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ABSTRACT

The purpose of this thesis is to investigate how we can learn action conventions by
observation in an ad-hoc context. We argue that the game Hanabi in particular is a promising
application for studying this topic because it distills the problem to its core components,
while presenting a small computational overhead. To facilitate research in this direction,
we have compiled the Hanabi Open Agent Dataset (HOAD), consisting of neural replicas of
the majority of contemporary Hanabi agents developed prior to this work. We first validate
that HOAD is appropriate to use in meta-learning studies by demonstrating that HOAD
agents use diverse, high quality strategies, and then we show that the popular meta-learning
algorithm MAML can be used to train an ad-hoc learner that performs superior to random
and naive baselines. Finally, we corroborate recent findings that MAML doesn’t benefit from

its inner learning loop after a sufficient number of training epochs.
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CHAPTER 1

INTRODUCTION

Human beings regularly learn action conventions by observation in ad-hoc contexts. For
example, every time we meet a new group of people, whether a new friend group or a new
culture, there is always a period of adjustment, where we pick up on the unsaid conventions
that underpin interactions within that group. Furthermore, for us this period can be
remarkably short—a single “episode” to blend into a new friend group, a few tens to blend
into a new workplace, and a few hundred to blend into a new culture. As various artificial
intelligences (chat-bots, assistants, self-driving cars, game Als, etc) become more prevalent in
our lives, the need for these Als to seamlessly blend into their social environments continues
to grow. On the one hand, forcing users to adapt to the idiosyncrasies of the Al places a high
burden on the individual. On the other, Al developers are often not a representative sample
of the general public, and these undue burdens are likely to affect minority populations more
significantly. An experience that can quickly tailor to the user will thus provide both a

market advantage, and promote greater equity.

The game Hanabi is a particularly good application for studying this problem because
it distills the problem of ad-hoc interaction to its core components, allowing researchers to
focus on solving the problem in isolation. Games consist of a few tens of actions, and the
game representation is fairly light, but the space of action conventions is huge. Moreover,
there is a large subset of conventions which are substantially different from one another,
but still lead to strong game-play. This particular feature underpins the core difficulty of
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the problem, and is a direct analogy to how different groups of people have different (but
still effective) conventions for interaction. As a result of these properties, research interest
in Hanabi has spiked in recent years. Multiple groups have developed agents to play the
game, and have provided valuable insights into various aspects of game-play (section 2.3.1).
However, to get to the very heart of the ad-hoc problem, it is necessary for the agents from
these disparate groups to be able to play with each other. This is the purpose of the Hanabi
Open Agent Dataset (HOAD); to ease and simplify the problem of studying the ad-hoc
learning of action conventions in Hanabi. Specifically, HOAD consists of neural replicas of
the majority of contemporary Hanabi agents developed prior to this work. While there are
a few agents developed concurrently that are not yet present, HOAD makes it easy to add

additional agents. This extensibility is documented in section 3.5.

Although HOAD is flexible and can be used to study a wide array of problems involving
Hanabi agents, in this work we focus specifically on the ad-hoc problem. We formulate
this problem as “given 10 games of Hanabi played by an unfamiliar agent, learn the action
distribution of that agent”. Once an imitator is learned, it is used to play games with the
unfamiliar agent; the resulting score average serves to evaluate the quality of the imitator.
In section 3.6 we show that meta-learning is a promising approach for solving the ad-hoc
problem. Since the agents in HOAD are both high quality and use diverse strategies (section
2.3.2), they can be used to meta-learn a generalist agent, which can then be specialized to
imitate the previously unseen agent using 10 games of replay data. Finally, we conclude this
study by corroborating the recent finding that the popular meta-learning algorithm MAML
doesn’t benefit from its inner learning loop after a sufficient number of training epochs. In
other words, once the meta-learning has progressed far enough, the generalist agent no longer

gains any advantage from being trained on the 10 games of the previously unseen agent.

The bulk of this thesis outside of this introduction is contained in two previously published
articles. The first, titled “HOAD: The Hanabi Open Agent Dataset” is an exposition of
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Hanabi and the eponymous dataset, and was published as an extended abstract in the
2021 Autonomous Agents and Multiagent Systems (AAMAS) conference. The second, titled
“Meta-Learning a Solution to the Hanabi Ad-Hoc Challenge”, expands on why HOAD is a
good test-bed for meta-learning algorithms, and presents our findings after applying MAML
to HOAD; it was published in the 2021 Foundations of Digital Games (FDG) conference.

The majority of the work in both publications is due to the first author of the articles.



CHAPTER 2

HOAD: THE HANABI OPEN AGENT DATASET

2.1 Abstract

In this work we present the Hanabi Open Agent Dataset (HOAD)— meant to address
the current lack of Hanabi datasets, HOAD is an easily extensible, open-sourced, and
comprehensive collection of existing Hanabi playing agents, all ported to the Hanabi Learning
Environment (HLE). We give a description and analysis of each agent’s strategy, and we also
show cross-play performance between all the agents, demonstrating both their high quality
and diversity of strategy. These properties make HOAD especially well suited to studies
involving meta-learning and transfer learning. Finally, we describe in detail an easy way to
add new agents to HOAD regardless of the origin codebase of the agent and make our code

and dataset publicly available at https://github.com/aronsar/hoad.

2.2 Introduction

Hanabi [5] is a tabletop card game for 2-5 players', notable for its unique combination of
partial observability, cooperation, stochasticity, and implicit communication. Recently pro-
posed as a challenge domain [4] to provide a sophisticated yet well-defined set of challenges for
artificial intelligence practitioners, the game is of rising interest to the research community.

In a game of Hanabi, the players work together to assemble five piles of cards, where

each pile is a different color, and consists of cards numbered 1 through 5, in that order.

Lin this work we consider only the two-player scenario for simplicity, leaving 3-5 players to future work

4



The defining feature of the game is that players only see their teammates’ cards, and
not their own. On their turn, a player may either give a teammate a hint about the
color or value of their cards (a limited resource), discard a card (doing so regains a hint,
but there are a limited number of copies of each card), or play a card they believe is
playable. See [30] for the complete rules. To be successful, a group of players must
correctly interpret each others’ explicit communication—through hints—as well as each
others’ implicit communication—through playing cards, discarding, or even hinting (e.g.
the finesse play [40]). This results in a multiplicity of optimal and near-optimal strategies,
each corresponding to a communication schema.

This aspect of the game is one of the most interesting from a research perspective.
Indeed, it recently inspired the Ad-Hoc Challenge, [4], the crux of which is to figure out
the communication strategy of a held-out agent given only ten of its games, and then
successfully play games with it. However, to the best of our knowledge, there does not
exist a dataset of Hanabi playing agents that can facilitate this kind of research. We thus
propose the Hanabi Open Agent Dataset (HOAD), a compilation of different agents from
different sources, most using conventions typically seen in human play, and all operating
within the same environment and using a binarized game state representation specifically
designed for neural learning. The dataset allows pairwise play between any two agents,
offers an easy way to add additional agents from most codebases, and also gives access to
the Dopamine reinforcement learning framework [7], which we plan to use in future work to

further improve and extend the HOAD agents.

2.3 The Hanabi Open Agent Dataset

To create HOAD, we conducted a comprehensive review of existing implementations of agents
that play Hanabi and ported those that met our criteria. We looked specifically for agents
that had codebases available online, scored reasonably well in self-play (above 10 points),
and employed strategies sufficiently different from one another, such that when two different
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Table 2.1: We recorded 500,000 games of each original agent into the HLE representation,
and then used them to learn multilayer perceptron (MLP) imitators of each agent.

Agent Original Self Play Score Imitator Self Play Score Imitator Accuracy
Simplebot 16.9 16.8 99.7
Valuebot 19.8 18.0 92.0
Holmesbot 20.8 14.7 90.3
Outer 14.5 14.1 66.7
Iggi 17.0 16.2 90.9
Piers 17.3 15.9 85.8
Rainbow 18.5 18.1 77.5
Van-Den-Bergh 14.0 10.5 81.2

agents played one another they performed significantly worse than either did in self-play. As
a result, the variation of strategy among the agents is ensured. This disqualified a number
of derivate works that were slight modifications on existing agents, as well as the Actor
Critic Hanabi Agent (ACHA) [23], which does not have a public codebase, and the agents
proposed by [6], which released their codebase concurrently to this work. The FireFlower [38]
and BAD [13] agents were also considered, but were not included due to technical difficulties;

we plan to add them in future work.

Although some authors of Hanabi playing agents have published multiple agents using
the same framework, in general, two arbitrary agents taken from different codebases will
not be able to play one another because of differences in implementation in how the agents
represent the game state. One naive way to enable agents from multiple different codebases
to play one another is to rewrite the game logic of every agent using the same environment
and game state representation. This however is prohibitively time-consuming, as some agents
are comprised of several thousand lines of game logic. Another method would be to observe
the game states of each agent in its native representation and save all the game states to
some common representation. In our experience, this was as difficult as the first approach
due to the variation in implementation among authors and the size and complexity of the
game state (there are 658 binary variables in the game state representation of a 2-player

game).



The workaround that made HOAD possible (and which is responsible for its ease of
extensibility) is to observe the starting deck order and the actions taken by agents in their
native environments. These observations are then used to recreate the games in the Hanabi
Learning Environment (HLE). Observing the starting deck order and the actions taken is a
much simpler task because the set of legal actions is small (< 20 in a 2-player game), and
the ordering of the deck is typically known by the respective game engine at the start of the
game. Once replay data has been gathered for all the agents in the HLE representation, it
is possible to train a neural network to imitate each of the original agents. The accuracy of

these imitators is presented in Table 2.1.

2.3.1 HOAD Agent Strategy Summaries

We present a summary of each agent in HOAD below, including only necessary detail. A

compilation of commonly employed strategies, used both by human players and HOAD

agents, can be found at [40].

Simplebot [25] — Plays only cards which it has enough knowledge about to know they are

playable, and gives hints only about playable cards, preferring color hints over value hints.

It uses an oldest first discarding strategy.

Valuebot [25] — Same as Simplebot, but before playing, checks to see if the next player is

about to discard a valuable card (i.e. the last copy of a card).

Holmesbot [25] — Extends Valuebot by including the use of mulligans and by adding

additional inference capabilities. Specifically, card knowledge from hints, the discard pile,

and other players’ hands are used to make deductions about the agent’s hand.

Iggi [36] — Similar logic to Simplebot but prefers value hints over color hints and prefers

discarding unplayable cards over oldest first.

Outer [36] — Similar to Iggi, but prefers discarding over hinting, and uses more randomness

in its hinting and discarding logic; this results in significantly reduced imitation accuracy

and is also likely the reason for lower published score.

Piers [36] — Extends Iggi by including the use of mulligans (but not as deterministically as
7



Table 2.2: Pairwise play scores are produced by playing each MLP imitator agent with every
other for 500 games.
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Simplebot 168157 128 00 41 11 1.7 0.2
Valuebot 15.2 00 38 1.3 20 0.0
Holmesbot 11.2 147 00 14 06 05 00
Outer 00 0.0 00141 10 41 62 90
Iggi 39 38 18 1.8 1162 118 27 6.0
Piers 1.8 05 02 7.2 1031569 55 94
Rainbow 03 20 03 6.6 40 56 SN 26

Van-Den-Bergh 0.0 0.2 00 106 4.7 83 27 10.5

Holmesbot), and some additional logic to avoid discarding valuable cards.

Van-der-bergh [36] — Makes some risky plays if they have high likelihood of success and
there are remaining mulligans. Prioritizes discarding over hints, gives hints about useless
cards, and attempts to maximize transmitted information.

Rainbow [4] — This agent tends to hint for rank instead of color. Conditional action

probabilities may be found in the appendix of [4].

2.3.2 Discussion of Imitator Agent Pairwise Scores

Since the same observation can be passed in to any of the imitator agents, the imitator agents
make it possible to play games with agents originating from two different codebases; this
is necessary to evaluate how different the players are from each other. Table 2.2 shows the
average score of each imitator agent playing 500 games with every other imitator agent. As
expected, when an agent is paired with itself, it typically achieves a much higher score than
if it were paired with any other agent—this corresponds to the high scores on the diagonals
and the relatively low scores on the off-diagonals. This confirms the intuition that agents
must use a similar strategy when paired with one another, else risk miscommunicating, losing
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all three lives, and scoring zero points.

An interesting feature of Table 2.2 warranting discussion is the high scores achieved by
certain combinations of agents. Two groups of agents that play relatively successfully with
each other are Simplebot — Valuebot — Holmesbot, and Iggi — Piers — Outer — Van-der-bergh
— Rainbow. All the agents in each of these two groups belong to the same codebase, so the
high scores are likely due to the authors of the two codebases reusing logic between their
agents. The exception to this is the Rainbow agent, which was produced using reinforcement
learning, and so it is surprising that it performs so well with Walton-Rivers’ agents. Our
best explanation is that both agents reportedly prefer value hints and can presumably also

respond well to game states where value hints have been given.



CHAPTER 3

META-LEARNING A SOLUTION TO THE HANABI AD-HOC
CHALLENGE

3.1 Abstract

In this work we demonstrate that the First Order Model Agnostic Meta Learning (FOMAML)
algorithm trained on the Hanabi Open Agent Dataset (HOAD) results in a model that
is able to outplay both a naive MLP baseline, as well as a randomly selected partner in
the Hanabi Ad-Hoc Challenge, in both low-shot and zero-shot setups. We first show that
HOAD is well suited for the meta-learning task because its agents are high quality and utilize
diverse strategies, thereby confirming that MAML is generalizing, and not memorizing agent
strategies. We then detail our application of FOMAML to the cooperative decision making
problem Hanabi entails, and we also provide evidence supporting recent results that the task
update of MAML gives little to no test time performance boost. The pretrained models and

game data are made available online at https://github.com/aronsar/hoad.

3.2 Introduction

Hanabi [5], a tabletop card game for 2-5 players!, is a challenging application for agent
modeling in the multi-agent domain due to its unique combination of partial observability,

cooperation, stochasticity, and implicit communication. Recently proposed as a challenge

Lin this work we consider only the two-player scenario for simplicity, leaving 3-5 players to future work
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domain [4] to provide a sophisticated yet well-defined set of challenges for artificial intelli-
gence practitioners, Hanabi is of rising interest to the research community. Of particular
interest is the Ad-Hoc Challenge, [4] which aims to push research towards agents that are
capable of cooperatively interacting with other agents or even humans with whom they are
unfamiliar. These problems inherent to Hanabi have also been studied in other contexts,
both commercial and industrial, such as self-driving cars, and human-robot cooperation in
the manufacturing setting.

In a game of Hanabi, the players see the cards of all their teammates, but not their own.
Thus, the defining element of the game is the communication of information about other
players’ cards either explicitly using hints (a limited resource), or implicitly through playing
cards, discarding, or even hinting (e.g. the finesse play [40]). Because of this, a group’s
success or failure depends on that group’s ability to communicate and to understand one
another—e.g. if one player makes a finesse play, and another player doesn’t pick up on it, the
group loses one of their three lives. The result of this mechanic is that unlike other games
such as Go [32] and StarCraft[21], Hanabi has a multiplicity of optimal and near-optimal
strategies, each corresponding to a different communication schema. While a number of
works have focused on creating agents that get high scores in self-play [23] [36] [8], here we
instead focus on the more difficult Ad-hoc Challenge, which, to the best of our knowledge,
has not yet been studied. In the Ad-hoc Challenge, an agent is asked to play successfully
with a held-out (ie. previously unseen) agent after observing only 10 of its self-play games.
We break this task down into two subtasks: 1) given 10 of an agent’s games, build a model
of that agent, and 2) use this model to search over possible future states and pick an action
that maximizes the expectation of future reward. In this work we focus on the first of these
two subtasks, leaving the second to future work.

Building a model of an agent-based on only 10 of its games is a very difficult task for
traditional deep learning algorithms because the 10 games do not provide nearly enough
data to cover every aspect of an agent’s strategy, and they also don’t necessarily provide an
example for every game mechanic. For example, some agents in Hanabi Open Agent Dataset
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[31] (HOAD) rarely or never give hints, while other agents may be too weak to reach late
game, and so may not provide examples of late-game mechanics in action. As a lower bound,
we present a naive multilayer perceptron (an MLP) which does exactly this: it is trained to
imitate an agent based on only 10 of its self-play games.

Properly addressing the Ad-Hoc Challenge requires an a priori understanding of the
game, and of the kind of communication strategies one might employ to play the game. The
approach we take in this work is to learn such an understanding using a large number of
games played by a variety of different agents (that we call “training agents”). To the best
of our knowledge, HOAD is the only dataset of Hanabi playing agents that can facilitate
this kind of learning. HOAD is a compilation of different agents from different sources,
most using conventions typically seen in human play, and all operating within the same
environment and using a binarized game state representation specifically designed for neural
learning. The dataset allows pairwise play between any two agents, offers an easy way to add
additional agents from most codebases, and also gives access to the Dopamine reinforcement
learning framework [7], which we plan to use in future work to further improve and extend
the HOAD agents.

To solve the Ad-hoc Challenge, we chose to implement the first-order approximation of
Model Agnostic Meta-Learning (FOMAML) [11]. This is a highly generalizable technique
that is well-suited to the low-shot learning scenario and has been successfully applied to
several problems outside of image recognition, its original application [12] [39]. Despite
its popularity however, this is the first time it is applied to the cooperative decision making
problem. The goal of MAML is to train a meta-model that is close in parameter space to the
optima of many different tasks. During inference, a few gradient updates (hence “low-shot”)
are all that is needed to obtain good performance on a previously unseen task. In our case,
that means that given just a few games of a held-out agent, the meta-model can be updated
to accurately imitate this agent. Recently, however, it has been shown that the meta-model
itself is already quite strong on its own, without the task update [26]. Our results provide
further evidence of this phenomenon, showing that it also occurs in the context of Hanabi,
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and using the first-order approximation of MAML. Pseudocode, along with a more detailed
explanation of our implementation is provided in Section 3.6.2.

The main contribution of this work is that we show that MAML can be applied to the
cooperative decision making problem to train a meta-model on HOAD, which can then be
updated on a small set of a held-out agent’s games, and then played directly with that
held-out agent to achieve superior performance to random partner selection and a naive
MLP baseline. We also show that given enough training time, the meta-model actually

performs better without the task update step, corroborating similar recent findings.

3.3 Related Works

Agent imitation is a well-established field of research; some early methods include behavioral
cloning [28], which is quite brittle and does not easily adapt to new situations, and inverse
reinforcement learning, which is very slow to run [27]. Despite increased attention to this field
in the past decade [1] [3], few works study agent imitation under all the same constraints
that apply to Hanabi—i.e. partial observability, cooperation, stochasticity, and implicit
communication, all in the low-shot regime. As such, we discuss those that adopt a subset of
these constraints. He et. al. [16] presents models that jointly learn a policy and the behavior
of their opponents using deep reinforcement learning; however, they need access to the agent
they model during training, and so are also not well suited to the ad-hoc situation. Le et. al.
[19] proposes an approach to learning implicit coordination strategies that jointly learns a
latent coordination model as well as the agents’ individual policies, but this approach too is
infeasible in the ad-hoc case, as it requires a large number of examples of agent interactions.

Several other works share our low-shot constraint but are overly specialized to their
respective tasks. A seminal work in robotic agent imitation, Generative Adversarial Imitation
Learning (GAIL), makes use of a generative adversarial technique that achieves good results
on low-shot expert imitation; however, GAIL (and its class of solutions) is best suited to
the continuous world of robotic movement, and so is difficult to adapt to Hanabi [17] [37]
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[20]. Duan et. al. [9] proposes one-shot imitation learning to solve the task of robot
block-stacking, but their neighborhood attention model is ill-suited to the Hanabi game
representation, where there is little spatial information. Similarly, [14] [35] [34] [33] are all
designed for the low-shot scenario, but their hand-crafted architectures are too focused on
the image classification or robot motion applications to be easily adapted to Hanabi.

The most comparable approach to MAML in terms of generality is the Simple Neural
Attentlve Learner (SNAIL) [22]; indeed, SNAIL performs comparably or slightly better than
MAML when evaluated on Omniglot [18] and Mini-Imagenet [35], and we suspect that it
could be a promising baseline to run on HOAD in future work. For this work, however,
we preferred MAML’s model agnosticism, which allowed us to use a small and simple fully
connected network as the policy predictor. In a similar vein, we chose not to use any of
the many MAML derivate works, many of which achieve improvements by introducing the
kind of hand-designed architectural and algorithmic tweaks that specialize the approach to
a specific domain, and which don’t transfer well to Hanabi [20] [15] [29]. Of additional
interest is Yu and Finn’s more recent work using MAML for human imitation in the robot
manipulation environment; this work most closely resembles the conceptual underpinnings

of our use of MAML [39].

3.4 Rules of the Game

The base game considered here consists of the following materials:

e 50 cards; 10 each of blue, yellow, red, white, and green; of each color there are three 1

valued cards, two 2’s, two 3’s, two 4’s, and only one 5 valued card

e 8 hint tokens, also referred to as information tokens; these have two faces to indicate

whether they’'ve been used already

e 3 lives, also referred to as mulligans or danger tokens; these too have two faces to
designate their availability

14



The goal of the game is for the players to collectively form 5 piles of cards, one pile of each
color. Each pile must be built in ascending order, starting with the 1 valued card on the
bottom, and ending with the 5 valued card on top. At the start of the game, each player
is dealt a hand of 5 cards, and the 8 hint tokens and 3 life tokens are all facing up. During
play, a player may look at the cards of their teammates, but never their own. Players take
legal actions in turns, going around the table in a clockwise fashion. The game ends when

any of the below conditions occur:

e If the third life token is flipped face down, the game ends with a score of 0 (this is the

most important factor in why it is difficult to play with unfamiliar agents)
e If the 5 piles are completed before the deck runs out, the game ends with a score of 25

e If the deck runs out before the 5 piles are completed, each player gets one last turn,
including the one who drew the last card. The final score is equal to the count of the

cards in the 5 piles.

According to the official ruleset, no communication may occur during the game other than
through the use of hint tokens (explained below). However, the rules also recommend that
players interpret this rule in a way that suits them best. Although there is some controversy
in the research community over what exactly should be considered acceptable communication
[10], in this work we have restricted the agents to only be able to pass information to their
teammates through their choice of legal action on their own turn—the same as proposed in

[4]. The possible actions in a game are:

e Giving a hint: a player can either give a color hint or a value hint. To give a color
hint, pick another player, pick a color, and then point out all cards of that color in
their hand. To give a value hint, do the same, but for a card value instead of a color.
Giving a hint costs a hint token, and is only a legal action if there are remaining face
up hint tokens. No empty hints may be given, i.e. one may not tell a player what is
not in their hand.

15



e Playing a card: a player may choose a card in their hand and play it. To play a card,
attempt to place it on one of the five piles. If successful, draw another card from the
deck and pass the turn. If the card can’t currently be placed on any of the piles, discard
the card, flip a life token face down, and draw another card from the deck. Note: if a

5 is successfully played, flip a hint token face up if possible.

e Discarding a card: a player can choose a card in their hand and place it in the discard
pile, flipping a hint token face up, and then drawing a card from the deck (note: players
may look through the discard pile at any time). This is only a legal action if there are

7 or fewer hint tokens face up.

3.5 The Hanabi Open Agent Dataset

The Hanabi Open Agent Dataset consists of Hanabi playing agents that have codebases
available online, score reasonably well in self-play (above 10 points), and employ strategies
sufficiently different from one another, such that when two different agents play one another
they perform significantly worse than either does in self-play. As a result, the variation of
strategy among the agents is ensured. For this reason, some existing agents are excluded
from the dataset. These include a number of derivate works that were slight modifications
on existing agents, as well as the Actor Critic Hanabi Agent (ACHA) [23|, which does not
have a public codebase, and Caanan’s agents [6], released concurrently to HOAD.

Canaan’s agents specifically bear further discussion, as they too are motivated by the
Hanabi Ad-Hoc Challenge. These rule-based, genetically evolved agents are created using
MAP-Elites [24], a Quality Diversity algorithm that parameterizes the agents’ risk aversion
and communicativeness, allowing the user to generate agents with a wide array of different
strategies. The approach isn’t a panacea, however. Agents close in parameter space overlap
significantly in action distribution, and achieve high scores in cross-play. Additionally, the
current implementation of the approach doesn’t explore the full space of possible Hanabi
strategies (focusing only on risk aversion and communicativeness). Nevertheless, an imme-
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Table 3.1: We recorded 500,000 games of each original agent into the HLE representation,
and then used them to learn multilayer perceptron (MLP) imitators of each agent.

Agent Original Self Play Score Imitator Self Play Score Imitator Accuracy
Simplebot 16.9 16.8 99.7
Valuebot 19.8 18.0 92.0
Holmesbot 20.8 14.7 90.3
Outer 14.5 14.1 66.7
Iggi 17.0 16.2 90.9
Piers 17.3 15.9 85.8
Rainbow 18.5 18.1 77.5
Van-Den-Bergh 14.0 10.5 81.2

diate next step for the HOAD project should be to add support for Canaan’s agents, as the
ability to create agents in a structured, parameterized way is very useful in the context of

the Ad-hoc Challenge.

One of the advantages of using HOAD is its ease of extensibility. Although some authors
of Hanabi playing agents have published multiple agents using the same framework, in
general, two arbitrary agents taken from different codebases will not be able to play one
another because of differences in implementation in how the agents represent the game
state. To circumvent the burden of reimplementing every new agent, the authors of HOAD
observe the starting deck order and the actions taken by agents in the native environments,
and then use those observations to recreate the games in the Hanabi Learning Environment
(HLE) (Section 3.5.2). Observing the starting deck order and the actions taken is a much
simpler task because the set of legal actions is small (< 20 in a 2 player game), and the
ordering of the deck is typically known by the respective game engine at the start of the
game. Once replay data has been gathered for all the agents in the HLE representation, it
is possible to train a neural network to imitate each of the original agents. The self-play
scores of these imitators, as well as their accuracies (ie. how well the actions of the imitators
match up with the actions of the original agents), are presented in table 3.1.
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3.5.1 Implementation Details

The workaround technique, described above, was used to generate 500,000 games per original
agent, all in the HLE representation. These games were then used to train imitator agents
for each original agent. The imitator architecture consisted of: layer sizes of 1024, 1024,
512, 512, 512, and 256, batch normalization at every layer, and a dropout rate of 0.5. Each

network was trained for 5 — 10 epochs, until convergence.

3.5.2 Hanabi Learning Environment

The Hanabi Learning Environment (HLE) [4] is a framework published by DeepMind in
2019 consisting of a fast gameplay engine implemented in C, an easy to use Python API,
and integration with the Dopamine reinforcement learning framework. During play, the game
state (as seen by the observing agent without revealing hand information) can be accessed
as a binarized vector. This is the representation used by all the imitator agents in HOAD,
and all the ad-hoc agents described in this work. We use the Dopamine framework only to
reproduce the Rainbow agent, although it does present an interesting opportunity for future

research, specifically to improve and extend the other HOAD agents.

3.5.3 HOAD Agent Strategy Summaries

We present a summary of each agent in HOAD, including only necessary detail, and also
offering explanation of the imitation accuracies and self-play scores in Table 3.1. A compila-
tion of commonly employed strategies, used both by human players and HOAD agents, can
be found at [40].

Simplebot [25] — Plays only cards which it has enough knowledge about to know they are
playable, and gives hints only about playable cards, preferring color hints over value hints. It
uses an oldest first discarding strategy. Due to its simplicity and high degree of determinism,
Simplebot is easy to imitate.

Valuebot [25] — Same as Simplebot, but before playing, checks to see if the next player is
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about to discard a valuable card (i.e. the last copy of a card). Also, it is deterministic, and
easy to imitate.

Holmesbot [25] — Extends Valuebot by including the use of mulligans and by adding ad-
ditional inference capabilities. Specifically, card knowledge from hints, the discard pile, and
other players’ hands are used to make deductions about the agent’s hand. Still deterministic,
and easy to imitate because all the information it uses is present in the HLE representation.
Iggi [36] — Similar logic to Simplebot but prefers value hints over color hints and prefers
discarding unplayable cards over oldest first. Highly deterministic, easy to imitate.

Outer [36] — Similar to Iggi, but prefers discarding over hinting, and uses more randomness
in its hinting and discarding logic; this results in significantly reduced imitation accuracy
and is also likely the reason for lower published score.

Piers [36] — Extends Iggi by including the use of mulligans (but not as deterministically
as Holmesbot), and some additional logic to avoid discarding valuable cards. The lower
determinism explains the slight drop in imitation accuracy.

Van-der-bergh [36] — Makes some risky plays if they have high likelihood of success and
there are remaining mulligans. Prioritizes discarding over hints, gives hints about useless
cards, and attempts to maximize transmitted information.

Rainbow [4] — This agent tends to hint for rank instead of color. Conditional action

probabilities may be found in the appendix of [4].

3.5.4 Discussion of Imitator Agent Pairwise Scores

Since the same observation can be passed in to any of the imitator agents, the imitator
agents make it possible to play games with agents originating from two different codebases;
this is necessary to evaluate how different the players are from each other. Table 3.2 shows
the average score of each imitator agent playing 1000 games with every other imitator agent.
As expected, when agents are paired with themselves, they achieve scores much higher than
when paired with each other—this corresponds to the high scores on the diagonals and the
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Table 3.2: Pairwise play scores are produced by playing each MLP imitator agent with every
other for 500 games.
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Simplebot 168157 128 00 41 11 1.7 0.2
Valuebot 15.2 00 38 1.3 20 0.0
Holmesbot 11.2 147 00 14 06 05 00
Outer 00 0.0 00141 10 41 62 90
Iggi 39 38 18 1.8 1162 118 27 6.0
Piers 1.8 05 02 7.2 1031569 55 94
Rainbow 03 20 03 6.6 40 56 SN 26

Van-Den-Bergh 0.0 0.2 00 106 4.7 83 27 10.5

relatively low scores on the off-diagonals. This confirms the intuition that agents must use a
similar strategy when paired with one another, else risk miscommunicating, losing all three

lives, and scoring zero points.

An interesting feature of Table 3.2 warranting discussion is the high scores achieved by
certain combinations of agents. Two groups of agents that play relatively successfully with
each other are O’Dwyer’s Simplebot — Valuebot — Holmesbot, and Walton-Rivers’ Iggi — Piers
— Outer — Van-der-bergh. All the agents in each of these two groups belong to the same
codebase, so the high scores are likely due to the authors of the two codebases reusing logic
between their agents. The exception to this is the Rainbow agent, which was produced using
reinforcement learning, and so it is surprising that it performs so well with Walton-Rivers’
agents. Our best explanation is that both agents reportedly prefer value hints and can
presumably also respond well to game states where value hints have been given. Even more
interestingly, some agent combinations (e.g. Holmesbot — Valuebot ) result in scores greater
than either agent can achieve in self-play. We surmise this is a result of synergy between the
two agents’ strategies. Although such synergies could cast doubt on the ability of pairwise
scores to tell whether agents’ strategies are different, we argue that they are rare, and thus
have an overall small effect on the trustworthiness of using the pairwise scores as a validation
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metric.

Finally, we consider the phenomenon that for some agent combinations, it matters signif-
icantly who goes first. Specifically, for the combinations Simplebot—-Holmesbot, Outer—Piers,
and Outer—Van-den-bergh, if the first of the listed agents goes first, the combination gets
around 2 points more on average than if the second listed agent goes first. This effect too is
likely due to synergies between the agents, and additionally serves to show that in general,

synergies have a fairly small effect on the final score.

3.6 Ad-Hoc Agent Modeling

In this work, we propose to apply MAML to the cooperative decision making problem of
the ad-hoc challenge. The goal of this algorithm is to train a set of model parameters that
are a single gradient update away from good generalization performance on a new learning
task (imitating the strategy of a previously unseen agent), using only a small number of
training examples—just 10 games in this case. Intuitively, the training process finds a meta-
optimum that is close in parameter space to many other task-specific optima. Since MAML
is model agnostic—meaning that the algorithm can be applied to any model that trains via
backpropagation—we had to make a design decision on what model to choose. We decided
not to use a recurrent neural network since none of the original agents consider a game’s
action history when making moves; rather they take moves considering only the information
available in the current game state, as represented by the HLE. Preferring simplicity, we
decided to make the MAML model a fully connected network.

We also train a set of “naive” MLPs, so called because they only use the test agent’s 10
games to learn its strategy. This isn’t meant to be a fair comparison to MAML, but simply
a lower bound to demonstrate that it is necessary to use data from other agents to build
up an inductive bias before tackling the Ad-hoc Challenge. As a point of clarity, the naive
MLPs and the imitator MLPs have different architectures; the naive MLPs have much fewer
parameters, because they are trained on so little data. Please refer to the end of section
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3.6.2 for architecture details.

3.6.1 Summary of Experiments

First, the agent imitations from section 2.3 were used to generate 500,000 games per agent.
Then, for each held-out agent, the MAML algorithm was run for 5 epochs on all the HOAD
agents’ games except for those of the held-out one, resulting in eight different meta-models.
A checkpoint was taken after just 2 epochs for each meta-model.

Evaluation occurred in two scenarios: low-shot and zero-shot. The only difference
between the two is that in the low-shot scenario each of the above models was updated
with 10 games of their respective held-out agents, whereas this was not done in the zero-shot
scenario. The now agent-specific models (or just the meta-models in the zero-shot scenario)
were then played with their respective held-out agent imitations for 50 games each. We then
repeated the above evaluation process 10 times, averaging scores across both games and
trials.

Each naive MLP, on the other hand, was trained on only 10 games from each agent. The
resulting model was then played directly with the corresponding agent imitator for 50 games
each. This evaluation process too was repeated 10 times (including retraining each MLP on
different games each time), and the scores averaged across both games and trials, for 500
total evaluation games per agent. The results for both of the above experiments may be

found in table 3.3.

3.6.2 Implementation Details

The model used with MAML consists of 12 fully connected layers with hidden sizes 2048,
2048, 1024, 1024, 512, 512, 256, 256, 128, 128, 64, and 64. The model input is the binary
vector representation of the game state for 2 players (length 658), as defined by the HLE,
and the output is the argmax of the logits layer, which is of length 20 since there are 20
possible actions in a 2 player game. We use leaky ReL.u with a negative slope of -0.3, batch

normalization at each layer, and skip connections every other layer for increased performance.
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Algorithm 1 FOMAML for HOAD

Require: M self-play games from each HOAD agent
Require: a differentiable model to use with FOMAML

Definitions:

k: number of agents to sample

d: number of ad-hoc games

a, B: task and meta learning rates

L: cross entropy loss

0: parameters of meta-model

fo: output of forward pass of meta-model
end Definitions:

Randomly initialize ¢
while not done do
sample k agents
for each agent i do
support < sample d games from agent i
Compute VyL(fy) using support
Compute adapted model with gradient descent:
9; — 60— OéV@ﬁ(fg)
query < sample d more games from agent i
Compute Vo L(fy) using query
Update meta-model using first order approximation:
0 < 60— BVeL(fs)
end for
end while
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Table 3.3: Ad-hoc play scores for randomly selected partners, the naive MLP, and MAML
methods. The naive MLP is trained on the 10 ad-hoc games of each held-out agent. The
MAML models are trained on 500,000 games per each of the other seven HOAD agents
(3.5M games total), and in the low-shot scenario are also updated with 10 ad-hoc games
from the held-out agent. Evaluation is done by playing 500 games with the held-out agent.

MAML 2 epochs MAML 5 epochs

Held-out Agent Random Partner Naive MLP  Zero Shot Low Shot Zero Shot Low Shot

Simplebot 5.1 1.1 4.2 5.3 4.6 3.8
Valuebot 5.7 1.5 5.3 7.6 8.4 8.9
Holmesbot 4.6 0.5 6.2 6.8 9.4 7.9
Outer 2.9 2.5 3.0 3.6 3.4 3.9
Iggi 4.5 2.5 5.9 11.1 6.2 8.1
Piers 5.0 2.0 9.3 8.3 11.0 10.2
Rainbow 3.1 1.8 2.9 1.8 3.1 2.6
Van-Den-Bergh 3.8 2.2 4.5 4.7 6.7 5.4
Averages 4.3 1.8 5.2 6.2 6.6 6.3

In order to model previously unseen agents, it is necessary to modify the experimental
setup typically used with MAML [35]. Typically, an N-way K-shot setup is used, where N
unseen classes are selected and K examples of each class are provided, and then the model
is expected to successfully classify among the N classes. In our implementation, we instead
select one unseen agent, update the model with 10 of that agent’s games (which is anywhere
from 40 — 800 observation-action pairs depending on the length of the game), and then give
the model an observation, and ask it to predict the action that the unseen agent would have
taken. The technique and intuition behind MAML (i.e. training to find the meta~-optimum)
still hold; we have simply changed the objective.

The most significant difference between our implementation and the original MAML is
that we’re using the first-order approximation (FOMAML) described in [2] and [11]. In
practice, the only difference between it and the original MAML is that the meta-model is
updated with Vg L(fy) instead of VoL(fy/) (please refer to our reproduction of FOMAML
in Algorithm 1 for clarification on this notation). During each meta training step, 4 training
agents are sampled. From each agent, we sample 10 games—this is the support data. Each
agent’s support data is used to make a gradient update with the SGD optimizer and a
learning rate of 0.0001 (the objective is the imitation task); thus, we get an adapted model
for each agent. Next, 10 more games are sampled from each agent—this is the query data.
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We now find the loss using the adapted parameters and the query data, and then we compute
the gradient with respect to this loss and the adapted parameters. This is the point where
FOMAML diverges from MAML; in MAML, we would instead have computed the gradient
with respect to this loss and the original parameters. Once we have computed this gradient,
we use it to update the meta-model. As in the original MAML, this procedure optimizes
the meta-model parameters such that a single gradient update on a new agent’s games will
produce a maximally accurate imitation of that agent. Finally, every 10,000 episodes the
meta-learning rate is halved, until convergence.

The naive MLPs are a fully connected network with layer sizes 512, 512, 512, and 256,
batch normalization, dropout = 0.5, and Adam optimizer with learning rate 1.5e-4. These

parameters gave the best results after a thorough hyperparameter search.

3.6.3 Discussion

The first thing we notice in Table 3.3 is that the naive MLP gets fairly low scores across
the board; this backs up our intuition that it is very difficult to learn the mechanics of the
game (not to mention the specific strategy of the held out agent) from just 10 games of data.
Comparing these scores to the case where we play the held-out agent with a random other
HOAD agent, we can see that at least being familiar with the game mechanics helps to greatly
boost the score, by more than a factor of 2. Playing the held-out agent with random HOAD
agents also provides a good baseline for how similar the strategies of the various agents are.
Whereas in self-play the average HOAD agent achieves around 15.5 points, paired with a
randomly selected agent, a held-out agent can only expect to earn about 4.3 points. This
baseline is also useful when measuring the performance of an ad-hoc learner—if the learner
cannot outperform a randomly selected partner, then it is not a very competitive learner. In
this case, we can see that the MAML approach outperformed the randomly selected partner
in both the zero and low shot scenarios, by around 2 points.

An important caveat that bears mentioning is that the MAML results are affected to an
unknown extent by the fact that some of the agents are drawn from the same codebase and
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share some conventions. It is possible that some of the improvement seen in the MAML
trials is due to agents copying conventions from other agents in the same family. Because
diversity is an important aspect of the HOAD dataset, an essential piece of future work will
be to develop a more principled approach to measuring similarity between bots—one that
accounts for in-family similarities as well.

The most interesting result among the MAML runs is how the effect of adapting the
parameters with the ad-hoc games changes as the model converges. Namely, in the early
stages of training, the adaptation step seems to help, gaining about 1 point on average.
However, once the model is converged, adapting to the held-out agent has no significant effect
on performance (and indeed, seems to have a slightly deleterious one). This goes against the
results of Raghu, who found that inner loop updates have negligible effect on learned repre-
sentation at both early and late stages of training [26]. There are, however, some important
differences between our work and theirs that may explain this discrepancy—mnamely, they
performed this test using second-order MAML on Omniglot and MinilmageNet, whereas we
use first-order MAML on Hanabi. Raghu does test first-order MAML as well, but only to
compare the computational speed of FOMAML to their own algorithm ANIL (Almost No
Inner Loop). They show that nearly eliminating the inner loop of MAML can speed up
computation by about as much as using first-order MAML. They do not, however, show
whether FOMAML benefits from an inner loop in the early stages of training, which in our

case, it does.

3.7 Conclusion

In this work we demonstrated that the FOMAML algorithm can be applied to the Hanabi
Ad-Hoc Challenge and the cooperative decision making problem it entails. We also argued
that HOAD is a good benchmark for meta-learning based approaches, because of the quality
and diversity of its agents. When FOMAML is trained on HOAD, the resulting meta-
model was able to outperform both a naive MLP baseline, and a randomly selected partner.
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Furthermore, we showed that after a sufficient number of training steps, the meta-model does
not need to be updated on the 10 games of the held-out agent, and will actually perform
better without it. This backs up recent evidence that MAML-type algorithms don’t benefit

from the task update step during test-time evaluation.
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