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1 Introduction 

In this paper we review some techniques that can be used for the extraction of features from 
time series data. In particular we report some results obtained in using two feature extraction 
methods. We have used both methods to extract descriptions of peaks in A-scan ultrasound 
readings of metal parts as part of a joint research effort with Douglas Aircraft Company 
and McDonnel Douglas Research Laboratories to automate the detection of cracks. The first 
feature extraction method, which we call Filtered Scale-space, is an extension of techniques 
used in Witkin's Scale-space method for the qualitative description of data. The second 
is a method of feature extraction developed at the University of California, Irvine. This 
method extracts primitive features by analyzing the amplitude variations in the time series 
data. From these primitives, an FSA is used to synthesize simple peak features. These peak 
features can then be used to synthesize more complicated features that are at an appropriate 
level of abstraction for problem solving. For example, in ultrasonic diagnosis of metal parts, 
the features in the ultrasound signal that are diagnostic might not simply be single peaks but 
instead a contiguous sequence of peaks. 

2 Nondestructive Evaluation using Ultrasound 

Nondestructive evaluation (NDE) employs techniques to inspect materials without damaging 
them. One of the techniques most often used by aircraft manufacturers and operators is 
ultrasonic testing. We have been researching feature extraction methods that can be used 
to generate qualitative descriptions of ultrasound readings such as that shown in Figure 1. 
This research has been part of a program of joint research with Douglas Aircraft Company 
and McDonnel Douglas Research Laboratories that aims at automating the detection of flaws 
in aircraft parts. Before describing the feature extraction methods, we present a little back­
ground on the ultrasonic testing domain. 

Ultrasonic testing utilizes sound waves in the 1 MHz to 25 MHz frequency range to measure 
the thickness of a material or to examine the internal structure of a material for possible 
defects such as voids, delaminations, and cracks. By transmitting a pulse of sound through 
the material and examining the amount of sound energy that is transmitted or reflected, it 
is possible to make determinations about the internal structure of the material (Gallagher, 
Giessler, Berens & Engle, 1984; McMaster, 1959). In a pulse-echo "A-scan" setup, portions 
of the sound pulse reflect off material discontinuities in the test piece. These reflections are 
picked up by a transducer coupled to the surface of the test piece and transformed into an 
electrical signal that can be displayed on a CRT or digitized and recorded. 

Figure 1 shows a digitized A-scan signal from an aluminum block that is one of a set of 
nine blocks used as a reference standard in NDE tests. The reading shows reflections from 
the front and back surfaces of the block, as well as a reflection from a manufactured defect 
that exists at a known location inside the block. This defect consists of the surface of the 
bottom of a hole carefully drilled from the back wall of the block. The horizontal axis of the 
graph indicates the time of flight of the sound reflections. Figure 2 shows schematically one 
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The approach we are taking is one in which we extra.ct those primitive features that are 
diagnostic with respect to a. given domain theory. In our case of ultra.sonic diagnosis, the kind 
of domain theory we have in mind is one that can be used to reason about the ha.sic geometry 
of metal blocks (surfaces, spatial extent) and the motion of objects (reflected a.nd transmitted 
sound pulses). Such a. theory is to be used to explain the existence of the sound reflections 
that are observed in an ultrasonic reading by reasoning tha.t each pa.rticula.r reflection a.rises 
either from the presence of a known surface, or from the presence of a. hypothesized defect in 
the metal block. 

The initial task we set ourselves was to process a. reading such as that in Figure 1 and 
extract features that describe the 'front,' 'back,' and 'defect' reflections. While the reading in 
Figure 1 shows a relatively strong defect reflection, readings from other test blocks ha.ve defect 
reflections that are smaller. Figure 3 shows such a reading in which the defect reflection is 
the small peak located at time 190. Figure 4 shows a. portion of this reading with a. magnified 
vertical scale. This figure shows the defect more clearly and it also shows the kind of low 
amplitude, fine structure present in these readings. 

3 Some standard methods used in feature extraction 

This section discusses feature extraction some established methods that can be used in feature 
extraction from time series data. In particular, we discuss an augmentation of the Scale-space 
method, that we call Filtered Scale-space, that we have tested for use in the ultrasonic test 
block domain. 
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Figure 4: Portion of reading of test block D42C.38 

3.1 Detecting abnormal features by subtracting a normal signal 

In doing diagnosis one wants to detect in signals those features that don't appear in signals 
obtained under normal circumstances. However, sometimes the size of an abnormal feature 
is close to the size of normal features in the signal. Any approach that uses a preprocessing 
smoothing stage in order to simplify the signal before applying feature extraction will result 
in the obliteration of the small abnormal features along with small normal features. 

This problem can be ameliorated if one has available a normal signal that can be subtracted 
from the test signal. The differenced signal so produced will have any abnormal features sitting 
on top of a more or less flat signal. Many of the small abnormal features that previously 
competed with small normal features, will now instead be competing with the differenced 
versions of the small normal features. These versions will tend to be transformed into relatively 
small variations in the flat signal and the abnormal signals will stand out and be detectable 
on the basis of thei,r amplitude variations. 

When it is possible to obtain an averaged normal prototypical signal, then using this 
differencing method as a signal preprocessor should enhance feature extraction regardless of 
what method of extraction is used. Section 5 shows the application of this method to feature 
extraction from test block signals. 

3.2 Signal smoothing by Gaussian convolution and edge detection 

A standard preliminary to feature extraction is to perform smoothing in order to produce a 
simplified signal in which noise or uninteresting, small features have been suppressed while 
larger, interesting features have been preserved (although perhaps somewhat modified) (Chen, 
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1982). 
A great variety of filters exist for this purpose. One kind of filter that has been found 

particularly useful in vision applications is the discrete convolution with the Gaussian function 
and its derivatives. In vision applications, an "edge" (significant change in the signal) is a 
primitive feature that is diagnostic for the task of image understanding. This is because edges 
are reliably associated with "discontinuities in physical properties, such as depth, surface 
orientation, or reflectance properties" of the objects that have been imaged (Ullman, 1986). 
In vision applications, the convolution with the second derivative of a Guassian has been 
found to have optimal properties for the location of edges (Marr & Hildreth, 1980). 

Just as edges are diagnostic in vision, the amplitude variations present in ultrasonic signals 
can also be analyzed in terms of edges. In particular, the location of an ultrasound peak can be 
characterized by the inflections points (edges) that bound it on the left and right. Therefore, 
one approach to feature extraction of ultrasonic signals that we have investigated is Witkin's 
Scale-space method, which is fc:mnded upon edge .detection using Gaussian filtering. 1 

3.3 Scale-space method 

The first feature extraction method we tried is based on a technique used in Witkin's Scale­
space method (Witkin, 1983). 

3.3.1 Description of method 

The Scale-space method works by smoothing the signal with a sequence of :filters that provide 
increasing degrees of smoothing, CT, and by plotting the zero-crossings of the second derivative 
of each smoothed signal as a function of their location and of the strength of the filter at which 
they are produced. The parameter that controls the degree of smoothing, CT, is the standard 
deviation of the Gaussian filter used, and is a measure of the width of the Gaussian. Figure 5 
shows an example of a Scale-space, zero-crossings plot for one of the test block ultrasound 
readings. 

The Scale-space method goes on to derive from the Scale-space plot a data structure called 
an "interval tree" that provides a means of producing a qualitative description of the data 
based upon picking the best CT at which to locate edges within localized segments of the data. 

In Figure 5 the zero-crossings can be arranged into lines rising vertically through the Scale­
space. Each line, called a "contour," is associated with a single inflection point as it survives 
across successive degrees of smoothing. In general, contours vanish in pairs corresponding 
to two inflection points approaching and meeting each other as the common peak that they 
bound is smoothed out. These two contours can be traced down to the time axis where they 
identify the two inflection points in the unsmoothed data. Thus, pairs of contours allow the 
identification of a feature. Without seeing this merging of contours, one might for example, 
try filtering at a single CT, find the zero-crossings, but then inappropriately pair them up. This 
is because successive zero crossings often do not belong to the same feature. That is, there 

1 This approach was originally recommended to us by Deepak Kulkarni at NASA Ames. 
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Figure 5: Scale-space contours for a D35 signal 

are pairs of zero crossings representing smaller features, that are nested within a pair of zero 
crossings which represents a larger feature. 

3.3.2 Implementation 

We used code written at NASA-Ames by Kiriakos Kutulakos and subsequently· modified by 
Steve Morris at UC Irvine. 

3.3.3 Our experience with the Scale-space plot 

When we used this method on ultrasound readings of test blocks, we found that 'undesirable' 
zero-crossing contours were produced. These were contours produced by edges associated 
with very low amplitude variations in the data. For example, in Figure 5, in addition to the 
three robust contour pairs corresponding to the front surface, defect, and back surface of the 
block (the six contours on the left that survive above <7 = 175), there is also an undesired 
long-lived contour pair on the far right. These two contours are generated by inflection points 
in a region of the data containing relatively small variations in amplitude. On the other hand, 
the relatively large. amplitude peak associated with the defect does not survive as long; its 
inflection points are smoothed out by <7 = 190. 

We had hoped that the contours of the small amplitude features would die before those 
of the relatively large features of interest. We could have then used the Scale-space plots to 
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pick a single a at which the surviving contours could be traced back down to the a = 0 axis 
to determine the feature edge locations in the unsmoothed data. 

The undesired contours showed this would not work. This phenomenon perhaps indicates 
that the Scale-space technique does not provide global comparative information about feature 
size throughout a data set, but instead provides only local comparative information. In 
the 'full blown' Scale-space technique, such local comparative information is encoded by 
an "interval tree." This tree is then used to determine the a's that provide optimal local 
description of the data. But we are not using this full-blown Scale-space method. We are 
only attempting to borrow the idea of the Scale-space plot of zero-crossings to determine 
significant edges, where 'significant' for us means 'associated with a large feature.' Besides, 
we are not interested in locally optimal descriptions of a reading. We instead want to globally 
ignore what we consider uninteresting or noisy features and extract only the interesting, big 
features. The interval tree approach would instead simply give us locally optimal descriptions 
of all the features in the reading, noise and all. 

3.4 Filtered Scale-space 

We developed a modification to the Scale-space plot that appears to solve the problem of the 
undesirable contours. Looking at plots of the second derivative of the data at any particular 
a, we noticed that, for the significant features, the third derivative at the zero-crossing points 
were about an order of magnitude or greater than the third derivative at the 'undesirable' 
zero-crossings. This suggested a test, using a threshold on the third derivative at the zero­
crossings, to filter out of the Scale-space plot the zero-crossings of the undesirable features. 
For the test block signals, the test decided upon was: for a given scale a, if the absolute 
value of the slope of a zero-crossing is less than 0.005 of the highest absolute slope of all the 
zero-crossings, then eliminate the zero-crossing. The value 0.005 was chosen because it works 
for as many of the nine test blocks as possible. For example, the "dark" zero-crossings in 
Figure 5 are those that survived this test, while the "light" zero-crossings are those that did 
not survive. For more details, see (Amirfathi, Morris, O'Rorke, Bond, & St. Clair, 1991) and 
(O'Rorke, Morris, Amirfathi, Bond, & St. Clair, 1991). 

The performance of this test was that it effectively killed the 'undesirable' contours, and 
allowed the choice of a single contour-sampling-a that would extract all the significant features 
for seven of the nine blocks. For each of the other two blocks, the zero-crossing test killed 
large parts of one of the two contours associated with the crack, so that at the sampling a, it 
is either the case that only one of the edges of the crack is seen, or the case that the contour 
for one edge gets obliterated in its mid-a range and therefore can't be traced back to the a 
= 0 axis. 

The errors on these two blocks are due to the fact that their crack signals are small, 
or similar in size to a non-significant feature that is present in the RMS data for each of 
the blocks. This non-significant feature is a small 'hill' that immediately follows the front 
wall feature, and which apparently is due to a near-field effect inherent in the ultrasound 
transducer and setup used. For the reading D42C.38, the crack peak is similar in size to this 
small hill, while for the reading D42C.31, the crack peak is 'buried' in (obscured by) this small 
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hill. The existence of this 'competing' hill limits the size of resolvable significant features. 
(But see Section 5.) 

3.5 E-filtering 

A phenomenon tha.t occurs with Ga.ussia.n smoothing such as in Sea.le-space is tha.t the lo­
cation of edges (inflection points) migrate within the smoothed versions of the da.ta.. This is 
manifested in the Sea.le-space plot as curved contours. A technique to lessen this migration is 
the E-filter, introduced in (Moore & Parker, 1973) a.nd generalized in (Sa.ito & Cunningham, 
1990). In this technique, prior to smoothing the da.ta, a. non-linear transformation is applied 
to the da.ta.. This tra.nsforma.tion modifies the x values of the data's x-y points a.nd spreads out 
the da.ta. set by varying a.mounts. The Ga.ussia.n (or other linear filter) is then applied, a.fter 
which a.n inverse tra.nsforma.tion is applied to the smoothed data. tha.t restores the original 
x-va.lues. So long as a. minimum aspect ra.tio of height to width of feature exists for the signif­
icant features, this method will reduce the a.mount of edge migration in the smoothed da.ta.. 
The minimum aspect ra.tio ca.n be achieved by multiplying the y-va.lues of the unsmoothed 
da.ta by a. constant prior to E-filtering. 

Sa.ito & Cunningham (1990) introduced a. generalized E-filter in which the a.mount of da.ta. 
spreading (the degree of non-linearity) is controlled by a. parameter. They cla.im that their 
generalized E-filter solves several problems with the Sea.le-space technique: 

In practice, there are some difficulties in implementing the sea.le-space filter ... 
Computation of the second derivatives of sampled da.ta. is a. noisy process. In 
most of our applications, we ha.ve looked at extreme points of the first derivatives 
rather than the zero crossings of the second derivatives. Edges are defined by 
extreme values of the first derivative greater than some threshold value. 

A more severe problem is tracking the edge: as the Ga.ussia.n widths decrease, more 
and more edges are detected, and identification of the significant structure becomes 
problematic. Witkin [8] ... devotes a significant amount of time to developing a 
hierarchical tree to assist in following the edge .... as the Gaussian width increases, 
the edge positions migrate some distance from their original location. 

... sea.le-space filtering will suffer from edge migration due to the coherent inter­
ference of neighboring structures. 

With the use of the E-filter, it is therefore possible to simply filter with a large 
width and obtain the placement of the edge positions directly, without having to 
track the structures to small Gaussian widths. This is a. significant saving in terms 
of computational effort. 

.. . the generalized E-filter also solves another difficulty found with sea.le-space 
filtering, ... the "masking effect", and is related to the loss of high-frequency 
information for la.rge values of the Gaussian width. In Fig. 2 we see an illustration 
of the problem. The two structures marked "b" are separated by a relatively small 
gap. Standard linear filtering, as used in sea.le-space, cannot resolve them, and 
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only one structure is identified. When the edge detection is based on the E-filter 
approach, the two structures remain separated, even for large Gaussian widths ... 

This technique seems to present the possibility that a single second derivative Gaussian 
filter can be used, with the E-transformation, to locate zero-crossings (edges) in the smoothed 
data. Because of small edge migration, we could then 'read off' the edge locations directly 
from the smoothed data. This would presumably avoid the multiple filterings of the Scale­
space technique and thus save computation. 

It would seem that this single filter technique suffices if all you're interested in is locating 
edges. But if you are primarily interested in locating peaks by finding their bounding edges, 
then using a single filter to find zero-crossings might not be a robust technique in light of 
the possibility of not being able to properly identify which zero-crossings should be paired 
together (see above) without using the Scale-space plot. Perhaps a single filter approach, 
combined with determining the edge pairings by looking directly at the smoothed data curve, 
might work. Regardless, E-transformation to reduce edge migration is a good technique to 
keep in mind. 

4 Feature extraction by interpretation of a signal's ampli­
tude changes. 

The Scale-space method depends on computing several filtered versions of the signal in order 
to form contours. The need to look at contours in the Scale-space method arises from the 
fact that zero-crossings, and the edges they represent, provide very local information about 
the signal. In order to realize which edges to pair (so that, for instance, one does not pair an 
edge of a large feature with that of a small feature superimposed upon it) one must observe 
how the contours vanish as smoothing increases. 

An alternate approach that can discriminate small features from large is to actually look 
at the amplitude variations of the signal. In this way, one can locate segments of the signal 
in which the overall amplitude change is large while ignoring the small amplitude ups and 
downs within that segment. In this section we describe a feature extraction algorithm that 
does this. lt is based upon the analysis of a single sig~al rather than analyzing a sequence 
of signals as in the Scale-space method. It therefore has the potential to be quite a bit less 
computationally expensive than the Scale-space method. 

4.1 Overview of the feature extraction method. 

The feature extraction method consists of three stages. See Figure 6. The first stage runs 
an algorithm that receives the signal as input and produces a sequence of primitive features 
as output. Each primitive describes a segment of the signal, and the sequence of primitives 
partitions the signal. The primitives that we have chosen are : incline, decline, flat, and 
insignificant. For example, an incline is a segment of the signal that is described as an 
increase in amplitude over a particular range of the independent variable, and the average 
slope of this increase meets a certain minimum value as indicated by a parameter of the 
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Figure 6: Overview of feature extraction method. 

Stage 1 algorithm. Section 4.2 describes the four primitives and how the Stage 1 algorithm 
works. 

Stage 2 of the method analyzes the output of Stage 1 and identifies peaks in the signal. 
This stage uses a simple finite state automaton to find sequences of the primitives that 
correspond to peaks in the signal. A simple example would be two inclines followed by a 
decline. Section 4.3 describes this process. 

In the ultrasonic diagnosis of cracks a meaningful feature is generally not as simple as a 
single peak. For instance, a reflection from a crack might be described in terms of a sequence of 
three peaks. We therefore have a third stage that analyzes the peak information produced by 
Stage 2 to synthesize 'super' features that are at the appropriate level for applying diagnostic 
knowledge. Whereas as Stage 1 and Stage 2 result in a signal description couched in a 
primitive language of peaks that is general and domain independent, Stage 3 is the level at 
which domain knowledge about the kind of complex 'signatures' produced in the signal by 
the underlying processes of interest (such as sound reflecting · from cracks) can be brought to 
bear. Often these signature features are more complex than simply a single peak. Rather 
they may comprise a sequence of peaks, perhaps having amplitude or width relations to each 
other. Section 4.4 discusses this last stage of the feature extraction method which culminates 
in the feature descriptions of interest to the diagnostic process. 

4.2 Stage 1 : Extracting primitive features. 

The Stage 1 algorithm processes the signal which is described as a time series of amplitudes 
changes. The algorithm partitions the signal into a sequence of primitive feature descriptions. 
Each primitive describes a time segment of the signal by a symbolic type ( eg., an 'incline') plus 
one or more numeric values that characterize the segment. The algorithm basically makes a 
pass through the input data from left (early times) to right (later times) recognizing primitive 
features as it does so. In the process of recognizing and describing a particular feature, the 
algorithm can backtrack and modify or even delete earlier features. This is done in order to 
arrive at a more optimal description of two or more adjacent features. We next describe the 
Stage 1 algorithm in more detail. 

4.2.1 Input and output of the algorithm. 

One of the inputs to. the algorithm is a representation of a time series function in terms of 
its "ups" and "downs." That is, the function is described as an initial value and a sequence 
of subsequent amplitude changes. For example : y = 3.2 at t = 1.2; ~y = 3.24 from t = 1.2 
to t = 1.4; ~y = -1. 7 from t = 1.4 to t = 1. 7; etc. For convenience, I will refer to these 
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amplitude changes as "deltas." 
The other inputs to the algorithm are several numeric parameters that control how features 

are extracted. These parameters are described in section 4.2.2. 
The output of the algorithm is a description of the signal in terms of a predefined set of 

primitive features. H desired, these primitive features can serve as input to other algorithms 
that synthesize them into more complicated features. For example, the algorithm as currently 
implemented produces a description of a signal in terms of the following primitive features : 
inclines, declines, flats, and insignificants. The feature type insignificant is a catch-all used 
to describe any sequence of deltas that is not described by the other three feature types. The 
three other feature types are considered to be "significant" features. The user of the feature 
extraction method tries to set the numeric parameters so that the features deemed significant 
are extracted while all other deltas sequences get classified as insignificants. Having this 
catch-all feature type guarantees that every delta is incorporated into some feature. 

The algorithm analyzes the sequence of deltas and aggregates contiguous subsequences of 
them into features. Upon termination it outputs a description of the signal as a sequence 
of features, the k-th feature being described by the tuple (/k, tbegk, tendk, attrlk, ... , attrjk), 
where fk is one of the feature types, tbegk and tendk are the beginning and ending times 
of the feature, and attrlk, ... , attrjk is a sequence of j different attribute values that are 
recorded for the feature. In our initial implementation, we record only one attribute for each 
feature, namely the change in amplitude of the function in the interval [tbeg• tend]· Because 
every delta is incoporated into a feature, the output of the algorithm partitions the time series 
function into a feature sequence : (ft, tbegi, tendi, attrl1), ... (/k, tbegn, tendn, attrln), where 
tendk = tbegk+l · 

4.2.2 Description of the feature types and the five numerical parameters. 

We next describe in more detail what constitutes an incline, a decline, a flat and an insignif­
icant. There are five numeric inputs to the algorithm all of which are positive :floating point 
numbers : sig.ampl.change, sig.slope, sig.flat.width, sig.flat.slope, max.slope.change. For any 
particular run of the Stage 1 algorithm these numeric parameters control how the time series 
function is carved up into the primitive features. The fifth parameter, max.slope.change, will 
be explained later after the Stage 1 algorithm has been described in the next section. The 
first four parameters define feature classes as follows. 

An incline is a segment of the signal in which the net amplitude change, tl.y, increases by 
at least the value + sig.ampl.change and whose average siope, tl.y/(tend- tbeg), has at least 
the value - sig.slope. In other words, an incline is a sufficiently large and sufficiently steep 
increase in the signal. 

Similarly, a decline is a segment of the signal in which the net amplitude change, tl.y, 
decreases by at least the value - sig.ampl.change and whose average slope, tl.y/(tend- tbeg), 
has at least the value - sig.slope. In other words, an decline is a sufficiently large and 
sufficiently steep decrease in the signal. 

A flat is a segment of the signal whose width, tend-tbeg, has at least the value sig.flat. width 
and whose average slope, tl.y / (tend- tbeg) is no greater than + sig.flat.slope and no less than 
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- sig.flat.slope. In other words, a flat is a signal segment that is sufficiently 'wide' and suffi­
ciently 'horizontal'. 

An insignificant is any segment of the signal that does not get classified as an incline, a 
decline, or a flat. 

Figure 14 shows an example of a primitive description of a signal segment that contains 
two peaks (as defined above) bracketed by two fiats. To produce this graph, each primitive 
(incline, decline, flat, insignificant) is graphed as a straight line with the appropriate slope. 
In this figure, inclines are labeled with "i", declines with "d", flats with "f", and insignificants 
with "u". 

By judiciously setting the parameters, one can control what kinds of variations in the 
signal are recognized as features and what kinds of variations are ignored. For example, 
the parameters sig.ampl.change and sig.slope control what signal segments are recognized as 
inclines and declines. Thus, by making sig.ampl.change sufficiently large, a segment of the 
signal which trends upward and which has "superimposed" upon it some low amplitude ups 
and downs, can be classified as an incline feature while the variations comprising the super­
imposed 'noise' are not recognized as features. By making the value of sig.slope sufficiently 
large, increases or decreases in the signal that are shallow, even though they are large, can 
be classified as insignificants. For a final example, by making the value of sig.flat. width very 
large one can effectively eliminate the feature class of flats. 

4.2.3 Description of the algorithm. 

The Stage 1 algorithm works by forming features from contiguous sequences of deltas, and 
then doing some local re-assignment of deltas at the boundaries between features to quasi­
optimize the definition of the features. This re-adjustment is done using rules that govern 
when one type of feature is allowed to steal deltas from another type of feature. For example, 
after an incline has been formed adjacent to an insignificant, the incline is allowed to "steal" 
some or all of the insignificant's deltas thus increasing the width of the incline and reducing 
the width of the insignificant. 

There are a number of such "stealing rules" that were arrived at empirically in the course 
of designing the algorithm. This section describes these rules and how the algorithm works 
in general. 

Some terminology. 

In the description of stealing rules, for convenience, we will refer to the stealing feature as 
the robber and the stolen-from feature as the victim. A feature expands when it adds deltas 
to itself either on its left or on its right. A feature shrinks when it has deltas stolen from it 
either on its left or on its right. The amplitude of a feature is the change in amplitude of the 
signal from the beginning time of the feature to the ending time. For example, a decline has 
an amplitude that is a negative number. The width of a feature is its ending time minus its 
beginning time. The slope of a feature is its amplitude divided by its width. The initial slope 
of a feature is its slope at the point that the feature is initially formed, before the feature has 
expanded or shrunk. The extreme slope of an incline is a record of the most positive slope 
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the incline has ever had over its history. The extreme slope of a decline is a record of the 
most negative slope the decline has ever had. The extreme slope of an incline or a decline is 
initialized to its initial slope. A delta sequence is a. set of one or more contiguous deltas in 
the signal. 

Other partial background information : A robber always steals deltas that are adjacent to 
its current boundary. A robber can steal an adjacent sequence of multiple contiguous deltas. 
Robbers can expand by stealing on their left or on their right. All of the above is contingent 
upon meeting all the stealing rules that are applicable to the robber. Whether stealing occurs 
on the left or on the right depends upon the part of the algorithm being executed at the 
moment. The algorithm is completely deterministic. 

Stealing rules. 

Rule G 1 : A robber cannot steal a delta and incorporate it into itself if doing so would 
cause the robber's feature type, to change (E.g., an incline cannot absorb a delta and become 
an insignificant.) 

Rule G2: A victim cannot have a delta stolen from it if doing so would change the victim's 
feature type. However, it is 'allowed for a victim to have all of its deltas stolen and thus go 
out of existence. 

Rule ID 1 : Inclines and declines can steal from any adjacent feature including features of 
their same type (e.g., an incline can steal from an incline). 

Rule ID2 : Inclines and declines cannot steal a delta sequence that results in reducing the 
absolute value of the feature's amplitude. I.e., an incline cannot reduce its amplitude and a 
decline cannot increase its amplitude (go less negative). 

Rule Fl : Flats can only steal from flats or from insignificants. 
Rule Ul : Insignificants cannot steal deltas. 
Rule MSC : This rule constitutes a test that must by passed by inclines and declines 

whenever they expand or shrink. It does not apply to flats or insignificants. The expansion 
or shrinking of inclines and declines is governed by the following constraint : A delta sequence 
may be added (expansion) or taken away (shrinking) only if the resulting change in slope is 
within ±max.slope.change of the extreme slope of the feature. H this test is passed and the 
new slope is more extreme than the old extreme slope (i.e., more positive in the case of an 
incline; more negative in the case of a decline), the extreme slope of the feature is reset to 
this new slope. All of this has the consequence that the slope of an incline or a decline can 
change, but such changes are bounded by the historically extreme slope of the feature. 

The MSC rule and the extreme slope updating provides a means of controlling how accu­
rately the shape of the signal is characterized by the primitive features extracted by Stage 1. 
An example of this is shown in Figure 7 and Figure 8. These figures show a close-up of 
the back wall reflection for the D38 signal. In Figure 7 the dashed lines show the primitive 
extracted with the setting max.slope.change= 0.7. In Figure 8 are shown the primitives with 
max.slope.change= 0.3. 
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Figure 9: Processing deltas - state 1 

When stealing occurs. 

The above rules can now be used to state the circumstances under which the various types 
of feature can steal. 

• Stealing by inclines or declines : An incline or decline can steal a delta. if both Rule G 1 
and Rule MSC are obeyed for the robber, Rule Gl is obeyed for the victim, and, if the 
victim is an incline or decline, Rule MSC is obeyed for the victim. 

• Stealing by flats : A flat can steal a delta from a flat or from an insignificant if Rule G 1 
is obeyed for both the robber and the victim. A flat cannot steal from an incline or 
decline. 

• Stealing by insignificants : Insignificants cannot steal. 

Sketch of the algorithm. 

Figure 9 shows a general state of processing. Deltas are represented as small boxes and 
features are represented by rectangles. Time (the independent variable of the signal) increases 
from left to right. The la.st delta that has been read in the input is labeled cur. Cur has not 
yet been used in building a feature. To the immediate left of cur are several deltas tha.t ha.ve 
been processed but have also not yet been assigned to a feature. To the left of these deltas 
is the sequence of features feature 0 , · • ·, featurei that have already been formed. Each of 
these features incorporate one or more deltas. To the right of cur are the deltas that have 
not yet been read by the algorithm. In general the algorithm processes the sequence of deltas 
starting with the earliest and moving toward the latest. However, at times, the algorithm 
will go back and reprocess deltas (reassign them via stealing) and, in so doing, modify some 
of the previously defined features. 

Referring to Figure 9, let us assume that the algorithm has just read the delta. labeled 
cur. Cur thus joins the set of unassigned deltas. Starting from this general state of affairs, 
we describe the workings of the algorithm. It may be helpful to periodically refer to Figure 11 
which shows the flow of the algorithm. 

First the algorithm processes the unassigned deltas from right to left looking for a suffix 
sequence that constitutes a significant feature. It first tries to identify cur by itself as a 
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significant feature. If this fails, it tries to identify the suffix [dYk-i. cur) as a. significant fea­
ture. This continues until a feature is found, or until all the unassigneds ha.ve been processed 
without success, at which time the next delta, dYA:+l, is read and the process repeats. 

When a suffix sequence is identified as a new significant feature, in general there will 
still be some remaining unassigned deltas to its left. These deltas a.re immediately formed 
into an insignificant feature. For purposes of illustration let us assume tha.t dYk-l and dyk 
were found to form a. significant feature and that 6Yk-2 and dYk-3 were formed into an 
insignificant feature. This is shown in Figure 10. 

The algorithm next tries to expand the newly found significant featurei+ 2 to the left as 
far as possible. First it will try to steal deltas from the newly formed insignificant f eaturei+l · 
There are two cases : 

Case 1 Featurei+2 is successful in stealing all of the deltas from featurei+l : 
Featurei+2 then tries to steal deltas from the next feature to the left, featurei. This 
process continues until it encounters a delta that it cannot steal. Any feature that has 
all of its deltas stolen goes out of existence. Any feature that has only some of its deltas 
stolen continues to survive as a feature of the same type; albeit a narrower, modified 
one. 

Case 2 Featurei+2 does not steal all of the deltas from featurei+l 
The algorithm now lets the previous significant featurei try to expand to the right by 
stealing from the remaining deltas in the insignificant f eaturei+l · It is at this point 
in the algorithm that any feature gets to expand to the right. If featurei successfully 
expands to the right, then featurei is allowed once again to try to expand to the left. 
This is because, after expanding to the right, featurei may have changed in a wa.y that 
now enables it to steal deltas on the left that it couldn't steal in the past. For example, 
by expanding right, featurei's slope may have increased so that adding a delta on its 
left now lets the feature pass a slope test that it failed before. 

After both of these case paths, the algorithm loops by resetting cur to the next un-read 
delta, hYk+i· Upon running out of deltas to read, any remaining unassigned deltas are formed 
into a terminating insignificant feature, and the prior feature is given the opportunity to steal 
on its right from this insignificant. Finally, the features are printed out from earliest to last. 
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4.3 Stage 2 : Identifying peaks from the primitive features. 

The Stage 1 algorithm produces a description of the signal in terms of the primitive features : 
inclines, declines, fiats, and insignificants. In the ultra.sonic diagnosis domain the kind of 
signatures in the signal that correspond to processes of interest can be a.s simple a.s a single 
peak or more complicated,, such a.s a sequence of two or more adjacent peaks. An example of 
such a more complicated signature is the crack signal in the D33 reading shown in Figure 13. 
When we ran the Stage 1 algorithm using a set of parameter values that worked well for the 
whole set of test blocks, it described the D33 crack signal a.s a sequence of inclines, declines 
and insignificants. Figure 12 shows these primitives flanked by the two adjacent fiats that 
were also extracted. 

flat 28 62 -0.66 
incline 62 66 4.21 \ 
incline 66 69 2.45 I 
incline 69 70 2.5 I 
decline 70 75 -3.3 I peak 62 79 20.0 
insig 75 76 0 . 11 I 
decline 76 78 -5.43 I 
decline 78 79 -1.3 I 
incline 79 82 1.29 \ peak 79 85 11.2 
decline 82 85 -1. 75 I 
flat 85 103 -0.08 

Figure 12: Primitives in crack portion of reading of test block D42C.33 

Figure 14 shows a graph of these extracted primitive features . The first seven primitives 
correspond to a peak and the remaining two primitives correspond to a second, adjacent 
peak. Thus the portion of the signal that corresponds to the presence of a crack in the 
metal block is one that is described by two adjacent peaks. In contra.st, the strong front 
wall signal for this test block is described a.s a single, high amplitude peak. Consequently, 
we implemented a second level of feature description that extracts single peaks. And, we 
implemented a third level of feature extraction that, where appropriate, associates multiple 
peaks into 'super peaks.' It is this third descriptive level that provides the appropriate 
abstractions for performing diagnosis in the ultra.sound domain. 

To implement the second, Stage 2, level of feature extraction, we use a simple finite state 
automaton that identifies a peak feature a.s any combination of inclines and insignificants 
followed by any combination of declines and insignificants. Each such peak is described a.s 
a tuple : (peak, tbeg, tend, max.ampl), where max.ampl is the maximum amplitude value of 
the signal in the peak's time interval tbeg to tend. An example of peaks extracted by the 
FSA from Stage 1 primitives is shown in Figure 12. 
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4.4 Stage 3 : Identifying 'super peaks' from the peak features. 

To identify a. feature whose internal structure results in Sta.ge 2 describing it a.s a. sequence of 
a.dja.cent pea.ks, we tried a. very simple Sta.ge 3 tha.t simply a.ssocia.tes two or more a.dja.cent 
pea.ks into one 'super pea.k.' The resulting super pea.k is represented using the sa.me descrip­
tion la.ngua.ge used for simple pea.ks : (peak, tbeg, tend, max.ampl), where max.ampl is the 
maximum of the max.ampl of the constituent simple pea.ks. 

This simple Stage 3 processing wa.s adequate for nearly all of the nine test block signals. 
However, it is clear that the simple pea.k adjacency rule used does not adequately characterize 
the nature of crack signals. This wa.s evidenced in the description of the D31 signal shown 
in Figure 16. (Note : the high amplitude front wall signal ha.s been truncated at y = 30.) 
This signal is from the test block whose era.ck (hole bottom surface) is closest to the front 
wall. Because the crack is so close to the ultra.sound transducer, the crack signal obtained is 
modified by so-called "near field" diffraction effects. The sha.pe of the crack signal for this 
block is thus somewhat different - two small sha.rp peaks tha.t immediate follow the steep 
downslope of the frontwall signal. They occur from a.bout x = 30 to x = 40. 

Figure 17 shows a. gra.ph of the Stage 1 primitive description of the D31 signal. Because 
of the vertical truncation at y = 30 all of the primitives that describe the tall front wall signal 
are not shown. Figure 15 shows the symbolic description of the primitive features extracted 
for the beginning portion of the D31 signal. Also shown in Figure 15 are the peaks extracted 
by Stage 2. 

incline 1 6 67.08 \ 
incline 6 12 44.18 I 
insig 12 13 0 I peak 1 32 115.26 
decline 13 28 -102 . 18 I 
insig 28 29 0.39 I 
decline 29 32 -1.35 I 
incline 32 34 1.9 \ peak 32 37 14.02 
decline 34 37 -2.25 I 
incline 37 40 1.02 \ peak 37 42 12.79 
decline 40 42 -1.55 I 
flat 42 166 -5.33 

Figure 15: Primitives in beginning portion of reading from test block D42C.31 

The Stage 2 processing of the D31 signal results in the front wall signal being described 
by a high amplitude peak (the front wall) immediately followed by two low amplitude crack 
peaks. The simple S.tage 3 rule inappropriately lumps these three peaks together into one 
super peak. This situation might possibly be corrected in two different ways : 

• One could try to implement a. more complicated Stage 3 that uses knowledge a.bout the 
shape of pea.ks and their distribution in the signal. For example, from prior observations 
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one might know that the front wall signal is normally a simple, clean large amplitude 
peak. Therefore one would not associate the two small peaks in the D31 signal with 
the front wall. 

• If one has available a normal reading of the part being measured, then by subtracting 
this reading from the test reading one can get an enhanced view of abnormalities in the 
signal. See Section 5 for more discussion of this approach. 

4.5 Limitations of the feature extraction method and possible future work. 

Here we discuss some of limitations of the feature extraction method and some ways in which 
the method could be improved or extended. 

• In the phase of the Stage 1 algorithm at which suffixes of the unassigned deltas are 
tested for significance, each particular suffix is tested for feature types in a fixed order : 
"Is the suffix an incline? If not, then is the suffix a decline? If not, is it a fiat?" Once 
a feature is formed, its type never changes. As it stands the algorithm bas the feature 
type order hard-coded. A simple improvement would be to have this order defined via 
an input. 

The fixed ordering of testing for feature type introduces no inaccuracy of classification 
so long as the feature types are mutually exclusive. That is, if a given delta sequence 
cannot be classified as a significant feature in more than one way. This orthogonality 
can be achieved by judiciously choosing the numeric input parameters. 

If the feature types are not mutually exclusive, then the algorithm as currently imple­
mented forces a perhaps arbitrary choice depending on the order of the types. On the 
other hand, if one has a preference among feature types, then the linear order of feature 
type testing provides some ability to implement such preferences. For example, if one 
prefers inclines over fiats, this can be enforced by testing for inclines before testing for 
fiats. 

• The Stage 1 algorithm as currently implemented is designed to extract effectively the 
four primitives : incline, decline, flat, and insignificant. The algorithm could be im­
proved by having user present as an input the definition of the feature types. This 
would entail the user having the ability to define parameters as well as introduce the 
names of feature types and refer signal attributes such as slope, amplitude, width, etc. 

• An important aspect of the Stage 1 algorithm are the stealing rules. These determine 
how various features types are given preference over others. In some cases, they also 
determine limits to the growth of features. As currently implemented, the stealing rules 
are hard-coded·. An improvement would be to allow the user to define these stealing 
rules as an input to algorithm. This improvement and the one mentioned immediately 
above would involve developing a system that applies a user-defined rulebase under the 
control of an algorithm identical or similar to that shown in Figure 11. 
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• A possible difficulty with our feature extraction method is that five numeric parameters 
need to be set by the user. While these parameters ostensibly have a simple semantics, 
the following potential issues might arise when using the method : 

1. In specific instances, the competitive process by which the Stage 1 algorithm ex­
tracts adjacent features might result in some parsings of signal segments that look 
somewhat unnatural or suboptimal to the human eye. 

For example, in Figure 17 the signal segment from x = 210 to x = 4 70 is d~scribed 
by two flats with an intervening small decline. A human might well describe the 
whole segment as one fiat. If the value of the parameter sig.ampl.changeis increased 
a small amount, for example, from 1 to 1.2, then the part of the segment that 
was previously extracted as a decline no longer so-qualifies because the amplitude 
decrease is now too small, and the segment then gets described as one large fiat. 

2. The parameter change described above (from 1 to 1.2) results in other small but 
significant changes in the primitive description of the D31 signal. One of these 
changes is that the crack portion of the D31 reading, which used to be described 
by 

incline 32 34 1.9 
decline 34 37 -2.25 
incline 37 40 1 .02 
decline 40 42 -1.55 

is now described by 

incline 32 34 1.9 
decline 34 37 -2.25 
ins ig 37 40 1. 02 
decline 40 42 -1.55 

Accordingly, what Stage 2 previously described in the interval x = 32 to x = 42 
as a sequence of two peaks, now is described as one peak. 

Given numeric parameters, there is an inevitable thresholding sensitivity to their exact 
values . This suggests that what is needed to obtain a robust extraction of features 
at the more abstract, diagnostic level is Stage 3 processing in which the features from 
Stage 2 (or perhaps the features directly from Stage 1) are used to focus attention on 
signal segments, to which is then applied knowledge-based inference that can recognize 
multiple differing descriptions (such the two given above) as indicating an identical 
underlying diagnostic cause (such as a crack in the range x = 32 to x = 42). 

• An interesting extension to this research would be to develop a system that tries to find 
parameter settings that can reproduce (as much as possible) a given expert's examples 
of feature extraction. Such a supervised-learning system might provide a useful and 
efficient user interface for using the feature extraction method. 
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Table 1: Features extracted for the nine test blocks. 

Parameter settings : sig .am pl .change = 1.0 

sig.slope = 0.1 

sig.flat.width = 10.0 

sig.flat.slope = 0.05 

maz .slope.change = 0.7 

peak #1 peak #2 peak #9 peak #-I 
max. max. max. max. 

Reading tbeg tend am pl tbeg tend am pl tbeg tend am pl tbeg tend am pl 
D31 1 42 115.26 166 209 16.23 
D32 1 32 115.26 37 54 15.97 179 206 17.21 
D33 1 28 115.26 62 85 19.71 205 233 14.29 418 455 6.65 
D34 1 32 115.16 85 107 18.64 230 265 15.25 
035 1 32 115.26 110 132 14.33 255 290 18.93 
D36 1 32 115.16 136 151 11.07 281 308 17.94 
037 2 32 115.12 159 175 10.09 291 340 20.54 
D38 1 36 114.12 188 204 6.69 319 358 16.41 
039 1 32 115.32 211 227 6.42 346 384 18.90 

4.6 Performance of the feature extraction method. 

Using a common set of numerical parameters across all nine test blocks, the feature extraction 
method was able to extract the crack feature from eight of the nine test blocks. Table 1 
shows the final feature descriptions produced for nine test block readings using the indicated 
parameter settings. 

Only two peaks were extracted from the D31 reading because the peaks associated with 
the crack signal were incorrectly merged with the front wall signal to form one super peak. 
This was due primarily to the simplicity of the Stage 3 feature processing in which two or 
more peaks were merged into super peaks. In this signal, the very large front wall peak is 
followed by the crack signal described as two very small peaks. A more sophisticated heuristic 
in which prior knowledge about relative peak size and placement guides the merging process 
could probably avoid such a confoundment. In other words, knowledge about the size, shape 
and structure of various kinds of peaks could be brought to bear in analyzing the simple peak 
features extracted by the Stage 2 of processing. 

The D33 reading contains four peaks. The fourth peak is an "echo" resulting from part 
of the back wall echo reflecting off the front of the block, then traveling to the back wall and 
producing another hack wall reflection. 
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5 · Feature extraction from differenced test block signals 

Figure 18 is identical to Figure 3. It graphs a.n ultrasonic reading from a. D38 test block 
which shows a 'crack' (hole reflection). This is one of the more difficult test block readings. 
It is difficult because the era.ck reflection a.t x = 200 is small a.nd is similar in size to the little 
"hillock" that occurs in all the readings from a.bout x = 30 to x = 60. This hillock does not 
indicate a.ny kind of defect a.nd is a. normal pa.rt of a. test block reading. Any algorithm that 
works by identifying pea.ks by keying on amplitude changes, a.nd that attempts to extra.ct 
the era.ck features from all nine of the test block using a. common set of para.meters, will be 
strained to succeed when the cracks become as small as normal features. There will be a 
tendency to extra.ct the hillock feature as well as the era.ck feature. 

As mentioned in Section 3.1 one approach to handling this difficulty is to subtract from 
ea.ch test reading a. prototypical normal reading, a.nd then extra.ct features from this differenced 
signal. Ten readings from a. location of the D38 block that gives no era.ck signal (ie., ten normal 
readings) were pointwise-a.vera.ged together to obtain a. 'normal' reading for the block. This 
normal reading is subtracted from the reading to be analyzed. Figure 19 shows the differenced 
version of the signal in Figure 18. The resulting 'differenced' signal is one in which the front 
wall, the hillock a.nd the gentle exponential-like decay following the front wall peak, essentially 
disappear. What survives is a flat signal a.round which low amplitude noise oscillates. Also 
surviving prominently is the era.ck signal a.nd the ha.ck wall signal. The ha.ck wall survives as 
a. 'zig za.g' signal. This is because the ha.ck wall peak in a. reading of a 'era.eked' test block is 
reduced in amplitude a.nd also shifted forward in a. little time. 

By subtracting a. normal reading of the pa.rt from a. test reading, abnormal features a.re 
enhanced in their amplitudes relative to the noise that remains. They a.re therefore easier to 
detect by feature extraction algorithms that key on amplitude changes. 

6 Conclusions and recommendations. 

The foregoing describes some experience we have ha.d with two approaches to feature extrac­
tion : one based upon techniques used in the Sea.le-space method, a.nd the other being a 
feature extracted algorithm developed a.t UC Irvine. Some other techniques used in feature 
extraction were also briefly discussed. We next compare the two feature extraction methods 
a.nd make some recommendations for further testing a.nd development. 

6.1 Scale-space techniques. 

With regard to Scale-space techniques, we conclude that for the task of extracting features 
from signals, the full-blown Sea.le-space method, with it generation of a.n interval tree de­
scribing the signal a.t multiple scales, is computational overkill. Using a. Scale-space approach 
(multiple filterings, generation a.nd following of contours) requires considerable computation. 
We found that Scale-space contour generation produced contours whose strength did not 
always correlate with the feature strength as measured from a.n amplitude perspective. 
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At the expense of more computation, a Filtered Scale-space approach that uses a post­
processing filtering phase was tested. This approach helped eliminate strong contours asso­
ciated with weak features, but this process also tended to obliterate some of the contours of 
the features of interest. We were not able to extract all the crack features from our test suite 
of nine test block readings using this method. 

6.2 Our feature extraction method. 

We developed and tested a new feature extraction algorithm as described in Section · 4. This 
method was found to be more capable than Filtered Scale-space at extracting the (small) 
crack features in the test suite of nine test block readings. It was also found, in practice, to 
be computationally efficient compared to Filtered Scale-space. 

With respect to comparative crack feature extraction capability, Filtered Scale-space was 
unable to extract the crack features for the readings D31 and D38. Our feature extraction 
method succeeded with D38. ·And with the implementation of a Stage 3 phase that uses 
some domain knowledge about feature geometries and locations, this method should be able 
to extract the crack feature in the D31 reading. 

With respect to comparative processing speed, on a Sun 3/60 with 16 megabytes of mem­
ory, Filtered Scale-space took on the order of tens of minutes to extract features from one 
reading using a scale space based on 92 filterings. In contrast, our feature extraction algo­
rithm, on the same platform, extracted features from one reading in time on the order of a 
few seconds. Admittedly, the Filtered Scale-space approach could be speeded-up by deter­
mining a smaller set of filters that are sufficient to still capture useable contours - say 10 
filters instead of 92. The C code in which Filtered Scale-space is implemented might also 
be optimized somewhat. However it is difficult to see how these changes could result in a 
processing time that approaches that of a few seconds. 

Our feature extraction method does not require any smoothing of the signal being an­
alyzed. It can operate simply by processing the raw signal described by the time series of 
amplitude changes between the sampling points - the so-called deltas. On the other hand, 
the method could just as well be given a smoothed signal to process. Such a signal would in 
general be describable in terms of fewer deltas. 2 This would result in Stage 1 of the method 
having fewer deltas to process and thus generally running faster . Whether any significant 
speed-up could be obtained by first smoothing and then doing feature extraction has not 
been tested. Such an approach would also have to consider any trade-offs involved in lost 
signal detail as a result of the smoothing and the possibility of losing significant diagnostic 
information. 

Our feature extraction method works well on the signals in the ulrasonic test block domain. 
To determine whether this method works well on other signals, and to determine how easy the 
method is to use vis a vis setting parameters, we recommend that the method be field-tested 
on a variety of signals by users unfamiliar with the internal algorithmic details of the method. 

2 Alternatively, one could preprocess the signal by describing each monotonic signal segment by one delta, 
at the possible risk of losing significant signal 'shape' information. 
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