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ABSTRACT OF THE DISSERTATION

Plasmonic and Near-Field Phenomena in Low-Dimensional Nanostructures

by

Bor-Yuan Jiang

Doctor of Philosophy in Physics

University of California, San Diego, 2018

Professor Michael M. Fogler, Chair

Plasmonics aims to combine the advantages of nanometer scale electronics with the high

operating frequency (terahertz and beyond) of photonics. Control of plasmon propagation can

be achieved in a two-dimensional electron gas (2DEG) by tuning the electronic properties of

the 1D nanostructures it contains, which act as scatters for plasmons . Plasmonic response of

these nanostructures, however, happens on a length scale much smaller than the wavelength of

free space electromagnetic radiation and cannot be studied with conventional optical microscopy.

Instead, we resolve these nanoscopic phenomena using near-field optical microscopy, which has

a spatial resolution of ∼ 20nm. In this dissertation, we first describe the working principles of

near-field optical microscopy, then analyze the plasmonic phenomena we observed around several

xiv



1D nanostructures, including a potential well in monolayer graphene, domain walls in bilayer

graphene, and a low-conductivity gap in a 2DEG.

In Chapter 1, we give an overview of the basic properties of surface plasmons and

graphene, followed by a brief explanation of the operating principles of near-field optical mi-

croscopy.

In Chapter 2, we study theoretically the electromagnetic interaction between a sub-

wavelength particle (the ‘probe’) and a material surface (the ‘sample’). The interaction is shown

to be governed by a series of resonances corresponding to surface polariton modes localized

near the probe. The resonance parameters depend on the dielectric function and geometry of

the probe, as well as the surface reflectivity of the material. Calculation of such resonances is

carried out for several types of axisymmetric probes: spherical, spheroidal, and pear-shaped.

For spheroids an efficient numerical method is developed, capable of handling cases of large

or strongly momentum-dependent surface reflectivity. Application of the method to highly

resonant materials such as aluminum oxide (by itself or covered with graphene) reveals a rich

structure of multi-peak spectra and nonmonotonic approach curves, i.e., the probe-sample distance

dependence. These features also strongly depend on the probe shape and optical constants of

the model. For less resonant materials such as silicon oxide, the dependence is weak, so that the

spheroidal model is reliable. The calculations are done within the quasistatic approximation with

radiative damping included perturbatively.

In Chapter 3, we show that surface plasmons of a two-dimensional Dirac metal such

as graphene can be reflected by line-like perturbations hosting one-dimensional electron states.

The reflection originates from a strong enhancement of the local optical conductivity caused

by optical transitions involving these bound states. We propose that the bound states can be

systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using

infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of

graphene induced by a carbon nanotube gate, which supports this theoretical concept.
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In Chapter 4, we show that topological bound states confined to the domain walls in bilayer

graphene are the source of the wall’s strong coupling to surface plasmons observed in infrared

nanoimaging experiments. These domain walls separate regions of AB and BA interlayer stacking

and have attracted attention as novel examples of structural solitons, topological electronic

boundaries, and nanoscale plasmonic scatterers. The optical transitions among the topological

chiral modes and the band continua enhance the local conductivity, which leads to plasmon

reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave

interference patterns, which we attribute to shear and tensile domain walls. We compute the

electronic structure of both wall varieties and show that the tensile wall contains additional

confined bands which produce a structure-specific contrast of the local conductivity, in agreement

with the experiment. The coupling between the confined modes and the surface plasmon scattering

unveiled in this work is expected to be common to other topological electronic boundaries found

in van der Waals materials. This coupling provides a qualitatively new pathway toward controlling

plasmons in nanostructures.

In Chapter 5, we present a comprehensive study of the reflection of normally incident

plasmon waves from a low-conductivity 1D junction in a 2D conductive sheet. Rigorous analytical

results are derived in the limits of wide and narrow junctions. Two types of phenomena determine

the reflectance, the cavity resonances within the junction and the capacitive coupling between

the leads. The resonances give rise to alternating strong and weak reflection but are vulnerable

to plasmonic damping. The capacitive coupling, which is immune to damping, induces a near

perfect plasmon reflection in junctions narrower than 1/10 of the plasmon wavelength. Our

results are important for 2D plasmonic circuits utilizing slot antennas, split gates or nanowire

gates. They are also relevant for the implementation of nanoscale terahertz detectors, where

optimal light absorption coincides with the maximal junction reflectance.
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Chapter 1

Overview and Introduction

After decades of development, electronics – the transfer and manipulation of information

via electrons – is approaching its limits, both in its physical dimensions (nanometer scale) and in

its bandwidth (GHz frequency). On the other hand, photonic devices operate at a much higher

bandwidth than their electronic counterparts but have a much larger size (micrometer scale),

making it difficult to integrate them directly into electronic circuitry. Plasmonics bridges the gap

between electronics and photonics by employing surface plasmons, which are charge density

oscillations in a metal at an interface with an insulator. These waves oscillate at THz frequencies

and beyond but have a wavelength orders of magnitudes smaller than light of the same frequency

in free space, potentially facilitating nanoscale information transfer at a much larger bandwidth

than current electronics.[Ozb06]

A promising plasmonic material is graphene, a two-dimensional (2D) crystal of carbon

atoms in a honeycomb lattice. The advantages of graphene include high plasmonic confinement,

wide range of operating frequencies, long plasmon lifetimes, and tunability of the plasmon

wavelength.[GPN12, FRA+12] Long plasmon propagation distances and high quality factors

have been demonstrated on graphene in recent experiments,[WLG+14, NWG+16] showing that

graphene-based plasmonic circuitry is indeed feasible. Before a plasmonic circuit can be realized,

1



however, one must find a method to control the flow of plasmons in the circuit. The ideal control

element would be a switch that can turn the flow on or off, i.e., it can be tuned to either completely

transmit or completely reflect plasmons. To this end, we study the plasmonic response of several

natural and artificial 1D nanostructures, whose properties can be electrically tuned. In general,

objects with dimensions much smaller than the wavelength, such as the 1D nanostructures we

study, can only weakly reflect the wave. However, several of the structures we studied exhibited

surprisingly strong plasmon reflection that can be tuned, making them potentially useful for

nanoplasmonics.

1.1 Surface plasmons

Surface plasmons are waves in the charge density at the interface of a conductor and an

insulator, e.g., a metal sheet and vacuum. A longitudinal, or transverse magnetic (TM) surface

plasmon wave can be imagined as alternating stripes of positive and negative charges on the

surface of the metal that propagate in the direction perpendicular to the stripes, Fig. 1.1(a). These

waves have a wavelength that is much smaller than the free-space wavelength of light at the

same frequency, so they can be described by electrostatics without having to consider retardation

effects. The entire excitation, including the charge density oscillations and the electromagnetic

fields they produce outside the surface, is called a surface plasmon polariton, which we abbreviate

as plasmon below.

For a 2DEG that has an optical conductivity which is local, σ(r) = σ, the electric and

magnetic fields of a surface plasmon wave, propagating in the x-direction, are given by

Ex = ei(qpx−ωt)e−qp|z| , Ez = iEx , Hy =
2π

c
σEx . (1.1)

These fields oscillate sinusoidally in the 2DEG plane while decaying exponentially away from

the plane, see Fig. 1.1(b). The wave is characterized by a single quantity, the plasmon momentum
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Figure 1.1: (a) Schematic electric field distribution (black curves) of a surface plasmon on a
2DEG (gray). (b) Field distribution in the out of plane direction.

qp, which can be parametrized as

qp =
2π

λp
(1+ iγ) , (1.2)

where λp is the plasmon wavelength and γ is the damping factor that indicates how fast the

plasmon decays. As can be seen from the e−qp|z| factor in Eq. (1.1), the fields are confined to the

2DEG on the scale of λp in the out of plane direction, so a smaller λp corresponds to better field

confinement.

The plasmon momentum qp emerges from the dielectric function ε of the 2DEG, which

can be simply found through Maxwell’s equations (see Section 5.8.1),

ε(q) = 1− q
qp

. (1.3)

The zero of the dielectric function ε correspond to the momentum q = qp where free-standing

waves (i.e., the surface plasmons) are present. The value of the plasmon momentum

qp =
iκω

2πσ
(1.4)

is determined by the dielectric constant κ of the material encasing the 2DEG, the frequency ω,

and the conductivity σ of the 2DEG. Comparing with Eq. (1.2), one can see that the plasmon

wavelength λp is primarily determined by Imσ, while the damping factor γ is determined by Reσ.
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For a 2DEG with a simple Drude-like conductivity,

σD =
iD

π(ω+ iν)
, (1.5)

the wavelength λp is directly proportional to the Drude weight D, which in turn is proportional

to the carrier density of the 2DEG. On the other hand, the damping γ is determined by the

phenomenological damping rate ν of the 2DEG, whose value is related to impurities, electron-

phonon, and electron-electron interactions in the 2DEG.[WLG+14]

1.2 Plasmonic properties of graphene

One of the properties that make graphene an attractive plasmonic platform is the tunability

of its plasmon wavelength through electrostatic gating. A typical gate consists of graphene on top

of a metal or semiconductor block separated by a dielectric spacer, with a bias voltage applied

between graphene and the metal. By tuning the bias, the chemical potential and hence the plasmon

wavelength of graphene can be adjusted. This can be seen from the Drude-like conductivity of

graphene,

σ =
ie2

π~2
µ

ω+ iν
, (1.6)

valid at low momentum and low frequency ~vFq ,~ω� µ, where the conductivity σ is directly

proportional to the chemical potential µ and inversely proportional to the plasmon momentum

qp, σ ∝ µ ∝ q−1
p . This allows global control of the plasmonic property of the entire graphene

sheet. Using patterned electrical gates, split gates, or nanowire gates, one can even make different

regions of graphene have different plasmon wavelengths. Plasmons can then be made to scatter

between the regions in a controlled fashion, making graphene incredibly versatile in terms of

possible plasmonic applications. In this dissertation we study the physics of plasmonic interaction

with the simplest pattern – a 1D gate. In Chapters 3 and 5 we study 1D nanowire gates that can
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strongly reflect plasmons, due to either bound electron states in the potential well created by the

gate, or to the capacitive coupling of either side of a low-conductivity gap.

1.3 Near-field optical microscopy

The surface plasmons and the nanostructures on the 2DEG are both deeply-subwavelength

objects and cannot be resolved using conventional optical microscopy. Further, there is a large

momentum mismatch, qp� ω/c, between the surface plasmons and light in vacuum. This means

that the plasmons cannot be directly excited by shining light on a featureless 2DEG, and the

plasmons launched by a nanostructure on a 2DEG cannot be optically detected. To efficiently

couple photons to surface plasmons, an optical antenna must used. An optical antenna is a metallic

object of dimensions comparable to the wavelength of free space radiation, but also contains

sharp protrusions on the scale of the wavelength of surface plasmons. This allows the antenna to

couple to electromagnetic waves on both length scales and convert photons into plasmons or vice

versa. Additionally, charges on the antenna will be highly concentrated at the protrusions due

to the “lightning-rod” effect of metals,[MKG+14] further enhancing the coupling of photons to

surface plasmons.

In infrared (IR) scatter-type scanning near-field optical microscopy (s-SNOM), the antenna

is the metallic tip in an atomic force microscope (AFM). The shaft of the tip resembles an inverted

pyramid (see Fig. 1.2) with a height on the order of tens of µm, while the apex is very sharp

with a radius of curvature on the order of a few tens of nm. When IR light is shone on the tip it

couples to the tip by polarizing the shaft. Meanwhile the sharp apex produces localized fields

that can excite surface plasmons, if the tip were close to a 2DEG. Conversely, the strength of the

surface plasmon wave propagating in the vicinity of the apex significantly alters the apex charge

concentration and subsequently the dipole moment of the entire tip, so that the light radiated by

the tip reflects the amplitude of the plasmon wave at the tip location. Thus, in s-SNOM, the AFM
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Figure 1.2: Schematic diagram of the s-SNOM. The tip resembles an inverted pyramid attached
to a cantilever. Surface plasmons are launched by the tip apex under an external electromagnetic
field. They are reflected by 1D nanostructures on the 2DEG, and the amplitude of the combined
waves are detected by measuring the backscattered light from the tip.

tip acts as both a launcher and a detector of surface plasmons. By scanning the tip across the

sample and measuring the backscattered light at each location, one obtains an image of the local

optical property of the sample, at a spatial resolution on the order of the apex radius (∼ 20nm).

In our studies of the 1D nanostructures, the plasmons launched by the tip propagate

radially away and are subsequently reflected by the nanostructures. The intensity of the total

electric field underneath the tip is determined by the interference of the launched and reflected

plasmon waves. The amplitude of this interference term oscillates as a function of the distance

between the tip and the reflector, with the period equal to one-half of the plasmon wavelength. By

analyzing this interference pattern the plasmon reflection coefficient of the nanostructure can be

deduced.
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Chapter 2

Generalized spectral method for near-field

optical microscopy

2.1 Introduction

The problem of electromagnetic interaction between a material surface and a small external

particle is fundamental to numerous physical phenomena and spectroscopic techniques, including

surface-enhanced Raman scattering, surface fluorescence, adsorbed molecules spectroscopy, and

near-field microscopy. From the point of view of electromagnetic theory, it is a special kind of

scattering problem where the scatterer resides in a uniform half-space, e.g., vacuum, while the

effect of the other half-space — the sample — is represented by the surface reflectivity rα(q,ω).

The reflectivity may depend on the in-plane momentum q, frequency ω, and polarization α = P

or S. Far-field optics describes the regime q < ω/c. Momenta q� ω/c, which correspond to

in-plane distances ∆ρ much smaller than the diameter c/ω of Wheeler’s radian sphere, [Whe59]

are the domain of near-field optics.

This work is motivated by recent advancements of the scattering-type near-field op-

tical microscopy [KH04, ABJR12] (s-SNOM), which has become one of the leading tools
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Figure 2.1: (Color online) (a) Schematics of an s-SNOM experiment in which a polarizable
probe is used to examine a sample characterized by the surface reflectivity rα(q). The external
electric field EEEext incident on the system creates evanescent waves inside the probe-sample gap.
This modifies the dipole moment ppp of the probe, which is detectable by its far-field radiation.
(b) The real-space potential distribution for the first four eigenmodes of the probe polarizability
χ⊥ computed numerically for a spheroidal probe of half-length L = 25a. The axes are the x- and
z-coordinates in units of a, the curvature radius of the apex of the probe. The probe’s location is
represented by the uniformly shaded beige area in the upper left corner of each panel.

for measuring optical response of diverse materials on spatial scales as short as 5–20nm.

Thanks to technical improvements and the development of tunable and broad-band infrared

sources, [AGK09, FAB+11, AK11a, HSW+11] the s-SNOM has provided insights into proper-

ties of complex oxides, [ML06, QBC+07, ZAH+07, QBA+09, FQB+09, JBW+10, LNK+10] or-

ganic monolayers, [NKP+09] graphene, and other two-dimensional crystals. [FAB+11, FRA+12,

CBAG+12, DFM+14]

The schematics of an s-SNOM experiment is shown in Fig. 2.1(a). A sharp elongated probe

is brought into close proximity of a sample and is illuminated by an external electromagnetic wave

with electric field EEEexte−iωt . Its interaction with the probe creates scattered waves eiqqqρρρ+ikzz−iωt ,

ρρρ = (x,y), with arbitrary in-plane momentum qqq, including large-q evanescent waves, kz =
√
(ω/c)2−q2 ' iq. Multiple reflections of these waves inside the probe-sample nanogap cause

small but important changes in the total radiating dipole moment pppe−iωt of the probe. These

changes are detected by measuring the far-field scattering signal as a function of the probe
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coordinates. This signal is proportional to the probe polarizabilities,

χ
⊥ ≡ pz/Ez

ext , χ
‖ ≡ px/Ex

ext , (2.1)

which have the dimension of volume.

The goal of this paper is to study the properties of functions χ⊥ and χ‖. For simplicity, we

consider only axisymmetric probes. We are especially interested in probes of large aspect ratio.

In the experiment, strongly elongated probes are used because of high longitudinal polarizability

χ⊥, which promotes an efficient coupling between evanescent and far-field radiation modes —

the “antenna” effect — making the detection of the near-field component possible.

We assume that the length of the probe is much smaller than the diameter of the radian

sphere c/ω, so that the scattering problem can be treated within the quasistatic approximation. The

probe shape we examine the most is a prolate spheroid. At first glance both of these assumptions

are unrealistic because actual probes are not spheroidal and their length (typically, tens of µm) can

often exceed c/ω for ω in infrared or optical frequency domain. Yet this model was previously

found to yield quantitative agreement with the s-SNOM experimental data for many materials.

This apparent agreement can be expected in cases where the surface reflectivity rα(q,ω) of the

sample is not too large, and the aspect ratio of the probe does not vary greatly from one experiment

to the next. Under such conditions the gross features of the s-SNOM scattering amplitude should

indeed have only a modest dependence on the exact shape of the probe and other experimental

parameters. However, fine details of the scattering amplitude are shape-dependent even in this

case [MKG+14] and they may be discerned as the instrumental resolution improves. Furthermore,

for samples with high reflectivity, even the gross features become sensitive to the shape and

size of the probe. To demonstrate these trends in this paper we study the longitudinal and the

transverse polarizabilities in great detail. We will ignore the S-polarization reflectivity rS(q,ω)

because for most materials it becomes very small at q� ω/c. Hence, χν are functionals of the
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Figure 2.2: (Color online) (a) Near-field reflectivity β(ω) of bulk Al2O3 discussed in Sec. 2.6.
Whenever the condition Reβ(ω)= βν

k is met, a local maximum appears in Imχν. The frequencies
of three such resonances are indicated by the dashed lines. (b) In the complex plane of β, the
poles βν

k lie on the positive real axis, while real materials trace curves in the upper half plane,
shown in red. (c) A full electrodynamic treatment predicts that the poles shift into the lower
half-plane and an additional nonanalyticity in the form of a branch cut [1,∞) appears.

remaining reflectivity function rP(q,ω) and the probe-sample distance ztip. We show that such

functionals can be quite complicated, especially for strongly momentum-dependent reflectivity

typical of layered and/or ultrathin materials. Therefore, it is good to start with a simpler case of a

bulk medium with a q-independent reflectivity

β(ω)≡ rP(q,ω) , (2.2)

so that for a fixed ztip and ω, the probe polarizabilities are functions of a single parameter β.

It should be clarified that while the absolute reflectivity may not exceed unity for the

radiative modes q < ω/c because of energy conservation, for the evanescent ones q > ω/c

it is allowed do so. Large β’s are indicative of weakly damped surface modes in a material,

e.g., surface phonons in dielectrics or surface plasmons in metals. We use the umbrella term

“surface polaritons” for all such modes. The energy loss due to evanescent modes is governed

not by |β| but by Imβ which must be nonnegative at q > ω/c. (To compute the losses Imβ

needs to be integrated over q with a weight that depends on the probe-sample distance. [FW84])
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In the limit of vanishingly small dissipation, Imβ(ω) tends to a δ-function peak at the mode

frequency. In practice, Imβ (and consequently |β|) as high as 10–20 is possible for well-ordered

crystalline solids, e.g., aluminum oxide Al2O3 possessing sharp phonon modes [Fig. 2.2(a)].

Therefore, a robust theoretical formalism must be capable of computing functions χν(β) in the

entire upper complex half-plane. To meet this requirement such a formalism must correctly

reproduce the analytic properties of functions χν(β). We adopt a version of the generalized

spectral method (GSM) in which the total field outside the probe and sample is decomposed into

eigenfunctions of an auxiliary homogeneous problem, and the role of eigenvalues are played

by the reflectivity β, the so-called β-method in the terminology of Ref. [AKSV99]. (Similar

formalism is also known in the theory of conductivity of heterogeneous media. [Ber78, Ber79])

Following Refs. [AKSV99, Ber78, Ber79], one can show, for the quasistatic case, that for any

probe-sample distance ztip > 0 functions χν(β) are meromorphic. In other words, they admit the

series representations

χ
ν(β) =

∞

∑
k=0

Rν

k
βν

k −β
, ν = ⊥ or ‖ , (2.3)

where the sequence of poles βν

k has no accumulation points, and so, no upper limit. Additionally,

we will show that if the probe is made of an ideal conductor and no other sources of dissipation

are present, then the poles βν

k > 1 and the residues Rν

k > 0 are real. If the dielectric constant εtip

of the probe is considered fixed, Rν

k and βν

k depend only on the geometric factors: the probe shape,

size, and its distance ztip to the surface. All these results comply with the general theory of the

β-method developed in Ref. [AKSV99].

The poles βν

k grow exponentially with k but their ratios with Rν

k are bounded and satisfy

the sum rule
∞

∑
k=0

Rν

k
βν

k
= χ

ν
0 . (2.4)

Here χν
0 ≡ χν(β = 0) is the polarizability of an isolated probe, which does not depend on ztip.

These properties ensure convergence of the series (2.3) at any β 6= βν

k . On the other hand, if a
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material-specific β(ω) approaches any of βν

k , a resonant peak in χν and ultimately, in the near-field

signal, would be observed.

The divergence of χν at a given pole implies that a nonzero dipole, i.e., free oscillations

may exist in the absence of any external field. Physical intuition about this regime is aided by

the method of images, according to which real charges Qi on the probe interact with their virtual

images −βQi inside the sample and for β > 1 achieve a runaway positive feedback. However,

one must keep in mind that these eigenmodes arise only in the auxiliary problem where the

sample is substituted by a fictitious material of reflectivity βν

k . The divergence never actually

happens in real materials due to their inherent dissipation, which enters in the form of a positive

imaginary part in β as shown in Fig. 2.2(a) and 2.2(b). The resonances are further damped due to

shifting of the poles βν

k to the lower complex half-plane when radiative corrections are considered

[Fig. 2.2(c)], as discussed in more detail in Sec. 2.8. For a generic probe that ends in a rounded

tip, the amplitude of the eigenmodes is the greatest near the tip, as illustrated in Fig. 2.1(b) for

a spheroidal probe. Overall, this physical picture of tip-localized eigenmodes is an elegant and

economical approach to understanding the mechanism of probe-sample coupling.

The main objective of the present work is to elucidate the analytical properties of the

coefficients βν

k and Rν

k . We focus on the practically interesting case where the probe length L is

much larger than the curvature radius a of the probe tip. We show that for such strongly elongated

probes three regimes can be distinguished. The first is the short-distance limit ztip� a where the

behavior of βν

k is universal. We show that it can be derived from the known exact solutions for

spherical particles (Sec. 2.2). The second is the long-distance limit, ztip� L, where the probe

acts as a point-dipole and the functional form of the resonance parameters is again universal. The

remaining third regime a < ztip < L is the most nontrivial one where βν

k and Rν

k depend on the

probe shape.

For all the probe geometries we study the poles βν

k grows exponentially with k, and so

for moderate values of β it is permissible to truncate the series in Eq. (2.3) after one or a few
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leading terms. This truncation is effectively done in simplified models [HK00, TKH04, ATdA+08,

Oce07, AK11a] of the probe-sample coupling, see Sec. 2.9. However, this simplification may

lead to qualitatively and quantitatively wrong results at small ztip and/or for large β. The latter

characterize highly polar materials such as SiO2 [ZAF+12] (a commonly used substrate) and the

already mentioned Al2O3 (an important reference material of infrared optics).

Besides addressing analytical properties of the probe polarizabilities, we also discuss

methods for their numerical computation. For the simplest case of a momentum-independent

reflectivity, the calculation can be made virtually instantaneous with the help of Eq. (2.3) once

the first few βν

k and Rν

k are computed and stored. For specific case of a spheroidal probe, this

calculation can be further accelerated using the spheroidal harmonics basis instead of the standard

boundary element method (BEM). Since the number of relevant poles and residues is relatively

small, for further convenience, they can be fitted to analytical forms, see an example for L = 25a

spheroidal probe in Section 2.11. The speed becomes a crucial consideration if the calculations

have to be done repeatedly. An important example is extracting optical constants of the sample

from near-field spectroscopy data by curve-fitting algorithms. [MKG+14] One may anticipate to

find a considerable speed-up if this inverse problem were treated using the GSM. The acceleration

occurs because the unknown physical parameter β = β(ω) of the sample and the geometric

parameters βν

k and Rν

k of the probe stand clearly separated. The GSM also applies for momentum-

dependent rP(q,ω), e.g., for layered samples; however, in the current implementation the speed-up

compared to the BEM is less significant.

The remainder of the article is organized as follows. In Sec. 2.2 we analyze the universal

aspects of the short- and the long-distance regimes. In Sec. 2.3 the spheroidal probe model

is considered. The equations for the poles and residues are presented and the results of their

numerical solution for the case of a q-independent rP are discussed. In Sec. 2.4 we explore the

effects due to a weakly q-dependent surface reflectivity. In Sec. 2.5 we discuss caveats in the

simulation of the s-SNOM experiment. In Sec. 2.6 we apply our numerical method to computing
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the near-field response of bulk Al2O3, a strongly polar material. In Sec. 2.7 we perform the

calculation for the same Al2O3 substrate but covered with graphene, which is a system with

a strongly q-dependent reflectivity. In Sec. 2.8 we discuss the effects of the probe shape and

retardation on these calculations. We also do a similar comparison for SiO2, a less polar material.

In Sec. 2.9 we discuss prior theoretical work and close with concluding remarks. Technical

details of the derivations and the source code of our computer program are available as the online

Supplemental Material for this article.

2.2 Probe-sample interaction in short- and long-distance lim-

its

We start with a qualitative analysis of the short-distance regime defined by the condition

ztip� a. In this limit the structure of the localized polariton modes can be understood intuitively

by analogy [RS81] to electromagnetic modes in an open cavity. The probe-sample gap can be

approximated by a cavity with height z(ρ)' ztip +(ρ2/2a) gradually increasing as a function of

the radial position ρ. For simplicity, let us assume the surface reflectivity of the probe is equal

to unity, as for an ideal conductor. To have free oscillations exist in such a cavity the surface

reflectivity β of the sample must exceed unity, compensating for the exponential decay of the

evanescent waves. The condition of the self-sustained oscillations is βexp
(
2ikz(ρ)z(ρ)

)
= 1.

Accordingly, the local radial momentum q(ρ)'−ikz(ρ) = logβ/2z(ρ). Imposing the quasiclas-

sical Bohr-Sommerfeld quantization condition
∫

∞

0 dρq(ρ) = π[k+O(1)] for mode number k, we

obtain

logβk ' [k+O(1)]

√
8ztip

a
, ztip� a . (2.5)

The mode is localized at distances ρ.
√ztipa . The validity of this qualitative analysis is supported

by the exact results for spherical particles. For the ν =‖ part, the following compact formulas for
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the poles and residues are available [RS81, AM82, AM83]:

β
‖
k(α) = e(2k+3)α , (2.6)

R‖k(α) = 4(k+1)(k+2)a3 sinh3
α , (2.7)

where

α = arccosh
(ztip

a
+1
)
. (2.8)

It is easy to check that Eqs. (2.5) and (2.6) agree in the limit of small α. (Dependence of β⊥k on α

is qualitatively similar; however, the residues scale as R⊥k ∼ ka3α2 at small α, Section 2.12) It is

reasonable to think that the behavior of βν

k(α) at α� 1 should be common for any shape ending

in a rounded tip. As long as the modes are localized at ρ� a, they should be affected weakly by

the rest of the probe. This hypothesis is supported by numerical calculations presented later in

this article.

Consider next the long-distance limit ztip� L. In this case the probe-sample interaction

can be analyzed using the multipole expansion. For the lowest resonance k = 0 it is sufficient to

include only the dipole term. The dipole moment of the probe is given by pν = χν
0Eν

tot, where

Eν
tot = Eν

ext +Eν
ind is the total field at the probe position and Eν

ind is the field induced by the image

dipole. In particular, E⊥ind = βp⊥/4z3
tip and E‖ind = βp‖/8z3

tip. Solving these equations for pν and

casting the result for χν = pν/Eν
ext in the form (2.3), we get

β
⊥
0 ' 4z3

tip/χ
⊥
0 , R⊥0 ' 4z3

tip , (2.9a)

β
‖
0 ' 8z3

tip/χ
‖
0 , R‖0 ' 8z3

tip . (2.9b)

For the sphere χν
0 = a3, so that the last pair of equations agrees with the exact result (2.6) and

(2.7). The k > 0 resonances are dominated by higher-order multipoles. The principal dependence
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of the poles and residues on α is expected to be the same as for the sphere, i.e.,

β
ν

k ∼
(ztip

a

)2k+3
, Rν

k ∼
2
cν
(k+1)(k+2)z3

tip if ztip� L , (2.10)

where c⊥ = 1 and c‖ = 1/2. The forms for Rν

k are verified numerically in a later section.

Equations (2.9a)–(2.10) imply that in the large ztip limit the sum rule (2.4) is saturated by the

k = 0 mode alone.

The case of a q-dependent reflectivity can be treated similarly. Thus, for k = 0 one

finds [ATdA+08]

χ
ν(ω,ztip) =

χν
0

1−χν
0gν(ω,ztip)

, (2.11)

gν(ω,ztip) = cν

∫
∞

0
rP(q,ω)e−2qztipq2dq . (2.12)

Note that the integral in Eq. (2.12) is dominated by the in-plane momenta q∼ 1/ztip, which we

assume to be well outside the light cone, q� ω/c. At ztip > c/ω this condition no longer holds

and one has to include retardation effects, see Sec. 2.8.

In summary, in this section we presented arguments that the limiting case formulas (2.5)

and (2.9a)–(2.12) apply to perfectly conducting probes of arbitrary shapes. For the sphere L = a

and for probes of modest aspect ratio L & a, these formulas match by the order of magnitude

at ztip ∼ a. However, for strongly elongated probes L� a an additional intermediate regime

a� ztip� L exists which requires further study. The simplest example of such a shape is the

prolate spheroid and we discuss it in the next section.

2.3 Intermediate distances: Spheroidal probe

Unlike the problem of a sphere, that of a spheroidal probe cannot be solved analytically.

However, we can take advantage of the separation of variables in prolate spheroidal coordinates
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Figure 2.3: The prolate spheroidal coordinate system. Contours of constant ξ (η) are confocal
spheroids (hyperboloids). The unit vector r̂rr and polar angle θ of spherical polar coordinates and
unit vectors ρ̂ρρ and ẑzz of cylindrical polar coordinates are also shown for reference.

(Fig. 2.3), which enables a more efficient numerical solution. [BV87] In this coordinate system

the spheroid is a surface of constant ξ = L/F ≡ ξ0. The focal length F , the major semi-axis L,

the minor semi-axis W , and the curvature radius a of the spheroid apex are related by

F =
√

L2−W 2 , a =W 2/L . (2.13)

This implies ξ0 = [1− (a/L)]−1/2. We assume that the major axis of the spheroid is along the

z-axis. If the distance between the spheroid and the sample is ztip, the sample surface is at

z =−L− ztip.

We consider the quasistatic limit where the scalar potential has the harmonic time depen-

dence ∝ e−iωt . Its spatial part must obey the Laplace equation in the domain outside both the

spheroid and the sample. Therefore, it can be expanded into spheroidal harmonics, which are

products of the generalized Legendre functions of the first and second kind Pm
l (x) and Qm

l (x).

Here m = 0,±1,±2, . . . is the z-axis angular momentum and l must be greater or equal to |m|. As

shown in Section 2.10, the expansion coefficients Am
l can be related to the charge distribution
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on the spheroid. For example, Am
0 is proportional to the total oscillating charge of the spheroid

∝ e−iωt . For a passive probe, Am
0 = 0. The l = 1 terms determine the components of the dipole

moment induced on the probe:

pz =−
1
3

F3A0
1 , px− ipy =

2
3

F3A1
1 . (2.14)

For each m the set of coefficients Am
l satisfies the infinite-order system of linear equations

∞

∑
l′=1

(Λm
ll′−Hll′)Am

l′ = bm
l , (2.15)

where Λm
ll′ and Hll′ are defined by Eqs. (2.21) and (2.24) below. According to Eq. (2.14), to find

ppp we need to consider only m = 0 and m = 1. The requisite coefficients bm
l on the right-hand

side of Eq. (2.15) are given by

b0
1 =−

4
3

Ez , (2.16)

b1
1 =

4
3
(Ex− iEy) , b−1

1 =
1
3
(Ex + iEy) . (2.17)

If the external field EEEext = Exx̂xx+Eyŷyy+Ezẑzz is uniform, all other bm
l vanish. Once we solve the

system (2.15) for m = 0, we can find the transverse polarizability from

χ
⊥ =

pz

Ez =
4
9

F3 A0
1

b01
. (2.18)

In turn, the solution for m = 1 would give us A1
1 and

χ
‖ =

px− ipy

Ex− iEy
=

8
9

F3 A1
1

b11
. (2.19)
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Equation (2.15) we wish to solve can be cast in a matrix form

(ΛΛΛm−H)Am = bm . (2.20)

Matrix ΛΛΛ
m is diagonal, Λm

ll′ = Λm
l δll′ , where

Λ
m
l =

(−1)m

2l +1
4

εtip−1

[
εtip

Qm
l (ξ0)

Pm
l (ξ0)

−
d

dξ0
Qm

l (ξ0)

d
dξ0

Pm
l (ξ0)

]
(2.21)

and εtip is again the dielectric constant of the spheroid. If the probe is made of an ideal conductor,

εtip→ ∞, then Eq. (2.21) simplifies to

Λ
m
l = (−1)m 4

2l +1
Qm

l (ξ0)

Pm
l (ξ0)

. (2.22)

All these Λm
l are actually positive numbers because the factor (−1)m is compensated by the same

factor in the definition of Qm
l (ξ0). The behavior of Λm

l at large l is approximately exponential, as

can be deduced from the asymptotic formula

(−1)m Qm
l (ξ0)

Pm
l (ξ0)

' πe−(2l+1)α0 , α0 ≡ arccoshξ0 . (2.23)

In Sec. 2.6 we also consider the case where εtip is a finite positive number. In this case the decay

of Λm
l at large l is also exponential but with a different factor in front.

The elements of matrix H in Eq. (2.20) are given by

Hll′ ≡ 2π

∫
∞

0
rP(q,ω)Il+ 1

2
(qF)Il′+ 1

2
(qF)e−2qzp

dq
q

(2.24)

where Iν(z) are the modified Bessel functions of the first kind and

zp ≡ ztip +L . (2.25)
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As mentioned in Sec. 2.1, the reflectivity rP(q,ω) may have strong peaks at the dispersion curves

ω(q) of the surface polaritons of the sample. In practice, rP(q,ω) is always finite, so that the

integrand in Eq. (2.24) is well-behaved and exponentially decreasing. A fast method of computing

Hll′ numerically is explained in Supplemental Material. In the remainder of this section we will

assume that rP(q,ω) is q-independent. We will show that the polarizabilies of the spheroidal

probe are meromorphic functions as stated in Sec. 2.1. We will also present our analytical and

numerical results concerning the behavior of their poles and residues.

If rP(q,ω) = β = const, then matrix H factorizes H = βH̄ and Eq. (2.20) becomes

(
ΛΛΛ

m−βH̄
)

Am = bm . (2.26)

A particular case of this equation for ztip = 0 was previously derived in Ref. [BV87]. In general,

Eq. (2.26) implies that Am as a function of β has poles βν

k that are the solutions of the eigenvalue

problem
(
ΛΛΛ

m−β
ν

k H̄
)

uk = 0 . (2.27)

The substitution uk = (ΛΛΛm)−1/2vk transforms it to

vk = β
ν

k Mvk , M = (ΛΛΛm)−1/2H̄(ΛΛΛm)−1/2 . (2.28)

Since all Λm
l are assumed to be positive, matrix M is real and symmetric, and so its eigenvalues

(βν

k)
−1 are real and its eigenvectors vk can be chosen to be orthonormal. Assuming vk form

a complete basis, the solution Am of Eq. (2.26) can be sought as a linear combination of the

corresponding uk. Taking into account Eqs. (2.18) and(2.19), we arrive at Eq. (2.3) with

Rν

k
βν

k
= χ

ν
0 |(vk)0|2 , χ

ν
0 =

4
9

m+1
Λm

1
F3 , (2.29)

where, once again, m = 0 for ν = ⊥, m = 1 for ν =‖, and (vk)0 is the first component of vector
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vk. The completeness of the basis entails ∑k |(vk)0|2 = 1, leading to the sum rule (2.4). The

explicit formulas for χν
0 that follow from Eqs. (2.22) and (2.29) are

χ
⊥
0 =

L3

3ξ3
0

[
1
2

ln
(

ξ0 +1
ξ0−1

)
− 1

ξ0

]−1

=
V

4πL⊥
, (2.30a)

χ
‖
0 =

2L3

3ξ3
0

[
ξ0

ξ2
0−1

− 1
2

ln
(

ξ0 +1
ξ0−1

)]−1

=
V

4πL‖
, (2.30b)

where V = (4π/3)L2a is the volume of the spheroid and Lν are the depolarization factors of the

spheroid [BH04]

L⊥ = (ξ2
0−1)

[
1
2

ξ0 ln
(

ξ0 +1
ξ0−1

)
−1
]
, (2.31)

L‖ =
1−L⊥

2
. (2.32)

These formulas should be familiar from classical electrostatics or from the theory of light

scattering by small particles. [BH04] For strongly elongated spheroid L� a, ξ0 ' 1, they yield

χ
⊥
0 '

2
3

L3

ln(4L/a)
, (2.33a)

χ
‖
0 '

2
3

L2a . (2.33b)

In Sec. 2.1 we stated that the sequence βν

k may not have accumulation points. For the

present case of a spheroidal probe this can be proven directly from the properties of matrix M.

The first step is to show that the matrix elements of H̄ obey the asymptotic bound

ln H̄ll′ <−(l + l′+1)arccosh
(zp

F

)
(2.34)

at large l and l′. This can be established using the saddle-point integration in Eq. (2.24). Together

with Eqs. (2.22) and (2.23), this bound ensures that at ztip > 0 the high-order matrix elements of
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M decay exponentially,

lnMll′ <−(l + l′+1)
[
arccosh

(
coshα+

ztip

F

)
−α

]
.

Here α [Eq. (2.8)] parametrizes the probe-sample distance ztip. Hence, the double series ∑ll′M2
ll′ =

trM2 is convergent. Considering the identity

∞

∑
k=0

(βν

k)
−2 = trM2 < ∞ (2.35)

we see that the accumulation points are ruled out. On the contrary, trM2 diverges at ztip = 0 and

one accumulation point does exist: β = 1. For the sphere this can be found directly from Eq. (2.7)

by setting α = 0.

In the spherical limit ξ0→ ∞ an analytical solution of our equations exists although it

is not obvious. We deduced the form of this solution from the method of images, Section 2.12.

At finite ξ0 we resorted to solving the problem numerically. As already mentioned, due to an

exponential growth of βν

k with k, only a first few of such poles are usually needed for evaluating

the polarizabilities in question χν. To compute such βν

k and the corresponding Rν

k we used the

following procedure. Given L/a and α, we would generate an N×N matrix made of the first N

rows and columns of the full infinite matrix M. We would diagonalize this finite-size matrix by

standard library routines (using MATLAB). The obtained eigenvalues approximate the first N

poles βν

k . We would gradually increase the matrix size until the poles we are interested in would

show no variation as a function of N within the desired accuracy. The larger L/a and the smaller

α, the higher N was needed. We found this procedure workable as long as N did not exceed about

500. As a rule, the higher eigenvalues of larger matrices would either fail to reach the accuracy or

would show an α-dependence inconsistent with physical principles. This behavior stems most

likely from roundoff errors. In principle, one can combat them by utilizing higher-precision

arithmetic but we did not pursue this route. For L = 25a the computation of the first nine poles
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Figure 2.4: (Color online) (a) The first four poles βν

k of the polarizability χν for perfectly
conducting spheroids. The probe-sample distance is parameterized by α = arccosh(1+ ztip/a)
[Eq. (2.8)]. The solid lines are for a strongly elongated spheroid L = 25a, the dashed lines are
for a nearly spherical one L = 1.01a. The external field is in the z-direction, ν = ⊥. (b) The
corresponding residues R⊥k divided by a3. Poles for different shapes converge at small ztip, while
residues converge at large ztip. (c), (d) Similar plots for the external field in the x-y plane, ν =‖.

with at least two-digit accuracy was possible for α > 0.08, i.e., ztip > 0.003a. The residues Rν

k

were obtained from the eigenvectors of the truncated matrix M using Eqs. (2.29)–(2.30b). In the

interval 0 < α < 0.08 we used the linear interpolation between βν

k(α = 0.08) and βν

k(α = 0) = 1.

The results of these calculations are presented in Fig. 2.4 for the first four modes, k = 0

to 3. The solid lines in panels (a) and (c) show β⊥k and β
‖
k , respectively, as a function of α. The

corresponding quantities for a sphere are shown by the dashed lines. The residues Rν

k/a3 are

plotted in panels (b) and (d). The first nine pole-residue pairs of the spheroid for ν = ⊥ have

also been fitted with an error of 5% or smaller to a combination of elementary functions in the
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range 0.003a < ztip < 10a. The fitting formulas and their coefficients are cataloged in Section

2.11. The residue R⊥8 behaves differently from the others because it was constrained to satisfy the

sum rule (2.4). Using these formulas one can find the response χ⊥ with negligible computational

cost for any β(ω) as long as its value is not extremely large. Note that although these results are

for perfectly conducting spheroids εtip = ∞, calculations for arbitrary finite εtip can be done in the

same way except one has to use Eq. (2.21) instead of Eq. (2.22).

Let us now compare the obtained dependence of βν

k on ztip with the limiting asymptotic

behavior predicted in Sec. 2.2. First, at ztip� a, the poles of the spheroid approach that of a

sphere, as expected, see Fig. 2.4(a) and (c). The other limit is ztip� L, where the point-dipole

formulas (2.9a)–(2.9b) should apply. In Fig. 2.4 it is seen that the lowest eigenvalue of both

shapes indeed have the correct behavior. The intermediate regime a� ztip � L is the most

nontrivial one. We argue that in this regime function β⊥0 (ztip) behaves as

β
⊥
0 (ztip) = c ln(ztip/a) , a� ztip� L , (2.36)

with some coefficient c∼ 1 independent of L. To arrive at this formula we first find bounds on

β⊥0 using the following theorem. Consider two perfectly conducting probes of different sizes. If

the surface of one probe can be inscribed into the other, then the first probe must have a larger βν
0.

This statement is physically natural because self-sustained oscillations around the smaller body

require a larger compensation from the surface reflectivity, cf. Sec. 2.2. It can also be proven

mathematically from the variational principle. [AKSV99, MF81] To place bounds on β⊥0 of the

spheroid we can consider two other probes, a larger one and a smaller one. We get

β
cone,ν
0 < β

ν
0 < β

ss,ν
0 , (2.37)

where β
cone,ν
0 is the lowest pole of a cone with a vertex touching the sample and envelop-

ing the spheroid; β
ss,ν
0 is the lowest pole of a spheroid of shorter length L = ztip. It can be
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shown [PWM+01, PRL+05, Fog13] that β
cone,⊥
0 ' (1/π) ln(ztip/a). As for the smaller spheroid,

the point-dipole formula should apply by order of magnitude, β
ss,⊥
0 ∼ 6ln(ztip/a), cf. Eqs. (2.9a)

and (2.33a). Since the functional form of these bounds coincides with Eq. (2.36) up to numerical

coefficients, we argue that β⊥0 (ztip) should obey the same equation as well. The graph shown

in Fig. 2.4(a) is consistent with this prediction. However, due to numerical limitations L/ztip

and ztip/a could not be very large in our simulation and we could obtain only a crude estimate

1 < c < 3 of the coefficient c. The poles β
‖
k of the in-plane polarizability, which are plotted

in Fig. 2.4(c) as a function of α, also show crossovers among three regimes (short, long, and

intermediate distances) and can be understood in a similar way.

The behavior of the residues Rν

k is more difficult to analyze. At large distances ztip� L,

the residues of the spheroid approach those of the sphere [Eq. (2.10)]. At small distances, where

the poles behave as lnβν

k ∼ (2k+3)α, the polarizability is determined by a large number ∼ 1/α

of terms in the pole-residue series. The sum rule (2.4) implies that the sum of these dominant

residues must be of the order of χν
0 for each shape. Indeed, the residues of the sphere, which have

the form R⊥k ∝ ka3α2 and R‖k ∝ (k+1)(k+2)a3α3 (see Section 2.12), obey this requirement. The

residues of the spheroid are always larger than those of the sphere, consistent with the higher χν
0.

The intermediate-distance behavior of Rk defies an obvious characterization. It is intriguing that

at small distances only the residues are affected by the aspect ratio of the probe, while at large

distances only the poles are altered.

Information about the probe-sample coupling complementary to the properties of the

poles and residues can be obtained by examining the potential distribution of the polariton modes

in real space. The examples for the ⊥ modes are depicted in Fig. 2.1(b). The potential is strongly

peaked near the tip of the spheroid, demonstrating the localized nature of near-field coupling.

Note that the number of times the potential changes sign along x is equal to k.
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Figure 2.5: (Color online) (a) The weight function G⊥0 (q,ztip) for the spheroid with L = 25a and
εtip = ∞. The dashed line shows q̄⊥0 (ztip). (b) G⊥0 (q,ztip) for several ztip, with circles indicating
q̄⊥0 . The solid lines are for the spheroid, the dashed lines are for the sphere. The spheroid is
more sensitive to small q compared to the sphere, while both shapes are more sensitive to large
q as ztip decreases. (c) The first three G⊥k (q) for ztip = a, with solid circles indicating q̄⊥k . The
number of nodes in G⊥k (q) is equal to k, while q̄⊥k increases with k. The logarithmic scaling of
the horizontal axes is used to show the small-q structure more clearly.

2.4 Momentum-dependence of the probe-sample coupling

A simple physical picture of the s-SNOM that served as an important insight in the early

days of the field and still remains popular today is the notion that the probe couples predominantly

to momenta q ∼ 1/a. Accordingly, the s-SNOM signal is collected from a very small region

of size ∼ a directly underneath the tip. Modern applications of s-SNOM to two-dimensional

and layered systems require going beyond this oversimplified picture because the q-dependence

of the reflectivity rP(ω,q) of such systems can be very sharp due to presence of dispersive

collective modes (Sec. 2.7). Recall that for a momentum-independent reflectivity β [Eq. (2.2)],

the poles and residues of the polariton eigenmodes are determined solely by the permittivity and

geometry of the probe. Unfortunately, for a q-dependent reflectivity such a clean separation of

the probe and sample properties in the eigenproblem is not possible. While one can still define

the eigenmodes by suitably modifying Eq. (2.3), the corresponding poles and residues will be, in

general, complicated functionals of rP(ω,q). However, if the q-dependence of the reflectivity is

weak, it can be treated as a perturbation, and the sample-independent resonant modes are retained.
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As we show in this Section, in this perturbative case one can precisely define the probe-sample

coupling as a function of q and the ‘dominant’ momentum as a function of ztip.

Consider a small q-dependent correction to the reflectivity:

rP(q) = β+δrP(q) . (2.38)

The kth pole βν

k of the probe-sample eigenmodes is a functional of rP. The key question is how

this pole is affected by the nonlocal correction to rP. The answer can be written in terms of

−Gν

k(q,ztip), the first variational derivative of βν

k [rP(q)] with respect to rP:

δβ
ν

k(ztip) =−
∫

∞

0
Gν

k(q,ztip)δrP(q)dq . (2.39)

This is the desired relation to the leading order in δrP. A few general properties of function Gν

k at

q < 1/ztip can be established. First, this function decays exponentially at large q:

Gν

k(q,ztip)∼ e−2qztip . (2.40)

This is so because the probe-sample interaction is mediated by multiple reflections of evanescent

waves (Sec. 2.1) and the shortest distance such waves have to travel is 2ztip. Next, it is easy to see

that Gν

k is normalized: ∫
∞

0
Gν

k(q,ztip)dq = 1 . (2.41)

Using a variation principle one can also show that for a perfectly conducting probe Gν

k(q,ztip)

is nonnegative. Therefore, functions Gν

k(q,ztip) can be considered weight functions for the

perturbation δrP(q). To put it another way, this set of functions quantifies the momentum

dependence of the probe-sample coupling. Below we show that the properties of these functions

paint a much more nuanced physical picture than the naive idea that the coupling is maximized at

a single momentum q∼ 1/a. However, if one insists on characterizing the entire distribution of

27



relevant momenta by a single number, the logical candidates are the average momenta

q̄ν

k =
∫

∞

0
Gν

k(q,ztip)qdq . (2.42)

The idea is that unless Gν

k(q,ztip) has a complicated structure or a slow decay, q̄ν

k should play

the role of a characteristic momentum that determines kth polariton pole βν

k . Accordingly, we

may expect that 1/q̄ν

k should give an improved estimate of the spatial resolution of the probe in

the context of near-field imaging by s-SNOM. Interestingly, q̄ν

k can be found by differentiating

βν

k(ztip):

q̄ν

k(ztip) =
1
2

∂

∂ztip
logβ

ν

k . (2.43)

To obtain this formula consider first a sample with a q-independent reflectivity β and let the

probe-sample separation be ztip = z+ dz. This system is equivalent to another one: the probe

separated by ztip = z from a fictitious two-component medium composed of a vacuum layer of

thickness dz plus the original sample. The surface reflectivity of such a two-component medium

is q-dependent, rP(q) = βe−2qdz, so that it has the form (2.38) with δrP(q) =−2qβdz. Evidently,

such a δrP(q) shifts the resonant pole from β = βν

k(z) to β = βν

k(z+δz), i.e., causes a differential

change δβν

k = (∂βν

k/∂z)dz. Substituting these relations into Eq. 2.39, we get Eq. (2.43). Note that

as βν

k rises more steeply with ztip for larger k, q̄ν

k increases with k.

An equivalent description of the effect of a q-dependent perturbation is that it induces a

correction to the surface reflectivity. The effective reflectivity βeff is different for each k and ν,

β
ν,eff
k ≡ β−δβ

ν

k =
∫

∞

0
Gν

k(q,ztip)rP(q)dq . (2.44)

The corresponding polarizability χν is given by

χ
ν =

∞

∑
k=0

Rν

k

βν

k −β
ν,eff
k

. (2.45)
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In the following we focus on function Gν
0(q,ztip) because k = 0 is the dominant resonance at all

but very small ztip. Actually, the large-distance limit of this function has the universal form

Gν
0(q,ztip)' 4z3

tipq2e−2qztip , ztip� L , (2.46)

same for both ν. Equation (2.46) follows from Eqs. (2.11) and (2.39) and is consistent with the

surmised large-q behavior (2.40). As one can see, Eq. (2.46) gives Gν
0(q,ztip) that is normalized,

nonnegative, and has a single maximum at q = 1/ztip. The average momentum is q̄ν
0 ' 3/(2ztip).

In the intermediate-distance regime functions Gν

k(q,ztip) are not expected to be universal.

The specific example we treat in detail is again the conducting spheroidal probe. Combining

Eq. (2.43) with the results of Secs. 2.2 and 2.3, for the strongly elongated spheroid we obtain the

following:

1
q̄⊥0 (ztip)

∼





(aztip)
1/2 , ztip� a ,

2ztip log
(ztip

a

)
, a� ztip� L̃ ,

2ztip

3
, ztip� L .

(2.47)

Since the left-hand side has the physical meaning of the spatial resolution of the probe, we

expect it to monotonically decrease as ztip decreases. Therefore, the length scale L̃ appearing on

the second line of Eq. (2.47) should be of the order of L/3log(L/a). The presence of a large

logarithmic factor log(ztip/a) in the intermediate-distance regime a� ztip � L̃ indicates that

function G⊥0 (q,ztip) has a considerable weight at q parametrically smaller than 1/ztip. In other

words, a strongly elongated spheroidal probe senses electric fields beyond its immediate vicinity

ρ < ztip. (A similar point was made previously in Ref. [ZAF+12].) As L/a decreases, L̃ comes

close to a, and this intermediate regime disappears. For example, the sphere acts essentially as a

local probe.

The calculation of Gν

k(q,ztip) for the spheroid can be done as follows. Applying the
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first-order perturbation theory to the linear system (2.26), one finds

Gν

k(q,ztip) =
u†

kH′uk

u†
kH̄uk

, (2.48)

where H′ is the matrix with elements

H
′
ll′ =

2π

q
Il+ 1

2
(qF)Il′+ 1

2
(qF)e−2qzp . (2.49)

Once the eigenvectors uk are found, e.g., as described in Sec. 2.3, function Gν

k(q,ztip) can be

readily computed.

Our numerical investigation of Gν

k(q,ztip) was limited mainly to k = 0 and ν = ⊥. We

observed that the eigenvector components approximately followed the geometric series (u0) j ∼ t j.

The quotient t is somewhat larger than unity for small ztip. As ztip increases, t becomes less

than unity, so that the first component (u0)0 dominates. Neglecting all other components and

expressing the modified Bessel function I3/2(z) in terms of elementary functions, we obtain the

analytical approximation from Eqs. (2.48) and (2.49):

Gν
0(q,ztip) =

c0

q4 (qF coshqF− sinhqF)2 e−2qzp , (2.50)

where c0 is a normalization constant. At ztip� L we can focus on the range of momenta less than

1/L because at larger q this function is already exponentially small. For such q the bracketed

expression on the right-hand side can be replaced by (Fq)6/9 and zp = ztip +L by ztip, which

yields the asymptotic form (2.46).

To examine small and intermediate distances we used the direct numerical evaluation

of u0 and Gν
0(q,ztip). As in Sec. 2.3, we considered two aspect ratios: L/a = 25 and L/a = 1.

Only ν = ⊥ part was studied. The results for L/a = 25 are shown using the false color scale in

Fig. 2.5(a). It can be seen that as ztip decreases, both q̄⊥0 (ztip) and the position of the maximum of
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G⊥0 (q,ztip) as a function of q shift toward larger values. This implies that the probe becomes more

sensitive to finer spatial features of the sample, as discussed above. The line plot of G⊥0 (q,ztip) for

several ztip presented in Fig. 2.5(b) depicts the same trend. The average momentum q̄⊥0 and the

position of the G⊥0 (q) maximum are of the same order of magnitude except at very short distances

where q̄⊥0 increases more rapidly as ztip decreases. Note that Eq. (2.47) predicts that q̄⊥0 diverges

at ztip = 0. From Fig. 2.5(b) we also see that for the same ztip the maximum of G⊥0 (q,ztip) is

found at q smaller by a factor of 3–10 for the spheroid compared to the sphere. This confirms that

the spheroid is much more sensitive to small in-plane momenta than the sphere, i.e., the response

of a strongly elongated spheroid is affected by a relatively wide range of lengthscales.

For k > 0, G⊥k (q,ztip) has nodes as a function q at fixed ztip. The number of nodes is

equal to k, see Fig. 2.5(c). Apparently, at such q near-field coupling between oscillatory charge

distributions on the probe and the sample exactly vanishes. Therefore, small perturbations at such

discrete q do not affect the kth resonant mode. Finally, although q̄⊥k increase with k for the reasons

explained above, the maxima of G⊥k show the opposite trend, which is presently not understood.

2.5 From near-field polarizabilities to far-field observables

In order to apply our theory to simulation of s-SNOM experiments, we need to include a

few more ingredients in our calculation. The first one is the so-called far-field factor (FFF) Fν(ω).

This factor accounts for the fact that the probe is illuminated not only by the incident wave but

also by its reflection from the sample. In experiment P-polarized incident field is usually used, to

take advantage of the high transverse polarizability of the probe. Assuming the sample surface is

flat, uniform, and its linear dimensions are much longer than the radian sphere diameter c/ω, the

reflection of the incident wave is described by the coefficient rP(qs,ω), where

qs =
ω

c
sinθ (2.51)
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is the in-plane photon momentum and θ is the angle of incidence. Hence, the ratio of ν-component

of the electric field at the surface to that of the incident wave is 1± rP(qs,ω) for ν = ⊥ and

‖, respectively. The FFF also takes into account that the field scattered by the probe reaches

the detector in two waves: directly and after reflection from the sample surface. Usually, the

backscattered field is measured. It has the in-plane momentum −qs and therefore the same

reflection coefficient rP(−qs,ω) = rP(qs,ω) as the incident wave. The total FFFs for this setup

are given by

F⊥(ω) = [1+ rP(qs,ω)]
2 sin2

θ , (2.52a)

F‖(ω) = [1− rP(qs,ω)]
2 cos2

θ . (2.52b)

The trigonometric factors on the right-hand side take care of conversion between the total electric

field Eext of the waves and their ⊥, ‖ components. Note that our assumption of the plane-wave

illumination is not entirely realistic. In experiment, a focused Gaussian beam is typically used, in

which case the FFFs are effectively averaged out over a range of angles θ. Numerical apertures

∼ 0.4 are common. We must also stress that Eq. (2.52) should be modified if the system studied

by s-SNOM is nonuniform on scales shorter than c/ω. Typical examples include a small sample

residing on some substrate [ZAF+12] or measurements done close to a boundary of two different

materials.

Another point we have to discuss is signal demodulation. In the experiment the probe is

made to oscillate mechanically, which causes periodic variation of the probe-sample distance:

ztip(ϕ) = z0 +∆z(1− cosϕ) ,ϕ≡Ωt . (2.53)

The oscillation amplitude is typically ∆z = 20–90nm, comparable to the radius of curvature a∼

30nm of the probe. The minimal approach distance z0 ≥ 0 can be equal to zero if the probe taps

the sample. The tapping frequency Ω is many orders of magnitude smaller than the laser frequency
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ω, and so the motion of the tip does not affect the electromagnetic response. Effectively, the

experiment consists of measuring the scattered signal for many static configurations with different

ztip. The nth Fourier harmonic of the backscattered field is referred to as the demodulated signal

sn. (Here we define sn as a complex number but in experimental literature it is common to discuss

the amplitude and the phase of sn separately.) The primary purpose of demodulation is to suppress

the far-field background signal created by reflections from the body of the tip, the cantilever,

etc. This background is large but depends on ztip very weakly (linearly) and thus contributes

predominantly to the n = 1 harmonic. Unfortunately, demodulation strongly diminishes the signal

amplitude, making it more susceptible to experimental noise. In practice, n = 2 or 3 usually gives

the best approximation of the true near-field signal. [KH04, KH09, ABJR12]

The demodulated signal is related to the polarizabilities χν(ω,ztip) we have been dis-

cussing in previous sections by

sν
n(ω) = const ×χ

ν
n(ω)F

ν(ω) , (2.54)

where χν
n(ω) is the nth Fourier harmonic of χν:

χ
ν
n(ω) =

π∫
0

dϕ

π
χ

ν
(
ω,ztip(ϕ)

)
cosnϕ . (2.55)

One more element of the experimental protocol is normalization. What is typically reported is

sν
n(ω) normalized against a certain reference material, e.g., Si or Au:

s̄ν
n(ω) = sν

n(ω)/sν, ref
n (ω) . (2.56)

The normalization eliminates a number of physically uninteresting or poorly known factors, such

as the constant in Eq. (2.54) that are related to the optical setup of the experiment. The FFFs may

also be canceled if both the studied and the reference objects in the experiment are positioned
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nearby, so that the data for the two are taken at points no farther apart than the diameter c/ω of

the radian sphere.

The last point we wish to draw attention to is that the absolute value of the minimum probe-

sample distance z0 [Eq. (2.53)] cannot be determined very accurately. Therefore, experimentalists

have to measure the so-called approach curve, which is the s-SNOM response as a function of z0

at a fixed frequency. They then identify the point z0 = 0 as a point where a qualitative change

in behavior in s2 or s3 appears. The logic behind this procedure is that once the probe makes

the mechanical contact with the sample, its oscillations become reduced in amplitude, marking

an unambiguous change. A potential flaw of this argument is that sharp changes in sn’s may be

generated by a rapid variation of electromagnetic coupling between the probe sample at short

separation even before making mechanical contact. We will discuss this issue in more detail in

Sec. 2.6.

2.6 Case of local reflectivity: aluminum oxide

In this and the following Sections we discuss the implications of our theory for near-field

response of real materials. We choose bulk α-Al2O3, also known as sapphire or corundum,

as our first example of highly resonant material with a momentum-independent reflectivity β

[Fig. 2.2(a)]. Another material with these properties, silicon carbide, has been a subject of a recent

s-SNOM study co-authored by two of the present authors.[MKG+14] Modeling results based on

the BEM showing good agreement with the data were also reported in that work. Realistic probe

shapes and retardation effects have been taken into account in order to achieve that. The latter

was necessary since the probe length 2L∼ 20µm in the experiments was in fact larger than the

diameter of the radian sphere c/ω∼ 11µm. Here we do not aim for a perfect agreement with a

particular experiment but instead wish to illustrate how the general theory of multiple eigenmodes

formulated in the preceding Sections can generate novel features in far-field observables. We
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Figure 2.6: (Color online) Response of a perfectly conducting spheroidal probe with L = 25a on
bulk Al2O3 sample. (a) The false color plot of Imχ⊥(ω,ztip)/a3. The bright curves correspond
to the resonant modes, with k = 0 mode having the lowest frequency. (b) The polarizability χ⊥

(absolute value and imaginary part) at ztip = 0.02a = 0.6nm, the smallest distance in panel (a).
(c) The absolute value of the demodulated polarizability |χ̄3| and scattering signal |s̄3| for the
tapping amplitude ∆z = 50nm and z0 = 0.6nm. The origin of the three peaks is discussed in
the text. (d)–(f) The counterparts of panels (a)–(c) for the parallel component, ν =‖. The plots
again reveal multiple resonances. However, the overall magnitude of the polarizability is greatly
reduced, χ‖ ∼ 10−2χ⊥, and the resonances are more strongly bunched near the surface phonon
frequency ωSP = 818cm−1.

study mostly probes of an idealized spheroidal shape but examine some other shapes as well. We

stay within the quasistatic approximation but we will comment on retardation effects in Sec. 2.8.

We use the following momentum-independent model for the reflection coefficient of the

uniaxial Al2O3 crystal,

β(ω) =
εeff−1
εeff +1

, εeff(ω) =
√

εoεe , (2.57)
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where ερ for ρ = o (ordinary) and e (extraordinary) axes is given by

ερ(ω) = ε∞,ρ ∏
j

ω2
jLO,ρ−ω2− iγ jLO,ρω

ω2
jTO,ρ−ω2− iγ jTO,ρω

. (2.58)

The optical constants of Al2O3 reported in the literature [HNA94, ZPM13] have slight variations,

presumably because of different crystal purity and processing. In our calculations we adopt

the results of Ref. [ZPM13] at room temperature, reproduced in Section 2.15. (For simplicity,

the weak oscillator at ωTO,o = 634cm−1 is neglected.) Due to smallness of the optical phonon

linewidths γρ in this material, the near-field reflectivity of Al2O3 can be as high as β∼ 10.

We start by studying the behavior of the probe polarizabilities χν as a function of frequency

ω. In the mid-infrared range, the reflection coefficient β of Al2O3 has a single peak centered at

the surface-phonon frequency ωSP = 818cm−1, depicted in Fig. 2.2(a). As ω approaches ωSP

from below, Reβ(ω) steeply rises. Equation (2.3) implies that whenever Reβ is equal to a pole

βν

k , Imχν has a local maximum as long as the damping Imβ(ω) is not too large. The positions

of three such underdamped resonances are indicated schematically in Fig. 2.2(a). Thus, a single

surface mode ωSP of Al2O3 may produce multiple modes of the coupled probe-sample system.

These localized eigenmodes (resonances) have been discussed at length in the preceding Sections.

For example, they are depicted in Fig. 2.1(b) for the case of a spheroidal probe. Note that all the

resonances are red-shifted from the frequency ωSP. Since Imβ increases as ω approaches ωSP,

higher-order resonances are progressively more broad.

The scenario above is described in terms of constant βν

k . However, the poles are functions

of ztip, and so the frequency of each resonance shifts with ztip. This is clearly seen in a false color

plot of Imχ⊥(ω,ztip) [Fig. 2.6(a)], where each mode creates a bright curve. All the curves are

red-shifted from ωSP but converge to it at large ztip. The smallest ztip = 0.02a in Fig. 2.6(a) is

limited by the accuracy of our numerical calculation. Based on our analytical results we expect

that at smaller ztip the resonance curves are shaped as parabolas that approach ωTO = 576cm−1

36



z0 (nm)

|s
⊥ 3
(z

0
)/
s⊥ 3

(0
.6
n
m
)|

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3(a)

600 cm−1

700 cm−1

800 cm−1

z0 (nm)

|s
‖ 3
(z

0
)/
s‖ 3
(0
.6
n
m
)|

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4(b)

700 cm−1

750 cm−1

800 cm−1

Figure 2.7: (Color online) Approach curves of |sν
3| for bulk Al2O3, normalized to the value at

z0 = 0.6 nm, for several characteristic frequencies. The lowest frequencies in both (a) and (b)
are such that no resonance curves are crossed during the probe tapping motion. The approach
curves are monotonic. For the middle pair of frequencies one crossing (of the k = 0 resonance)
does occur. At such crossing each approach curve has a peak. The last pair corresponds to
the frequencies where |s̄ν

3| is close to the maximum value in the spectral range studied. The
approach curves have several peaks because of multiple resonance crossings.

where Reβ = 1, cf. Eqs. (2.5), (2.57), and (2.58). A horizontal line cut through Fig. 2.6(a) taken

at ztip = 0.6nm is plotted in Fig. 2.6(b) along with the absolute value of χ⊥. The strongest peak

in this plot corresponds to the k = 0 mode. The multiple weaker peaks at higher frequencies are

produced by k > 0 modes.

Next we consider the effects of demodulation on the s-SNOM signal, which can be

understood as follows. As the probe oscillates, it spends most time at the minimum and maximum

distances from the surface. One therefore expects peaks in χν
n at frequencies near those of

χν(z0,ω) and χν(z0 +2∆z,ω). This gives two frequencies per each resonant mode. Actually, the

number of observable peaks is smaller. Indeed, from Figs. 2.6(a) and 2.6(d) one can see that

all the resonance curves modes should merge together at z = z0 + 2∆z for typical ∆z ∼ 50nm.

Hence, all the modes should produce a single common peak in the demodulated signal from

such z. Furthermore, while the peaks of χν(z0,ω) are distinct, only a few strongest of them can

survive the smearing effect of the demodulation. These expectations are supported by Fig. 2.6(c),

where we plot the normalized quantities χ̄3(ω,z0)≡ χ3/χref
3 and s̄3 for ν =⊥, assuming tapping
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Figure 2.8: (Color online) Comparison of spectra of the quantity |s̄⊥3 | using two different
experimental protocols, at two different minimum approach distance z0. The value at each
frequency is taken either from the maximum of the |s⊥3 | approach curve (solid) or from a fixed
z0 (dashed).

amplitude ∆z = 50 nm, z0 = 0.6 nm, and Si as the reference material. In Fig. 2.6(c) we see

only three peaks. The peak at 650 cm−1 in |s̄3| is produced by the dominant k = 0 mode. It

has the same frequency as the k = 0 peak in Fig. 2.6(b). The second peak near 725cm−1 in

|s̄3| (which looks more like a shoulder in χ̄3) is produced by the k = 1 mode at the ztip = z0

point. The remaining third peak at 787cm−1 is produced collectively by all the modes. A similar

correspondence between the resonance curves of the polarizability function and the peaks in the

demodulated signal is found in the ν =‖ component, cf. Figs. 2.6(d)–(f). However, the lower

k = 1 peak is now very weak and is considerably blurred by the demodulation, Fig. 2.6(f). Should

we have considered a model with smaller dissipation, this and other high-order peaks would have

been more clearly distinguishable in |s̄3|. Note that although the normalized and demodulated

signal strength is comparable for the two ν components, the polarizability for ν =‖ is orders of

magnitude smaller so its contribution can be safely ignored.

The discussion above pertain to horizontal cuts of χν(ztip,ω). Taking a fixed-frequency

(vertical) cut through Fig. 2.6(a), and performing the demodulation for a range of minimum

distances z0, one obtains the ν = ⊥ approach curve for the scattering signal. An intriguing result
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Figure 2.9: (Color online) (a) Spectra of |s̄⊥3 | for z0 = 0.6nm and five different tapping ampli-
tudes. The magnitude of s̄⊥3 increases rapidly with decreasing ∆z. (b) The χ⊥ approach curves
for Al2O3, SiO2 and Si, taken at frequencies corresponding to the largest peak in |s⊥3 | (790 cm−1

for Al2O3, 1120 cm−1 for SiO2, and an arbitrary ω for the frequency-independent case of Si).
For Al2O3 sample, |χ⊥| shows multiple oscillations; for SiO2 sample, it has a single maximum
at small ztip; for Si, the approach curve decays monotonically with ztip. As ∆z decreases, the
approach curves become increasingly different.

of this analysis is the possibility of a nonmonotonic dependence of the approach curve on z0. The

nonmonotonicity is due to the crossing of the resonance curves of χ⊥ by the vertical line cut.

Such crossings are found between ωTO where Reβ = 1 and ωSP where Reβ reaches its maximum.

Near the low-frequency end of this interval, the k = 0 mode should be again dominant. It is

expected to produce a peak in the approach curve, which would follow the same trajectory as the

k = 0 curve in Fig. 2.6(a), moving to larger z0 as ω increases. Higher order modes should appear

at frequencies closer to ωSP and produce weaker peaks at smaller z0. The amalgamation of these

peaks give rise to the nonmonotonicity of the approach curve.

We show in Fig. 2.7(a) the s3 approach curves for ν =⊥ for three frequencies. All the

curves are normalized to their value at their left ends, z0 = 0.6nm. The approach curve for

ω = 600cm−1 decays monotonically with increasing z0 because the cut at such ω does not cross

any of the resonances. In the approach curve for 700cm−1, a strong peak is seen at around 2nm

due to the crossing of the k = 0 resonance. The last approach curve, for 800cm−1 contains a

series of oscillations at small z0 and a broad hump at large z0, due to the multiple resonance
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crossings. The approach curves for ν =‖ plotted in Fig. 2.7(b) exhibit the same general trends as

those for ν = ⊥.

The striking multi-peak spectra and anomalous nonmonotonic approach curves we de-

scribed above stem from the large rP of Al2O3 and are not found in less resonant materials, see

Sec. 2.8 and Ref. [MKG+14]. This rich structure is also quite sensitive to the choice of z0. If

this parameter is too large, the peaks in the spectrum of the scattering signal merge together at

ω = ωSP. If z0 is too small, the resonance curves become very flat at ω < ωSP, so the correspond-

ing peaks are smeared by demodulation and dwarfed by the ωSP peak. Hence, there exists an

optimal value of z0 that allows one to resolve multiple peaks most clearly. For our Al2O3 model

this value is actually not too far from z0 = 0.6nm used in Fig. 2.6. For example, the s3 spectrum

for a smaller z0 = 0.06nm is shown in Fig. 2.8 (dashed lines), where the k = 0 peak is much less

pronounced while more higher order peaks become distinguishable and form small steps. For

even smaller z0 the steps are further smoothed, eventually leaving only one peak near ωSP.

In addition to the value of z0, many other experimental parameters and procedures can

significantly alter the resultant spectrum. For instance, the experimental determination of z0 based

solely on the s-SNOM approach curve can be inaccurate due to its possible nonmonotonicity, as

discussed in the previous Section. It is generally incorrect to ascribe z0 = 0 to the probe position

at which the near-field signal has the highest amplitude. Such a protocol effectively yields a

frequency-dependent z0. The difference from the spectra taken for a truly constant z0 can be

drastic, as illustrated in Fig. 2.8. Conversely, the strong sensitivity of the near-field signal to

the value of probe-sample distance may perhaps be used for a more accurate measurement of z0

(although this may require knowing the curvature radius a and perhaps other details of the probe

shape).

The tapping amplitude ∆z is another parameter that affects the spectrum. When ∆z is small,

the demodulation at nth order is roughly equivalent to taking the nth order derivative of χν(ztip).

Therefore, a material with a sharply varying approach curve yields a stronger demodulated signal
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than the material with a smoothly varying one. In our case the signal of Al2O3 is normalized

against Si, whose polarizability decays monotonically with ztip [Fig. 2.9(b)]. As ∆z decreases, the

polarizability of Al2O3 become increasingly oscillatory, while that of Si remains smooth. This

results in the increased contrast of the demodulated signal for the two materials for smaller ∆z

[Fig. 2.9(a)].

Other than these controllable parameters, the scattering signal is also dependent on the

dielectric function of the probe itself. The calculation in the preceding discussion is done for

a perfectly conducting probe, εtip = ∞. In practice, near-field probes often have a Si core and

a layer of metallic coating whose thickness ∼ 20nm can be smaller than the skin depth, i.e.,

the electric field penetration length of the metal. In this case, it may be more appropriate to set

εtip = εSi ≈ 11.7 in Eq. (2.21). Repeating the calculations, we find that while qualitative features

in the signal are retained, there are major quantitative differences (Fig. 2.10).

The discussion above shows that the rich structure of the s-SNOM signal found for the

case of Al2O3 sample is susceptible to many experimental parameters. (Retardation effects,

discussed later in Sec. 2.8, introduce further significant dependence on the probe geometry.) This

presents a serious challenge to realistic modeling of s-SNOM experiments. On the other hand,

these strong dependences arise only for highly crystalline material with low dissipation. For other,

less resonant materials, the modeling can be quite robust, as discussed in Sec. 2.8.

2.7 Nonlocal reflection function

The example material of the previous Section is a bulk crystal with a local (momentum

independent) reflectivity function. However, in many other systems studied through s-SNOM,

including thin films, graphene, and multi-layered systems reflection is inherently nonlocal. Thus,

it is imperative to study how the q-dependence of the reflectivity affects the probe-sample

interaction. As mentioned in Sec. 2.4, a general description of such interaction is challenging
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Figure 2.10: (Color online) (a) χ⊥ and (b) |χ̄⊥3 | and |s̄⊥3 | spectra of Al2O3 for the case of a Si
probe. All other parameters are the same as in Fig. 2.6(b) and (c). The spectra retain the same
structure as for a metallic probe (εtip = ∞).

because the series representation of the polarizability

χ = ∑
k

Rk

λk
(2.59)

has generalized eigenvalues λk and residues Rk that are now complicated functionals of rP [λ−1
k

is the k-th eigenvalue of the matrix (ΛΛΛm)−1/2H(ΛΛΛm)−1/2, cf. Eq. (2.20)]. Still, we can attempt to

analyze these expressions using the simple perturbation theory developed in Sec. 2.4, in which λk

are computed from the poles of the q-independent theory, with corrections obtained by integrating

the weighting functions over the momentum. As shown below, this scheme produces qualitative

agreement with the calculated s-SNOM response for graphene on bulk Al2O3.

The Al2O3/graphene system has two collective modes (the upper and the lower one) that

emerge from hybridization of the surface phonon of Al2O3, originally at ωSP ≈ 750cm−1 with

the plasmon of graphene, ω(q) ∝
√

µvFq. (Coupling of substrate phonons to graphene plasmons

has been probed by s-SNOM experiments with graphene/SiO2 systems. [FAB+11, FRA+12] This

and related work is reviewed in Ref. [BFL+14].) The modes share the optical weight and exhibit

a level-repulsion that causes both to be dispersive. Both features depend on the chemical potential

µ of graphene. Below we focus on the upper mixed mode and study its s-SNOM response for a
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Figure 2.11: (Color online) (a) Collective mode dispersion of graphene/Al2O3 system. The
mode repulsion between the graphene plasmon and the Al2O3 surface phonons are evident.
The false color stands for ImrP(q,ω), which is a measure of power dissipation. [FW84] This
quantity is additionally raised to power 0.35 to reduce the contrast. The vertical dashed line
marks q = 1/a. The faint curve just below ω = 500cm−1 is a weak surface phonon [ZPM13]
that we do not discuss. The chemical potential of graphene is µ = 1200cm−1. (b) The solid
curves are constant momentum q̄ = 1/a line cuts through maps like (a) for several µ. The
particular case of (a) is shown by the red curve (second solid curve from the right). The dashed
curve is the same quantity computed for bulk Al2O3 without graphene. (c) Imχ⊥(ω) and (d)
s̄⊥3 (ω) computed using the q-dependent rP(q,ω) at ztip = 0.02a and z0 = 0.02a, respectively.
Graphene chemical potentials µ for (b)–(d) are indicated in the legend of panel (c).

range of µ, and compare the results with the perturbation theory method. To proceed, we need

the formula for the reflectivity of the composite system. This formula is well-known (see, e.g.,

Ref. [FAB+11])

rP(q,ω) =

ε1

kz
1
− ε0

kz
0
+

4πσ

ω

ε1

kz
1
+

ε0

kz
0
+

4πσ

ω

. (2.60)

Here ε1 = εeff [Eq. (2.57)] is the permittivity of the lower half-space (Al2O3), ε0 = 1 is that of the

upper half-space (vacuum), kz
j =
√

ε j
ω2

c2 −q2 is the z-component of the wave vector in medium
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j = 0,1, and σ = σ(q,ω+ iτ−1) is the conductivity of graphene, which we calculate within the

random phase approximation [WSSG06, HDS07] with a finite relaxation time τ−1 = 25cm−1.

For q� ω/c, one finds kz
j ' iq and Eq. (2.60) reduces to

rP(q,ω) =
ε1−1+4πq

iσ
ω

ε1 +1+4πq
iσ
ω

, (2.61)

which can be compared to Eq. (2.57). A convenient way to visualize the dispersion of the collective

modes is to plot the imaginary part of rP(q,ω), which represents the power dissipation in the

system, [FW84] as a false-color map. An example for µ = 1200cm−1 is shown in Fig. 2.11(a).

In the low-q regime (~vFq� ~ω� µ),[WSSG06, HDS07] the lower bright curve is mainly the

plasmon with dispersion ω ∝
√

µvFq, while the upper bright curve represents the dispersionless

Al2O3 surface phonon. (The additional bright curve around ω = 500cm−1 is a weaker Al2O3

surface phonon, which we do not discuss.) An increase in µ leads to a steeper dispersion of the

plasmon, which causes both hybrid modes to go up in frequency. Decreasing µ has the opposite

effect. Additionally, if µ drops below ~ωSP/2≈ 380cm−1, the upper mode falls into the interband

transition region of graphene, which results in strong damping of the surface phonon. As we

will see below, this causes the µ = 300cm−1 curve to look qualitatively different from the rest in

Fig. 2.11(b). Let us now discuss how the collective modes manifest themselves in the s-SNOM

response.

In the simplistic picture of the s-SNOM response, the probe-sample interaction is domi-

nated by a single momentum q̄ = 1/a. If this assumption were accurate, we could set rP(q̄,ω) as

β(ω) and calculate the response using the set of poles and residues established previously. We

would then see peaks in the response generated by the upper hybrid mode. However, this crude

approximation leads to higher peak frequencies than the calculation using the full rP(q,ω), as

seen in Figs. 2.11(b), 2.11(c), and 2.11(d). Indeed, we have shown in Sec. 2.4 that when the

q-dependence in reflection is treated as a perturbation, each mode has its own range of sensitive
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momenta due to the inherent length scales in its potential distribution. The distributions change

with an additional length scale — the tip-sample distance ztip, so that the momentum weighting

functions are dependent on ztip as well, Gk = Gk(q,ztip). For each mode, these functions provide

a means to average over momentum and find an effective q-independent sample reflection βeff
k (ω),

cf. Eq. (2.44), so that we can again apply the established pole-residue decomposition. Strictly

speaking, the perturbative method cannot be applied here as the mixed mode may be strongly

q-dependent. Even so, we find a very reasonable agreement with the computed signal in the

range of graphene chemical potentials µ = 600–1800cm−1 that we study. We first consider peak

frequencies in Imχ⊥, which can be predicted by invoking the resonance condition Reβeff
k = βk.

For the lowest mode k = 0 and ztip = 0.02a, there is a systematic overestimate of the peak

position by 20–30cm−1 for µ = 600–1800cm−1. The discrepancy is larger for higher µ at which

the q-dependence of the upper hybrid mode is stronger. This discrepancy is due in part to the

well-known general tendency of the first-order perturbation theories to overestimate the lowest

eigenvalues. Next, for the k = 1 mode, the resonance condition is satisfied only for µ = 600cm−1

at ω = 797 cm−1 and µ=1200 cm−1 at ω = 823 cm−1, which agree well with the smaller peaks

in Imχ⊥. At these frequencies Imβeff
1 are larger than the k = 0 case and the peaks have smaller

magnitudes. For µ = 1800 cm−1, the resonance condition is not met and the very small peak at

ω = 827 cm−1 in Imχ⊥ corresponds to where Reβeff
1 is largest and thus closest to β1. Finally,

for k > 1, βk is larger than Reβeff
k for all frequencies and no peaks in Imχ⊥ are found. Seeing

qualitative agreement in the polarizability, we proceed to analyzing the demodulated signal.

As inferred in Sec. 2.6, the demodulated signal is strongest near the peaks in χ⊥(z0,ω) and

χ⊥(z0 +2∆z,ω), where each peak is attributed to a resonant mode. For the dominant k = 0 mode,

we find a set of corresponding peaks in s⊥3 (z0,ω) at the same frequencies as those in χ⊥(z0,ω),

as shown in Fig. 2.11(c) and Fig. 2.11(d). For the other set of peaks in the s3 spectra we must

consider how the situation is changed at z0 + 2∆z. At such distances ztip itself becomes the

primary length scale and the sensitivity function Gk is shifted toward smaller momentum, where
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the upper mode has a flatter dispersion and its frequency is close to ωSP of the bulk Al2O3 crystal.

Therefore, this set of peaks should all appear near ωSP, which is indeed the case. Repeating this

procedure for the k = 1 mode, we find that the peaks it contributes are inseparable from the set

of higher frequency peaks produced by the k = 0 mode as both have frequencies very close to

ωSP. Its contributions, however, alter the heights of these peaks. For instance, the k = 1 peak is

strongest in χ⊥(z0,ω) for µ = 600cm−1 (among the four we used), so the high frequency peak in

s⊥3 for this chemical potential has the largest relative magnitude with respect to the low frequency

peak. Thus we conclude the demodulated s-SNOM signal can be qualitatively explained by the

perturbative method, albeit with inaccuracy in the lower peak frequency. However, as we argued

in Sec. 2.6, the lower frequency peak in the demodulated signal is mainly an artifact of the finite

z0 we are forced to use. If z0 were truly zero, only the peak near ωSP would survive.

2.8 Model-dependent effects

The spheroid model differs from real s-SNOM probes in two important ways: i) the

real probe resembles an inverted pyramid, ii) at infrared wavelengths, the length ∼ 10µm of

the probe exceeds several times the diameter c/ω of the radian sphere. In previous literature

it was assumed that these differences can all be neglected as the probe-sample interaction is

focused around the apex of the probe [Fig. 2.1(b)], while contribution from the rest of the probe

is canceled out during the process of demodulation and normalization. Hence, the exact shape of

the probe is unimportant and the only relevant physical quantity is the apex radius of curvature

a. Further, since the characteristic length scale a is well within the radian sphere, a quasistatic

description should suffice. This simplistic argument is backed by previous agreement between

the spheroid model and experiment. [DFM+14, FRA+12, ZAF+12] However, we have shown

that different probe shapes exhibit universal behavior only when ztip/a is of the order of a few

percent (cf. Fig. 2.4(a)). This range is much smaller than typical tapping amplitudes, so the
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Figure 2.12: (Color online) (a) The s-SNOM signal s⊥3 computed for Al2O3 samples. The inset
shows the probe shapes used (spheroidal, with L = 25a, and a pear-shaped). The two types of
probes produce qualitatively similar but quantitatively different results. (b) Spheroids of longer
length have drastically increased signal strength. The inset depicts the probe shape and the
values of L/a used. Note that this quasistatic calculation neglects radiative damping and antenna
resonances, see Sec. 2.8. If included, such effects are expected to greatly reduce s⊥3 . In all cases
∆z = 50nm and a = 30nm. The value of s3 is taken either from the maximum of the approach
curves at each frequency (solid lines) or at the closest approach distance z0 = 0.6nm (dashed
lines).

majority of the s-SNOM response lies outside the universality regime and should indeed be probe

shape dependent. Additionally, recent experiment and modeling have shown that a quasistatic

formalism with ad hoc probe shapes is insufficient for highly resonant materials such as on silicon

carbide. [MKG+14]

In this Section we re-examine these issues by examining two materials, the highly resonant

Al2O3 and the dissipative SiO2, and study the probe shape dependence of their response as well as

electrodynamic corrections. We find that for dissipative materials shape dependence is weak and

retardation effects are of less importance, so the spheroid model describes the s-SNOM experiment

reasonably well. This explains the success of our model in reproducing the response of various

materials in experiment. On the other hand, we find the response of resonant materials to be

highly dependent on the probe shape and less well described within the quasistatic approximation.

For such materials a full electrodynamic treatment with the exact probe shape may be required.
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Common numerical methods suitable for electrodynamic treatment of light scattering by a

spheroid near a surface include T -matrix method [WD98, DEW99] and BEM. [MKG+14] For

the case of a sphere near a surface, the calculation of necessary matrix elements can be done

efficiently using recursion technique similar to what we use here.[BV86]

We consider the probe shape dependence and the retardation effects separately. To

study the former, we simulated the s-SNOM signal of Al2O3 samples obtained with spheroidal

probes of different length. We also calculated (using BEM) the results for pear-shaped probes

that may better mimic the inverted pyramids. As shown in Fig. 2.12(a), the signal for a pear-

shaped probe is qualitatively similar to that for the spheroid of the same length, but there are

quantitative differences. For spheroids, we find that the signal strongly increases and the peak

frequencies steadily decrease as the length of the probe increases at a fixed apex radius, as shown

in Fig. 2.12(b). These features can be explained by the scale invariance of the problem. It implies

that an increase in probe length is equivalent to a simultaneous decrease in tapping amplitude and

the apex radius. The decrease in radius produces changes in both the poles and residues. The

former explains the shift in peak frequencies. The latter is mostly canceled out by normalization.

In turn, the decrease in tapping amplitude leads to a larger contrast between the sample and

the reference as discussed in Sec. 2.6 [see Fig. 2.9(b)], so the signal strength is dramatically

increased.

The strong probe-shape dependence found above seem to suggest that theoretical modeling

of the s-SNOM experiments must always be done using the actual shape to be reliable. In fact,

such a sensitivity to the probe shape pertains only to the highly-resonant, i.e., large β materials.

In Al2O3 this parameter reaches the maximum value of |β| ≈ 12, Fig. 2.2(a). For comparison,

in Fig. 2.13(b) and Fig. 2.13(c), we show that the pear-shaped probe and the spheroid produced

almost identical signals for amorphous SiO2, a material with |β| ≤ 1.5. (For experimental studies

of this material see, e.g., Refs. [AK11a, ZAF+12].) In this case, a factor of 16 increase in the

probe length leads to only a doubled signal strength, compared to a nearly tenfold increase for
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Figure 2.13: (Color online) (a) The reflection coefficient of SiO2 [KN94] has a larger imaginary
part than Al2O3 due to its inherent dissipation, leading to a weaker shape dependence in the
s-SNOM signal. (b) The signal of the pear-shaped probe is very close to that produced by the
spheroid. (c) Increasing the probe length leads to a much smaller increase in the signal strength.
The overall shape of the spectrum is also preserved. All geometric parameters are the same as in
Fig. 2.12.

Al2O3 seen in Fig. 2.12(b).

The results above are obtained within the quasistatic approximation. In reality, a probe

half-length of 200a already exceeds the diameter c/ω of the radian sphere and one has to consider

retardation effects. Naively, contributions from such effects should be eliminated by demodulation,

as they pertain to a length scale much larger than the tapping amplitude. However, we show that

one contribution — the radiative damping — survives demodulation. The radiative damping has

an effect similar to a finite Imβ, i.e., the dissipation in the sample. Hence, for dissipative materials

one can neglect radiative damping and still find reasonable agreement with experiment, while

doing so for highly resonant materials may lead to qualitatively wrong results. Let us illustrate

these statements using the simplest model for the probe — the point dipole. The electrodynamic

interaction between the dipole and the sample with the dielectric constant ε is given [FW84] by a

modified version of Eq. (2.12),

gν = cν

∫
∞

0

iq3

kz
0(q)

εkz
0(q)− kz

1(q)
εkz

0(q)+ kz
1(q)

e−2qztipdq , (2.62)

where the second fraction in the integrand is the full form of the reflectivity rP(q,ω). [It is
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obtained from Eq. (2.60) by setting σ to zero.]

Suppose ω and ztip are fixed, then the above integral defines gν as a function of ε, which

is generally a complex number. Alternatively, gν is a function of β = (ε− 1)/(ε+ 1). The

integration domain Eq. (2.62) includes momenta q both inside and outside the light-cone. The

radiative damping effect arises from the integration over former, i.e., the momenta q < kz
0. This

part of the integral yields a negative imaginary contribution to gν, which shifts the pole of χν

[Eq. (2.11)] to the lower complex half-plane of β. The real parts of the poles also change but this

is less conceptually important, see below. Consider now the remaining part of the integral, over

momenta q > kz
0. It is easy to see that if ε =−q2/(q2−ω2/c2), then

εkz
0(q)+ kz

1(q) = 0 , (2.63)

so that there is a pole on the integration path. As a result, functions gν and χν have branch cuts at

ε ∈ (−∞,−1] in the complex ε plane or equivalently at β ∈ [1,∞) in the complex β plane. These

additional features are shown schematically in Fig. 2.2(c). The physical origin of both the poles

and the branch cut is quite clear. The discrete poles has been discussed at length in this article.

They correspond to the polariton modes localized near the tip, Fig. 2.1(b). In turn, the branch

cut corresponds to the continuum of delocalized surface polaritons that exist without the probe.

Indeed, Eq. (2.63), is the well-known equation for the spectrum of such excitations. [FW81]

Of the two features, the branch cut is not expected to affect the signal as the small-

momentum contribution is greatly diminished by demodulation. Demodulation should also make

less important the change in the real parts of the poles, because these real parts vary greatly with

ztip on account of the tapping motion of the probe. However, the shift of the discrete poles away

from the real axis is a qualitative change and its effects remain after demodulation. Our next

objective is therefore to find this shift for the case of the spheroidal probe.
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A free standing spheroid has an effective polarizability given by

χ0,eff =
χ0

1− i2
3(

ω

c )
3χ0

(2.64)

to the lowest order in ω/c when radiative correction is considered. [WGL82, Mor09] Modifying

ΛΛΛ accordingly [specifically Λm
1 , cf. Eq. (2.29)], it is easily shown that this formula applies to

our geometry as well. Namely, the s-SNOM polarizability corrected for the radiative damping is

given by

χ
ν
rad =

χν

1− i2
3(

ω

c )
3χν

, χ
ν =

∞

∑
k=0

Rν

k
βν

k −β
. (2.65)

Viewed in the complex β plane, this correction is equivalent to the shift of the poles βk into

the lower half-plane by −i(2/3)(ω/c)3Rk (to the leading order in ω/c). Therefore, both the

radiative damping and the intrinsic dissipation in the sample play a similar role: they increase

the distance from the poles to the curve traced by the surface reflectivity β of the sample as ω

varies [Fig. 2.2(c)]. For a dissipative material, the curve begins far from the poles, and so further

increase in the distance produces little change. Conversely, for highly resonant materials the β(ω)

curve passes close to the real axis, and so radiative damping may obscure or eliminate the fine

features of the signals, such as multiple resonant peaks discussed in Sec. 2.6. It is worth noting

however that while it may be important for s-SNOM in infrared or visible domains, the radiative

damping should be rather weak in the (experimentally more challenging) terahertz range, where

typical s-SNOM probes would fit well inside the radian sphere.

Finally, a class of retardation effects we have not addressed here are antenna resonances

arising when the length of the probe exceeds several times the diameter of the radian sphere. They

give rise to additional peaks in the s-SNOM signal as a function of ω. For most materials such

resonances are removed once the s-SNOM signal is normalized to a reference sample; however,

for strongly resonant materials such as SiC and presumably also Al2O3 we studied here, the

cancellation is not complete. [MKG+14]
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2.9 Discussion and Conclusion

Further progress in the s-SNOM and related areas of near-field microscopy requires a

quantitatively reliable procedure for determining the fundamental response function rP(q,ω) from

the amplitude and phase of the s-SNOM scattering data, from which one can proceed to the next

step of inferring the optical constants of the studied sample. Typically, materials with a higher

absolute value of rP(q,ω) produce a higher amplitude s-SNOM signal. However, the peaks in the

s-SNOM signal are often red-shifted with respect to those in |rP(q,ω)| or ImrP(q,ω).

Given additional information about the system, these inverse problems can be tack-

led by fitting the experimental data to the solution of the direct problem with a trial form of

rP(q,ω) as the input. [MKG+14] Unfortunately, the direct problem is also difficult to solve.

The three-dimensional nature of this problem and the presence of widely different length scales

make realistic simulations [PJALR03, EVK06, EVK09] of s-SNOM experiments very computa-

tionally intensive. This led to popularity of simple ad hoc approximations known as the point-

dipole [HK00, TKH04, ATdA+08] and the finite-dipole model, [Oce07, AK11a, AK11b, HET12]

in which the actual charge distribution induced on the probe is approximated by a point-like

image dipole or a combination thereof with additional point charges.

The point-dipole model [KH04] postulates that Eqs. (2.9a)–(2.12) that are rigorous in the

asymptotic long-distance limit ztip� L remain qualitatively correct at much shorter ztip if the

input physical parameters are suitably renormalized. Thus, the bare polarizabilities χν
0 become

the adjustable parameters of the model. It is customary to assume that the in-plane polarizability

χ
‖
0 is negligible compared the out-of-plane one, which is taken to be

χ
⊥
0 = a3, (2.66)

where a is of the order of the curvature radius of the tip. Another adjustable parameter [RGEH05,
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FAB+11] b . 1 specifies the position of the effective dipole inside the probe:

zp = ba+ ztip . (2.67)

Clearly, the point-dipole model accounts only for the sharp tip and ignores the body of the probe,

as χν for the point-dipole in Eq. (2.11) is much smaller than χν
0 for a tip with L� a. If the

point-dipole model were literally correct, the radiating dipole of the probe in typical s-SNOM

experiments would be so small that no measurable signal would be observed.

The finite-dipole model improves upon the point-dipole one by including the missing

antenna-like enhancement approximately. It assumes that the electric field of a spheroidal probe

of length 2L is equivalent to that of several point charges of total zero charge that are positioned

inside the spheroid near both of its ends. For small ztip/L, this model [COH07, AK11b] yields

the following functional form of the probe polarizability:

χ
fdp = const+

Rfdp
0

β
fdp
0 −β

, β
fdp
0 ≈ 1.4+O

(
z3

tip

L3

)
, (2.68)

where Rfdp
0 ∝ aL2. The finite-dipole model was shown to give a good qualitative agreement with

s-SNOM data obtained for quartz, amorphous SiO2, and SiC samples once parameters Rfdp
0 and

β
fdp
0 are suitably adjusted. [AK11a] Thus, the best fit to the data was achieved choosing the length

2L = 600nm of the probe, which is about one third of the diameter c/ω≈ 1700nm of the radian

sphere. Interestingly, this is approximately the value of 2L in the quasistatic calculation for

which one obtains, in the case of SiO2 sample, the same result for s3 as one gets from the full

electrodynamic calculation for a probe of a realistic (much longer) length. [MKG+14]

Agreement with the data notwithstanding, from the theory point of view Eq. (2.68) is

unsatisfactory on at least three counts. First, Rfdp
0 does not follow the correct scaling L3/ lnL

as a function of L, thus underestimating the probe polarizability. Second, the constant term in

Eq. (2.68) violates the general requirement that χ→ 0 as β→ ∞, corresponding to the case when
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Figure 2.14: (Color online) The spectrum of the probe polarizability |χ⊥| for Al2O3 sample
according to four different models. The point- and the finite-dipole models each predict a single
peak in |χ⊥|. The calculations for spherical and spheroidal probes reveal multiple peaks. The
sphere and the point-dipole models produce χ⊥/a3 ∼ 1. The L = 25a spheroidal probe yields
χ⊥ ∼ 103–104; the finite-dipole of the same L gives about an order of magnitude lower χ⊥.
These dramatic differences in both the form and the absolute magnitude of χ⊥ can however be
significantly reduced in the usually reported s̄⊥3 , the normalized demodulated signal.

the applied field is screened completely by the induced charges in the sample. Third, β
fdp
0 goes

to ∼ 1.4 when ztip = 0. Instead, all smooth probe shapes must behave as a sphere at ztip� a,

and therefore yield β0 = 1 at ztip = 0. The fact that finite-dipole model violates these general

requirements suggest its limited usability. Figure 2.14 is an illustration of how widely different

the predictions of the four discussed s-SNOM models can be for the case of Al2O3. Additional

examples of similarly large differences for SiO2 and SiC samples can be found in previous works

of the present authors and their collaborators. [ZAF+12, MKG+14] All these examples compel

us to conclude that the prior success of the point- and finite-dipole models in fitting experimental

data has to be due to insufficient range of the data, multitude of adjustable parameters, and also

the demodulation and normalization procedures that mask the errors in both the functional form

and the magnitude of the calculated signal.

Another way to explain the difference between the earlier ad hoc models and our GSM is

as follows. For the case of a sample with a local reflectivity β, the exact scattering problem of

a dielectric probe near a surface reduces to a generalized eigenproblem, [AKSV99] that has an
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infinite number of eigenmodes, as we discussed in Sec. 2.1. In contrast, both the point- and the

finite-dipole models attempt to approximate the infinite number of eigenmodes by a single one.

Since the real-space potential distribution of the eigenmodes [Fig. 2.1(b)] depends on the

shape and size of the probe and probe-sample distance but not on β, we can describe interaction

of the probe with an arbitrary sample efficiently using the precalculated basis of such eigenmodes.

This allows one to use our GSM approach to model s-SNOM response for a wide range of

materials. However, calculations for realistic probe shapes are not always practical. In search of a

broadly applicable yet simple model, we have chosen the prolate spheroid to be our probe shape,

as it captures the essential features of the actual probes — a sharp apex and a strongly elongated

shaft. We quantified the eigenmodes of the probe-sample system in the form of poles and residues

of the polarizability functions χν, Section 2.11, allowing an expedient, in fact, instantaneous

calculation of the s-SNOM reponse. The point-dipole, finite-dipole and other ad hoc models no

longer have the advantage of computational speed and should now be considered obsolete.

Recent work [MKG+14] has shown that in the strong-coupling regime of the probe-

sample interaction a fully electrodynamic treatment using the BEM and realistic probe shape is

necessary in order to reproduce the measurements. This regime is realized experimentally [AK11a,

MKG+14] when using samples of SiC, a material for which |β| can be as high as 15. The same

considerations apply for Al2O3 for which |β| can reach 12, see Fig. 2.2(a). Our GSM theory

gives analytical insight into near-field response of such materials. We have shown that due to

simultaneous excitation of multiple eigenmodes, novel features of the s-SNOM signal such as

multi-peaked spectra and nonmonotonic approach curves can appear. These features are however

very sensitive to experimental parameters such as tapping amplitude, minimum approach distance,

and even the data collection protocol. Retardation effects, especially radiative damping can also

qualitatively alter the signal and must be considered. In order to observe the predicted anomalous

approach curves and multi-peak spectra, it may be necessary to make efforts to minimize the

radiative damping, which requires working with shorter probes or at lower frequencies. In contrast,
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in the weak- and moderate-coupling regimes, which are relevant for the vast majority of samples,

the lowest-order eigenmode is dominant. Hence, the approach curves should be monotonic in

ztip, while the spectra should be mostly insensitive to experimental details and retardation effects.

This is the regime where our spheroidal probe model can be used with the greatest confidence.

Our GSM theory also applies to a more complicated problem where the sample reflectivity

is nonlocal, i.e., momentum-dependent. Here the salient advantages of our method are two-

fold. First, in the case of a weak nonlocality, our GSM provides a mapping of the nonlocal

problem to a local one. Thereby the sample-independent eigenmode decomposition is retained,

providing an intuitive interpretation of the scattering signal. Second, our numerical algorithm

(see Supplementary online materials) is much more efficient than the standard BEM because the

number of necessary matrix element calculations scales linearly instead of quadratically with the

matrix size. It will be worthwhile to compare the actual computational speed of our algorithm

with that of a recently developed and significantly more efficient BEM that utilizes pre-calculated

matrix elements. [MKG+14]

We hope that the improved physical understanding of near-field probe-sample coupling

enabled by the generalized spectral method advanced in this work as well as the numerical

procedures we developed for its implementation can be of use for modeling and analysis of future

s-SNOM and other near-field experiments.

2.10 The electrostatic problem of a spheroidal probe

The electric field created by a spheroidal object is most conveniently described in the

prolate spheroidal coordinates (ξ,η,φ) where the origin of the coordinate system is located at

the center of the probe, as shown in Fig. 3. The relationships to the cylindrical polar coordinates

(ρ,φ,z) are

z = F ξη , ρ = F
√

ξ2−1
√

1−η2 . (2.69)
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In the spheroidal coordinate each spatial position is specified by ξ ∈ [1,∞), η ∈ [−1,1], and φ is

the usual azimuthal angle. Contours of constant ξ are a series of concentric spheroids centered

at the origin, with the major axis along the z direction and common foci at z = ±F . For each

such spheroid, ξ is equal to the ratio of its major semi-axis and focal length. We consider the

case when the surface of the probe coincides with one of the spheroidal surfaces ξ = ξ0 = L/F ,

where L is the half-length or major semi-axis of the probe. Related quantities such as the minor

semi-radius W of the probe or the radius of curvature a at the apex are given by W =
√

L2−F2

and a =W 2/L.

It is well known that Laplace’s equation ∇2Φ = 0 has separable solutions in the prolate

spheroidal coordinates. In particular, we are interested in solutions outside a spheroidal probe that

decay at large ξ. Their most general form is written in terms of a linear combination of spheroidal

harmonics as follows:

Φsphd (ξ,η,φ) =

∞

∑
l=0

l

∑
m=−l

Bm
l P

m
l (η)e

imφ
Pm

l (ξ<)Qm
l (ξ>)

Pm
l (ξ0)

,
(2.70)

where Bm
l are coefficients to be determined from boundary condition, Pm

l (ζ) is the associated

Legendre polynomial defined on the interval [−1,1] and Pm
l (ζ) and Qm

l (ζ) are the associated

Legendre function of the first kind and second kind (See, e.g. Ref. [GR00]) with

ξ< ≡min(ξ,ξ0) , ξ> ≡max(ξ,ξ0) . (2.71)

With the above definition of ξ>,<, Eq. (2.70) covers both inside and outside the surface of the

probe at ξ0.

For the geometry considered in this paper [Fig. 1(a)], the total potential Φ can be written

as

Φ = Φ0 +Φplane +Φsphd , (2.72)
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where

Φ0(rrr) =−EEE0rrr (2.73)

is the potential of the external uniform field, and Φplane is the potential due to charges in the

sample, which can be decomposed into evanescent plane wave as

Φplane(rrr) =
∫

B(qqq)e−qzeiqqqρρρ d2q
4π2 , (2.74)

where the position vector rrr = ρρρ+ zẑzz is broken up into its cylindrical polar coordinate components.

We determine B(qqq), as well as Bm
l from boundary conditions.

To do that we quote two well-known mathematical results: the decompositions of evanes-

cent plane waves in terms of spheroidal harmonics and vice versa. The first reads

eiqqqρρρ−qz =
∞

∑
l=0

l

∑
m=−l

2l +1
2

(−)lim
(l−m)!
(l +m)!

√
2π

qF
Il+ 1

2
(qF)Pm

l (ξ)Pm
l (η)e

im(φ−φq) , (2.75)

with φ and φq being the azimuthal angles of ρρρ and qqq, respectively. The reverse is:

Qm
l (ξ)P

m
l (η) = (−)lim

(l +m)!
(l−m)!

∫
πF
q

√
2π

qF
Il+ 1

2
(qF)eiqqqρρρ+qze−im(φ−φq)

d2q
4π2 , (2.76)

where Iν(z) is the modified Bessel function of the first kind. [MF81] These two relations follow

easily from addition theorems of general Legendre functions such as those in Ref. [GR00]

and [Hob29].

Near the sample surface z =−zp, the boundary condition is

Φ̃ = B(qqq)e−qzp + Φ̃sphd(qqq,zp) ∝ eqzp− rP(q)e−qzp , (2.77)

where we use the notation

f̃ (qqq,z) =
∫

f (rrr)e−iqqqρρρd2
ρ (2.78)

58



for a partial Fourier transformation. Eq. (2.77) implies:

B(qqq) =−rPe−qzpΦ̃sphd(qqq,zp) . (2.79)

The other boundary condition for a uniform spheroidal probe with dielectric constant εtip is:

∂Φ

∂ξ

∣∣∣∣
ξ→ξ

+
0

= εtip
∂Φ

∂ξ

∣∣∣∣
ξ→ξ

−
0

. (2.80)

Boundary conditions in Eqs. (2.79) and (2.80) with the decompositions in Eqs. (2.75) and

(2.76) allow one to compute the unknown coefficients Bm
l . The result can be summarized by first

defining an infinite matrix:

Hll′ ≡ 2π

∫
∞

0
rP(q)Il′+ 1

2
(qF)Il+ 1

2
(qF)e−2qzp

dq
q
, (2.81)

whose elements are integrals of rP(q). Then for each integer m a quantity related to Bm
l , a column

vector defined by:

Am
l ≡ (−)l+m (l +m)!

(l−m)!
Bm

l
F

, (2.82)

is the solution to the linear system of equations

∞

∑
l′=1

(Λm−H)ll′ A
m

l′ = bm
l . (2.83)

The elements of the diagonal matrix Λm
ll′ = Λm

l δll′ are defined by

Λ
m
l =

(−1)m

2l +1
4

εtip−1

[
εtip

Qm
l (ξ0)

Pm
l (ξ0)

−
d

dξ0
Qm

l (ξ0)

d
dξ0

Pm
l (ξ0)

]
(2.84)
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and the numbers on the right-hand side of the equations are given by

bm
l =

4
3
(1+m)!
(1−m)!

Cm
δl1 , (2.85)

where C0 =−Ez and C±1 = (Ex∓ iEy)/2. Thus, the form of matrix ΛΛΛ is determined completely

by the geometry of the probe (in terms of ξ0) and its dielectric constant εtip, while H describes

the interaction between the sample reflection function rP and the momentum selectivity of the

modes. The column vector b describes the uniform external field.

The coefficients Bm
l can be obtained directly from Eq. (2.82) after one solves for Am

l from

Eq. (2.83). But for the purpose of determining the induced probe dipole moment, only |m| ≤ 1

cases are important. By examining the asymptotic behavior of the electrostatic potential Φ(rrr),

one obtains the total dipole moment of the spheroid probe. Its Cartesian components are related

to the components of Am
l by

psp,0 = psp,z =−
F3

3
A0

1 ,

psp,1 =
psp,x− ipsp,y

2
=

F3

3
A1

1 .

(2.86)

If the probe is made of an ideal conductor, εtip→ ∞, then Eq. (2.84) simplifies to

Λ
m
l = (−1)m 4

2l +1
Qm

l (ξ0)

Pm
l (ξ0)

, (2.87)

which are all positive numbers. If the dielectric function of the probe is real and negative, then Λm
l

can be negative, too. It can also be zero, which corresponds to a plasmon (or phonon) polariton

resonance of the probe. The resonances occur at discrete εtip values

ε
m
tip,l =

d
dξ0

lnQm
l (ξ0)

d
dξ0

lnPm
l (ξ0)

, l = 1,2, . . . , (2.88)
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see, e.g., Refs. [CKC+14, SGRBF15] (where, in fact, a more general case of anisotropic εtip is

treated). For each m, the sequence εm
tip,l asymptotically approaches −1 as l→ ∞. The smallest,

i.e., the most negative value in each sequence is the starting one. It can be alternatively written as

ε
m
tip,1 = 1− 1

Lν
, (2.89)

where ν = ⊥ for m = 0, ν =‖ for m = 1, and Lν are the depolarization factors of the spheroid

[BH04]

L⊥ = (ξ2
0−1)

[
1
2

ξ0 ln
(

ξ0 +1
ξ0−1

)
−1
]
, (2.90)

L‖ =
1−L⊥

2
. (2.91)

For prolate spheroids, these depolarization factors obey the inequalities 0 < L⊥ < L‖ < 1
2 , and so

ε0
tip,1 < ε1

tip,1. For example, if L= 25a, which we use in our calculations below, then ξ0 =
√

25/24,

ε0
tip,1 = −16.9, and ε1

tip,1 = −1.11. If the probe is made out of platinum or iridium, which are

common materials for AFM tips, its dielectric function can indeed be negative. It is in principle

possible to achieve plasmonic resonances in such probes somewhere in the near-infrared or visible

spectral range. On the other hand, at mid-infrared frequencies, for which we do calculations in

this paper, the dielectric functions of such metals are in the range of hundreds or thousands. Such

probes are very far from any of the plasmonic resonances and the approximation of the ideal

conductor, Eq. (2.87), can be safely used.
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Table 2.1: Coefficients of the nine-pole rational fits for L = 25a.

k a5 a4 a3 a2 a1 a0

0 3 −36.399 234.56 −762.76 1783.1 −0.015667
1 5 −25.733 111.01 −93.002 290.11 0
2 7 −33.029 157.55 −118.29 1391.3 0
3 9 −36.251 173.3 −40.018 1879.9 0
4 11 −47.517 221.75 −85.286 2292.3 −0.00017314
5 13 −45.678 233.45 42.551 3435.5 −0.000094847
6 15 −46.254 254.23 223.28 2547 0
7 17 −27.808 235.93 770.95 1961.3 0
8 19 −65.583 251.72 −308.28 402.67 0.000032595

k b4 b3 b2 b1 b0

0 1 −10.345 83.048 −417.42 1522.2
1 1 −3.4964 27.841 11.949 87.231
2 1 −0.9961 −2.6274 149.14 253.32
3 1 −0.12625 −8.2396 185.03 246.31
4 1 −0.3866 −8.4205 180.3 237.17
5 1 1.0728 −20.329 253.41 291.59
6 1 −0.75722 7.941 175.21 185.07
7 1 −1.8957 34.251 163.71 122.51
8 1 1.6624 4.104 −1.1364 23.24

k c5 c4 c3 c2 c1 c0

0 3.9999 303.23 5141.1 4811.1 282.17 1.4941
1 12.001 916.75 17089 33226 2371.9 12.255
2 24.001 1844.7 35207 90005 36.881 11.908
3 40 3166.2 65393 288144 224067 4417.7
4 60.028 4584.9 87200 196974 5632.8 28.67
5 84.685 6304.9 122561 226585 4364.5 4.237
6 116.26 8216.9 166927 316568 98948 843.4
7 146.83 10354 214160 350367 77249 334.56
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k d3 d2 d1 d0

0 1 0.77084 0.023552 0.000027594
1 1 1.4472 0.11961 0.0003052
2 1 1.9006 0.012624 0.00025669
3 1 4.1622 2.6905 0.09134
4 1 1.5802 0.066244 0.00048749
5 1 1.2714 0.044389 0.000077993
6 1 1.4088 0.44188 0.0087351
7 1 1.1606 0.28331 0.0034808

2.11 Rational fits of poles and residues

The polarizability χν of the probe has the form

χ
ν(β) =

∞

∑
k=0

Rν

k
βν

k −β
, ν =⊥ or ‖ , (2.92)

for a sample that has momentum independent reflection, rP(q) = β. The poles βν

k and residues

Rν

k depend only on the geometry of the probe and not on the sample, so a single set of poles and

residues can be used for any β. Following the method described in Sec. 2.10, we calculated and

fitted the first nine poles and residues of a spheroidal probe with L = 25a for ν =⊥. Coefficients

of the fit are cataloged in Table. 2.1, where the poles are given by

logβk =
5

∑
i=0

aiα
i
/ 4

∑
i=0

biα
i , (2.93)

and the residues are given by

Rka−3Z−1 =
5

∑
i=0

ciZi
/ 3

∑
i=0

diZi , (2.94)
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with Z ≡ ztip/a, valid in the range 0.003 < Z < 10. The fits for the residues apply only to the

first eight poles, k = 0 through 7. The remaining residue R8 is constrained to obey the sum rule,

8

∑
k=0

Rk

βk
= χ0 . (2.95)

2.12 The spherical probe limit

The spheroidal probe model presented in Appendix 2.10 is quite general and can be a good

model for tips of any aspect ratio L/a. Here we explore a particular limit of F → 0 and ξ→ ∞

while keeping the product Fξ→ a constant. This corresponds to the problem of a spherical probe

of radius a. The derivation in Appendix 2.10 simplifies to that in Sec. 4.1 of Ref. [FW84], and by

using the following asymptotic forms of various special functions:

√
2π

qF
Il+ 1

2
(qF)' 22l+1l!

(2l +1)!

(
qF
2

)l

, (2.96a)

Qm
l (ξ)' (−)m 2ll!(l +m)!

(2l +1)!
ξ
−l−1 , (2.96b)

Pm
l (ξ)' (2l)!

2ll!(l−m)!
ξ

l , (2.96c)

one can show that the decompositions Eqs. (2.75) and (2.76) reduce to Eq. (4.9) and (4.10) of

Ref. [FW84]. The characteristic equation Eq. (2.83) for Bm
l reduces to:

∞

∑
l′=1

{
δll′

αla2l+1 −
(l + l′)!

(l +m)!(l′−m)!
Fl+l′

}
B̄m

l′

=
δl1

(l−m)!
Cm , (2.97)

where

B̄m
l = (−)l+m(l +m)!

2ll!
(2l +1)!

F l+1Bm
l (2.98)
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is similarly related to the induced charge distribution of the probe,

αl =
l(εtip−1)

l(εtip +1)+1
(2.99)

is the multipole polarizability of the probe, and

Fl =
1
l!

∫
∞

0
rP(q)qle−2qd0dq (2.100)

is the integral that characterizes the interaction between the spherical probe and the sample

with d0 = a+ ztip. Eq. (2.97), the characteristic equation for a spherical probe, is derived in

Ref. [FW84] as Eq. (4.20). The solution to Eq. (2.97) has some of the same properties as the

spheroid case: B̄m
l = 0 for all l and |m| > 1; B̄0

l is related to the charge distribution due to the

z component of the electric field and B̄±1
l are related to the charge distribution due to the x-y

component of the electric field.

For the case of q independent rP(q,ω) = β(ω), in which the integrals Fl reduces to:

Fl =
β

(2d0)l+1 , (2.101)

there is an exact solution to the spherical characteristic equation. Let

α = arccosh
d0

a
= arccosh

(
1+

ztip

a

)
, (2.102)

be a dimensionless parameter that characterizes the sphere-to-sample distance relative to its size,

and let

σk(β;α) =
∞

∑
m=0

(2m+1)k

e(2m+1)α−β
. (2.103)
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Using the following quantities:

p0 = χ0Ez , χ0 = a3 , (2.104a)

q0 =
p0

a

(
coshα− sinhα

σ1

σ0

)
, (2.104b)

pn = p0β
n
(

sinhα

sinh(n+1)α

)3

, (2.104c)

qn =
βn sinhα

sinh(n+1)α

[
q0−

p0

a
sinhnα

sinh(n+1)α

]
, (2.104d)

it can be shown that for a metallic sphere

B̄0
l = (−)l

∞

∑
n=0

qn(d0−dn)
l− pnl(d0−dn)

l−1 , (2.105)

where

d0−dn = a
sinhnα

sinh(n+1)α
. (2.106)

The physical meaning of Eq. (2.105) becomes clear when one treats the problem with

method of images (Fig. 2.15). Suppose that an external electric field Ez would have induced

a bare dipole moment p0 in the sphere. This would induce an image dipole in the dielectric

half-space, which would in turn induce an image dipole and an image charge in the sphere. The

position and strength of each successive image dipole and charge can be solved by recursion.

Setting the sample surface to z = 0, the position of the center of the sphere is at z = d0. At each

position z = dn given by Eq. (2.106) there is a point dipole pn and a point charge qn. Charge q0 is

determined by the neutrality condition ∑n qn = 0, which yields Eq. (2.104b). Summing up all the

contributions to the total dipole moment from both the dipoles and the point charges inside the
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rP(q) = β

a

ztip

p0 q0

p′0 q′0

d0

d0

pn−1 qn−1

p′n−1 q′n−1

dn−1

dn−1

pn qn

p′n q′n

dn

dn

a2 = (d0 + dn−1)(d0 − dn)

0 =

∞∑

n=0

qn

p′n = βpn

q′n = −βqn

Figure 2.15: The method-of-images solution of the problem of a metallic sphere above a
dielectric half-space with the external field normal to the interface. The method involves an
infinite series of dipoles pn and point charges qn located inside the sphere at distances dn above
the interface. The total charge inside the sphere is zero.

sphere, we get:
χsph,⊥

χ0
≡ ptotal

z

p0
=

1
p0

∞

∑
n=0

[
pn +qn(dn−d0)

]

= 2sinh3
α

(
σ2−

σ2
1

σ0

)
.

(2.107)

with σk given by Eq. (2.103).

The above analysis resulting in Eq. (2.107) is for the case where the electric field is

perpendicular to the sample. For the case where the electric field is parallel to the sample, the

analysis is simpler in that the positions of the image dipoles and their strength are the same, but

no image point charges are present. Therefore, in this polarization:

χsph,‖

χ0
≡

ptotal
xy

p0
= sinh3

α(σ2−σ0) . (2.108)
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Both Eq. (2.107) and (2.108) conforms to our earlier assertion that χ has the form of

Eq. (2.92):

χ
sph,‖ =

∞

∑
k=0

Rsph,‖
k

β
sph,‖
k −β

, χ
sph,⊥ =

∞

∑
k=0

Rsph,⊥
k

β
sph,⊥
k −β

. (2.109)

For horizontal electric fields, χsph,‖ is singular whenever σ2 or σ0 is, so that

β
sph,‖
k = e(2k+3)α . (2.110)

The corresponding residues are:

Rsph,‖
k = 4(k+1)(k+2)χ0 sinh3

α . (2.111)

For electric fields perpendicular to the sample, the parenthesis in Eq. (2.107) vanishes at each

β
sph,‖
k , so they are not poles of χsph,⊥. Instead, β

sph,⊥
k occur at the zeros of σ0 which has no simple

analytic form. The poles of the two polarizations, however, interleave:

β
sph,‖
k < β

sph,⊥
k . β

sph,‖
k+1 . (2.112)

2.13 Boundary element method for axisymmetric probes

The spheroidal probe belongs to a large class of probes that has axial symmetry: its cross

section is a circle with radius w(z) varying as a function of height. Here we briefly describe the

method used to calculate the polarizability χ of such probes. Dividing the interval z ∈ [−L,L] that

the probe occupies into n segments, the j-th segment can be approximated as a ring with radius

w j ≡ w(z j) and charge Q j. In the presence of an external field, the charges on rings Q j satisfies

the equation:
n

∑
j=1

(
Li j +Hi j

)
Q j =−ϕi , (2.113)

68



where

Li j =
∫

J0(qwi)J0(qw j)e−q|zi−z j|dq (2.114)

is the quasistatic interaction between the ith and the jth rings,

Hi j =
∫

rα(q)J0(qwi)J0(qw j)e−q(zi+z j+2ztip+2L)dq (2.115)

is the interaction between the ith ring and the image of the jth ring, and ϕi = φext(zi) is the

external potential at the i-th ring. Defining

K (w,w′;z) =
2
π

K
[

4ww′
(w+w′)2+z2

]

√
(w+w′)2 + z2

, (2.116)

in terms of the complete elliptical integral of the first kind K(z), we can write

Li j = K (wi,w j,zi− z j) , (2.117)

while in the case of a q-independent rα(q,ω) = β(ω), Hi j can be simplified as

Hi j = βH i j , H i j = K (wi,w j,zi + z j +2ztip +2L) , (2.118)

so that Eq. (2.113) takes on the same form as the equation for the spheroid derived in the text,

(
ΛΛΛ

m−βH
)

Am = bm . (2.119)

Indeed, Eq. (2.119) can be viewed as a special case of Eq. (2.113) expressed in a different basis,

and for q-independent β(ω) the polarizability of the probe always has the form of Eq. (2.92).

Eq. (2.113) can be easily implemented in a computer. However, for general rα(q,ω) the evaluation

of each element of Hi j as a numerical integral can be slow, making this method computationally
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n = 1

n = Nmax

l = 1 l = Nmax

n+ l ∈ even

n = 1

n = Nmax

l = 1 l = Nmax

n+ l ∈ odd

Figure 2.16: Illustration of the algorithm for the recurrence relation of Hn,l .

demanding when one needs a large matrix size to achieve good accuracy. Nevertheless, it serves

well as a benchmark test for comparison with other models. In particular, our spheroidal model

yields almost indistinguishable results and is an order of magnitude faster, due to the recursive

relation between matrix elements described in Sec. 2.14.

2.14 Numerical implementation for the spheroid model

The integral

Hn,l ≡ 2π

∫
∞

0
rα(q)In+ 1

2
(qF)Il+ 1

2
(qF)e−2qzp

dq
q

(2.120)

has no simple analytic form even in the simplest case where the reflection coefficient rα(q,ω)

does not depend on momentum q. Further, the summation

∞

∑
l=1

(Λm−H)nl Am
l = bm

n , (2.121)

runs through all l ≥ 1 and one does not expect a closed form solution to the equation. In practice

Eq. (2.121) can be solved numerically by truncating the dimension of l at some large Nmax and
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Table 2.2: Parameters of the optical constant of α-Al2O3. The frequency unit is 1cm−1.

ρ ε∞ j ω jLO γ jLO ω jTO γ jTO

o 3.05 1 908 22.4 569 7.86
2 482 2.96 439 3.23
3 387 5.18 384 6.03

e 2.9 1 885 21.6 582 4.17
2 481 3.21 482 3.42
3 511 1.42 400 4.68

evaluating each of the N2
max elements.

Fortunately, not all N2
max elements of Hn,l needs to be evaluated explicitly by integration.

First, since Hn,l is symmetric one only needs to independently determine the upper triangular

elements. Secondly, the four neighboring elements of element Hn,l are related to one another via

the relation:
Hn+1,l−Hn−1,l

2n+1
=

Hn,l+1−Hn,l−1

2l +1
. (2.122)

This relation allows one to compute the remaining one of the four neighbors knowing any three.

In fact, by repeated use of this relation all “interior” elements can be determined recursively

from the values of the boundary terms as illustrated in Fig. 2.16. A similar construction was

employed previously in Ref. [BV87]. Further, as also shown in Fig. 2.16 the upper triangular

elements separate into two classes depending on whether the sum n+ l is odd or even. Therefore,

only 3(Nmax−1) terms need to be evaluated through integration, consisting of those of the main

diagonal Hn,n, and the next upper diagonal Hn,n+1, and the last column Hn,Nmax .
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2.15 Optical constant of aluminum oxide

The optical constant of α-Al2O3 used in our calculations is given by

ερ(ω) = ε∞,ρ ∏
j

ω2
jLO,ρ−ω2− iγ jLO,ρω

ω2
jTO,ρ−ω2− iγ jTO,ρω

, (2.123)

where the parameters are cataloged in Table. 2.2. They are adapted from Ref. [ZPM13] for

temperature T = 300K.
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Chapter 3

Tunable plasmonic reflection by bound 1D

electron states in a 2D Dirac metal

3.1 Introduction

Plasmon scattering and plasmon losses in Dirac materials, such as graphene and

topological insulators, are problems of interest to both fundamental and applied research. It is

an outstanding challenge to understand various kinds of interaction (electron-electron,

electron-phonon, electron-photon, electron-disorder) responsible for these complex phenomena

[DSAHR11, KUP+12, BFL+14, PCL+14, WLG+14]. At the same time, control of plasmon

scattering is critical if this class of materials is to become a new platform for nanophotonics

[JBS09, VE11, GPN12, GdA14].

One source of plasmon scattering is long-range inhomogeneity of the electron den-

sity, which causes local fluctuations in the plasmon wavelength λp. If the inhomogeneities

are weak, those of size comparable to the average λp are expected to be the dominant scatter-

ers [KDS13, GPNMM13] Surprisingly, recent experiments have revealed that one-dimensional

(1D) defects of nominally atomic width can act as effective reflectors for plasmons with wave-
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Vg = 0x

y

Vg ≠ 0

Figure 3.1: (Color online) Schematic of an ultranarrow plasmon reflector. The incident plasmon
(blue) can propagate freely unless a local perturbation hosting a 1D electron state (the dashed
arrow) causes it to be reflected (orange). The bound state parameters are controlled by voltage
Vg of a nanotube gate (green).

lengths as large as a few hundred nm. Strong plasmon reflection was observed near grain

boundaries [FRG+13, SCH14], topological stacking faults [JSN+15], as well as nanometer-scale

wrinkles and cracks [FRG+13, GPNMM13] in graphene. If this anomalous reflection is indeed

an ubiquitous effect largely unrelated to the specific nature of a defect, it calls for a universal

explanation. In this Letter we attribute its origin to electron bound states commonly occurring

near 1D defects. We show that optical transitions involving the bound states can produce strong

dissipation at small distances x from the defect and therefore, alter plasmon dynamics. To support

this idea we present a theoretical analysis of an exactly solvable model, which illustrates qualita-

tive and quantitative characteristics of the bound states and predicts how their optical response

depends on the tunable parameters of a 1D potential well. We also report an attempt to probe the

predicted effects experimentally. Our approach is to employ an ultranarrow electric gate in the

form of a carbon nanotube (CNT) to create a precisely tunable 1D barrier in graphene. This device

enables a systematic investigation and control of plasmon propagation, including, in principle,

an implementation of a plasmon on-off switch (Fig. 3.1). What we find is that the measured

real-space profile of the plasmon amplitude (Fig. 3.4) cannot be accounted for by a local change

in λp alone. Instead, the data are consistent with the presence of an enhanced dissipation in the

region next to the CNT. The amount of this dissipation agrees in the order of magnitude with the

power absorption due to 1D bound states in our model.
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3.2 The model

We assume that the graphene quasiparticles can be described by a 2D Dirac Hamiltonian

H = ~vF (σzkx +σyky)+ v(x), where σy, σz are the Pauli matrices and v(x) is the total (screened)

potential induced by the 1D gate. For simplicity, we assume that v(x) is a square well of

width d and depth u although more realistic potentials [Ken02, HP14, CB13, VG03] can also be

considered. In the present case the eigenfunctions Ψ are combinations of plane waves and/or

exponentials that have to be matched at x =±d/2, see Section 3.5. The electron momentum ky

along the perturbation (in the y-direction) is conserved, so that the gapless 2D Dirac spectrum is

effectively replaced by a 1D one with a gap ∆ = |~vFky|. Within the gap electron states localized

at the well exist [Fig. 3.2(b)]. The energies εn(ky) of these bound states, where n = 1,2, . . ., are

the solutions of the transcendental equation [BSAT09]

tan
√

(E +U)2−K2
y√

(E +U)2−K2
y

=
i
√

E2−K2
y

K2
y −E(E +U)

. (3.1)

Here E = εnd/(~vF) is the dimensionless energy and

Ky = kyd , U = ud/(~vF) , (3.2)

are, respectively, the dimensionless y-momentum and the well depth. The dispersions of the three

lowest bound states for U = 5 are shown in Fig. 3.2(a).

The response of the system to an optical excitation of frequency ω polarized in the x-

direction is described by an effective conductivity σ(x) given by the Kubo formula (see Section

3.5), which determines the local current density jx(x) = Exσ(x) in the approximation that the

total electric field Ex due to the optical excitation is uniform. Below we focus on the real part of

σ(x), which determines local power dissipation. We assume that graphene is doped and consider

only frequencies ~ω < 2|εF |, for which the optical conductivity of an infinite graphene sheet
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Figure 3.2: (Color online) (a) Dispersion of bound states for a sheet (blue) or a ribbon of width
2d (the black dots) for U = 5. The light gray are empty states in the continuum. The dark
and medium gray are occupied states in the continuum. The last of these, with E between
EF = µd/~vF and Emin = EF −ωd/vF , enable optical transitions (the arrows) of frequency ω.
Transitions between bound states (the dashed arrow) can occur for some EF , e.g., EF = 0 at
which the state i is filled and the state f is empty. (b) The density distribution n̄ = |Ψ|2 of the two
states i and f for the transition indicated by the cyan arrow in (a). The state i (blue) is localized
in the well, while the state f (orange) is extended. Parameters: Ky = 2.5, ωd/vF = π/2.

vanishes (if we neglect disorder, many-body scattering, and thermal broadening [BFL+14]). This

implies that in the absence of the perturbation, U = 0, we must have Reσ(x) = 0 at all x. On

the other hand, when the potential well is present, a finite Reσ(x) exists. There are two types of

relevant optical transitions: those that involve the bound states [as either the initial i or the final f

states, Fig. 3.2(a)] and those that do not. The contribution of the former to Reσ(x) is maximized

near the potential well and decays exponentially at |x|> d/2 due to the localized nature of the

bound states. The contribution of the latter is small, oscillating, and decaying algebraically with x

(see Section 3.5). Resolving the detailed real-space features of σ(x) in an optical experiment is

challenging (see below). A more practical observable is the normalized integrated conductivity:

σ̄≡ 1
d

∞∫
−∞

dxReσ(x) . (3.3)

According to our simulations, transitions that involve the bound states give the dominant con-

tribution to σ̄. In particular, bound-to-bound state transitions produce numerically large values
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Figure 3.3: (Color online) (a) Integrated conductivity σ̄ of a graphene sheet at ω = 830cm−1.
The sharp changes are caused by blocking/unblocking of the transitions involving bound states
as a result of changing occupations of the levels as a function of the graphene chemical potential
µ. For example, the plateau at 0.02 < µ(eV)< 0.12 is due to the (blue) dashed-line transition
in Fig. 3.2(a). (b) Integrated conductivity σ̄ of a sheet (s) and a ribbon (r) at T = 0 and
KF =−π/2. Sharp changes at U = 8 and 10 for ω = ω2 arise from a transition between bound
states. Parameters: d = 10nm, ω1 = 83cm−1, ω2 = 830cm−1.

of σ̄ expressed in units of e2/h. Such transitions are possible at discrete ky where the energy

difference between the states of the same momentum matches ~ω provided the lower (higher)

state is occupied (empty). If the chemical potential µ is gradually increased, e.g., by electrostatic

gating, the state occupations would change, leading to either blocking or unblocking of these

transitions. Accordingly, σ̄ would either sharply drop or jump, see Fig. 3.3(a). These changes

persist, albeit blurred, at finite temperatures, see the dashed curve in Fig. 3.3(a).

Sharp drops in σ̄ also occur when the bound states merge with the continuum and get

liquidated (become extended). The drop is abrupt if the optical transitions probe a single ky or

a narrow range of ky. In principle, this situation can be realized in a graphene ribbon running

perpendicular to the linelike perturbation. In such a ribbon the allowed ky = mπ/W + const are

discrete, as shown schematically by the dots in Fig. 3.2(b). The coupling to a single bound

state can be achieved under the condition π/W > ω/vF , i.e., by using a ribbon of a narrow

width W or the excitation of a low frequency ω. In Fig. 3.3(b) we show three numerically

calculated traces of σ̄ as a function of the well depth U for a fixed dimensionless chemical

potential EF = µd/(~vF) = −π/2. The first trace is computed for a ribbon of width W = 2d
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probed at the excitation energy ~ω = |µ|. It exhibits pronounced oscillations of σ̄. In particular, σ̄

drops to zero when a bound state merges with the continuum. The other two traces correspond to

a 2D graphene sheet. Although the sharp drops become blurred, they remain pronounced at a low

excitation energy ~ω1 = |µ|/10 and still evident at ~ω2 = |µ|.

The enhanced local optical conductivity around the 1D gates described above causes

plasmons to be strongly reflected. According to the first-order perturbation theory [FRG+13,

GPNMM13] (see Section 3.5), the reflection coefficient r of a normally incident plasmon wave is

r1 '
2πi
λp

∞∫
−∞

dx
[

σ(x)
σ∞

−1
]
. (3.4)

For arbitrary perturbations, we can use the approximation |r| ≈min( |r1|,1). Using the results

of Fig. 3.3(b) we estimate |r| ≈ 0.3 at the chemical potential of 0.25eV where the predicted

σ̄≈ 5e2/h. This roughly corresponds to the regime probed by our experiments (see below). At the

chemical potential of 0.3eV where the calculated local conductivity is much larger, σ̄≈ 40e2/h,

the reflection coefficient should approach unity, realizing the “reflector on” state in Fig. 3.1.

3.3 Experiment and analysis

To investigate the described above phenomena experimentally we fabricated a nanodevice

that contained (bottom to top) a Si/SiO2 substrate, a 10nm-thick layer of hexagonal boron

nitride (hBN), and a mechanically exfoliated graphene flake. A metallic single-wall CNT was

placed between hBN and SiO2. The local charge density of graphene was tunable by the

voltage Vg applied between the CNT and graphene. The average carrier density in graphene

|n| ∼ 5× 1012 cm−2 was produced by uncontrolled ambient dopants (acceptors) [NWW+15].

To infer the local optical conductivity σ(x) we used scattering-type scanning near-field optical

microscopy (s-SNOM) [KH09, ABJR12, BFL+14], see Fig. 3.4(a). The s-SNOM utilizes a tip of
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Figure 3.4: (Color online) Measurement of the conductivity σ̄ by the s-SNOM. (a) A schematic
showing graphene (variable intensity gray) gated by a CNT (green) separated from it by a thin
hBN layer. The induced perturbation is parameterized by spatially varying kF and γ. In the
experiment, the AFM tip (triangle) is polarized by a focused infrared beam (not shown), which
enables it to launch a plasmon (blue). The reflected plasmon (orange) causes an additional tip
polarization, resulting in a modified optical signal backscattered by the tip and detected in the far
field. (b) The s-SNOM amplitude images of the region next to the CNT for Vg =+1...−2V and
ω = 890cm−1. The twin fringes (bright lines) intensify and separate as |Vg| increases. (c) The
AFM topography image of the same region. Scale bar: 1µm. (d)-(e) The s-SNOM amplitude (s̄)
and phase (φ) along the line perpendicular to the CNT; s̄ is normalized to x =−200nm point.
The best theoretical fits (gray) for Vg =−2V are included in (e).
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an atomic force microscope (AFM) with a radus 25nm as an optical antenna that couples incident

infrared light to graphene plasmons. The backscattered light is analyzed to extract the amplitude

s̄ and the phase φ of the genuine near-field signal, Fig. 3.4(b,d,e). Crudely speaking, this signal is

proportional to the electric field inside the tip-sample nanogap. The variation of this field with the

tip position is caused by the standing-wave patterns of surface plasmons [FRA+12, CBAG+12].

These standing waves are due to the interference of the plasmon waves launched by the tip

with the waves reflected by the charge inhomogeneity induced by the CNT. The spacing of the

interference fringes is equal to one half of the plasmon wavelength λp. The latter is given by

λp = Re(2π/qp), where qp(x) = iκω/2πσ(x) is the complex plasmon momentum and κ is the

average permittivity of the media surrounding graphene [BFL+14]. Therefore, s-SNOM images

combined with the formula for qp give a direct estimate of Imσ(x). The extraction of Reσ(x)

requires an electromagnetic simulation of the coupled tip-graphene system, which was done

using the numerical algorithm developed previously [FRA+12, FRG+13] (see Section 3.8). To

facilitate connection with that previous work, we parametrized the conductivity via

σ(x) =
e2vF

π~ω

ikF(x)
1+ iγ(x)

, (3.5)

which was modelled after the long-wavelength Drude (intraband) conductivity of graphene

[BFL+14] with Fermi momentum kF and dimensionless damping factor γ. The goal of the data

analysis was to determine the profiles of kF(x) and γ(x) that yield the best fit to the s-SNOM data.

In this parametrization, the presence of the bound states should increase the local damping, so the

signature we were looking for was the enhanced value of γ(x).

Our experimental data are presented in Fig. 3.4. The AFM topography image, Fig. 3.4(c),

shows that the CNT does not produce any visible topographic features. However, in the near-field

signal, up to two pairs of intereference fringes appear on each side of the CNT [the bright lines

in Fig. 3.4(b)]. Similar twin fringes have been observed in prior s-SNOM imaging [FRG+13,
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SCH14, JSN+15, NWW+15] of linear defects in graphene. Importantly, the intensity and spacing

of the fringes we observe here evolve with the CNT voltage Vg, which attests to their electronic

(specifically, plasmonic) origin.

In addition to the controlled perturbation induced by the CNT, graphene contains uncon-

trolled ones due to random defects. To reduce the random noise caused by those, we averaged the

near-field signal over a large number of linear traces taken perpendicular to the CNT. Thus ob-

tained line profiles of both the amplitude s̄ and the phase φ are plotted in Fig. 3.4(d) and (e). We fo-

cus on the Vg =−2V trace, which shows the strongest modulation. The accurate determination of

functions kF(x) and γ(x) is impacted by the s-SNOM resolution limit∼ 20nm. In our fitting we as-

sumed that kF(x) is given by the perfect screening model, k2
F(x) = [k2

F(0)d
2+k2

F(∞)x2]/(d2+x2),

which should be a good approximation for high doping [JF15]. The adjustable parameters are

kF(0) and kF(∞). For γ(x) we considered trial functions in the form of a peak (dip) at x = 0, with

adjustable width and height (depth), as sketched in Fig. 3.4(a). The trial kF(x) and γ(x) were fed

as an input to the electromagnetic solver described previously [FRA+12, FRG+13]. As detailed

in Section 3.8, a good agreement with the observed form of the twin fringes requires a strong

peak in γ(x) near the CNT. The shape of the fringes was found to depend primarily on the integral

of γ(x)− γ(∞), so in the end we modeled γ(x) by a box-like discontinuity with a central region of

a fixed width 13.5nm and two adjustable parameters γ(0), γ(∞). The best fits [the gray curves in

Fig. 3.4(e)] to the Vg =−2V s-SNOM data were obtained using γ(0) = 1.65.

To establish a rough correspondence between the profiles of Fig. 3.4(e) and the square-

well model we take d to be the thickness of the hBN spacer d = 10nm and U to give the same

integrated weight
∫

v(x)dx≡ ud = ~vFU = ~vF
∫
[kF(x)− kF(∞)]dx. This prescription implies

EF = 4, U = 13, and σ̄ = 3.5e2/h for ω = 890cm−1 = 1.7vF/d, see Section 3.8. The square-well

model in Fig. 3.3 yields a comparable optical conductivity σ̄ = 4.7e2/h although for a smaller

U = 5. Given a number of simplifying assumptions we have made in the modelling, this level of

agreement seems adequate.
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Figure 3.5: (Color online) The LDOS as a function of the dimensionless energy E for the U = 5
square-well model at the three fixed distances from the CNT: x/d = 0 (red), 0.6 (green), and 1.0
(violet). The dashed line shows the LDOS of unperturbed graphene.

3.4 Summary and future directions

In this Letter, we proposed a model for the anomalous plasmon reflection by ultranarrow

electron boundaries in graphene. We validated this concept in experiments with electrostatically

tunable line-like perturbations. One broad implication of our work is that nanoimaging of

collective modes can reveal nontrivial electron properties, in this case, 1D bound states. Recent

experiments have demonstrated that this technique is not limited to plasmons or graphene or 2D

systems [DFM+14, SHB+15, GDG+16, FSG+]. We hope that our work stimulates even wider

use of this novel spectroscopic tool.

A particularly intriguing future direction is to complement s-SNOM with scanned probe

techniques other than AFM topography. For example, scanning tunneling microscopy, which has

a superior spatial resolution, can be used to measure the local electron density of states (LDOS).

For the particular model system studied here, the features exhibited by the LDOS should be

quite striking, see Fig. 3.5 and Section 3.6. The origin of these features can be understood by

examining the dispersions in Fig. 3.2(a). Within the selected energy interval there is the total

of three bound states. The topmost one has a monotonic dispersion; the other two have energy

minima at which the LDOS has van Hove singularities (diverges), see Fig. 3.5. The strength
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of these singularities decreases exponentially with x because these bound states are localized

near the well. At large x, the LDOS displays the V-shaped energy dependence characteristic

of uniform graphene [BFL+14]. We anticipate that the combination of optical and tunneling

nanoimaging and nanospectroscopy could provide a refined information about the local electronic

structure. One example of a possible application of this knowledge is the design of optimized

plasmon switches (Fig. 3.1) for Dirac-material-based nanoplasmonics.

3.5 Local optical conductivity of a nonuniform graphene

In this section we describe the details of our 1D square well model, including the analytical

expressions for the wavefunctions and the calculation of the optical conductivity in the vicinity

the well. We start from the 2D Dirac Hamiltonian for the quasiparticles,

H = ~vF(σzkx +σyky)+ v(x) , (3.6)

where σi are the Pauli matrices acting on the sublattice pseudospin. The potential v(x) is taken to

be a square well,

v(x) =





−u, |x|< d/2 ,

0, |x|> d/2 .
(3.7)

Without loss of generality, we take u to be positive. As the system is invariant in the y-direction,

ky is conserved, and so our problem is effectively one-dimensional. We use the following

terminology: region I is the part of the system to the left of the well (x < −d/2); region II is

the strip containing the well (|x|< d/2); region III is to the right of the well (x > d/2). For an

eigenstate to have the same energy across all three regions, the magnitude k of its momentum
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must obey the following relations

kI = kIII = kII−
u

~vF
, k2

l = k2
xl + k2

y , (3.8)

with l = I, II, or III. When kl > 0, the wavefunction belongs in the conduction band and has the

form

Ψc(r) ∝ ψc(θl)eikxlx+ikyy , ψc =




icos(θl/2)

−sin(θl/2)


 ; (3.9)

when kl < 0, the wavefunction belongs to the valence band and is given by

Ψv(r) ∝ ψv(θl)eikxlx+ikyy , ψv =




isin(θl/2)

cos(θl/2)


 . (3.10)

The angle θl = arctan(ky/kxl) defines the direction of the momentum. In the following we use

the notation k for kI and k̄ for kII and similarly for all other quantities.

We find the complete expression for the wavefunction using the following device. We

imagine that this wavefunction is generated by a plane wave incident from region I, which is then

partially transmitted and reflected at each edge of the well. This yields

Ψ
r(r) =

eikyy
√

Nc

×





ψ j(θ)eikxx + r jh ψ j (π−θ)e−ikxx , I

t̄ jh ψh(θ̄)eik̄xx + r̄ jh ψh
(
π− θ̄

)
e−ik̄xx , II

t jh ψ j(θ)eikxx , III

(3.11)

where Nc = LxLy is normalization factor equal to the area of the system and j and h can be either

c or v. The coefficients r, t̄, r̄ and t are determined by requiring the wavefunction to be continuous

at the edges of the well, x =±d/2. If the wavefunction remains in the same band for all three
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Figure 3.6: (a) The normalized density distribution n̄ of the wave functions in a bound-to-
continuum optical transition for U ≡ ud/~vF = 5, Ky ≡ kyd = 5 and ωd/vF = 1.7. The bound
state density (blue) is localized at the well, while the continuum state densities (orange) are
extended. The bound state is on the m= 3 branch and has even parity, thus transition into the even
parity final state (dashed curve) is forbidden. The vertical dotted lines indicate the boundaries
of the square well. (b) The real part of the effective conductivity calculated with the same
parameters as in (a) and EF = 4. The peak at the center is caused by bound-to-continuum state
transitions, while the long range oscillations with wavevector ω/vF come from the transitions
between states in the continuum. (c) Density perturbation induced by a square well of depth
U = 5 at EF = 4. The step-like discontinuity in the potential leads to a 1/x divergence at the
edges of the well, shown by the dashed curves. For any realistic smooth potential the divergence
is regularized, as shown schematically by the thin solid curves.

regions, the coefficients are

rcc = rvv = i
2
D

ei(ϕ̄−ϕ) sin ϕ̄(sinθ− sin θ̄) , (3.12)

t̄cc = t̄vv =
2
D

ei ϕ̄−ϕ

2 cosθcos
θ+ θ̄

2
, (3.13)

r̄cc = r̄vv =
2
D

ei 3ϕ̄−ϕ

2 cosθsin
θ− θ̄

2
, (3.14)

tcc = tvv =
2
D

ei(ϕ̄−ϕ) cosθcos θ̄ , (3.15)

where ϕ≡ kxd and ϕ̄≡ k̄xd, and

D(k, ky) = 1+ cos(θ+ θ̄)− ei2ϕ̄[1− cos(θ− θ̄)] . (3.16)
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If the wavefunction switches band upon entering the well, the coefficients are

rvc = rcv =−rcc(θ→ θ−π) , (3.17)

t̄vc =−t̄cv = t̄cc(θ→ θ−π) , (3.18)

r̄vc =−r̄cv = r̄cc(θ→ θ−π) , (3.19)

tvc = tcv = tcc(θ→ θ−π) . (3.20)

If kx is real, there is another wavefunction Ψl with the same magnitude k of the momentum (same

energy), which corresponds to the wave incident from region III. A quick method to obtain Ψl is

by reflecting Ψr with respect to the y-axis:

Ψ
l(x) = σyΨ

r(−x) . (3.21)

From Ψr and Ψl we construct the orthogonal eigenstates

Ψ
± =

Ψr±Ψl
√

2
, (3.22)

which are labeled by their parity P:

Ψ
P(x) = PσyΨ

P(−x) , P =±1 . (3.23)

From the above expression we deduce that states localized within the potential well must also

exist. Indeed, whenever |k̄|> |k| there exist states with |k|< |ky|, so that kx is imaginary and the

wavefunction is evanescent outside the well. This happens when the denominators vanish, D = 0,

so that the eigenstate exists without an incident plane wave from outside the well. The dispersion
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of these bound states is found by solving

i(kk̄− k2
y) tan ϕ̄ = kxk̄x . (3.24)

The wavefunction still has the form of Eq. (3.11), but with a normalization factor

Nb = 2Lyd
[
|t̄|2
(

1+Psin θ̄
sin ϕ̄

ϕ̄

)
+ |t|2 sinθ

e−qd

2qd

]
. (3.25)

Note that kx is now imaginary, kx ≡ iq with q > 0. Each branch of solution except the one

terminating at k = ky = 0 is the continuation of Fabry–Pérot (FP) modes outside the continuum.

The FP modes correspond directly to the supercritical or quasi-bound states. They satisfy the

resonance condition ϕ̄ = πm with m = 1,2, . . ., so branches of smaller m emerge at higher ky. This

condition can be expanded to find the expression for the critical point at which the mth bound

state emerges from the valence band,

u
~vF

= |ky|+
√

k2
y +(mπ/d)2 . (3.26)

All the bound state branches asymptotically approach the line k = |ky|−u/~vF as |ky| → ∞. The

wavefunction of each branch is alternatively even (P = +1) or odd (P = −1) with the lowest

branch being even. An example of the normalized density of a bound state n̄≡ |Ψ|2Lyd is shown

in Fig. 3.6(a) along with the normalized density of continuum states n̄≡ |Ψ|2LxLy for comparison.

Having found the expression for the eigenstate wavefunctions, we use the Kubo formula

to calculate the nonlocal conductivity,

σ(r, r′) =− 1
iω ∑

i, f

ν f −νi

ε f − εi− (ω+ i0+)
×

〈
Ψi(r)| ĵx |Ψ f (r)

〉〈
Ψ f (r′)| ĵx |Ψi(r′)

〉
,

(3.27)
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where i and f represent initial and final states, ν is the Fermi-Dirac occupation factor of the state

with νi = 1 and ν f = 0, ε = ~vFk is the energy of the state, and ĵx = evFσz is the current operator.

Assuming that the total field E is uniform and parallel to x̂, E = Exx̂, the current-field relation can

be simplified to

jx(x) =
∞∫
−∞

dr′Exσ(r, r′)≡ Exσeff(x) . (3.28)

Note that the integral over y′ enforces the conservation of ky,

∞∫
−∞

dy′ eikyie−iky f = 2πδ(kyi− ky f ) , (3.29)

so that all y and y′ dependences cancel out in Eq. (3.28). We are interested in the real part of the

effective conductivity. Transitions that contribute satisfy the relations

ky f = kyi , k f = ki +
ω

vF
. (3.30)

Additionally, the i/ f states must have the opposite parity as the matrix element

M(x)≡
〈
Ψi(x)|σz |Ψ f (x)

〉
(3.31)

is odd in x when the i/ f states have the same parity. To proceed, we impose periodic boundary

conditions and extend the system size to infinity, so that

∑
i, f
→ g×





Ly

2π

∫
dky , (bound)

LxLy

(2π)2

∫
dkxdky , (continuum)

(3.32)

where ky is taken to be positive and g = 8 is the total degeneracy, including spin, valley and
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contribution from negative ky. Applying the Sokhotski–Plemelj formula

Im
1

x− i0+
= πδ(x) (3.33)

to Eqs. (3.27) and (3.28), we find for the bound-to-bound state transitions,

Reσ
bb
eff(x) = gπ

e2

h
vF

ω
L2

y

×
∣∣∣∣
dki

dky
− dk f

dky

∣∣∣∣
−1

k∗y

M(x)
∞∫
−∞

dx′M∗(x′) ,
(3.34)

where k∗y satisfies Eq. (3.30). For bound-to-continuum transitions, we get

Reσ
bc
eff(x) =

g
2

e2

h
vF

ω
LxL2

y

×
kmax

y∫
kmin

y

dkyi

|cosθ f |
M(x)

∞∫
−∞

dx′M∗(x′) .
(3.35)

The limits of ky are determined from the dispersion, the frequency ω and the doping level

kF = µ/(~vF). Continuum-to-bound state transitions result in the same expression except that the

labels i and f are interchanged. The resultant conductivity has a peak around the well and decays

quickly away from the well [Fig. 3.6(b)]. Finally, continuum-to-continuum transitions yield

Reσ
cc
eff(x) =

g
4π

e2

h
vF

ω
L2

xL2
y

×
kF∫

0

dkxi

kmax
y∫

kmin
y

dkyi

|cosθ f |
M(x)

∞∫
−∞

dx′M∗(x′) ,
(3.36)
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where

kmin
y =

√√√√max

[
0,
(

kF −
ω

vF

)2

− k2
xi

]
,

kmax
y =

√
k2

F − k2
xi .

(3.37)

This results in an oscillating conductivity with a period of 2πvF/ω which can be negative, that

is, the local current in real space can go in the opposite direction as the field. This is however

no cause for alarm. Consider the case of uniform undoped graphene where the conductivity as a

function of momentum at fixed ω is

σ0(q) =−i
e2

4~
ω√

v2
Fq2−ω2

. (3.38)

The corresponding conductivity in the real-space is

σ0(x) =
∞∫
−∞

dqx

2π
σ0(qx)eiqxx =

e2

8~
ω

vF
H(1)

0

(
ω

vF
x
)
, (3.39)

so that Reσ0(x) ∝ J0
(

ω

vF
x
)

can be negative. Thus conductivity oscillations with period∼ 2πvF/ω

is a general property in the presence of nonuniformity. For ω = 890cm−1 in our s-SNOM

experiment this period is 37nm and such oscillations cannot be easily resolved. Therefore, we

draw the reader’s attention to another feature of the computed local conductivity, which is the

prominent peak near the origin, see Fig. 3.6(b). We conclude that our simple model does predict

a strong enhancement of dissipation near the nanotube, in agreement with the experiment. The

extra dissipation is caused by the bound-to-bound state optical transitions. Of course, these

calculations are not meant to be quantitatively compared with the experiment because our model

of the square-well potential is not fully realistic. The quantity more suitable for the purposes of a
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qualitative comparison is the average value of the effective conductivity

σ̄≡ 1
W

∞∫
−∞

dxReσeff(x) . (3.40)

similar to Eq. (4) of the main text. As long as W is larger than d but smaller than the spatial

resolution, the near-field profile is sensitive only to the product σ̄W not the precise value of W , see

Sec. 3.8. The results of our calculations of σ̄ are shown in Fig. 3 of the main text. For simplicity,

in these calculations we excluded the part of Reσeff resulting from continuum-to-continuum

transitions because it is relatively small at the potential well.

3.6 Local density and density of states

For better understanding of the effect of the potential well on electronic properties it

is instructive to consider two other local observables: the carrier density and the local density

of states. We begin with the density perturbation δn(x). To find this quantity we first find the

square of the absolute value of the wavefunctions |Ψ(x,y)|2 of the occupied eigenstates under

the potential well, integrated over ky and k. The integration is done over the energies k bounded

from above by the Fermi energy and from below by a cutoff energy km, a large negative number.

The same procedure is then repeated for the unperturbed eigenstates (without the potential well).

The difference of the two results is δn. There is however a complication to this procedure rooted

in the “chiral anomaly” in the quantum field-theory of free Dirac fermions. For x inside the

well, the lower cutoff km for the unperturbed eigenstates must be changed to k̄m = km−u/~vF .

Without this redefinition, δn(x) would diverge as km is decreased. Once this proper background

subtraction is done, the integration converges to a finite value δn(x) everywhere except at the

edges of the well, x→±d/2. The remaining divergence can be traced to the discontinuity in the

potential v(x). To arrive at this conclusion we reasoned that the divergence is produced by large
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Figure 3.7: The local density of states ν in the vicinity of a square well potential. (a) The
dispersion of the bound states for well depth U = 1. (b) A false color plot of the LDOS as a
function of the dimensionless energy E = kd and distance x/d. (c) Cross sections of (b) taken at
several distances from x = 0 to x = d. The dashed black lines represent the LDOS of unperturbed
graphene, ν0 = 2|k|/π~vF . Similar quantities are shown in (d)-(f) for U = 3 and in (g)-(i) for
U = 5.
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negative energies, and so it could be investigated using the perturbation theory. Therefore, we

considered the linear-response theory expression for the density perturbation:

δn(x) =
∫ dq

2π
eiqx

Π(q)v(q) , (3.41)

where

v(q) =−2U0

q
sin
(

qd
2

)
(3.42)

is the Fourier transform of the potential v(x) and Π(q) is the static polarization function of

graphene. At large q this function behaves as

Π(q) =− |q|
4~vF

(3.43)

regardless of the doping level. [WSSG06] Evaluation of the integral for δn using this asymptotic

form yields
u

4π~vF

(
1

x+ d
2

− 1
x− d

2

)
, (3.44)

which matches the numerical results calculated as described above for undoped graphene

[Fig. 3.6(c)]. In reality, i) the linear dispersion of Dirac fermions does not extend to infinite

momenta and ii) the potential must be smooth. Either way the divergence is regularized and

the perturbed density is smooth as well, see Fig. 3.6(c). Not surprisingly, this box-like density

profile is different from the more realistic Lorentzian function [Eq. (3.66)] we used to fit the

experimental data in the main text and in Sec. 3.8 below. However, as we argued in Sec. 3.5, a

qualitative comparison between the present model and the experiment is still meaningful.

Let us now turn to the local density of states (LDOS) ν. Previously, the LDOS of

graphene around clusters of pointlike charged impurities has been measured by scanning tunneling

spectroscopy. [WWS+13] These experiments discovered peaks in LDOS, which were attributed to

the emergence of the supercritical quasi-bound states. [SKL07a] We find that for a 1D perturbation
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the bound states, instead of the quasi-bound ones, produce the dominant features in the LDOS.

The contribution of the bound states to the LDOS is given by

ν(k,x) =
g

2π

Ly

~vF
∑

i

∣∣∣∣
dk̃yi

dk

∣∣∣∣
∣∣Ψ(k̃yi,x)

∣∣2 , (3.45)

where k̃yi are positive solutions of Eq. (3.24) at a given k. The contribution of the delocalized

states in the continuum is

ν(k,x) =
g

4π2
LxLy

~vF
|k| ∑

P=±

∫
π/2

0
dθ
∣∣ΨP(k,θ,x)

∣∣2 . (3.46)

We show in Fig. 3.7(a) the dispersion of bound states and in Fig. 3.7(b) the false color plot of

the LDOS for the case of U = 1. The bound states contribute to the significant increase in ν at

positive energies and for distances x inside the well. This is seen more clearly in Fig. 3.7(c),

where vertical cross sections of the false color plot is taken at several distances inside and outside

the well. The contribution of the bound states drops quickly outside the well and approaches the

unperturbed LDOS ν0 = 2|k|/(π~vF) shown in dashed lines. Similar plots for cases U = 3 and

U = 5 are shown in Fig. 3.7(d)-(f) and in (g)-(i), respectively. In these two cases the LDOS inside

the well are similarly increased due to the bound states. However, the most prominent features

of the LDOS are the van Hove singularities that are caused by the extrema in the bound state

dispersions. For U = 3 the singularity occurs at dimensionless energy E = kd = 0.45, while for

U = 5 they occur at E =−0.05 and E =−1.59. A quasi-bound state is present for the case of

U = 5, whose contribution is manifest as the increase of the LDOS inside the well just before

the van Hove singularity at E =−1.59, as shown in Fig. 3.7(i). The former is a relatively weak

feature in comparison to the latter.

We think that these properties of the LDOS should be quite generic for hypercritical

potentials in graphene. Therefore, despite the oversimplification of the square-well potential

model, our analysis may provide a useful reference for future scanning tunneling experiments
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Figure 3.8: Schematic of an incident, reflected, and transmitted plasmon wave near the electronic
inhomogeneity g(x) caused by the linelike charge perturbation (green).

with such potentials.

3.7 Plasmon reflection from a linelike charge perturbation

In this section we summarize the theory of plasmon reflections from a linelike charge

perturbation. [FRG+13] At this stage we are not yet discussing how the incident plasmon wave is

created or how the reflected wave can be measured. Those questions are addressed in Sec. 3.8

devoted to realistic simulations of s-SNOM experiment. Here our purpose is to specify the model

assumptions and to present the analytical results.

Our main assumption is that we can describe the response of graphene by a local conduc-

tivity σ(x). This assumption is readily justified if the density n(x) and the chemical potential µ(x)

of graphene are smoothly varying, see Fig. 3.8. Thus, if the plasmon energy ~ω is much smaller

than µ everywhere, σ(x) is given by [Eq. (5) of the main text],

σ(x) =
i

πω

D(x)
1+ iγ(x)

, D(x) =
e2

~2 |µ(x)| . (3.47)

Here D is the Drude weight and the dimensionless function γ is the phenomenological damping

rate. We assume that the system remains uniform in the y-direction at all x. The legitimacy of the
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local conductivity approximation is less obvious if the carrier density varies sharply, e.g., in a

box-like fashion depicted in Fig. 3.6(c). However, it should be indeed valid in the context of the

plasmon propagation if the plasmon wavelength is longer than the characteristic length scale of

nonlocality (the Fermi wavelength or the characteristic width of the inhomogeneity, whichever

is larger). The effective local conductivity can then be defined by averaging the nonlocal one

over a suitable interval W , see Eq. (3.40). In this case, Eq. (3.47) should be considered a formal

parametrization of function σ(x). In particular, γ(x) should be understood as damping averaged

over the lengthscale W .

Let us suppose that at x→ ±∞, n(x) and µ(x) approach constant values n∞ and µ∞,

respectively and let us define the dimensionless function

g(x) =
σ(x)
σ∞

−1 , σ∞ ≡ σ(∞) . (3.48)

If γ were constant, this function would be equal to g = |µ/µ∞|−1, see Fig. 3.8.

We want to study how an incident plasmon plane wave with momentum (qx,qy) is

scattered by the inhomogeneity. We will show that the corresponding reflection coefficient is

given by the formula

r ' i
q2

x−q2
y

qx
g̃(−2qx) , (3.49)

where

g̃(k) =
∞∫
−∞

dxg(x)e−ikx . (3.50)

In particular, for normal incidence, qx = q∞, qy = 0, the reflection coefficient is

r ' iq∞g̃(−2q∞) , (3.51)

similar to the usual first Born approximation. Note that because of the translational invariance in

y, the momentum qy is conserved.
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Let us outline the derivation. Assuming q� ω/c, which is satisfied in our experiment,

we can neglect retardation and treat the problem in the quasistatic approximation. As our main

dependent variable we choose the electric potential Φ = Φ(r). In general, Φ is the sum of the

external potential Φext and the potential induced by charge density ρ in graphene,

Φ(r) = Φext(r)+(V ∗ρ)(r) , (3.52)

where V (r) = 1/κr is the Coulomb kernel and the asterisk denotes convolution,

(A∗B)(r)≡
∫

d2r′A(r− r′)B(r′) . (3.53)

Combining together these equations plus the continuity equation for current and charge density,

we obtain

Φ(r) = Φext(r)−V (r)∗∇

(
σ(r)
iω

∇Φ(r)
)
. (3.54)

For an ideal uniform sample the solution of this equation has the form of a Fourier integral:

Φ(r) =
∫ d2q

(2π)2 eiqr Φ̃ext(q)
ε(q)

, ε(q) = 1− q
qp

. (3.55)

The zero of the dielectric function ε(q) defines the plasmon momentum

qp =
iκω

2πσ
(3.56)

introduced in the main text. The momentum qp is complex for any finite damping, γ > 0, with

Imqp > 0 having the physical meaning of the inverse propagation length. Indeed, in the absence of

the external potential, one can find (unbounded) solutions Φ = eiqxx+iqyy with real qy and complex

qx =
√

q2
p−q2

y , Imqx > 0, which can be thought of as decaying plane waves that are incident

from the far left at some oblique angle. In the problem we study graphene is inhomogeneous, qp
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is x-dependent,
1

qp(x)
=

1+g(x)
q∞

, q∞ ≡ qp(∞) , (3.57)

and so the solution would contain the incident and the scattered (reflected plus transmitted) waves,

see Fig. 3.8.

Setting Φext(r)→ 0 and Φ(r)→Φ(x)eiqyy in Eq. (3.54), we obtain the equation for Φ(x):

Φ(x) =V1 ∗
(

1+g(x)
q∞

q2
yΦ(x)−∂x

1+g(x)
q∞

∂xΦ(x)
)
. (3.58)

Here V1(x) = K0(|qyx|)/π is the 1D Coulomb kernel and K0(z) is the modified Bessel function of

the second kind. Using the Green’s function

G(x,qy) =
∫

∞

−∞

dk
2π

eikx
ε
−1
(√

k2 +q2
y

)
, (3.59)

we find the equation for the scattered wave ψ≡Φ(x)− eiqxx:

ψ(x) = q−1
∞ (G∗V1)∗

(
g(x)q2

yΦ(x)−∂xg(x)∂xΦ(x)
)
. (3.60)

We expect ψ(x)' re−iqxx at large negative x, which implies

r =− i
qx

∞∫
−∞

dxeiqxx{q2
yg(x)Φ(x)−∂x [g(x)∂xΦ(x)]

}
. (3.61)

To the first order in the small parameter g(x) we can replace Φ(x) with eiqxx in the integral, which

leads to Eqs. (3.49). A particularly simple result is obtained if the plasmon wavelength

λ∞ = 2π/q∞ (3.62)

is much larger than the characteristic width d of the inhomogeneity, in which case g̃(−2qx)' g̃(0).
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Using Eqs. (3.47) and (3.51), we find the reflection coefficient

r ' iq∞

∞∫
−∞

dx
[

σ(x)
σ∞

−1
]

(3.63)

for the normal incidence. This simple equation gives a basic idea how r may depend on d and the

local change in σ. A more detailed discussion on the reflection coefficient for any form of g(x)

can be found in Section 5.8.

3.8 Fitting the near-field profiles

As described in the main text, the near-field amplitude s̄(x) and phase φ(x) measured in

our imaging experiments reveals the presence of interference fringes, i.e., spatial modulations

near the nanotube. For example, ∼ 20% variations of s̄(x) are seen in Fig. 4(e) of the main text.

Assuming these relative modulations should be of the order of the plasmon reflection coefficient

r, we can use Eq. (3.63) to estimate the perturbation of the conductivity caused by the nanotube.

Using the representative value of λ∞ ∼ 200nm at frequency ω = 890cm−1 at which the effective

permittivity is equal to

κ(ω) =
εvacuum(ω)+ εSiO2(ω)

2
= 2.2 , (3.64)

we find σ∞ ≈ 5ie2/h from Eq. (3.56). Hence, we can reproduce |r| ∼ 0.2 if we assume, for

example, that the reactive part of the conductivity Imσ is constant, while the dissipative part

is enhanced to about Reσ ∼ 3e2/h over an interval of width d = 10nm near the origin. These

numbers are generally consistent with the estimates in the main text.

To go beyond such rough estimates, additional modeling is required. For it to be more

realistic, several important issues need to be accounted for. First, the plasmon waves launched

and detected by the s-SNOM tip are not simple plane waves because the tip is positioned very

close to the nanotube. Second, the intensity of such waves depends in a nontrivial way on the
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Figure 3.9: Simulated near-field amplitude (s̄) and phase (φ) profiles for varying width W of
the box-like discontinuity in the damping rate γ. The height of the box is chosen so that the
resultant near-field profiles are as close as possible to the one used in the actual fitting (red). The
detailed shape of the box affects only small-distance features in the signal.

electric field concentration that occurs inside the tip-sample nanogap. Third, in the experiment the

tip-sample distance is varying periodically with the tapping frequency Ω. The complex near-field

amplitude s3eiφ3 corresponds to the signal demodulated at the third harmonic 3Ω. The normalized

signal s̄(x) is the ratio s3(x)/s3(L), where L is a coordinate point giving a fair approximation of

the x→ ∞ limit. [L = 200nm in Fig. 4(d)-(e) of the main text.] Because of these complications,

the quantitative modeling of s̄(x) and φ(x) is possible only through numerical simulations.

Previously, an electromagnetic solver was developed, [FRA+12, FRG+13] which takes

these issues into account. The algorithm implemented in the solver [FRG+13] finds a numerical
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Figure 3.10: Simulated near-field amplitude (s̄) and phase (φ) profiles along with the density
(n) and damping profiles (γ) for (a)-(c) varying height γ(0) of the box-like discontinuity in the
damping rate, (d)-(f) gate voltage Vg, or (g)-(i) background plasmon wavelength λ∞. The red
and black curves correspond to the profiles used to produce the fits in Fig. 4(e) of the main text.

solution of Eq. (3.54) discretized on a double grid of qy and x. The external field is taken to be

the sum of two terms. The first one, a constant, represents the incident infrared beam. The second

one approximates the field created by the tip, modeled as an elongated metallic spheroid. The

charge density distribution on the spheroid surface is found self-consistently from the condition

that this surface is an equipotential. The total dipole moment of the tip, which represents the

instantaneous amplitude s of the scattered electromagnetic field is computed. Finally, s3eiφ3 is

calculated by taking the appropriate Fourier transform and normalized to the reference point

x = L in order to yield s̄ and φ. The calculation is repeated for each tip position along the x-axis.

Using this solver we were able to produce simulated near-field profiles that matched

well the measured ones using a set of adjustable parameters. We will now describe this fitting
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procedure and the results, Figs. 3.9 and 3.10. As explained in Sec. 3.7, these fitting results should

be considered an estimate of the nonlocal conductivity of graphene averaged over the lengthscale

d.

We took the trial damping function to be

γ(x) = γ∞ +[γ(0)− γ∞]Θ

(
W
2
−|x|

)
, (3.65)

where Θ(z) is the step-function, see the colored boxes in Fig. 3.9(c). For the carrier density profile

we assumed the Lorentzian form [Fig. 3.9(c), black curve]

n(x) = n∞ +
C
π

Vg

e
d

x2 +d2 , (3.66)

where d = 10nm is the graphene-nanotube distance and C is the capacitance (per unit length)

between them,

C =
1
2

κ0

ln(2d/l)
. (3.67)

The effective static permittivity κ0 of the dielectric environment around the nanotube is

κ0 =
εhBN(0)+ εSiO2(0)

2
= 3.7 . (3.68)

Equation (3.66) for n(x) is appropriate for our relatively highly doped (n > 1012 cm−2) graphene

which screens the electric field of the nanotube like a good metal. [JF15] We have not measured

the radius l ∼ 1nm of the nanotube directly, so there is an uncertainty in C. This uncertainty

is however small due to the logarithmic form of C. On the other hand, the voltage difference

Vg between the nanotube and graphene is measured. Hence, our model contains four adjustable

parameters: γ(0), γ∞, W , and n∞. Instead of the last of these we can use the asymptotic plasmon

wavelength λ∞ because they are directly related via Eqs. (3.47), (3.56), (3.62), and one more
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equation,

µ(n) = ~vF(π|n|)1/2 . (3.69)

A brief comment on the trial form of γ and n may be in order. The discontinuous box-like

profile of the dimensionless damping rate γ(x) may seem artificial; however, since the plasmon

wavelength is much larger than the width of the box W ∼ d, the near-field amplitude is largely

insensitive to the precise functional form of γ(x). In principle, we could also choose a box-like

profile for n(x). However, Eq. (3.66) is just as convenient and is better physically motivated.

In Fig. 3.9(a, b) we show the simulated profiles of the near-field amplitude s̄ and phase φ

for several W ’s for fixed Vg =−2V, λ∞ = 180nm, and γ(∞) = 0.15. The profiles for W = 13.5nm

and γ(0) = 1.65 match those measured in the experiment rather well. This fitting suggests that

the electrified nanotube causes the density change by almost a factor of three and the damping

enhancement by more than an order of magnitude. The former conclusion should be robust as it is

a consequence of the simple electrostatics. On the other hand, the latter should be considered the

experimental discovery. An explanation for this surprisingly high local damping was presented in

the main text and the technical details were given in Sec. 3.5.

A rough correspondence between the numbers obtained above and the parameters of

the square-well model can be established as follows. The depth u of the well is taken as the

integrated potential divided by the width d of the well, u = 1
d
∫

v(x)dx. The potential v(x) can

be found through v(x) = µ(x)−µ∞ and Eq. (3.69). This results in the dimensionless well depth

U = ud/~vF = 13. The estimation of the integrated conductivity σ̄ is more complicated. Due to

the presence of a nonzero background γ∞, density variations will also contribute to the real part

of the optical conductivity. To isolate the contribution of the optical transitions, the integrated

conductivity is calculated as σ̄ = 1
d Re

∫
[σ(x)−σ′(x)]dx, where σ′(x) is the conductivity of a

comparison system, which has the same density profile n(x) but the constant damping rate γ = γ∞.

This prescription yields σ̄ = 3.5e2/h.

The dependence of s̄ and φ profiles on the other adjustable parameters, such as γ(0), λ∞,
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Figure 3.11: (Top) Fabrication process of the graphene/hBN/CNT heterostructure on a SiO2/Si
substrate. (Bottom left) AFM image of the device before addition of the contacts. (Bottom right)
Optical image of the completed device.

and also on the gate voltage Vg is illustrated in Fig. 3.10(a, b), (g, h), and (d, e), respectively. The

profiles vary dramatically with the changes in these parameters, and so the determination of the

best-fitting values of the adjustable parameters has very little uncertainty. This analysis is yet

another illustration of how the s-SNOM nanoimaging can be a powerful and sensitive technique

for probing the local surface conductivity of graphene and perhaps many other 2D materials as

well.

3.9 Device Fabrication

Our device consists of (from top to bottom) a graphene monolayer, a 10nm-thick hBN

flake, a metallic single-wall CNT, and a SiO2/Si substrate. The CNT was grown by chemical

vapor deposition, located using a scanning electron microscope, and transferred onto a SiO2/Si

substrate. Monolayer graphene was mechanically exfoliated. Using a PPC/PDMS stamp, the
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Figure 3.12: (Color online) Bound-states energies (blue) of Dirac fermions in strong external
potentials. The orange lines represent the boundaries of continuum states. The insets depict
classical trajectories (solid) and the potential profiles (dashed). (a) Low-lying states of large-Z
atoms. [Adopted from Ref. [ZP72].] (b) Fixed-ky states in a 1D potential well in graphene. The
solid red arrow shows an optical transition of frequency ω from the valence band to a bound
state. This transition disappears at some critical well depth u (dashed arrow).

graphene/hBN stack was transferred onto a separate SiO2/Si substrate. The stack was then

picked up with an acrylic resin Elvacite [HPT+15]. It was subject to buffered oxide etch (BOE),

aligned, and transferred to cover the CNT. The Elvacite was cleaned away with acetone. The final

step of the fabrication was adding metallic contacts to the CNT and graphene. These steps are

summarized in Fig. 3.11 (top). The AFM and optical images of the device are shown in Fig. 3.11

(bottom left and right).

3.10 Supercritical transitions

Our problem has an intriguing parallel to the collapse of superheavy atoms in nuclear

physics, which is as follows. For a very large nuclear charge Z > Zc ∼ 1/α, the extrapolated

values of the first few atomic levels sink below the top of the positron energy band, [ZP72]

−∆ = −m0c2, see Fig. 3.12(a). (Here α = e2/~c is the fine-structure constant and m0 is the

electron mass.) Such supercritical states can no longer be bound to the nucleus but should

be quasi-bound, being hybridized with the extended states in the positron band. In graphene

where the role of c is played by the Fermi velocity vF ∼ c/300, the critical charge is rather

small, Zc ∼ 1 [SKL07b, PNCN07]. This has made it possible to observe the long-sought su-

105



percriticality experimentally by measuring the tunneling density of states near charged impuri-

ties [WWS+13]. Analogous transitions [Ken02] are possible for the bound states studied in this

Letter, Fig. 3.12(b). Compared to prior studies of a single [SKL07b, PNCN07, FNS07] or a few

pointlike charges [WWS+13, PNCN07, DMKME14, GGS15], the 1D geometry examined in this

work has several advantages. The gapless 2D Dirac spectrum is replaced by a gapped one with

∆ = |~kyvF | [Fig. 3.12(b)], making the analogy to the atomic collapse problem [ZP72] closer.

Alternatively, it prompts an analogy to a hypothetical cosmic string [NCV99], previously used

in graphene literature [PCNLM10, CGS13] in a different context. More importantly, our “1D

atom” permits continuous in situ tunability in terms of at least two parameters: the gate voltage

and the optical excitation frequency. Experimental verification of these supercritical transitions

can be attempted via two complementary approaches. One is to examine the changes in the

LDOS. In fact, the detailed calculations of the LDOS presented in Sec. 3.6 were done exactly

with such experiments in mind. The other approach is to look for abrupt drops in the local optical

conductivity σ̄ caused by the liquidation of the optical transitions, see Fig. 3(b) of the main text.

Unfortunately, in either the conductivity or the LDOS, the supercritical signatures are very subtle

compared to those of, say, van Hove singularities. Also, pinpointing these transitions requires an

exhaustive search of the parameter space, which, for technical reasons, has not been possible in

the devices we fabricated so far. Nevertheless, this can be an interesting and challenging problem

for future work.

3.11 Electronic response of graphene to linelike charge per-

turbations

In this section, the problem of electrostatic screening of a charged line by undoped or

weakly doped graphene is treated beyond the linear-response theory. The induced electron density

is found to be approximately doping independent, n(x)∼ x−2 log2 x, at intermediate distances x
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from the charged line. At larger x, twin p-n junctions may form if the external perturbation is

repulsive for graphene charge carriers. The effect of such inhomogeneities on conductance and

quantum capacitance of graphene is calculated. The results are relevant for transport properties of

graphene grain boundaries and for local electrostatic control of graphene with ultrathin gates.

3.11.1 Introduction

One of the properties that make graphene an attractive platform for electronic devices

is tunability of its charge carrier density through electrostatic gating. The gates can be brought

into immediate proximity of graphene, which enables one to control doping of this material very

efficiently. Local gating on ultrasmall lengthscales is attainable by utilizing nanowire [YK09] or

nanotube [NJB+15] gates [Fig. 3.13(a)]. Physical insight into fundamental characteristics of such

devices can be gained from a simplified problem of how graphene responds to a linelike external

charge [Fig. 3.13(c)]. This problem is also relevant for understanding properties of grain-boundary

defects [Fig. 3.13(b)] in graphene grown by chemical-vapor deposition. [BL13, CDN+14, YC14]

The problem of screening of a linelike charge by electrons in graphene is an interesting

challenge because the usual linear-response theory [RSZF13] fails when the line is highly charged

and/or when graphene is lightly doped. Previous studies of one-dimensional charge perturbations

in graphene eschewed solving this difficult problem resorting instead to ad hoc approximations

for the induced carrier density profile. [YK09, FRG+13] Accurate determination of this profile

requires numerical calculations, e.g., finding the self-consistent solution of the Dirac equation

for electron wavefunctions and the Poisson equation for the electrostatic potential Φ(x) as a

function of the in-plane coordinate x transverse to the charged line. However, if Φ(x) varies

smoothly on the scale of the local Fermi length k−1
F (x), a simpler approach based on the Thomas-

Fermi approximation (TFA) can be applied. [LL91] We show that approximate solutions of the

TFA equations for the electron density can be derived in certain limits. Using these analytical

solutions and numerical simulations, we compute two other important observables amenable to
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Figure 3.13: (Color online) Models of linear charged perturbations in graphene devices. (a)
Nanowire top gate. The bottom gate separated from graphene by an insulator of high dielectric
constant κ may be useful for additional control. (b) Grain boundary (pentagon-heptagon chain)
with charged adsorbates (circles). (c) Charged string off the graphene plane.

experimental probes: the conductance and the gate capacitance.

Let us introduce our key notations and assumptions. We denote the linear charge density

of the external perturbation by eλ. Without loss of generality, we take λ to be positive (unless

specified otherwise). We assume that the unperturbed electron density n∞ of graphene is uniform.

To distinguish between n-type and p-type doping, we define the Fermi momentum corresponding

to n∞ as a signed quantity,

k∞ = sgn(n∞)|πn∞|1/2. (3.70)

We assume that the external charge enext(x) has a Lorentzian density distribution,

next(x) =
λ

π

a
x2 +a2 . (3.71)
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The actual profile of the external charge may of course be somewhat different. For example,

the charge distribution of a grain boundary probably does not have power-law tails. However,

the role of parameter a in Eq. (3.71) is mainly to regularize the response of graphene at very

short distances, [FNS07] i.e., it serves as a short-distance cutoff. As long as we are not interested

in microscopic physics at |x| . a, Eq. (3.71) can be adopted as a convenient model. In all

examples mentioned above (nanowire and nanotube gates and also grain boundaries in graphene)

realistically achievable a can be as small as a few nanometers. The particular functional form of

Eq. (3.71) corresponds to the idealized model shown in Fig. 3.13(c) where the external charge is

located off the graphene plane and is truly one-dimensional. This can be seen from the fact that

the electrostatic potential created in the graphene plane by the out-of-plane charged line is equal

to that created by the in-plane Lorentzian charge distribution (3.71):

Φext(x) =
e
κ

∫
∞

−∞

dx′next(x′) log
1

(x− x′)2 (3.72)

=
eλ

κ
log

1
x2 +a2 . (3.73)

In general, the effective width parameter a should be taken as the larger of the actual physical

width of the charge distribution and its distance to the graphene plane. In this article we assume

that electron-electron interaction in graphene is weak, i.e., we consider the dimensionless coupling

constant α = e2/κ~v a small parameter in the problem. [KUP+12] Here v = 108 cms−1 is the

graphene Fermi velocity. By choosing a substrate with a large dielectric constant κ [Fig. 3.13(a)],

it is possible to make α' 2.2/κ significantly smaller than unity. However, it is difficult to make

α truly small, so as a rule we do not treat logα as a small parameter. Finally, we assume that the

graphene is not too highly doped,

|k∞| �
1

αa
. (3.74)

Depending on the relation between λ, k∞, and x, the response of graphene can be either

weak or strong and either linear or nonlinear (Fig. 3.14). The degree of nonlinearity is controlled
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Figure 3.14: Schematic diagram of screening regimes. In the ‘weak’ region screening of
the external potential is poor; the response is linear [Eq. (3.84)] at λ < k∞/α and nonlinear
[Eq. (3.93)] at larger λ. In the ‘strong’ regime the external potential is greatly reduced and the
induced density profile is given by Eq. (3.93). In the ‘asymptotic’ regime the density profile
follows Eq. (3.77). In the ‘perfect’ regime graphene maintains local charge neutrality, apart
from small corrections [Eq. (3.99)]. This diagram is drawn assuming graphene is not too heavily
doped, Eq. (3.74); otherwise, the ‘weak’ and ‘strong’ screening regions would disappear.

by the dimensionless parameter

λ̃ =
αλ

k∞

. (3.75)

Linear screening is realized if λ̃� 1 (the bottom part of the ‘weak’ region in Fig. 3.14) where the

induced electron density

nind(x)≡ n(x)−n∞ (3.76)

scales linearly with λ. On the other hand, if λ̃ > 1, the response is nonlinear. A conspicuous

manifestation of the nonlinearity is found in the region labeled ‘strong’ in Fig. 3.14, where

the induced density can be approximated by a ‘universal’ (doping-independent) form nind(x)∼

x−2 log2 x. In the large-x ‘asymptotic’ regime of Fig. 3.14, the induced density exhibit a power-law

decay

nind(x)'
b
x2 , (3.77)

where the dependence of b on λ is linear [Eq. (3.80) of Sec. 3.11.2] if λ̃ is small and logarithmic

if λ̃ is large [Eq. (3.96)]. The ‘perfect’ screening region is included in Fig. 3.14 for completeness.

Here graphene maintains charge neutrality locally, i.e., the induced density is close to the external
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Figure 3.15: (Color online) Comparison of induced electron density profile from the numerical
solutions of the TFA equations (blue dots) and analytical formulas (black lines) in three screening
regimes. The red curves (labeled ‘Perfect’) in each panel represent next(x). Units for density n,
distance x, and linear number density λ are respectively (4π3α2a2)−1, a, and (4π3α2a)−1. (a)
Linear screening regime realized for λ = 0.1 and n∞ = 4. The induced density is much smaller
than n∞. (b) Nonlinear regime realized for λ = 0.4 and n∞ = 0. Density profile characterized by
screening length xs ≈ 25. (c) Near-perfect screening for λ = 1000 and n∞ = 0. Note the double
logarithmic scale.

one, nind(x)' next(x), so that the model assumption (3.71) must be critically revisited.

The crossovers among the predicted screening regimes can be systematically studied in

experiments using devices that have both top and bottom gates, Fig. 3.13(a). High linear charge

densities with αλ∼ (1nm)−1 are quite feasible to achieve with top gate voltages V ∼ 1V. On

the other hand, applicable graphene carrier density is bounded from below by the formation of

electron-hole puddles [DSAHR11, BFL+14] and from above by Eq. (3.74). For high quality

graphene, this allows the range of n from ∼ 109 to ∼ 1012 cm−2. The corresponding λ̃ can exceed

one hundred, which is deep in the nonlinear screening regime.

In the remainder of this article we derive detailed formulas for the carrier density profiles,

verify them by numerical simulations, then make predictions for capacitance and transport

measurements.
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3.11.2 Linear response

Linear screening of linelike charges by doped graphene has been studied in previous

literature. [RSZF13] We include a brief summary of the relevant results for later comparison with

our nonlinear response theory. Linear screening is realized when the external charge is not too

high or when graphene doping level is not too low. The quantitative criterion λ̃� 1 is derived

below. Within the linear-response theory, the induced electron density is given by

nind(x) =
∞∫
−∞

dq
2π

[
1− 1

ε(q)

]
λe−a|q|+iqx , (3.78)

where the term λe−a|q| is the Fourier transform of the effective external charge next(x) [Eq. (3.71)]

at momentum q. As we are primarily concerned with distances x� k−1
∞ where the TFA is valid,

the dielectric function of graphene can be approximated by [KUP+12, AZS02, WSSG06]

ε(q) = 1+
qTF

|q| , qTF = 4α|k∞| . (3.79)

A particularly simple analytical expression for nind(x) can be derived in the ‘asymptotic’ regime,

cf. Fig. 3.14. Carrying out the integration in Eq. (3.78) by the steepest-descent method, one finds

the leading-order approximation for the induced density to be [RSZF13]

nind(x)'
b
x2 , b =

λ

π

(
a+q−1

TF

)
. (3.80)

(In contrast, nind ∝ x−3 for a pointlike charge perturbation. [WSSG06]) Note that the coefficient

b in Eq. (3.80) is much larger than λa/π under the assumed condition (3.74), so that nind(x)�

next(x). Such an ‘overshoot’ is typical for screening of localized perturbations in metals. Metallic

systems possess the overall charge neutrality. However, at distances shorter than the local

screening length from the perturbation screening is necessarily weak. Therefore, there is a
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missing charge at short distances, which has to be compensated at large x. However, the electric

field is not overscreened: it is of the same sign as the external one but reduced in magnitude.

The analytical Eq. (3.80) agrees well with our numerical simulations shown in Fig. 3.15(a).

For these simulations we used previously developed codes [ZF08] with suitable modifications.

In brief, the electron density n(x) to be found was defined on a grid of x with periodic boundary

conditions. The solution was obtained by minimizing the total energy of the system (kinetic plus

electrostatic) within the TFA using standard technical computing software. [MAT]

Refinement of Eq. (3.79) can be obtained through the random-phase approximation (RPA).

Within the RPA, the dielectric function of graphene coincides with Eq. (3.79) at 0 < |q|< 2 |k∞|

but at |q|> 2 |k∞| it is given by a different formula [AZS02, WSSG06]

ε(q) = 1+
qTF

|q| −
qTF

2|q|

√
1−
∣∣∣∣
2k∞

q

∣∣∣∣
2

+αcos−1
∣∣∣∣
2k∞

q

∣∣∣∣ , |q|> 2|k∞| .
(3.81)

Notably, ε' 1+πα/2 becomes doping independent at |q| � 2 |k∞| where the response is domi-

nated by virtual interband transitions. (For corrections to the last result beyond RPA, see Refs.

[KUP+12, SF12].)

Substituting Eq. (3.81) in Eq. (3.78) and using contour integration techniques to evaluate

the integral, we find the RPA correction to nind:

∆nRPA
ind (x)' b1

cos
(
2 |k∞x|+ π

4

)

|k∞x|5/2 , |k∞x| � 1 , (3.82)

b1 =−
λ

2
√

π

α|k∞|
(1+2α)2 , (3.83)

which is a particular case of the Friedel oscillations. [AM76] At intermediate distances, Eq. (3.78)

yields [RSZF13]

nind(x)'
λqTF

π
log

0.561
|qTFx| , 1� |k∞x| � α

−1 . (3.84)
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Finally, let us estimate the region of validity of the linear-response theory. This theory applies if

the induced carrier density is smaller than the original one, nind� n∞ or, equivalently, if the local

Fermi momentum,

kF(x) = sgn
(
n(x)

)
|πn(x)|1/2 (3.85)

is perturbed slightly compared to k∞ [Eq. (3.70)]. Naively, one may require the condition

[kF(x)−k∞]/k∞� 1 to hold at all distances of interest, x� a. In fact, the validity region is wider

because the nonlinearity affects only the response at momenta q < 2 |k∞|. (As mentioned above,

the response at q > 2 |k∞| is essentially doping-independent.) Therefore, the smallest number we

should use in the argument of nind(x) for our estimate is x ∼ |k∞|−1. From Eqs. (3.76), (3.84),

and (3.85) we get

max
[

kF(x)
k∞

−1
]
' 2αλ

k∞

log
(

1
α

)
. (3.86)

Neglecting the logarithmic factor, which is never large in practice, we arrive at |λ̃| � 1 as the

criterion of linear screening.

3.11.3 Nonlinear response

In this Section we treat a more difficult case λ̃� 1 where screening is nonlinear. Our

approach to this problem is to solve the TFA equations analytically and numerically. The first of

these equations is

µ(x)− eΦ(x) = 0 , (3.87)

where

µ(x) = ~vkF(x) (3.88)
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is the local chemical potential of graphene (assuming the linear Dirac dispersion of quasiparticles).

The second equation links the total charge density and the electrostatic potential,

Φ(x) =
2e
κ

∫
dx′ log |x− x′|[nind(x′)−next(x′)] . (3.89)

This relation can be inverted by exploiting techniques from the theory of analytic functions:

nind(x)−next(x) =
κ

π2e
P

∞∫
0

x′dx′

x′2− x2
dΦ

dx′
, (3.90)

where P stands for the Cauchy principal value. If desired, Eqs. (3.87)–(3.90) can be combined

into a single nonlinear integral equation for n(x). The TFA is valid if [LL91]

d
dx

k−1
F (x)� 1 . (3.91)

The problem we want to solve can be separated into two parts, depending on whether nind(x)

is greater or smaller than n∞. The latter situation occurs at large x, where we expect screening

behavior akin to linear response. Indeed, it is easily seen that nind(x) follows Eq. (3.77) provided

the integral in Eq. (3.90) is dominated by x′ � x. Invoking Eq. (3.87), we then obtain the

asymptotic behavior Φ∼ x−2 for x� x∞, where

x∞ = |k∞|−1|πb|1/2 (3.92)

and b is to be determined below.

The analytical form of nind(x) at x� x∞ is not immediately obvious. Fortunately, were

are able to find (by trial and error) the following approximate solution:

nind(x)'
1

4π3α2
1

(x− xs)2 log2
(

x
xs

)
, (3.93)
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which is characterized by a nonlinear screening length xs. This length is found from the argument

that at small x the external field is nearly unscreened, so that the total and the external potentials

differ only by some constant: Φ(x) ' Φext(x)+ const = −2λ(e2/κ) logx+ const [Eq. (3.73)].

Comparing with Eq. (3.93) at x� xs, we get

xs =
1

4πα2λ
. (3.94)

From Eqs. (3.91) and (3.94) we see that Eq. (3.93) is valid at x� 2παxs. At smaller x the density

and the Fermi momentum presumably tend to a finite maximum, i.e,

maxkF(x)' kF(2παxs)' 2αλ log
(

1
α

)
. (3.95)

The last logarithmic factor is valid if α� 1; otherwise, it should be replaced by a number of

the order of unity. Equation (3.95) is consistent with Eq. (3.86) for the linear regime. Hence, in

both regimes the nonlinearity parameter λ̃ [Eq. (3.75)] has the physical meaning of the maximum

relative change in the Fermi momentum (kF − k∞)/k∞ caused by the perturbation.

To fix the so far undetermined coefficient b, we require a smooth matching of Eq. (3.77)

and Eq. (3.93), which yields

b' 1
4π3α2 log2 |λ̃| , x∞ '

1
2παk∞

log |λ̃| . (3.96)

More accurate expression for nind(x) can be obtained by iterations using Eq. (3.93) as the

input to the TFA equations. Namely, substituting it into Eq. (3.87), we can get Φ(x), which we

can then insert into Eq. (3.90) to obtain an improved approximation for nind(x). The first iteration
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yields

n(1)ind(x) =
1

4π3α2

[
π2

2
1

(x+ xs)2

+ log2
(

x
xs

)
x2 + x2

s
(x2− x2

s )
2 −2

log(x/xs)

x2− x2
s

]
,

(3.97)

which demonstrates a good agreement with our numerical simulations, see Fig. 3.15(b).

For completeness, we consider the case of

λ >
1

4πα2a
, (3.98)

where nonlinear screening affects distances shorter than our cutoff length a. At such large λ, a

highly doped region appears at x < a, where screening is nearly perfect, i.e., where the difference

between nind(x) and next(x) is relatively small and the system is able to maintain the local charge

neutrality. The solution for nind(x) can again be obtained by iterations. The input to Eq. (3.90) is

now nind(x) = next(x). The first correction is

nind(x)−next(x)'
√

λa
π2α

[
xsinh−1 x

a

(x2 +a2)
3
2
− 1

x2 +a2

]
. (3.99)

Its range of validity x < xp can be estimated from the requirement that at x = xp this correction is

no longer small, which implies

log(xp/a)∼ πα

√
λa . (3.100)

Furthermore, one can check that at x = xp Eq. (3.99) matches by the order of magnitude with

nind(x) given by Eq. (3.93) with xs set to a. This leads to us conclude that at x > xp Eq. (3.93)

and then at x > x∞ Eq. (3.77) must still hold with xs ∼ a. Because of the exponentially large

magnitude of xp, we could verify numerically only the x < xp case. Comparison of simulations

with Eq. (3.99) in Fig. 3.15(c) indeed shows a good agreement.
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If xp >
√

λa/k∞, which corresponds to

λ >
1

π2α2a
log2

(
1

αak∞

)
, (3.101)

the screening should be nearly ‘perfect’ for all x > a, cf. Fig. 3.14.

When λ and n∞ have opposite signs, twin p-n junctions appear at |x| ∼ x∞. The density

profile near a graphene p-n junction has been studied in Ref. [ZF08]. These results should

more or less carry over to the present problem, so they will not be repeated. In the following

Sections we focus on computing the effect of nonlinear screening on transport and capacitance

characteristics of the system.

3.11.4 Quantum Capacitance

The charge density λ is a natural parameter for graphene grain boundaries [Fig. 3.13(b)].

In contrast, linelike perturbation created by means of narrow gates [Fig. 3.13(a)] are controlled

by the voltage V with respect to graphene while λ has to be found by integrating the differential

gate capacitance

C(V ) = e
dλ

dV
. (3.102)

It is important that V is not simply equal to the electrostatic potential difference ∆Φ between the

gate and the graphene sample. It has another contribution from the graphene chemical potential:

V = ∆Φ+(µ/e) . (3.103)

As a result, the differential gate capacitance C has two components, the classical (or geometrical)

one Cg and the so-called quantum one Cq, which add in series:

C−1 =C−1
g +C−1

q . (3.104)
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Our goal in this Section is to derive the quantum capacitance of a device with an ultranarrow top

gate, Fig. 3.13(a). However, it is useful to review the conventional planar-gate geometry first. Here

the classical capacitance per unit area Cg = κ/(4πd) is inversely proportional to the separation d

between graphene and the planar gate. In turn, the quantum capacitance is proportional to the

thermodynamical density of states, Cq = e2(dn/dµ). This quantity can also be written in terms of

the inverse Thomas-Fermi screening length qTF:

Cq =
κ

2π
qTF . (3.105)

The net result of having a finite screening length is equivalent to replacing the physical gate-

graphene separation by an effective one:

deff = d +
1
2

q−1
TF . (3.106)

Although in this article we use the free-fermion approximation [Eq. (3.79)] for the linear-response

screening length q−1
TF , in reality it is modified by many-body interactions and disorder (see, e.g.,

Refs. [Fog04, AGS+06]). Recently quantum capacitance measurements have been used to probe

such effects of graphene. [YJB+13, BFL+14]

If the gate is now a long metallic string or radius l� a, the capacitances per unit length are

relevant. In order to derive C−1 we start with a general expression for the electrostatic potential

difference between the string and the graphene sample,

∆Φ(x) =
eλ

κ
log
(

x2 +a2

l2

)

+
e
κ

∫
∞

−∞

dx′nind(x′) log
x′2 +a2

(x− x′)2 ,

(3.107)

119



which follows from Eqs. (3.72) and (3.89). If we set nind = next, we obtain

∆Φ = (eλ/κ) log(4a2/l2) = const . (3.108)

Hence, the geometric capacitance of the system is

C−1
g =

∆Φ

eλ
=

2
κ

log
(

2a
l

)
, (3.109)

which can be alternatively derived by the method of images. Next, combining Eqs. (3.87), (3.89),

(3.102), (3.103), (3.107), and subtracting C−1
g , we find

C−1
q =

1
eλ

∫
∞

−∞

dxnext(x)
∂

∂λ
Φ(x) . (3.110)

We can now use this expression for analytical and numerical calculations. Our analytical formulas

for positive λ̃≡ λ/(αk∞) are as follows:

κ

2
C−1

q '




−e2aqTFEi(−2aqTF) , λ̃� 1, (3.111a)

− log(4πα
2aλ) , λ̃� 1, (3.111b)

where Ei(z) is the exponential integral. These equations describe, respectively, the linear and the

‘strong’ regimes of Fig. 3.14. They can be commonly written as

C−1
q '

2
κ

log
(xsc

2a

)
, (3.112)

where xsc is equal to (in the same order) q−1
TF and xs. We conclude that the total capacitance can

be modeled after the geometric one,

C−1 =
2
κ

log
(

2aeff

l

)
(3.113)
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with the effective gate-graphene separation

aeff = a+
xsc

2
, (3.114)

where a on the right-hand side was added by hand to recover the result aeff = a expected for

a perfect metal, xsc = 0. The similarity of Eqs. (3.106) and (3.114) illustrates once again that

quantum capacitance is a measure of the screening length of a system. Whereas in the planar-

gate geometry this length is formally divergent for undoped graphene, for the linelike gate the

divergence is regularized by nonlinearity. Numerically, we find that C−1
q as a function of λ

approaches a universal envelope curve (3.111b) shown by the dashed line in Fig. 3.16.

For completeness, we consider the ‘perfect’ screening regime where

eΦ(x)' next(x)
dµ
dn

(3.115)

for all relevant x, so that Eq. (3.110) becomes

C−1
q '

1
e2

∫
∞

−∞

dx
λ2 n2

ext(x)
dµ
dn

. (3.116)

The inverse thermodynamic density of states dµ/dn in Eqs. (3.115) and (3.116) is to be evaluated

at n = n∞ +next(x). For n∞ = 0 where the integrand scales as |λ|1/2, we find the analytical result

κ

2
C−1

q '
1

2πα
√

λa
, λ >

1
α2a

, (3.117)

which agrees with our numerical simulations (the dashed-dotted curve in Fig. 3.16).

If λ̃ is negative, i.e., if λ and k∞ have opposite signs, the twin p-n junctions form at some

λ which can be estimated from Eq. (3.86) setting kF(0) to zero. This event — the onset of the

ambipolar regime — is marked by a maximum in κC−1
q , which is absent in the unipolar trace for
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Figure 3.16: (Color online) Inverse quantum capacitance as a function of the gate charge.
The curves are from numerical calculations for k∞ specified in the legend. The units of λ

and k∞ are (4π3α2a)−1 and (π3αa)−1. The triangles, the dashed line, and the dash-dotted line
correspond, respectively, to the asymptotic limits of the linear, nonlinear, and near-perfect
screening, Eqs. (3.111a), (3.111b), and (3.117). The difference between the curves and the
triangles at smaller k∞ are due to finite-size effects in the simulation. The peaks of the k∞ < 0
curves signal the formation of the twin p-n junctions.

the same |k∞|, see Fig 3.16. From dimensional arguments, as k∞ approaches zero, the height of

the maximum in κC−1
q measured with respect to its plateau at λ = 0 should approach a universal

number. Figure 3.16 suggests that number is about 1.5. However, such dimensional arguments

assume the TFA is valid, which, similar to the case of a single p-n junction, [ZF08] is the case at

small α. To treat a more typical case α∼ 1 one needs to go beyond the TFA, which may be a

problem for future research.

3.11.5 Conductance

Charged linelike defects are known to significantly influence electron transport in graphene.

Grain boundaries strongly reduce the sheet conductivity of large-area graphene, [TBL+12] while

bipolar junctions created by nanowire gates cause conductance oscillations. [YK09] In this section

we find expressions for the graphene conductance G relevant for both situations.

We consider a scattering problem for a massless Dirac particle with initial momentum
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k = |k∞|(cosθ,sinθ) subject to the potential perturbation

−eΦ(x) = µ(n∞)−µ(n) = ~v[k∞− kF(x)] . (3.118)

The intermediate equation follows from the TFA, Eq. (3.87). For a weak potential, we can apply

the standard perturbation theory to the massless Dirac equation to obtain the reflection coefficient

r(θ) = i tanθ

∞∫
−∞

e2ikxxkF(x)dx , (3.119)

which is similar to the first Born approximation formula for the Schrödinger equation. [LL91]

The region of validity of this formula can be extended beyond the perturbative regime if in the

argument of the exponential we replace kx by kF(0)cosθ, the local momentum at the x = 0 point

where the scattering potential is the ‘most’ nonanalytic. [LL91] However, this is permissible

only if kF(x) is real at all x, i.e., if all points on the quasiparticle path are classically allowed (no

quantum tunneling occurs).

The conductance G is found by summing the transmittances T (θ) of all the ky = k∞ sinθ

channels:

G =
4e2

h ∑
ky

T (θ) , T (θ) = 1−|r(θ)|2 . (3.120)

In the absence of scattering, λ = 0, the conductance is

G0 =
4e2

h
|k∞|W

π
, (3.121)

where W is the width of the graphene sheet. Assuming W � k−1
∞ , we can compute G at λ 6= 0

by replacing the summation with the integration over θ. However, |r(θ)| diverges as |θ| tends

to π/2, so that the first Born approximation cannot be used. In fact, the absolute value of the

exact reflection coefficient must be approaching unity instead of diverging. We account for this
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by cutting off the integration limits at θ̄ where |r(θ̄)| ∼ 1:

G = G0

θ̄∫
0

T (θ)cosθdθ . (3.122)

For the linear screening regime, λ̃� 1 [Eq. (3.75)], we obtain

G0−G
G0

'





λ̃2

α2 log2 |λ̃| , |λ̃| � α2 ,

π∣∣λ̃−1 +δ−1
∣∣ , α2� |λ̃| � δ .

(3.123)

Accordingly, the conductance G as a function of λ̃ exhibits an asymmetric maximum at λ̃ = 0

drawn schematically in Fig. 3.17. The asymmetry becomes pronounced when λ̃ approaches

δ = 1/(2 logα−1), where the screening begins to cross over into the nonlinear regime. If λ̃

is positive, kF(x) becomes essentially independent of k∞. Using Eqs. (3.93) and (3.95) and

changing the integration variable x→ λx in Eq. (3.119) one can show that r(θ) does not depend

on λ any more in this regime. Actually, this is clear from dimensional argument: since r(θ) is

dimensionless, it may not depend on λ, which has the units of inverse length. This implies that G

ceases to decrease with λ̃, leveling at a plateau, (G0−G)/G0 ' πδ. If λ̃ is negative, the situation

is quite different. The scattering potential is repulsive. At large |λ̃| it causes the twin p-n junctions

to appear at |x| ∼ x∞ [Eq. (3.96)], which act as tunneling barriers. Here even the modified Born

approximation fails completely. The transmittance Tpn(θ) of each p-n junction is given instead

by [CF06]

Tpn(θ) = exp
(
−π~vk2

∞

F
sin2

θ

)
, (3.124)

where

F = 2.5~vα
1/3|n′|2/3 (3.125)

is the electric field at the junction, [ZF08] with n′ being the density gradient. Combining these

124



equation, we obtain

Tpn(θ) = exp
(
−b2

α
sin2

θ

)
, b2 ∼ log2/3 |λ̃| . (3.126)

Multiple reflections of the quasiparticles in the region between the p-n junctions lead to the

conductance oscillations and resonances. The net transmittance is given approximately by the

Fabry-Pérot-like formula [YK09]

T (θ) =
∣∣∣∣

Tpn(θ)

1− [1−Tpn(θ)]eiφ

∣∣∣∣
2

, (3.127)

where φ is the phase acquired by a quasiparticle after one roundtrip between the junctions:

φ' 2
x∞∫
−x∞

dxkF(x)'
1

πα
log2 |λ̃| . (3.128)

The last estimate is obtained using Eqs. (3.93) and (3.96). Conductance minima arise at φ =

(2m+1)π, where m is an integer. They have the magnitude Gmin/G0 ∼
√

α/b2 because the trans-

mittance of each junction is appreciable only at small angles [CF06] θ <
√

α/b2, cf. Eq. (3.126).

Conductance maxima are found at φm = 2mπ, which correspond to |λ̃m| ∼ exp(π
√

2αm). The

widths of these maxima and the distance from one to the next increase exponentially as a function

of m. The heights of these maxima approach G0, which is a manifestation of the resonant tunnel-

ing phenomenon. In practice, observation of the resonant tunneling requires samples with the

mean free path longer than the roundtrip distance 4x∞; otherwise, the conductance is influenced by

diffusive transport between and across the p-n junctions. [FNGS08] In previous experiments with

nanowire-gated graphene devices, [YK09] the conductance maxima were found to be significantly

lower than G0 and decreasing with the top gate voltage, i.e., |λ|, presumably due to disorder

scattering.

If the conductance can also be measured in the direction parallel to the gate, we expect it to
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Figure 3.17: Reduced conductance G/G0 as a function of λ̃ (schematically). A monotonic
decrease is expected in the unipolar case, λ̃ > 0, while Fabry-Pèrot oscillations with a period
determined by Eq. (3.128) should dominate for negative and large λ̃ where the p-n junctions
form. Parameter δ is defined in the text.

show a dependence consisting of a smooth increase with |λ| with superimposed small oscillations

due to quantization of the quasi-bound resonant modes. This oscillating part would have the same

period as the Fabry-Pérot oscillations in the transverse conductance discussed above. At small

gate voltages, both longitudinal and transverse conductances are expected to show additional

fine features related to the analog of the Goos-Hänchen effect in graphene, [BSAT09] which is a

lateral displacement of a quasiparticle trajectory along the p-n interface during reflection. This

effect can be included using a more accurate equation for φ that incorporates both the path length

contribution expressed by Eq. (3.128) and the phase shift of the reflections at the p-n interfaces.

3.11.6 Discussion

In this work we considered linelike charged perturbations on graphene and derived

analytical expressions for the induced density profiles in both linear and nonlinear screening

regimes. These results were applied to the analysis of two types of electronic properties. The

first one is the quantum correction to the classical capacitance between the narrow gate and

graphene as a function of the top gate voltage. Measuring this quantity will be a direct way for

observing the crossovers among different screening regimes and testing our predictions. For
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example, we showed that the divergence of the inverse quantum capacitance of undoped graphene

predicted from the naive linear-response theory will be curbed by nonlinear screening effects. If

the gate creates a strong repulsive potential for charge carriers in graphene, it can induce twin p-n

junctions. Our calculations indicate that the onset of this ambipolar regime is signaled by a peak

in the inverse quantum capacitance.

The second quantity we studied is the transverse electrical conductance of the system.

Our predictions for the ambipolar regime, where the conductance oscillates as a function of

gate voltage, include formulas for the maxima, minima, and the oscillation period. Our theory

holds in the ballistic transport regime, which was difficult to probe in earlier experiments on such

systems. [YK09] We hope that modern higher-quality devices that utilize graphene encapsulated

in boron nitride [DYM+10] and single-wall nanotube gates of smallest possible diameter, would

enable a systematic investigation of nonlinear screening and resonant tunneling phenomena we

discussed.

Conductance of graphene with charged grain boundaries was previously studied analyti-

cally and numerically in Refs. [FXT+11, RSZF13, IZ13]. In Ref. [RSZF13] transport properties

were computed modeling charged grain boundaries as short line segments of length W � k−1
∞ .

However, the screening was treated assuming that the boundaries are infinitely long, which seems

to require the opposite inequality. These incompatible assumptions make a direct comparison

between our analytical results for the conductance difficult. As for screening, only the linear

regime was considered in Ref. [RSZF13], and for this our results agree.

Our findings have further implication for experiments using novel scanned-probe tech-

niques. Linear charged defects in the form of grain boundaries have been shown to reflect

surface plasmon polaritons [FRG+13, SCH14, GBOR14] and induce photocurrent, [WAGL+15]

both of which can be imaged with nanoscale resolution using scanning near-field optical mi-

croscopy. Scanning tunneling microscopy is another avenue of approach to measure local density

of states. [KWE+13, NIVO+13] We will apply our theory to interpretation of such measurements
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in a future work. [NJB+15]

Finally, let us comment on the proposals [KN07] that graphene is a condensed-matter

laboratory for exotic effects predicted in other fields of physics. For example, electronic response

of graphene to a pointlike charge has an interesting analogy to the atomic collapse of superheavy

elements. [PS45, ZP72] It has been shown [Kat06, Nov07, SKL07b, SKL07a, FNS07, PNCN07,

KUP+12] that in graphene subcritical Z < Zc and supercritical Z > Zc charges produce qual-

itatively different behavior of the screened electrostatic potential at large distances from the

perturbation, the critical charge Zc being of the order of 1/α. Characteristic oscillations of the

local density of states that appear in the supercritical case have been recently detected experimen-

tally. [WWS+13] Phenomena similar to atomic collapse have been also studied theoretically in the

context of narrow-band gap semiconductors and Weyl semimetals. [KSZ13] In turn, our problem

of screening of a linelike charge perturbation in graphene have interesting analogies in cosmology

(screening of a hypothetical cosmic string by vacuum polarization [NCV99]) and polyelectrolyte

physics (Onsager-Manning condensation of counterions [Man69, Oos68]). Our results imply that

in graphene nonlinear screening plays a greater role for linelike charges compared to the pointlike

ones: the former are always supercritical, e.g., there is no threshold λ for the appearance of Friedel

oscillations. Finally, our analytical formulas assume α� 1, which can be realized using a high-κ

dielectric substrate [Fig. 3.13(a)], such as SrTiO3 [Refs. [CSM11, DSL12, SLS14, SKJ+14]]. For

such gate dielectrics it may be important to consider electric-field dependence of κ in nonlinear

screening regimes. [FRS]
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Chapter 4

Plasmon reflections by topological

electronic boundaries in bilayer graphene

4.1 Introduction

Topological band theory has become a valuable tool for interpreting ground-state prop-

erties and low frequency transport in electronic materials with nontrivial momentum-space

geometry. [BLD16] In this paper we demonstrate that topological states also play a significant

role in the response of such materials at finite frequencies. Our objects of study are domain

walls in bilayer graphene that separate regions of local AB and BA stacking order. Because of

their prevalence in exfoliated samples[BHH+12, ATH+13, LFZ+13, BDN+13] and their intrigu-

ing electronic[Kos13, SJGG+14, JSN+15] and optical properties,[JSZ+16] these domain walls

have been under intense investigation.[YJQH16, ZMM13, VLN+13, Kos13] From the point of

view of the crystal structure, the stacking wall is a line of partial dislocations. The magnitude

of its Burgers vector |~b| = a/
√

3 is equal to the bond length rather than the lattice constant

a = 0.246nm.[BDN+13] The domain wall can have an arbitrary angle α with respect to~b, the

two limiting varieties being the tensile wall [α = 0, Figure 4.1a] and the shear wall [α = π/2,
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Figure 4.1d]. The width l = 6–10nm of a domain wall is determined by a competition between the

stacking-dependent interlayer interaction and intralayer elastic strain.[ATH+13, LLPK16] The

electronic structure of the domain walls and their topological properties are best elucidated using

a long-wavelength effective theory[MK13, Kos13] valid for states near the Brillouin zone corners.

In this approach the two inequivalent corners are assigned different valley quantum numbers that

are practically decoupled since l� a. Far from the wall, the limit of perfect AB or BA stacking

is approached. There, neglecting small “trigonal warping” effects, the dispersion of each valley

consists of parabolic conduction and valence bands touching at a point. An electric field applied

normal to the bilayer can be used to separate the bands by a tunable energy gap, Figure 4.1a

and d. However, at the domain wall gapless electron states must remain since the valley-Chern

number of the filled valence band (of a given valley) differs by two in the AB and BA stacked

regions. Accordingly, the wall must host a minimum of two co-propagating one-dimensional (1D)

conducting channels per spin per valley (PSPV).[ZMM13, LWM+16, MBM08] In particular,

for the tensile wall which runs along a zigzag direction (henceforth, the x-direction), the two

valleys project to widely separated conserved momenta parallel to the wall. These 1D channels

are protected if one neglects intervalley scattering, and so they can support unidirectional valley

currents along the wall.

While the above arguments have been used to interpret dc transport experiments,[JSN+15]

topological considerations alone do not delineate the response at infrared frequencies ω where

optical transitions between many different electron states may contribute. Recent scattering-

type scanning near-field optical microscopy (s-SNOM) experiments have demonstrated that in

this frequency range the AB-BA walls act as reflectors for surface plasmons.[JSZ+16] Here

we explicitly show that these reflections probe a structure-sensitive local conductivity of the

wall. Specifically, our experiments show that the standing waves formed by the superposition of

plasmons launched by the microscope with plasmons scattered by the domain wall generically

depend on the type of wall (e.g., tensile or shear), chemical potential, and the potential bias
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Figure 4.1: (a) Schematic representation of a tensile domain wall and the electronic structure
of BA, SP and AB stacking. Brown (gray) arrows indicate the direction of strain for the top
(bottom) layer. Red and magenta wavy arrows represent chiral topological modes bound to
the domain wall, while the blue wavy arrow represent conventional confined modes. (b), (c)
Electronic structure of the wall under a positive (negative) interlayer bias Vi = Vtop−Vbot for
the K valley. The bound states exist outside the continua but within the boundaries of the SP
bands indicated by the thin black lines. The direction of propagation of the topological states
is determined by the sign of Vi, while the direction for the conventional ones are fixed by the
structure of the SP band and unchanged by Vi. (d)-(f), Similar plots for the shear wall. The shear
wall has a smaller width, hosts no conventional bound states, and thus have a distinctly different
optical response from the tensile wall.

between the layers. Our modeling demonstrates that while the charge density is nearly unchanged

across a domain wall, the local ac conductivity tensor σi j(r) and thus electrodynamic impedance

can be changed significantly because of the presence of both topological and conventional 1D

conducting channels. (Unlike the topological bound states, the conventional ones do not cross

the band gap, see below.) Incorporating the position-dependent σi j(r) into a long-wavelength

theory for the plasmon dispersion, we develop a quantitative description of the observed standing

waveform and make predictions for future experiments.
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4.2 Electronic structure

The presence of the extra 1D channels at the domain wall can be understood as arising

from a smooth variation of the stacking order across the wall. If we envision this variation is very

gradual (“adiabatic”), then each point is characterized by a local band structure of bilayer graphene

with one layer shifted uniformly relative to the other layer by a certain~δ = (0,δ).[Kos13] In

this limit the local band structure at the middle of the wall is approximated by SP (saddle point)

stacking, while far away the band structure reverts to that of AB or BA, as shown in Figure 4.1a

and d for the tensile and shear walls, respectively. These Figures can be understood as projections

from the 2D momentum space to the 1D momentum axis parallel to the wall: k‖ = kx for the

tensile wall and k‖ = ky for the shear wall. The 2D SP dispersion has two Dirac points shifted

in both momentum and energy by the amount determined by the interlayer hopping amplitude

γ1 = 0.40eV,[ZLB+08] the bias voltage Vi, and the valley index. For a tensile wall, these Dirac

points project to different kx and remain distinct. For a shear wall, they occur at the same ky

and overlap with other states. In both cases the dispersion at the middle of the wall is gapless.

This is a crucial property which implies there is a range of energies E in the SP stacking that

fall into the gap of the AB stacking. The states at such energies must be confined to the wall.

These states can be thought of as electronic “waveguide modes.” For an infinitely wide waveguide

there are infinitely many such states, and the band structure of the entire system is essentially an

overlap of the SP and the AB bands. For the realistic situation of finite-width domain walls, the

number of 1D bound states is finite because the quantum confinement produces a finite number of

dispersing 1D branches. Figure 4.1b and c illustrate this for a positive and negative interlayer bias

Vi, respectively. Among all the confined branches, only one pair PSPV crosses the gap. These

are the topological chiral modes inferred from the valley-Chern number mismatch mentioned

earlier.[ZMM13, MBM08] The propagation direction of these states is determined by the sign

of Vi and the valley index. The remaining confined branches are clearly inherited from the SP
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band structure, in agreement with our qualitative picture. These waveguide branches have mostly

fixed direction regardless of the sign and magnitude of the bias. Actually, their existence is also a

topological effect to some extent since it is facilitated by the gaplessness of the SP dispersion,

which is ensured by the persistence of the Dirac points. The latter is a topological property

protected by the spatial inversion and the time-reversal symmetries.[Kos13]

The electronic structure of the shear wall, Figure 4.1e and f, can be understood in a

similar manner. The shear wall is narrower than the tensile wall, so that the quantum confinement

effect is stronger. As a result, the dispersions of the waveguide modes are pushed so close to the

boundaries of the conduction and valence bands that they are hardly visible in Figure 4.1e and f.

For all practical purposes, the waveguide modes are absent and only the gap-crossing doublets of

the chiral states survive.

4.3 Experimental observations

These differences in the band structures for the two types of walls result in different

local optical responses, which we observed by imaging plasmonic reflections using s-SNOM.

The principles of this experimental technique have been presented in prior works[FRA+12,

FRG+13, MKG+14, JZCN+16] and review articles.[KH04, ABJR12, BFL+14] In brief, the

s-SNOM utilizes a sharp metallized tip of an atomic force microscope as a nano-antenna that

couples incident infrared light to the surface plasmons in the bilayer graphene sheet (Figure 4.2e,

inset). These plasmons propagate radially away from the tip and are subsequently reflected by

inhomogeneities, in this case, the AB-BA walls. The intensity of the total electric field underneath

the tip has a correction determined by the interference of the launched and reflected plasmon

waves. The amplitude of this interference term oscillates as a function of the distance between the

tip and the reflector, with the period equal to one-half of the plasmon wavelength. The detection

of these interference fringes is made by measuring the light backscattered by the tip into the
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far field and isolating the genuine near-field signal s. For further details of the experimental

procedures, see the end of this Letter.

The interference patterns are visualized in the s-SNOM images of the tensile and the

shear wall, shown in Figure 4.2a and b. These images are acquired from two samples of bilayer

graphene, each deposited on a SiO2 substrate grown on top of a Si back gate. For the tensile wall,

the pattern contains a single faint interference fringe observed at a gate voltage Vg corresponding

to a nearly charge neutral graphene, Figure 4.2a(i). As Vg decreases, the pattern evolves into twin

interference fringes, Figure 4.2a(ii-v). For the shear wall, the pattern also starts from a single

fringe, which then splits into three, Figure 4.2b. The evolution of the interference patterns can be

seen more clearly in Figure 4.2c and d, which show the transverse s-SNOM line profiles averaged

over a 1µm-long section of the wall.

The observed plasmonic scattering and interference patterns are related to the spatial de-

pendence of the optical conductivity σ⊥ of the bilayer graphene sheet. This parameter determines

the momentum qp of the plasmons according to the formula qp =
iκω

2πσ⊥
where κ is the effective

permittivity of the environment.[BFL+14] Depending on the type of wall and their respective

local electronic structure, the perturbation of local qp by the wall will vary, leading to distinct

plasmonic signatures for each type of wall. Additionally, as the gate voltage Vg is tuned, the

carrier density and chemical potential of the bilayer graphene sheet are varied. By tuning Vg

and studying the corresponding s-SNOM signal, one effectively probes different parts of the

electronic spectrum.

4.4 Local optical conductivity

For our quantitative analysis, we calculate the local optical conductivity of the domain

wall following these steps. We start with a model[Kos13] of 4× 4 Dirac-type Hamiltonian

H = H(k‖,k⊥) of bilayer graphene with a uniform arbitrary stacking δ. We modify it by allowing
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Figure 4.2: (a), (b) Plasmonic interference patterns around a tensile (shear) wall across a range
of gate voltages Vg. Scale bar 1µm. (c), (d) Line profiles across the tensile (shear) wall taken at
locations indicated by the colored dashed (dotted) lines in (a) [(b)]. Here the s-SNOM amplitude
s̄3 is normalized to its value at y =−200nm (x =−150nm) and offset for clarity, while fits to
the experimental profiles are shown in gray. (e), (f) Magnitude (phase) of the plasmon reflection
coefficient r of the domain walls calculated from the fits in (c) and (d). The triangles represent
the tensile wall while the circles represent the shear wall. (Inset) Schematic of the s-SNOM
experiment. The external light source (red arrow) is converted by the AFM tip into plasmons
(blue), which are partially reflected by the domain wall (cyan) due to the presence of bound
states (black wavy arrows). The plasmonic interference pattern (blue and red) is detected in the
form of back-scattered light (small red arrow).

smooth spatial variations of the stacking parameter δ = δ(x⊥). Note that x⊥ = y for the tensile

wall and x⊥ = x for the shear wall where x is the zigzag direction of the graphene lattice,

see Figure 4.1. The momentum k‖ remains a good quantum number. The momentum k⊥

perpendicular to the wall is replaced by the operator −i∂/∂x⊥. The resulting eigenproblem is

solved numerically on a 1D grid of x⊥ to obtain electronic band dispersions such as those shown

in Figure 4.1. Next, these energy dispersions and the wave functions are used to evaluate the Kubo

formula for the nonlocal conductivity Σ(x⊥,x′⊥). We further define an effective local conductivity

σ⊥(x⊥)≡
∫

Σ(x⊥,x′⊥)dx′⊥, which is appropriate when the total electric field on the sheet varies

slowly on the scale of the wall width.[JNP+16] The presence of the bound states is manifest in

a strongly enhanced σ⊥ at the tensile domain wall. The profile of σ⊥(x⊥) obtained from this
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Figure 4.3: (a) Local optical conductivity σ⊥ for the tensile wall at interlayer bias Vi = 0,
calculated using the lattice approach and the adiabatic approach. Conventional bound states
residing at the wall lead to the prominent peak in the real part of the conductivity, an effect
missing in the adiabatic approach. (b) Comparison between the tensile and shear walls. At
zero bias the shear wall hosts no confined modes and the conductivity is relatively flat. (c)
Conductivity of the shear wall at Vi = ±0.2V. The bias opens the band gap, induces the
topological chiral modes, and gives rise to the peak in Reσ⊥. Reversing the bias has no effect as
it is equivalent to interchanging the valleys. (d) Conductivity of the tensile wall at Vi =±0.1V.
Reversal of the sign of the bias alters the dispersion of the conventional bound states, changing
the conductivities. All quantities were calculated at µ = 0.1V, η = 0.1 and ω = 890cm−1.

nonlocal model can be compared with the results for an adiabatic model in which the Hamiltonian

for the uniform stacking is used instead at every point x⊥. As shown in Figure 4.3a, the real

part of σ⊥ is much larger than that obtained from the adiabatic approximation. The difference

occurs precisely because of the lack of the bound states in the latter. On the other hand, for shear

walls, which host no bound states when Vi = 0, the conductivity is relatively flat at the wall, see

Figure 4.3b.

The large contrast of the local optical conductivity for the two types of walls leads directly

to the distinct plasmonic profiles they produce. To simulate the measured s-SNOM profile, we
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and damping (γ) profile used for the fit. Peaks in these profiles arise from optical transitions
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(e)-(h) Similar plots for the shear wall at Vg =−110V.

converted σ⊥ into the plasmon momentum qp and used it as an input to the electromagnetic solver

developed in previous work.[FRA+12, FRG+13, JNP+16, NWW+15, NWG+16, GNP+15] The

chemical potential µ, interlayer bias Vi and the phenomenological damping rate η are tuned until

the output matches the experimental profile. An example of a fit for the tensile wall is shown

in Figure 4.4a-d and for the shear wall in Figure 4.4e-h, where the magnitude and phase of the

simulated s-SNOM signal are shown. Here the plasmon momentum qp is parametrized by the

plasmon wavelength λp and plasmonic damping rate γ, qp =
2π

λp
(1+ iγ). The interaction of the

walls with plasmons can be characterized by the plasmon reflection coefficient r. According

to the first-order perturbation theory,[FRG+13] this reflection coefficient is proportional to the

amount of excess conductivity at the wall with respect to the background value σ∞ far from the

wall: r =−iq∞

∫
dx⊥(σ⊥(x⊥)−σ∞)/σ∞. The tensile wall has a larger |r|; therefore, it reflects

plasmons more strongly than the shear wall, see Figure 4.2e. The phase θ of the reflection

coefficient r = |r|eiθ, (Figure 4.2f) dictates the position of the extrema of the interference pattern

∼ cos(2qp|x⊥|+ θ+ θt), where θt ≈ −π/2 is the tip-dependent phase shift.[FRG+13] At the
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tensile wall (x⊥ = 0, θ≈−π/2) the pattern has a minimum; at the shear wall (θ≈−π) it has a

small local maximum, as observed in the experiments. Note that we are treating the interlayer

bias Vi as a fitting parameter because in the experiment the value of Vi is determined primarily

by (uncontrolled) dopants in the SiO2 substrate.[ZLB+08] The calculated s-SNOM profiles are

strongly Vi-dependent because the sign and value of Vi can alter the bound state dispersions

(Figure 4.1b and c) and the conductivity σ⊥ dramatically (Figure 4.3c and d). This suggests

that determination of Vi from the fits to these profiles is a robust procedure. More generally, the

remarkable fidelity of our fits across a range of gate voltages indicates that s-SNOM can be a

reliable method for probing the local band structure of electronic materials.

4.5 1D plasmons

Note that prior to the discovery of AB-BA walls, topological confinement of electrons at

the “electric-field walls” in bilayer graphene was studied.[MBM08, ZMM13, YJQH16, QJNM11]

These are the regions where Vi and therefore, the valley Chern number changes sign. Hence, there

is a minimum of N = 2 such chiral states PSPV, same as for the AB-BA walls. Based on our

study, we expect that N can be system-dependent and larger than two. Recently 1D plasmons

confined to “electric-field walls” were also studied theoretically.[HS17] Below we discuss similar

collective modes for the AB-BA walls (Figure 4.2e, inset).

The propagating 1D plasmons may exist if their Landau damping by the surrounding

bulk is weak enough. This condition can be met if i) the chemical potential µ resides in the

band gap so that the confined single-particle modes are the only low-energy degrees of freedom

and ii) the frequency ω is small enough so that the optical transitions to bulk bands do not

occur. Devices where these requirements can be achieved would likely need a thin top gate in

addition to the back gate to control µ and also substrates/gate dielectrics other than SiO2 to reduce

disorder and unintentional doping. The 1D plasmon mode may then be amenable for study by the
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s-SNOM nanoimaging, similar to plasmons in carbon nanotubes.[SHB+15] The dispersion of

the domain-wall plasmon is determined by the divergences of the loss function −Imε
−1
1D
(
k‖,ω

)
.

Here ε1D is the effective dielectric function[KBF97]

ε1D
(
k‖,ω

)
= κ− 8e2

h
ln

(
A

k‖l

)
N

∑
j=1

k2
‖|v j|

ω2− k2
‖v

2
j
, (4.1)

κ is the dielectric constant of the environment, N is the total number PSPV of the 1D electron

states, v j is the velocity of jth state, and A∼ 1 is a numerical coefficient. The dispersion curves

calculated using Eq. (4.1) (cf. Supplementary Material for details) are approximately linear in the

experimentally accessible range of momenta k‖, see Figure 4.5a. The slope of each curve, i.e.,

the plasmon group velocity scales as
√

N, similar to the case of carbon nanotubes.[SHB+15] For

shear walls N = 2 (Figure 4.1e and f), and so the plasmon wavelength λp = 2π/k‖ as a function

of µ at given fixed ω and Vi is approximately constant, see the red and green curves in Figure 4.5b.

For tensile walls, we can have N = 2, 4, or 6, depending on the chemical potential and interlayer

bias (Figure 4.5b, right panel). Sharp changes in λp should therefore occur at some µ where

N changes in steps of two, see the blue curve in Figure 4.5b. These properties of plasmons

at AB-BA boundaries may be interesting for exploring fundamental physics of interacting 1D

systems (so-called Luttinger liquids[KBF97]) or for implementing ultrasmall plasmonic circuits.

Note that theoretical calculations for “electric-field walls” predict macroscopically large electron

mean-free paths of chiral electronic[QJNM11] (or plasmonic[HS17]) states if the intervalley

scattering is dominated by long-range disorder. This prediction should equally apply to the

AB-BA boundaries but it is yet to be verified experimentally.

4.6 Conclusion

In summary, the local electrodynamic impedance of bilayer graphene is strongly sensitive

to the atomic-scale stacking order, leading to plasmonic reflection that depends on the strength
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Figure 4.5: (a) Dispersion of 1D plasmons at µ = 0 for i. the shear wall at Vi = 0.1V (green,
N = 2), ii. the tensile wall at Vi = 0.1V (orange, N = 2) and iii. the tensile wall at Vi =−0.1V
(blue, N = 6). The difference in the plasmon velocity vp = ∂ω/∂k‖ is due to the different number
of plasmonic channels N, vp ∝

√
N. (b) (Left panel) Plasmon wavelength for the three cases

in (a) at ω = 100cm−1. For case iii the plasmon wavelength changes sharply at particular µ’s
due to a change in N. (Right panel) Corresponding band structure for case iii, where N varies
between 4 (cyan) and 6 (magenta) at different chemical potentials µ.

and orientation of the strain at the domain wall. Topological arguments give an important initial

insight into the physics of this reflection. However, further microscopic analysis of the electronic

structure proves to be necessary to account quantitatively for the plasmonic interference fringes

observed in near-field nanoimaging. We anticipate many useful applications of these theoretical

concepts and experimental approaches to other types of electronic boundaries found in a wide

family of van der Waals heterostructures.

4.7 Experimental methods

Experimental procedures are as follows. Graphene flakes were exfoliated onto a 285nm-

thick SiO2 layer on top of a highly doped Si substrate. Regions of bilayer graphene were identified

by their contrast under optical microscopy. Metal contacts were defined on graphene using shadow

masks. The infrared nanoimaging experiments were performed at ambient conditions using an

s-SNOM based on an atomic force microscope operating in the tapping mode. Infrared light

(λ = 11.2µm) was focused on the tip of the microscope. A pseudo-heterodyne interferometric
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detection was used to extract the scattering amplitude s and phase φ of the near-field signal.

To remove the background, the signal was demodulated at the third harmonic of the tapping

frequency 270kHz.

4.8 Model for bilayer graphene

Our low energy four-band Hamiltonian for homogeneous BLG is adopted from Ref.

[Kos13],

H̄ =




H+
0 U†

U H−0


 , (4.2)

with basis (FKξ

At ,F
Kξ

Bt ,F
Kξ

Ab ,F
Kξ

Bb ), where F denotes envelope function, ξ = ±1 for the K and K′

valley, and t stands for top layer and b for bottom layer. The two-band Dirac Hamiltonian for a

single layer is

H±0 = ~v



± 1

~v
V
2 ξkx + iky

ξkx− iky ± 1
~v

V
2


 , (4.3)

where V = eVi is the interlayer potential. The interlayer interaction is

U =
γ1

3


1+2




cos 2π

3 δ cos 2π

3 (δ+1)

cos 2π

3 (δ−1) cos 2π

3 δ





 , (4.4)

where the interlayer coupling[ZLB+08] γ1 = 0.4eV and the stacking order δ ∈ [1,2] with

δ = 1,1.5,2 corresponding to AB, SP and BA stacking. To describe the domain walls, the

homogeneous Hamiltonian H̄ has to be modified to account for the local change in stacking. This

is done by replacing the momentum perpendicular to the wall k⊥ by the operator −i∂/∂x⊥ and

making the stacking parameter spatially dependent, δ(x⊥), resulting in the real space Hamiltonian

H(x⊥). For the tensile wall x⊥ = y while for the shear wall x⊥ = x. The distribution δ(x⊥) is
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found in Ref. [ATH+13] to be

δ(x⊥) =
2
π

arctan
(

eπx⊥/l
)
+1 , (4.5)

where the width l = 10.1nm for the tensile wall and l = 6.2nm for the shear wall.

4.9 Optical conductivity of the domain wall

There are two ways to approximate σ(x⊥). The first is to diagonalize the homogeneous

Hamiltonian H̄ for a given stacking order δ, use the Kubo formula to find the homogeneous

optical conductivity σ̄(δ), then map it to σ̄(x⊥) using the stacking distribution δ(x⊥) of the

domain wall. This is what we call the “adiabatic” approach and cannot account for the presence

of the edge states. The second is to diagonalize the real space Hamiltonian H in coordinate basis

and use the Kubo formula to find the nonlocal conductivity Σ(x⊥,x′⊥), which is then localized by

σ(x⊥) =
∫

Σ(x⊥,x′⊥)dx′⊥. This “lattice” approach is what we use for our calculations.

Let us start from the calculation of σ̄(δ). The conductivity consists of two parts, an

interband conductivity σ̄I from optical transitions between the four bands, and a Drude-like

intraband conductivity σ̄D. Except for specific stacking orders such as AB and BA stacking,

the conductivities are anisotropic. We consider only the diagonal elements of the conductivity,

σ̄xx and σ̄yy, and neglect σ̄xy and σ̄yx which are small.[SYB+15] The interband conductivity is

calculated using the Kubo formula,

σ̄
I
αα =

gsgvi~
4π2

∫
dkxdky ∑

n6=m
− fm− fn

Em−En

e2v2M∗αMα

~ω(1+ iη)− (Em−En)
. (4.6)

Here α = x or y. The spin and valley degeneracy are gs = gv = 2. The summation goes over all

pairs of states |n〉 and |m〉, where the energy of the state |n〉 is En and its occupation number fn is

given by the Fermi-Dirac distribution, fn = 1/(1+e(En−µ)/kBT ). The matrix element is defined as
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Figure 4.6: a. Local conductivity σ⊥ for the tensile wall, where the contribution from optical
transitions involving the bound states (thick curves) are separated from the contribution of
transitions involving only the continuum (thin curves). Parameters: µ = 0.1eV, T = 300K,
ω = 890cm−1, Vi = 0.1V and η = 0.1. b. Similar quantities for the shear wall. In both cases
the bound states produce a prominent peak in the real part of σ⊥.

Mα = 〈m|sα⊗ τ0|n〉 where sα are the Pauli matrices acting on the sublattice and τ0 is the identity

matrix acting on the layer degree of freedom. The phenomenological damping rate is η.

The intraband conductivity σ̄D arises from the n = m part of the summation, where the

fraction fm− fn
Em−En

is replaced by the derivative d fn
dEn

while Em−En = 0, so that

σ̄
D
αα =

gsgvi~
4π2

∫
dkxdky ∑

n
− d fn

dEn

e2v2M∗αMα

~ω(1+ iη)
. (4.7)

The total conductivity σ̄= σ̄I + σ̄D can be readily found given the Hamiltonian H̄(δ), the chemical

potential µ, the temperature T , the frequency ω, the interlayer bias Vi and the damping rate η.

The calculation of the nonlocal conductivity Σ is very similar. The system is dis-

cretized in the x⊥ direction into a grid of size N, so that the Hamiltonian H has 4N bands.

The integration over k⊥ is removed, and the matrix element is calculated at every grid point,

Mα(x⊥) = 〈m(x⊥)|sα⊗ τ0|n(x⊥)〉, leading to the following nonlocal conductivities

Σ
I
αα(x⊥,x

′
⊥) =

gsgvi~
4π2

∫
dk‖ ∑

n6=m
− fm− fn

Em−En

e2v2M∗α(x⊥)Mα(x′⊥)
~ω(1+ iη)− (Em−En)

, (4.8)
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Figure 4.7: a. The local conductivity σα is highly anisotropic at the tensile wall. Parameteres:
µ = 0.1eV, T = 300K, ω = 890cm−1, Vi = 0 and η = 0.1. b. Similar quantities for the shear
wall.

Σ
D
αα(x⊥,x

′
⊥) =

gsgvi~
4π2

∫
dk‖∑

n
− d fn

dEn

e2v2M∗α(x⊥)Mα(x′⊥)
~ω(1+ iη)

. (4.9)

For our calculations the nonlocal Σ is then localized by integration over x′⊥ and denoted σα ≡ σαα,

where α =⊥ or ‖.

As the bound state wavefunctions are localized at the domain wall, optical transitions

involving these bound states give rise to conductivity peaks at the wall, as shown in Figure 4.6.

The domain wall also introduces anisotropy to the local conductivity, as shown in Figure 4.7a for

the tensile wall and 4.7b for the shear wall. Away from the wall, conductivities in the ⊥ and the ‖

direction have the same value as expected, but at the wall they can be drastically different.

4.10 Fitting the s-SNOM profiles

To fit the experimental s-SNOM profiles, we calculate conductivities at T = 300K and

ω = 890cm−1, while treating the chemical potential µ, the interlayer bias Vi and the damping rate

η as fitting parameters. As shown in Figure 4.8, changes to these three parameters have drastic

effects on the resulting s-SNOM signal around the domain wall. An increase in µ increases the

plasmon wavelength and decreases the strength of the signal, a change to Vi changes the signal
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Figure 4.8: Comparison of near-field amplitude profiles under different fitting parameters. The
black curve in every panel is calculated at µ = 0.21eV, Vi = 0V, and η = 0.15 for the tensile
wall. In each panel one of the three parameters is varied. a. Varying the chemical potential
changes the plasmon wavelength and the overall amplitude. b. Changing the interlayer bias
Vi alters signal strength at the wall. c. Increasing the damping rate η decreases the overall
amplitude of the oscillations.

strength at the wall, while an increase in η decreases the overall amplitude of the oscillations.

This shows that one can reliably determine these three parameters in the fitting procedure.

In Figure 4.9 we show our fits to the experimental near-field amplitude profiles for the ten-

sile wall along with the phase φ of the s-SNOM signal. Also shown are the plasmonic wavelength

profile λp and the plasmonic damping profile γ used for the fit. Parameters used for the series of fits

for Vg = (60,0,−40,−80)V are: µ = (0.17,0.21,0.25,0.27)eV, Vi = (0.25,0.2,−0.1,−0.2)V,

and η = (0.2,0.15,0.1,0.12). Fits for the shear wall are shown in Figure 4.10. The pa-

rameters used for Vg = (30,−20,−50,−80,−110)V are: µ = (0.16,0.21,0.23,0.24,0.25)eV,

Vi = (0.3,0.35,0.35,0.35,0.4)V, and η = (0.2,0.2,0.2,0.2).

4.11 Dielectric function in the band gap

In this section we derive the effective 1D dielectric function ε1D(k‖,ω) of the domain

wall when the chemical potential lies within the band gap. The pole of 1/ε1D determines the

dispersion of the 1D plasmon propagating along the wall.
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Figure 4.9: Fits for the near-field profiles for the tensile wall. a. Vg = 60V. b. Vg = 0V. c.
Vg =−40V. d. Vg =−80V. In each panel the normalized experimental near-field amplitude
profile s̄3 is shown in gray, the simulated amplitude s̄3 and phase φ profiles are shown in blue
and red. Also shown are the plasmon wavelength profile λp and damping profile γ used for the
fit.

In the absence of external fields, the total electric potential Φ of the sheet in the quasistatic

limit is determined by the charge density ρ and current density j on the sheet,

Φ =V2 ∗ρ =V2 ∗
i
ω

∇ · j , (4.10)

where the Coulomb kernel V2 = 1/κr, r = (x,y) and ∗ denotes convolution, A ∗B =
∫

A(r−

r′)B(r′)dr′. For ease of notation we assume that the domain wall lies on the y-axis. When the

chemical potential is in the gap, |µ|<V/2 (and the temperature and frequency are low, kBT �V

and ~ω�V ), only the bound states contribute to the optical response. The charge density is zero

on the sheet and the current only flows along the domain wall, so we can make the simplification

jx = 0 and Φ = φ(x)eiqyy. Eq. (4.10) can then be rewritten as

φ(x) =V1 ∗
i
ω

∂y jy =V1 ∗
k2

y

iω

∫
Σyy(x,x′)φ(x′)dx′ , (4.11)

Here the 1D Coulomb kernel is V1(x) =
∫

V2dy = 2
κ

K0(qy|x|), where K0 is the modified Bessel
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Figure 4.10: Fits for the near-field profiles for the shear wall. a. Vg = 30V. b. Vg = −20V.
c. Vg = −50V. d. Vg = −80V. e. Vg = −110V. In each panel the normalized experimental
near-field amplitude profile s̄3 is shown in gray, the simulated amplitude s̄3 and phase φ profiles
are shown in blue and red. Also shown are the plasmon wavelength profile λp and damping
profile γ used for the fit.

function of the second kind. Note that we removed the ky dependence in Σyy as the plasmon

wavelength λy ∼ k−1
y is much larger than all other length scales in the problem, so that we can

make the approximation Σ(x,x′,ky)' Σ(x,x′,0).

At frequencies ~ω� V , there are no allowed optical transitions and the conductivity

comes purely from the Drude response,

Σyy(x,x′) = gs ∑
K,K′

N

∑
j=1

iDyy, j

π(ω−ξ jv jqy)
|ψ j(x)|2|ψ j(x′)|2 , (4.12)

where ψ j is the wavefunction of the j-th bound state at energy E j = µ and gs = 2 is the spin

degeneracy. The Drude weight 1
π

Dyy, j =
e2

h |v j| is directly proportional to the particle group

velocity v j = ∂E j/~∂ky, and ξ j is the sign of v j. The summation over the K and the K′ valleys can
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be reduced by noting that every bound state has a counterpart in the other valley with a velocity

that is equal in magnitude but opposite in direction.

Since the width of the wavefunctions ∼ l is much smaller than the plasmon wavelength

λy, the particle density distributions |ψ j(x)|2 can be roughly approximated as a δ-function of

characteristic width l. Eq. (4.11) then becomes

φ(l)'
(

N

∑
j=1

k2
y

κ(ω2− v2
jk2

y)
2K0(kyl)gs

2e2

h
|v j|
)

φ(l) =
(

1− ε1D

κ

)
φ(l) . (4.13)

For small arguments K0(z) ' log(A/z) where A ' 2e−0.577 = 1.12, and so the 1D dielectric

function is

ε1D (ky,ω) = κ− 8e2

h
ln
(

A
kyl

)
k2

y

N

∑
j=1

|v j|
ω2− k2

yv2
j
. (4.14)
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Chapter 5

Theory of plasmon reflection by a 1D

junction

5.1 Introduction

Plasmonics aims to combine the advantages of nanometer scale electronics with the

high operating frequency (terahertz and beyond) of photonics.[Ozb06] A promising platform for

plasmonics is graphene, which features high confinement, wide range of operating frequencies ω,

long lifetimes, and tunability.[GPN12, FRA+12] Recent experiments demonstrated long plasmon

propagation distance and high quality factor for graphene,[WLG+14, NWG+16] making 2D

plasmonic circuitry feasible. An important basic element in a plasmonic circuit is a switch

that has a small size and a large on-off ratio. Numerous numerical studies of the interaction of

plasmons with 1D obstacles has been done in search of such a device.[RSK+04, PTSK05, SRC05,

PPN12, GPNMM13, PFM13, WGT+17] It has been shown that a narrow 1D junction of low

conductivity in an otherwise uniform 2D conductive sheet can potentially serve as a plasmonic

switch.[GDPC13] This is a surprising result as deeply subwavelength obstacles usually cannot

impede the propagation of a wave. In this work we explain the physical principles behind the
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plasmonic interaction with this type of inhomogeneities and provide analytical solutions for the

reflection coefficient, which can be simply understood in terms of equivalent circuits.

Plasmons propagating in a uniform conducting film or a two-dimensional electron gas

(2DEG) have a momentum q that is inversely proportional to the (frequency-dependent) sheet

conductivity σ, q = iκω

2πσ
, where κ is the dielectric function of the environment exterior to the

sheet. A local variation in the conductivity causes a change in q and thus acts as a scatterer for

plasmons. Controlled conductivity variations can be realized in graphene which has a conductivity

σ determined by its chemical potential. Using patterned electric gates, the chemical potential can

be tuned locally. We consider an idealized case where the sheet conductivity has a piecewise

constant 1D profile with a value σ inside a strip of width 2a and another value σ0 in the semi-

infinite leads on both sides (Figure 5.1). In practice, the width of the junction is determined by

the geometry of the gate and can be as narrow as a few nanometers for a nanowire or nanotube

gate.[JF15, JNP+16] Two types of phenomena govern the propagation of plasmons across such

a junction, the cavity resonances inside the junction and the capacitive coupling between the

leads. Depending on how the width (2a) of the junction compares to the plasmon wavelength in

the leads (λ0 = 2π/Req0) and in the junction (λ), the strength of these phenomena varies. For

wide junctions λ0� a, the reflectivity is determined chiefly by the cavity resonances while the

capacitive coupling is negligible. The resonances give rise to alternating maxima and minima

in the reflectance, which are, however, quickly suppressed by plasmonic damping. For narrow

junctions λ0� a, the capacitive coupling dominates. This regime can be further divided into two,

depending on how a compares to λ. When a� λ, the cavity resonances are present but have their

amplitudes modified by the capacitive coupling. When a� λ, instead of the oscillating resonant

fields, the junction has a constant electric field like a capacitor and becomes a parallel RC circuit

in the dc limit. A near perfect plasmon reflection occurs at a specific conductivity σ where the

impedance of the RC circuit diverges. As there is no wave propagation in the junction in this

limit, the anomalously strong reflection is robust against plasmonic damping.

151



 

 െ
 െ
 െ
 െ
 െ
 െ
 െ
 െ

⋮

Figure 5.1: A normally incident plasmon is partially reflected and transmitted by a 1D junction
of conductivity σ different from the background value σ0. The strength of reflection is deter-
mined by two types of effects, the capacitive coupling of the two edges of the leads (represented
by the + and − electric charges) and the cavity resonances in the strip. The field profiles of the
first few resonant modes (white solid and dashed curves) are calculated for the case of a narrow
junction with an infinite conductivity contrast between the gap and the leads.

5.2 Wide junctions

. A wide junction contains two interfaces that partially reflect and transmit plasmons

but otherwise do not interact with each other, i.e., it is a plasmonic cavity. Using the analytical

Wiener-Hopf method, the reflection coefficient r for a normally incident plasmon wave from the

left at the left (L) and the right (R) interfaces was found in Ref. [RK15] to be

rL = eiθ σ0−σ

σ0 +σ
, rR = e−iθ σ−σ0

σ+σ0
, tL = tR =

2
√

σ0σ

σ0 +σ
, (5.1)

where the reflection phase shift is given by

θ =
π

4
− 2

π

∫
∞

0
du

tan−1( σ

σ0
u)

u2 +1
, (5.2)

which approaches π/4 in the limit σ→ 0, as in the case where the lead-junction boundary

corresponds to a physical termination of the lead.[NLMM14, KWS+17] We define the reflection

coefficient r to be the prefactor in the asymptotic form of the scattered potential φs ' re−iq0x at
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Figure 5.2: (a) Equivalent circuit for the system. The leads have impedance Z0, while the
junction J has different representations depending on its width a and conductivity σ. (b) For
wide junctions J is represented by two interfaces and a waveguide of length 2a. The waveguide
can be replaced by a T -junction, while the interface I consists of two phase shifters and an ideal
transformer. The right interface IR has reversed number of coils and signs of θ compared to IL.
(c) For narrow junctions J is a capacitor in parallel with a LC network that describes the cavity
resonances. (d) In the dc limit, a� λ, the LC network reduces to L0 and J becomes a parallel
RC circuit.

large negative x for an incident plasmon potential φ0 = eiq0x. (Our definition differs in the overall

sign from Ref.[RK15] where r is the reflection coefficient for the current.) The total reflection

coefficient from the left interface of the junction is then found from the usual Fabry-Pérot (F-P)

formula to be

r−1
FP =

σ2
0 +σ2

σ2
0−σ2

+ i
2σ0σ

σ2
0−σ2

cot(φ−θ) , (5.3)

where φ = 2qa is the phase accumulated across the junction. Equation (5.3) yields a reflectance

that has local minima at resonances, φ = nπ+ θ, and local maxima at anti-resonances, φ =

(n+ 1
2)π+θ, where n is a positive integer. These alternating maxima and minima can be seen

in Figure 5.3a, where an example of the reflectance R = |r|2 for a lossless junction of width
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a = λ0 is shown. Here we have parametrized the plasmon momentum as q = 2π

λ
(1+ iγ) with the

dimensionless damping factor defined as γ = Imq/Req. Under these circumstances, the junction

acts as a plasmonic switch with a high on-off ratio, tuned by the conductivity contrast σ0/σ

(or alternatively, by varying the width a). However, the resonances are quickly suppressed by

plasmonic damping as shown in Figure 5.3b, removing the switching behavior and rendering

wide junctions less desirable for nanoplasmonic applications. Note that we assume the same

damping in the leads and the junction, γ0 = γ, in this work, so that the conductivity ratio σ0/σ is

real. A higher damping in the junction than in the leads further diminishes the resonances but

does not alter the results qualitatively (see Supporting Information, Sec. 9.)

A wide junction can be described with an equivalent circuit. The reflection and trans-

mission coefficients described in Eq. (5.1) is what one would expect at the interface of two

waveguides with impedances σ0 and σ (up to the phase factor in r).[MDP48] However, the

plasmonic wave impedance of a 2DEG, Z0 = π/ωκ, was found to be independent of the sheet

conductivity[FAA+16] (see Supporting Information, Sec. 2.) To retain the analogy to conven-

tional waveguides, we treat the interface as a composite object consisting of an ideal trans-

former and two phase shifters (Figure 5.2b). The transformer effectively rescales the junction

impedance into Z j = Z0
σ0
σ

while the complementary phase shifters provide the requisite phase

factor e±iθ to the reflection coefficients. The junction itself can be replaced by a piece of waveg-

uide of the effective length 2a− (θ/q), which is equivalent to a T -junction with impedances

Z1 = −iZ j tan(qa− θ/2) and Z2 = iZ j csc(2qa− θ).[MDP48] The total reflection coefficient

from the left interface [coinciding with Eq. (5.3)] can then be found directly from the standard

waveguide-theory formula,

r = (ZL−Z0)/(ZL +Z0) , (5.4)

where the total load impedance, calculated by the rules of parallel and series connections, is

ZL = Z1 +(Z−1
2 +(Z1 +Z0)

−1)−1.
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Figure 5.3: (a) Reflectance of a “wide” junction, a = λ0 without damping. (b) Similar quantities
for damping γ = 0.05. (c) Reflectance of a “narrow” junction, a = 0.01λ0 without damping.
Blue curves are numerical results, dotted red curves are from the F-P formula (5.3), and green
curves are from Eq. (5.15). (d) Similar quantities for γ = 0.05.

5.3 Narrow junctions

. The F-P formula Eq. (5.3) remains numerically accurate for junctions as narrow as

a ' λ0. However, as the two leads get closer, they start to couple capacitively. The system

resembles a leaky capacitor. The capacitive coupling becomes dominant when the junction is

narrow. The cavity resonances remain but their amplitude gets strongly modified. This can be

seen in Figure 5.3c, where the reflectance for a narrow junction a = 0.01λ0 deviates greatly

from the F-P formula but retains the same resonant locations. In the following we present key

intermediate steps in calculating the analytical form of this modified reflectance, leaving the

detailed derivation to the Supporting Information.
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We start by discussing the general form of r for a narrow junction. The reflection

coefficient r can be found by comparing the incident in-plane plasmon field Ei = E0eiq0xx̂ with

the asymptotic form of the scattered field Es '−rE0e−iq0xx̂ at large distances from the junction.

The scattered field Es can be completely determined by the total field E inside the junction via

the Green’s function G,

Es (|x|> a) =
∆σ

σ0

∫ a

−a
dx′G(x− x′)E(x′) , (5.5)

where ∆σ ≡ σ−σ0, and the Green’s function G is the 1D Fourier transform of the dielectric

function ε = 1−|q|/q0 of the 2D sheet,

G(x) =
∫

∞

−∞

dq
2π

eiqx
ε
−1(q) . (5.6)

By analyzing the asymptotic form of Eq. (5.6), one arrives at the relation

r = i
∆σ

σ0

q0

E0

∫ a

−a
dxE(x)eiq0x , (5.7)

which is valid for junctions of any width. For example, it can be used to evaluate the reflection

coefficient numerically (see Supporting Information, Sec. 6.) For narrow junctions, Eq. (5.7) can

be simplified and written in terms of the voltage drop across the junction V =
∫ a
−a dxE(x),

r ' i
∆σ

σ0
q0

V
E0

, (a� λ0) (5.8)

since eiq0x ≈ 1 in the junction.

Equation (5.8) has simple solutions in limiting cases. In the perturbative limit σ . σ0, the

current density j(x) is approximately constant across the junction, which implies that the field
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inside the junction is E ' σ0
σ

E0. This yields the reflection coefficient

r = 2iq0a
∆σ

σ
, (|∆σ| � σ0) (5.9)

in agreement with Ref. [FRG+13]. The reflection coefficient depends linearly on the strength of

the perturbation ∆σ, as expected. In fact, the perturbative expression is also valid for any σ > σ0

as long as the resulting reflection coefficient is small, |r| � 1. However, it is clearly inadequate

as σ is decreased toward zero, i.e., the case of a vacuum gap, where the perturbative r diverges

[Eq. (5.9)]. For such a vacuum gap, the current j is stopped and completely reflected by the

gap, i.e., the two edges of the junction act as a (non-leaky) capacitor. By considering the charge

conservation equation on either edge of the capacitor, ji + jr = σ0E0(1− r) = Q̇ =−iωVC, the

reflection coefficient for the vacuum gap can be found:

r =
iκ

2πC+ iκ
=

iπ
log 2

q0a − c+ iπ
, (σ = 0 , a� λ0) . (5.10)

Here the junction capacitance per unit length

C =
κ

2π2

(
log

2
q0a
− c
)
, c = 0.577 . . . (5.11)

can be derived by considering the charge distribution on perfectly conducting leads (see Sup-

porting Information, Sec. 5.) The sublinear dependence on a is due to the 2D geometry of the

system, where the fringing fields, i.e., fields exterior to the sheet, dominate. Equation (5.10) is in

good agreement with our numerical result (Figure 5.4) and with Ref. [GPNMM13]. It can also be

simply explained by the equivalent circuit for the system, a resistor-capacitor-resistor series with

impedances Z0, Zc = i/ωC, and Z0. The circuit yields the load impedance ZL = Zc +Z0, so that

r = Zc/(Zc +2Z0), matching Eq. (5.10).

For intermediate conductivities 0 < σ < σ0, the capacitive component is diminished
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Figure 5.4: Reflectance of a narrow vacuum gap in a lossless sheet.

compared to the vacuum gap, but the junction can now host plasmonic resonances. This is seen in

the modified charge conservation equation,

σ0E0(1− r) =−iωVC′+
∫ a

−a
dx

σE(x)

π
√

a2− x2
, C′ =−∆σ

σ0
C , (5.12)

where the capacitance acquires a correction factor −∆σ/σ0 which is 1 for the vacuum gap but

decreases to 0 for a uniform sheet where σ = σ0. The additional integral represents the Shockley-

Ramo image current in the leads induced by the current in the junction.[RSS03] The field in the

junction can be expanded in the basis of resonant eigenmodes

E (|x|< a) =
V
2a

(
1+

∞

∑
n=1

bn fn(x)

)
. (5.13)

The coefficients

bn =
2a

1+ σ

∆σ

qn
q0

∫ a
−a dx fn(x)

π
√

a2−x2∫ a
−a dx f 2

n (x)
(5.14)

diverge whenever the plasmon wavevector q inside the junction matches the resonant wavevector

qn, and the field E becomes dominated by the n-th resonant mode fn. The wavevector qn of the

resonant field is again determined by the resonance condition 2qna = nπ+θ as in the case of

wide junctions. For narrow junctions, all resonances occur at σ0/σ� 1, so that θ ≈ π/4 and
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qn =
π

2a(n+
1
4). The exact forms of the dimensionless resonant fields fn has to be calculated

numerically, but they quickly approach cos(qnx− 1
2nπ) as n is increased.[RSS03, RSK+04] The

first three eigenmodes fn(x), n= 1,2,3, are plotted in Figure 1 and also in Supporting Information,

Figure S2.

The reflection coefficient can be found by substituting the field (5.13) into Eq. (5.12), then

using the general form of r (5.8) to obtain

r−1 = 1− i
2π

κ
C− i

1
2q0a

σ

∆σ

(
1+

∞

∑
n=1

bn

∫ a

−a
dx

fn(x)

π
√

a2− x2

)
. (5.15)

At a resonance, r−1 diverges for zero damping and has a maximum for finite damping, so the

reflectance has a local minimum, similar to the case of wide junctions. The main difference

from a wide junction comes from the capacitive coupling, which gives rise to the non-resonant

terms in Eq. (5.15). These terms vary smoothly with σ and a, giving the resonances a Fano

shape and causing r to deviate significantly from the F-P formula, as shown in Figure 5.3c and d.

Another distinction from wide junctions is that even and odd resonances become very different in

strength. Numerical results show that the odd resonances are more narrow and less strong than

the even ones. This can be seen more clearly in the analytical formula for r calculated under the

approximation

fn = cos(qnx− 1
2

nπ) , qn =
π

2a

(
n+

1
4

)
. (5.16)

In this case the odd modes disappear completely due to the integral in (5.14) and (5.15) yielding

bn = 0 for an odd fn(x). The residual presence of the odd modes in the numerical results is

due to the incident field Ei = E0eiq0x containing both even and odd components. Except for this

difference, the analytical approximation agrees well with the numerical result, and the agreement

gets better at larger n where the approximation for fn becomes more accurate.

Equivalent circuits are again helpful in understanding Eq. (5.15). Consider the impedance

of a 2a-long piece of plasmonic waveguide Z =−4iZ0 tanqa,[MDP48] which can be expanded
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into the resonant form Z−1 = (−4iZ0qa)−1 + i qa
2Z0

∑n(q2a2−π2n2)−1. This inverse impedance

has the same structure as a network of parallel LC circuits (Figure 5.2c), which is in fact how

resonant cavities are conventionally described. The impedance of the LC network is Z−1 =

(−iωL0)
−1 + iω∑n(ω

2Ln−C−1
n )−1, which yields L0 = 2ia/σω, Ln =

1
2L0, and Cn = qaκ/2π3n2.

The load impedance of the junction, including the capacitor, the LC network and the right

half-plane is then ZL = ZZc/(Z +Zc)+Z0, which yields the reflection coefficient

r−1 = 1− i
2π

κ
C+

i
2qa

+ iqa
∞

∑
n=1

1
q2a2−π2n2 . (5.17)

The first three terms represent the low q or dc response and match those in Eq. (5.15) (under the

limit σ� σ0). The strength of the resonances does not match Eq. (5.15) but this is expected,

as the effect of capacitive coupling on the resonant modes was not accounted for. To correctly

describe the junction Ln and Cn will have to be modified, which is effectively accomplished by

Eq. (5.14). The resonant condition qa = πn is however qualitatively correct (apart from the phase

shift θ) and predicts the disappearance of the odd modes.

As in the case of wide junctions, the high-order resonances quickly diminish in the

presence of plasmonic damping (Figure 5.3d), so these resonances are not robust enough for

plasmonics applications. However, there is a prominent peak in the reflectance that occurs

apart from the resonances and is persistent under damping, making it a promising candidate

for controlling a compact plasmonic switch. The physical origin of this peak is as follows. If

the field in the junction is approximately uniform, the junction reduces to a parallel LC circuit

(Figure 5.2d) with impedances ZC = i/ωC and ZL0 =−iωL0 =
2a
σ

, the later resembling the usual

dc formula for resistance. When the inverse impedances, i.e., admittances Z−1
C and Z−1

L0
cancel,

the total impedance of the junction diverges and the reflectance is unity. We call this situation the
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Figure 5.5: (a) False color plot of the reflectance of the junction for γ = 0.05. (b) Schematic
diagram of the location of the open-circuit and the F-P resonances. The red curve is predicted
by Eq. (5.18).

open-circuit resonance. It occurs when

σ

σ0−σ

λ0

a
= 4

(
log

2
q0a
− c
)
. (5.18)

The open-circuit resonance arises only for narrow junctions because it requires capacitive coupling

of the leads. As the junction width increases, the capacitive coupling gradually weakens, and the

junction evolves towards a regular F-P resonator, as shown in Figure 5.5.

5.4 Power absorption

. Low-conductivity junctions based on narrow slots in metallic films or 2DEGs under

split-gates have also been proposed as basic units of terahertz detectors. They function by

converting photons into plasmons, which are then detected as a dc current either through nonlinear

optical effects[DS96, KDC+09] or thermoelectric effects.[TMC+15, LGW+17, WPD+17] The

thermocurrent generated by the plasmons is proportional to the total power P absorbed by the

system. Here we show that P is related to the plasmon reflectance R of the junction, so that

the analytical formula (5.15) can be used to predict the detection efficiency. The photon to

161



plasmon conversion can be understood from our formulas above since the external terahertz field

effectively replaces the field of the incident plasmon wave. For a narrow gap both fields are

approximately constant over the junction, so that they launch plasmons from the junction with the

same efficiency.

To quantify the extra absorbed power when the junction is present compared to a uniform

2DEG sheet, we define the dimensionless excess power absorption,

∆P̄ =

∫
∞

−∞
dx (P(x)−P0)

λ0 ·Pinc
(5.19)

where

P(x) = Reσ(x)|E(x)|2 (5.20)

is the local power absorption per unit area, P0 = Reσ0|E0|2 is the same quantity for a uniform

system without a junction, and Pinc =
c

4π
|E0|2 is the incident power per unit area. We further

divide ∆P̄ into two parts, absorption by the junction (∆P̄j) and by the leads (∆P̄l). The former

is determined by the junction conductivity as well as the strength of the resonant fields, while

the latter is determined by the strength of plasmon emission. The power absorption of the

junction has a peak at each resonance where the resonant field is strong. It is also peaked at the

open-circuit resonance, where the field in the junction is approximately constant and proportional

to r, E 'V/2a ∝ r, so that the peak in R is mirrored in ∆P̄j. The power absorbed by the leads

is determined by the scattered plasmon field which quickly approach −reiq0|x| away from the

junction. Hence ∆P̄l is approximately proportional to the reflectance. As shown in Figure 5.6a,

∆P̄l is very similar to the reflectance shown in Figure 5.3d. The resonances occur at the same

locations but the odd modes disappear, due to the incident field being even in x.

A similar resonant structure is found when the frequency ω instead of the junction

conductivity σ is varied, as shown in Figure 5.6b. Varying ω changes the background wavelength

λ0 and thus the ratio a/λ0. The enhanced ∆P̄j at low frequencies is due to our assumption of a
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Figure 5.6: (a) Excess power absoption ∆P̄ for a = 0.01λ0 and γ = 0.05. The power absorbed
by the leads (blue) is proportional to the reflectance R. The power absorbed by the junction (red)
has a maximum at the open-circuit and the F-P resonances. (b) Excess power absoption spectrum
for a junction of width 2a = 1000nm in graphene on hBN. The background conductivity is
assumed to be Drude like, σ0 = iD0

π(ω+iν) with ν = 3cm−1. The Drude weight D0 = e2

π~2 µ is
calculated at chemical potential µ = 0.12eV, the conductivity ratio is D/D0 = 0.03. At low
frequencies ω∼ ν the conductivity is dominated by damping, resulting in a negative ∆P̄l , i.e.,
the absorption in the leads is smaller than the background value.

Drude-like conductivity, σ = iD/π(ω+ iν) where the damping rate ν is taken to be constant, so

that Reσ ∝
ν

ω2+ν2 has a maximum at ω = 0. The Drude weight D is assumed to be proportional

to the carrier density and independent of frequency. At low frequencies using the approximations

E 'V/2a and Es '−reiq0|x|, we obtain

∆P̄j '
2

πκg2
D2

0
ca

ν

(ω2 +ν2)2 R , ∆P̄l '
4
π

D0

c
ω

(ω2 +ν2)
R , (5.21)

where c is the speed of light and g≡ D/D0−1. Using these expressions, the optimal operating

frequency can be found given the device parameters.

5.5 Discussions

Besides electrostatically gated graphene or 2DEGs, tunable conductivity profile needed

for the plasmon-reflecting 1D junction can be also realized with layered high-Tc superconductors
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by varying the temperature. Plasmon reflection in such a system would also yield information

about local optical conductivity, which can be difficult to measure by other means. If the

conductivity contrast is large, which is the case of our primary interest, the system becomes

a weak link, i.e., a Josephson junction. Such a junction can be fabricated by lowering the Tc

locally using focused ion beams or by etching and reducing the number of layers.[CCW+15]

An estimate of the required parameters are as follows. Assume a BCS-like superconductor

film has a thickness d = 10nm, interlayer Josephson plasmon frequency ωc = 50cm−1, lattice

dielectric constant ε∞ = 27, anisotropy γ = 17.5, and is placed on a strontium titanate (STO)

substrate. The low-frequency plasmon dispersion is then ω' γωc
√

(1+2κ/ε∞qd)−1.[SWJ+14]

At a frequency ω = 0.25THz, the effective dielectric constant of STO is κ ' 1000, and so the

plasmon wavelength λ0 ' 10µm. If the conductivity inside the central region is σ = 0.1σ0, then

the strongest reflection/optimal THz detection occurs for a junction of width 2a∼ 200nm, which

is quite practical.

We presented a theory of plasmonic interaction with a conductivity dip and showed that

a narrow junction is a minimalistic yet robust plasmonic switch. Our analytical results and the

associated physical insights into the plasmonic interaction with a 1D defect may be useful for the

design of nanoscale plasmonic reflectors as well as terahertz detectors.

5.6 Fabry-Pérot formula for wide junctions

At the interface x = 0 of two conductive sheets with conductivities σ1 and σ2, a nor-

mally incident plasmon plane wave from sheet 1 has the following reflection and transmission

coefficients[RK15]

r12 = eiθ12
σ1−σ2

σ1 +σ2
, t12 =

2
√

σ1σ2

σ1 +σ2
, θ12 =

π

4
− 2

π

∫
∞

0
du

tan−1(σ2
σ1

u)

u2 +1
. (5.22)
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They have the properties t12 = t21 and θ12 = −θ21. Our junction has two interfaces between

conductivities σ0 and σ. Assigning σ1 = σ0 and σ2 = σ, the total reflection and transmission

from the left edge of the junction can be found by considering the multiple reflections within the

junction,

r = r12 +
(

t12r21ei2φt21 + t12r3
21ei4φt21 + ...

)
= r12 +

t12r21ei2φt21

1− r2
21ei2φ

, (5.23)

t = t12eiφt21 + t12r2
21ei3φt21 + ...=

t12eiφt21

1− r2
21ei2φ

, (5.24)

where φ = 2qa is the phase the plasmon wave accumulates for crossing the junction once. The

F-P formula

r−1
FP =

σ2
0 +σ2

σ2
0−σ2

+ i
2σ0σ

σ2
0−σ2

cot(φ+θ) (5.25)

can be obtained by substituting (5.22) into (5.23). Note that the formula above was derived

assuming the left interface to be the origin x = 0. If the origin is set at the center of the

junction instead, which sits at a distance a from the left interface, the reflection and transmission

coefficients (5.23), (5.24) and (5.25) will acquire an additional phase factor e−iφ.

5.7 Definition of impedances in the equivalent circuits

There is always some arbitrariness [MDP48] in the value of the characteristic impedance

Z0 = v/i of a waveguide, which derives from the freedom of choosing the definition of “voltage”

v and “current” i of a propagating wave. The only constraint is that the product of the two is

proportional to the power P transmitted by such a wave, more precisely, that

P =
1
2

Re(v∗i) . (5.26)
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In our case the propagating wave is a plasmon. The plasmon travelling in the x-direction can be

described by the field amplitudes

Ex = eiq0xe−q0|z| , Ez = iEx , Hy =
2π

c
σ0Ex , (5.27)

which decay exponentially away from the plane, see Fig. 5.7(a). The power transmitted by the

plasmon (per unit length in y) is given by the integrated Poynting vector,

P =
1
2

Re
∫

∞

−∞

dz
c

4π
H∗y Ez =

1
4

Re( j∗φ) . (5.28)

Here φ is the electric potential on the plane,

φ =
∫

∞

0
dzEz , (5.29)

and j = σ0Ex is the current density. In this work we define our effective current to be equal to

the physical current, i = j. This choice leads to a simple form of the current conservation in our

equivalent circuits and fixes the effective voltage v to be one-half of the physical potential:

v =
1
2

φ , i = j . (5.30)

The characteristic impedance of the sheet is then

Z0 =
1
2

φ

j
=

π

ωκ
. (5.31)

One further application of this result is to a wide but finite strip. If this strip has the unperturbed

sheet conductivity σ = σ0 and the total length 2a� q−1
0 in the x-direction, then it is equivalent to
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Figure 5.7: (a) Distribution of Ez and Hy outside the sheet. (b) Schematic diagram of the
potential distribution for the case of a narrow vacuum gap. The large distance oscillations have
amplitude V , while the potential right next to the gap oscillates with amplitude V/2.

a T-junction shown in Fig. 1(b) of the main text. The horizontal legs have the impedance [MDP48]

Z1 =−iZ0 tanq0a (5.32)

each and the vertical leg has the impedance

Z2 = iZ0 cscq0a . (5.33)

However, using Eqs. (5.32) and (5.33) for a narrow strip 2a� q−1
0 would be wrong

because in that case the electric and magnetic fields have a much more complicated distribution

than what is sketched in Fig. 5.7(a). Nevertheless, a simple result is obtained for a narrow vacuum

gap, σ = 0, whose interaction with the plasmons is governed by the capacitive coupling of the

two leads. As shown in the main text [see also Eq. (5.71) below], the correct plasmon reflection

coefficient is obtained if we assume that the impedance of this type of junction is given by the

usual circuit formula for the capacitor,

ZC =
1
−iωC

. (5.34)

Notably, it has no additional factor of one-half, which one would naively guess based on Eq. (5.30).
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The reason for its absence is the difference between the “near-field” potential V and the “far-field”

potential φ. Potential φ in our definiton of the impedance refers to the asymptotic amplitude of the

plasmon waves. Our formula for the the reflection coefficient [Eq. (5.70) below] indicates that for

the incident wave φi = eiq0x, the scattered potential at large distances oscillates with an amplitude

V . On the other hand, since V is also the potential difference across the gap, its amplitude just

outside the gap oscillates with an amplitude V/2, as shown in Fig. 5.7(b). This factor-of-two

difference between the far-field and near-field amplitudes cancels the factor of one-half in the

definition of the effective voltage v = φ/2, leading to the standard form of Eq. (5.34).

The same cancellation occurs also if the short strip has a nonzero sheet conductivity σ.

In other words, the correct result for the reflection coefficient is obtained if impedances Z1 and

Z2 of the T-junction are multiplied by the factor of two. As far as the vertical leg is concerned,

this modification has virtually no effect because it already has a large impedance Z2� Z1, and

so can be cut from the circuit. But the two horizontal legs now combine to the total impedance

of Z ' 4Z1 = −4iZ0 tanqa, as mentioned in the main text. The last expression can be further

approximated by

Z '−4iZ0qa =−4i
π

ωκ

iωκ

2πσ
a =

2a
σ

, qa� 1 , (5.35)

which is the usual formula for dc resistance of a conductor, similar to Eq. (5.34) being the standard

formula for a capacitor.

5.8 Reflection coefficient of general 1D inhomogeneities

5.8.1 Plasmon equation

To make the paper self-contained, we begin this section with a derivation of the plasmon

reflection coefficient for a 1D inhomogeneity. The quantity of interest is the electric potential φ

on the sheet. Within the quasistatic approximation, which is valid when all distances involved are
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much smaller than the radian length c/ω, the potential is given by the Coulomb law,

φ(r) = φext(r)+(V ∗δρ)(r) , r = (x,y) . (5.36)

Here and below the time dependence enters via the factor e−iωt , which is implicit. An external

potential φext induces a charge distribution δρ on the sheet, which in turn creates a potential

V ∗ δρ. Here V = 1/κr is the Coulomb kernel, κ is the dielectric constant of the environment

exterior to the sheet, and ∗ denotes convolution,

(A∗B)(r)≡
∫

d2r′A(r− r′)B(r′) . (5.37)

Using the continuity equation ∂tδρ+∇ · j = 0, which is equivalent to

−iωδρ+∇ · (σE) = 0 , (5.38)

where σ = σ(r) is the local sheet conductivity, we recast Eq. (5.36) into

φ(r) = φext(r)−V (r)∗∇ ·
(

σ(r)
iω

∇φ(r)
)
. (5.39)

This is the principal equation governing the propagation of plasmons in a sheet. In general, it has

to be solved numerically.

For the case of a uniform sheet with conductivity σ(r) = σ0, Eq. (5.39) can be solved

analytically in the momentum space,

φ̃(k) = φ̃ext(k)+Ṽ (k) ·q2 σ

iω
φ̃(k) , (5.40)

169



where Ṽ (k) = 2π/κ|k| and the Fourier transform is defined as

f̃ (k) =
∫

dr f (r)e−ik·r , f (r) =
∫ dk

(2π)2 f̃ (k)eik·r . (5.41)

Eq. (5.40) has the form

φ̃(k) =
φ̃ext(k)

ε(k)
, (5.42)

where the dielectric function is define by

ε(k) = 1− |k|
q0

. (5.43)

The plasmon momentum q0 is found by setting ε to zero:

q0 =
iκω

2πσ0
. (5.44)

This quantity is complex when a dissipation is present in the system, e.g., when the dielectric

constant of the environment κ has a nonzero imaginary part, or when the conductivity σ0 has

a nonzero real part. The imaginary part Imq0 > 0 has the physical meaning of the inverse

propagation length. For convenience, we parametrize q0 as

q0 =
2π

λ0
(1+ iγ) , (5.45)

where λ0 = 2π/Req0 is the plasmon wavelength and γ = Imq0/Req0 is the dimensionless damp-

ing. In the absence of the external potential, one can find (unbounded) solutions φ = eiqxx+iqyy

with real qy and complex qx =
√

q2
0−q2

y , Imqx > 0, which can be thought of as decaying plane

waves that are incident from the far left at some oblique angle.

170



5.8.2 1D inhomogeneities

In our problem the plasmon wave φi = eiqxx+iqyy impinges upon a 1D inhomogeneity in

the conductivity of the sheet localized around the y-axis. We parametrize the inhomogeneity as

σ(x) = σ0 [1+g(x)] (5.46)

or

g(x) =
∆σ(x)

σ0
, ∆σ(x)≡ σ(x)−σ0 . (5.47)

As the conductivity and the plasmon wavevector are inversely proportional to each other [Eq.

(5.44)], the inhomogeneity can also be parametrized in terms of the plasmon momentum,

1
q(x)

=
1+g(x)

q0
, q0 ≡ q(∞) . (5.48)

A spatial variation in the momentum scatters an incident plasmon wave φi, so that the solution

φ to the plasmon equation (5.39) contains both the incident φi and the scattered (reflected plus

transmitted) waves ψ. Setting φext(r)→ 0 and φ(r)→ φ(x)eiqyy in (5.39), where the eiqyy factor

is retained by virtue of translational invariance in the y-direction, we obtain the 1D version of the

plasmon equation,

φ(x) =V1 ∗
(

1+g(x)
q0

q2
yφ(x)−∂x

1+g(x)
q0

∂xφ(x)
)
. (5.49)

Here V1(x) is the 1D Coulomb kernel divided by 2π,

V1(x) =
1

2π

∫
∞

−∞

dy
eiqyy

√
x2 + y2

=
K0(|qyx|)

π
, (5.50)

where K0(z) is the modified Bessel function of the second kind. Note that Ṽ1(k) = 1/|k|.

To find the expression for the scattered wave ψ we again go to the momentum space,
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where Eq. (5.49) becomes

(
φ̃i + ψ̃

)
ε =

1
q0

Ṽ1

(
q2

y(g̃φ)− (∂̃xg∂xφ)
)
. (5.51)

The incident field φi is a solution of the homogeneous equation (5.42), so φ̃iε = 0, while the

inverse dielectric function ε−1 has the meaning of the Fourier transformed Green’s function,

G̃ = ε−1. The equation for the scattered wave in real space is then

ψ(x) =
1
q0

(G∗V1)∗
[
q2

yg(x)φ(x)−∂xg(x)∂xφ(x)
]
. (5.52)

where the Green’s function is

G(x,qy) =
∫

∞

−∞

dk
2π

eikx
ε
−1
(√

k2 +q2
y

)
. (5.53)

The integrand of the Green’s function has two poles at k = ±qx and two branch cuts on the

imaginary axis, one from iqy to i∞ and the other from −iqy to −i∞. Using contour integration

techniques, we find

G(x,qy) =−i
q2

0
qx

eiqx|x|− q0

π

∫
∞

0

dt√
t2 +q2

y

t2

t2 +q2
0

e−
√

t2+q2
y |x| . (5.54)
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5.8.3 Normal incidence

For normally incident waves qy = 0 and qx = q0, the incident wave becomes φi = eiq0x,

while the 1D plasmon equation (5.52) is reduced to

ψ(x) =
1
q0

(G1 ∗V1)∗ [−∂xg(x)∂xφ(x)] , (5.55)

where G1(x) = G(x,0) is found to be

G1(x) =−iq0eiq0|x|+
q0

π

{
Ci(q0|x|)cos(q0|x|)+

[
Si(q0|x|)−

π

2

]
sin(q0|x|)

}

=−iq0eiq0|x|− q0

2π

[
eiq0|x|E1(iq0|x|)+ e−iq0|x|E1(−iq0|x|)

]
.

(5.56)

Here Ci(z), Si(z) and E1(z) are the cosine, sine and exponential integrals,

Ci(z) =−
∫

∞

z
dt

cos t
t

, Si(z) =
∫ z

0
dt

sin t
t

, E1(z) =
∫

∞

z
dt

e−t

t
, (5.57)

with the branch cut taken on the negative real axis. Equation (5.55) can be further simplified in

momentum space in terms of the total electric field E =−∂xφ and the scattered field Es =−∂xψ,

Ẽs(k) =−ikψ̃(k) =
(

1
ε(k)
−1
)
(g̃E)(k) , (g̃E) =

1
2π

g̃∗ Ẽ . (5.58)

In the real space this reads,

Es(x) =
∫

∞

−∞

dx′
(
G1(x− x′)−δ(x− x′)

)
g(x′)E(x′) . (5.59)

This is the equation for the scattered field used in the main text. It indicates the scattered

field Es can be determined by the conductivity profile g(x) and the local field E(x) around the

inhomogeneity using the Green’s function G1.

The reflection coefficient r of the normally incident plasmon wave can be obtained by
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analyzing the scattered field Es at large negative x, Es '−rE0e−iq0x, where E0 is the amplitude

of the incident field Ei = E0eiq0x. From Eq. (5.58), the long range behavior of Es is determined

by the pole of ε−1(k) at k =−q0. Taking the residue, we get

r =
iq0

E0

∫
∞

−∞

dxg(x)E(x)eiq0x . (5.60)

This formula is exact and can be used for any conductivity profile g(x). The field E(x) can be

calculated numerically, cf. Sec. 5.11

An analytical expression for E(x) (and thus r) can be found in the perturbative case, r� 1,

where the current density is approximately constant across the inhomogeneity,

j = σ0E0 = σ(x)E(x) , (5.61)

so that E(x) = σ0
σ(x)E0 and

r = iq0

∫
∞

−∞

dx
σ(x)−σ0

σ(x)
eiq0x = iq0

∫
∞

−∞

dx
g(x)

g(x)+1
eiq0x . (5.62)

5.9 Reflection coefficient of narrow junctions

In this section we consider a particular type of conductivity profile,

g(x) = gΘ(a−|x|) , g =
∆σ

σ0
=

σ−σ0

σ0
, (5.63)

which describes a junction that has a constant conductivity σ and a width 2a. Further, we assume

the width is narrow compared to the background plasmon wavelength, a� q−1
0 . In this limit, the

leads can be considered perfect metals of effectively infinite conductivity. This allows us to make

simplifications and obtain analytical expressions for the reflection coefficient r.
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5.9.1 Vacuum gap

Analytical solution of the field distribution Evac for the special case of a vacuum gap,

σ = 0 or g =−1, is well known,[Smy50]

Evac(x) =V F(x) , F(x) =
1
π

Θ(a−|x|)√
a2− x2

, (5.64)

where V is the voltage difference across the junction,

V =
∫ a

−a
dxE(x) . (5.65)

Substituting Evac(x) into Eq. (5.59), we get

Ei(x)' E0 =V
∫ a

−a
dx′G1(x− x′)F(x)

=V
q0

π

[
c+ log

(q0a
2

)
− iπ

]
, −a < x < a .

(5.66)

Here we used the small-distance approximation for the Green’s function,

G1(x)'
q0

π
[c+ log(q0|x|)− iπ]+O(q0|x|) , q0|x| � 1 , (5.67)

where c' 0.577 is the Euler-Mascheroni constant, and the table integral

∫ a

−a
dx′

log |x− x′|
π
√

a2− x′2
= log

a
2
. (5.68)
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(It can be evaluated by the change of variables x′ = acosθ′.) Identifying the capacitance of the

junction (cf. Sec. 5.10)

C =
κ

2π2 log
2e−c

q0a
, (5.69)

and the reflection coefficient for a narrow junction [Eq. (5.60) with eiq0x→ 1]

r ' iq0

E0
gV , (5.70)

our Eq. (5.66) yields the reflection coefficient of a narrow vacuum gap,

r =
iπ

log
(

2
q0a

)
− c+ iπ

=
iκ

2πC+ iκ
. (5.71)

Note that as the gap gets wider, r approaches unity. This can be understood by considering an

infinitely wide gap where the current j(x) is completely reflected and is zero at the edge, so that

the current reflection coefficient r j =−r =−1.

5.9.2 General cases

We add Ei to both sides of Eq. (5.59) to get

Ei(x)' E0 =− [G(x)∗gE(x)]+(1+g)E(x) , −a < x < a . (5.72)

We multiply this by σ0F(x), where F(x) is given by Eq. (5.64), and integrate it from x =−a to a,

σ0E0 =−σ0gV
q0

π

[
c+ log

(q0a
2

)
− iπ

]
+σ0(1+g)

∫ a

−a
dxE(x)F(x) . (5.73)
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We arrive at the equation (mentioned in the main text)

σ0E0(1− r) =−iωVC′+
∫ a

−a
dxσE(x)F(x) , C′ ≡−gC , (5.74)

which represents the conservation of charge. Note that this equation has the correct limiting

behavior, reproducing the reflection coefficient for the vacuum gap when g =−1 and σ = 0, and

yielding r = 0 when g = 0 and σ = σ0.

Equation (5.73) can be used to find the reflection coefficient r if the field E(x) were known.

We use the following ansatz for the field,

E(x) = d0 +
∞

∑
n=1

dnEn(x) , −a < x < a , (5.75)

which is an expansion into the eigenmodes En of the system when there is no external field. The

eigenmodes En have the following properties,

En(|x|> a) = 0 , Vn =
∫ a

−a
dxEn(x) = 0 , (5.76)

as the system now consists of a junction with nonzero conductivity σn and two sheets of infinite

conductivity. The eigenvalue equation governing En(x) can be derived from (5.72) using the

substitutions g =−1 and 1+g = σn/σ0 and invoking (5.68) and (5.76),

En(x) = A− qn

π

∫
∞

−∞

dx′ log
|x− x′|

L
En(x′) , (5.77)

where qn = iκω/2πσn, the constant L is arbitrary, and the constant A can be obtained by multi-

plying both sides of (5.77) by F(x) and integrating over x,

A =
∫ a

−a
En(x)F(x) . (5.78)
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Figure 5.8: (a) Eigenvalues qn and (b)-(f) the first five eigenmodes fn of a junction in a perfect
metal sheet. The analytical formula is (5.80), while the numerical results are obtained by solving
(5.77).

Since the kernel in (5.77) is self-adjoint, the eigenmodes En are orthogonal,

∫ a

−a
dxEn(x)Em(x) = 0 , n 6= m , (5.79)

and the eigenvalues qn are real. (5.77) can be solved numerically to obtain the eigenmodes. As

shown in Fig. 5.8, they have the asymptotic forms

En

E0
' cos

(
qnx− nπ

2

)
, qn '

π

2a

(
n+

1
4

)
, (5.80)

as n is increased.

Next we determine the coefficients dn. Under an external field the voltage across the
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junction V 6= 0 but all Vn = 0. Thus V must be accounted for by d0, i.e.,

d0 =
V
2a

. (5.81)

To find dn, we rewrite (5.72) using (5.75) and (5.77) as

log
|x|
L
∗h(x) = 0 , (5.82)

with a solution

h(x) =V
[

1
2a
−F(x)

]
+

∞

∑
n=1

(
1+

g+1
g

qn

q0

)
dnEn = 0 . (5.83)

Here (5.68) was used to convert constants into the convolution,

1 =
1

log(a/2)
F(x)∗ log

|x|
L
, (5.84)

and (5.73) was used in the form

E0− (g+1)
∫ a

−a
dxE(x)F(x) =−g

q0

π
V log

a
2
. (5.85)

Using the orthogonality of the eigenmodes, we find

dn =
V

1+ g+1
g

qn
q0

∫ a
−a dxEn(x)F(x)∫ a
−a dxE2

n(x)
. (5.86)

Note that in the limit of a vacuum gap where g =−1, dn reduces to coefficients of the expansion

of Evac = V F(x) in the En basis, as expected. In the manuscript, the dimensionless expansion

coefficients b0 and bn are defined as

b0 =
d0

(V/2a)
= 1 , bn = dn

E0

(V/2a)
=

2a

1+ g+1
g

qn
q0

∫ a
−a dx fn(x)F(x)∫ a
−a dx f 2

n (x)
, (5.87)
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and the field is expanded as

E(x) =
V
2a

(
1+

∞

∑
n=1

bn fn

)
, fn =

En

E0
. (5.88)

5.9.3 Analytic approximation

Having found the coefficients dn, the expression for the reflection coefficient can now be

written from (5.73) using (5.70),

r−1 = 1− 2πi
κ

C− i
q0

g+1
g

{
1

2a
+

∞

∑
n=1

1

1+ g+1
g

qn
q0

[∫ a
−a dx fn(x)F(x)

]2∫ a
−a dx f 2

n (x)

}
. (5.89)

An analytical expression for r can be found using the approximation (5.80), so that

∫ a

−a
dx f 2

n (x) = a

[
1+

1√
2π
(
n+ 1

4

)
]
, (5.90)

[∫ a

−a
dx fn(x)F(x)

]2

= 0 , n odd

= J2
0(qna)' 2+

√
2

π2
1

n+ 1
4

, n� 1 even ,
(5.91)

where J0(z) is the Bessel function of the first kind. The summation is then

∞

∑
n=1

1

1+ g+1
g

qn
q0

[∫ a
−a dx fn(x)F(x)

]2∫ a
−a dx f 2

n (x)
' 2q0

π

g
g+1

2+
√

2
π2

∞

∑
n=1

1
(2n+α)(2n+β)

, (5.92)

where α = 2q0a
π

g
g+1 +

1
4 and β = 1√

2π
+ 1

4 . Using the identity

∞

∑
n=1

1
(2n+α)(2n+β)

=
Ψ
(
1+ α

2

)
−Ψ

(
1+ β

2

)

2(α−β)
, (5.93)
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where Ψ(z) = Γ′(z)/Γ(z) is the digamma function, the reflection coefficient is

r−1 ' 1−2πi
κ

C− i
2q0a

g+1
g

− i

√
2+1
π2

2(g+1)
2
√

2q0ag− (g+1)

[
Ψ

(
9
8
+

q0a
π

g
g+1

)
−Ψ

(
9
8
+

√
2

4π

)]
,

(5.94)

in the limits q0a� 1 and n� 1.

5.10 Capacitance of a vacuum gap

The capacitance (5.69) found in the previous section can be simply derived by considering

a vacuum gap in a perfect metal sheet. The induced charge distribution on the sheet is well-

known,[Smy50]

δρ(x) =− κV
2π2

1√
x2−a2

Θ(|x|−a)sgn(x) . (5.95)

The capacitance C is then

C =
Q
V

=
1
V

−a∫
−L

dxδρ(x) =
κ

2π2 log
(

2L
a

)
, (5.96)

where L is the long-distance cutoff length. If σ0 is finite, the charge distribution δρ(x) evolves

into plasmonic waves at distance ∼ q−1
0 . Therefore, we expect L∼ q−1

0 . From the expression for

C in the previous section we get the exact relation L = e−cq−1
0 .
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5.11 Numerical calculation of the reflection coefficient

The reflection coefficient of a conductivity profile g(x) of any shape and width can be

calculated numerically by recasting Eq. (5.59) in the following form,

E = Es +Ei = G∗ (gE)−gE +Ei , (5.97)

or

Ei = K E , K = 1+g−G∗g . (5.98)

Inversion of K then yields the total field within the inhomogeneity E = K −1Ei given the incident

field Ei, and the reflection coefficient can be found using Eq. (5.60). The kernel K has elements

Ki j = (1+g(xi))δi j−G(xi− x j)g(x j)∆x j , (5.99)

where x within the junction is discretized into xi and the Green’s function G is calculated using

Eq. (5.56). For our calculation we chose the discretization

xi = acos
π

N

(
i− 1

2

)
, i = N,N−1, ...,1 , (5.100)

and

∆xi = a
π

N
sin

π

N

(
i− 1

2

)
, (5.101)

with a number of grid points N ∼ 102. The diverging diagonal elements G(xi− xi) is regularized

using G(∆xi/2π), explained as follows. For small arguments, G(x) is proportional to log |x|.

Assume we wish to calculate the integral
∫ L
−L dx log |x| as a discrete sum on a uniform grid. The

grid is taken to be xi = i∆x with i =−N, ...,N, which has 2N +1 points separated by distance ∆x

and a total length 2L = (2N +1)∆x. Writing L0 as the regularized replacement for the diverging
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Figure 5.9: (a) Reflectance of a junction with a smooth conductivity profile for a = 0.1λ0 and
γ = 0. (b) Similar plot at γ = 0.05. (Inset) The conductivity profile σsm.

log0, we have ∫ L

−L
dx log |x|=

(
L0 +∑

i 6=0
log |xi|

)
∆x . (5.102)

The summation can be simplified using Stirling’s approximation for large N,

N

∑
i=1

log |xi|= log
(
∆xNN!

)
' log

(
∆xN)+ log

[
√

2πN
(

N
e

)N
]
. (5.103)

After some algebra we find L0 = log(∆x/2π), prescribing the regularization G(∆xi/2π).

5.12 Smooth conductivity profiles

In our model we assume sharp conductivity changes at the edges of the junction. This

may be difficult to achieve in experiment, or yield unphysical results in theory. Here we show

that the physics for a sharply-changing conductivity profile remains qualitatively the same for a

smoothly-varying one. To demonstrate, we calculated numerically the reflectance of a smooth

conductivity profile

σsm(|x|< a) = sin2
(

π

2a
|x|
)
+

σ

σ0
cos2

(
π

2a
|x|
)
, (5.104)
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Figure 5.10: (a) Squared magnitude R = |r|2 and (b) phase arg(r) of the reflection coefficient r
for a junction of width a = 0.01λ0 and damping γ = 0. (b) Similar quantities for γ = 0.05. The
blue curves are calculated numerically as described in Sec. 5.11, while the green curves are
from (5.94).

where σ now denotes the lowest value of conductivity occuring at x = 0. As shown in Figure 5.9,

the reflectance retains the same features – capacitive open-circuit resonance and Fano-shaped

cavity resonances with weak odd modes. The open-circuit resonance is still persistent under

damping, while the cavity resonances are less sharp due to a larger |t ′| for smooth profiles. Note

that to get an anti-resonance at the same location, σ0/σ ≈ 10, the junction width had to be

increased by an order of magnitude, from a/λ0 = 0.01 to 0.1.
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5.13 Phase of the reflection coefficient

We show in Fig. 5.10 the phase of the reflection coefficient for a narrow junction a =

0.01λ0. In the perturbative regime where σ . σ0 the phase is−π/2, in agreement with Eq. (5.62).

At the open-circuit resonance the phase is 0, r > 0 is real and |r| ' 1. For large conductivity

contrasts the phase approaches the limiting value ' 0.24π predicted by Eq. (5.71).

5.14 Effect of damping contrast

In the manuscript we only considered the case when the damping γ in the junction is

the same as in the sheet, γ = γ0. One might expect a stronger damping in the junction would

further dampen the resonances and vice versa. This is indeed the case, as can be seen from the

reflectances calculated under different values of γ shown in Fig. 5.11. The conductivities are

parametrized as

σ0 =
S0

1+ iγ0
, σ =

S
1+ iγ

, (5.105)

where γ0 = 0.05 and γ takes the values 0.015, 0.05, and 0.15. The resonant features are enhanced

if γ < γ0 and diminished if γ > γ0.
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