficient for flow pack inequality is µ = (m̄d−m̄u)+ and for path pack inequality

µj = (md
j −mu

j)
+. Since (S+, S−) is a path pack, the minimum cut passes above all

nodes in N and mu
j = c(S+) for all j ∈ N . As a result, mu

j = m̄u for all j ∈ N and

md
j ≤ m̄d. Then, observe that the values

µj ≤ µ, j ∈ N.

Example 1 (continued). Recall the lot-sizing instance with backlogging given in Figure

3.3. Let the node set N = [1, 4] with E− = ∅ and S+ = {3}. Then, mu
1 = 30, md

1 = 40,

mu
2 = 30, md

2 = 40, mu
3 = 30, md

3 = 30, mu
4 = 30, md

4 = 30, leading to µ1 = 10,

µ2 = 10, µ3 = 0 and µ4 = 0. Moreover, the maximum flow values are v(C) = 30,

v(C ∪ {1}) = 40, v(C ∪ {2}) = 40, v(C ∪ {4}) = 30, v(E) = 40, and v(E \ {3}) = 40.

Then the resulting path pack inequality (3.17) is

y1 + y2 + y3 + y4 ≤ 30 + 10x1 + 10x2 (3.19)

and it is facet-defining for conv(P) as will be shown in Section 3.3. Now, suppose

that the nodes in [1, 4] are merged into a single node with incoming arcs {1, 2, 3, 4}

49

and demand d = 40. For the same set S+, we get µ = 40 − 30 = 10. Then, the

corresponding flow pack inequality (3.18) is

y1 + y2 + y3 + y4 ≤ 30 + 10x1 + 10x2 + 10x4,

which is weaker than the path pack inequality (3.19).

Proposition 3.6. If |E+ \ S+| ≤ 1 and S− = ∅, then inequalities (3.14) and (3.17)

are equivalent.

Proof. If E+\S+ = ∅ and S− = ∅, then it is easy to see that the coefficients of inequality

(3.17) are the same as (3.14). Moreover, if |E+ \ S+| = 1 (and wlog E+ \ S+ = {j}),
then the resulting inequality (3.17) is

y(E+)− y(E−) ≤ v(C) + ρj(C)xj

= v(C) +
(
v(C ∪ {j})− v(C)

)
xj

= v(C ∪ {j})− ρj(C)(1− xj),

which is equivalent to path cover inequality (3.14) with the objective set (E+, ∅).

3.3 The strength of the path cover and pack in-

equalities

The capacities of the forward and the backward path arcs play an important role in

finding the coefficients of the path cover and pack inequalities (3.14) and (3.17). Recall

that K+ and K− are the coefficient sets in (3.5), (S+, L−) is the objective set for (F3.2)

and S− = E− \ (K− ∪ L−).

Definition A node j ∈ N is called backward independent for set (S+, S−) if

αu
j = αd

j−1 + uj−1 + c(S+
j),

or

αd
j = αu

j−1 + bj−1 + dj + c(S−
j).

Definition A node j ∈ N is called forward independent for set (S+, S−) if

βu
j = βd

j+1 + bj + c(S+
j),

or

βd
j = βu

j+1 + uj + dj + c(S−
j).

50

Intuitively, backward independence of node j ∈ N implies that the minimum cut

either passes through the forward path arc (j− 1, j) or through the backward path arc

(j, j − 1). Similarly, forward independence of node j ∈ N implies that the minimum

cut either passes through the forward path arc (j, j + 1) or through the backward

path arc (j + 1, j). In Lemmas 3.1 and 3.2 below, we further explain how forward

and backward independence affect the coefficients of path cover and pack inequalities.

First, let S+
jk = ∪k

i=jS
+
i , S

−
jk = ∪k

i=jS
−
i and L−

jk = ∪k
i=jL

−
i if j ≤ k, and ∅ otherwise.

Lemma 3.1. If a node j ∈ N is backward independent for set (S+, S−), then the

values λj and µj do not depend on the sets S+
1j−1, S

−
1j−1 and the value d1j−1.

Proof. If a node j is backward independent, then either αu
j = αd

j−1 + uj−1 + c(S+
j) or

αd
j = αu

j−1 + bj−1 + dj + c(S−
j). If α

u
j = αd

j−1 + uj−1 + c(S+
j), then the equality in (4.3)

implies αd
j−1+uj−1 ≤ αu

j−1. As a result, the equality in (4.4) gives αd
j = αd

j−1+dj+c(S
−
j).

Following the definitions in (4.7)–(4.8), the difference

wj := mu
j −md

j

is βu
j − βd

j + uj−1 which only depends on sets S+
k and S−

k for k ∈ [j, n], the value djn
and the capacity of the forward path arc (j − 1, j).

If αd
j = αu

j−1+bj−1+dj+c(S
−
j), then the equality in (4.4) implies αu

j−1+bj−1 ≤ αd
j−1.

As a result, the equality in (4.3) gives αu
j = αu

j−1 + c(S+
j). Then, the difference

wj = βu
j −βd

j − bj−1 which only depends on sets S+
k and S−

k for k ∈ [j, n], the value djn
and the capacity of the backward path arc (j, j − 1).

Since the values λj and µj are defined as (wj)
+ and (−wj)

+ respectively, the result

follows.

Remark 3.5. Let wj := mu
j −md

j . If a node j ∈ N is backward independent for a set

(S+, S−), then we observe the following: (1) If αu
j = αd

j−1 + uj−1 + c(S+
j), then

wj = βu
j − βd

j + uj−1,

and (2) if αd
j = αu

j−1 + bj−1 + dj + c(S−
j), then

wj = βu
j − βd

j − bj−1.

Lemma 3.2. If a node j ∈ N is forward independent for set (S+, S−), then the values

λj and µj do not depend on the sets S+
j+1n, S

−
j+1n and the value dj+1n.

Proof. The forward independence implies either βu
j = βd

j+1 + bj + c(S+
j) and βd

j =

βd
j+1 + dj + c(S−

j) or β
u
j = βu

j+1 + c(S+
j) and β

d
j = βu

j+1 + uj + dj + c(S−
j). Then, the

difference wj = mu
j −md

j is either αu
j + αd

j + bj or α
u
j + αd

j − uj and in both cases, it is

independent of the sets S+
k , S

−
k for k ∈ [1, j − 1] and the value d1j−1.

51

Remark 3.6. Let wj := mu
j −md

j . If a node j ∈ N is forward independent for a set

(S+, S−), then we observe the following: (1) If βu
j = βd

j+1 + bj + c(S+
j), then

wj = αu
j − αd

j + bj,

and (2) if βd
j = βu

j+1 + uj + dj + c(S−
j), then

wj = αu
j − αd

j − uj.

Corollary 3.7. If a node j ∈ N is backward independent for set (S+, S−), then the

values λk and µk for k ∈ [j, n] are also independent of the sets S+
1j−1, S

−
1j−1 and the

value d1j−1. Similarly, if a node j ∈ N is forward independent for set (S+, S−), then

the values λk and µk for k ∈ [1, j] are also independent of the sets S+
j+1n, S

−
j+1n and

the value dj+1n.

Proof. The proof follows from recursions in (4.3)–(4.6). If a node j is backward in-

dependent, we write αu
j+1 and αd

j+1 in terms of αu
j−1 and αd

j−1 and observe that the

difference wj+1 = mu
j+1 −md

j+1 does not depend on αu
j−1 nor αd

j−1 which implies inde-

pendence of sets S+
1j−1, S

−
1j−1 and the value d1n. We can repeat the same argument for

wj, j ∈ [j + 2, n] to show independence.

We show the same result for forward independence by writing βu
j−1 and βd

j−1 in

terms of βu
j+1 and βd

j+1, we observe that wj does not depend on βu
j+1 nor βd

j+1. Then,

it is clear that wj−1 is also independent of the sets S+
j+1n, S

−
j+1n and the value dj+1n.

We can repeat the same argument for wj, j ∈ [1, j − 1] to show independence.

Proving the necessary facet conditions frequently requires a partition of the node set

N into two disjoint sets. Suppose, N is partitioned into N1 = [1, j − 1] and N2 = [j, n]

for some j ∈ N . Let EN1 and EN2 be the set of non-path arcs associated with node sets

N1 and N2. We consider the forward and backward path arcs (j − 1, j) and (j, j − 1)

to be in the set of non-path arcs EN1 and EN2 since the node j − 1 ∈ Ni and j /∈ Ni

for i = 1, 2. In particular, E+
N1 := (j, j − 1) ∪ E+

1j−1, E
−
N1 := (j − 1, j) ∪ E−

1j−1 and

E+
N2 := (j−1, j)∪E+

jn, E
−
N2 := (j, j−1)∪E−

jn, where E
+
kℓ and E

−
kℓ are defined as ∪ℓ

i=kE
+
i

and ∪ℓ
i=kE

−
i if k ≤ ℓ respectively, and as the empty set otherwise. Since the path arcs

for N do not have associated fixed-charge variables, one can assume that there exists

auxiliary binary variables x̃k = 1 for k ∈ {(j− 1, j), (j, j− 1)}. Moreover, we partition

the sets S+, S− and L− into S+
N1 ⊇ S+

1j−1, S
−
N1 ⊇ S−

1j−1, L
−
N1 := L−

1j−1 and S+
N2 ⊇ S+

jn,

S−
N2 ⊇ S−

jn, L
−
N2 := L−

jn. Then, let v1 and v2 be the value functions defined in (F3.2) for

the node sets N1 and N2 and the objective sets (S+
N1, L

−
N1) and (S+

N2, L
−
N2). Moreover,

let αu
j , α

d
j , β

u
j and βd

j be defined for j ∈ N in recursions (4.3)–(4.6) for the set (S+, S−)

and recall that S− = E− \ (K− ∪ L−).

Lemma 3.3. Let (S+, L−) be the objective set for the node set for N = [1, n]. If

52

αu
j = αd

j−1 + uj−1 + c(S+
j) or β

u
j−1 = βd

j + bj−1 + c(S+
j−1), then

v(S+, L−) = v1(S
+
N1, L

−
N1) + v2(S

+
N2, L

−
N2),

where N1 = [1, j − 1], N2 = [j, n] and the arc sets are S+
N1 = (j, j − 1) ∪ S+

1j−1,

S+
N2 = (j − 1, j) ∪ S+

jn, S
−
N1 = S−

1j−1, S
−
N2 = S−

jn.

Proof. See Appendix D.1.

Lemma 3.4. Let (S+, L−) be the objective set for the node set for N = [1, n]. If

αd
j = αu

j−1 + bj−1 + dj−1 + c(S−
j) or β

d
j−1 = βu

j + uj−1 + dj−1 + c(S−
j−1), then

v(S+, L−) = v1(S
+
N1, L

−
N1) + v2(S

+
N2, L

−
N2),

where N1 = [1, j − 1], N2 = [j, n] and the arc sets are S+
N1 = S+

1j−1, S
+
N2 = S+

jn,

S−
N1 = (j − 1, j) ∪ S−

1j−1, S
−
N2 = (j, j − 1) ∪ S−

jn.

Proof. See Appendix D.2.

Lemma 3.5. Let (S+, L−) be the objective set for the node set for N = [1, n]. If

αu
j = αd

j−1 + uj−1 + c(S+
j) and β

d
j−1 = βu

j + uj−1 + dj−1 + c(S−
j−1), then

v(S+, L−) = v1(S
+
N1, L

−
N1) + v2(S

+
N2, L

−
N2),

where N1 = [1, j−1], N2 = [j, n] and the arc sets are S+
N1 = S+

1j−1, S
+
N2 = (j−1, j)∪S+

jn,

S−
N1 = S−

1j−1, S
−
N2 = (j, j − 1) ∪ S−

jn.

Proof. See Appendix D.3.

Lemma 3.6. Let (S+, L−) be the objective set for the node set for N = [1, n]. If

αd
j = αu

j−1 + bj−1 + dj + c(S−
j) and β

u
j−1 = βd

j + bj−1 + c(S+
j−1), then

v(S+, L−) = v1(S
+
N1, L

−
N1) + v2(S

+
N2, L

−
N2),

where N1 = [1, j−1], N2 = [j, n] and the arc sets are S+
N1 = (j, j−1)∪S+

1j−1, S
+
N2 = S+

jn,

S−
N1 = (j − 1, j) ∪ S−

1j−1, S
−
N2 = S−

jn.

Proof. See Appendix D.4.

In the remainder of this section, we give necessary and sufficient conditions for path

cover and pack inequalities (3.14) and (3.17) to be facet-defining for the convex hull of

P .

Theorem 3.8. Let N = [1, n], and dj ≥ 0 for all j ∈ N . If L− = ∅ and the set

(S+, S−) is a path cover for N , then the following conditions are necessary for path

cover inequality (3.14) to be facet-defining for conv(P):

53

(i) ρt(C \ {t}) < ct, for all t ∈ C,

(ii) maxt∈S+ ρt(C \ {t}) > 0,

(iii) if a node j ∈ [2, n] is forward independent for set (S+, S−), then node j−1 is not

backward independent for set (S+, S−),

(iv) if a node j ∈ [1, n− 1] is backward independent for set (S+, S−), then node j +1

is not forward independent for set (S+, S−),

(v) if maxt∈S+
i
(ct − λi)

+ = 0 for i = p, . . . , n for some p ∈ [2, n], then the node p− 1

is not forward independent for (S+, S−),

(vi) if maxt∈S+
i
(ct − λi)

+ = 0 for i = 1, . . . , q for some q ∈ [1, n − 1], then the node

q + 1 is not backward independent for (S+, S−).

Proof. (i) If for some t′ ∈ S+, ρt′(C \ {t′}) ≥ ct′ , then the path cover inequality with

the objective set S+ \ {t′} summed with yt′ ≤ ct′xt′ results in an inequality at

least as strong. Rewriting the path cover inequality using the objective set S+,

we obtain∑
t∈S+\{t′}

(yt + ρt(S
+ \ {t})(1− xt)) + yt′ ≤ v(S+)− ρt′(S

+ \ {t′})(1− xt′) + y(E− \ S−)

= v(S+ \ {t′}) + ρt′(S
+ \ {t′})xt′ + y(E− \ S−).

Now, consider summing the path cover inequality for the objective set S+ \ {t′}∑
t∈S+\{t′}

(yt + ρt(S
+ \ {t, t′})(1− xt)) ≤ v(S \ {t′}) + y(E− \ S−),

and yt′ ≤ ct′xt′ . The resulting inequality dominates inequality (3.3) because

ρt(S
+ \ {t}) ≤ ρt(S

+ \ {t, t′}), from the submodularity of the set function v. If

the assumption of L− = ∅ is dropped, this condition extends for arcs t ∈ L− as

ρt(C \ {t}) > −ct with a similar proof.

(ii) If L− = ∅ and maxt∈S+ ρt(C \ {t}) = 0, then summing flow balance equalities

(3.1b) for all nodes j ∈ N gives an inequality at least as strong.

(iii) Suppose a node j is forward independent for (S+, S−) and the node j − 1 is

backward independent for (S+, S−) for some j ∈ [2, n]. Lemmas 3.3–3.6 show

that the nodes N and the arcs C = S+∪L− can be partitioned into N1 = [1, j−1],

N2 = [j, n] and C1, C2 such that the sum of the minimum cut values for N1, N2

is equal to the minimum cut for N . From Remarks 3.5 and 3.6 and Corollary

3.7, it is easy to see that λi for i ∈ N will not change by the partition procedures

54

described in Lemmas 3.3–3.6. We examine the four cases for node j − 1 to be

forward independent and node j to be backward independent for the set (S+, S−).

(a) Suppose αu
j = αd

j−1+uj−1+c(S
+
j) and β

u
j−1 = βd

j +bj−1+c(S
+
j−1). Consider the

partition procedure described in Lemma 3.3, where S+
N1 = (j, j − 1) ∪ S+

1j−1,

S+
N2 = (j − 1, j) ∪ S+

jn, S
−
N1 = S−

1j−1, S
−
N2 = S−

jn. Then, the path cover

inequalities for nodes N1 and N2

rj−1 +

j−1∑
i=1

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v1(S

+
N1) +

j−1∑
i=1

y(E−
i \ S−

i) + ij−1

and

ij−1 +
n∑

i=j

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v2(S

+
N2) +

n∑
i=j

y(E−
i \ S−

i) + rj−1

summed gives

n∑
i=1

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v(S+) + y(E− \ S−),

which is the path cover inequality for N with the objective set S+.

(b) Suppose αd
j = αu

j−1+bj−1+dj−1+c(S
−
j) and β

d
j−1 = βu

j +uj−1+dj−1+c(S
−
j−1).

Consider the partition described in Lemma 3.4, where S+
N1 = S+

1j−1, S
+
N2 =

S+
jn, S

−
N1 = (j−1, j)∪S−

1j−1, S
−
N2 = (j, j−1)∪S−

jn. The path cover inequalities

for nodes N1 and N2

j−1∑
i=1

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v1(S

+
N1) +

j−1∑
i=1

y(E−
i \ S−

i)

and

n∑
i=j

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v2(S

+
N2) +

n∑
i=j

y(E−
i \ S−

i).

summed gives the path cover inequality for nodes N and arcs C.

(c) Suppose αu
j = αd

j−1 + uj−1 + c(S+
j) and βd

j−1 = βu
j + uj−1 + dj−1 + c(S−

j−1).

Consider the partition described in Lemma 3.5, where S+
N1 = S+

1j−1, S
+
N2 =

(j−1, j)∪S+
jn, S

−
N1 = S−

1j−1, S
−
N2 = (j, j−1)∪S−

jn. The path cover inequalities

55

for nodes N1 and N2

j−1∑
i=1

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v1(S

+
N1) +

j−1∑
i=1

y(E−
i \ S−

i) + ij−1

and

ij−1 +
n∑

i=j

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v2(S

+
N2) +

n∑
i=j

y(E−
i \ S−

i).

summed gives the path cover inequality for nodes N and arcs C.

(d) Suppose αd
j = αu

j−1 + bj−1 + dj + c(S−
j) and βu

j−1 = βd
j + bj−1 + c(S+

j−1).

Consider the partition described in Lemma 3.6, where S+
N1 = (j, j−1)∪S+

1j−1,

S+
N2 = S+

jn, S
−
N1 = (j − 1, j) ∪ S−

1j−1, S
−
N2 = S−

jn. The path cover inequalities

for nodes N1 and N2

rj−1 +

j−1∑
i=1

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v1(S

+
N1) +

j−1∑
i=1

y(E−
i \ S−

i)

and

n∑
i=j

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v2(S

+
N2) +

n∑
i=j

y(E−
i \ S−

i) + rj−1.

summed gives the path cover inequality for nodes N and arcs C.

(iv) The same argument for condition (iii) above also proves the desired result here.

(v) Suppose (ct − λi)
+ = 0 for all t ∈ S+

i and i ∈ [p, n] and the node p− 1 is forward

independent for some p ∈ [2, n]. Then, we partition the node set N = [1, n] into

N1 = [1, p−1] and N2 = [p, n]. We follow Lemma 3.3 if βu
p−1 = βd

p +bp−1+c(S
+
p−1)

and follow Lemma 3.4 if βd
p−1 = βu

p +up−1+dp−1+c(S
−
p−1) to define S+

N1, S
−
N1, S

+
N2

and S−
N2. Remark 3.6 along with the partition procedure described in Lemma 3.3

or 3.4 implies that λi will remain unchanged for i ∈ N1. The path cover inequality

for nodes N and arcs C is

y(S+) +

p−1∑
i=1

∑
t∈S+

i

(ct − λi)
+(1− xt) ≤ v(S+) + y(E− \ S−).

If βu
p−1 = βd

j + bp−1 + c(S+
p−1), then the path cover inequality for nodes N1 and

56

arcs S+
N1, S

−
N1 described in Lemma 3.3 is

rp−1 +

p−1∑
i=1

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ v(S+

N1) +

p−1∑
i=1

y(E−
i \ S−

i) + ip−1.

Moreover, let m̄u
p and m̄d

p be the values of minimum cut that goes above and

below node p for the node set N2 and arcs S+
N2, S

−
N2 and observe that

m̄u
p = βu

p + up−1 and m̄d
p = βd

p .

Then, comparing the difference λ̄p := (m̄u
p − m̄d

p)
+ = (βu

p − βd
p + up−1)

+ to λp =

(mu
p −md

p)
+ = (βu

p −βd
p +α

u
p −αd

p+c(S
+
p)−dp−c(S−

p))
+, we observe that λ̄p ≥ λp

since αu
p −αd

p + c(S+
p)− dp− c(S−

p) ≤ up−1 from (4.3)–(4.4). Since (ct−λp)
+ = 0,

then (ct − λ̄p)
+ = 0 as well. Using the same technique, it is easy to observe that

λ̄i ≥ λi for i ∈ [p + 1, n] as well. As a result, the path cover inequality for N2

with sets S+
N2, S

−
N2 is

ip−1 +
n∑

i=p

y(S+
i) ≤ v(S+

N2) +
n∑

i=p

y(E−
i \ S−

i) + rp−1.

The path cover inequalities for N1, S
+
N1, S

−
N1 and for N2, S

+
N2, S

−
N2 summed gives

the path cover inequality for N , S+, S−.

Similarly, if βd
p−1 = βu

j + up−1 + dp−1 + c(S−
p−1), the proof follows very similarly

to the previous argument using Lemma 3.4. Letting m̄u
p and m̄d

p be the values

of minimum cut that goes above and below node p for the node set N2 and arcs

S+
N2, S

−
N2, we get

m̄u
p = βu

p and m̄d
p + bp−1 = βd

p

under this case. Now, notice that αu
p − αd

p + c(S+
p) − dp − c(S−

p) ≥ −bp−1 from

(4.3)–(4.4), which leads to λ̄p ≥ λp. Then the proof follows same as above.

(vi) The proof is similar to that of the necessary condition (v). We use Lemmas 3.5

and 3.6 and Remark 3.6 to partition the node setN and arcs S+, S− into node sets

N1 = [1, q] and N2 = [q+1, n] for q ∈ [2, n] and arcs S+
N1, S

−
N1 and S

+
N2, S

−
N2. Next,

we check the values of minimum cut that goes above and below node q for the node

setN1 and arcs S+
N1, S

−
N1. Then, observing−uq ≤ βu

q −αd
q+c(S

+
q)−dq−c(S−

q) ≤ bq
from (4.5)–(4.6), it is easy to show that the coefficients xt for t ∈ S+

N1 are equal

to zero in the path cover inequality for node set N1. As a result, the path cover

inequalities for N1, S
+
N1, S

−
N1 and for N2, S

+
N2, S

−
N2 summed gives the path cover

inequality for N , S+, S−.

57

Remark 3.7. If the node set N consists of a single node, then the conditions (i) and

(ii) of Theorem 3.8 reduce to the sufficient facet conditions of flow cover inequalities

(Padberg et al., 1985, Theorem 4), (van Roy and Wolsey, 1986, Theorem 6). In this

setting, conditions (iii)–(vi) are no longer relevant.

Theorem 3.9. Let N = [1, n], E− = ∅, dj > 0 and |E+
j | = 1, for all j ∈ N and let the

set S+ be a path cover. The necessary conditions in Theorem 3.8 along with

(i) (ct − λj)
+ > 0 for all t ∈ S+

j , j ∈ N ,

(ii) (ct − λj)
+ < c(E+ \ S+) for all t ∈ S+

j , j ∈ N

are sufficient for path cover inequality (3.14) to be facet-defining for conv(P).

Proof. Recall that dim
(
conv(P)

)
= 2|E|+n−2. In this proof, we provide 2|E|+n−2

affinely independent points that lie on the face F

F =

{
(x,y, i, r) ∈ P : y(S+) +

∑
t∈S+

(ct − λj)
+(1− xt) = d1n

}
.

First, we provide Algorithm 1 which outputs an initial feasible solution (x̄, ȳ, ī, r̄),

where all the arcs in S+ have non-zero flow. Let d̄j be the effective demand on node j,

that is, the sum of dj and the minimal amount of flow that needs to be sent from the

arcs in S+
j to ensure v(S+) = d1n. In Algorithm 1, we perform a backward pass and a

forward pass on the nodes in N . This procedure is carried out to obtain the minimal

amounts of flow on the forward and backward path arcs to satisfy the demands. For

each node j ∈ N , these minimal outgoing flow values added to the demand dj give the

effective demand d̄j.

Algorithm 1 ensures that at most one of the path arcs (j − 1, j) and (j, j − 1) have

non-zero flow for all j ∈ [2, n]. Moreover, note that sufficient condition (i) ensures

that all the arcs in S+ have nonzero flow. Moreover, for at least one node i ∈ N , it

is guaranteed that c(S+
i) > d̄i. Otherwise, ρt(C) = ct for all t ∈ S+ which contradicts

the necessary condition (i). Necessary conditions (iii) and (iv) ensure that īj < uj and

r̄j < bj for all j = 1, . . . , n− 1. Let

e := argmax
i∈N

{c(S+
i)− d̄i}

be the node with the largest excess capacity. Also let 1j be the unit vector with 1 at

position j.

Next, we give 2|S+| affinely independent points represented by w̄t = (x̄t, ȳt, īt, r̄t)

and w̃t = (x̃t, ỹt, ĩt, r̃t) for t ∈ S+:

(i) Select w̄e = (x̄, ȳ, ī, r̄) given by Algorithm 1. Let ε > 0 be a sufficiently small

value. We define w̄t for e ̸= t ∈ S+ as ȳt = ȳe + ε1e − ε1t, x̄
t = x̄e. If t < e, then

īt = īe and r̄tj = r̄ej for j < t and for t ≥ e, r̄tj = r̄ej + ε for t ≤ j < e.

58

Algorithm 1

Initialization: Let d̄j = dj for j ∈ N
for j = (n− 1) to 1 do

Let ∆ = min
{
uj,

(
d̄j+1 − c(S+

j+1)
)+}

,

d̄j = d̄j +∆, d̄j+1 = d̄j+1 −∆,
īj = ∆.

end for
for j = 2 to n do
Let ∆ =

(
d̄j−1 − c(S+

j−1)
)+
,

d̄j = d̄j +∆, d̄j−1 −∆
r̄j−1 = ∆−min{∆, īj−1}
īj−1 = īj−1 −min{∆, īj−1}

end for
ȳj = d̄j, for all j ∈ S+.
x̄j = 1 if j ∈ S+, 0 otherwise.
ȳj = x̄j = 0, for all j ∈ E−.

(ii) In this class of affinely independent solutions, we close the arcs in S+ one at a

time and open all the arcs in E+ \ S+: x̃t = x̄ − 1t +
∑

j∈E+\S+ 1j. Next, we

send an additional ȳt − (ct − λj)
+ amount of flow from the arcs in S+ \ {t}. This

is a feasible operation because v(C \ {t}) = d1n − (ct − λj)
+. Let (y∗, i∗, r∗) be

the optimal solution of (F3.2) corresponding to v(S+ \ {t}). Then let, ỹtj = y∗j
for j ∈ S+ \ {t}. Since v(C \ {t}) < d1n, additional flow must be sent through

nodes in E+ \ S+ to satisfy flow balance equations (3.1b). This is also a feasible

operation, because of assumption (A.1). Then, the forward and backward path

flows ĩt and r̃t are calculated using the flow balance equations.

In the next set of solutions, we give 2|E+ \ S+| − 1 affinely independent points

represented by ŵt = (x̂t, ŷt, ît, r̂t) and w̌t = (x̌t, y̌t, ǐt, řt) for t ∈ E+ \ S+.

(iii) Starting with solution w̄e, we open arcs in E+ \ S+, one by one. ŷt = ȳe,

x̂t = x̄e + 1t, î
t = īe, r̂t = r̄e.

(iv) If |E+ \ S+| ≥ 2, then we can send a sufficiently small ε > 0 amount of flow

from arc t ∈ E+ \ S+ to t ̸= k ∈ E+ \ S+. Let this set of affinely independent

points be represented by w̌t for t ∈ E+ \ S+. While generating w̌t, we start with

the solution w̃e, where the non-path arc in S+
e is closed. The feasibility of this

operation is guaranteed by the sufficiency conditions (ii) and necessary conditions

(iii) and (iv).

(a) If ỹet = ct, then there exists at least one arc t ̸= m ∈ E+ \ S+ such that

0 ≤ ỹem < cm due to sufficiency assumption (ii), then for each t ∈ E+ \ S+

59

such that ỹet = ct, let y̌t = ỹe − ε1t + ε1m, x̌
t = x̃e. If t < m, then ǐt = ĩe

and řt = r̃e + ε
∑m−1

i=t 1i. If t > m, then ǐt = ĩe + ε
∑t−1

i=m 1i and řt = r̃e.

(b) If ỹet < ct and there exists at least one arc t ̸= m ∈ E+ \S+ such that ỹem = 0,

then the same point described in (a) is feasible.

(c) If ỹet < ct and there exists at least one arc t ̸= m ∈ E+ \ S+ such that

ỹem = cm, then, we send ε amount of flow from t to m, y̌t = ỹe + ε1t − ε1m,

x̌t = x̃e. If t < m, then ǐt = ĩe+ ε
∑m−1

i=t 1i and řt = r̃e. If t > m, then ǐt = ĩe

and řt = r̃e + ε
∑t−1

i=m 1i.

Finally, we give n− 1 points that perturb the flow on the forward path arcs (j, j + 1)

for j = 1, . . . , n− 1 represented by w̆j = (x̆j, y̆j, ĭj, r̆j). Let k = min{i ∈ N : S+
i ̸= ∅}

and ℓ = max{i ∈ N : S+
i ̸= ∅}. The solution given by Algorithm 1 guarantees īj < uj

and r̄j < bj for j = 1, . . . , n− 1 due to necessary conditions (iii) and (iv).

(v) For j = 1, . . . , n − 1, we send an additional ε amount of flow from the forward

path arc (j, j + 1) and the backward path arc (j + 1, j). Formally, the solution

w̆j can be obtained by: y̆j = ȳe, x̆j = x̄e, ĭj = īe + ε1j and r̆j = r̄e + ε1j.

Next, we identify conditions under which path pack inequality (3.17) is facet-

defining for conv(P).

Theorem 3.10. Let N = [1, n], dj ≥ 0 for all j ∈ N , let the set (S+, S−) be a path

pack and L− = ∅. The following conditions are necessary for path pack inequality

(3.17) to be facet-defining for conv(P):

(i) ρj(S
+) < cj, for all j ∈ E+ \ S+,

(ii) maxt∈S− ρt(C) > 0,

(iii) if a node j ∈ [2, n] is forward independent for set (S+, S−), then node j−1 is not

backward independent for set (S+, S−),

(iv) if a node j ∈ [1, n− 1] is backward independent for set (S+, S−), then node j +1

is not forward independent for set (S+, S−),

(v) if maxt∈E+
i \S+

i
ρt(C) = 0 and maxt∈S−

i
ρt(C) = 0 for i = p, . . . , n for some p ∈

[2, n], then the node p− 1 is not forward independent for (S+, S−),

(vi) if maxt∈E+
i \S+

i
ρt(C) = 0 and maxt∈S−

i
ρt(C) = 0 for i = 1, . . . , q for some q ∈

[1, n− 1], then the node q + 1 is not backward independent for (S+, S−).

60

Proof. (i) Suppose that for some k ∈ E+\S+, ρk(S
+) = ck. Then, recall the implicit

form of path pack inequality (3.17) is

y(E+ \ {k}) + yk +
∑
t∈S−

ρt(S
+)(1− xt) ≤ v(S+) +

∑
k≠t∈E+\S+

ρt(S
+)xt + ckxk + y(E− \ S−).

Now, if we select ak = 0 in (F3.2), then the coefficients of xk and yk become zero

and summing the path cover inequality

y(E+ \ {k}) +
∑
t∈S−

ρt(S
+)(1− xt) ≤ v(S+) +

∑
k ̸=t∈E+\S+

ρt(S
+)xt + y(E− \ S−).

with yk ≤ ckxk gives the first path cover inequality.

(ii) Suppose that ρj(S
+) = 0 for all j ∈ S−. Then the path pack inequality is

y(E+) ≤ v(S+) +
∑

t∈E+\S+

ρt(S
+)xt + y

(
E− \ (L− ∪ S−)

)
,

where L− = ∅. If an arc j is dropped from S− and added to L−, then v(S+) =

v(S+ ∪{j}) since ρj(S+) = 0 for j ∈ S−. Consequently, the path pack inequality

with S− = S− \ {j} and L− = {j}

y(E+) +
∑
t∈S−

ρt(S
+ ∪ {j})(1− xt) ≤ v(S+) +

∑
t∈E+\S+

ρt(S
+ ∪ {j})xt + y

(
E− \ (L− ∪ S−)

)
.

But since 0 ≤ ρt(S
+ ∪{j}) ≤ ρt(S

+) from submodularity of v and ρt(S
+) = 0 for

all t ∈ S−, we observe that the path pack inequality above reduces to

y(E+) ≤ v(S+) +
∑

t∈E+\S+

ρt(S
+ ∪ {j})xt + y

(
E− \ (L− ∪ S−)

)
and it is at least as strong as the first pack inequality for S+, S− and L− = ∅.

(iii)–(iv) We repeat the same argument of the proof of condition (iii) of Theorem 3.8.

Suppose a node j is forward independent for (S+, S−) and the node j − 1 is

backward independent for (S+, S−) for some j ∈ [2, n]. Lemmas 3.3–3.6 show

that the nodes N and the arcs C = S+∪L− can be partitioned into N1 = [1, j−1],

N2 = [j, n] and C1, C2 such that the sum of the minimum cut values for N1, N2

is equal to the minimum cut for N . From Remarks 3.5 and 3.6 and Corollary

3.7, it is easy to see that µi for i ∈ N will not change by the partition procedures

described in Lemmas 3.3–3.6. We examine the four cases for node j − 1 to be

forward independent and node j to be backward independent for the set (S+, S−).

61

For ease of notation, let

Q+
jk :=

k∑
i=j

∑
t∈E+

i \S+
i

(yt −min{µi, ct}xt)

and

Q−
jk :=

k∑
i=j

∑
t∈S−

i

(ct − µi)
+(1− xt)

for j ≤ k and j ∈ N , k ∈ N (and zero if j > k), where the values µi are the

coefficients that appear in the path pack inequality (3.17). As a result, the path

pack inequality can be written as

y(S+) +Q+
1n ≤ v(C) +Q−

1n + y(E− \ S−). (3.20)

(a) Suppose αu
j = αd

j−1+uj−1+ c(S
+
j) and β

u
j−1 = βd

j + bj−1+ c(S
+
j−1). Consider

the partition procedure described in Lemma 3.3, where S+
N1 = (j, j − 1) ∪

S+
1j−1, S

+
N2 = (j − 1, j)∪ S+

jn, S
−
N1 = S−

1j−1, S
−
N2 = S−

jn. Then, the path pack

inequalities for nodes N1 is

rj−1 + y(S+
1j−1) +Q+

1j−1 ≤ v1(C1) +Q−
1j−1 + y(E−

1j−1 \ S−
1j−1)f + ij−1.

(3.21)

Similarly, the path pack inequality for N2 is

ij−1 + y(S+
jn) +Q+

jn ≤ v2(C2) +Q−
jn + y(E−

jn \ S−
jn) + rj−1. (3.22)

Inequalities (3.21)–(3.22) summed gives the path pack inequality (3.20).

(b) Suppose αd
j = αu

j−1+bj−1+dj+c(S
−
j) and β

d
j−1 = βu

j +uj−1+dj−1+c(S
−
j−1).

Consider the partition described in Lemma 3.4, where S+
N1 = S+

1j−1, S
+
N2 =

S+
jn, S

−
N1 = (j − 1, j) ∪ S−

1j−1, S
−
N2 = (j, j − 1) ∪ S−

jn. The submodular

inequality (3.4) for nodes N1 where the objective coefficients of (F3.2) are

selected as at = 1 for t ∈ E+
1j−1, at = 0 for t = (j, j − 1), at = −1 for

t ∈ E−
N1 \ S

−
N1 and at = 0 for t ∈ S−

N1 is

y(S+
1j−1) +

∑
t∈S+

N1

kt(1− xt) +Q+
1j−1 ≤ v1(C1)−Q−

1j−1 + y(E−
1j−1 \ S−

1j−1),

(3.23)

where kt for t ∈ S+
N1 are some nonnegative coefficients. Similarly, the sub-

modular inequality (3.4) for nodes N2, where the objective coefficients of

(F3.2) are selected as at = 1 for t ∈ E+
jn, at = 0 for t = (j − 1, j), at = −1

62

for t ∈ E−
N2 \ S

−
N2 and at = 0 for t ∈ S−

N2 is

y(S+
jn) +

∑
t∈S+

N2

kt(1− xt) +Q+
jn ≤ v2(C2)−Q−

jn + y(E−
jn \ S−

jn), (3.24)

where kt for t ∈ S+
N2 are some nonnegative coefficients. The sum of inequal-

ities (3.23)–(3.24) is at least as strong as the path pack inequality (3.20).

(c) Suppose αu
j = αd

j−1 + uj−1 + c(S+
j) and β

d
j−1 = βu

j + uj−1 + dj−1 + c(S−
j−1).

Consider the partition described in Lemma 3.5, where S+
N1 = S+

1j−1, S
+
N2 =

(j − 1, j) ∪ S+
jn, S

−
N1 = S−

1j−1, S
−
N2 = (j, j − 1) ∪ S−

jn. The submodular

inequality (3.4) for nodes N1 where the objective coefficients of (F3.2) are

selected as at = 1 for t ∈ E+
1j−1, at = 0 for t = (j, j − 1), at = −1 for

t ∈ E−
N1 \ S

−
N1 and at = 0 for t ∈ S−

N1 is

y(S+
1j−1) +

∑
t∈S+

N1

kt(1− xt) +Q+
1j−1 ≤ v1(C1)−Q−

1j−1 + y(E−
1j−1 \ S−

1j−1) + ij−1,

(3.25)

where kt for t ∈ S+
N1 are some nonnegative coefficients. The path pack

inequality for N2 is

ij−1 + y(S+
jn) +Q+

jn ≤ v2(C2) +Q−
jn + y(E−

jn \ S−
jn). (3.26)

The sum of inequalities (3.25)–(3.26) is at least as strong as inequality (3.20).

(d) Suppose αd
j = αu

j−1 + bj−1 + dj + c(S−
j) and βu

j−1 = βd
j + bj−1 + c(S+

j−1).

Consider the partition described in Lemma 3.6, where S+
N1 = (j, j−1)∪S+

1j−1,

S+
N2 = S+

jn, S
−
N1 = (j − 1, j) ∪ S−

1j−1, S
−
N2 = S−

jn. The path pack inequalities

for nodes N1 is

rj−1 + y(S+
1j−1) +Q+

1j−1 ≤ v1(C1) +Q−
1j−1 + y(E−

1j−1 \ S−
1j−1). (3.27)

The submodular inequality (3.4) for nodes N2 where the objective coeffi-

cients of (F3.2) are selected as at = 1 for t ∈ E+
jn, at = 0 for t = (j − 1, j),

at = −1 for t ∈ E−
N2 \ S

−
N2 and at = 0 for t ∈ S−

N2 is

y(S+
jn) +

∑
t∈S+

N2

kt(1− xt) +Q+
jn ≤ v2(C2)−Q−

jn + y(E−
jn \ S−

jn) + rj−1,

(3.28)

where kt for t ∈ S+
N2 are some nonnegative coefficients. The sum of inequal-

ities (3.27)–(3.28) is at least as strong as the path pack inequality (3.20).

63

(v) Suppose (ct − µi)
+ = 0 for all t ∈ S−

i and i ∈ [p, n] and the node p− 1 is forward

independent. Then, we partition the node set N = [1, n] into N1 = [1, p − 1]

and N2 = [p, n]. We follow Lemma 3.3 if βu
p−1 = βd

p + bp−1 + c(S+
p−1) and follow

Lemma 3.4 if βd
p−1 = βu

p + up−1 + dp−1 + c(S−
p−1) to define S+

N1, S
−
N1, S

+
N2 and

S−
N2. Remark 3.6 along with the partition procedure described in Lemma 3.3 or

3.4 implies that µi will remain unchanged for i ∈ N1.

If βu
p−1 = βd

j + bp−1 + c(S+
p−1), then the coefficients µi of the path pack inequality

for nodes N1 and arcs S+
N1, S

−
N1 described in Lemma 3.3 is the same as the

coefficients of the path pack inequality for nodes N and arcs S+, S−. Moreover,

let m̄u
p and m̄d

p be the values of minimum cut that goes above and below node p

for the node set N2 and arcs S+
N2, S

−
N2 and observe that

m̄u
p = βu

p + up−1 and m̄d
p = βd

p .

Then, comparing the difference µ̄p := (m̄d
p − m̄u

p)
+ = (βd

p − βu
p − up−1)

+ to

µp = (md
p − mu

p)
+ = (βd

p − βu
p + αd

p − αu
p − c(S+

p) + dp + c(S−
p))

+, we observe

that µ̄p ≥ µp since α
d
p −αu

p − c(S+
p)+ dp+ c(S

−
p) ≥ −up−1 from (4.3)–(4.4). Since

(ct − µp)
+ = 0, then (ct − µ̄p)

+ = 0 as well. Using the same technique, it is easy

to observe that µ̄i ≥ µi for i ∈ [p + 1, n] as well. As a result, the path pack

inequality for N2 with sets S+
N2, S

−
N2, summed with the path pack inequality for

nodes N1 and arcs S+
N1, S

−
N1 give the path pack inequality for nodes N and arc

S+, S−.

Similarly, if βd
p−1 = βu

j + up−1 + dp−1 + c(S−
p−1), the proof follows very similarly

to the previous argument using Lemma 3.4. Letting m̄u
p and m̄d

p be the values

of minimum cut that goes above and below node p for the node set N2 and arcs

S+
N2, S

−
N2, we get

m̄u
p = βu

p and m̄d
p + bp−1 = βd

p

under this case. Now, notice that αd
p − αu

p − c(S+
p) + dp + c(S−

p) ≤ bp−1 from

(4.3)–(4.4), which leads to µ̄p ≥ µp. Then the proof follows same as above.

(vi) The proof is similar to that of the necessary condition (v) above. We use Lemmas

3.5–3.6 and Remark 3.6 to partition the node setN and arcs S+, S− into node sets

N1 = [1, q] and N2 = [q + 1, n] and arcs S+
N1, S

−
N1 and S+

N2, S
−
N2. Next, we check

the values of minimum cut that goes above and below node q for the node set N1

and arcs S+
N1, S

−
N1. Then, observing −bq ≤ βd

q − αu
q − c(S+

q) + dq + c(S−
q) ≤ uq

from (4.5)–(4.6), it is easy to see that the coefficients of xt for t ∈ S−
N1 and

t ∈ E+
N1 \S

+
N1 are equal to zero in the path pack inequality for node set N1. As a

result, the path pack inequalities for N1, S
+
N1, S

−
N1 and for N2, S

+
N2, S

−
N2 summed

gives the path pack inequality for N , S+, S−.

64

Remark 3.8. If the node set N consists of a single node, then the conditions (i) and

(ii) of Theorem 3.10 reduce to the necessary and sufficient facet conditions of flow pack

inequalities (Atamtürk, 2001, Proposition 1). In this setting, conditions (iii)–(vi) are

no longer relevant.

Theorem 3.11. Let N = [1, n], E− = ∅, dj > 0 and |E+
j | = 1, for all j ∈ N and let

the objective set S+ be a path pack for N . The necessary conditions in Theorem 3.10

along with

(i) for each j ∈ E+ \ S+, either S+ ∪ {j} is a path cover for N or ρj(S
+) = 0,

(ii) for each t ∈ S+, there exists jt ∈ E+ \S+ such that S+ \{t}∪{jt} is a path cover

for N ,

(iii) for each j ∈ [1, n− 1], there exists kj ∈ E+ \ S+ such that the set S+ ∪ {kj} is a

path cover and neither node j is backward independent nor node j+1 is forward

independent for the set S+ ∪ {kj}

are sufficient for path pack inequality (3.17) to be facet-defining for conv(P).

Proof. We provide 2|E|+ n− 2 affinely independent points that lie on the face:

F =

(x,y, i, r) ∈ P : y(S+) +
∑

t∈E+\S+

(yt −min{µj, ct}xt) = c(S+)

 .

Let (y∗, i∗, r∗) ∈ Q be an optimal solution to (F3.2). Since S+ is a path pack and

E− = ∅, v(S+) = c(S+). Then, notice that y∗t = ct for all t ∈ S+. Moreover, let e be

the arc with largest capacity in S+, ε > 0 be a sufficiently small value and 1j be the

unit vector with 1 at position j. First, we give 2|E+ \ S+| affinely independent points

represented by z̄t = (x̄t, ȳt, īt, r̄t) and z̃t = (x̃t, ỹt, ĩt, r̃t) for t ∈ E+ \ S+.

(i) Let t ∈ E+ \ S+, where S+ ∪ {t} is a path cover for N . The solution z̄t has arcs

in S+ ∪ {t} open, x̄tj = 1 for j ∈ S+ ∪ {t}, 0 otherwise, ȳtj = y∗j for j ∈ S+ and

ȳtt = ρt(S
+), 0 otherwise. The forward and backward path arc flow values ītj and

r̄tj can then be calculated using flow balance equalities (3.1b) where at most one

of them can be nonzero for each j ∈ N . Sufficiency condition (i) guarantees the

feasibility of z̄t.

(ii) Let t ∈ E+ \ S+, where ρt(S
+) = 0 and let t ̸= ℓ ∈ E+ \ S+, where S+ ∪ {ℓ}

is a path cover for N . The solution z̄t has arcs in S+ ∪ {t, ℓ} open, x̄tj = 1 for

j ∈ S+ ∪ {t, ℓ}, and 0 otherwise, ȳtj = y∗j for j ∈ S+, ȳtt = 0, ȳtℓ = ρℓ(S
+), and 0

otherwise. The forward and backward path arc flow values ītj and r̄
t
j can then be

calculated using flow balance equalities (3.1b) where at most one of them can be

nonzero for each j ∈ N . Sufficiency condition (i) guarantees the feasibility of z̄t.

65

(iii) The necessary condition (i) ensures that ρt(S
+) < ct, therefore ȳ

t
t < ct. In solution

z̃t, starting with z̄t, we send a flow of ε from arc t ∈ E+ \ S+ to e ∈ S+. Let

ỹt = ȳt + ε1t − ε1e and x̃t = x̄t. If e < t, then r̃t = r̄t + ε
∑t−1

i=e 1i, ĩ
t = īt and if

e > t, then ĩt = īt + ε
∑e−1

i=t 1i, r̃
t = r̄t.

Next, we give 2|S+|−1 affinely independent feasible points ẑt and žt corresponding

to t ∈ S+ that are on the face F . Let k be the arc in E+ \ S+ with largest capacity.

(iv) In the feasible solutions ẑt for e ̸= t ∈ S+, we open arcs in S+ ∪ {k} and send an

ε flow from arc k to arc t. Let ŷt = ȳk + ε1k − ε1t and x̂t = x̄k. If t < k, then

r̂t = r̄k + ε
∑k−1

i=t 1i, î
t = īk and if t > k, then ît = īk + ε

∑t−1
i=k 1i, r̂

t = r̄k.

(v) In the solutions žt for t ∈ S+, we close arc t and open arc jt ∈ E+ \ S+ that is

introduced in the sufficient condition (ii). Then, x̌tj = 1 if j ∈ S+ \ {t} and if

j = jt and x̌
t
j = 0 otherwise. From sufficient condition (ii), there exists y̌tj values

that satisfy the flow balance equalities (3.1b). Moreover, these y̌tj values satisfy

inequality (3.17) at equality since both S+ ∪ {jt} and S+ \ {t} ∪ {jt} are path

covers for N . Then, the forward and backward path arc flows are found using

flow balance equalities where at most one of ǐtj and ř
t
j are nonzero for each j ∈ N .

Finally, we give n− 1 points z̆j corresponding to forward and backward path arcs

connecting nodes j and j + 1.

(vi) In the solution set z̆j for j = 1, . . . , n− 1, starting with solution z̄kj , where kj is

introduced in the sufficient condition (iii), we send a flow of ε from both forward

path arc (j−1, j) and backward path arc (j, j−1). Since the sufficiency condition

(iii) ensures that r̄
kj
j < bj and ī

kj
j < uj, the operation is feasible. Let y̆j = ȳkj ,

x̆j = x̄kj , ĭj = īkj + ε1j and r̆j = r̄kj + ε1j.

3.4 Computational study

We test the effectiveness of path cover and path pack inequalities (3.14) and (3.17) by

embedding them in a branch-and-cut framework. The experiments are ran on a Linux

workstation with 2.93 GHz Intel R⃝CoreTM i7 CPU and 8 GB of RAM with 1 hour time

limit and 1 GB memory limit. The branch-and-cut algorithm is implemented in C++

using IBM’s Concert Technology of CPLEX (version 12.5). The experiments are ran

with one hour limit on elapsed time and 1 GB limit on memory usage. The number

of threads is set to one and the dynamic search is disabled. We also turn off heuristics

and preprocessing as the purpose is to see the impact of the inequalities by themselves.

66

Instance generation

We use a capacitated lot-sizing model with backlogging, where constraints (3.1b) reduce

to:

ij−1 − rj−1 + yj − ij + rj = dj, j ∈ N.

Let n be the total number of time periods and f be the ratio of the fixed cost to

the variable cost associated with a non-path arc. The parameter c controls how large

the non-path arc capacities are with respect to average demand. All parameters are

generated from a discrete uniform distribution. The demand for each node is drawn

from the range [0, 30] and non-path arc capacities are drawn from the range [0.75 ×
c × d̄, 1.25 × c × d̄], where d̄ is the average demand over all time periods. Forward

and backward path arc capacities are drawn from [1.0× d̄, 2.0× d̄] and [0.3× d̄, 0.8×
d̄], respectively. The variable costs pt, ht and gt are drawn from the ranges [1, 10],

[1, 10] and [1, 20] respectively. Finally, fixed costs ft are set equal to f × pt. Using

these parameters, we generate five random instances for each combination of n ∈
{50, 100, 150}, f ∈ {100, 200, 500, 1000} and c ∈ {2, 5, 10}.

Finding violated inequalities

Given a feasible solution (x∗,y∗, i∗, r∗) to a linear programming (LP) relaxation of

(F3.1), the separation problem aims to find sets S+ and L− that maximize the difference

y∗(S+)− y∗(E− \ L−) +
∑
t∈S+

(ct − λj)
+(1− x∗t)−

∑
t∈L−

(min{λj, ct})x∗t − d1n − c(S−)

for path cover inequality (3.14) and sets S+ and S− that maximize

y∗(S+)− y∗(E− \ S−)−
∑

t∈E+\S+

min{ct, µj}x∗t +
∑
t∈S−

(ct − µj)
+(1− xt)− c(S+)

for path pack inequality (3.17). We use the knapsack relaxation based heuristic sep-

aration strategy described in Wolsey and Nemhauser (1999, pg. 500) for flow cover

inequalities to choose the objective set S+ with a knapsack capacity d1n. Using S+,

we obtain the values λj and µj for each j ∈ N and let S− = ∅ for path cover and path

pack inequalities (3.14) and (3.17). For path cover inequalities (3.14), we add an arc

t ∈ E− to L− if λjx
∗
t < y∗t and λj < ct. We repeat the separation process for all subsets

[k, ℓ] ⊆ [1, n].

Results

We report multiple performance measures. Let zINIT be the objective function value of

the initial LP relaxation and zROOT be the objective function value of the LP relaxation

67

Table 3.1: Effect of path size on the performance.

p = 1 p ≤ 5 p ≤ 0.5 × n p ≤ n

n f c init gap imp cuts gap imp cuts gap imp cuts gap imp cuts

gap (m)spi (m)spi spi mspi spi mspi spi mspi spi mspi spi mspi spi mspi

50

100 2 14.8 34% 21 87% 52% 212 106 97% 52% 1164 158 97% 52% 1233 158
5 44.3 56% 52 99% 69% 303 148 99% 69% 664 151 99% 69% 664 151
10 58.3 60% 54 96% 70% 277 147 99% 70% 574 167 99% 70% 574 167

200 2 14.5 32% 22 81% 57% 257 133 96% 61% 1965 241 96% 61% 2387 241
5 49.8 43% 44 99% 57% 378 162 100% 57% 1264 171 100% 57% 1420 171
10 66.3 38% 47 98% 50% 392 169 99% 51% 1235 197 99% 51% 1283 197

500 2 19.1 23% 19 77% 48% 266 128 90% 49% 2286 222 90% 49% 3249 222
5 54.4 35% 36 99% 49% 522 185 100% 49% 1981 205 100% 49% 2074 205
10 73.0 34% 43 99% 40% 498 196 99% 40% 1336 236 99% 40% 1445 236

1000 2 14.6 18% 15 73% 39% 264 99 83% 40% 2821 211 83% 40% 3918 212
5 59.7 31% 36 98% 45% 487 201 100% 45% 2077 239 100% 45% 2329 239
10 76.9 30% 41 100% 36% 529 215 100% 37% 1935 268 100% 37% 2149 268

Average: 45.5 36% 36 92% 51% 365 157 97% 52% 1609 206 97% 52% 1894 206

after all the valid inequalities added. Moreover, let zUB be the objective function value

of the best feasible solution found within time/memory limit among all experiments

for an instance. Let init gap= 100 × zUB−zINIT

zUB
, root gap= 100 × zUB−zROOT

zUB
. We

compute the improvement of the relaxation due to adding valid inequalities as gap

imp= 100 × init gap−root gap

init gap
. We also measure the optimality gap at termination as

end gap = zUB−zLB

zUB
, where zLB is the value of the best lower bound given by CPLEX.

We report the average number of valid inequalities added at the root node under

column cuts, average elapsed time in seconds under time, average number of branch-

and-bound nodes explored under nodes. If there are instances that are not solved

to optimality within the time/memory limit, we report the average end gap and the

number of unsolved instances under unslvd next to time results. All numbers except

initial gap, end gap and time are rounded to the nearest integers.

In Tables 3.1, 3.2 and 3.3, we present the performance with the path cover (3.14)

and path pack (3.17) inequalities under columns spi. To understand how the forward

and backward path arc capacities affect the computational performance, we also apply

them to the single node relaxations obtained by merging a path into a single node,

where the capacities of forward and backward path arcs within a path are considered

to be infinite. In this case, the path inequalities reduce to the flow cover and flow pack

inequalities. These results are presented under columns mspi.

In Table 3.1, we focus on the impact of path size on the gap improvement of the

path cover and path pack inequalities for instances with n = 50. In the columns

under p = 1, we obtain the same results for both mspi and spi since the paths are

singleton nodes.. We present these results under (m)spi. In columns p ≤ q, we add

valid inequalities for paths of size 1, . . . , q and observe that as the path size increases,

the gap improvement of the path inequalities increase rapidly. On average 97% of

the initial gap is closed as longer paths are used. On the other hand, flow cover

and pack inequalities from merged paths reduce about half of the initial gap. These

results underline the importance of exploiting path arc capacities for strengthening

the formulations. We also observe that the increase in gap improvement diminishes as

path size grows. We choose a conservative maximum path size limit of 0.75×n for the

68

experiments reported in Tables 3.2, 3.3 and 3.4.

In Table 3.2, we investigate the computational performance of path cover and path

pack inequalities independently. We present the results for path cover inequalities under

columns titled cov, for path pack inequalities under pac and for both of them under the

columns titled spi. On average, path cover and path pack inequalities independently

close the gap by 63% and 53%, respectively. However, when used together, the gap

improvement is 96%, which shows that the two classes of inequalities complement each

other very well.

In Table 3.3, we present other performance measures as well for instances with 50,

100, and 150 nodes. We observe that the forward and backward path arc capacities

have a large impact on the performance level of the path cover and pack inequalities.

Compared to flow cover and pack inequalities added from merged paths, path cover

and path pack inequalities reduce the number of nodes and solution times by orders of

magnitude. This is mainly due to better integrality gap improvement (50% vs 95% on

average).

In Table 3.4, we examine the incremental effect of path cover and path pack in-

equalities over the fixed-charge network cuts of CPLEX, namely flow cover, flow path

and multi-commodity flow cuts. Under cpx, we present the performance of flow cover,

flow path and multi-commodity flow cuts added by CPLEX and under cpx spi, we

add path cover and path pack inequalities addition to these cuts. We observe that with

the addition of path cover and pack inequalities, the gap improvement increases from

86% to 95%. The number of branch and bound nodes explored is reduced about 900

times. Moreover, with path cover and path pack inequalities the average elapsed time

is reduced to almost half and the total number of unsolved instances reduces from 13

to 6 out of 180 instances.

Tables 3.1, 3.2, 3.3 and 3.4 show that submodular path inequalities are quite effec-

tive in tackling lot-sizing problems with finite arc capacities. When added to the LP

relaxation, they improve the optimality gap by 95% and the number of branch and

bound nodes explored decreases by a factor of 1000. In conclusion, our computational

experiments indicate that the use of path cover and path pack inequalities is beneficial

in improving the performance of the branch-and-cut algorithms.

69

Table 3.2: Effect of path cover (cov) and path pack (pac) inequalities when used
separately and together (spi).

gap imp nodes cuts time

n f c init gap cov pac spi cov pac spi cov pac spi cov pac spi

50

100
2 14.8 62% 18% 96% 273 6258 7 759 13 1151 0.3 0.6 0.2
5 44.3 75% 37% 97% 319 12366 9 357 25 435 0.1 1.0 0.1
10 58.3 77% 39% 93% 213 29400 63 290 11 386 0.1 2.1 0.1

200
2 14.5 73% 34% 92% 148 3268 18 1593 41 2469 0.7 0.3 0.6
5 49.8 67% 38% 100% 576 11525 3 736 36 1022 0.4 0.9 0.1
10 66.3 61% 48% 97% 226 8799 14 619 32 739 0.2 0.7 0.1

500
2 19.1 57% 57% 92% 635 1825 19 1587 316 2577 1.6 0.3 1.0
5 54.4 56% 75% 99% 348 363 1 902 148 1164 0.3 0.1 0.1
10 73.0 59% 65% 97% 8410 5284 11 727 67 698 3.0 0.5 0.1

1000
2 14.6 61% 65% 90% 278 258 60 1362 427 2094 0.8 0.3 0.9
5 59.7 59% 81% 100% 1063 208 2 1673 364 1792 1.3 0.1 0.1
10 76.9 51% 77% 99% 3791 1452 5 1202 155 1032 2.1 0.2 0.1

Average: 45.5 63% 53% 96% 1357 6751 18 984 136 1297 0.9 0.6 0.3

Table 3.3: Comparison of path inequalities applied to paths (spi) versus applied to
merged paths (mspi).

gapimp nodes cuts time (endgap:unslvd)

n f c
init

gap
spi mspi spi mspi spi mspi spi mspi

50

100
2 14.8 96% 52% 7 430 1151 195 0.2 0.2
5 44.3 97% 69% 9 553 435 146 0.1 0.1
10 58.3 93% 70% 63 468 386 160 0.1 0.1

200
2 14.5 92% 59% 18 330 2469 226 0.6 0.2
5 49.8 100% 57% 3 1112 1022 176 0.1 0.3
10 66.3 97% 53% 14 615 739 173 0.1 0.2

500
2 19.1 92% 43% 19 2041 2577 238 1.0 0.7
5 54.4 99% 48% 1 705 1164 214 0.1 0.3
10 73.0 97% 48% 11 5659 698 248 0.1 1.4

1000
2 14.6 90% 45% 60 612 2094 301 0.9 0.4
5 59.7 100% 50% 2 2265 1792 241 0.1 0.7
10 76.9 99% 40% 5 9199 1032 314 0.1 2.3

100

100
2 13.9 95% 65% 39 7073 3114 410 1.3 3.2
5 42.2 98% 70% 19 20897 1337 297 0.2 4.8
10 57.8 94% 59% 230 395277 1298 346 0.4 88.2

200
2 16.1 89% 56% 290 151860 6919 478 11.0 58.4
5 47.6 99% 55% 7 455192 2355 331 0.3 126.1
10 65.7 95% 54% 104 4130780 1872 399 0.5 962.3 (1.1:1)

500
2 17.5 84% 36% 1047 956745 11743 475 47.7 390.9
5 53.9 99% 41% 4 332041 3874 444 0.4 115.5
10 72.9 96% 42% 34 1175647 1495 474 0.3 352.5

1000
2 17.9 91% 41% 173 57147 10919 570 21.3 23.0
5 58.5 100% 45% 1 284979 3261 501 0.3 92.8
10 75.7 97% 36% 88 3158262 2358 657 0.5 1047.0 (0.7:1)

150

100
2 13.2 94% 64% 336 163242 5159 704 11.3 107.6
5 44.8 99% 65% 17 3024118 2087 431 0.5 929.6
10 56.9 95% 65% 404 7254052 1492 476 0.9 2087.3 (0.7:1)

200
2 14.7 92% 53% 519 2772494 12636 744 27.2 1390.6 (0.1:1)
5 48.1 99% 55% 15 3802938 2462 508 0.6 1483.0 (1.2:2)
10 65.2 95% 50% 330 9377122 2047 567 0.9 3585.9 (8.2:5)

500
2 19.3 86% 33% 7927 7619674 22275 792 1087.3 3165.6 (4.0:4)
5 54.4 100% 45% 7 7873043 4927 641 0.8 2813.6 (4.3:3)
10 72.3 97% 41% 250 10219548 2678 713 1.2 3422.8 (11.0:5)

1000
2 19.6 88% 34% 2824 7316675 33729 724 804.8 3260.3 (2.5:3)
5 57.5 100% 39% 2 9661586 6710 709 0.8 3578.9 (9.7:5)
10 75.8 96% 37% 99 9910056 3981 829 1.2 3412.3 (15.2:5)

Average: 45.2 95% 50% 416 2504012 4619 440 56.3 903.0 (1.6:36)

70

Table 3.4: Effectiveness of the path inequalities when used together with CPLEX’s
network cuts.

gapimp nodes time (endgap:unslvd)

n f c init gap cpx spi cpx cpx spi cpx cpx spi cpx

100

100
2 13.9 96% 85% 35 1715 1.0 0.5
5 42.2 99% 97% 5 75 0.2 0.1
10 57.8 99% 93% 10 2970 0.3 0.6

200
2 16.1 90% 79% 288 9039 6.6 2.1
5 47.6 99% 95% 7 52 0.3 0.1
10 65.7 97% 89% 61 3186 0.4 0.7

500
2 17.5 85% 63% 1232 455068 57.3 95.2
5 53.9 99% 94% 6 92 0.4 0.1
10 72.9 98% 89% 11 4621 0.4 0.9

1000
2 17.9 91% 76% 173 18109 22.2 3.6
5 58.5 100% 93% 1 156 0.3 0.1
10 75.7 97% 85% 117 5297 0.7 1.0

150

100
2 13.2 94% 86% 365 60956 9.7 19.0
5 44.8 100% 97% 5 119 0.4 0.1
10 56.9 99% 92% 16 15929 0.5 3.9

200
2 14.7 92% 80% 954 216436 44.9 66.7
5 48.1 99% 96% 11 284 0.5 0.2
10 65.2 97% 91% 181 3992 0.9 1.2

500
2 19.3 86% 69% 7647 4943603 1049.9 1215.1 (0.2:1)
5 54.4 100% 94% 5 5434 0.8 1.6
10 72.3 97% 88% 141 141211 1.4 35.9

1000
2 19.6 88% 71% 3051 2788993 917.4 (0.2:1) 619.4 (0.4:1)
5 57.5 100% 90% 3 4322 0.8 1.2
10 75.8 96% 89% 196 10588 2.5 2.8

200

100
2 14.1 94% 82% 1623 864841 32.2 384.0
5 42.7 100% 97% 8 213 0.5 0.1
10 57.5 99% 93% 26 45263 0.7 13.8

200
2 16.3 89% 78% 4279 5634851 259.9 1940.4 (0.1:1)
5 48.0 99% 95% 13 1310 0.9 0.5
10 65.0 98% 90% 128 163145 1.2 52.3

500
2 16.3 88% 72% 8083 6805861 1226.3 (0.3:1) 2137.6 (0.7:3)
5 54.5 99% 93% 7 6606 1.6 2.2
10 72.0 96% 90% 376 900152 3.2 302.4

1000
2 18.0 82% 63% 13906 9894589 3000.5 (1.2:4) 2835.9 (3.0:5)
5 57.9 100% 94% 4 1977 3.4 0.8
10 75.6 96% 84% 704 6127929 15.0 1785.0 (1.8:2)

Average: 45.0 95% 86% 1213 1087194 185.1 (0.0:6) 320.2 (0.2:13)

71

Chapter 4

Path Pack Inequalities for

Lot-sizing Problems with

Backlogging and Inventory Bounds

Given the upper-bounds of inventory holding and backlogging values for each time

period, the lot-sizing with backlogging and inventory bounds (LSBIB) problem aims

to find a production schedule that minimizes the total cost of fixed and unit production,

inventory holding and backlogging. In this chapter, we give valid inequalities for single

item LSBIB that utilizes inventory and backlogging capacities as well as the underlying

path structure of the lot-sizing problems.

There is a vast literature on lot-sizing problems. We refer the reader to Pochet and

Wolsey (2006) for a detailed review of different lot-sizing problems. Moreover, Brahimi

et al. (2006) survey single item and Karimi et al. (2003) overviews capacitated lot-sizing

problems.

The uncapacitated version of lot-sizing with backlogging (ULSB) is tackled exten-

sively in the literature. Pochet and Wolsey (1988) and Pochet and Wolsey (1994)

carry out a polyhedral study and provide valid inequalities for ULSB. Agra and Con-

stantino (1999) consider start-up costs and give an extended linear formulation for

instances with Wagner-Whitin costs. Federgruen and Tzur (1993), Zangwill (1966),

Zangwill (1969) and Ganas and Papachristos (2005) propose polynomial time algo-

rithms. Küçükyavuz and Pochet (2009) provide an explicit description of the convex

hull of ULSB.

For the capacitated lot-sizing with backlogging, Van Vyve (2006) gives a linear

extended formulation for the constant production capacity case with infinite inven-

tory and backlog capacities. Zhong et al. (2016) and Chu et al. (2013) give poly-

nomial time algorithms for lot-sizing problems with infinite production and finite in-

ventory/backlogging capacities. Constantino (2000) considers an extended multi-item

capacitated lot-sizing framework with start-up costs and infinite inventory and back-

72

logging capacities. The author provides a cutting plane algorithm and a class of valid

inequalities. Wu et al. (2011) give two formulations for multi-item capacitated lot-sizing

with backlogging and analyze the tightness of the lower bounds they provide.

The path structure arises naturally in network models of the lot-sizing problem.

Atamtürk and Muñoz (2004) introduce valid inequalities for the capacitated lot-sizing

problems with infinite inventory capacities. Atamtürk and Küçükyavuz (2005) give

valid inequalities for the lot-sizing problems with finite inventory and infinite pro-

duction capacities. Van Vyve (2013) introduces valid inequalities for uncapacitated

fixed charge transportation problems. Van Vyve and Ortega (2004) and Gade and

Küçükyavuz (2011) give valid inequalities and extended formulations for uncapacitated

lot-sizing with fixed charges on stocks.

Lot-sizing problems are also special cases of fixed-charge network flow problems. For

a single node relaxation of capacitated fixed-charge network problems, Padberg et al.

(1985), van Roy and Wolsey (1986) and Gu et al. (1999) give flow cover, generalized

flow cover and lifted flow cover inequalities. For a general fixed-charge network, Wolsey

(1989) introduces submodular inequalities, however these inequalities have implicit

coefficients. Atamturk et al. (2017) derive submodular path inequalities which are

explicit description of submodular inequalities for a simple path sub-structure. In this

work, we extend submodular path inequalities by considering backlogging arcs between

consecutive nodes in a path. We show that all coefficients of these inequalities can be

computed in linear time using maximum flow minimum cut equivalency. We give

necessary and sufficient facet-defining condition. Finally, we show the effectiveness of

these inequalities when used in a branch-and-cut algorithm.

Outline: The remainder of the chapter is organized as follows: In Section 4.1, we

give the mathematical programming formulation and the underlying fixed-charge net-

work flow problem of LSBIB. In Section 4.2, we introduce eleven classes of path pack

inequalities that are valid for LSBIB. In Section 4.3, we lift these inequalities by incor-

porating the fixed charge variables of inventory and backlog arcs. Finally, in Section

4.4, we present some computational results that shows the effectiveness of both path

pack inequalities introduced in Section 4.2 and lifted path pack inequalities introduced

in Section 4.3.

4.1 Lot-sizing Problems with Inventory and Back-

logging Bounds

We provide a mixed-integer programming formulation for single-item lot-sizing problem

with inventory and backlogging capacities. Let N = {1, . . . , n} be the set of time

periods and dt be the demand at time t ∈ N . Without loss of generality, we assume

time period i comes before time period j if and only if i < j. Let yt, it and rt be the

73

production, inventory and backlogging units at time period t with upper bounds ct, ut
and bt respectively. In this chapter, we assume that ct is a very large value for all t ∈ N .

Let the binary variable xt be 1 if there is production at time t, 0 otherwise and let f p
t

represent the fixed cost of production at time t. Let zt and qt be the binary variables

that are equal to 1 if there is a non-zero amount of inventory held and a non-zero

amount backlogged at time t, respectively. The fixed costs associated with zt and qt
are represented by f i

t and f b
t , respectively. Let the unit cost of production, inventory

holding and backlogging be represented by parameters vpt , v
i
t and v

b
t , respectively. The

single-item lot-sizing problem with inventory and backlogging upper-bounds can be

represented as the mathematical optimization problem:

min
∑
t∈V

fp
t xt + f i

tzt + f b
t qt + vpt yt + vitit + vbtrt (4.1a)

s. t. it−1 − rt−1 + yt − it + rt = dt, t ∈ N, (4.1b)

0 ≤ yt ≤ ctxt, t ∈ N, (4.1c)

0 ≤ it ≤ utzt, t ∈ N, (4.1d)

0 ≤ rt ≤ btqt, t ∈ N, (4.1e)

(LSBIB) xt ∈ {0, 1}, t ∈ N, (4.1f)

zt ∈ {0, 1}, t ∈ N, (4.1g)

qt ∈ {0, 1}, t ∈ N, (4.1h)

i0 = in = r0 = rn = 0. (4.1i)

where u0 = b0 = un = bn = 0. Moreover, let P be the set of feasible solutions of

formulation 4.1.

Throughout the chapter, we use the following notation: Let [k, j] := {k, k+1, . . . , j}
if j ≥ k and ∅ if j < k, (a)+ := max{0, a} and dkj =

∑j
t=k dt if j ≥ k and 0 otherwise.

Moreover, let dim(A) denote the dimension of a polyhedron A and conv(S) be the

convex hull of a set S.

We make some assumptions on the parameter set of the problem:

(1) bt + ut−1 ≥ dt, t ∈ N. In other words, the feasible set Ft = {x ∈ P : yt = 0} is

non-empty for all t ∈ N ,

(2) uj > 0 and bj > 0 for all j ∈ N \ {n},

(3) dj ≥ 0, for j ∈ N ,

(4) uj−1 ≤ dj + uj, for j ∈ N ,

(5) bj ≤ bj−1 + dj−1, for j ∈ N .

Assumptions (1) and (2) and enforced to ensure that dim
(
conv(P)

)
= 5n− 2. Notice

that, if assumption (1) does not hold for some t ∈ N , then xt = 1 in all feasible

74

solutions of LSBIB. Similarly, if bj = 0 (or uj = 0), then rj = 0 (ij = 0) at all feasible

solutions of LSBIB which would reduce the dimension of conv(P). Assumptions (3),

(4) and (5) significantly reduce the number of potential minimum cuts in a given a set

of production arcs that are open which directly reduces the complexity of computing

submodular inequality coefficients. The utilization of these assumptions will be further

explained in Section 4.2.

There are 6n − 4 decision variables in LSBIB. However, using constraints (4.1i),

any feasible point in LSBIB can be described by (y, i,x, z,q, r1), where y and x are

n-dimensional and i, z and q are n− 1-dimensional vectors. Consequently, we observe

that dim
(
conv(P)

)
= 5n− 2.

One can represent the optimization problem LSBIB using a fixed-charge network

where time periods are vertices and demand, production, inventory and backlog units

are arcs as in Figure 4.1. Throughout the chapter, we refer to production arcs (sN , j)

as “arc j” for convenience. Let A be the union of all production, inventory and backlog

arcs and let N ′ := N ∪ {sN , tN}.

. . .1 2 n3

d1 d2 d3 dn

c1 c2 c3 cn

b1 b2 b3 bn−1

u1 u2 u3 un−1

sN

tN

Figure 4.1: Fixed-charge network representation of a path.

Next, we review the path pack inequalities introduced in Atamturk et al. (2017)

that are valid for any capacitated-path graph with fixed-charge variables.

4.2 Path pack inequalities

Let [k, ℓ] be a subset of consecutive time periods, where k ≥ 1 and ℓ ≤ n. Let

E+
kℓ := {(i, j) ∈ A : i /∈ [k, ℓ], j ∈ [k, ℓ]}. In other words, E+

kℓ is the set of production

arcs [k, ℓ], the inventory arc (k − 1, k) and the backlog arc (ℓ + 1, ℓ). Similarly, let

E−
kℓ := {(i, j) ∈ A : i ∈ [k, ℓ], j /∈ [k, ℓ]}. For the graph structure of lot-sizing problems

the set E−
kℓ is equivalent to {(k, k − 1), (ℓ, ℓ+ 1)}.

75

Let S+ ⊆ E+
kℓ, L

+ ⊆ E+
kℓ \ S+ and S− ⊆ E−

kℓ. We refer to the subsets (S+, L+, S−)

as the objective sets. For all j ∈ [k, ℓ], define S+
j = {(j − 1, j), (sN , j)} ∩ E+

kℓ, L
+
j =

{(j − 1, j), (sN , j)} ∩ E+
kℓ and S

−
j = {(j, j − 1), (j, j + 1)} ∩ E−

kℓ.

In Atamturk et al. (2017), the authors introduce path pack inequalities which are

derived from submodular inequalities introduced by Wolsey (1989). Each coefficient

that appears in a submodular inequality is computed by solving a maximum flow

problem. Letting the value function v be computed using the optimization problem

v(S+, S−) = max
∑

t∈S+∪L+

yt −
∑

E−
kℓ\S−

yt

s. t. ij−1 − rj−1 + yj − ij + rj ≤ dj, j ∈ [k, ℓ],

0 ≤ ij ≤ uj, j ∈ [k, ℓ],

0 ≤ rj ≤ bj, j ∈ [k, ℓ],

(F2) 0 ≤ yt ≤ ct, t ∈ [k, ℓ],

i0 = in = r0 = rn = 0,

yt = 0, t ∈ E+
kℓ \ S

+.

Then, Wolsey (1989) shows that the the inequality∑
t∈S+∪L+

yt ≤ v(S+, S−) +
∑
t∈L+

ρt(S
+, S−)xt +

∑
t∈E−

kℓ\S−

yt, (4.2)

is valid for capacitated lot-sizing problems with fixed-charge variables, where

ρt(S
+, S−) = v(S+ ∪ {t}, S−)− v(S+, S−), t ∈ L+.

In the remainder of the chapter, for convenience, if S− = ∅, we refer to v(S+, ∅) and
ρt(S

+, ∅) as v(S+) and ρt(S
+), respectively.

For problems with an underlying path graph, Atamturk et al. (2017) show that all

of the coefficients of inequality (4.2) can be computed in O(n) time. In the remainder

of this section, we introduce the steps necessary to describe path pack inequalities for

LSBIB explicitly.

Let αu
j and αd

j be the minimum value of a cut on nodes [k, j] that passes above and

below node j, respectively. Similarly, let βu
j and βd

j be the minimum values of cuts on

nodes [j, ℓ] that passes above and below node j respectively. We compute α
{u,d}
j by a

forward recursion and β
{u,d}
j by a backward recursion:

αu
j = min{αd

j−1 + uj−1, α
u
j−1}+ c(S+

j), j ∈ [k, ℓ], (4.3)

αd
j = min{αd

j−1, α
u
j−1 + bj−1}+ dj + c(S−

j), j ∈ [k, ℓ], (4.4)

76

where αu
k−1 = αd

k−1 = 0 and

βu
j = min{βu

j+1, β
d
j+1 + bj}+ c(S+

j), j ∈ [k, ℓ], (4.5)

βd
j = min{βu

j+1 + uj, β
d
j+1}+ dj + c(S−

j), j ∈ [k, ℓ], (4.6)

where βu
ℓ+1 = βd

ℓ+1 = 0 and for some arc set S the function c is defined as

c(S) :=
∑

t∈S∩[k,ℓ]

ct +
∑

t∈S∩{(k−1,k),(ℓ,ℓ+1)}

ut +
∑

t∈S∩{(k,k−1),(ℓ+1,ℓ)}

bt.

Let mu
j and md

j be the values of minimum cuts for nodes [k, ℓ] that pass above and

below node j, respectively. Notice that

mu
j = αu

j + βu
j − c(S+

j), j ∈ [k, ℓ] (4.7)

and

md
j = αd

j + βd
j − dj − c(S−

j), j ∈ [k, ℓ]. (4.8)

For convenience, let

mj := min{mu
j ,m

d
j}, j ∈ [k, ℓ].

Then, the path pack inequalities which are valid for LSBIB can be expressed as

y(S+ ∪ L+) ≤ mk +
ℓ∑

j=k

∑
t∈L+

j

µjxt + y(E−
kℓ \ S

−), (4.9)

where

µj := (md
j −mu

j)
+, j ∈ [k, ℓ]

and for some arc set C, the function y is defined as

y(C) :=
∑

t∈C∩[k,ℓ]

yt +
∑

t∈C∩{(k−1,k),(ℓ,ℓ+1)}

it +
∑

t∈C∩{(k,k−1),(ℓ+1,ℓ)}

rt.

4.2.1 Explicit inequalities for LSBIB

In this section, we give path pack inequalities where the coefficients are computed

explicitly for LSBIB problems.

Proposition 4.1. The inequality

ik−1 +
∑
t∈L+

yt ≤ uk−1 +
∑
j∈L+

(
min{dkj + uj − uk−1, dkℓ − uk−1}

)+
xj + iℓ + rk−1

(4.10)

77

is valid for LSBIB.

Proof. Inequality (4.10) is equivalent to inequality (4.9), where S+ = {(k − 1, k)},
S− = ∅ and L+ ⊆ [k, ℓ]. We compute αu

j , α
d
j , β

u
j and βd

j using the recursive equations

(4.3)–(4.6). Due to assumption (4), we observe that

αu
j = uk−1, ∀j ∈ [k, ℓ]. (4.11)

Similarly, due to assumption (1), we observe that

αd
j = dkj, ∀j ∈ [k, ℓ]. (4.12)

Furthermore, using assumption (4) , it is easy to see that

βu
j =

{
uk−1 if j = k,

0 if j ∈ [k + 1, ℓ].
(4.13)

and

βd
j = min{uj, dj+1,ℓ}+ dj, ∀j ∈ [k, ℓ]. (4.14)

As a result, we obtain the minimum cut values that pass above and below node j as

mu
j = uk−1

and

md
j = dkj +min{uj, dj+1ℓ}

respectively, for each j ∈ [k, ℓ]. Recall that the value of the overall minimum cut can

be computed as

v(S+) = min{mu
j ,m

d
j}

using any j ∈ [k, ℓ]. Now, suppose we would like to compute ρj(S
+) = v(S+ ∪ {j})−

v(S+). Since production arcs are assumed to be uncapacitated (i.e., very large), the

minimum cut has to pass below node j when the production arc j is open. Conse-

quently,

v(S+ ∪ {j}) = md
j

and ρj(S
+) = max{md

j − mu
j , 0}. Using the values computed above, we observe that

for each j ∈ L+,

ρj(S
+) =

(
min{dkj + uj − uk−1, dkℓ − uk−1}

)+
.

78

Proposition 4.2. The inequality

rℓ +
∑
t∈L+

yt ≤ bℓ +
∑
j∈L+

(
min{djℓ + bj−1 − bℓ, dkℓ − bℓ}

)+
xj + iℓ + rk−1, (4.15)

is valid for LSBIB.

Proof. Inequality (4.15) is equivalent to inequality (4.9), where S+ = {(ℓ + 1, ℓ)},
S− = ∅ and L+ ⊆ [k, ℓ]. The proof follows very similar to that of proposition 4.1.

Proposition 4.3. The inequality

ik−1 +
∑
t∈L+

yt ≤ uk−1 +
∑
j∈L+

(dkj + uj − uk−1)xj + rk−1 (4.16)

is valid for LSBIB.

Proof. Inequality (4.16) is equivalent to inequality (4.9), where S+ = {(k − 1, k)},
S− = {(ℓ, ℓ+ 1)} and L+ ⊆ [k, ℓ].

Proposition 4.4. The inequality

ik−1 +
∑
t∈L+

yt ≤ uk−1 +
∑
j∈L+

(
min{bk−1 + dkj−1, uk−1 + bj−1}+ uj + dj − uk−1

)+
xj

(4.17)

is valid for LSBIB.

Proof. Inequality (4.17) is equivalent to inequality (4.9), where S+ = {(k − 1, k)},
S− = {(k, k − 1), (ℓ, ℓ+ 1)} and L+ ⊆ [k, ℓ].

Remark 4.1. If the backlogging upper bounds are set to zero, then this problem

reduces to the lot-sizing problem studied in Atamtürk and Küçükyavuz (2005). If

the backlog arc capacities are zero, then inequality (4.17) reduces to inequality (5) of

Atamtürk and Küçükyavuz (2005).

Proposition 4.5. The inequality

ik−1 +
∑
t∈L+

yt ≤ uk−1 +
∑
t∈L+

ρtxj + iℓ, (4.18)

where

ρt =
(
min{uj + dkj + bk−1 − uk−1, uj + dj + bj−1, dkℓ + bk−1 − uk−1, djℓ + bj−1}

)+
for all t ∈ L+, is valid for LSBIB.

79

Proof. Inequality (4.18) is equivalent to inequality (4.9), where S+ = {(k − 1, k)},
S− = {(k, k − 1)} and L+ ⊆ [k, ℓ].

Remark 4.2. If the backlog arc capacities are zero, then inequality (4.18) reduces to

inequality (3) of Atamtürk and Küçükyavuz (2005).

Proposition 4.6. The inequality

rℓ +
∑
t∈L+

yt ≤ bℓ +
∑
j∈L+

(
djℓ + bj−1 − bℓ

)
xj + iℓ, (4.19)

is valid for LSBIB.

Proof. Inequality (4.19) is equivalent to inequality (4.9), where S+ = {(ℓ + 1, ℓ)},
S− = {(k, k − 1)} and L+ ⊆ [k, ℓ].

Proposition 4.7. The inequality

rℓ +
∑
t∈L+

yt ≤ bℓ +
∑
j∈L+

(
min{bℓ + uj, dj+1,ℓ + uℓ}+ dj + bj−1 − bℓ

)+
xj, (4.20)

is valid for LSBIB.

Proof. Inequality (4.20) is equivalent to inequality (4.9), where S+ = {(ℓ + 1, ℓ)},
S− = {(k, k − 1), (ℓ, ℓ+ 1)} and L+ ⊆ [k, ℓ].

Proposition 4.8. The inequality

rℓ +
∑
j∈L+

yj ≤ bℓ +
∑
j∈L+

ρjxj + rk−1, (4.21)

where

ρj =
(
min{uj + bj−1 + dj, uj + dkj, djℓ + uℓ + bj−1 − bℓ, dkℓ + uℓ − bℓ}

)+
for all j ∈ L+, is valid for LSBIB.

Proof. Inequality (4.21) is equivalent to inequality (4.9), where S+ = {(ℓ + 1, ℓ)},
S− = {(ℓ, ℓ+ 1)} and L+ ⊆ [k, ℓ].

Proposition 4.9. The inequality

ik−1 + rℓ +
∑
j∈L+

yj ≤ min{uk−1 + bℓ, bk−1 + dkℓ + uℓ}+
∑
j∈L+

ρjxj, (4.22)

where

ρj =
(
min{dk,j−1 + bk−1, uk−1 + bj−1}+min{bℓ + uj, dj+1,ℓ + uℓ}+ dj − uk−1 − bℓ

)+
80

for all j ∈ L+, is valid for LSBIB.

Proof. Inequality (4.22) is equivalent to inequality (4.9), where S+ = {(k − 1, k), (ℓ+

1, ℓ)}, S− = {(k, k − 1), (ℓ, ℓ+ 1)} and L+ ⊆ [k, ℓ].

Proposition 4.10. The inequality

ik−1 + rℓ +
∑
j∈L+

yj ≤ min{uk−1 + bℓ, dkℓ + uℓ}+
∑
j∈L+

ρjxj + rk−1, (4.23)

where

ρj =
(
min{bℓ + uj, dj+1,ℓ + uℓ}+ dkj − uk−1 − bℓ

)+
for all j ∈ L+, is valid for LSBIB.

Proof. Inequality (4.23) is equivalent to inequality (4.9), where S+ = {(k − 1, k), (ℓ+

1, ℓ)}, S− = {(ℓ, ℓ+ 1)} and L+ ⊆ [k, ℓ].

Proposition 4.11. The inequality

ik−1 + rℓ +
∑
j∈L+

yj ≤ min{uk−1 + bℓ, dkℓ + bk−1}+
∑
j∈L+

ρjxj + iℓ, (4.24)

where

ρj =
(
min{dk,j−1 + bk−1, uk−1 + bj−1}+ djℓ − uk−1 − bℓ

)+
for all j ∈ L+, is valid for LSBIB.

Proof. Inequality (4.24) is equivalent to inequality (4.9), where S+ = {(k − 1, k), (ℓ+

1, ℓ)}, S− = {(k, k − 1)} and L+ ⊆ [k, ℓ].

Remark 4.3. Selecting S+ = {(k− 1, k), (ℓ+1, ℓ)} and S− = ∅ gives a weak submod-

ular inequality. Due to assumptions (1), (4) and (5) we know that v({(k − 1, k), (ℓ +

1, ℓ)}) = dkℓ. Notice that, for this set selection, the sum of constraints in (F2) implies

that dkℓ is the largest value that the function v can take. As a result, ρj(S
+) = 0 for

all j ∈ L+.

Remark 4.4. In inequalities (4.10), (4.16), (4.17), (4.18), (4.15), (4.19), (4.20), (4.21),

(4.22), (4.23) and (4.24), if ρj(S
+) ≥ uj + bj−1+ dj for any j ∈ L+, then the inequality

is weak.

Proof. Suppose for an arc j ∈ L+, ρj(S
+) ≥ uj + bj−1 + dj. Then, the path pack

inequality where arc j is dropped from L+ summed with yj ≤ (uj + bj−1 + dj)xj gives

an inequality at least as strong as the initial path pack inequality.

81

4.2.2 Finding violated inequalities

In this section, we discuss how to find inequalities (4.10), (4.16), (4.17), (4.18), (4.15),

(4.19), (4.20), (4.21), (4.22), (4.23) and (4.24) violated by a given point (x̄, ȳ, s̄, r̄, q̄, z̄) ∈
R6n. For a given [k, ℓ] ⊆ [1, n], and the sets S+ and S−, the set L+ that maximizes the

violation of these inequalities can be found in linear time. A production arc t ∈ [k, ℓ]

is added to L+ if and only if

ȳt > ρtx̄t,

where ρt is the coefficient of xt if t is added to L+.

In inequalities (4.10), (4.15), (4.16), (4.17), (4.18) , (4.19), (4.20), (4.21), (4.22),

(4.23) and (4.24), we assume that all of the inventory and backlog arcs are open. In the

next section, we extend these inequalities by incorporating the fixed charge variables

of inventory and backlog arcs.

4.3 Inventory and backlog fixed charge variables

Let H = {h1, . . . , h|H|} be a subset of inventory arc indices in increasing order. In this

convention, hi = j refers to the inventory arc (j, j + 1). For an inventory arc (j, j + 1)

we define m(j) = min{t ∈ L+ ∪ {(ℓ + 1)} : t > j}. Moreover, let M ⊇ ∪p
i=1m(hi).

Alternatively, we represent this set as M = {m1, . . . ,m|M |}. For convenience, let

m0 := k, m|M |+1 := ℓ and h0 = k, h|H|+1 = ℓ. Finally, let L(t) = L+ ∩ [t+ 1, ℓ].

Proposition 4.12. The inequality

ik−1 +
∑
j∈L+

yj ≤ uk−1 +
∑
j∈L+

ρjxj + iℓ + rk−1 +
∑
j∈M

δjqj−1, (4.25)

where

ρj =

min{dkj + uj − uk−1, dkℓ − uk−1, uj + dj, djℓ} if j ∈M,

min{dkj + uj − uk−1, dkℓ − uk−1, uj + dj, djℓ}
+min{(dk,j−1 − uk−1)

+, dmi,j−1} if mi ≤ j ≤ mi+1, i = 0, . . . , |M |
(4.26)

and

δmi
= min{bmi−1, dmi−1,mi−1}, ∀ mi ∈M (4.27)

is valid for LSBIB.

Proof. Let (x∗, y∗, i∗, r∗, q∗, z∗) be a feasible solution to LSBIB. We derive the coeffi-

82

cients ρj and δj are derived from the submodular function v where

δmj
= v({mj}|qmi−1 = 0,∀i ∈ [1, j − 1])− v({mj}|qmi−1 = 0,∀i ∈ [1, j]) (4.28)

and

ρj = ρj(S
+|qi−1 = 0, ∀i ∈M). (4.29)

For feasible solutions where q∗t−1 = 0 for all t ∈ M , inequality (4.25) is equivalent to

submodular inequality (4.9) with S+ = {(k − 1, k)} for the lot-sizing graph where the

backlog arcs (t, t−1) for t ∈M have capacities of zero. Consequently, inequality (4.25)

is valid when q∗t−1 = 0 for all t ∈M .

Now, let L̂+ = {j ∈ L+ : x∗j = 1}, M̂ := {t ∈ M : q∗t−1 = 1} and suppose M̂ ̸= ∅.
From the definition of v, with the objective ik−1 +

∑
t∈L+ yt − iℓ − rk−1, it is clear that

i∗k−1 +
∑
j∈L̂+

y∗j − i∗ℓ − r∗k−1 ≤ v({s} ∪ L̂+|qt−1 = 0,∀t ∈M \ M̂).

Without loss of generality, let M̂ = {m̂1, . . . , m̂|M̂ |}. First, we observe that

v({s}) +
∑
t∈L̂+

ρt({s}|qj−1 = 0,∀j ∈M) ≥ v({s} ∪ L̂|qj−1 = 0,∀j ∈M).

To obtain the inequality above, we use the submodularity of the function v and the

fact that v({s}) = v({s}|qj−1 = 0,∀j ∈ M). This is because maximum flow sent by

the inventory arc {k− 1, k} is uk−1 and only depends on the inventory arcs of the path

and not on backlog arcs.

In the remainder of the proof, we use induction to show that the right hand side of

(4.25) at this solution has the following relationship

uk−1 +
∑
j∈L̂+

ρj +
∑
t∈M̂

δt ≥ v({s} ∪ L̂+|qt−1 = 0, ∀t ∈M \ M̂).

First, we make some observations on the values δj. The flow sent on a production

arc j while computing v({j}) flows on three directions: (i) to satisfy the demand dj,

(ii) through the backlog arc (j, j − 1) and (iii) through the inventory arc (j, j + 1).

If the backlog arc (j, j − 1) is closed, then the flow corresponding to v({j}|qj−1 = 0),

consists of the latter two components. As a result,

v({j}) = v({j}|qj−1 = 0) + v({j}|zj = 0)− dj.

This logic extends to the δmj
values as well. The definition in (4.28) is equivalent to

the maximum change in the maximum flow value sent on arc mj when the backlog arc

83

(mj,mj−1) is opened, given that the backlog arcs {(m1,m1−1), . . . , (mj−1,mj−1−1)}
are closed.

In the base case, let m̂|M̂ | = mt for some mt ∈ M and suppose that all backlog

arcs (j, j − 1) for j ∈M are closed. When the backlog arc (mt,mt − 1) is opened, the

maximum flow that can be sent on it through the production arc mt is equal to δmt .

Due to assumption (1), among the production arcs [mt, ℓ], the production arc mt can

send the largest flow on the backlog arc (mt,mt − 1). Consequently,

v({s} ∪ L̂|qj−1 = 0, ∀j ∈M \ {mt})− v({s} ∪ L̂|qj−1 = 0,∀j ∈M)

≤ v({mt}|qmi−1 = 0,∀i ∈ [1, t− 1])− v({mt}|qmi−1 = 0,∀i ∈ [1, t])) (4.30)

which proves the base case of the induction.

At level j of the induction, assuming that

v({s} ∪ L̂|qi−1 = 0,∀j ∈M \ {m̂j+2, . . . , m̂|M̂ |}) + δm̂j+1

≥ v({s} ∪ L̂|qi−1 = 0, ∀i ∈M \ {m̂j+1, . . . , m̂|M̂ |})

holds we show

v({s} ∪ L̂|qi−1 = 0, ∀i ∈M \ {m̂j+1, . . . , m̂|M̂ |}) + δm̂j

≥ v({s} ∪ L̂|qi−1 = 0,∀i ∈M \ {m̂j, . . . , m̂|M̂ |}).

Using the same logic as the base case, we know that among the production arcs [mj, ℓ]

the arc m̂j can send the largest flow on the backlog arc (m̂j, m̂j − 1). Let ml = m̂j for

ml ∈M , then

v({s} ∪ L̂|qi−1 = 0, ∀i ∈M \ {m̂j+1, . . . , m̂|M̂ |})

− v({s} ∪ L̂|qi−1 = 0,∀i ∈M \ {m̂j, . . . , m̂|M̂ |})

≤ v({m̂j}|qmi−1 = 0, ∀i ∈ [1, l − 1])− v({m̂sj}|qmi−1 = 0,∀i ∈ [1, l])) (4.31)

which shows that the induction holds.

Consequently, we show that inequality (4.25) is valid since

i∗k−1 +
∑
j∈L̂+

y∗j − iℓ − rk−1 ≤ v({s} ∪ L̂+|qt−1 = 0,∀t ∈M \ M̂)

≤ uk−1 +
∑
j∈L̂+

ρj +
∑
t∈M̂

δt.

84

Proposition 4.13. The inequality

ik−1 +
∑
j∈L+

yj +
∑
j∈H

γj(1− zj) ≤ uk−1 +
∑
j∈L+

ρjxj + iℓ + rk−1 +
∑
j∈M

δjqj−1, (4.32)

where ρj for j ∈ L+ and δj for j ∈ M are defined as in (4.26) and (4.27) respectively

and

γhi
=

{
min{(uk−1 − dkhi

)+, dhi+1,hi+1
} if m(hi) = m(h(i+1)),

min{(uk−1 − dkhi
)+, dhi+1,m(hi)−1} if m(hi) < m(h(i+1))

(4.33)

is valid for LSBIB.

Proof. The coefficients of γhi
can be written in terms of the functions v and ρ.

γhi
= ρs(L(hi)|zhj

= 0,∀j ∈ [i+ 1, τ], qj−1 = 0,∀j ∈M)

− ρs(L(hi)|zhj
= 0, ∀j ∈ [i, τ], qj−1 = 0, ∀j ∈M).

Similarly, the definitions for δj and ρj are provided in (4.28) and (4.29).

Similar to the lot-sizing without backlog arcs, these coefficients depend on the order

of variables in sets H and M . In this chapter, we assume that the elements of H and

M are in increasing order.

Let (x∗, y∗, i∗, r∗, q∗, z∗) be a feasible solution to LSBIB. For feasible solutions where

z∗t = 1 for all t ∈ [k, ℓ], inequality (4.32) is equivalent to (4.25) and valid for LSBIB.

Let L̂+ := {j ∈ L+ : x∗j = 1}, Ĥ := {j ∈ H : z∗j = 0} and M̂ := {j ∈M : q∗j−1 = 1}.
Recall that S+ = {(k − 1, k)} and let us represent the inventory arc (k − 1, k) with

index s. From the definition of the function v with objective ik−1+
∑

j∈L+ yj−iℓ−rk−1,

we know that

i∗k−1 +
∑
j∈L+

y∗j − i∗ℓ − r∗k−1 ≤ v({s} ∪ L̂+|qj−1 = 0,∀j ∈M \ M̂, zj = 0, ∀j ∈ Ĥ).

Let

R := uk−1 +
∑
j∈L̂+

ρj +
∑
t∈M̂

δt −
∑
t∈Ĥ

γt

be the right hand side of inequality (4.32) at this solution. In this proof, we show that

R ≥ v({s} ∪ L̂+|qj−1 = 0, ∀j ∈M \ M̂, zj = 0,∀j ∈ Ĥ).

The first part of the proof follows similar to that of Proposition E.3. For notational

convenience let

ρs(L(t)|zt = 0, qj−1 = 0,∀j ∈M) = ρs(L(t)|zt = 0,M)

85

and

v(S+|zt = 0, qj−1 = 0, ∀j ∈M) = v(S+|zt = 0,M).

Let hmax = max{j ∈ Ĥ}. Then, using submodularity and the path structure of

LSBIB, we observe the following

v({s})− ρs(L(hmax)|zhmax+1 = 0,M) + ρs(L(hmax)|zhmax = 0,M)

+
∑

j∈L̂(hmax)

ρj({s}|M) (4.34)

≥ v({s} ∪ L̂(hmax)|M)− ρs(L(hmax)|zhmax+1 = 0,M)

+ ρs(L(hmax)|zhmax = 0,M) (4.35)

≥ v({s} ∪ L̂(hmax)|M)− ρs(L̂(hmax)|zhmax+1 = 0,M)

+ ρs(L(hmax)|zhmax = 0,M) (4.36)

≥ v({s} ∪ L̂(hmax)|M)− ρs(L̂(hmax)|M) + ρs(L(hmax)|zhmax = 0,M) (4.37)

= v(L̂(hmax)|M) + ρs(L(hmax)|zhmax = 0,M) (4.38)

= v({s} ∪ L̂(hmax)|zhmax = 0,M). (4.39)

Inequality (4.35) is obtained using the submodularity of the function v and the fact

that

v({s}) = v({s}|M) = uk−1.

Inequality (4.37) holds since for any hj ∈ H and hi ≥ hj,

ρs(L(hj)|zhi
= 0,M) ≤ ρs(L(hj)|M)

due to the path structure of LSBIB. Similarly, we reach the equality of (4.37) and (4.38)

since v(L̂(hmax)|M) = v(L̂(hmax)|zhmax = 0,M). Using the inequality (4.34)–(4.39), we

observe that

R−
∑
t∈M̂

δt ≥v({s} ∪ L̂(hmax)|zhmax = 0,M)

−
∑

i∈T̂\{hmax}

(
ρs(L(hi)|zhi+1

= 0,M)− ρs(L(hi)|zhi
= 0,M)

)
+

∑
i∈L̂+\L̂(hmax)

ρi({s}|M).

For the rest of the proof, we use an induction approach. First, we introduce some

notation for simplification: let Ĥ(hj) = Ĥ ∩ {hj, . . . , hτ} and let v(C|Ĥ(hj),M) :=

v(C|zi = 0, ∀i ∈ Ĥ(hj), qi−1 = 0,∀i ∈ M) and ρl(C|Ĥ(hj),M) := ρl(C|zi = 0,∀i ∈
Ĥ(hj), qi−1 = 0, ∀i ∈M).

86

Assuming that the following is true

R−
∑
t∈M̂

δt ≥v({s} ∪ L̂(hj+1)|Ĥ(hj+1),M)

−
∑

i∈Ĥ\[hj+1,hτ]

(ρs(L(hi)|zhi+1
= 0,M)− ρs(L(hi)|zhi

= 0,M))

+
∑

i∈L̂+\L̂(hj+1)

ρi({s}|M)

for iteration j+1, we extend the result for hj. First, we make the following observation

ρi({s}|M) ≥ ρi({s}|zhj+1
= 0,M) = ρi({s}|zhi

= 0,∀i ∈ [j + 1, τ],M)

for any i ∈ L+ \ L(hj+1). Then,

v({s} ∪ L̂(hj+1)|Ĥ(hj+1),M)− ρs(L(hj)|hj+1 = 0) + ρs(L(hj)|zhj
= 0,M)

+
∑

i∈L̂(hj)\L̂(hj+1)

ρi({s}|M) (4.40)

≥ v({s} ∪ L̂(hj)|Ĥ(hj+1),M)− ρs(L(hj)|hj+1 = 0,M)

+ ρs(L(hj)|zhj
= 0,M) (4.41)

≥ v(L̂(hj)|Ĥ(hj+1),M) + ρs(L(hj)|zhj
= 0,M) (4.42)

= v({s} ∪ L̂(hj)|Ĥ(hj),M). (4.43)

Inequalities (4.41)–(4.42) are obtained from the observation above and submodularity

of the function v and the equality of (4.42) to (4.43) is due to the path structure of

LSBIB. As a result of the induction, we have proved that

R ≥ v({s} ∪ L̂|Ĥ,M) +
∑
t∈M̂

δt.

In the second step of the proof, we show that

v({s} ∪ L̂|Ĥ,M) +
∑
t∈M̂

δt ≥ v({s} ∪ L̂|Ĥ,M \ M̂). (4.44)

In the proof of Proposition 4.12, we discuss that δj only depends on the backlog arcs

{(k+1, k), . . . , (j, j−1)} and not on the inventory arcs. Consequently, we observe that

δmj
= v({mj}|qmi−1 = 0, ∀i ∈ [1, j − 1])− v({mj}|qmi−1 = 0,∀i ∈ [1, j])

= v({mj}|qmi−1 = 0, ∀i ∈ [1, j − 1], Ĥ)− v({mj}|qmi−1 = 0, ∀i ∈ [1, j], Ĥ).

87

Then, showing the relationship in (4.44) is a repetition of the proof of Proposition 4.12

for a lot-sizing network where the upper-bounds of inventory arcs in Ĥ are all zero. As

a result, we conclude that

i∗k−1 +
∑
j∈L+

yj − iℓ − rk−1 ≤ v({s} ∪ L̂+|qj−1 = 0, ∀j ∈M \ M̂, zj = 0,∀j ∈ Ĥ) ≤ R

and inequality (4.32) is valid for LSBIB.

Proposition 4.14. Inequality (4.32) can be strengthened by partitioning the set M

into two subsets M1 and M2 where M1 = {t ∈ M : δt < bt−1} and M2 = M \M1.

Then,

ik−1 +
∑
j∈L+

yj +
∑
j∈H

γj(1− zj) ≤ uk−1 +
∑
j∈L+

ρjxj + iℓ + rk−1 +
∑
j∈M1

δjqj−1 +
∑
j∈M2

rj−1,

(4.45)

where ρj for j ∈ L+, δj for j ∈ M and γj for j ∈ H are defined in (4.26), (4.27) and

(4.33), respectively, is also valid for LSBIB.

Proof. We use a simple reformulation argument to show validity of inequality (4.45).

Suppose we break a backlog arc (t, t − 1) into two clone arcs: one arc incoming to

node t− 1 and one arc outgoing from node t. Then, we force the flows on these clone

arcs to be equal to each other by adding non-anticipativity constraints. Now, consider

the submodular function v where the objective function coefficients of the outgoing

backlog clones are −1 while the coefficients of the incoming backlog clones are 0. To

obtain inequality (4.45), the backlog arcs (j, j− 1) for all j ∈M2 are cloned. Since the

coefficients of xt for t ∈ L+ assume that the backlog arcs (j, j − 1) for all j ∈ M are

closed, the coefficients for t ∈ L+ as inequalities (4.25) and (4.32).

Let (x∗, y∗, i∗, r∗, q∗, z∗) be a feasible solution to LSBIB and let L̂+ := {j ∈ L+ :

x∗j = 1}, Ĥ := {j ∈ H : z∗j = 0} and M̂ := {j ∈ M : q∗j−1 = 1}. Then, using the

definition of v with the objective function ik−1 +
∑

j∈L+ yj −
∑

j∈M2
rj−1 − iℓ − rk−1,

we observe that

i∗k−1 +
∑
j∈L+

y∗j − i∗ℓ − r∗k−1 −
∑
j∈M2

r∗j−1

≤ v({s} ∪ L̂+|qj−1 = 0,∀j ∈M1 \ M̂, zj = 0,∀j ∈ Ĥ).

As a result, it suffices to show that

uk−1 +
∑
j∈L̂

ρj +
∑

j∈M̂∩M1

δj −
∑
j∈Ĥ

γj

≥ v({s} ∪ L̂+|qj−1 = 0,∀j ∈M1 \ M̂, zj = 0,∀j ∈ Ĥ)

88

to prove the validity of inequality (4.45). We omit the remainder of the proof since it

follows very similarly to the proof of Proposition 4.13.

Proposition 4.15. The inequality

ik−1 +
∑
j∈L+

yj +
∑
j∈H

γj(1− zj) ≤ uk−1 +
∑
j∈L+

ρjxj +
∑
j∈M

δjqj−1 + rk−1 (4.46)

where δj for j ∈ M and γj for j ∈ H are defined as in (4.27) and (4.33), respectively

and

ρj =

min{dkj + uj − uk−1, uj + dj} if j ∈M,

min{dkj + uj − uk−1, uj + dj}+min{(dk,j−1 − uk−1)
+, dmi,j−1} if

mi < j < mi+1, i = 0, . . . , |M |

is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.32 with the exception

that the function v is computed using the objective function ik−1+
∑

j∈L+ yj−rk−1.

Let d̄ij = dij + bk−1 if i = k and dij otherwise.

Proposition 4.16. The inequality

ik−1 +
∑
j∈L+

yj +
∑
j∈H

γj(1− zj) ≤ uk−1 +
∑
j∈L+

ρjxj +
∑
j∈M

δ̄jqj−1 (4.47)

where γj for j ∈ H is defined as in (4.33),

ρj =

min{bk−1 + dkj + uj − uk−1, uj + dj} if j ∈M,

min{bk−1 + dkj + uj − uk−1, uj + dj}
+min{(bk−1 + dk,j−1 − uk−1)

+, d̄mi,j−1} if mi < j < mi+1, i = 0, . . . , |M |

and

δ̄mi
= min{bmi−1, d̄mi−1,mi−1}, ∀ mi ∈M (4.48)

is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.32 with the exception

that the function v is computed using the objective function ik−1 +
∑

j∈L+ yj.

Remark 4.5. If M = L+ and the backlog arc capacities are zero, then inequality

(4.47) reduces to inequality (19) of Atamtürk and Küçükyavuz (2005).

89

Proposition 4.17. The inequality

ik−1 +
∑
j∈L+

yj +
∑
j∈H

γj(1− zj) ≤ uk−1 +
∑
j∈L+

ρjxj +
∑
j∈M

δ̄jqj−1 + iℓ, (4.49)

where γj for j ∈ H and δ̄j for j ∈ M are defined as in (4.33) and (4.48), respectively

and

ρj =

min{bk−1 + dkj + uj − uk−1, bk−1 + dkℓ − uk−1, uj + dj, djℓ} if j ∈M,

min{bk−1 + dkj + uj − uk−1, bk−1 + dkℓ − uk−1, uj + dj, djℓ}
+min{(bk−1 + dk,j−1 − uk−1)

+, d̄mi,j−1} if mi < j < mi+1, i = 0, . . . , |M |

is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.32 with the exception

that the function v is computed using the objective function ik−1 +
∑

j∈L+ yj − iℓ.

Remark 4.6. If M = L+ and the backlog arc capacities are zero, then inequality

(4.49) reduces to inequality (9) of Atamtürk and Küçükyavuz (2005).

Remark 4.7. The procedure described in Proposition 4.14 can be applied to inequal-

ities (4.46), (4.47), (4.49) by partitioning the set M into two subsets:

M1 = {t ∈M : δt < bt−1}

and M2 =M \M1. If j ∈M1, then the backlog arc (j, j− 1) appears in the right hand

side of these inequalities as δjqj−1 and as rj−1, otherwise. Notice that, any partition of

M into M1 and M2 would conserve the feasibility.

The partition M1 and M2 that maximizes the violation of these inequalities by a

given point (x̄, ȳ, ī, r̄, q̄, z̄) ∈ R6n can be found in linear time. Simply, add a backlog

arc (j, j − 1) to M2 if and only if

r̄j−1 < δjx̄j−1.

Let d̂i = (diℓ − bℓ)
+ for i ≥ m|M | and di otherwise and let d̂ij =

∑j
t=i d̂t if i ≤ j and

0 otherwise. Moreover, let d′ij = d̂ij + bk−1 if i = k and d̂ij otherwise,

Proposition 4.18. The inequality

ik−1 + rℓ +
∑
j∈L+

yj +
∑
j∈H

γj(1− zj)

≤ min{uk−1 + bℓ, bk−1 + dkℓ + uℓ}+
∑
j∈L+

ρjxj +
∑
j∈M

δ̂jqj−1, (4.50)

90

where

γhi
=

{
min{(uk−1 − d̂khi

)+, d̂hi+1,hi+1
} if m(hi) = m(h(i+1)),

min{(uk−1 − d̂khi
)+, d̂hi+1,m(hi)−1} if m(hi) < m(h(i+1))

(4.51)

ρj =

min{bk−1 + d̂kj + uj − uk−1, uj + d̂j} if j ∈M,

min{bk−1 + d̂kj + uj − uk−1, uj + d̂j}+min{(bk−1 + d̂k,j−1 − uk−1)
+, d′mi,j−1} if

mi < j < mi+1, i = 0, . . . , |M |

and

δ̂mi
= min{bmi−1, d

′
mi−1,mi−1}, ∀ mi ∈M (4.52)

is valid for LSBIB.

Proof. In this inequality, the cover set is S+ = {(k−1, k), (ℓ+1, ℓ)} and for convenience,

let the indices s1 and s2 represent arcs (k−1, k) and (ℓ+1, ℓ), respectively. The objective

function used to compute v is ik−1 + rℓ +
∑

j∈L+ yj. The coefficients ρj, γj and δ̂j are

derived from the submodular function v where

ρj = ρj(S
+|qi−1 = 0, ∀i ∈M), (4.53)

γhi
= ρs1(L(hi) ∪ {s2}|zhj

= 0,∀j ∈ [i+ 1, τ], qj−1 = 0,∀j ∈M)

− ρs1(L(hi) ∪ {s2}|zhj
= 0,∀j ∈ [i, τ], qj−1 = 0,∀j ∈M)

and

δ̂mi
= v({mj, s2}|qmi−1 = 0,∀i ∈ [1, j − 1])− v({mj, s2}|qmi−1 = 0, ∀i ∈ [1, j]). (4.54)

Let (x∗, y∗, i∗, r∗, q∗, z∗) be a feasible solution to LSBIB. Let L̂+ := {j ∈ L+ : x∗j =

1}, Ĥ := {j ∈ H : z∗j = 0} and M̂ := {j ∈ M : q∗j−1 = 1}. From the definition of the

function v, we know that

i∗k−1 + r∗ℓ +
∑
j∈L+

y∗j ≤ v({s1, s2} ∪ L̂+|qj−1 = 0, ∀j ∈M \ M̂, zj = 0,∀j ∈ Ĥ).

Let

R := min{uk−1 + bℓ, bk−1 + dkℓ + uℓ}+
∑
j∈L̂+

ρj +
∑
t∈M̂

δt −
∑
t∈Ĥ

γt

91

be the right hand side of inequality (4.50) at this solution. Moreover, in this inequality

v(S+) = min{uk−1 + bℓ, bk−1 + dkℓ + uℓ}.

The rest of the proof is equivalent to the proof of Proposition (4.16), where the upper

bound of the backlog arc (ℓ + 1, ℓ) is saturated into the nodes in [m|M |, ℓ]. In other

words, the demand values are taken as d̂j instead of dj.

Proposition 4.19. The inequality

ik−1 + rℓ +
∑
j∈L+

yj +
∑
j∈H

γj(1− zj)

≤ min{uk−1 + bℓ, dkℓ + uℓ}+
∑
j∈L+

ρjxj +
∑
j∈M

δ̂jqj−1 + rk−1, (4.55)

where γj for j ∈ H is defined as in (4.51) and

ρj =

min{d̂kj + uj − uk−1, uj + d̂j} if j ∈M,

min{d̂kj + uj − uk−1, uj + d̂j}+min{(d̂k,j−1 − uk−1)
+, d̂mi,j−1} if

mi < j < mi+1, i = 0, . . . , |M |

and

δ̂mi
= min{bmi−1, d̂mi−1,mi−1}, ∀ mi ∈M (4.56)

is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.18 with the exception that

the function v is computed using the objective function ik−1+rℓ+
∑

j∈L+ yj−rk−1.

Proposition 4.20. The inequality

ik−1 + rℓ +
∑
j∈L+

yj +
∑
j∈H

γj(1− zj)

≤ min{uk−1 + bℓ, dkℓ + bk−1}+
∑
j∈L+

ρjxj +
∑
j∈M

δ̂jqj−1 + iℓ, (4.57)

where γj for j ∈ H and δ̂j for j ∈ M are defined as in (4.51) and (4.56), respectively

and

ρj =

min{bk−1 + d̂kj + uj − uk−1, bk−1 + d̂kℓ − uk−1, uj + d̂j, d̂jℓ} if j ∈M,

min{bk−1 + d̂kj + uj − uk−1, bk−1 + d̂kℓ − uk−1, uj + d̂j, d̂jℓ}
+min{(bk−1 + d̂k,j−1 − uk−1)

+, d′mi,j−1} if mi < j < mi+1, i = 0, . . . , |M |

92

is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.18 with the exception

that the function v is computed using the objective function ik−1+rℓ+
∑

j∈L+ yj−iℓ.

Remark 4.8. The procedure described in Remark 4.7 and Proposition 4.14 can be

applied to inequalities (4.50), (4.55), (4.57) by partitioning the setM into two subsets:

M1 = {t ∈M : δ̄t < bt−1}

and M2 =M \M1. If j ∈M1, then the backlog arc (j, j− 1) appears in the right hand

side of these inequalities as δjqj−1 and as rj−1, otherwise. Notice that, any partition of

M into M1 and M2 would conserve the feasibility.

The partition M1 and M2 that maximizes the violation of these inequalities by a

given point (x̄, ȳ, ī, r̄, q̄, z̄) ∈ R6n can be found in linear time. Simply, add a backlog

arc (j, j − 1) to M2 if and only if

r̄j−1 < δ̄jx̄j−1.

Let T = {t1, . . . , t|T |} be a subset of backlog arc indices in an increasing order. In

this convention, ti = j refers to the backlog arc (j + 1, j). For a backlog arc (j + 1, j),

we define n(j) = max{t ∈ L+ ∪ {(k − 1)} : t ≤ j}. Moreover, let K = ∪r
i=1n(ti).

Alternatively, we represent this set as K = {k1, . . . , k|K|}. For convenience, let k0 = k,

k|K|+1 = ℓ and t0 = k, t|T |+1 = ℓ. Finally, let L̄(t) = L+ ∩ [k, t].

Proposition 4.21. The inequality

rℓ +
∑
t∈L+

yt +
∑
j∈T

ϕj(1− qj) ≤ bℓ +
∑
j∈L+

ρjxj +
∑
j∈K

ψjzj + iℓ + rk−1, (4.58)

where

ρj =

min{djℓ + bj−1 − bℓ, dkℓ − bℓ, dj + bj−1, dkj} if j ∈ K,

min{djℓ + bj−1 − bℓ, dkℓ − bℓ, dj + bj−1, dkj}+min{(dj+1,ℓ − bℓ)
+, dj+1,ki+1

} if

ki < j < ki+1, i = 0, . . . , |K|,

ϕti =

{
min{(bℓ − dti+1,ℓ)

+, dti−1+1,ti} if n(ti−1) = n(ti),

min{(bℓ − dti+1,ℓ)
+, dn(ti)+1,ti} if n(ti−1) < n(ti)

(4.59)

and

ψki = min{uki , dki+1,ki+1
}, ∀ ki ∈ K

93

is valid for LSBIB.

Proof. In this inequality, the cover set is S+ = {(ℓ+1, ℓ)} and for convenience, let the

index s represent the backlog arc (ℓ + 1, ℓ). In this inequality, the objective function

used to compute v is rℓ +
∑

j∈L+ yj − iℓ − rk−1. The coefficients ρj, ϕj and ψj are

derived from the submodular function v where

ρj = ρj(S
+|zi = 0, ∀i ∈ K), (4.60)

ϕtj = ρs(L̄(tj) ∪ {s}|qti = 0,∀i ∈ [1, j − 1], zi = 0,∀i ∈ K)

− ρs(L̄(tj)|qti = 0,∀i ∈ [1, j], zi = 0,∀i ∈ K)

and

ψkj = v({kj}|zki = 0,∀i ∈ [j + 1, |K|])− v({kj}|zki = 0,∀i ∈ [j, |K|]). (4.61)

Inequality (4.58) is equivalent to inequality (4.32) for the mirrored image of the node

set [k, ℓ]. More formally, consider renaming nodes k, k+1, . . . , ℓ as ℓ̄, ℓ̄−1, . . . , k̄, respec-

tively. Moreover, rename the backlogging variables rℓ, rℓ−1, . . . , rk−1 as īk−1, īk, . . . , īℓ
and rename the inventory variables ik−1, ik, . . . , iℓ as r̄ℓ, r̄ℓ−1, . . . , r̄k−1, respectively.

Then, inequality (4.32) for the node set [k̄, ℓ̄], where S+ = {(k̄ − 1, k̄)} is equiva-

lent to inequality (4.58), where S+ = {(ℓ + 1, ℓ)}. Consequently, the proof of this

proposition is a symmetric version of the proof of Proposition 4.32.

Proposition 4.22. The inequality

rℓ +
∑
t∈L+

yt +
∑
j∈T

ϕj(1− qj) ≤ bℓ +
∑
j∈L+

ρjxj +
∑
j∈K

ψjzj + iℓ, (4.62)

where ϕj is defined as in (4.59),

ρj =

min{djℓ + bj−1 − bℓ, dj + bj−1} if j ∈ K,

min{djℓ + bj−1 − bℓ, dj + bj−1}+min{(dj+1,ℓ − bℓ)
+, dj+1,ki+1

} if

ki < j < ki+1, i = 0, . . . , |K|,

and

ψki = min{uki , dki+1,ki+1
}, ∀ ki ∈ K

is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.22 with the exception that

94

the function v is computed using the objective function rℓ +
∑

j∈L+ yj − iℓ. Moreover,

notice that inequality (4.62) is symmetric to inequality (4.46).

Proposition 4.23. The inequality

rℓ +
∑
t∈L+

yt +
∑
j∈T

ϕj(1− qj) ≤ bℓ +
∑
j∈L+

ρjxj +
∑
j∈K

ψjzj, (4.63)

where ϕj is defined as in (4.59),

ρj =

min{uℓ + djℓ + bj−1 − bℓ, dj + bj−1} if j ∈ K,

min{uℓ + djℓ + bj−1 − bℓ, dj + bj−1}
+min{(uℓ + dj+1,ℓ − bℓ)

+, d̄j+1,ki+1
} if ki < j < ki+1, i = 0, . . . , |K|,

and

ψki = min{uki , d̄ki+1,ki+1
}, ∀ ki ∈ K

with d̄ij = dij + uℓ if j = ℓ and dij otherwise, is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.22 with the exception

that the function v is computed using the objective function rℓ +
∑

j∈L+ yj. Moreover,

notice that inequality (4.63) is symmetric to inequality (4.47).

Proposition 4.24. The inequality

rℓ +
∑
t∈L+

yt +
∑
j∈T

ϕj(1− qj) ≤ bℓ +
∑
j∈L+

ρtxj +
∑
j∈K

ψjzj + rk−1, (4.64)

where ϕj is defined as in (4.59),

ρj =

min{uℓ + djℓ + bj−1 − bℓ, uℓ + dkℓ − bℓ, dj + bj−1, dkj} if j ∈ K,

min{uℓ + djℓ + bj−1 − bℓ, uℓ + dkℓ − bℓ, dj + bj−1, dkj}
+min{(uℓ + dj+1,ℓ − bℓ)

+, d̄j+1,ki+1
} if ki < j < ki+1, i = 0, . . . , |K|,

and

ψki = min{uki , d̄ki+1,ki+1
}, ∀ ki ∈ K

with d̄ij = dij + uℓ if j = ℓ and dij otherwise, is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.22 with the exception

that the function v is computed using the objective function rℓ +
∑

j∈L+ yj − rk−1.

Moreover, notice that inequality (4.64) is symmetric to inequality (4.49).

95

Remark 4.9. The procedure described in Remark 4.7 and Proposition 4.14 can be

applied to inequalities (4.58), (4.62), (4.63) and (4.64) by partitioning the set K into

two subsets:

K1 = {t ∈ K : ψt < ut}

and K2 = K \K1. If j ∈ K1, then the inventory arc (j, j+1) appears in the right hand

side of these inequalities as ψjzj and as ij, otherwise. Notice that, any partition of K

into K1 and K2 would conserve the feasibility.

The partition K1 and K2 that maximizes the violation of these inequalities by a

given point (x̄, ȳ, ī, r̄, q̄, z̄) ∈ R6n can be found in linear time. Simply, add an inventory

arc (j, j + 1) to K2 if and only if

īj < ψj z̄j.

Let d̃i = (dki − uk−1)
+ for i ≤ k1 and di otherwise. Moreover, let d̃ij =

∑j
t=i d̃t if

i ≤ j and 0 otherwise.

Proposition 4.25. The inequality

ik−1 + rℓ +
∑
j∈L+

yj +
∑
j∈T

ϕj(1− qj)

≤ min{uk−1 + bℓ, bk−1 + dkℓ + uℓ}+
∑
j∈L+

ρjxj +
∑
j∈K

ψjzj, (4.65)

where

ρj =

min{uℓ + d̃jℓ + bj−1 − bℓ, d̃j + bj−1} if j ∈ K,

min{uℓ + d̃jℓ + bj−1 − bℓ, d̃j + bj−1}
+min{(uℓ + d̃j+1,ℓ − bℓ)

+, d̄j+1,ki+1
} if ki < j < ki+1, i = 0, . . . , |K|,

ϕti =

{
min{(bℓ − d̃ti+1,ℓ)

+, d̃ti−1+1,ti} if n(ti−1) = n(ti),

min{(bℓ − d̃ti+1,ℓ)
+, d̃n(ti)+1,ti} if n(ti−1) < n(ti)

(4.66)

and

ψki = min{uki , d̄ki+1,ki+1
}, ∀ ki ∈ K

with d̄ij = d̃ij + uℓ if j = ℓ and d̃ij otherwise, is valid for LSBIB.

Proof. In this inequality, the cover set is S+ = {(k−1, k), (ℓ+1, ℓ)} and for convenience,

let the indices s1 and s2 represent arcs (k − 1, k) and (ℓ+ 1, ℓ), respectively. Here, the

objective function used to compute v is ik−1 + rℓ +
∑

j∈L+ yj. The coefficients ρj, ϕj

96

and ψj are derived from the submodular function v where

ρj = ρj(S
+|zi = 0, ∀i ∈ K),

ϕtj = ρs2(L̄(tj) ∪ {s1}|qti = 0,∀i ∈ [1, j − 1], zi = 0, ∀i ∈ K)

− ρs2(L̄(tj) ∪ {s1}|qti = 0, ∀i ∈ [1, i], zi = 0, ∀i ∈ K)

and

ψkj = v({kj, s1}|zki = 0,∀i ∈ [j + 1, |K|])− v({kj, s1}|zkj = 0,∀i ∈ [j, |K|]).

Inequality (4.65) is symmetrical to inequality (4.50). Moreover, the coefficients ϕj for

j ∈ T , ρj for j ∈ L+ and ψj for j ∈ K are equivalent to the coefficients of inequality

(4.63), where the demands at nodes [k, k1] are saturated with the upper-bound of

the inventory arc (k − 1, k). Consequently, the proof follows very closely to that of

Proposition 4.18.

Proposition 4.26. The inequality

ik−1 + rℓ +
∑
j∈L+

yj +
∑
j∈T

ϕj(1− qj)

≤ min{uk−1 + bℓ, dkℓ + uℓ}+
∑
j∈L+

ρjxj +
∑
j∈K

ψjzj + rk−1, (4.67)

where ϕj for j ∈ T is defined as in (4.66),

ρj =

min{uℓ + d̃jℓ + bj−1 − bℓ, uℓ + d̃kℓ − bℓ, d̃j + bj−1, d̃kj} if j ∈ K,

min{uℓ + d̃jℓ + bj−1 − bℓ, uℓ + d̃kℓ − bℓ, d̃j + bj−1, d̃kj}
+min{(uℓ + d̃j+1,ℓ − bℓ)

+, d̄j+1,ki+1
} if ki < j < ki+1, i = 0, . . . , |K|,

and

ψki = min{uki , d̄ki+1,ki+1
}, ∀ ki ∈ K

with d̄ij = d̃ij + uℓ if j = ℓ and d̃ij otherwise, is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.25 with the exception that

the function v is computed using the objective function ik−1+rℓ+
∑

j∈L+ yj−rk−1.

Proposition 4.27. The inequality

97

ik−1 + rℓ +
∑
j∈L+

yj +
∑
j∈T

ϕj(1− qj)

≤ min{uk−1 + bℓ, dkℓ + bk−1}+
∑
j∈L+

ρjxj +
∑
j∈K

ψjzj + iℓ, (4.68)

where ϕj for j ∈ T is defined as in (4.66),

ρj =

min{d̃jℓ + bj−1 − bℓ, d̃j + bj−1} if j ∈ K,

min{d̃jℓ + bj−1 − bℓ, d̃j + bj−1}+min{(d̃j+1,ℓ − bℓ)
+, d̃j+1,ki+1

} if

ki < j < ki+1, i = 0, . . . , |K|,

and

ψki = min{uki , d̃ki+1,ki+1
}, ∀ ki ∈ K

is valid for LSBIB.

Proof. The proof follows very similar to that of Proposition 4.25 with the exception

that the function v is computed using the objective function ik−1+rℓ+
∑

j∈L+ yj−iℓ.

Remark 4.10. The partition procedure described in Remark 4.9 can be extended to

inequalities (4.65), (4.67) and (4.68).

4.3.1 Strength of lifted inequalities

In this section, we investigate the conditions under which some of these valid in-

equalities are facet defining for the convex hull of P. Let [k, ℓ] ⊆ [1, n], S+ ⊆ E+,

L+ ⊆ E+ \ S+ and S− ⊆ E−. For convenience, we introduce some notation in this

section. The inventory arc (k − 1, k) is presented by index s. Let the elements of the

set L+ be represented by {l1, . . . , lL} and let ε > 0 be a sufficiently small value. We

also define the following indices:

p = min{j ∈ L+ : uk−1 ≤ dkj},

t̂ = min{j ∈ [k, ℓ+ 1] \ L+}

and

t̃ = max{j ∈ L+ : j ≤ p}.

Moreover, let ej, fj, gj, hj, kj and mj be the unit vectors corresponding to variables

yj, ij, rj, xj, zj and qj respectively.

Theorem 4.28. For a node set [k, ℓ], let H ⊆ [k − 1, ℓ − 1], M = L+ in Proposition

4.13. Recall that in S+ = {(k − 1, k)} and S− = ∅ in inequality (4.32). If dj > 0

98

for all j ∈ [k, ℓ], then the conditions below are sufficient for inequality (4.32) to be

facet-defining for conv(P):

(i) (k − 1) ∪ {[k, p− 1] ∩ L+} ⊆ H;

(ii) for all j ∈ L+, ρj({s}) > 0;

(iii) ut̃ > dt̃+1,ℓ;

(iv) ul1 ≥ dl1+1,ℓ;

(v) if uk−1 = dk,p−1, then l1 < p, otherwise l1 ≤ p;

(vi) t̂ ∈ [k, p], ut̂ ≥ dt̂+1,ℓ and bt̂−1 ≥ dkt̂−1;

(vii) if ℓ < n, then ulL ≥ dlL+1,ℓ+1;

(viii) for all lj ∈ L+ blj−1 > dlj−1,lj−1.

Proof. We provide 5n− 2 affinely independent points that lie on the face:

F =
{
(y, i, r,x, z,q) ∈ P :

ik−1 +
∑
t∈L+

(yt − ρjxj) +
∑
t∈H

γj(1− zj)− iℓ − rk−1 −
∑
j∈L+

δjqj−1 = uk−1

}
.

Consider the following base values for variables (y, i, r,x, z,q) of LSBIB described

below:

ij =

0, j ∈ [1, k − 2] ∪ [ℓ, n],

uk−1, j = k − 1,

(uk−1 − dkj)
+, j ∈ [k, l − 1],

yj =

dj, j ∈ [1, k − 2] ∪ [ℓ+ 1, n],

dk−1 + uk−1, j = k − 1,

0, j ∈ [k, ℓ],

zj =

{
0, j ∈ [1, k − 2] ∪ [ℓ, n],

1, j ∈ [k − 1, ℓ− 1],
xj =

{
1, j ∈ [1, k − 1] ∪ [ℓ+ 1, n],

0, j ∈ [k, ℓ],

rj = 0, j ∈ [1, n], q∗j = 0, j ∈ [1, n].

Let w0 be the vector representation of the solution above:

w0 =
∑

j∈[1,k−2]

(djej + hj) +
∑

j∈[ℓ+1,n]

(djej + hj) + (dk−1 + uk−1)ek−1 + hk−1+∑
j∈[k,ℓ−1]

kj +
∑

j∈[k−1,p−1]

(uk−1 − dkj)fj.

Since uk−1 < dkℓ, w0 is not feasible for LSBIB. In the remainder of the proof we perturb

w0 in various ways to obtain 5n− 2 affinely independent points.

First, we give 2|L+| feasible points represented by wj and w̄j for j ∈ L+.

99

(i) For j ∈ L+: If j ≤ p, then

wj = w0 + hj + (dkℓ − uk−1)ej +
∑

t∈[j,p−1]

(dt+1,ℓ − (uk−1 − dkt))ft +
∑
t∈[p,ℓ]

dt+1,ℓft;

otherwise let

wj = w0 + hj + ht̂ + djℓej + (dk,j−1 − uk−1)et̂

+
∑

t∈[t̂,p−1]

(dt+1,j−1 − (uk−1−dkt))ft +
∑

t∈[p,j−1]

dt+1,j−1ft +
∑
t∈[j,ℓ]

dt+1,ℓft,

where t̂ is defined as in condition (vi).

(ii) For j ∈ L+:

w̄j =

{
wj + εej + ε

∑
t∈[j,ℓ] ft − εeℓ+1 + kℓ, if j ≥ t̃,

wj + εej − εek−1 − ε
∑

t∈[k−1,j−1] ft, otherwise.

Next, we give 2× |[k, ℓ] \ L+| affinely independent feasible points wj and w̄j corre-

sponding to j ∈ [k, ℓ] \ L+ that are on the face F .

(iii) wj = wl1 + hj and

(iv) First, recall that t̂ ≤ p from condition (vi). Then, the next set of solutions

corresponding to j ∈ [k, ℓ] \ L+ can be summarized by:

w̄j =

w0 + hj + (dkℓ − uk−1)ej +

∑
t∈[j,p−1](dt+1,ℓ − (uk−1 − dkt))ft+∑

t∈[p,ℓ] dt+1,ℓft if j ≤ p,

w̄t̂ + hj − εet̂ + εej − ε
∑

t∈[t̂,j−1] ft if j > p.

Next, we give 2|[1, k − 1]| points corresponding to production arcs j ∈ [1, k − 1].

(v) If j > 1, then wj = wl1 − hj − djej + djej−1 + djfj−1 + kj−1 and if j = 1, then

wj = wl1 − hj − djej + djej+1 + djgj +mj.

(vi) If j < k − 1, then w̄j = wl1 + εej − εej+1 + kj + εfj and if j = k − 1 and

k > 2, then w̄j = wl1 + εej − εej−1 + mj−1 + εgj−1. Finally, if k = 2, then

w̄k−1 = wl1 − εek−1 + εel1 − ε
∑

t∈[k−1,l1−1] kt. Note that, if k = 1, then this set of

points are irrelevant.

Now, we give 2|[ℓ+ 1, n]| points corresponding to production arcs j ∈ [ℓ+ 1, n].

(vii) if j = ℓ+ 1, then wj = wlL − hj − djej + djelL + dj
∑

t∈[lL,ℓ] ft + kℓ and otherwise

wj = wlL − hj − djej + djej−1 + djfj−1 + kj−1.

100

(viii) if j = ℓ+ 1, then w̄j = wlL + εelL − εej + ε
∑

t∈[lL,ℓ] ft + kℓ and if j > ℓ+ 1, then

w̄j = wlL + εej − εej+1 + εfj + εkj.

Next, we give 3|[1, k − 2]| + 3|[ℓ, n − 1]| points corresponding to inventory arcs

(j, j + 1) and backlog arcs (j + 1, j) for j ∈ [1, k − 2] ∪ [ℓ, n− 1] represented by w̃j, ŵj

and w̌j. Then, for j ∈ [1, k − 2] ∪ [ℓ, n− 1], let

(ix) w̃j = wl1 + kj,

(x) ŵj = wl1 +mj and

(xi) if j ̸= ℓ, then let w̌j = wl1 + kj +mj + εfj + εgj, otherwise let

w̌j = w̄t̂ −
∑

t∈[t̂,ℓ−1]

εft − εet̂ + εgℓ +mℓ.

Next, we give points on F that correspond to the inventory arcs in [k − 1, ℓ]. We

represent these points by w̃j for (j, j+1), for j ∈ [k−1, ℓ−1]. Let H = {h1, . . . , h|H|} ⊆
[k−1, p−1]. Without loss of generality, we assume h|H| ≤ p−1 since γhj

= 0 if hj ≥ p.

(xi) If j ∈ [p, ℓ− 1], then let

w̃j =
∑

t∈[1,k−2]∪[ℓ+1,n]

(dtet + ht) + (dkj − uk−1) et̂ + ht̂+∑
t∈[k−1,ℓ−1]\{j}

kt + (dk−1 + uk−1)ek−1 + hk−1 + dj+1,ℓej+1+∑
t∈[k,t̂−1]

(uk−1 − dkt)ft +
∑

t∈[t̂,j−1]

dt,j−1ft +
∑

t∈[j,ℓ−1]

dt+1,ℓft

Recall that m(j) = min{t ∈ L+ : t ≥ j}. If j ∈ [k − 1, p − 1], j ∈ H and

m(j) ≤ ℓ, then

w̃j =
∑

t∈[1,k−2]∪[ℓ+1,n]

(dtet + ht) + dk−1,jek−1 + hk−1 +
∑

t∈[k−1,j−1]

(dt+1,jft + kt)+∑
t∈[j,m(j)−1]

(dtet + ht) + hm(j) + dm(j),ℓem(j) +
∑

t∈[j+1,ℓ−1]

kt +
∑

t∈[m(j),ℓ−1]

dt+1,ℓft.

If j ∈ [k − 1, p− 1], j ∈ H and m(j) = ℓ+ 1, then

w̃j =
∑

t∈[1,k−2]∪[ℓ+1,n]

(dtet + ht) + dk−1,jek−1 + hk−1+∑
t∈[k−1,j−1]

(dt+1,jft + kt) +
∑
t∈[j,ℓ]

(dtet + ht) +
∑

t∈[j+1,ℓ−1]

kt.

101

Finally, consider the case where j ∈ [k−1, p−1] and j /∈ H and let hL = max{t ∈
H : t < j}. If, j ∈ [hL + 1,m(hL)− 1], then, let

w̃j = w̃hL
− kj.

Note that, j ∈ [hL+1,m(hL)−1] always holds, since m(hL) ∈ H if m(hL) ≤ p−1

due to condition (i). Consequently, if j /∈ [hL+1,m(hL)−1], then we would reach

a contradiction with the definition of hL.

Next, we give points on F that correspond to the backlog arcs in [k, ℓ]. We represent

these points by ŵj for arcs (j + 1, j), where j ∈ [k − 1, ℓ− 1].

(xii) If j + 1 /∈ L+, then consider the points

ŵj = wl1 +mj.

For j ∈ L+, we use indices lj. Let l0 := k−1 and j = 1, . . . , |L+|. If lj−1 ∈ [p, ℓ−1],

then let

ŵlj =
∑

t∈[1,k−2]∪[ℓ+1,n]

(dtet + ht) +
(
dk,lj−1

− uk−1

)
et̂ + ht̂ +

∑
t∈[k−1,ℓ−1]\{lj−1}

kt+

(dk−1 + uk−1)ek−1 + hk−1 + dlj−1+1,ℓelj +
∑

t∈[k,t̂−1]

(uk−1 − dkt)ft+∑
t∈[t̂,lj−1−1]

dt,j−1ft +
∑

t∈[lj−1+1,lj−1]

(
dt,lj−1gt +mt

)
+

∑
t∈[lj ,ℓ−1]

dt+1,ℓft

If lj−1 ∈ [k − 1, p− 1], then

ŵlj =
∑

t∈[1,k−2]∪[ℓ+1,n]

(dtet + ht)+dk−1,lj−1
ek−1+hlj+dlj−1+1,ℓelj+

∑
t∈[k−1,ℓ−1]\{lj−1}

kt+∑
t∈[k−1,lj−1−1]

dt+1,lj−1
ft +

∑
t∈[lj−1+1,lj−1]

(
dt,lj−1gt +mt

)
+

∑
t∈[lj ,ℓ−1]

dt+1,ℓft.

Note that, lj−1 ∈ H due to sufficiency condition (i).

Now, we give the set of points w̌j where j ∈ [k − 1, ℓ− 1]:

(xiii) If j + 1 /∈ L+, then consider the points:

w̌j = wl1 +mj + εgj + εfj.

For j ∈ L+, we use indices lj, where j = 1, . . . , |L+| as in the definitions of ŵj. If

lj−1 ∈ [p, ℓ− 1], then define

102

w̌lj =
∑

t∈[1,k−2]∪[ℓ+1,n]

(dtet + ht) +
(
dk,lj−1

− uk−1

)
et̂ + ht̂ +

∑
t∈[k−1,ℓ−1]\{lj−1}

kt+

(dk−1 + uk−1 − ε)ek−1 + hk−1 +
(
dlj−1+1,ℓ + ε

)
elj +

∑
t∈[k,t̂−1]

(uk−1 − dkt − ε)ft+∑
t∈[t̂,lj−1−1]

(dt,j−1 − ε) ft +
∑

t∈[lj−1+1,lj−1]

(
(dt,lj−1 + ε)gt +mt

)
+

∑
t∈[lj ,ℓ−1]

dt+1,ℓft.

Suppose that, lj−1 ∈ [k−1, p−1]. Due to the sufficiency condition (i), we assume

lj−1 ∈ H. Then, consider the solution:

w̌lj =
∑

t∈[1,k−2]∪[ℓ+1,n]

(dtet + ht) + (dk−1,lj−1
− ε)ek−1 + hlj + (dlj−1+1,ℓ + ε)elj

+
∑

t∈[k−1,ℓ−1]\{lj−1}

kt +
∑

t∈[k−1,lj−1−1]

(dt+1,lj−1
− ε)ft+∑

t∈[lj−1+1,lj−1]

(
(dt,lj−1 + ε)gt +mt

)
+

∑
t∈[lj ,ℓ−1]

dt+1,ℓft.

So far, we provided 5n − 3 affinely independent points. Let ŵ0 be the last affinely

independent point that is on face F :

ŵ0 = ŵl1 + εel1 + ε
∑

t∈[k−1,l1−1]

gt +mk−1.

In the next theorem, we provide sufficient conditions for inequality (4.58). First,

we define the following indices:

q = max{j ∈ L+ : bℓ ≤ djℓ},

ť = max{j ∈ [k − 1, ℓ] \ L+}

and

t′ = min{j ∈ L+ : j ≥ q}.

Theorem 4.29. For a node set [k, ℓ], let T ⊆ [k, ℓ], K = L+ in Proposition 4.21. Recall

that in S+ = {(ℓ + 1, ℓ)} and S− = ∅ in inequality (4.58). If dj > 0 for all j ∈ [k, ℓ],

then the conditions below are sufficient for inequality (4.58) to be facet-defining for

conv(P):

(i) (ℓ+ 1, ℓ) ∪ {[q + 1, ℓ] ∩ L+} ⊆ H;

(ii) for all j ∈ L+, ρj({(ℓ+ 1, ℓ)}) > 0;

103

(iii) bt′−1 > dk,t′−1;

(iv) blL−1 ≥ dk,lL−1;

(v) if bℓ = dq+1,ℓ, then lL > q, otherwise lL geqq;

(vi) ť ∈ [q, ℓ], bť−1 ≥ dk,ť−1 and uť ≥ dť+1,ℓ;

(vii) if k > 1, then bl1−1 ≥ dk−1,l1−1;

(viii) for all lj ∈ L+, ulj > dlj+1,lj+1
.

Proof. Inequality (4.58) can be considered as a mirror image of inequality (4.32), where

the ordering of nodes [1, n] is changed to {n, . . . , 1} and inventory and backlog arcs

are flipped. Consequently, the 5n− 2 affinely independent points provided in Theorem

4.28 can be transformed in the same fashion so that they are on the face induced by

inequality (4.58).

4.3.2 Finding violated inequalities

In this section, we discuss how to find lifted path pack inequalities introduced in Section

4.3 that are violated by a given point (x̄, ȳ, s̄, r̄, q̄, z̄) ∈ R6n. For a given [k, ℓ] ⊆ [1, n],

and the sets S+ and S−, the set L+ that maximizes the violation of these inequalities

can be found in O(n2) time. We explain this procedure using inequality (4.32), where

the set M = L+ for simplification. We rearrange this inequality such that for a given

[k, ℓ] selection and the fractional solution, the right hand side is a constant value:∑
j∈L+

(
yj − ρjxj − δjqj−1

)
+
∑
j∈H

γj(1− zj) ≤ uk−1 + iℓ + rk−1 − ik−1.

The separation problem aims to find the sets L+ and H that maximize the left hand

side of the inequality above. In Atamtürk and Küçükyavuz (2005), the authors model

this problem as a longest path algorithm. We follow a similar approach here.

We construct a graph consisting of O(n2) nodes and O(n3) arcs. Let the nodes be

represented by pairs such as [i′, j] and [i′, j′]. The first item of the pair keeps track

of the last time period that was selected to be in L+. If the path passes by the node

[i′, j], then the arc (j, j +1) is selected to be in H and the last production arc in L+ is

i′. Similarly, if the path passes by the node [i′, j′], then the production arc j′ ∈ L+ and

the previously chosen item in L+ is i′. Note that, tracking i′ now allows us to compute

the coefficient δj′ . More formally the nodes of this temporary graph can be listed as

follows:

1) [i′, j] : i′ ∈ [k − 1, ℓ− 1], j ∈ [i′ + 1, ℓ− 1],

2) [i′, j′] : i′ ∈ [k − 1, ℓ− 1], j′ ∈ [i′ + 1, ℓ],

104

3) [k − 1] : select the inventory arc (k − 1, k) to be in H,

4) [(k − 1)′] : arc (k − 1, k) is not in H,

5) [0] : dummy source node.

Similarly, the arcs connecting the nodes described above are as follows:

1) [i′, j] → [i′, t], for i′ ∈ [k − 1, ℓ− 2], j ∈ [i′ + 1, ℓ− 2] and t ∈ [j + 1, ℓ− 1] with cost

(1− z̄j)×
[
min{(uk−1 − dkj)

+, dj+1,t}
]
,

2) [i′, j′] → [j′, t′], for i′ ∈ [k − 1, ℓ− 1], j′ ∈ [i′ + 1, ℓ] and t′ ∈ [j′ + 1, ℓ] with cost

ȳj′ +min{dkj′ + uj′ − uk−1, dkℓ − uk−1, uj′ + dj′ , dj′ℓ} × x̄j′

−min{r̄j′−1, q̄j′−1 ×min{bj′−1, di′j′−1}},

3) [i′, j] → [i′, t′], for i′ ∈ [k − 1, ℓ− 2], j ∈ [i′ + 1, ℓ− 2] and t′ ∈ [i′, ℓ] with cost

(1− z̄j)×
[
min{(uk−1 − dkj)

+, dj+1,t′−1}
]
,

4) [i′, j′] → [j′, t], for i′ ∈ [k − 1, ℓ− 1], j′ ∈ [i′ + 1, ℓ] and t ∈ [j′ + 1, ℓ− 1] with cost

ȳj′ +min{dkj′ + uj′ − uk−1, dkℓ − uk−1, uj′ + dj′ , dj′ℓ} × x̄j′

−min{r̄j′−1, q̄j′−1 ×min{bj′−1, di′j′−1}},

5) [k − 1] → [(k − 1)′, j], for j ∈ [k, ℓ− 1] with cost

(1− z̄k−1)× [min{uk−1, dkj}] ,

6) [k − 1] → [(k − 1)′, j′], for j ∈ [k, ℓ] with cost

(1− z̄k−1)× [min{uk−1, dk,j′−1}] ,

7) [(k − 1)′] → [(k − 1)′, j′], for j′ ∈ [k, ℓ] with cost zero,

8) [(k − 1)′] → [(k − 1)′, j], for j ∈ [k, ℓ− 1] with cost zero,

9) [0] → [k − 1] with cost zero,

10) [0] → [(k − 1)′] with cost zero.

105

Consequently the longest path from the dummy source node [0] gives the sets L+

and H that maximize the violation of inequality (4.32) by a given fractional solution

(x̄, ȳ, s̄, r̄, q̄, z̄) ∈ R6n. Since the graph described here is a directed acyclic graph con-

sisting of O(n3) arcs and O(n2) nodes, the longest path can be found in O(n3) time.

This structure can be repeated for all extended path pack inequalities where the costs

are updated.

4.4 Computational Study

We test the effectiveness of the cuts introduced in this chapter by embedding them in

a branch-and-cut framework. The experiments are ran on a Linux workstation with

3.60 GHz Intel R⃝ Xeon R⃝ CPU E5-1650 and 32 GB of RAM with 1 hour time limit

and 1 GB memory limit. The branch-and-cut algorithm is implemented in C++ using

IBM’s Concert Technology of CPLEX (version 12.5). The experiments are ran with

one hour limit on elapsed time and 1 GB limit on memory usage. The number of

threads is set to one and the dynamic search is disabled. We also turn off heuristics

and preprocessing as the purpose is to see the impact of the inequalities by themselves.

Instance Generation

Let n be the total number of time periods and f be the ratio of the fixed cost to the

variable cost associated with a production arc. The parameter c controls how large

the production arc capacities are with respect to average demand. All parameters are

generated from a discrete uniform distribution. The demand for each node is drawn

from the range [1, 30]. Let d̄ be the average demand over all time periods. Inventory

and backlogging upper-bounds are drawn from [1.0× d̄, 2.0× d̄] and [0.3× d̄, 0.8× d̄],

respectively. The variable costs vpt , v
i
t and v

b
t are drawn from the ranges [1, 10], [1, 10]

and [1, 20], respectively. Finally, fixed ordering costs fp
t are set equal to f × vpt , fixed

inventory holding cost is f i
t = f , for all t ∈ [1, n] and fixed backlogging cost is set

to f b
t = 2 × f , for all t ∈ [1, n]. Using these parameters, we generate five random

instances for each combination of n ∈ {50, 100, 150, 200}, f ∈ {100, 200, 500, 1000} and

c ∈ {2, 5, 10}.

Results

We report multiple performance measures. Let zINIT be the objective function value of

the initial LP relaxation and zROOT be the objective function value of the LP relaxation

after all the valid inequalities added. Moreover, let zUB be the objective function value

of the best feasible solution found within time/memory limit among all experiments

for an instance. Let init gap= 100 × zUB−zINIT

zUB
, root gap= 100 × zUB−zROOT

zUB
. We

compute the improvement of the relaxation due to adding valid inequalities as gap

106

imp= 100 × init gap−root gap

init gap
. We also measure the optimality gap at termination as

end gap = zUB−zLB

zUB
, where zLB is the value of the best lower bound given by CPLEX.

We report the average number of valid inequalities added at the root node under

column cuts, average elapsed time in seconds under time, average number of branch-

and-bound nodes explored under nodes. If there are instances that are not solved to

optimality within the time/memory limit, we report the the end gap averaged over

unsolved instances under end gap and the number of unsolved instances under unslvd

next to time results. All numbers except initial gap, end gap and time are rounded to

the nearest integers.

In Table 4.1, we present the results for path pack inequalities introduced in Section

4.2 under columns spi. Under columns lspi, we show results for both path pack

inequalities and lifted path pack inequalities introduced in Section 4.3. For comparison,

under base columns, we present the results for experiments where no valid inequalities

are added. Consequently, in these experiments, the gap improvement and the number

of cuts added are zero for all instances. We observe that the introduction of the

inventory and backlog fixed charge variables to path pack inequalities, the average

gap improvement increases by 6%. Moreover, the number of branch-and-bound nodes

explored decreases by 90%. The average elapsed time is more than double without

the lifted inequalities. All of the base experiments terminated early due to the 1GB

memory limit for instances with n = 100. As a result, we observe a lower average

elapsed time with a 22% average optimality gap.

In Table 4.2, we investigate the classes of inequalities introduced in Sections 4.2

and 4.3 deeper. Under lspi, we present the same results as in Table 4.1 where all

classes of inequalities are used. Under columns [i, j], we use a only a certain subset

of inequalities. In this naming scheme, i ∈ {1, 2, 3} and j ∈ {0, 1, 2, 3}, where i = 1

implies that the set is S+ = {(k− 1, k)}, i = 2 implies S+ = {(ℓ+ 1, ℓ)}, i = 3 implies

S+ = {(k − 1, k), (ℓ + 1, ℓ)} and similarly, j = 0 implies S− = ∅, j = 1 implies S− =

{(k, k−1)}, j = 2 implies S− = {(ℓ+1, ℓ)} and j = 3 implies S− = {(k, k−1), (ℓ+1, ℓ)}.
More specifically in columns [1,0], inequalities (4.10) and (4.32), in [1,1], inequalities

(4.18) and (4.49), in [1,2], inequalities (4.16) and (4.46), in [1,3], inequalities (4.17)

and (4.47), in [2,0], inequalities (4.15) and (4.58), in [2,1], inequalities (4.19) and

(4.62), in [2,2], inequalities (4.21) and (4.64), in [2,3], inequalities (4.20) and (4.63),

in [3,1], inequalities (4.24), (4.57) and (4.68), in [3,2], inequalities (4.23), (4.55) and

(4.67) and finally in [3,3], inequalities (4.22), (4.50) and (4.65) are used. We observe

that each (S+, S−) selection perform relatively well on their own, however when all

cuts used simultaneously, the performance is dominating both in terms of time and gap

improvement. For this instance set, column [1,0] (the set selection S+ = {(k− 1, k)}
and S− = ∅) give the best performance and in comparison, its symmetrical case [2,0]

(the selection S+ = {(ℓ + 1, ℓ)} and S+ = ∅) performs worse. This difference in

performance is because the backlog arc capacities are generated to be smaller and it

reflects on the effect of the cuts.

107

In Table 4.3, we investigate the marginal contribution of path pack inequalities of

Sections 4.2 and 4.3 when added on top of CPLEX’s network cuts: multi-commodity

flow (MCF), flow cover and flow path inequalities. Under the columns titled lspix, we

report results for computations where both path pack inequalities and CPLEX’s net-

work cuts are used. Similarly, under cpx columns, we report results for computations

where only CPLEX’s network cuts are used. In this table, the columns cuts report

the total number of cuts added to the branch-and-bound tree averaged over instances.

On average, about 82% of the cuts added under lspix column are path pack inequal-

ities. When path pack inequalities are used in addition to CPLEX’s network cuts, the

gap improvement increases by 7%, the number of branch-and-bound nodes explored

decreases by four orders of magnitude and the average time spent decreases by three

orders of magnitude. Moreover, all of the instances were solved to optimality within

our time/memory limits when path pack inequalities were used.

Table 4.1: Performance of lifted submodular path inequalities.

n f c init gap
gap imp nodes cuts time (endgap:unsolved)

lspi spi lspi spi base lspi spi lspi spi base

50

100
2 76.5 95% 90% 200 2326 7733726 2670 2244 1 2 368
5 77.2 95% 90% 319 6277 11449395 2583 2117 1 4 574

10 77.6 94% 89% 435 3075 7174514 2777 2340 1 2 349

200
2 84.7 95% 90% 534 5449 22236405 2850 2309 2 7 1049
5 85.4 93% 87% 1631 12566 6551607 2805 2215 5 14 287

10 86.6 93% 87% 589 5287 5827073 2723 2230 2 5 276

500
2 92.2 93% 89% 1815 9845 17122540 2782 2351 4 9 819
5 92.6 92% 86% 490 4151 3784405 2926 2111 2 3 178

10 93.1 93% 89% 5608 46488 16530846 2912 2327 11 37 818

1000
2 95.6 93% 87% 723 7415 8718542 3045 2342 4 9 422
5 95.5 93% 88% 869 4704 9696194 3012 2246 3 5 493

10 95.6 92% 87% 2204 33519 9683838 3020 2237 10 41 439

100

100
2 76.9 95% 90% 26204 623083 11962729 13218 10108 781 (1.1,1) 2825 (0.7,3) 753 (38.9,5)
5 76.8 95% 90% 13631 407698 11998279 13382 10908 241 2220 (0.1,2) 771 (39.6,5)

10 77.1 95% 91% 18190 522983 11999348 14402 11312 403 3600 (0.1,5) 779 (40.0,5)

200
2 85.5 94% 90% 30257 677990 11972480 13955 10101 1229 (0.5,1) 3600 (0.2,5) 751 (43.4,5)
5 85.9 94% 89% 22741 604804 12272094 13192 9907 863 3199 (0.1,4) 790 (45.6,5)

10 86.6 94% 89% 20963 578362 11749288 14922 11021 1177 (0.7,1) 3139 (0.5,3) 753 (42.1,5)

500
2 93.2 92% 87% 39155 818058 12097739 15173 10272 1558 (4.5,1) 3600 (0.9,5) 809 (49.8,5)
5 93.4 92% 88% 51935 707097 12116225 16119 10906 2269 (0.7,2) 3600 (0.5,5) 771 (50.2,5)

10 93.6 93% 88% 63620 748193 12039418 15205 10335 1984 3559 (0.3,4) 784 (44.9,5)

1000
2 96.2 92% 87% 34574 653858 12225463 16054 10708 2946 (1.0,4) 3491 (1.1,4) 784 (48.3,5)
5 96.3 93% 87% 31879 636670 12222040 17441 12052 1704 (0.6,2) 3600 (0.7,5) 780 (42.5,5)

10 96.2 93% 88% 36508 730331 12391726 17043 11507 2077 (2.0,2) 3600 (1.1,5) 816 (48.9,5)

Average: 87.9 94% 88% 16878 327093 11314830 8925 6509 720 (0.2,1) 1674 (1.1,4) 642 (22.3,3)

108

Table 4.2: Performance of each class of lspi broken down.

n f c
gap imp time (sec)

lspi [1,0] [1,1] [1,2] [1,3] [2,0] [2,1] [2,2] [2,3] [3,1] [3,2] [3,3] lspi [1,0] [1,1] [1,2] [1,3] [2,0] [2,1] [2,2] [2,3] [3,1] [3,2] [3,3]

50

100
2 95% 87% 79% 64% 64% 81% 72% 82% 74% 77% 89% 81% 1 13 337 660 502 102 867 22 121 320 5 103
5 95% 88% 79% 62% 62% 76% 69% 78% 70% 74% 87% 78% 1 123 342 1197 1486 399 733 64 177 602 10 204

10 94% 86% 80% 66% 65% 80% 73% 81% 72% 76% 86% 79% 1 15 66 484 1413 227 403 97 186 366 30 173

200
2 95% 88% 79% 64% 63% 79% 71% 82% 72% 76% 88% 78% 2 17 279 842 739 192 508 88 235 695 10 171
5 93% 85% 79% 65% 64% 77% 69% 79% 69% 75% 84% 76% 5 93 809 667 1183 504 1400 306 447 387 39 1273

10 93% 85% 78% 63% 63% 74% 67% 78% 68% 74% 87% 77% 2 29 115 1081 950 355 1148 77 185 355 10 403

500
2 93% 89% 82% 68% 67% 76% 69% 79% 71% 77% 88% 78% 4 21 85 274 391 794 951 183 464 350 11 762
5 92% 87% 81% 68% 66% 77% 69% 77% 69% 76% 84% 78% 2 3 26 168 200 82 470 57 130 52 6 77

10 93% 88% 80% 69% 68% 77% 71% 78% 72% 77% 87% 78% 11 82 859 1526 1091 1080 2185 255 998 1628 21 1048

1000
2 93% 89% 81% 67% 66% 74% 70% 77% 69% 77% 86% 78% 4 30 308 1278 616 227 760 226 117 329 20 297
5 93% 90% 84% 69% 68% 76% 71% 78% 72% 78% 88% 79% 3 29 313 797 807 773 789 176 294 765 14 405

10 92% 87% 81% 68% 67% 76% 69% 78% 69% 76% 86% 77% 10 50 386 916 1227 782 958 242 667 772 22 312

Average 93% 88% 80% 66% 65% 77% 70% 79% 71% 76% 87% 78% 4 42 327 824 884 460 931 149 335 552 16 436

109

Table 4.3: Marginal contribution of path pack inequalities to CPLEX’s network cuts.

n f c init gap
gap imp nodes cuts time (endgap:unsolved)

lspix cpx lspix cpx lspix cpx lspix cpx

100

100
2 76.9 99% 94% 59 67454 848 247 0 10
5 76.8 99% 94% 14 15810 909 255 0 3

10 77.1 99% 93% 19 35567 902 268 0 6

200
2 85.5 99% 93% 40 11114 881 251 0 2
5 85.9 99% 92% 41 103095 864 251 0 17

10 86.6 99% 93% 20 8537 866 246 0 1

500
2 93.2 98% 91% 100 43221 861 238 0 7
5 93.4 98% 93% 159 8181 883 263 0 1

10 93.6 98% 94% 57 5537 884 252 0 1

1000
2 96.2 98% 92% 63 15549 888 249 0 3
5 96.3 98% 92% 1087 15236 892 241 1 3

10 96.2 98% 92% 90 29127 897 254 0 5

150

100
2 76.7 99% 93% 458 1614054 1316 387 1 391
5 77.9 99% 93% 38 619615 1313 365 0 147

10 76.4 99% 93% 28 135341 1292 375 0 33

200
2 86.6 99% 93% 54 1911337 1298 367 0 491
5 86.2 99% 94% 60 184399 1328 367 0 44

10 85.8 98% 92% 341 1277649 1340 380 1 315

500
2 93.5 98% 92% 413 949530 1318 365 1 231
5 93.4 99% 92% 72 4064991 1324 356 0 963

10 93.6 98% 93% 186 1004958 1340 362 0 241

1000
2 96.3 98% 91% 195 2963744 1325 360 0 717
5 96.3 98% 92% 254 2310102 1335 369 1 553

10 96.4 99% 92% 71 646165 1329 357 0 154

200

100
2 76.6 99% 93% 165 4397657 1726 509 1 1182 (0.2,1)
5 76.8 99% 94% 126 3448956 1760 484 1 918 (0.0,1)

10 77.3 99% 93% 91 11081170 1777 487 0 2885 (0.0,4)

200
2 86.8 99% 93% 79 5192691 1794 486 1 1435 (0.1,1)
5 86.2 98% 93% 750 3870962 1805 480 2 1060 (0.0,1)

10 86.7 99% 93% 246 5639377 1769 486 1 1660 (0.1,1)

500
2 93.7 98% 93% 751 9542705 1794 487 2 2448 (0.1,4)
5 93.6 98% 92% 510 9506335 1800 490 2 2583 (0.4,4)

10 93.5 98% 91% 742 8517221 1834 493 2 2074 (0.5,4)

1000
2 96.5 98% 92% 2053 9359661 1814 489 5 2548 (0.1,4)
5 96.5 98% 91% 448 10253848 1869 504 1 2828 (0.4,4)

10 96.6 99% 92% 1541 6089233 1783 489 4 1555 (0.8,3)

Average: 88.3 99% 92% 317 2915004 1332 370 1 764 (0.2,1)

110

Chapter 5

Summary of Thesis and Conclusions

In this thesis, we study various fixed-charge networks by formulating them as linear

mixed-integer programs. We propose different classes of valid inequalities and show

their strength both theoretically and computationally. These valid inequalities are

derived from submodular inequalities that are initially proposed by Wolsey (1989).

After giving a brief introduction and some preliminary definitions in Chapter 1,

we focus on simple directed path structures of capacitated fixed-charge networks in

Chapter 2. We show how to efficiently compute an explicit form of the submodular in-

equalities. We refer to these explicitly expressed submodular inequalities as path cover

inequalities. Furthermore, we obtain a generalized class through a simultaneous lifting

procedure. In Chapter 3, we focus on slightly more general paths where consecutive

nodes j and j + 1 are connected through a forward path arc (j, j + 1) and a backward

path arc (j + 1, j). In this chapter, we give two explicit descriptions of submodular

inequalities and refer them as path cover and path pack inequalities.

We provide necessary and sufficient conditions under which the inequalities intro-

duced in Chapters 2 and 3 are facet defining for the convex hull of the feasible solutions.

Moreover, we present extensive computational results that show the effectiveness of

these inequalities when used in a branch-and-cut framework.

In Chapter 4, we study single item lot-sizing problems with backlogging and inven-

tory bounds. This class of the lot-sizing problem is a special case of the path structure

studied in Chapter 3. Since we assume that the production arcs are uncapacitated, the

coefficients of path pack inequalities were obtained parametrically. Using different arc

set selections, we give eleven classes of path pack inequalities. Then, we incorporate

the binary variables of inventory and backlog arcs to path pack inequalities using a

lifting procedure and present computational results.

111

Bibliography

Agra, A. and Constantino, M. (1999). Lotsizing with backlogging and start-ups: The

case of Wagner–Whitin costs. Operations Research Letters, 25(2):81–88.

Atamtürk, A. (2001). Flow pack facets of the single node fixed–charge flow polytope.

Operations Research Letters, 29:107–114.

Atamtürk, A. (2004). Sequence independent lifting for mixed-integer programming.

Operations Research, 52(3):487–490.

Atamtürk, A., Gómez, A., and Küçükyavuz, S. (2016). Three-partition flow cover

inequalities for constant capacity fixed-charge network flow problems. Networks,

67:299–315.

Atamturk, A., Küçükyavuz, S., and Tezel, B. (2017). Path cover and path pack in-

equalities for the capacitated fixed-charge network flow problem. SIAM Journal on

Optimization, 27(3):1943–1976.

Atamtürk, A. and Küçükyavuz, S. (2005). Lot sizing with inventory bounds and fixed

costs. Operations Research, 53:711 – 730.

Atamtürk, A. and Muñoz, J. C. (2004). A study of the lot–sizing polytope. Mathe-

matical Programming, 99:43–65.

Balas, E. and Zemel, E. (1978). Facets of the knapsack polytope from minimal covers.

SIAM Journal on Applied Mathematics, 34(1):119–148.

Brahimi, N., Dauzere-Peres, S., Najid, N. M., and Nordli, A. (2006). Single item lot

sizing problems. European Journal of Operational Research, 168(1):1–16.

Chu, C., Chu, F., Zhong, J., and Yang, S. (2013). A polynomial algorithm for a lot-

sizing problem with backlogging, outsourcing and limited inventory. Computers &

Industrial Engineering, 64(1):200–210.

Constantino, M. (2000). A polyhedral approach to a production planning problem.

Annals of Operations Research, 96(1-4):75–95.

112

Federgruen, A. and Tzur, M. (1993). The dynamic lot-sizing model with backlogging: A

simple o(n log n) algorithm and minimal forecast horizon procedure. Naval Research

Logistics, 40:459–478.

Gade, D. and Küçükyavuz, S. (2011). A note on lot-sizing with fixed charges on stocks:

the convex hull. Discrete Optimization, 8:385–392.

Ganas, I. and Papachristos, S. (2005). The single-product lot-sizing problem with con-

stant parameters and backlogging: exact results, a new solution, and all parameter

stability regions. Operations research, 53(1):170–176.

Gomory, R. E. (1969). Some polyhedra related to combinatorial problems. Linear

algebra and its applications, 2(4):451–558.

Gu, Z. (1994). Lifted cover inequalities for 0-1 and mixed integer programs. PhD thesis,

Georgia Institute of Technology.

Gu, Z., Nemhauser, G. L., and Savelsbergh, M. W. P. (1999). Lifted flow cover in-

equalities for mixed 0–1 integer programs. Mathematical Programming, 85:439–467.

Gu, Z., Nemhauser, G. L., and Savelsbergh, M. W. P. (2000). Sequence independent

lifting in mixed integer programming. Journal of Combinatorial Optimization, 4:109–

129.

Hille, E. and Phillips, R. S. (1957). Functional Analysis and Semi-Groups. American

Mathematical Society, Providence.

Karimi, B., Ghomi, S. F., and Wilson, J. (2003). The capacitated lot sizing problem:

a review of models and algorithms. Omega, 31(5):365–378.

King, V., Rao, S., and Tarjan, R. (1994). A faster deterministic maximum flow algo-

rithm. Journal of Algorithms, 17:447–474.

Küçükyavuz, S. and Pochet, Y. (2009). Uncapacitated lot sizing with backlogging: the

convex hull. Mathematical Programming, 118:151–175.

Ortega, F. and Wolsey, L. A. (2003). A branch-and-cut algorithm for the single-

commodity, uncapacitated, fixed-charge network flow problem. Networks, 41(3):143–

158.

Padberg, M. W., van Roy, T. J., and Wolsey, L. A. (1985). Valid linear inequalities for

fixed charge problems. Operations Research, 33:842–861.

Pochet, Y. and Wolsey, L. A. (1988). Lot-size models with backlogging: Strong refor-

mulations and cutting planes. Mathematical Programming, 40:317–335.

113

Pochet, Y. and Wolsey, L. A. (1994). Polyhedra for lot-sizing with Wagner–Whitin

costs. Mathematical Programming, 67:297–323.

Pochet, Y. and Wolsey, L. A. (2006). Production planning by mixed integer program-

ming. Springer Science & Business Media.

Rardin, R. L. and Wolsey, L. A. (1993). Valid inequalities and projecting the multicom-

modity extended formulation for uncapacitated fixed charge network flow problems.

European Journal of Operational Research, 71:95–109.

Stallaert, J. I. A. (1997). The complementary class of generalized flow cover inequalities.

Discrete Applied Mathematics, 77:73–80.

van Roy, T. J. and Wolsey, L. A. (1985). Valid inequalities and separation for unca-

pacitated fixed charge networks. Operations Research Letters, 4:105–112.

van Roy, T. J. and Wolsey, L. A. (1986). Valid inequalities for mixed 0–1 programs.

Discrete Applied Mathematics, 14:199–213.

Van Vyve, M. (2006). Linear-programming extended formulations for the single-item

lot-sizing problem with backlogging and constant capacity. Mathematical Program-

ming, 108(1):53–77.

Van Vyve, M. (2013). Fixed-charge transportation on a path: optimization, LP for-

mulations and separation. Mathematical Programming, 142:371–395.

Van Vyve, M. and Ortega, F. (2004). Lot-sizing with fixed charges on stocks: the

convex hull. Discrete Optimization, 1:189–203.

Wolsey, L. A. (1976). Facets and strong valid inequalities for integer programs. Oper-

ations Research, 24(2):367–372.

Wolsey, L. A. (1977). Valid inequalities and superadditivity for 0-1 integer programs.

Mathematics of Operations Research, 2(1):66–77.

Wolsey, L. A. (1989). Submodularity and valid inequalities in capacitated fixed charge

networks. Operations Research Letters, 8:119–124.

Wolsey, L. A. (1998). Integer Programming. John Wiley and Sons.

Wolsey, L. A. and Nemhauser, G. L. (1999). Integer and Combinatorial Optimization.

Wiley Series in Discrete Mathematics and Optimization. Wiley.

Wu, T., Shi, L., Geunes, J., and Akartunalı, K. (2011). An optimization framework

for solving capacitated multi-level lot-sizing problems with backlogging. European

Journal of Operational Research, 214(2):428–441.

114

Zangwill, W. I. (1966). A deterministic multi-period production scheduling model with

backlogging. Management Science, 13(1):105–119.

Zangwill, W. I. (1969). A backlogging model and a multi-echelon model of a dynamic

economic lot size production system-a network approach. Management Science,

15(9):506–527.

Zemel, E. (1978). Lifting the facets of zero–one polytopes. Mathematical Programming,

15(1):268–277.

Zhong, J., Chu, F., Chu, C., and Yang, S. (2016). Polynomial dynamic program-

ming algorithms for lot sizing models with bounded inventory and stockout and/or

backlogging. Journal of Systems Science and Systems Engineering, 25(3):370–397.

115

Appendices

116

Appendix A

Equivalency of P ′ to the maximum

flow problem

Recall that K+ = {t ∈ E+ : at = 1} and K− = {t ∈ E− : at = 0}, where the values at
are the coefficients of arcs in E in the objective function of P ′.

Proposition A.1. If dj ≥ 0 for all j ∈ V , then there exists an optimal solution to the

optimization problem P ′ where yt = 0 for all t ∈ E− \K−.

Proof. Given an optimal solution (y∗, i∗) to P ′, for notational convenience, let Ȳ −
j :=∑

t∈E−
j \L−

j
y∗t and Ȳ +

j :=
∑

t∈S+
j
y∗t for j ∈ V . Let

ϵ′j = dj −
[̄
ij−1 + Ȳ +

j

]
+
[
Ȳ −
j + īj

]
be the slack of flow balance constraint (2.6) of node j. Moreover, let p be some node in

V with Ȳ −
p = ϵ > 0. Observe that if ϵ′p > 0, then decreasing the outgoing flow Ȳ −

p by ϵ′p
increases the objective function value by ϵ′p while preserving feasibility. This operation

provides contradiction with the assumption of optimality. Therefore, we assume that

ϵ′j = 0 for nodes j with Ȳ −
j > 0.

Then, applying the procedure described in Algorithm 2 to the optimal solution

(y∗, i∗), we find an optimal solution where ȳt = 0 for all t ∈ E− \K−.

Remark A.1. If dj < 0 for some j ∈ V , one can represent the supply amount as a

dummy arc in E+
j with a fixed flow and capacity of −dj and set the modified demand

of node j to be dj = 0.

If the path V has nodes j with dj < 0, then using Remark A.1, we convert it into

a path where dj ≥ 0 for all j ∈ V . After the modification of V , we note that the

dummy supply arcs will always be open, therefore, they will always be included in the

set S+. Let us call the constraints of fixed flow value on the dummy supply arc fixed-

flow constraints for the sake of conciseness. Notice that the formulation P ′ becomes a

117

Algorithm 2

(y∗, i∗): an optimal solution to P ′.
J = {k ≤ j ≤ ℓ : Ȳ −

j > 0}.
for p ∈ J do
ϵ := Ȳ −

p , Ȳ −
p = 0

for j = p to k do
∆ = min{ϵ, Ȳ +

j }
Ȳ +
j = Ȳ +

j −∆
īj−1 = īj−1 − (ϵ−∆)
ϵ = ϵ−∆

end for
end for

relaxation for the modified path because of the missing fixed-flow constraints. In the

next proposition, we prove that the optimal objective function value does not change

by adding/dropping the fixed-flow constraints to P ′.

Proposition A.2. Suppose dj < 0 for some j ∈ V . Let G′ be the modification of

graph G using Remark A.1. If the optimization problem P ′ for G′ along with the

fixed-flow constraints is feasible, then the optimal objective function value does not

change by adding the fixed-flow constraints to P ′.

Proof. We need to show that P ′ has an optimal solution where the dummy supply arcs

has flows at their capacities. Notice that the modification using Remark A.1 makes

Proposition A.1 applicable to the modified graph G′. Therefore, there exists an optimal

solution (y∗, i∗) to P ′ where y∗t = 0 for t ∈ E− \K−. Let p ∈ S+
j represent the index

of the dummy supply arc with cp = −dj. If y∗p < cp, then satisfying the fixed-flow

constraints will require pushing flow through the arcs in E− \K−. We use Algorithm

3 in order to obtain an optimal solution with y∗p = cp. Note that each arc in E−
j \K−

affect the objective function value and constraints of P ′ the same way, therefore we

merge these outgoing arcs into one in Algorithm 3. We represent the merged flow and

capacity by Ȳ −
j =

∑
t∈E−

j \K− y∗t and C̄j = c(E−
j \K−) for j ∈ V .

Proposition A.2 shows that adding the fixed-flow constraints to P ′ formulated for a

modified a path via Remark A.1 does not change the optimal objective function value.

Consequently, without loss of generality, we assume that dj ≥ 0 for all j ∈ V . Then,

using the optimality condition in Proposition A.1, the variables yt for t ∈ E− \K− can

be dropped from the formulation P ′. As a result, without loss of generality, all arcs in

S+ are leaving a dummy source node sV , the outgoing arcs K− \ L− are incoming to

a dummy sink node tV and the demands values are represented as arcs with capacity

dj, incoming to tV from node j ∈ V (see Figure 2.2 for a representation).

118

Algorithm 3

J : Set of supply nodes in V where the nodes are sorted with respect to their order
in V .
(y∗, i∗): the optimal solution to P ′ with yt = 0 for all t ∈ E−.
for q ∈ J do
Let p be the dummy supply node in S+

q

∆ = cp − y∗p
for j = q to ℓ do
Ȳ −
j = Ȳ −

j +min{C̄j − Ȳ −
j ,∆}

∆ = ∆−min{C̄j − Ȳ −
j ,∆}

i∗j = i∗j +∆
end for
if ∆ > 0 then
The problem P ′ along with fixed-flow constraints is infeasible

end if
end for

119

Appendix B

Proofs from Chapter 2

B.1 Proof of Theorem 2.6

1. If for some t′ ∈ S+, ρt′(S
+ \ {t′}, L−) ≥ ct′ , then removing t′ from S+ in inequal-

ity (2.10) results in an inequality at least as strong. To see this, let S ′ = S+\{t′}.
Rewriting inequality (2.10), we obtain∑

t∈S′

(yt + ρt(S
+ \ {t}, L−)(1− xt)) + yt′ +

∑
t∈L−

ρt(S
+, L− \ {t})xt

≤ v(S+, L−)− ρt′(S
+ \ {t′}, L−) + ρt′(S

+ \ {t′}, L−)xt′ + y(E− \ L−)

= v(S ′, L−) + ρt′(S
+ \ {t′}, L−)xt′ + y(E− \ L−).

Consider adding the submodular inequality∑
t∈S′

(yt + ρt(S
′ \ {t}, L−)(1− xt)) +

∑
t∈L−

ρt(S
′, L− \ {t})xt ≤ v(S ′, L−) + y(E− \ L−),

and yt′ ≤ ct′xt′ . The resulting inequality dominates inequality (2.10). This

follows because ρt(S
′ \ {t}, L−) ≥ ρt(S

+ \ {t}, L−), from the definition of sub-

modularity of the set function v.

2. If for some t ∈ L−, ρt(S
+, L− \ {t}) ≤ −ct, then summing the submodular

inequality obtained by removing t from L−, and the inequality yt ≤ ctxt results

in an inequality at least as strong.

3. If L− = ∅ and maxt∈S+ ρt(S
+ \ {t}, L−) = 0, then summing flow balance inequal-

ities (2.1) gives an inequality at least as strong.

4. Suppose at node p we have c(S+
p) ≥ dpℓ, maxt∈S+

p
ρt(S

+\{t}, L−) = 0 and L−
p = ∅.

120

Then, observe that the submodular path inequality for path V is∑p
j=k

∑
t∈S+

j

(
yt + (ct − λj)

+(1− xt)
)
+
∑ℓ

j=p y(S
+
j)

≤ dkℓ +
∑p

j=k

(
λjx(L

−
j) + y(E−

j \ L−
j)
)
+
∑ℓ

j=p y(E
−
j). (B.1)

Since c(S+
p) ≥ dpℓ, nodes {p, . . . , ℓ} do not pull any flow through nodes {k, . . . , p−

1} which implies that they do not have any effect on the excess values λj for

j ∈ [k, p− 1]. The submodular path inequality for path V̄ = [k, p− 1]

p−1∑
j=k

∑
t∈S+

j

(
yt + (ct − λj)

+(1− xt)
)
≤ dk,p−1 + ip−1 +

p−1∑
j=k

(
λjx(L

−
j) + y(E−

j \ L−
j)
)

summed with the flow balance inequalities (2.1) for nodes j ∈ [p, ℓ]

ip−1 +
ℓ∑

j=p

(
y(E+

j)− y(E−
j)

)
≤ dp,ℓ

gives an inequality at least as strong as inequality (B.1).

5. Suppose for some node k < j ≤ ℓ, αj = dk,j−1+uj−1+c(S
+
j) and ∪ℓ

i=jS
+
i is a path

cover for nodes j, . . . , ℓ. Let λi, i ∈ V be the excess values computed for path

V . We consider dividing path V = [k, ℓ] into two sub-paths where V1 = [k, j − 1]

and V2 = [j, ℓ] and identify submodular path inequalities for V1 and V2.

Dropping nodes j, . . . , ℓ from path V does not change the excess values λi for

i ∈ V1 because ∪ℓ
i=jS

+
i is a path cover for V2. In other words, nodes in V2 do not

pull any flow from nodes in V1 and therefore, they do not affect the excess values

λi for i ∈ V1. Then, submodular path inequality for path V1 = [k, j − 1] is∑
i∈V1

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ dk,j−1 + ij−1 +

∑
i∈V1

(
λix(L

−
i) + y(L−−

i)
)
.

Now, we consider the submodular path inequality defined for V2. If the path arc

(j − 1, j) with capacity uj−1 is added to S+
j , then λi values for j ∈ V2 remain

unchanged because αj = dk,j−1+uj−1+ c(S
+
j) implies that the path arc (j−1, j)

with capacity uj−1 provides a bottleneck for sending a flow from node k towards

node j. In other words, the excess value that can be carried to node j from nodes

in V1 is at least as large as the capacity of the path arc (j−1, j), uj−1. Therefore,

the submodular path inequality defined for path V2 = [j, ℓ] is

ij−1 +
∑
i∈V2

∑
t∈S+

i

(
yt + (ct − λi)

+(1− xt)
)
≤ djℓ +

∑
i∈V2

(
λix(L

−
i) + y(L−−

i)
)
.

121

As a result, submodular path inequalities defined for path V1 and V2 summed

give an inequality at least as strong as the submodular path inequality defined

for path V .

B.2 Proof of Theorem 2.7

Let us first introduce the effective demand d̄j and effective path flow īj at each node

of the path V . From node ℓ to node k we first calculate:

d̄j−1 = dj−1 +
(
d̄j − c(S+

j)
)+

and īj−1 =
(
d̄j − c(S+

j)
)+

with d̄ℓ = dℓ and īℓ = 0. Then, we reassign effective demand d̄j to be d̄j = min{c(S+
j), d̄j}.

We also define effective remaining capacity of path arcs as ūj = uj−īj. Note that īj ≤ uj
due to the assumption of S+ defining a path cover. Using this notation, we have

λj = min{ūj−1, λj−1}+ c(S+
j)− d̄j.

Furthermore, we observe that ūj > 0 because ūj = 0 implies λj+1 = 0 which con-

tradicts with the first necessary condition in Theorem 2.6. We represent the feasible

point p as zp = (yp, xp, ip) or wp = (yp, xp, ip). Define set K = {t ∈ S+ : t =

argmaxt∈S+
j
ct, j ∈ [k, ℓ]. First we describe the feasible point z̃ = (ỹ, x̃, ĩ) where

(
ỹt, x̃t

)
=

(
ct − (λj −min{ūj−1, λj−1})+, 1

)
, t ∈ S+

j ∩K,(
ỹt, x̃t

)
=

(
ct, 1

)
, t ∈ S+ \K,(

ỹt, x̃t
)
=

(
0, 0

)
, t ∈ A \ (S+ ∪ I),

ĩj = īj, j ∈ V.

The feasible point z̃ satisfies submodular path inequality at equality since
∑

t∈S+
j
ỹt = d̄j

for all j ∈ V and dkℓ =
∑ℓ

j=k d̄j. Without loss of generality, let us call the arc with

maximum capacity in S+
k arc 1. Recall that c1 > λk. Let ϵ > 0 be a sufficiently small

value. We first introduce the following 2|S+| affinely independent points, where first

|S+| points are represented as z̄ and second half are represented by ẑ.

i) Let z̄1 = z̃ and let t ∈ S+
j \{1}. Point z̄t is obtained by sending extra flow amount

ϵ from arc 1 and ϵ less from arc t. Then, z̄t is described by ȳt1 = ȳ11 + ϵ, ȳ
t
t = ȳ1t − ϵ,

ȳtm = ȳ1m for m ∈ A \ (I ∪ {1, t}), īs = ī1s + ϵ for s = k, . . . , j − 1 and x̄t = x̄1.

ii) Let t ∈ S+
j , point ẑ

t is obtained by closing arc t. In order to satisfy inequality

(2.10) at equality, we need to send ỹ1t − (ct − λj)
+ extra amount of flow from

122

arcs in t ∈ K \ {t} starting from z̄1. Validity of this operation is guaranteed by

the feasibility of v(S+ \ {t}, L−) with value dkℓ − (ct − λj)
+. Then, x̂tm = 1 for

m ∈ S+ \ {t} and x̂tm = 0 for m ∈ (A \ I) ∪ {t}. Path flows are then calculated

using flow balance: îtj =
(̂
itj−1 +

∑
m∈S+

j
ŷtm − dj

)+
.

Next we describe 2|E− \ S+| points represented by z and z′.

iii) Let t ∈ E+
j \ S+

j , the point zt is obtained by opening arc t. yt = ỹ, xtn = 1 for

n ∈ S+ \ {m}, xtn = 0 otherwise and it = ĩ.

iv) We now send a flow of ϵ from arc t ∈ E+
j \ S+

j . Let y
t′
m = ỹm if m ̸= t and yt′t = ỹt.

Also let, xt′ = xt and it′ = ĩ.

Next, we define the affinely independent points w̄t and ŵt described for arcs t ∈ L−.

v) Point w̄t is obtained by opening the arc t ∈ L−
j and setting x̄tt = 1. Starting with

feasible point z̃, we send an extra flow of λj from arcs in K ∩ S+
i for i = k, . . . , j.

This operation conserves feasibility and satisfies the inequality (2.10) at equality

because v(S+, L−\{t}, S−) is feasible with a value of dkℓ−λj. Extra incoming flow

of λj is sent from outgoing arc t resulting ȳtt = λj. Let x̄
t
m = 1 form ∈ S+∪{t} and

0 otherwise. At points w̄, the flow balance constraints hold at equality. Therefore,

ītj =
(̄
itj−1 +

∑
m∈S+

j
ȳtm − dj

)+
.

vi) Let ŵt have similar properties to w̄t and let t ∈ L−
j . The second set of feasible

points have x̂t = x̄t, ît = īt, ŷtm = ȳtm for m ̸= t and ŷtt = λj + ϵ.

We now construct the affinely independent points corresponding to arcs t ∈ E− \ L−.

vii) Starting with feasible point z̃, we obtain point w by opening arc t ∈ E− \L−. Let

yt = ỹ, xtm = x̃m for m ̸= t and xtt = 1, it = ĩ.

viii) Let t ∈ L−
j . Starting with z̃, we send an extra flow of ϵ from arc 1, yt′1 = ỹ1 + ϵ,

yt′t = ϵ and yt′m = ỹm for m ̸= t,m ̸= 1. Let xt′ = xt and it′s = ĩs + ϵ for

s = k, . . . j − 1.

Affinely independent points corresponding to path arcs are represented by vj and de-

fined below.

ix) Prior to giving the feasible points, we first define a new notion called minimal

cover blocks. Suppose we have a subpath B ⊆ M with cardinality |B| = b and

nodes B = {n1, . . . , nb}, where without loss of generality n1 and nb are the first

and the last nodes of subpath B respectively. We say that B is a minimal cover

block if (i) ∪j∈BS
+
j is a path cover for B, (ii) ∪j∈B\{n1}S

+
j is not a path cover for

B \ {n1} and (iii) if b > 1, then S+
nb

is not a cover for {nb}. Notice that V can be

partitioned into a number of minimal cover blocks B1, . . . , Bq where V = ∪q
i=1Bi.

123

Let ni
1 be the first node of block Bi and mi = K ∩ S+

ni
1
be the arc with largest

capacity incoming to node ni
1. Moreover, let us call nodes in Bi = {ni

1, . . . , n
i
b}.

While finding the point associated with path arc incoming to node j where j ∈ Bi,

we start from the feasible point where arc mi is closed, ẑm
i
. For each path arc

p = ni
1−1, . . . , ni

b−1, send an extra flow of ϵ from path arcs s = p, . . . , ni
b−1. We,

then, describe point vj as: xj = x̂m, yj = ŷm and ijs = îms + ϵ for s = p, . . . , ni
b − 1.

B.3 Proof of Theorem 2.10

We do the proof case by case. For each interval, we construct a solution that follows the

optimality conditions provided in Section 2.3. We show the feasibility of the solution

explicitly only under Case 1, since the procedure is the same for all the cases.

Case 1: Mj,i − λ̄j ≤ z ≤Mj,i − λ̄j + λj, i ∈ [1, pj − 1].

If vl ∈ S++
j \ {vpj}, then yvk = 0 for l ≤ i and yvl = cvl for l > i, yvpj =

cvpj − z +Mj,i − λ̄j. If vl ∈ L−
j , then yvl = cvl for l ≤ i, yvl = 0 for l > i and

w = mj. Because of the boundaries of z we have,

cvpj − λj ≤ yvpj ≤ cvpj .

Therefore, this solution agrees with the optimality conditions described above.

The solution is also feasible because constraint (2.38) is:

w +
∑

t∈S++
j

yt +
∑
t∈L−

(ct − yt) = mj +Mj,rj −Mj,i − z +Mj,i − λ̄j = d̂j − z.

The objective function value of this solution is:

d̂j −mj +
∑
t∈L−

j

λjxt +
∑

t∈S++
j

λj(1− xt)−
∑

t∈S++
j

(yt + ct(1− xt))−
∑
t∈L−

j

ct

= d̂j −mj + iλj −Mj,r + z −Mj,i + λ̄j

= −λ̄j + iλj + z −Mj,i + λ̄j

= z + iλj −Mj,i

Case 2: Mj,i + λj − λ̄j ≤ z ≤Mj,i+1 − λ̄j, i ∈ [0, pj − 1].

If vl ∈ S++
j , then yvl = 0 for l ≤ i + 1, yvl = cvl for l > i + 1. If vl ∈ L−

j , then

yvl = cvl for l ≤ i+ 1 and yvl = 0 for l > i+ 1 and w = mj.

124

Case 3: Mj,i − λ̄j ≤ z ≤Mj,i − λ̄j +mlj, i ∈ [pj, rj − 1].

If vl ∈ S++
j , then yvl = 0. If vl ∈ L−

j , then yvl = cvl for l ≤ i, yvl = 0 for l > i

and w = mj +Mj,i − λ̄j − z.

Case 4: Mj,i − λ̄j +mlj < z ≤Mj,i − λ̄j +mlj + φj,i, i ∈ [pj, rj − 1].

If vl ∈ S++
j \ {vpj}, then yvl = 0, yvpj =Mj,i+1 − λ̄j − z. If vl ∈ L−

j , then yvl = cvl
for l ≤ i+ 1 and yvl = 0 for l > i+ 1 and w = mj.

Case 5: Mj,i − λ̄j +mlj + φj,i ≤ z ≤Mj,i+1 − λ̄j, i ∈ [pj, rj − 1].

If vl ∈ S++
j , then yvl = 0. If vl ∈ L−

j , then yvl = cvl for l ≤ i + 1 and yvl = 0 for

l > i+ 1 and w = mj.

Case 6: Mj,r − λ̄j ≤ z ≤ d̂j.

If vl ∈ S++
j , then yvl = 0. If vl ∈ L−

j , then yvl = cvl and w = mj +Mj,rj − λ̄j − z.

B.4 Proof of Theorem 2.11

Figures (B.1a) and (B.1b) represent the two different forms that ψj(z) can take if

Tjλj − λ̄j ≤ 0.

125

(a)

(b)

Figure B.1: Two different representations of the functions ϕ̄(z) and ϕj(z).

In Figures B.1a and B.1b, the function ψ̄(z) is a superadditive function that con-

forms to the description in Theorem 13 of Gu et al. (1999). Then, using shifting down

argument in Observation 3 in Appendix B.5 and changing a nonnegative piece of the

function with non-positive values argument in Observation 4 that is also in Appendix

B.5, one can easily verify that ψj(z) is superadditive when Tjλj − λ̄j ≤ 0.

B.5 Observations on superadditive functions

Observation 3. If function f(z) is superadditive for z ∈ Z and K ≤ 0, then g(z) =

K + f(z) is also superadditive for z ∈ Z. In other words, shifting a superadditive

function downwards preserves superadditivity.

Proof. Let z1, z2 and z1 + z2 ∈ Z. We know that f(z1) + f(z2) ≤ f(z1 + z2). Since

K ≤ 0, summing left side with 2×K and right side with K, ensures that the following

inequality holds:

K + f(z1) +K + f(z2) ≤ K + f(z1 + z2)

126

=⇒ g(z1) + g(z2) ≤ g(z1 + z2).

Note that if a superadditive function is summed with a positive constant K, then

we need to ensure that

K +max{g(z1) + g(z2)− g(z1 + z2) : z1, z2, z1 + z2 ∈ Z} ≤ 0

in order to conclude that the resulting function is superadditive as well.

Observation 4. Let f(x) be superadditive and non-positive on 0 ≤ x ≤ k for some

k ≥ 0 and g(x) ≥ 0 be non-decreasing and superadditive on x ≥ k. Let f(k) = g(k) =

0. Then, the function

ϕ(x) =

{
f(x) 0 ≤ x ≤ k

g(x) x ≥ k

is superadditive.

Proof. There are four cases we examine:

Case 1: 0 ≤ x1 ≤ k, 0 ≤ x2 ≤ k and x1 + x2 ≤ k. Then,

ϕ(x1) + ϕ(x2)− ϕ(x1 + x2) = f(x1) + f(x2)− f(x1 + x2) ≤ 0

because f is superadditive on [0, k].

Case 2: 0 ≤ x1 ≤ k, 0 ≤ x2 ≤ k and x1 + x2 > k. Then,

ϕ(x1) + ϕ(x2)− ϕ(x1 + x2) = f(x1) + f(x2)− g(x1 + x2) ≤ 0

because f(x1) ≤ 0, f(x2) ≤ 0 and g(x1 + x2) ≥ 0.

Case 3: 0 ≤ x1 ≤ k, x2 > k and x1 + x2 > k. Then,

ϕ(x1) + ϕ(x2)− ϕ(x1 + x2) = f(x1) + g(x2)− g(x1 + x2) ≤ 0

since g(x2)− g(x1 + x2) ≤ 0 and f(x1) ≤ 0.

Case 4: x1 > k, x2 > k and x1 + x2 > k. Then,

ϕ(x1) + ϕ(x2)− ϕ(x1 + x2) = g(x1) + g(x2)− g(x1 + x2) ≤ 0

due to the superadditivity of the function g.

127

Observation 5. If f(x) : Rn → Rm is a superadditive non-decreasing function on Rn
+,

then g(x) = max{0, f(x)} is a superadditive function as well.

Proof. We would like to show that

max{f(x1 + x2), 0)} ≤ max{f(x1), 0}+max{f(x2), 0}. (B.2)

Without loss of generality, we assume x1 ≤ x2, then, there are three cases we need to

examine:

Case 1: f(x1 + x2) ≤ 0: We have f(x1) ≤ 0 and f(x2) ≤ 0 since f is non-decreasing.

Then, both sides of inequality (B.2) are zero.

Case 2: f(x1 + x2) > 0, f(x1) ≤ 0 and f(x2) ≥ 0: Inequality (B.2) becomes f(x1 + x2) ≥
f(x2) which holds since f is non-decreasing.

Case 3: f(x1 + x2) > 0, f(x1) ≥ 0 and f(x2) ≥ 0: Inequality (B.2) becomes f(x1 + x2) ≥
f(x1) + f(x2) which holds due to superadditivity of f .

B.6 Convex lower-bound of fLj (z)

Largest convex lower-bound function of fL
j (z) with a nonpositive value at origin is a

piecewise linear function with the following generic form:

ϕj(z) =

τλj−λ̄j−Γ

Mj,τ λ̄j
z + Γ 0 ≤ z ≤Mj,τ − λ̄j

λj

cji+1
(z −Mj,i + λ̄j) + iλj − λ̄j Mj,i − λ̄j ≤ z ≤Mj,i+1 − λ̄j i = τ, . . . , rj − 1

z −Mj,rj + rjλj Mj,rj − λ̄j ≤ z ≤ d̂j.

Recall that index Tj is defined as min{1 ≤ i ≤ rj : Mj,i − λ̄j ≥ 0} if Mj,rj − λ̄j ≥ 0,

and rj otherwise. Moreover, for notational convenience we let cvrj+1 := λj. Next, we

find values of Γ and τ explicitly for cases where Tjλj − λ̄j > 0.

Case 1: Tj ≤ pj.

Case 1.1: Mj,Tj−1 − λ̄j + λj ≤ 0.

In this case fL
j (z) has the form in Figure B.2.

128

Figure B.2: Representation of Case 1.1.

We select index τ to be the minimum such that the piecewise linear function

has an increasing slope. Then,

τ = min

{
Tj ≤ i ≤ rj :

iλj − λ̄j
Mj,i − λ̄j

≤ λj
cvi+1

}
and Γ = 0.

Case 1.2: Mj,Tj−1 − λ̄j + λj > 0.

The function fj(z) under this conditions has the form in Figure B.3.

Figure B.3: Representation of Case 1.2.

The largest convex lower bound of fL
j (z) that satisfies ϕj(0) ≤ 0 is its convex

129

envelope. We have

τ = min

{
Tj ≤ i ≤ rj :

Mj,t−1 − λ̄j + (i− Tj + 1)λj
Mj,i − λ̄j

≤ λj
cvi+1

}
and Γ = (Tj − 1)λj −Mj,Tj−1.

Case 2: Tj > pj.

Case 2.1: Mj,Tj−1 − λ̄j +mlj +φj,Tj−1 ≤ 0 This is very similar to Case 1.1. Please see

Figure B.4 for a representation of fL
j (z) and it’s convex lower bound.

Figure B.4: Representation of Case 2.1.

Values of τ and Γ are the same as in Case 1.1.

Case 2.2: Mj,Tj−1 − λ̄j +mlj + φj,Tj−1 > 0.

The closed form of convex lower bound depends on the following two sub

cases.

Case 2.2.1: Mj,Tj−1 − λ̄j +mlj ≤ 0.

Please see Figure B.5 for a representation of this case.

130

Figure B.5: Representation of Case 2.2.1.

The largest convex lower bound that satisfies ϕj(0) ≤ 0 is the convex

envelope of fL
j (z). We have

k = min

{
Tj ≤ i ≤ rj :

Mj,Tj−1 − λ̄j +mlj + φj,Tj−1 + (i− Tj)λj

Mj,i − λ̄j
≤ λj
cvi+1

}
and a = Tjλj − φj,Tj−1 −mlj −Mj,Tj−1.

Case 2.2.2: Mj,Tj−1 − λ̄j +mlj > 0.

The representation of fL
j (z) under this case can be seen in Figure B.6.

The convex envelope of the function satisfies ϕj(0) ≤ 0. Therefore, it is

superadditive. Values of τ and Γ are the same as in Case 1.2.

Figure B.6: Representation of Case 2.2.2.

131

Appendix C

Equivalency of (F3.2) to the

maximum flow problem

In Section 3.2, we showed the maximum flow equivalency of v(S+, L−) under the as-

sumption that dj ≥ 0 for all j ∈ N . In this section, we generalize the equivalency for

the paths where dj < 0 for some j ∈ N .

Observation 6. If dj < 0 for some j ∈ N , one can represent the supply amount as a

dummy arc incoming to node j (i.e., added to E+
j) with a fixed flow and capacity of

−dj and set the modified demand of node j to be dj = 0.

Given the node set N with at least one supply node, let T (N) be the transformed

path using Observation 6. Transformation T ensures that the dummy supply arcs are

always open. As a result, they are always in the set S+. We refer to the additional

constraints that fix the flow to the supply value on dummy supply arcs as fixed-flow

constraints. Notice that, v(S+, L−) computed for T (N) does not take fixed-flow con-

straints into account. In the next proposition, for a path structure, we show that there

exists at least one optimal solution to (F3.2) such that the fixed-flow constraints are

satisfied.

Proposition C.1. Suppose that dj < 0 for some j ∈ N . If (F3.2) for the node set

N is feasible, then it has at least one optimal solution that satisfies the fixed-flow

constraints.

Proof. We need to show that v(S+, L−) has an optimal solution where the flow at

the dummy supply arcs is equal to the supply values. The transformation T makes

Proposition 3.1 applicable to the modified path T (N). Let Y be the set of optimal

solutions of (F3.2). Then, there exists a solution (y∗, i∗, r∗) ∈ Y where y∗t = 0 for

t ∈ E− \(S−∪L−). Let p ∈ S+
j represent the index of the dummy supply arc with cp =

−dj. If y∗p < cp, then satisfying the fixed-flow constraints require pushing flow through

the arcs in E−\L−. We use Algorithm 4 to construct an optimal solution with y∗p = cp.

132

Note that each arc in E−
k \ L−

k for k ∈ N appear in (F3.2) with the same coefficients,

therefore we merge these outgoing arcs into one in Algorithm 4. We represent the

merged flow and capacity by Ȳ −
k =

∑
t∈E−

k \(S−
k ∪L−

k) y
∗
t and C̄k = c

(
E−

k \ (S−
k ∪ L−

k)
)
for

k ∈ N .

Algorithm 4

J : Set of supply nodes in N where the nodes are sorted with respect to their order
in N .
(y∗, i∗, r∗) ∈ Y : y∗t = 0 for all t ∈ E−.
for q ∈ J do
Let p be the dummy supply arc in S+

q

∆ = cp − y∗p
for j = q to n do
Ȳ −
j = Ȳ −

j +min{C̄j − Ȳ −
j ,∆}

∆ = ∆−min{C̄j − Ȳ −
j ,∆}

i∗j = i∗j +∆
if i∗j > uj then
∆ = i∗j − uj
i∗j = uj
Let k := j
break inner loop

end if
end for
if ∆ > 0 then
for j = k to 1 do
Ȳ −
j = Ȳ −

j +min{C̄j − Ȳ −
j ,∆}

∆ = ∆−min{C̄j − Ȳ −
j ,∆}

r∗j = r∗j +∆
if r∗j > bj then
∆ = r∗j − bj
break inner loop

end if
end for

end if
if ∆ > 0 then
(F3.2) is infeasible for the node set N .

end if
end for

Proposition C.1 shows that, under the presence of supply nodes, transformation T
both captures the graph’s structure and does not affect (F3.2)’s validity. As a result,

Propositions 3.1 and 3.2 become relevant to the transformed path and submodular path

inequalities (3.14) and (3.17) are also valid for paths where dj < 0 for some j ∈ N .

133

Appendix D

Proofs from Chapter 3

D.1 Proof of Lemma 3.3

Recall that C = S+ ∪ L− and let C1 = S+
N1 ∪ L

−
N1 and C2 = S+

N2 ∪ L
−
N2. In (3.13), we

showed that the value of the minimum cut is

v(C) = mi = min{αu
i + βu

i − c(S+
i), α

d
i + βd

i − di − c(S−
i)}

for all i ∈ N . For node set N1 and the arc set C1, the value of the minimum cut is

v1(C1) = min{αu
j−1 + bj−1, α

d
j−1}.

This is because of three observations: (1) the values α
{u,d}
i for i ∈ [1, j − 2] are the

same for the node sets N1 and N , (2) for the arc set C1 the set S+
j−1 now includes

the backward path arc (j, j − 1) and (3) node j − 1 is the last node of the first path.

Similarly, for node set N2 and the arc set C2, the value of the minimum cut is

v2(C2) = min{βu
j + uj−1, β

d
j }.

For nodes N2 and the arc set C2, (1) the values β
{u,d}
i for i ∈ [j + 1, n] are the same

for the node sets N2 and N , (2) for the arc set C2 the set S
+
j now includes the forward

path arc (j − 1, j) and (3) node j is the first node of the second path.

Now, if αu
j = αd

j−1 + uj−1 + c(S+
j), then α

d
j = αd

j−1 + dj + c(S−
j) from equations in

(4.3)–(4.4). Then, rewriting v(C) = mj and v1(C1) in terms of αd
j−1:

v(C) = αd
j−1 +min{βu

j + uj−1, β
d
j }

and

v1(C1) = αd
j−1.

As a result, the values v1(C1) and v2(C2) summed gives the value v(C) under the

134

assumption for the value of αu
j .

Similarly, if βu
j−1 = βd

j + bj−1 + c(S+
j−1), then βd

j−1 = βd
j + dj−1 + c(S−

j−1) from

equations in (4.5)–(4.6). Then, rewriting v(C) = mj−1 and v2(C2) in terms of βd
j :

v(C) = βd
j +min{αu

j−1 + bj−1, α
d
j−1}

and

v2(C2) = βd
j .

As a result, the values v1(C1) and v2(C2) summed gives the value v(C) under the

assumption for the value of βu
j−1.

D.2 Proof of Lemma 3.4

The proof follows closely to that of Lemma 3.3. Let C = S+ ∪ L−, C1 = S+
N1 ∪ L

−
N1

and C2 = S+
N2 ∪ L

−
N2. For node set N1 and the arc set C1, the value of the minimum

cut is

v1(C1) = min{αu
j−1, α

d
j−1 + uj−1},

where uj−1 is added because c(S−
N1) = c(S−

1j−1) + uj−1. Similarly, for node set N2 and

the arc set C2, the value of the minimum cut is

v2(C2) = min{βu
j , β

d
j + bj−1},

where bj−1 is added because c(S−
N2) = c(S−

jn) + bj−1.

Now, if αd
j = αu

j−1 + bj−1 + dj−1 + c(S−
j), then α

u
j = αu

j−1 + c(S+
j) from equations in

(4.3)–(4.4). Then, rewriting v(C) = mj and v1(C1) in terms of αu
j−1:

v(C) = αu
j−1 +min{βu

j , β
d
j + bj−1}

and

v1(C1) = αu
j−1.

As a result, the values v1(C1) and v2(C2) summed gives the value v(C) under the

assumption for the value of αd
j .

Similarly, if βd
j−1 = βu

j + uj−1 + dj−1 + c(S−
j−1), then βu

j−1 = βu
j + c(S+

j−1) from

equations in (4.5)–(4.6). Then, rewriting v(C) = mj−1 and v2(C2) in terms of βu
j :

v(C) = βu
j +min{αu

j−1, α
d
j−1 + uj−1}

and

v2(C2) = βu
j .

As a result, the values v1(C1) and v2(C2) summed gives the value v(C) under the

135

assumption for the value of βd
j−1.

D.3 Proof of Lemma 3.5

The proof follows closely to that of Lemmas 3.3 and 3.4. Let C = S+ ∪ L−, C1 =

S+
N1 ∪ L

−
N1 and C2 = S+

N2 ∪ L
−
N2. For node set N1 and the arc set C1, the value of the

minimum cut is

v1(C1) = min{αu
j−1, α

d
j−1}

and for node set N2 and the arc set C2, the value of the minimum cut is

v2(C2) = min{βu
j + uj−1, β

d
j + bj−1}.

Now, if αu
j = αd

j−1 + uj−1 + c(S+
j) and βd

j−1 = βu
j + uj−1 + dj−1 + c(S−

j−1), then

αd
j = αd

j−1 + dj + c(S−
j) and βu

j−1 = βu
j + c(S+

j). Then, rewriting v(C) = mj, v1(C1)

and v2(C2):

v(C) = αd
j−1 +min{uj−1 + βu

j , β
d
j } = αd

j−1 + uj−1 + βu
j ,

v1(C1) = αd
j−1 and v2(C2) = βu

j + uj−1.

As a result, the values v1(C1) and v2(C2) summed gives the value v(C) under the

assumption for the values of αu
j and βd

j−1.

D.4 Proof of Lemma 3.6

The proof follows closely to that of Lemmas 3.3 and 3.4. Let C = S+ ∪ L−, C1 =

S+
N1 ∪ L

−
N1 and C2 = S+

N2 ∪ L
−
N2. For node set N1 and the arc set C1, the value of the

minimum cut is

v1(C1) = min{αu
j−1 + bj−1, α

d
j−1 + uj−1}

and for node set N2 and the arc set C2, the value of the minimum cut is

v2(C2) = min{βu
j , β

d
j }.

Now, if αd
j = αu

j−1 + bj−1 + dj + c(S−
j) and βu

j−1 = βd
j + bj−1 + c(S+

j−1), then

αu
j = αu

j−1 + c(S+
j) and βd

j−1 = βd
j + dj + c(S−

j). Then, rewriting v(C) = mj, v1(C1)

and v2(C2):

v(C) = αu
j−1 +min{βu

j , β
d
j + bj−1} = αu

j−1 + βd
j + bj−1,

v1(C1) = αu
j−1 + bj−1 and v2(C2) = βd

j .

136

As a result, the values v1(C1) and v2(C2) summed gives the value v(C) under the

assumption for the values of αd
j and βu

j−1.

137

Appendix E

Lot Sizing with Inventory Bounds

and Fixed Costs

In this section, we show that the inequalities by Atamtürk and Küçükyavuz (2005) is a

special case of (4.9). Recall that they formulate the lot-sizing with bounded inventory

(LSBI) problem as the following optimization problem:

min
n∑

i=1

(ftxt + ptyt + gtzt + htit)

s.t. it−1 + yt − it = dt, t ∈ [1, n],

0 ≤ it ≤ utzt, t ∈ [1, n]

(LSBI) 0 ≤ yt ≤ (dt + ut)xt, t ∈ [1, n],

y ∈ Rn, x ∈ {0, 1}n,
i ∈ Rn+1, z ∈ {0, 1}n+1.

In the first set of inequalities, they give valid inequalities for LSBI, when zt = 1,

for all t ∈ [1.n]. Let [k, ℓ] ⊆ [1, n] be a subset of nodes and L ⊆ [k, ℓ] be a subset of

production arcs. Then the inequalities

ik−1 +
∑
t∈L+

yt ≤ uk−1 +
∑
t∈L+

min{dkt + ut − uk−1, dkℓ − uk−1, dtℓ}xt + iℓ, (E.1)

ik−1 +
∑
t∈L+

yt ≤ uk−1 +
∑
t∈L+

(dkt − uk−1 + ut)xt (E.2)

are valid for LSBI.

Proposition E.1. Inequality (E.1) is weaker than inequality (4.9) for LSBI, where

S+ = {(k − 1, k)}.

Proof. Let p = min{t ∈ [k, ℓ] : uk−1 < dkt}. Due to the assumption of ut−1 ≤ dt + ut,

138

for all t ∈ [1, n], we notice that v(S+) = uk−1. Moreover, notice that the maximum flow

that can be sent by a production arc t is min{dtℓ, dt+ut}. If t ≤ p, then v(S+∪{t}) =
dkt−1+min{ut+dt, dtℓ} and if t > p, then v(S+∪{t}) = uk−1+min{ut+dt, dtℓ}. Using
the definition of p, one can write v(S+∪{t}) in a compact form as min{uk−1+min{ut+
dt, dtℓ}, dkt−1 +min{ut + dt, dtℓ}}. After some algebraic manipulation, we observe that

ρt(S
+) = (min{dkt + ut − uk−1, dkℓ − uk−1, ut + dt, dtℓ})+

for each t ∈ L+.

Proposition E.2. Inequality (E.2) is weaker than inequality (4.9) for LSBI, where

S+ = {(k − 1, k)}.

Proof. Proof follows similar to that of Proposition E. Since at = 0 for the inventory

arc (ℓ, ℓ+ 1), the effective demand at node ℓ becomes dℓ + uℓ. This leads to

ρt(S
+) = (min{dkt + ut − uk−1, dkℓ + uℓ − uk−1, ut + dt, dtℓ + uℓ})+ .

From the assumption of ut−1 ≤ dt+ut, for all t ∈ [1, n], we know that dkt+ut−uk−1 ≤
dkℓ + uℓ − uk−1 and ut + dt ≤ dtℓ + uℓ. Then, for each t ∈ L+,

ρt(S
+) = (min{dkt + ut − uk−1, dt + ut})+ .

In the second set of inequalities, they introduce inventory fixed charge variables

to inequalities (E.1) and (E.2). Recall that p = min{t ∈ [k, ℓ] : uk−1 < dkt}. For

1 ≤ k ≤ ℓ ≤ n such that uk−1 ≤ dkℓ, let L ⊆ [k, ℓ] and T = {t1, t2, . . . , tτ} ⊆ [k−1, p−1].

For j ∈ T , let s(j) = min{L ∪ {ℓ+ 1} : t > j}. Then the inequalities

ik−1 +
∑
t∈L+

yt +
∑
t∈T

γt(1− zt) ≤ uk−1

+
∑
t∈L+

min{dkt + ut − uk−1, dkℓ − uk−1, dtℓ}xt + iℓ, (E.3)

ik−1 +
∑
t∈L+

yt +
∑
t∈T

γt(1− zt) ≤ uk−1 +
∑
t∈L+

(dkt − uk−1 + ut)xt, (E.4)

where

γtj =

uk−1 − dktτ if j = τ and s(tj) > p,

d(tj+1)(tj+1) if j < τ and s(tj) = s(t(j+1)),

d(tj+1)(s(tj)−1) if (j < τ and s(tj) < s(t(j+1))) or (j = τ and s(tj) ≤ p)

139

are valid for LSBI.

Proposition E.3. Let s represent the inventory arc (k−1, k) and let t ∈ [k−1, p−1].

For S = {s} and T = {(t, t+ 1)}, the inequality

ik−1 +
∑
j∈L+

yj +
(
ρs(L(t))− ρs(L(t)|zt = 0)

)
(1− zt) ≤ v(S) +

∑
j∈L+

ρj(S)xj (E.5)

where L(t) = L+ ∩ [t+ 1, ℓ] is equivalent to inequality (E.3) and is valid for LSBI.

Proof. Let (y∗, i∗,x∗, z∗) be a feasible solution of LSBI and let L̄t = L+ \ L(t). We

show validity of inequality (E.5), under two cases: z∗t = 1 and z∗t = 0. When z∗t = 1,

inequality (E.5) is equivalent to inequality (4.9) and is valid for LSBI.

Now, suppose z∗t = 0. Inequality (E.5) becomes

i∗k−1 − i∗ℓ +
∑
j∈L+

y∗j ≤ v(S)− ρs(L(t)) + ρs(L(t)|zt = 0) +
∑
j∈L̂+

ρj(S), (E.6)

where L̂+ = {t ∈ L+ : xt = 1}. Moreover, let L̂(t) = L̂+ ∩ L(t). From the definition of

the function v, when z∗t = 0, it is guaranteed that

i∗k−1 − i∗ℓ +
∑
j∈L̂+

y∗j ≤ v(s ∪ L̂+|zt = 0).

Moreover, using the structure of the path we observe

ρs(L(t)|zt = 0) = ρs(L̂(t)|zt = 0)

and

v({s} ∪ L̂+|zt = 0) = ρs(L̂(t)| zt = 0) + v(L̂(t)|zt = 0)

since t ≤ p− 1. Then, we make the following observation about the right hand side of

inequality (E.6):

v({s})− ρs(L(t)) + ρs(L(t)|zt = 0) +
∑
j∈L̂+

ρj(S)

≥ v({s} ∪ L̂(t))− ρs(L(t)) + ρs(L(t)|zt = 0) +
∑

j∈L̄(t)∩L̂+

ρj({s})

≥ v({s} ∪ L̂(t))− ρs(L̂(t)) + ρs(L(t)|zt = 0) +
∑

j∈L̄(t)∩L̂+

ρj({s})

= v(L̂(t)) + ρs(L(t)|zt = 0) +
∑

j∈L̄(t)∩L̂+

ρj({s})

= v({s} ∪ L̂+|zt = 0) +
∑

j∈L̄(t)∩L̂+

ρj({s}).

140

In the first and second inequalities, we use submodularity of the function v and in the

last equality, we use the structure of the path. As a result,

i∗k−1 − i∗ℓ +
∑
j∈L+

y∗j ≤ v({s} ∪ L̂+|zt = 0)

≤ v({s})− ρs(L(t)) + ρs(L(t)|zt = 0) +
∑
j∈L̂+

ρj(S)

and we conclude that inequality (E.5) is valid for LSBI when z∗t = 0.

As it is pointed out in Atamtürk (2004), the coefficients γt are sequence-dependent.

Let the sequence of inventory arcs to be lifted be represented as T = {t1, . . . , tτ}. Then,
one can represent the coefficients as:

γtj = ρs(L(tj)|ti = 0, ∀i ∈ [j + 1, τ])− ρs(L(tj)|ti = 0, ∀i ∈ [j, τ]).

Proposition E.4. Let ti, tj ∈ T for some i ̸= j. If ti > tj and i < j, then γti = 0.

Proof. Recall that the coefficient γti can be represented as ρs(L(ti)|tl = 0, ∀l ∈ [i +

1, τ])−ρs(L(ti)|tl = 0, ∀l ∈ [i, τ]). Without loss of generality, let j := argminl∈[i+1,τ]{tl}
and suppose tj < ti. Since tj < p, we know that ρs(L(ti)|tl = 0, ∀l ∈ [i, τ]) = dktj and

ρs(L(ti)|tl = 0, ∀l ∈ [i, τ]) = dktj . Consequently, the coefficient of zti is γti = 0.

Due to Proposition E.4, we assume that ti < tj for all ti, tj ∈ T and i < j. In other

words, we assume that T is an increasing set.

Remark E.1. For LSBI, the coefficients

ρs(L(ti)|tl = 0, ∀l ∈ [i, τ]) = ρs(L(ti)|ti = 0)

and

ρs(L(ti)|tl = 0, ∀l ∈ [i+ 1, τ]) = ρs(L(ti)|ti+1 = 0).

In other words, the change in maximum flow by adding the inventory arc (k− 1, k) to

L(ti) only depends on the smallest (left-most) inventory arc (j, j + 1) that is closed.

Note that the results shown in Propositions E.3, E.4 and Remark E.1 are not general

for all network structures and depend heavily on the path structure of LSBI.

Proposition E.5. Let s represent the inventory arc (k−1, k) and let t ∈ [k−1, p−1].

For S = {s} and T = {(t, t+ 1)}, the inequality

ik−1 +
∑
j∈L+

yj +
∑
t∈T

(
ρs(L(t)|tj+1 = 0)− ρs(L(t)|tj = 0)

)
(1− zt) ≤ v(S) +

∑
j∈L+

ρj(S)xj

(E.7)

141

is equivalent to inequality (E.3) and is valid for LSBI.

Proof. Let (y∗, i∗,x∗, z∗) be a feasible solution of LSBI. If z∗t = 1 for all t ∈ T , then

inequality (E.7) is equivalent to (4.9) and is valid for LSBI. Suppose z∗t = 0 for some

t ∈ T . Let T̂ = {t ∈ T : z∗t = 0}. From the definition of the function v, we observe

i∗k−1 − i∗ℓ +
∑
j∈L+

y∗j ≤ v({s} ∪ L̂+|zi = 0, ∀i ∈ T̂).

Inequality (E.7) when zi = 0 for i ∈ T̂ becomes

ik−1 +
∑
j∈L+

yj ≤ v(S)−
∑
j∈T̂

(
ρs(L(j)|tj+1 = 0)− ρs(L(j)|tj = 0)

)
+

∑
j∈L̂+

ρj(S). (E.8)

Let R be the right hand side of inequality (E.8) and let tmax = max{j ∈ T̂}. Then,

using submodularity and the path structure of LSBI, we observe the following

v({s})− ρs(L(tmax)|ztmax+1 = 0) + ρs(L(tmax)|ztmax = 0) +
∑

j∈L̂(tmax)

ρj(S) (E.9)

≥ v({s} ∪ L̂(tmax))− ρs(L(tmax)|ztmax+1 = 0)

+ ρs(L(tmax)|ztmax = 0) (E.10)

≥ v({s} ∪ L̂(tmax))− ρs(L̂(tmax)|ztmax+1 = 0)

+ ρs(L(tmax)|ztmax = 0) (E.11)

≥ v({s} ∪ L̂(tmax))− ρs(L̂(tmax)) + ρs(L(tmax)|ztmax = 0) (E.12)

= v(L̂(tmax)) + ρs(L(tmax)|ztmax = 0) (E.13)

= v({s} ∪ L̂(tmax)|ztmax = 0). (E.14)

The inequality (E.12) holds since for any tj ∈ T and ti ≥ tj,

ρs(L(tj)|zti = 0) ≤ ρs(L(tj))

due to the path structure of LSBI. Similarly, we reach the equality of (E.13) and (E.14)

since v(L̂(tmax)) = v(L̂(tmax)|ztmax = 0). Using the inequality (E.10)–(E.14), we observe

that

R ≥ v({s} ∪ L̂(tmax)|ztmax = 0)

−
∑

i∈T̂\{tmax}

(
ρs(L(ti)|ti+1 = 0)− ρs(L(ti)|ti = 0)

)
+

∑
i∈L̂+\L̂(tmax)

ρi(S).

For the rest of the proof, we use an induction logic. First, we introduce some

notation for simplification: let T̂ (tj) = T̂ ∩ {tj, . . . , tτ} and let v(C|T̂ (tj)) := v(C|zi =

142

0, ∀i ∈ T̂ (tj)) and ρl(C|T̂ (tj)) := ρl(C|zi = 0,∀i ∈ T̂ (tj)).

Assuming that the following is true

R ≥ v({s} ∪ L̂(tj+1)|T̂ (tj+1))

−
∑

i∈T̂\[tj+1,tτ]

(ρs(L(ti)|zti+1
= 0)− ρs(L(ti)|zti = 0)) +

∑
i∈L̂+\L̂(tj+1)

ρi(S)

for iteration j+1, we extend the result for tj. First, we make the following observation

ρi(S) ≥ ρi(S|ztj+1
= 0) = ρi(S|zti = 0,∀i ∈ [j + 1, τ])

for any i ∈ L+ \ L(tj+1). Then,

v({s} ∪ L̂(tj+1)|T̂ (tj+1))− ρs(L(tj)|tj+1 = 0) + ρs(L(tj)|ztj = 0) +
∑

i∈L̂(tj)\L̂(tj+1)

ρi(S)

≥ v({s} ∪ L̂(tj)|T̂ (tj+1))− ρs(L(tj)|tj+1 = 0) + ρs(L(tj)|ztj = 0) (E.15)

≥ v(L̂(tj)|T̂ (tj+1)) + ρs(L(tj)|ztj = 0) (E.16)

= v({s} ∪ L̂(tj)|T̂ (tj)). (E.17)

Inequalities (E.15)–(E.16) are obtained from the observation above and submodularity

of the function v and the equality of (E.16) to (E.17) is due to the path structure of

LSBI. As a result of the induction, we have proved that

R ≥ v({s} ∪ L̂|T̂).

Then, combining with the definition of the function v, we conclude that

i∗k−1 − i∗ℓ +
∑
j∈L+

y∗j ≤ v({s} ∪ L̂+|T̂) ≤ R

and inequality (E.7) is valid for LSBI.

Remark E.2. In Atamtürk and Küçükyavuz (2005), they select T ⊆ [k − 1, p − 1]

since closing any inventory arc j ≥ p does not change v(S+) nor ρt(S
+) for any t ∈ L+.

As a result, the lifting coefficient of such an inventory arc is zero.

Example E.1. Consider the example in Figure E.1. Inequality (4.9) for the node set

[2, 5] and the arc sets S+ = {(1, 2)} and L+ = {2, 4, 5} is

i1 + y2 + y4 + y5 ≤ 40 + 14x2 + 14x4 + 14x5 + i5,

which is equivalent to inequality (E.1) for the same subsets of nodes and arcs.

143

1 2 3 4 5

11 12 13 14 15

41 40 47 34 20 5

dt

ut

Figure E.1: A lot-sizing example with inventory bounds.

Note that p = 5 since d24 ≤ 40 and d25 > 40. Selecting T = {(2, 3)}, we get the

lifting coefficient of 13. We obtain this value by the difference of ρ(1,2)({4, 5}) = 25 and

ρ(1,2)({4, 5}|z2 = 0) = 12. Consequently,

i1 + y2 + y4 + y5 + 13(1− z2) ≤ 40 + 14x2 + 14x4 + 14x5 + i5,

is also valid for LSBI.

144

	Introduction
	Polyhedral analysis terminology
	Capacitated fixed-charge network flow problems
	Flow cover and flow pack inequalities
	Submodular inequalities
	Lifting valid inequalities

	Submodular Path Inequalities for the Capacitated Fixed-Charge Network Flow Problem
	Capacitated fixed-charge network flow on a path
	Submodular path inequalities
	Lifting submodular path inequalities
	Superadditive valid lifting function
	Dual lifting function
	Lifting coefficients

	Computational study

	Path Cover and Path Pack Inequalities for the Capacitated Fixed-Charge Network Flow Problem
	Capacitated fixed-charge network flow on a path
	Submodular inequalities on paths
	Equivalence to the maximum flow problem
	Computing the coefficients of the submodular inequalities

	The strength of the path cover and pack inequalities
	Computational study

	Path Pack Inequalities for Lot-sizing Problems with Backlogging and Inventory Bounds
	Lot-sizing Problems with Inventory and Backlogging Bounds
	Path pack inequalities
	Explicit inequalities for LSBIB
	Finding violated inequalities

	Inventory and backlog fixed charge variables
	Strength of lifted inequalities
	Finding violated inequalities

	Computational Study

	Summary of Thesis and Conclusions
	Appendices
	Equivalency of P to the maximum flow problem
	Proofs from Chapter 2
	Proof of Theorem 2.6
	Proof of Theorem 2.7
	Proof of Theorem 2.10
	Proof of Theorem 2.11
	Observations on superadditive functions
	Convex lower-bound of fjL(z)

	Equivalency of (F3.2) to the maximum flow problem
	Proofs from Chapter 3
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemma 3.6

	Lot Sizing with Inventory Bounds and Fixed Costs

