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ARTICLE OPEN

Psychiatric symptoms are not associated with circulating CRP
concentrations after controlling for medical, social, and
demographic factors
Leandra K. Figueroa-Hall 1✉, Bohan Xu1,2, Rayus Kuplicki1, Bart N. Ford 3, Kaiping Burrows1, T. Kent Teague 4, Sandip Sen2,
Hung-Wen Yeh5, Michael R. Irwin 6, Jonathan Savitz 1,7,8 and Martin P. Paulus 1,7,8

© The Author(s) 2022

Elevated serum concentrations (>3mg/L) of the acute-phase protein, C-reactive protein (CRP), is used as a clinical marker of
inflammation and is reported to be a strong risk factor for cardiovascular disease. In psychiatric populations, CRP concentration is
reported to be higher in depressed versus healthy individuals. Positive associations between CRP and depression have been
established in both clinical and community samples, but effect sizes are attenuated after controlling for confounding variables.
Similarly, emerging research has begun to draw a link between inflammation, symptoms of anxiety, and substance abuse. Given the
high level of comorbid anxiety and substance use disorders in many depressed populations, this study examined whether
depression (Patient Health Questionnaire 9 [PHQ-9]) and substance use-related (Drug Abuse Screening Test [DAST]) symptoms were
associated with CRP concentrations in the blood after adjusting for relevant medical, social, and demographic covariates in a large
sample undergoing screening for several transdiagnostic psychiatric research studies. A total of 1,724 participants were analyzed for
association of CRP with variables using multivariate linear regression. An unadjusted model with no covariates showed that PHQ-9
was significantly associated with CRP in All (β= 0.125), Female (β= 0.091), and Male (β= 0.154) participants, but DAST was
significantly associated with CRP in males only (β= 0.120). For the adjusted model, in both males and females, mood-stabilizer
treatment (β= 0.630), opioid medication (β= 0.360), body mass index (β= 0.244), percent body fat (β= 0.289), nicotine use
(β= 0.063), and self-reported sleep disturbance (β= 0.061) were significantly associated with increased CRP concentrations. In
females, oral contraceptive use (β= 0.576), and waist-to-hip ratio (β= 0.086), and in males, non-steroidal anti-inflammatory drug
use (β= 0.367) were also associated with increased CRP concentrations. There was no significant association between CRP and
individual depressive, anxiety, or substance use-related symptoms when covariates were included in the regression models. These
results suggest that associations between circulating CRP and the severity of psychiatric symptoms are dependent on the type of
covariates controlled for in statistical analyses.

Translational Psychiatry          (2022) 12:279 ; https://doi.org/10.1038/s41398-022-02049-y

INTRODUCTION
C-reactive protein (CRP) is an acute-phase protein synthesized
primarily by hepatocytes in the liver and cells in the gall bladder
[1]. CRP gene transcription is initiated in response to tissue
damage, infection, or proinflammatory cytokines such as
interleukin-6 (IL-6) and tumor necrosis factor (TNF) [2, 3]. CRP is
used as a clinical marker of inflammation with elevated serum
concentrations (>3 mg/L) shown to be a strong independent risk
predictor of cardiovascular disease as recommended by the
Center for Disease Control and the American Heart Association
[4–6]. This concentration threshold (>3 mg/L) has also been
associated with increased risk for future episodes of depression,
and on average, CRP has been reported to be elevated in
depressed versus healthy populations [7–10]. Cross-sectional

studies have reported that depressed subjects display elevated
levels of inflammatory cytokines, such as IL-6 and TNF, as well as
CRP compared to controls [8, 11–13]. Positive associations
between CRP and depression have been established in both
clinical and community samples, but effect sizes are attenuated
after controlling for confounding variables [14–17]. A systematic
review by Horn et al. (2018), including 26 studies in the most
methodologically rigorous stage, reported a significant but
attenuated relationship between circulating CRP concentrations
and depression, with a small effect size (r= 0.05) after adjusting
for confounding variables such as age, sex, obesity, and others
[9, 18]. One of the key factors responsible for variability in
outcome between studies is the extent to which confounding
demographic, psychosocial, lifestyle, and medical variables that
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Table 1. Demographic and clinical characteristics.

Female Male Overall

(N= 1086) (N= 638) (N= 1724)

log.CRP

Mean (SD) 0.259 (0.460) 0.196 (0.428) 0.236 (0.449)

Median [Min, Max] 0.232 [−0.301, 1.36] 0.161 [−0.301, 1.36] 0.199 [−0.301, 1.36]

age

Mean (SD) 32.8 (10.3) 34.3 (10.5) 33.4 (10.4)

Median [Min, Max] 31.0 [18.0, 61.0] 33.0 [18.0, 59.0] 32.0 [18.0, 61.0]

Hispanic_Latino

No 998 (91.9%) 606 (95.0%) 1604 (93.0%)

Yes 88.0 (8.1%) 32.0 (5.0%) 120 (7.0%)

White

No 246 (22.7%) 133 (20.8%) 379 (22.0%)

Yes 840 (77.3%) 505 (79.2%) 1345 (78.0%)

Black_African.American

No 921 (84.8%) 562 (88.1%) 1483 (86.0%)

Yes 165 (15.2%) 76.0 (11.9%) 241 (14.0%)

Native_American

No 889 (81.9%) 536 (84.0%) 1425 (82.7%)

Yes 197 (18.1%) 102 (16.0%) 299 (17.3%)

Asian

No 1056 (97.2%) 623 (97.6%) 1679 (97.4%)

Yes 30.0 (2.8%) 15.0 (2.4%) 45.0 (2.6%)

other

No 1062 (97.8%) 620 (97.2%) 1682 (97.6%)

Yes 24.0 (2.2%) 18.0 (2.8%) 42.0 (2.4%)

log.income

Mean (SD) 4.34 (1.04) 4.31 (1.04) 4.33 (1.04)

Median [Min, Max] 4.56 [0, 5.74] 4.52 [0, 5.74] 4.54 [0, 5.74]

education

<7 years of school 2.00 (0.2%) 2.00 (0.3%) 4.00 (0.2%)

Junior high school (7th, 8th, 9th) 22.0 (2.0%) 4.00 (0.6%) 26.0 (1.5%)

Some high school (10th, 11th) 34.0 (3.1%) 29.0 (4.5%) 63.0 (3.7%)

High school graduate (including equivalency exam) 157 (14.5%) 126 (19.7%) 283 (16.4%)

Some college or technical school (at least 1 year) 484 (44.6%) 286 (44.8%) 770 (44.7%)

College graduate 279 (25.7%) 147 (23.0%) 426 (24.7%)

Graduate professional training (Masters or above) 108 (9.9%) 44.0 (6.9%) 152 (8.8%)

log.alcohol

Mean (SD) 0.379 (0.601) 0.519 (0.769) 0.431 (0.671)

Median [Min, Max] 0 [0, 2.79] 0 [0, 3.40] 0 [0, 3.40]

log.caffeine

Mean (SD) 2.33 (1.09) 2.36 (1.22) 2.34 (1.14)

Median [Min, Max] 2.71 [0, 4.09] 2.81 [0, 4.48] 2.73 [0, 4.48]

nicotine

Mean (SD) 0.688 (1.66) 1.34 (2.22) 0.929 (1.91)

Median [Min, Max] 0 [0, 10.0] 0 [0, 8.00] 0 [0, 10.0]

bmi

Mean (SD) 28.0 (6.14) 27.7 (5.23) 27.9 (5.82)

Median [Min, Max] 27.0 [16.1, 48.3] 26.8 [17.1, 52.1] 26.9 [16.1, 52.1]

percent.body.fat

Mean (SD) 37.1 (9.31) 25.0 (9.26) 32.6 (11.0)

Median [Min, Max] 38.0 [14.6, 55.8] 24.3 [5.90, 51.2] 32.8 [5.90, 55.8]
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influence levels of inflammation are controlled for in statistical
analyses [4, 18, 19]. Resolving the extent to which the relationship
between CRP and psychiatric symptoms is moderated by
psychosocial and health factors is important not only because it
may inform our understanding of the pathophysiology of
depression, but because it may provide opportunities for
intervention [9].
This study aimed to examine whether self-reported levels of

psychiatric symptoms, i.e., depression, anxiety, and substance use
are associated with CRP concentrations in the blood after
adjusting for important medical, social, and demographic
covariates in a large sample undergoing screening for several
transdiagnostic research studies. Support for an association
between CRP and psychiatric symptoms would provide evidence
that peripheral inflammation tracks symptom severity. While a
major portion of this study is focused on depression, we also
wanted to investigate the relationship between CRP and other
psychiatric phenotypes such as anxiety and substance use given
previous reports linking anxiety and substance use with inflam-
mation [20–24]. A multivariate linear regression (LM) approach
was used to determine whether individual level predictions about
CRP concentrations could be made.

METHODS
Participants
This study was approved by the Western Institutional Review Board,
written informed consent statement was obtained for each participant,
and all study procedures were carried out in accordance with the
principles expressed in the Declaration of Helsinki. Two subjects were
excluded based on transgender self-report.
A total of 2,532 participants completed an in-person screening visit at

the Laureate Institute for Brain Research (LIBR) between 7/1/2016 and 1/
30/2019 to determine eligibility for various studies at LIBR. Out of a total of
2,532 participants, 1,724 participants (female: n= 1086; male: n= 638; ages
18–61 years) with complete data were included in the main analysis. The
Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) classifica-
tion of participants based on the Mini International Neuropsychiatric
Interview (MINI) are as follows: no psychiatric disorder (healthy controls,
n= 322), anxiety disorder (n= 692), major depressive disorder (MDD)
(n= 1105), post-traumatic stress disorder (PTSD) (n= 206), substance use

disorder (n= 355), other (n= 413). The “other” category included bipolar
disorder, alcohol use disorder, psychotic disorder, and obsessive-
compulsive disorder. Note that some participants had more than one
diagnosis and hence the numbers do not add up to 1,724. Demographic
and clinical characteristics of the final participants involved in this study
are presented in Table 1, with statistics reported as mean (SD) and median
(min, max) values. The CONSORT flow diagram for participant inclusion in
this work is presented in Fig. S1. An aggregation plot for the fraction of
missing values for each variable is available in Fig. S2. Income was the
variable with the most missing data among the 2,532 subjects.

Behavioral and demographic measures
Subsequent to phone screening, i.e., during their in-person visits,
participants completed a demographics questionnaire, the Patient Health
Questionnaire 9 (PHQ-9) [25], the Drug Abuse Screening Test (DAST-10)
[26, 27], and the Overall Anxiety Severity and Impairment Scale (OASIS) [28]
to measure depression, substance use disorder, and anxiety, respectively.
PHQ-9 and OASIS were positively correlated (r= 0.79) and showed similar
results (Supplementary Fig. S20), therefore we chose to focus on PHQ-9
and DAST. Age, sex, race, ethnicity, annual family income, and education
level data were obtained from a self-reported demographics questionnaire.
Alcohol and caffeine use were defined according to weekly usage, and
nicotine use was measured using the Fagerstrom Test For Nicotine
Dependence (FTND) [29]. Sleep disturbance over the prior 7 days was
measured using the 4-item Quick Inventory of Depressive
Symptomatology-Self Report (QIDS-SR), which was generated with the
following items: falling asleep, sleep during night, waking too early, and
sleeping too much [30].
The categorical variables, sex, race and ethnicity, immunoassay range, and

medication use were binary coded with a 0/1 coding scheme, and education
levels were encoded with a value from 1 to 7 sequentially based on the
Hollingshead Four-Factor Index of Socioeconomic Status (SES): Subject’s
Educational Status. The immunoassays here refer to the detection range as
the “CRP Detection Range” (last item) in Table 1. Some subjects’ CRP levels
are measured with a different detection range, and this is binary coded.

Obesity indices
Body mass index (BMI) was calculated based on weight/height during the
medical history. Percent Body Fat (PBF) was assessed using an InBody370
Impedance Body Composition Analyzer (InBody Co., Ltd., South Korea). This
device uses 15 impedance measurements (3 frequencies: 5 kHz, 50 kHz,
250 kHz; five body segments: right arm, left arm, trunk, right leg, left leg) to
produce highly accurate composition estimates and has been found to

Table 1. continued

Female Male Overall

(N= 1086) (N= 638) (N= 1724)

waist.hips.ratio

Mean (SD) 0.862 (0.0763) 0.928 (0.0779) 0.886 (0.0833)

Median [Min, Max] 0.860 [0.659, 1.18] 0.927 [0.528, 1.31] 0.884 [0.528, 1.31]

phq.score

Mean (SD) 9.56 (7.01) 9.08 (7.13) 9.38 (7.06)

Median [Min, Max] 9.00 [0, 27.0] 8.00 [0, 27.0] 8.00 [0, 27.0]

dast.score

Mean (SD) 1.26 (2.56) 2.38 (3.45) 1.67 (2.97)

Median [Min, Max] 0 [0, 10.0] 0 [0, 10.0] 0 [0, 10.0]

QIDS_SR.sleep.score

Mean (SD) 2.08 (0.953) 2.01 (1.01) 2.05 (0.975)

Median [Min, Max] 2.00 [0, 3.00] 2.00 [0, 3.00] 2.00 [0, 3.00]

CRP.detection.range

LOD (0.5–23) 870 (80.1%) 549 (86.1%) 1419 (82.3%)

LOD (0.8–20) 216 (19.9%) 89.0 (13.9%) 305 (17.7%)

Table 1 describes demographic and clinical characteristics for the 1724 participants as well as the female-only (n= 1086) and male-only (n= 638) samples.
Note. QIDS-SR Quick Inventory of Depressive Symptomatology-self report.
a10-based log-transformation was applied. QIDS-SR, Quick Inventory of Depressive Symptomatology-self report.
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have a high correlation of 0.99 to dual-energy X-ray absorptiometry (DEXA)
for lean body mass in a population of normal-weight adults [31]. Waist-to-
hip ratio (WHR) was calculated with waist and height measurements.

C-reactive protein
CRP was measured using venous whole blood with the Diazyme high
sensitivity (hs) CRP point of care (POC) test kit (#DZ135B-SMA-discon-
tinued), a latex enhanced immunoturbidimetric assay on the SMART 700/
340 Analyzer (Diazyme Laboratories). CRP levels outside of the immu-
noassay detection range were truncated to the assay’s upper or lower limit
value (Fig. S3). The assays utilized in this study have similar detection
ranges, (0.5–23; n= 1419) and (0.8–20; n= 305) as visualized using raw
(Fig. S3A) and log-transformed (Fig. S3B) CRP levels. 370 out of
1419 subjects are below 0.5 mg/L, and 128 out of 305 subjects are below
0.8 mg/L. Initially, 8 subjects were used to test the validity of the POC
measures using two separate fingersticks and one IV blood draw for
comparison to the Mesoscale Discovery CRP Kit using serum (#K151STD-1).
Additionally, to reduce the complexity of the irreversible compression

and information loss once continuous variables were transferred to
categorical variables (regression issue), CRP levels were dichotomized
based on the median in each dataset (Table S1). We used the median as
the threshold to avoid unbalanced datasets. We obtained similar results
from both linear regression and logistic regression (using the dichot-
omized CRP classification, i.e., low vs. high).

C-reactive protein daily and yearly pattern
Daily and yearly cyclical variables were analyzed for association with CRP.
Subjects were partitioned into different groups, based on time of day
(hours) or year (months) when CRP was measured. The distribution of log-
CRP versus sample collection time (Fig. S4) or month (Fig. S5) were
visualized with violin plots.

Medication use
Medication use within the 2 weeks prior to CRP measurement was
extracted from the database, and specific medication classes of interest
were included in analysis (Table S2). Serotonin-selective reuptake inhibitors
(SSRIs) (11.0%), non-steroidal anti-inflammatory drugs (NSAIDs) (10.0%),
contraceptives (9.5%), antihistamines (8.8%), and non-SSRI antidepressants
(bupropion, mirtazapine, trazadone, vilazodone, and vortioxetine) (7.9%)

were the most widely used medications. Medication use was also classified
using dichotomized CRP levels (Table S3).

Statistical analysis
Nested cross-validation was used to search for optimal model hyper-
parameters and obtain a robust and unbiased evaluation of model
performance (Fig. S13). Linear and non-linear models, including multi-
variate linear regression (LM), Principal Component Regression (PCR),
Random Forest (RF), and Support Vector Machine (SVM), were used to
capture the relationship between log-CRP and variables of interest, and the
prediction performances were measured using R-squared (Fig. S14).
Among these four models, RF showed the highest R-squared value. The
performance of LM was close to RF, and the results obtained from LM and
RF (Figs. S15–S19) agreed well with each other in general. Due to the ease
of interpretation [32], results from LM were emphasized as the primary
findings in this paper. For LM, all the numerical variables were centered
and scaled in a pre-processing step to obtain the standardized beta
coefficients, which were utilized as the measure of the effect size for each
variable.
Regression diagnostics were implemented to verify the linear regression

assumptions were not violated and our conclusions were not biased. The
residual refers to the difference between model prediction and true
observation. The Residual vs. Fitted plot was used to test the assumption of
linearity between predictors and outcome by identifying whether residuals
presented any non-linear patterns with respect to the fitted values (Fig.
S6A–C). The Quantile-Quantile (Q-Q) plot examined the normality of
residuals (Fig. S7A–C), and the Residuals vs. Leverage plot was used to
identify any outliers which would potentially have significant effects on the
model fitting (Fig. S8A–C). The independence assumption (autocorrelation)
was also tested using the Durbin Watson Test to examine whether errors
were autocorrelated with themselves (Table S4). Lastly, the Variance
Inflation Factor (VIF) was calculated to test multicollinearity (Table S5).
First, we tested the unadjusted associations between CRP and PHQ-9 as

well as between CRP and DAST. Second, we performed multivariate linear
regression using all 36 covariates to determine whether the unadjusted
associations between CRP and PHQ-9/DAST would hold. Next, to identify
the individual variables weakening the adjusted models, we used the
unadjusted beta coefficients from the LM (PHQ-9 and DAST) as the
baseline and investigated the change in new beta coefficients when
adding other individual variables into the regression model.

Fig. 1 Pearson correlation coefficient plots for CRP and covariates. The plots show the Pearson correlation coefficients for A the combined
male and female sample (All), B female-only sample, and Cmale-only sample. The ellipses are the visualizations for the corresponding Pearson
correlation coefficients. Positive correlation is displayed in blue with slope of 1 and negative correlation is in red color with slope of −1. The
color intensity and the eccentricity of the ellipse are proportional to the absolute value of correlation coefficient. For Pearson correlation
coefficients of 0.1 or greater, CRP was positively correlated for A All subjects with age (r= 0.18), caffeine use (r= 0.05), nicotine use (r= 0.07),
body mass index (BMI) (r= 0.49), percent body fat (PBF) (r= 0.45), waist-to-hip ratio (WHR) (r= 0.26), PHQ score (r= 0.13), and QIDS-SR Sleep
score (r= 0.15); B Female subjects with age (r= 0.16), caffeine use (r= 0.05), BMI (r= 0.53), PBF (r= 0.54), and WHR (r= 0.30), PHQ (r= 0.09),
and QIDS-SR (r= 0.11); and C Male subjects with age (r= 0.24), caffeine use (r= 0.07), nicotine use (r= 0.19), BMI (r= 0.39), PBF (r= 0.40), WHR
(r= 0.34), PHQ score (r= 0.18), DAST score (r= 0.15), and QIDS-SR Sleep score (r= 0.21).

L.K. Figueroa-Hall et al.

4

Translational Psychiatry          (2022) 12:279 



RESULTS
Pearson correlation for CRP and covariates
To demonstrate the relationship between all continuous variables
of interest, Pearson correlation coefficients were calculated and
plotted for all subjects, females, and males, separately, specifying a
cut point threshold of 0.1 (Fig. 1). In the combined male and
female sample (All), CRP was positively correlated (Fig. 1A) with
age (r= 0.18), caffeine use (r= 0.05), nicotine use (r= 0.07), body
mass index (BMI) (r= 0.49), percent body fat (PBF) (r= 0.45), waist-
to-hip ratio (WHR) (r= 0.26), PHQ score (r= 0.13), and QIDS-SR
Sleep score (r= 0.15). In females (Fig. 1B), CRP was positively
correlated with age (r= 0.16), caffeine use (r= 0.05), BMI (r= 0.53),
PBF (r= 0.54), WHR (r= 0.30), PHQ score (r= 0.09), and QIDS-SR
(r= 0.11). In males (Fig. 1C), CRP was correlated with age (r= 0.24),
caffeine use (r= 0.07), nicotine use (r= 0.19), BMI (r= 0.39), PBF
(r= 0.40), WHR (r= 0.34), PHQ score (r= 0.18), DAST score
(r= 0.15), and QIDS-SR Sleep score (r= 0.21).
Additional analysis with the depressed group only (Fig. S9),

defined as a PHQ-9 score > 9 (n= 787), indicated that for the All
sample, CRP was correlated with age (r= 0.14), nicotine use
(r= 0.05), BMI (r= 0.51), PBF (r= 0.45), WHR (r= 0.30), and QIDS-
SR (r= 0.05). Individual symptom items for the All sample (Fig.
S10) indicated that CRP was correlated with question (Q)4
(r= 0.06) and Q5 (r= 0.08), and negatively correlated with Q8
(r=−0.05) and Q9 (r=−0.08).

Linear and logistic regression models for simple and entire
datasets and association with CRP
To investigate if psychiatric symptoms were associated with CRP
levels, we applied both linear and logistic regression using three
approaches. First, we tested the direct associations between CRP
and PHQ-9 as well as between CRP and DAST (unadjusted/simple
models). Second, we ran adjusted/entire models with all potential
confounders. Third, we evaluated the effect of each of the 36
covariates individually on the unadjusted associations between
CRP and PHQ-9/DAST. For the unadjusted models, the results from
linear and logistic regressions were similar (Table 2A). PHQ-9 was

significantly associated with CRP levels in the All, Female, and
Male samples (All; β= 0.125; β= 0.252), female-only sample
(β= 0.091; β= 0.171), and male-only sample (β= 0.154;
β= 0.284). In contrast, CRP was only significantly associated with
DAST in the male-only sample (β= 0.120; β= 0.183). In the fully
adjusted models, PHQ-9 was not significantly associated with CRP
levels in the All, female-only, nor male-only samples, while DAST
was significantly associated with CRP in the female-only partici-
pants (β=−0.088; β=−0.228) (Table 2B).
Additionally, we looked at the 9 individual items from the PHQ-

9 using the same approach (Table S6). Our analysis showed that
for the overall sample (β: min: −0.03; max: 0.02) and male-only
sample (β: min: −0.05; max: 0.04) there were no significant
relationships between CRP and any of the individual PHQ-9 items
in the fully adjusted model (p-values > 0.20; results not shown). For
females, only item-3 (trouble falling or staying asleep, or sleeping
too much) and item-9 (thoughts that you would be better off
dead, or of hurting yourself) showed marginal significance
(β=−0.059; p= 0.054) and (β=−0.053; p= 0.04), respectively.

Multivariate linear regression and association of CRP with
covariates
To determine which factors were associated with CRP in the
adjusted model with potential confounders, standardized beta
coefficients and corresponding 95% intervals were obtained from
LM on three different samples, i.e., all subjects (Fig. 2A), female
subjects (Fig. 2B), and male subjects (Fig. 2C). For All subjects, LM
indicated that mood-stabilizer treatment (β= 0.630, p= 0.003),
opioid use (β= 0.360, p= 7.23E-4), PBF (β= 0.289, p= 5.35E-9),
and BMI (β= 0.244, p= 4.12E-9) were associated with increased
CRP concentrations and had the largest effect sizes. Additionally,
male sex (β= 0.142, p= 0.056), nicotine use (β= 0.063, p= 0.012)
and QIDS-SR (β= 0.061, p= 0.013) showed smaller but significant
effects. Oral contraceptive (OC) use (β= 0.576, p= 2.06E-15), WHR
(β= 0.086, p= 0.003), and DAST score (β=−0.088, p= 0.004)
were variables associated with CRP in females. NSAID use
(β= 0.367, p= 0.008) was significant for males only.

Table 2. Linear and Logistic Regression for Simple and Entire Models and Association with CRP.

2 A. Simple Model PHQ-9 DAST

beta p-value beta p-value

Linear Regression All 0.125 0.0000002 0.012 0.564

Female 0.091 0.003 −0.048 0.115

Male 0.154 0.0001 0.120 0.003

Logistic Regression All 0.252 0.0000003 0.033 0.495

Female 0.171 0.005 −0.061 0.324

Male 0.284 0.0006 0.183 0.027

2B. Entire Model PHQ−9 DAST

beta p-value beta p-value

Linear Regression All −0.0040 0.872 −0.027 0.305

Female −0.034 0.248 −0.088 0.004

Male 0.009 0.833 0.044 0.324

Logistic
Regression

All 0.055 0.397 −0.067 0.329

Female −0.060 0.497 −0.228 0.014

Male 0.073 0.505 0.100 0.382

We performed linear and logistic regression using two different models, where one model included only PHQ-9 and DAST (simple, unadjusted model) and the
other included all 36 variables. Beta Coefficients are reported. (A) For the unadjusted dataset, we analyzed the association between CRP and PHQ-9 and
between CRP and DAST. PHQ-9, but not DAST, was significantly associated with CRP in unadjusted/simple models in the (All; β= 0.125; β= 0.252) and female-
only sample (β= 0.091; β= 0.171). However, for the male-only sample, both PHQ-9 (β= 0.154; β= 0.284) and DAST (β= 0.120; β= 0.183) showed significance
in unadjusted models. (B) For the All and male-only samples, PHQ-9 and DAST were not associated with CRP after adjusting for the covariates of interest. In the
female-only sample, DAST (β=−0.088; β=−0.228) but not PHQ-9 was significantly associated with CRP in the adjusted/entire model.
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Variables that did not achieve statistically significant associa-
tions with CRP in the adjusted model included depressive
symptoms (PHQ-9) (β=−0.004, p= 0.872), age (β= 0.013,
p= 0.587), log-income (β=−0.005, p= 0.837), education
(β= 0.015, p= 0.523), SSRI use (β= 0.066, p= 0.346), SNRI use
(β=−0.073, p= 0.517), antihistamine (β=−0.021, p= 0.784),
antipsychotic (β= 0.142, p= 0.362), antibiotic (β=−0.083,
p= 0.501), antiviral (β= 0.127, p= 0.584), benzodiazepine
(β=−0.033, p= 0.759), statin type (β=−0.164, p= 0.308), log-
caffeine (β= 0.001, p= 0.952), log-alcohol (β= 0.008, p= 0.718),
Hispanic/Latino (β= 0.002, p= 0.986), Black/African American
(β=−0.124, p= 0.153), White (β=−0.061, p= 0.437), Native
American (β=−0.088, p= 0.155), Asian (β=−0.204, p= 0.136),
and other (β=−0.072, p= 0.657).
Additional analysis with the depressed group only (Fig. S11),

indicated that for the All sample, CRP was associated with nicotine
use (β= 0.07, p= 0.05), PBF (β= 0.284, p= 9.38E-5), BMI

(β= 0.277, p= 1.26E-5), mood stabilizer use (β= 0.586,
p= 0.036), and opioid use (β= 0.308, p= 0.039).

Sex and obesity indices and association of CRP with covariates
According to the results from multivariate linear regression, males
had higher CRP than females after controlling for the other
covariates. However, the Welch Two Sample t-test showed
significantly higher CRP in females than males (female: mean=
0.259, male: mean= 0.196; t= 2.866; df= 1414.2; p= 0.004). We
found the differences were accounted for by using different
obesity indices. Figure 3 shows the influence of BMI, PBF, and WHR
on CRP for males and females. When controlling for BMI, female
sex was associated with higher CRP as compared to male sex (Fig.
3A). However, controlling for PBF showed that male sex was
associated with higher CRP than female sex (Fig. 3B). Lastly,
controlling for WHR showed that female sex was associated with
higher CRP than male sex (Fig. 3C).

Fig. 3 Linear regression plots for C-reactive Protein (CRP) versus Body Mass Index (BMI), Percent Body Fat (PBF), and Waist-to-Hip Ratio
(WHR). The plots show the effect of the potential confounding variable [sex—female (pink); male (green)] on the regression analysis of the
relationship between CRP and obesity indices (BMI, PBF, and WHR). A The regression plot shows that when controlling for BMI, CRP is higher in
females compared to males. B The regression plot shows that when we control for PBF, CRP is higher in males compared to females. C The
regression plot shows that when we control for WHR, CRP is higher in females compared to males.

Fig. 2 Standardized beta coefficients and association between CRP and all covariates in multivariate linear regression. Standardized beta
coefficients and corresponding 95% confidence intervals are depicted as dots and error bars. A Significant variables for the combined male
and female sample (All) included mood stabilizer and opioid use, PBF, BMI, nicotine use, male sex, and QIDS-SR sleep score. B Additional
significant variables for the female-only sample included oral contraceptive use (OC use), WHR, and DAST score. C Additional significant
variables for male-only sample included NSAID use.
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Additional analysis with the depressed group only (Fig. S12),
indicated that for the All sample, the main variables impacting the
relationship between CRP and depressive symptoms included: PBF
(β= 0.202, p= 2.04E-5), BMI (β= 0.306, p= 5.55E-9), and WHR
(β= 0.123, p= 0.001).

Confounder identification on association with CRP and PHQ-9/
DAST
To identify the variables that modulate the association between
CRP and psychiatric symptoms, we used beta coefficients from the
unadjusted linear regression model (only PHQ-9 and DAST) as the
baseline. After progressively adding one new variable into the
model, we compared these new beta coefficients for PHQ-9 and
DAST with the baseline. Table 3 shows both linear and logistic
regression models, which indicated that an unadjusted model
including only PHQ-9 or DAST was significantly associated with
CRP. For PHQ-9, several variables [All (PBF, BMI, WHR, and QIDS-
SR), Female (PBF, BMI, WHR, and QIDS-SR), and Male (age, PBF,
BMI, WHR, and QIDS-SR)] affected CRP concentrations. For DAST,
[All (nicotine use, PBF, BMI, and WHR), Female (nicotine use, PBF,
BMI, WHR, and contraceptive use), and Male (nicotine use, PBF,
WHR)] affected CRP concentrations.
In Fig. 4A–C, the beta coefficients and 95% confidence intervals

of PHQ-9 and DAST are plotted in green and pink, respectively.
Note that the top line of the figure (indicated by None) shows the
unadjusted/simple model, and each subsequent line shows the
effect of the relevant covariate progressively added on the
unadjusted/simple relationship. Initially for the All sample (Fig. 4A),
PHQ-9 is significantly associated with CRP (green) in the
unadjusted/simple models (as seen by the right shift from
baseline of 0), while DAST is not (the error bar crosses the
baseline of 0). For PHQ-9, PBF, BMI, and WHR all shift the
association to the left, thereby decreasing the beta values for this
association. On the other hand, for DAST, PBF shifts the association
to the right (increases) while BMI and WHR decrease the beta

values for this association, showing opposite effects. For the
female-only sample in the unadjusted/simple model, PHQ-9, but
not DAST, is significantly associated with CRP (Fig. 4B). Here, PBF,
BMI, and WHR decrease these beta values. For the male-only
sample (Fig. 4C), both PHQ-9 and DAST are significantly associated
with CRP in the unadjusted/simple model, and like the females,
PBF, BMI, and WHR decrease this association for PHQ-9.
Interestingly, BMI and WHR decrease this association for DAST,
while PBF increases this association in males.

DISCUSSION
This study examined whether depression, anxiety, and substance
use-related symptoms were associated with CRP concentrations in
the blood after adjusting for relevant medical, social, and
demographic covariates. We found that greater BMI, PBF, opioid,
mood-stabilizer, and nicotine use, WHR, and sleep disturbance
were associated with increased CRP concentrations in both sexes
in the fully adjusted model. Female and male-specific analyses
also showed that oral contraceptive (OC) use and DAST score for
females and NSAID use for males were significantly associated
with higher CRP concentrations. However, severity of depression
or anxiety, age, education, income, race/ethnicity, SSRI/SNRI, and
several other variables were not individually associated with CRP
concentrations. While psychiatric symptoms did not achieve
significance after adjustment of covariates, a simple unadjusted
model showed that PHQ-9 was significantly associated with CRP in
all participants, while DAST was only associated in male-only
participants. These results provide evidence that the strength of
the association between CRP and the severity of psychiatric
symptoms depends on which covariates are controlled during
statistical analyses.
This study found that several biomedical and health-related

variables were associated with CRP including biological sex,
anthropometric variables, OC use, and sleep disturbance. Male sex

Table 3. Effect of Selected Confounders on Association with CRP and PHQ-9/DAST.

PHQ-9 Association beta DAST Association beta

All None 0.124 None 0.014

Percent Body Fat Decrease 0.045 Nicotine Use Increase −0.017

Body Mass Index Decrease 0.057 Percent Body Fat Increase 0.064

Waist-to-Hip Ratio Decrease 0.099 Body Mass Index Decrease −0.010

QIDS-SR Decrease 0.065 Waist-to-Hip Ratio Increase −0.042

Female None 0.091 None −0.048

Percent Body Fat Decrease −0.002 Nicotine Use Increase −0.062

Body Mass Index Decrease 0.016 Percent Body Fat Increase −0.061

Waist-to-Hip Ratio Decrease 0.050 Body Mass Index Increase −0.089

QIDS-SR Decrease 0.047 Waist-to-Hip Ratio Increase −0.117

Contraceptive Use Decrease −0.030

Male None 0.154 None 0.120

Age Decrease 0.122 Nicotine Use Decrease 0.060

Percent Body Fat Decrease 0.069 Percent Body Fat Increase 0.150

Body Mass Index Decrease 0.096 Waist-to-Hip Ratio Decrease 0.095

Waist-to-Hip Ratio Decrease 0.109

QIDS-SR Decrease 0.074

To identify the variables that modulate the association between CRP and psychiatric symptoms, we used beta coefficients from the unadjusted linear
regression model (only PHQ-9 and DAST) as the baseline. After progressively adding one new variable into the model, we compared these new beta
coefficients for PHQ-9 and DAST with the baseline. Table 3 shows both linear and logistic regression models, which indicated that an unadjusted model
including only PHQ-9 or DAST was significantly associated with CRP. For PHQ-9, All (PBF, BMI, WHR, and QIDS-SR), Female (PBF, BMI, WHR, and QIDS-SR), and
Male (age, PBF, BMI, WHR, and QIDS-SR)] variables affected CRP concentrations. For DAST, All (nicotine use, PBF, BMI, and WHR), Female (nicotine use, PBF, BMI,
WHR, and OC use), and Male (nicotine use, PBF, WHR)] variables affected associations between PHQ-9 or DAST and CRP.
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was moderately associated with elevated CRP concentrations, which
is contrary to previously reported population-based studies [33, 34].
On the other hand, regression plots showed that female sex was
associated with higher CRP concentrations when controlling for BMI
or WHR, and a univariate analysis also confirmed a higher CRP mean
concentration in females versus males. Interestingly, our results
showed that male sex was associated with higher CRP concentrations
when controlling for PBF, which many studies fail to do, instead only
adjusting for BMI [35, 36]. Theoretical explanations have arisen for the
association of biological sex and elevated CRP concentrations
including (1) greater adiposity in women, where adipose tissue is
more metabolically active, leads to increased production of IL-6 and
subsequently CRP [37–39]; (2) the amount of total body fat rather
than where the fat is distributed in the body, for example, women
have higher subcutaneous fat deposits and males have greater intra-
abdominal visceral fat deposits [40, 41]; and (3) sex steroids, estrogen
and testosterone, which may be impacted by steroid receptor
expression in both subcutaneous and visceral adipose tissue [42, 43].
Interpretations on biological sex and association with CRP rely

heavily on obesity indices including BMI, PBF, and WHR, which
were also associated with CRP concentrations in this study and
tend to vary in women and men [36, 40, 44, 45]. BMI is especially
important because studies have shown a small association
between CRP and depression when BMI is adjusted, but studies
not adjusting for BMI have shown an effect size three times as
large [13, 38]. It is hypothesized that inflammation in obesity
results from metabolic disturbances in adipose tissue leading to
increases in cytokine production and inflammatory pathway
activation [38, 46]. CRP concentrations were shown to be
significantly influenced by adiposity and consistently higher in
women but more variable in men as measured by BMI, total fat
mass, truncal fat, lower body fat, and/or subcutaneous fat mass
[39, 40]. A Taiwanese-based population study identified PBF mass
as a significant factor associated with high levels of CRP in both

women and men after adjusting for confounding factors, while
WHR was only associated with CRP in women [45]. Obese women
(6.21 times) and men (2.13 times) were more likely to have WHR
positively associated with elevated and clinically raised CRP levels
compared to normal-weight counterparts and explained the
highest percentage of the variability of CRP in men [47].
Here, we identified the main variables impacting the relationship

of CRP with depressive (PHQ-9 score) and drug use (DAST) symptoms
were PBF, BMI, and WHR. During our confounding analysis, all three
variables decreased the relationship with CRP and depressive
symptoms. Qin et al., found the CRP-depression relationship to no
longer be significant in participants with BMI groups that ranged
from normal to obesity [48]. Surprisingly, for the DAST, BMI and WHR
decreased the association with CRP, but PBF increased this
association in males, which is consistent with our results indicating
that males have higher CRP than females when controlling for PBF as
shown in other studies [49, 50]. To this, one study suggested that PBF
was more strongly correlated with fat content than BMI, which may
result in increased inflammation from fat stores [51]. Unraveling the
intricacies of sex differences are complicated, and more studies are
needed to identify key biological mechanisms for these findings.
Another critical variable that can confound associations with

CRP is OC use. In this study, OC use was associated with elevated
CRP in females as demonstrated by others [52–55], and in an
independent sample of subjects with mood disorders [56]. Other
research data showed that CRP plasma levels were 2 times [57]
and 3 times higher [58] in OC users than in non-OC users.
Additionally, OC use was the strongest predictor of low grade
inflammation, CRP (>3mg/L below or equal to 10 mg/L), in pre-
menopausal women [59], and, OC use predicted 32% of variance
in CRP concentrations in young, healthy, non-smoking, non-obese
women [57]. The mechanism through which OC use increases CRP
is not well understood, but mechanisms proposed for this
association include: 1) a metabolic rather than an inflammatory

Fig. 4 Standardized beta coefficients for confounder effect of variables on association with CRP. Plots show the variables with the largest
shifts from baseline with DAST only (pink) or PHQ-9 only (green), indicating a decreased or increased association between CRP and psychiatric
symptoms. The labels of the y-axis represent which individual variable is included in the model. Plots for A All; B Female; and C Male subjects.
Note that the top line of the figure (indicated by None) shows the unadjusted/simple model, and each subsequent line shows the effect of the
relevant covariate progressively added on the unadjusted/simple relationship. Initially for the All sample (Fig. 4A), PHQ-9 is significantly
associated with CRP in the unadjusted/simple models (as seen by the right shift from baseline of 0), while DAST is not (the error bar crosses
the baseline of 0). For PHQ-9, PBF, BMI, and WHR all shift the association to the left, thereby decreasing the beta values for this association. On
the other hand, for DAST, PBF shifts the association to the right (increases) while BMI and WHR decrease the beta values for this association,
showing opposite effects. For the female-only sample in the unadjusted/simple model, PHQ-9, but not DAST, is significantly associated with
CRP (Fig. 4B). Here, PBF, BMI, and WHR decrease these beta values. For the male-only sample (Fig. 4C), both DAST and PHQ-9 are significantly
associated with CRP in the unadjusted/simple model, and like the females, PBF, BMI, and WHR decrease this association for PHQ-9.
Interestingly, BMI and WHR decrease this association for DAST, while PBF increases this association in males.
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response as several studies have reported increases in CRP
concentrations in the absence other proinflammatory molecules
such as IL-6 and TNF, which is related to a direct effect on
hepatocyte CRP synthesis; 2) OC-mediated hypomethylation of
DNA leading to increase expression of the CRP gene in monocytes;
and 3) lower insulin sensitivity produced by progestins with direct
action on pancreatic beta cells [57, 60–63]. Our findings suggest
that several biomedical and health-related variables are associated
with low grade inflammation as defined by CRP levels. Female sex
is likely associated with elevated levels of inflammation, including
CRP, only when controlling for BMI or WHR, which could be
explained by several mechanistic theories. This may also indicate
that conclusions on sex differences in CRP and other inflammatory
measures must be reported carefully and with caveats based on
which confounding variables are controlled for.
Here, we also demonstrated that opioid, mood stabilizer,

nicotine, and NSAID (males only) use, and sleep disturbance were
also associated with elevated CRP concentrations, which is
consistent with other studies [64–68]. A previous cross-sectional
analysis using LM showed CRP levels were higher in opioid users,
while controlling for demographic and clinical factors [69]. Both
central and peripheral opioid receptors contribute to early stages
of the inflammatory response attributed to opioid receptors on a
variety of immune cells including blood mononuclear cells, T and
B cells, monocytes, and macrophages [70, 71]. Opioid agonists
used for analgesic therapy, such as morphine and fentanyl, have
also been shown to be proinflammatory through Toll-like receptor
4 (TLR4) signaling [23, 72], which has been reported to mediate
CRP-induced effects through the p38 MAPK pathway in vascular
smooth muscle cells [73]. The use of opioids for pain also extends
into surgical arenas, where post-operative CRP levels are also
increased and are positively associated with opioid consumption
and higher pain scores [74]. In addition to opioid use, our study
also found a positive association with elevated CRP concentrations
and mood stabilizer use—but in a small sample of 17 subjects
within a 2-week period before CRP measurement. Therefore, these
results should be treated with caution. Several studies have
reported no association between mood stabilizer use (lithium,
valproic acid, and lamotrigine) and CRP concentrations [75, 76].
There are at least three possible interpretations of our finding.
First, individuals with mood disorders who receive augmentation
treatment with mood stabilizers may represent a more severe and
possibly treatment resistant group. Second, the mechanism of
action of mood stabilizers, which includes alteration of neuronal
excitability and activation of intracellular signaling cascades
associated with cell survival, growth, and metabolism [77] may
contribute to inflammation. However, different mood stabilizers
are thought to work via different mechanisms including regulation
of the immune system, oxidative stress pathways, and glycogen
synthase kinase (GSK)-3β, [65] and this study was not powered to
disentangle the effects of specific types of mood stabilizers. Third,
those who took mood stabilizers were mostly female subjects
(1.3%) compared to male subjects (0.5%) indicating that sex may
have influenced our finding.
Nicotine use and sleep disturbance showed smaller but

significant associations with CRP in this study as previously
demonstrated by other research groups [66, 78–80]. Nicotine
exerts its effects through activation of the nicotinic acetylcholine
receptor [81] and nicotine produces proinflammatory mediators
such as TNF and IL-6 in in vitro and mouse models through the
NF-κB transcription factor [82]. That said, the effects of nicotine are
complicated as its direct pharmacological effect may be anti-
inflammatory [83]. The proinflammatory effects most likely arise
from secondary factors such as tissue damage and the fact that
cigarettes contain other proinflammatory chemicals [84]. Sleep
disturbance also showed a significant but small effect in this study,
consistent with other studies showing that poor sleep quality and
short sleep duration are associated with higher CRP

concentrations [67, 85, 86]. Evidence suggests that sleep and
the immune system can have bi-directional effects on each other
with sleep promoting cytokine expression and cytokines influen-
cing sleep and sleep depth [87, 88]. Poor sleep quality, poor sleep
continuity, and short sleep duration has been linked to adverse
health outcomes and exaggerated inflammatory responses
including increases in TNF, IL-6, and CRP. Conceivably, sleep
disturbance could increase inflammation-mediated effects in
psychiatric disorders, as indicated by increasing concentrations
of CRP through inflammatory and depressive pathways.
NSAID use was also associated with elevated CRP concentration

but in males only. One meta-analysis of randomized control trials
in rheumatoid arthritis showed that NSAIDs can modulate CRP
levels, which may be dependent on the drug’s mechanism of
action [89]. Other studies have also shown significant increases in
CRP levels 72 h after treatment with NSAIDs post molar extraction
surgery [68, 90]. This would suggest that people taking NSAIDs are
more likely to have inflammation. NSAID-specific sex effects were
not analyzed in these studies, but cyclooxygenase genes, the
molecular targets for NSAIDs, may work differently in males and
females to influence sex-specific inflammatory effects [91].
Interestingly, supplementary chi-squared analyses showed that

mood stabilizer, NSAID, and opioid use were significantly higher in
the high versus low CRP dichotomized groups (Table S3). Taken
together, our finding suggests that the use of opioids, mood
stabilizers, nicotine, NSAIDs and sleep disturbance in psychiatric
patients may be predictive of inflammatory-mediated effects
through mechanisms in the central nervous system and periphery.
The variables that showed non-significant associations with CRP

included self-reported mood, age, education, income, SSRI use,
and daily/yearly pattern in this study. While meta-analyses and
numerous individual studies have reported increased concentra-
tions of inflammatory markers, including CRP in depressed
subjects, it is difficult to control for the full array of demographic
and lifestyle variables that may confound this association. In some
cases, prospective data are weak and most meta-analyses of
depression and CRP include studies in which the vast majority
have not considered health confounds as done here. The Horn
et al. (2018) meta-analysis concluded that associations between
CRP and depression may be inflated if rigorous and higher
methodological standards are not followed and that only 8 studies
with continuous predictors qualified for the most rigorous stage of
their meta-analysis (n= 78 total) [18]. Other studies have also
shown no significant association between depression and CRP
after adjusting for potential confounders including BMI and
smoking [67, 80, 92]. CRP was shown not to be related to
depression when looking at MDD, but only increased in a subtype
of depression with increased appetite [93].
Along these lines, additional analysis looking at depressed

samples only, did not reveal any changes as compared to our
analysis with the entire study population in the adjusted model. On
the other hand, our unadjusted model did show that PHQ-9 was
significantly associated with CRP levels (β= 0.125) and our effect
size was comparable to that reported in the UK Biobank study of
depression and CRP (β= 0.144) by Pitharouli and colleagues [9].
Additionally, while we found no significant association with the

nine individual items for PHQ-9 with linear regression for all and male-
only participants, there was marginal significance for item-3 and item-
9 in female-only participants. While the PHQ-9 reflects the nine major
criteria for major depression, items 3 and 9 focus on sleep and
suicidality, respectively [94]. Interestingly, sleep disturbance, based on
the QIDS sleep score, was also significantly associated with CRP in
females, which we found to be highly correlated with Item-3. Item-9
(suicidality) also showed marginal significance with CRP in females.
This finding was not surprising as suicidality has previously been
associated with inflammation [95, 96].
Consist with our results, other studies have reported no

association between CRP and socio-demographic factors such as
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age, education, and income [80, 97]. However, in other studies
examining the association between CRP and age, CRP concentra-
tions are reported to increase in an age-dependent manner and are
even higher in aging populations with underlying medical condi-
tions [98–100]. Ages in our study ranged from 18 to 61, which could
be one reason why there was no association between CRP and age.
Several studies have reported that education is inversely related to
CRP after adjusting for demographic, clinical, and behavioral factors
such as age, sex, BMI, and smoking [97, 101]. However, other studies
have also reported no association of CRP and income [80].
Additionally, we did not find an association between CRP and SSRI
use. Hamer et al. reported an association between SSRI use and CRP,
although this was largely confounded by smoking, and Dawood
et al. reported that SSRI use increased CRP concentrations in MDD
patients in a within subject design [102, 103]. Conversely, O’Brien
et al. details two studies (between-subjects and within-subject
designs) where CRP concentrations did not differ between
medicated depressed participants and healthy controls and second,
CRP concentrations significantly decreased after SSRI treatment
[104]. Lastly, there was no association between CRP and daily or
yearly pattern as reported in other studies [105, 106]. Baseline CRP
levels were stable over 24 h and not subject to time-of-day variation
[105]. Conversely, one research group found a significant variation of
CRP serum levels, with highest levels occurring in the morning and
lowest at midday [107].
The current study has several limitations. First, the sample was

comprised of healthy volunteers, participants with mood and
anxiety disorders as well as participants with substance use
disorders. Although consistent with the demographics of the local
catchment area, these results may need replication in other study
populations. Second, while the PHQ-9 does not probe as many
symptoms as other scales, it has been shown to be a valid and
reliable measure of general depressive symptoms and correlates
highly with other self-report and clinician-administered scales
[25, 94, 108]. Third, the sleep assessment was based on one
subjective item in the QIDS-SR and is not a dedicated objective
measure of sleep, such as actigraphy. Nevertheless, it has been
used in other research studies to measure sleep quality [80, 109].
While several limitations have been mentioned, this investiga-

tion also has several strengths. First, the sample size was large and
representative of a diverse community population. Second, we
performed multiple statistical analysis including LM and RF, which
showed similar results when PHQ-9 or OASIS were analyzed as the
independent variable predictor. Lastly, while we saw that PHQ-9
and CRP were significantly associated using a simple unadjusted
model, unlike other studies showing associations with CRP and sex
after adjusting for BMI only, our study adjusted for all anthropo-
metric variables, BMI, PBF, and WHR, which attenuated the
association of CRP and female sex with PBF regression.

CONCLUSION
This study reported several biomedical and health-related
variables to be positively associated with CRP including BMI,
PBF, and opioid, mood stabilizer, and OC use. WHR, nicotine use,
and sleep disturbance also had significant but smaller effects.
After adjustment for covariates, PHQ-9 and DAST were no longer
associated with CRP, which was determined to be attributable to
several confounders such as PBF, BMI, WHR, QIDS-SR, and age
(PHQ-9) and PBF, BMI, WHR, nicotine and contraceptive use
(DAST). We should be cautious in attributing inflammation to
depression per se, since there are multiple factors that co-occur
with depression that appear to contribute to inflammation.

CODE AVAILABILITY
The code used to generate manuscript’s data can be accessed at the following link:
https://github.com/nidaye1999/CRP.
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