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INVESTIGATION

Robust Identification of Local Adaptation from
Allele Frequencies

Torsten Günther*,1 and Graham Coop†,1

*Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany, and
†Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95616

ABSTRACT Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci
involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and
neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of
methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies
while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model,
we calculate a set of “standardized allele frequencies” that allows investigators to apply tests of their choice to multiple populations
while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized
frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to
spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct
a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to FST and is shown to be
more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools—
a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility
of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel
populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from
http://gcbias.org.

THE phenotypes of individuals within a species often vary
clinally along environmental gradients (Huxley 1939).

Such phenotypic clines have long been central to adaptive
arguments in evolutionary biology (Mayr 1942), with diverse
examples including latitudinal clines in skin pigmentation in
humans (Jablonski 2004), body size and temperature toler-
ance in Drosophila (Hoffmann and Weeks 2007), and flower-
ing time in plants (Stinchcombe et al. 2004). Unsurprisingly,
comparisons of allele frequencies between populations that
differ in environment were among the earliest population
genetic tests for selection (Cavalli-Sforza 1966; Lewontin
and Krakauer 1973; Endler 1986) and have continued to

be central to population genetics to this day (e.g., Coop
et al. 2009; Akey et al. 2010).

The falling cost of sequencing and genotyping means that
such comparisons can now be made on a genome-wide
scale, allowing us to start to understand the genetic basis of
local adaptation across a broad range of organisms. How-
ever, such studies need to acknowledge the sampling issues
inherent in population genetic studies of natural popula-
tions. In assessing correlations between allele frequencies
and environmental variables, or in looking for loci with
unusually high levels of differentiation, two broad technical
issues need to be addressed. First, sample allele frequencies
are noisy estimates of the population allele frequency, and
this issue is exacerbated when sample sizes differ across
populations. Second, population allele frequencies among
multiple populations are not statistically independent, as
populations vary in their relationship to one another due to
varying amounts of shared genetic drift and migration over
time. Failure to account for differences in sample size and
the shared history of populations can lead to a high rate of
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false positives and negatives when searching for the signal
of local adaptation due to the unaccounted sources of variance
and nonindependence among populations (Robertson 1975;
Excoffier et al. 2009; Bonhomme et al. 2010). Therefore,
accounting for these potential biases should provide addi-
tional precision in the identification of loci responsible for
adaptation.

To accommodate these sources of noise, the Bayesian
method Bayenv was developed (Hancock et al. 2008; Coop
et al. 2010); Bayenv attempts to account for these two fac-
tors while testing for a correlation between allele frequen-
cies and an environmental variable. To control for a general
relationship between populations, an arbitrary covariance
matrix of allele frequencies is estimated from a set of control
markers. This model of covariance is then used as a null
model against an alternative model that allows for a linear
relationship between the (transformed) allele frequencies at
a particular locus and an environmental variable of interest.
Inference under these models is performed using Markov
chain Monte Carlo (MCMC) to integrate over the posterior
of the parameters. Bayenv has been successfully applied to
identify loci putatively involved in local adaptation to envi-
ronmental variables across a range of different species (e.g.,
Hancock et al. 2008, 2010, 2011b,c; Eckert et al. 2010;
Fumagalli et al. 2011; Jones et al. 2011; Cheng et al.
2012; Fang et al. 2012; Keller et al. 2012; Limborg et al.
2012; Pyhäjärvi et al. 2012).

A range of other model-based methods have been developed
in parallel to detect environmental correlations. One of the
earliest of these was the method of Joost et al. (2007), which
accounted for differences in sample size but did not account
for population structure. Building on this, Poncet et al. (2010)
developed a fast method based on generalized estimation
equations, to allow population structure for correlated sample
frequencies within a set of population clusters (but no relat-
edness between these clusters). A recent simulation study
(De Mita et al. 2013) has shown that environmental correla-
tion methods that explicitly account for population structure
(e.g., Coop et al. 2010; Poncet et al. 2010) outperform those
that do not account for structure, with Bayenv having some-
what higher power and greater robustness to population
structure, likely due to it allowing arbitrary relatedness be-
tween populations (at the expense of computational speed).

Recently, Guillot (2012) developed an inference method
very similar to Bayenv, offering large gains in computational
efficiency. These gains are at the expense of constraining the
covariance matrix in an explicit isolation-by-distance para-
metric form. In addition, Frichot et al. (2013) presented
a latent factor mixed model that estimates the effect of pop-
ulation history and environmental correlations simulta-
neously. The Frichot et al. (2013) method resulted in a
slightly higher power than that of Bayenv to detect environ-
mental correlations in simulations, perhaps in part as a result
of the simultaneous inference of fixed and random effects
reducing the effect of selected loci inflating the covariance
matrix.

These methods (Coop et al. 2010; Poncet et al. 2010;
Guillot 2012; Frichot et al. 2013) all seem to have similar
performance in terms of power, suggesting that the detec-
tion of linear correlations in the presence of population
structure has reached a reasonable level of development.
However, further work is needed to extend the utility and
robustness of these methods to enhance their application to
population genomic data.

One concern about applications of these methods is that
linear models are not robust to outliers, which can lead to
spurious correlations. For example, if a single population has
both an extreme allele frequency and an extreme environ-
mental variable, while all other populations show no
correlation, then the linear model may be misled (see Han-
cock et al. 2011b; Pyhäjärvi et al. 2012, for examples). This
sensitivity can be overcome by using rank-based nonpara-
metric statistics, such as Spearman’s r, which may also offer
increased power to robustly detect linear and nonlinear rela-
tionships. The difficulty is that such tests do not acknowl-
edge the differences in sample size or the covariance in
allele frequencies across populations. To address this some
authors (Fumagalli et al. 2011; Hancock et al. 2011a) have
used a nonparametric partial Mantel test, which can par-
tially account for this covariance and makes fewer model
assumptions. However, the partial Mantel approach is known
to perform very poorly when both genotypes and environ-
mental variables are spatially autocorrelated (see Guillot
and Rousset 2013, for discussion). As such, we currently lack
a framework to perform robust, nonparametric inference of
environmental correlations in population genomic data.

To overcome these difficulties we use the framework laid
out in Bayenv to provide the user with a set of “standard-
ized” allele frequencies at each SNP. In these standardized
allele frequencies the effect of unequal sampling variance
and covariance among populations has been approximately
removed. This affords users a general framework to utilize
statistics of their choosing to investigate environmental cor-
relations or other sources of allele frequency variation. As an
application of this we show how these standardized allele
frequencies can be used to develop a powerful test that
robustly infers environmental correlations in the face of out-
lier populations. As a further example of how these “stan-
dardized allele frequencies” can be used, we construct a
global FST-like statistic, which accounts for shared popula-
tion history and sampling noise, to identify loci with unusu-
ally high allele frequency variance among populations (a test
that is closely related to that of Bonhomme et al. 2010). We
demonstrate the utility of these approaches through simula-
tion and reanalyzing SNP genotyping data from the Centre
d’Etude du Polymorphisme Hmain (CEPH) Human Genome
Diversity Panel (HGDP) (Conrad et al. 2006; Li et al. 2008).

We also extend Bayenv to deal with some of the statistical
challenges posed by next-generation sequencing. Recently,
pooled next-generation sequencing (NGS) of multiple indi-
viduals from a population has gained in popularity (e.g.,
Turner et al. 2010, 2011; He et al. 2011; Kolaczkowski

206 T. Günther and G. Coop



et al. 2011; Boitard et al. 2012; Fabian et al. 2012; Kofler
et al. 2012; Lamichhaney et al. 2012; Orozco-terWengel et al.
2012), as it offers a cost-efficient alternative to sequencing of
single individuals. However, estimating allele frequencies
from read counts sequenced from a pool implies a second
level of sampling variance (Futschik and Schlötterer 2010;
Zhu et al. 2012), which needs to be considered in population
genetic analyses. We extend the model of Bayenv to account
for the sampling of reads in pooled NGS experiments. We
show that this improves the power to detect environmental
correlations in pooled resequencing data. We also show the
utility of our approach by the reanalysis of a pooled next-
generation sequence data set from Atlantic herring (Clupea
harengus) populations along a salinity gradient (Lamichhaney
et al. 2012).

The extensions to Bayenv detailed here are schematically
depicted in Figure 1, and all of these extensions are imple-
mented in Bayenv2.0, available from http://gcbias.org.

Methods

General model of Bayenv

First, we briefly explain the underlying model of Bayenv for
the sake of completeness. Further details about the model
and the inference method can be found in Coop et al. (2010).
Consider a biallelic locus l with a population allele frequency
pjl in a population j, where nj alleles have been sampled from
this population in total. Assuming that each population is
reasonably large and approximately at Hardy–Weinberg
equilibrium, the observed count of allele 1, kjl, in this pop-
ulation is the result of binomial sampling from this popula-
tion frequency:

P
�
kjl
��pj; nj� ¼

�
nj
kjl

�
pjl

kjl
�
12 pjl

�nj2kjl
: (1)

We follow the model of Nicholson et al. (2002) by assuming
that a simple transform of the population allele frequency pjl
in subpopulation j at locus l represents a normally distrib-
uted deviate around an “ancestral” frequency ɛl. Specifically
we assume that

pjl ¼ g
�
ujl
� ¼

8<
:

0 if ujl , 0
ujl 0# ujl # 1
1 ujl .1;

(2)

i.e., that the masses ,1 and .1 are placed as point masses
at 0 and 1, representing the loss or fixation of the allele in
population j, respectively. We then assume that that the
marginal distribution of ujl is normally distributed, around
an ancestral mean frequency el with variance proportional to
el(1 2 el) (inspired by the model of Nicholson et al. 2002).
We denote the vector of transformed population allele fre-
quencies at a locus by ul, where ul = (u1l, . . ., uJl) when J is
the number of populations. As we do not expect that the

populations are independent from each other, we assume
that ul follows a multivariate normal distribution

PðuljV; elÞ� MVNðel; elð12 elÞVÞ; (3)

where V is the variance–covariance matrix of allele frequen-
cies among populations. We can write the joint probability
of our counts at a locus and the ul as

Pððk1l; . . . ; kJlÞ;  uljV; el;  ðn1l; . . . ; nJlÞÞ
� MVNðel; elð12 elÞVÞ QJ

j¼1
P
�
kjl
��pjl ¼ g

�
ujl
�
; njl
�
: (4)

We place priors on V (inverse Wishart) and the el at each
SNP (symmetric Beta). Assuming that our SNPs are indepen-
dent, we write the joint probability of all of our loci and
parameters as

PðVÞ
YL
l¼1

Pððk1l; . . . ; kJlÞ; uljV; el; ðn1l; . . . ; nJlÞÞPðelÞ: (5)

Our posterior is this joint probability normalized by the
integral over V and the el and ul at all of the loci.

We then use MCMC to sample posterior draws of the
covariance matrix (V) from a set of unlinked, putatively
neutral control SNPs. Our observations showed that the
MCMC converges quickly to a small set of covariance matri-
ces for each data set given a sufficient number of indepen-
dent SNPs (Coop et al. 2010). Given this tight distribution,
we use a single draw of V, denoted by V̂, after a sufficient
burn-in. The entries of the matrix V are closely related to
the matrix of pairwise FST (Weir and Hill 2002; Samanta

Figure 1 Overview of all statistics implemented in Bayenv2.0 and a de-
cision-making support on which to calculate in what situations the sta-
tistics for environmental correlations require information about
environmental variables. XTX can be calculated for data with and without
environmental information to detect differentiation patterns caused by
different environmental factors. Black boxes represent statistics intro-
duced with Bayenv2.0 while gray shows statistics already calculated by
Bayenv1.0.
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et al. 2009), and so this model provides a flexible model of
population history; for example, Pickrell and Pritchard (2012)
use a similar model to infer a tree-like graph of population
history and Guillot (2012) uses a related model as a model
of isolation by distance.

Next, we formulate an alternative model where an envi-
ronmental variable Y, standardized to have mean 0 and vari-
ance 1, has a linear effect b on the allele frequencies:

P
�
uljV̂; el;b; Y

�
� MVN

�
el þ bY ; elð12 elÞV̂

�
: (6)

To express the support for the alternative model at a locus l,
Coop et al. (2010) calculated a Bayes factor (BF) by taking
the ratio of probability of the alternative and the null model
given the data and V̂, integrating out the uncertainty in ul, el,
and b (under a uniform prior on b between 20.2 and 0.2).

Tests based on standardized allele frequencies

The linear relationship between the transformed allele fre-
quencies (Equation 6) may not be the best fit in all situations,
as other monotonic relationships could be viewed as bi-
ologically realistic in some cases. Additionally, there may be
situations in which a linear model is not robust to outliers and
so will spuriously identify loci as strong correlations. There-
fore, we provide a general framework to allow investigators to
apply statistics of their choice, such as rank-based nonpara-
metric statistics, to detect environmental correlations, while
taking advantage of the Bayenv framework. These statistics
could in theory be applied to the raw sample frequencies; in
practice, however, that can lead to high false-positive and
false-negative rates as sample allele frequencies are naturally
noisy because of the process of sampling and nonindependent
due to the covariance among populations.

The multivariate normal framework employed by Bayenv
offers a natural way to attempt to standardize ul to be var-
iates with mean zero, variance one, and no covariance.
These allele frequencies allow standard statistics that rely
on these assumptions to be applied more directly. We denote
the Cholesky decomposition of the covariance matrix C (V=
CCT, where C is an upper-triangular matrix), which can be
thought of as being equivalent to the square root of the
matrix and so analogous to the standard deviation of ul.
To standardize the ul for effects of unequal sampling vari-
ance and covariance among populations we write

Xl ¼ C21 ðul2 elÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
elð12 elÞ

p : (7)

If ul � MVN(el, el(1 2 el)V), then Xl � MNV(0, I) where I is
the identity matrix (i.e., Ii,j= 1 if i= j and Ii,j= 0 otherwise).
Note that this transform is not unique, as a range of other
factorizations of the covariance matrix are possible.

If we wish to test the correlation of our transformed allele
frequencies with an environmental variable, we also need to
similarly transform our environmental variable, to ensure
that our frequencies and environmental variable are in the

same frame of reference. Specifically, if our environmental
variable is Y (standardized to be mean 0, variance 1), then
our transformed environmental variable is

Y9 ¼ C21Y : (8)

The fact that we need to do this follows from the fact that
we are interested in predicting ul by Y, and so what we are
doing is conceptually equivalent to multiplying the left- and
right-hand sides of the equation relating the two by C21 to
remove the effect of the covariance in allele frequencies.
This rotation by C21 means that X and Y9 are linear super-
positions of u and Y, respectively, and so the population
labels no longer apply to particular entries in these vectors.
The transform will tend to exaggerate the environmental
variable differences between very closely related popula-
tions. Furthermore, if part of the variation in the environ-
mental variable precisely matches the major axis of variation
in the genetic data, then applying the transform may remove
much of this variation. Both of these effects seem desirable
properties, as we are interested in identifying correlations
discordant with the patterns expected from drift. However,
users should visually inspect Y and Y9 to understand how
the transform has altered the environmental variable (see
Supporting Information, Figure S1, Figure S2, Figure S3,
and Figure S4 for examples).

We do not get to observe ul, so we obtain a representative
sample of M draws from the posterior ðXð1Þ

l ;  :  :  : ;XðMÞ
l Þ.

Given these draws, there is an enormous variety of ways
that we could choose to summarize the support for the cor-
relation with our environmental variable Y9. Here we choose
to write

rl

�
Xð1Þ
l ; :::;XðMÞ

l

�
¼ 1

M

XM
i¼1

r
�
XðiÞ
l ; Y9

�
; (9)

i.e., rl is the mean of the function r() over our posterior
draws of Xl.

In this article, we calculated Pearson’s and Spearman’s
correlation coefficients [as our r()] as alternative tests to
the Bayes factors. To obtain an appropriate sample from the
posterior in a computationally efficient manner, these statis-
tics were calculated between Xl and Y9 every 500 MCMC
generations and then averaged over the complete MCMC
run. Our draws of Xl will therefore be weakly autocorrelated,
but as rl is a mean, this does not affect its expectation.

While this standardization, for a known V̂, would work
perfectly if our ul were really multivariate normal, in reality
this is only an approximation, as even under the null model
deviations due to drift are only approximately normal over
short timescales. Thus, while we model drift at a locus as
being multivariate normal (i.e., ul has a prior given by Equa-
tion 3), if the true model is more complex, the joint proba-
bility of this along with our count data (and our uncertainty
in V) may force ul to not be MVN(0, I). While, under these
circumstances, Xl will conform to those assumptions better
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than ul, we still choose to use the empirical distribution of rl
across SNPs rather than rely on asymptotic results.

A robust statistic to detect extreme population differenti-
ation: This transformation to provide a set of Xl can also be
used to propose an FST-like statistic. Specifically we can write
the variance of Xl at a locus as

VarðXlÞ ¼ XT
l Xl ¼

ðul2eÞTV21ðul 2 eÞ
elð12 elÞ

: (10)

Note that while the multiplication by C21 is not a unique
transform, XT

l Xl would be the same no matter which matrix
factorization was used. This statistic is closely related to FST,
which can be expressed as

Var
�
plj
�

ðelð12 elÞÞ
; (11)

where Var(plj) is the variance of our allele frequency across
populations (see Nicholson et al. 2002; Balding 2003, for
discussion). Thus XTX is directly analogous to FST, but it
accounts for the variance–covariance structure of the popu-
lations in question. If ul is truly multivariate normal, then
XT
l Xl is distributed �x2

J . This suggests that X
T
l Xl is a natural

test statistic to identify loci that deviate away strongly from
the multivariate normal distribution, e.g., due to selection.
Furthermore, this form naturally accounts for hierarchical
population structure or other models of population structure
that can confound FST-style outlier analyses (Excoffier et al.
2009). As we do not observe Xl and rather obtained a poste-
rior distribution of Xl, we take the average XT

l Xl across the
sample of Xl from our MCMC (we term this XTX).

Our XTX statistic is very closely related to the work of
Bonhomme et al. (2010), who independently developed a
similar test statistic (extended Lewontin and Krakauer test,
FLK) for the case of a known population tree (see also Nei
and Maruyama 1975; Robertson 1975, for earlier discussion
of the effect of a population tree on the Lewontin and Kra-
kauer 1973 test). Specifically, Bonhomme et al. (2010) use
an equation analogous to Equation 10, but where V is a co-
variance matrix specified by a neighbor-joining population
tree estimated from the data [using Reynolds’ genetic dis-
tance between population pairs (Reynolds et al. 1983)]. Thus
we expect similar performance of XTX to that of FLK in sit-
uations where the covariance matrix is well approximated by
a tree and XTX to outperform FLK under models such as iso-
lation by distance and more complex models where popula-
tion history is poorly represented by a tree.

Sequencing of pooled samples

If genotyping is conducted as sequencing of population pools,
an additional step of sampling is included. At a site l the total
coverage in population j is mjl, and we observe rjl reads of
allele 1. Assuming that each individual contributed the same

number of chromosomes to the pool, the sequenced reads are
the result of binomial sampling

P
�
rjl
�� i
nj
;mjl

�
¼
�
mjl
rjl

�
i
nj

rjl�
12

i
nj

�mjl2rjl
; (12)

where i=nj is the unknown sample allele frequency in the
pooled sample. Summing over this unknown frequency

P
�
rjl
��mjl; pjl; nj

�

¼
 
mjl

rjl

!P
i

�
i
nj

�rj�
12

i
nj

�mjl2rjl
 
nj

i

!
pijl
�
12pjl

�nj2i

(13)

(again assuming Hardy–Weinberg equilibrium) gives us the
probability of our sampled reads given the population fre-
quency. This replaces the binomial probability (Equation 1)
in the joint probability given by Equation 4. In Coop et al.
(2010), the Bayes factors were approximated by an impor-
tance sampling technique while performing MCMC under
the null model; i.e., b = 0. This allowed the rapid calcula-
tion of the Bayes factor for many environmental variables
with little extra computational cost. However, Bayes factors
calculated by this technique are noisy, and so here we also
implement an MCMC to estimate the posterior on b. We
place a uniform prior on b (between 20.1 and 0.1) and
update b along with el and ul. For our update on b we use
a random-walk sampler with a small normal deviate (s =
0.01) and accept this move with the ratio of the joint pos-
terior of our proposed parameters to that of our current
parameters. As a simple summary of the posterior support
for b 6¼ 0, we look at the skew of the posterior away from
zero. Specifically we estimate the proportion ( f ) of the mar-
ginal posterior on b that is above 0 and then take Z= |0.52 f|
as a test statistic, with values of Z close to 0.5 showing
strong support for b 6¼ 0.

Power simulations

The extended model was implemented in Bayenv2.0. Simu-
lations were conducted to evaluate the power of these
extensions. To use both a realistic covariance among pop-
ulations and realistic environmental values, we based these
simulations on SNP data from the HGDP populations (Conrad
et al. 2006; Li et al. 2008) and the environmental variables
measured at these sampling locations (also used in Hancock
et al. 2008; Coop et al. 2010). These simulations were imple-
mented in R (R Development Core Team 2011). We employed
a single Bayenv2.0 estimate of the covariance matrix V̂ from
the original SNP data (sampled after 100,000 MCMC itera-
tions) to simulate population allele frequencies. For each SNP,
an ancestral frequency el was drawn from a beta distribution
(with parameters a = 0.5, b = 3) if not otherwise stated.
Then population allele frequencies were drawn from the mul-
tivariate normal MVNðei; eið12 eiÞV̂Þ, with values .1 or
,0 replaced with 1 and 0, respectively. Allele counts were
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then drawn binomially from these frequencies, with a sample
size of 20 chromosomes per population (if not otherwise stated).

To construct a null distribution we calculated our test
statistics for these simulated SNPs and an environmental
variable Y during 100,000 MCMC iterations. For a second
set of SNPs, an environmental effect was simulated by draw-
ing their population allele frequencies from a multivariate
normal MVNðei þ bY ; eið12 eiÞV̂Þ, using a range of b’s. Again
our test statistics were calculated over 100,000 MCMC itera-
tions. Power estimates were based on the proportion of these
SNPs that were detected at a certain significance level a (5%
here), i.e., the fraction of our simulations (with a b) in the
upper a tail of the null distribution. Note that by taking this
empirical approach we are setting our false-positive rate to
5%, and as such we do not need to investigate our false-
positive rate.

Testing differentiation statistics: To compare the power of
differentiation statistics, we simulated data sets based on the
HGDP populations, using the minimum winter temperature
and latitude as environmental variables (latitude is obviously
not an environmental variable, but is taken as a proxy for
many environmental variables that are correlated with
latitude). To highlight the effects of different sample sizes
among populations, we simulated populations using the
original sample sizes of the HGDP data (Li et al. 2008). Sets
of neutral and selected SNPs were simulated as described
above, and the differentiation statistics FST [using the pegas
R library (Paradis 2010)], XTX, and the related FLK [using
an R script provided by the authors (Bonhomme et al.
2010)] were calculated. The ancestral frequency was used
as an outgroup population for the calculation of FLK. The
ancestral allele frequency e was set to 0.5 for all SNPs simu-
lated for these tests as we discovered noisy power estimates
for FLK when the ancestral frequency was drawn from a beta
distribution (not shown). All power estimates again used em-
pirical cutoffs based on the neutral simulations.

Simulation of pooled samples: For the simulation of pooled
NGS data, we assume that the depth of coverage of a pool
follows a negative binomial distribution, which allows for
the overdispersion of read depths compared to the Poisson.
Coverages for each population and SNP were independently
drawn from a negative binomial distribution NB(r, p), for
which we set r = 5 and set p to obtain the respective cov-
erage mean [i.e., NB(r, p) has a mean of pr/(1 2 p) and
a variance of pr/(1 2 p)2]. This represents a case where the
variance–mean ratio increases for higher average coverages.
This pattern is generally consistent with observations from
pooled next-generation data in Arabidopsis thaliana (T. Gün-
ther, C. Lampei, I. Barilar, and K. J. Schmid, unpublished
results). An environmental effect of |b| = 0.06 was simu-
lated when all 52 HGDP populations were used and |b| =
0.15 was used for simulations of smaller population sub-
sets. The sign of b was assigned to be positive or negative
at random.

Data analysis

Bayenv2.0 was employed to reanalyze a genome-wide data
set of 640,698 SNPs from 52 HGDP-CEPH populations (Li
et al. 2008; Hancock et al. 2010), using both Bayes factors
and our nonparametric test statistic (rl). We restricted our
analysis to minimum winter temperature, as most winter
climate variables show outliers. All environmental variables
were normalized to a mean of zero and a standard deviation
of one. The covariance matrix for this reanalysis was esti-
mated from a random subset of 5000 SNPs after 100,000
MCMC iterations. Bayes factors and correlation coefficients
for each SNP were estimated using 100,000 MCMC itera-
tions. In addition to these test statistics, we sampled Xl every
500 MCMC generations and averaged XTX over these values
for each SNP. SNP positions and gene annotations were
obtained from Ensembl (Flicek et al. 2012) and Entrez Gene
(Maglott et al. 2011).

To explore the use of Bayenv on pooled data we reanalyzed
a pooled sequence data set from eight Atlantic herring
(C. harengus) populations that were sampled along a salinity
gradient (Lamichhaney et al. 2012). Lamichhaney et al.
(2012) sequenced eight population pools of 50 individuals
and aligned their reads back to a de novo assembly of the
C. harengus exome, with each pool being sequenced to on
average 30-fold depth. They identified 440,817 SNPs in
these data and concentrated their analyses on SNPs with
at least 40 reads in each population to reduce sampling noise.
We reanalyzed the data of Lamichhaney et al. (2012), using
allele count data provided by the authors. We first estimated
the covariance matrix, using a random subset of 1000 SNPs,
chosen to have $40-fold coverage in all populations. To ex-
plore the performance of our pooled sequencing extension of
Bayenv we calculated the statistic Z for the correlation of
allele frequencies and salinity across the eight populations.
The environmental correlation test was calculated for all
SNPs with at least 40 reads in all populations (36,794 SNPs)
and for 100,000 SNPs chosen at random irrespective of se-
quencing depth. All statistics were calculated during 100,000
MCMC iterations.

Results

Using tests based on standardized allele frequencies

We explored the performance of tests based on our stan-
dardized transformed population frequencies (Xl). Before we
calculated test statistics on our standardized allele frequen-
cies, we examined whether the multivariate standardization
(as in Equation 7) had removed the covariance among pop-
ulations from our standardized Xl. We first calculated the
sample covariance matrix, using the sample frequencies for
all 2333 autosomal SNPs of Conrad et al. (2006) shown in
Figure 2A. Specifically, denoting the vector of sample frequen-
cies by kl/nl we calculated 1

L

PL
l¼1ðkl=nlÞðkl=nlÞT . As expected,

there is substantial structure in this sample covariance matrix
between regions, which corresponds to known population
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structure in humans (Coop et al. 2010). Then we calculated
the sample covariance matrix of the Xl across these SNPs,
using Bayenv2.0; specifically, we took a single draw of Xl
(after a burn-in) for each of these 2333 SNPs and calculated
1
L

PL
l¼1XlXT

l . The resulting sample covariance matrix (shown
in Figure 2B) is close to the identity matrix in form, dem-
onstrating that the majority of the covariance between pop-
ulations has been removed. This suggests that our Xl are
appropriately standardized for the application of correla-
tion tests, averaging across our uncertainty in Xl at each locus.

To further test the normality of Xl, we checked whether
the XTX statistic follows a x2-distribution with 52 d.f. (i.e.,
the number of populations). A QQ plot of the XTX and the
expected x2

52-distribution shows that the mean of the distri-
bution approximately matches that of the x2

52, whereas the
variances do not (Figure S5). Therefore, while XTX provides
a potentially suitable summary statistic for identifying em-
pirical outliers, we cannot assume a distributional form to
those outliers under a null neutral model.

Detecting extreme population differentiation: To test the
utility of XTX as a statistic to detect overly differentiated loci,
we simulated adaptation of the HGDP populations to mini-
mum winter temperature and latitude and explored different
ways to detect such environmental effects with an empirical
cutoff score determined by simulations of a neutral model. In
addition to Bayenv’s Bayes factors, we calculated the differ-
entiation statistics FST, XTX, and FLK (Bonhomme et al. 2010).
The environmental correlation Bayes factors clearly outper-
formed the differentiation statistics for both environments
(Figure 3), which is consistent with the intuition that know-
ing the responsible environmental factor should improve the
detection power (De Mita et al. 2013). Our simulations show
that FLK and XTX clearly outperform the traditional FST-based
tests, suggesting that accounting for the relationship among

populations increases the power of differentiation statistics.
Notably, FLK and XTX have similar power with slightly higher
estimates for XTX. The similar level of power of the two tests
is perhaps not unsurprising, as the history of the worldwide
HGDP populations can be well represented by a tree-like re-
lationship [with a small number of migration events (Pickrell
and Pritchard 2012)].

Correlations using standardized allele frequencies: To
explore the power of standard correlation tests applied to
our standardized Xl, in comparison to the Bayes factors, we
again conducted power simulations based on the HGDP
data. We calculated both Spearman’s r and Pearson’s r be-
tween Y9 and our transformed allele frequencies averaged
across the posterior on these transformed frequencies. Sta-
tistics based on our Bayesian model clearly outperform cor-
relation tests calculated for point estimates from sample
allele frequencies (Figure 4, A and B). This improvement
in power is due to the fact that the methods based on the
sample frequencies fail to incorporate the sampling noise
and the relationship among populations. All three tests
based on Bayenv performed effectively identically with mar-
ginal advantages of the Bayes factors for minimum winter
temperature (Figure 4B) and a slightly lower power of Spear-
man’s r, which is not surprising, as all simulated effects are
linear. We expect that the relative performance of the rank-
based test, i.e., Spearman’s r, may be reduced as the number
of populations is decreased. We also tested the power of the
Xl tests incorrectly, using Y in place of Y9, which led to power
curves intermediate between the two sets (data not shown).
Overall these results show that correlation tests based on Xl
perform well.

The alternative model of Bayenv (Equation 6) implies a
linear relationship between the transformed allele frequen-
cies and the environmental variable. However, the fitting and

Figure 2 ( A and B) Covariance among HGDP populations estimated by Bayenv2.0 (A) and the covariance calculated on the X’s for the same SNPs (B) (all
autosomal SNPs of Conrad et al. 2006). Populations are colored according to broad geographic regions used in Rosenberg et al. (2002).
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significance of this linear model may be misled by popula-
tions that are statistical outliers. For instance, linear models
might mistakenly identify a SNP as a strong candidate, when
a single outlier population features both an extreme environ-
ment and an extreme allele frequency. We note that the
extreme allele frequency may be due to a component of drift
not well modeled by our MVN framework or due to a selection
pressure (or response) poorly correlated with our environ-
mental variable of interest. While loci of the latter form are of
interest as genomic outliers, we believe researchers interested
in particular environmental variables would consider such
loci spurious and would prefer a set of candidates where
many populations support a consistent pattern of correlation
with an environmental variable.

To test such a case, we used winter minimum tempera-
ture as a climate variable since one population, the Yakuts
from northeast Russia, is characterized by a very low minimum
temperature (Figure 4C). We simulated allele frequencies for
the HGDP populations as described above but to create out-
liers, we set the allele frequencies of the Yakuts to 0. Bayes
factors and Pearson’s correlation coefficient r, which both
assume a linear relationship, showed an excess of false pos-
itives (Figure 4D), while a nonparametric Spearman’s rank
correlation coefficient (r) was much less sensitive to these
outliers, with a false-positive rate very close to the expected
value of 5% (Figure 4D).

Robust candidates in the HGDP data

We next explored the use of our standardized Xl for identi-
fying robust putative candidates for adaptive evolution in
a genome-wide data set of 640,698 SNPs from a global sam-
ple of 52 human populations [HGDP-CEPH (Li et al. 2008;
Hancock et al. 2010)].

Environmental correlation statistics in the HGDP data: As
described above, populations with outliers in terms of allele
frequencies and/or environments can potentially lead to
spurious correlations. For example, the use of minimumwinter
temperature as an environmental variable could generate
false-positive correlations in analyses of the HGDP data
because of the extremely low temperature for the Yakut
population. To explore this, we used minimum winter temper-
ature and reanalyzed all SNPs of the HGDP data, calculating

both Bayes factors and rl(Xl, Y9) using Spearman’s rank cor-
relation coefficient. Our Bayes factors and |rl(Xl, Y9)| are
correlated across SNPs (Spearman’s r = 0.72) and show an
overlap of 29 SNPs in their top 100 most extreme SNPs, 142
SNPs in the top 500, and 2.8% in the top 5% of signals. These
overlaps are substantial but suggest that our two tests are
detecting somewhat different signals, which likely reflects
in part the influence of outlier populations.

The 100 strongest signals of the Bayes factor analysis and
|rl(Xl, Y9)| are shown in Table S1 and Table S2. Among our
top hits for both statistics are multiple SNPs that fall in the
gene MKL1 (megakaryoblastic leukemia 1), which is a myo-
cardin-related transcription factor that is involved in smooth
muscle cell differentiation, mammary gland function, and
cytoskeletal signaling (Parmacek 2007; Maglott et al. 2011)
and has been associated with various disease phenotypes (Ma
et al. 2001; Hinohara et al. 2009; Scharenberg et al. 2010).

To exemplify the effect of an outlier in Figure S6, we
compare two SNPs that fall in our top 20 Bayes factors,
but that have very different Spearman’s r. While in general,
as seen above, there is good agreement between the Bayes
factors and |rl(Xl, Y9)|, we suggest that the Bayes factors, or
other linear model test statistics, should be used in conjunc-
tion with robust test statistics such as those described here
to avoid spurious signals due to outliers. As these both can
be calculated from the same MCMC run, this should be
reasonably computationally efficient.

Population differentiation statistics in the HGDP data:We
also explored our test statistic XTX, which is designed to
highlight loci that deviate strongly from the expected pat-
tern of population structure, by calculating it for each of the
640,698 HGDP SNPs. These XTX statistics have been uploaded
as a genome browser track to http://hgdp.uchicago.edu/. The
empirical distribution is shown in Figure 5. The empirical dis-
tribution clearly differs from the expected x2

52-distribution, with
a higher mean and a lower variance than expected. This again
highlights that we do not have a good theoretical expectation
for the distribution and so must use the empirical ranks to judge
how interesting a signal is.

To examine the relationship between XTX and global FST
we took per SNP values of global FST previously calculated
among the population groups as colored in Figure 2 (values

Figure 3 Power of differentiation statistics and Bayenv2.0
to detect different simulated environmental effects.
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from Coop et al. 2009; Pickrell et al. 2009). The Spearman’s
r between XTX and FST was 0.48. Looking at the extremes of
both distributions, XTX and FST show an overlap of 6 SNPs in
their top 100 most extreme SNPs, 37 SNPs in the top 500,
and 1.4% in the top 5% of signals.

In Table S3 we present the top 100 XTX SNPs in the
genome, along with their nearest genes and global FST val-
ues. To briefly explore where known signals fall in our em-
pirical distribution in Figure 5, we also plot as arrows the
maximum XTX for SNPs that fall within 50 kbp up- and
downstream of 10 well-known pigmentation genes (list
taken from Pickrell et al. 2009). As these arrows represent
maximums across a number of SNPs around the gene, they
will necessarily be more extreme than an average draw from
this distribution. However, the extreme signals at a number
of these genes demonstrate that the method is detecting loci
with extreme allele frequency patterns. The SNP with the
most extreme value of XTX in the genome falls close to
SLC24A5 (Nakayama et al. 2002; Lamason et al. 2005),
while a SNP close to SLC45A2 is the second-largest signal
in the genome. More generally, 5 of these 10 pigmentation
genes fall in the top 1% and 9 genes fall in the top 5% of the
empirical distribution. A SNP close to the gene EDAR, one of
the highest pairwise FST’s between East Asia and Western

Eurasia HGDP populations, is also in the top 10 SNPs (Sabeti
et al. 2007).

The weak overlap in the tails of the genome-wide XTX
and FST means that they are finding different sets of candi-
date SNPs, presumably due to the reweighting of allele fre-
quencies in XTX. For example, our 12th highest SNP for XTX
falls close toMCHR1, with our 21st highest gene being a non-
synonymous variant (rs133072) in the same gene. MCHR1
(melanin-concentrating hormone receptor 1) is known to
play a role in the intake of food, body weight, and energy
balance in mice (Marsh et al. 2002), and the effect of the
nonsynonymous variant on human obesity has been debated
(Wermter et al. 2005; Rutanen et al. 2007; Kring et al. 2008;
Speliotes et al. 2010). Both of these SNPs are nearly fixed
differences between East Asia and the American HGDP pop-
ulations (Figure S7 and Figure S8). This strong difference
between regions that share a recent history and, thus, covari-
ance among allele frequencies (Figure 2) makes these SNPs
an interesting pattern for XTX. However, neither of these two
SNPs has an extremely impressive global FST (falling in only
the 5% tail), presumably because East Asia and the American
HGDP populations are only two of seven groups in the global
FST calculation and the other five groups do not show an
interesting pattern.

Figure 4 (A and B) Performance
of Bayes factors compared to
power of correlation coefficients
on X based on simulations for all
52 HGDP populations for the en-
vironmental variables latitude (A)
and minimum winter tempera-
ture (B). (C) Histogram of mini-
mum winter temperature for the
52 HGDP populations. (D) False-
positive rate of different statistics
if one allele is fixed in the coldest
population.
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Analysis of pooled data

Pooled sequencing of multiple individuals has increased in
popularity, as it is considerably cheaper than barcoding all
individuals and sequencing them separately (but see Cutler
and Jensen 2010, for a discussion of drawbacks). The use of
allele frequencies estimated from the resulting read counts
seems to be a reasonable application of our method. How-
ever, it raises the question of how Bayenv behaves for dif-
ferent coverages as increasing sequencing coverage is not
the same as increased numbers of sampled individuals.

Power simulations: We simulated data that resemble the
HGDP populations and then pooled 10 diploid individuals
(i.e., 20 chromosomes) from each population and used the
populations’ respective latitudes as our environmental vari-
able. First, we experimented with incorrectly using read
counts in place of the chromosome counts (i.e., assuming
rjl and mjl were kjl and njl, respectively) and found that this
resulted in an excess of extreme Bayes factors for high cover-
ages under the null (data not shown). We found this infla-
tion to be most pronounced when read depths are greater
than the actual sample size, and this is likely due to false
certainty about the population frequencies by failing to ac-
count for the second level of sampling.

We then ran power simulations of Bayenv matched to the
HGDP data, with Z as a test statistic, using the true sample
frequencies (black squares in Figure 6) and the read counts
(incorrectly) as the input data for the previous version of
Bayenv (Bayenv1.0, black circles in Figure 6). Bayenv2.0,

which accounts for both stages of binomial sampling in pooled
data (as described above), was also applied to the same read
counts (white circles in Figure 6). The true sample frequencies
naturally resulted in the best power as there is no additional
sampling noise (Figure 6A). For higher mean coverages the
power of Bayenv1.0 using the read counts as sample allele
frequencies was almost as good as the power using true sam-
ple allele frequencies (Figure 6A). As most applications may
consist of a smaller number of populations, we additionally
sampled two subsets (Figure 6, B and C). On all of these, as
expected, Bayenv using the true sample frequencies outper-
formed Bayenv1.0 using the read counts.

In part, the poor power in pooled studies is unavoidable
due to the additional sampling noise. However, the loss of
power is likely boosted by failing to properly account for this
second stage of sampling, which leads to poor performance
due to variation in depth across populations and SNPs.
Including the sampling of reads into the model clearly had
a positive effect on power in our population subsets, while
incorrectly using the read counts as input did not reach
similar powers, even with high coverages (Figure 6, B and
C). However, the power of Bayenv2.0 was still considerably
low for mean coverages ,20·, suggesting that such low
read depths do not provide enough certainty for reliable
frequency estimation. Somewhat surprisingly, we did not
observe any advantages of the extended model in detection
power if all 52 HGDP populations are simulated (Figure 6A),
perhaps because differences in coverage over populations
are averaged over so many populations.

We note that both our original implementation and
Bayenv2.0, which acknowledges the pooled nature of the
data, will outperform tests of association that use the sample
frequency computed from the read count data. This follows
from the fact that both of these tests more fully acknowledge
sampling noise. This is an important issue for next-generation
data, as most technologies currently lead to high variation
in coverage along the genome, which will be a substantial
source of additional noise. Failure to acknowledge this noise
across loci will greatly reduce the power of tests of environ-
mental correlations.

Analysis of empirical data from Atlantic herring: Finally,
we applied Bayenv2.0 to the data of Lamichhaney et al.
(2012), which consist of pooled sequence for eight Atlantic
herring populations sampled along a salinity gradient, and
identified outliers for differentiation using FST and P-values
of a x2-test on the read counts. For their FST analysis, Lam-
ichhaney et al. (2012) selected a subset of their data set
consisting of the 36,794 SNPs (of 440,817 SNPs in total)
with at least 40 reads in each population; this sampling
cutoff was implemented to reduce the impact of sampling
noise on FST. While this is a sensible approach, it does dis-
card data. Approaches, like those in Bayenv2.0, that ac-
knowledge sampling should make better use of these data,
as they can identify candidate loci in regions with lower cov-
erage while avoiding false positives due to sampling noise.

Figure 5 Histogram of XTX calculated for all HGDP SNPs. The labels of
candidate genes are shown at the maximum XTX of any SNP within 50
kbp up- and downstream of the particular gene. The solid shaded line
shows the position beyond which 5% of all XTXs fall, and the dashed
shaded line denotes the top 1%. The solid black line shows the density of
the expected x2

52-distribution.
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We calculated Z for the salinity gradient on the 36,794 SNPs
(with coverage .40·) and for a random subset of 100,000
SNPs chosen regardless of their coverage. In addition, we
calculated FST and P-values of a x2-test on the read counts
for these data [to compare to the original study (Lamichha-
ney et al. 2012)]. To demonstrate how these three tests treat
sites with different coverages, we show the mean coverage of
sites in the upper 10–0.5% tail in Figure 7A. SNPs in the tail
of FST show a strong bias toward loci with lower coverages,
which in turn implies that many of these loci are likely false
positives due to sampling error being mistaken for extreme
population differentiation. On the other hand, SNPs in the
tails of the x2-test’s P-value are enriched for high-coverage
positions, reflecting the fact that this significance of the x2-
test will be greater for sites with higher coverage, even if
those sites do not have particularly high levels of differentia-
tion. Using our Z statistic, which accounts for the sampling
error while looking for differentiation along an environmen-
tal gradient, we find that our outliers seem much less biased
toward either extremely high or extremely low coverage. This

observation, along with our higher power to detect environ-
mental correlations than differentiation-based approaches
(Figure 3 and De Mita et al. 2013), suggests that our Z sta-
tistic is potentially detecting more true signals of loci that are
strongly differentiated along the salinity gradient while the
number of false positives is reduced.

Among the contigs in which the top 200 SNPs for our Z
statistic were found, only 8 were not named as candidates
by Lamichhaney et al. (2012), suggesting good agreement
with their extreme outliers. More generally, we find .70%
of our top 1% Z SNPs among the top 5% of FST and x2

(Figure 7B). This enrichment increases with coverage, re-
assuringly suggesting that the approaches are in stronger
agreement about outliers in regions with high coverage.
The overlap is not perfect; the tails of the differentiation
statistics should also include SNPs involved in adaptation
to other environmental variables and outliers caused by selec-
tion in single populations. Due to the current poor annotation
of herring data available in public databases, we refrain from
further speculation about the biological relevance of our top hits.

Figure 6 Power to detect environmental corre-
lations with latitude in pooled samples: (A–C) in
all 52 HGDP populations (A), in the seven sub-
Saharan populations (Yoruba, San, Mbuti
Pygmy, Mandenka, Biaka Pygmy, Bantu South
Africa, and Bantu Kenya) (B), and in one pop-
ulation per broader geographic region (Bantu
Kenya, French, Bedouin, Cambodian, Japanese,
Uygur, Colombian, and Papuan) (C). Popula-
tions are colored as in Figure 2.
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Discussion

In this article we have presented a method to more robustly
identify loci where allele frequencies correlate with environ-
mental variables. We have also described a method to detect
loci that are outliers with respect to genome-wide population
structure, while accounting for the differential relatedness
across populations.

Many available tests for selection are designed to detect
rapid complete sweeps from new mutations; however, such
events are likely just a small percentage of adaptive genetic
change (Coop et al. 2009; Pritchard et al. 2010; Cao et al. 2011;
Hernandez et al. 2011). Analyzing allele frequencies across
multiple populations offers the opportunity to detect selection
acting on standing variation and polygenic phenotypes. The
falling cost of genotyping means that typing individuals from
many populations is now in reach, a development that will
allow us to connect environmental variables to more subtle adap-
tive genetic variation. However, we stress that loci detected by the
approaches discussed above are obviously at best just candidates
for being involved in adaptation to a particular climate vari-
able, or set of climate variables, and so additional evidence is
needed to build the adaptive case at any locus.

Our use of the covariance matrix of population allele
frequencies when looking for environmental correlations is
conceptually similar to linear mixed-model (LMM) approaches
that account for kinship structure in genome-wide association
studies (GWAS) (e.g., Yu et al. 2006; Kang et al. 2008, 2010;
Zhou and Stephens 2012, who use an observed relatedness
matrix as the covariance matrix of the random effect). One
important difference is that we seek to predict allele frequen-
cies at a locus using the environmental variable, whereas these
LMM methods are predicting a phenotype as a function of
genotypes at a locus. In our approach, the equivalent of the
random-effect matrix is a proxy for a neutral model of allele
frequency variation, while in the application to GWAS the
kinship matrix accounts for the confounding due to heritable
variation in the phenotype elsewhere in the genome. Our
model could be used to detect loci that strongly covaried
with population mean phenotypes [e.g., phenotypes measured
at the breed level in dogs (Boyko et al. 2010)]. However, the

method used this way would have a high rate of false positives
if there are large environmental effects on the phenotype that
coincide with the principal axes of the covariance matrix.
Similarly, LMM approaches could be used to identify loci that
covaried with environmental gradients, but they may be un-
derpowered, because their random-effects model does not
attempt to reflect a model of genetic drift.

Standardized allele frequencies

We introduced a set of tests based on using our model of the
covariance of allele frequencies to produce a set of stan-
dardized allele frequencies (Xl). The calculation of standard-
ized allele frequencies allows us to calculate a variety of
statistics while taking advantage of the other features of
Bayenv2.0’s approach to account for covariance among pop-
ulations and sampling noise. The removal of covariance is
often a standard step in multivariate analysis; here we
remove this covariance structure in a way that acknowledges
the approximate form of genetic drift and the bounded nature
of allele frequencies. By integrating our statistic across the
posterior for Xl, we are averaging across our uncertainty in
allele frequencies, which should further increase our power.
Since the Xl are estimated using a single sample ofV from the
posterior, they are dependent on the quality of this V̂. With
a large number of SNPs used to estimate the covariance ma-
trix, MCMC runs converge to a small set of V’s with little
variance, so in practice this is not a major concern (for smaller
numbers of loci, investigators could average the covariance
matrix across the MCMC output).

As an example of the usefulness of the Xl, we explored
their application in identifying robust correlations with en-
vironmental variables. While the use of Spearman’s r on
these transformed allele frequencies results in a small loss
of power, it is much less sensitive to outliers and able to
detect any monotonic relationship. Therefore, a combined
approach that takes a set of SNPs in the intersection of the
tail of Bayes factors and in the tail of Spearman’s r on our
transformed allele frequencies should provide best results.

Our transformed allele frequencies could also be used
to detect and distinguish between the effects of multiple

Figure 7 (A) Average sequenc-
ing coverage (per SNP across all
eight populations) for different
tails of the statistics’ empirical
distributions when using salinity
as an environmental variable.
The blue horizontal line denotes
the mean across all SNPs. (B) En-
richment compared to expecta-
tions of the top 1% Z SNPs
among the top 5% FST and x2

SNPs for different minimum cov-
erages per SNP.
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environmental variables shaping variation at a locus. This
could be accomplished by including the multiple transformed
environmental variables (Y9) into a linear model to predict the
Xl at a locus or by applying appropriate transformed ecological
niche models (ENM) to the Xl to understand the predictors of
allele frequencies at a locus (see Fournier-Level et al. 2011;
Banta et al. 2012 for applications of ENMs to allele frequen-
cies). However, there is limited information about the effects
of even a single environmental variable from contemporary
allele frequencies if neutral allele frequencies are autocorre-
lated on the same scale as environmental variation (as is
the case in humans). Therefore, we caution that in many
situations there will be very limited power to learn about
the effect of multiple environmental variables.

Using our Xl statistics, we also introduced a method to
identify loci that are outliers from the general pattern of
population structure (our XTX statistic). This statistic is
closely related to FST, which can be expressed as Var(plj)/
(el(1 2 el)), where Var(plj) is the variance of our allele
frequency across populations (see Nicholson et al. 2002;
Balding 2003; Bonhomme et al. 2010, for discussion). Our
statistic, which is the variance of Xl, can be written as Equa-
tion 10, and so XTX can be seen as closely related to FST
calculated on the standardized allele frequencies. Impor-
tantly, by removing the covariance, we reweight populations
so that a small change shared across many closely related
populations is downweighted. This reweighting therefore
strongly increases our power to detect unusual allele fre-
quencies compared to that of global FST. The fact that we
remove the covariance between closely related populations
also means that, unlike in FST-based methods, we do not
have to arbitrarily clump populations to identify globally
differentiated SNPs. While in this article we use the 52
HGDP population labels, in principle Bayenv2.0 could be
run, treating each individual as a population, allowing XTX
to be calculated without regard to any population label.
However, this would be computationally time-consuming with
thousands of individuals. In such cases perhaps the sample
frequencies and the Cholesky decomposition of the sample
covariance matrix could instead be used to mitigate the com-
putational burden. This could also be done for environmental
correlations for large numbers of samples.

Ideally our XTX statistic would have a parametric distri-
bution under a general null model in which only drift and
migration shaped our frequencies. That might allow us to
make statements about what fraction of allele frequency change
was due to selection. Indeed, as noted above, if our population
frequencies were truly multivariate normal, our XTX statistic
would be x2-distributed if our sample sizes were sufficiently
large. This assumption would be approximately met if our
levels of drift were sufficiently small, such that the transition
density of allele frequencies was well approximated by a nor-
mal (see Price et al. 2009; Bhatia et al. 2011 for recent em-
pirical applications along these lines). However, when levels
of drift are higher, our normal approximation will break
down, as demonstrated by the poor fit of the x2 to the trans-

formed HGDP frequencies. The distribution of our statistic
could be obtained by simulation if the population history
were known. In practice, we are skeptical that our knowledge
of population genetic history will be sufficiently accurate to
make this feasible, but simulations may be useful in guiding
the setting of approximate significance levels.

Pooled next-generation sequencing

Recent empirical validations have shown that pooled rese-
quencing of populations is a powerful and cost-efficient way
to estimate allele frequencies (Zhu et al. 2012; but see Cut-
ler and Jensen 2010). The downside of the saving of costs in
library preparation and sequencing is the potential for in-
creased sampling noise in the allele frequency estimates
(Futschik and Schlötterer 2010; Zhu et al. 2012) and the
loss of haplotype information [although some haplotypic in-
formation can be recovered (Long et al. 2011)]. We account
for the sampling of sequencing reads as an additional level
of binomial sampling in the model of Bayenv2.0. Our power
simulations show that accommodating the extra level of
sampling in pooled designs can help to improve the power.
However, they also highlight the large, unavoidable loss in
power due to increased sampling noise when the depth of
coverage is low. The only way that this can be circumvented
is through increasing sequencing coverage to provide suffi-
cient certainty in the estimated allele frequencies and, thus,
sufficient power to detect environmental correlations. Al-
though low fold sequencing of many populations may help
to increase power in some situations, it is likely that for
some species (notably humans) sampling, and not sequenc-
ing, will be the limiting resource in the future.

Our model of pooled resequencing in Bayenv2.0 implies
uniform sampling of reads from each individual. Therefore,
we do not account for the possibility of an unequal number
of chromosomes per individual due to measurement errors,
different DNA content per individual, or differences caused
during DNA extraction, all of which might cause additional
noise in the allele frequency estimation (Cutler and Jensen
2010; Futschik and Schlötterer 2010). This additional noise,
if it is constant across loci, should be absorbed into the co-
variance matrix in Bayenv2.0, which will result in a reduc-
tion in power. However, including a sufficient number of
individuals in each pool should mitigate this effect (Zhu
et al. 2012). Furthermore, our model assumes perfectly called
bases, as we do not consider quality scores or sequencing errors.
Researchers dealing with NGS data should exercise caution with
these issues. However, examining multiple-population pools
simultaneously provides some straightforward approaches
to minimize error rates in SNP calling, such as calling only
SNPs supported by a minimum number of reads in at least
one population (Futschik and Schlötterer 2010). Such strategies
are already good practice in studies of pooled samples and
should be used in combination with the Bayenv model. For
the application to individual-based NGS data, further possible
extensions of our model include acknowledgment of sequenc-
ing errors and a probabilistic approach to genotype calling
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(see Nielsen et al. 2011, for a discussion on SNP calling from
NGS data).

Outlook

The population genomic comparison of closely related pop-
ulations that differ strongly in environmental variables has
already yielded many great candidate loci [see, for example,
altitude adaptation in Tibetans (Beall et al. 2010; Simonson
et al. 2010; Yi et al. 2010)]. The methods developed here
and elsewhere are part of realizing the power of these pop-
ulation comparisons. Such empirical studies also highlight
the current deficiencies of such methods, as some of the best
signals in these studies are not shared across populations
with broadly similar environments and instead indicate that
adaptation has occurred through independent mutations in
the same gene or pathway. For example, high-altitude adap-
tation seems to have a different genetic basis in highland
Ethiopian and Andean populations (Bigham et al. 2010;
Scheinfeldt et al. 2012). Methods based on environmental
correlations will fail to detect such cases, unless the data are
split into the appropriate geographic subsets (e.g., Hancock
et al. 2011c) on an appropriate geographic scale (Ralph and
Coop 2010). While shared standing variation will surely be
part of the adaptive response across geographically sepa-
rated instances of similar environments, ideally we would
have methods that could cluster signals at the level of the
gene or pathway to allow putative cases of parallel adaptation
to be identified (Daub et al. 2013). The development of such
techniques poses an important challenge for future method
development.
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Table S1: Top 100 Bayes factors for minimum winter temperature

Rank SNP ID BF ρl Genes within±50kbp
1 rs17002034 16734000.00 -0.48**** MKL1, COX6B1P3, CTA-229A8.5
2 rs3827382 777660.00 -0.49**** RP4-591N18.2, AL031594.1, MKL1
3 rs2075106 585830.00 -0.29** RP5-1091E12.1, EGFR
4 rs915624 264470.00 -0.43****
5 rs6500380 257850.00 -0.36*** UBA52P8, AC141846.4-001, LONP2, SIAH1
6 rs10503918 255690.00 0.34*** NRG1-IT3, NRG1
7 rs7870404 252090.00 0.43**** ATP5J2P3, RP11-490H9.1
8 rs103294 241970.00 -0.34*** RPS9, LILRB5, LILRB2, LILRA3, LILRA5,

AC010492.4, AC098789.1, AC010492.5,
AC010518.3, AC008984.5, AC008984.7,
VN1R104P, AC008984.6, MIR4752, U6, LILRA4,
AC008984.2

9 rs3816186 221650.00 -0.39**** MTA3, AC074375.1, U6
10 rs9306345 194310.00 -0.36*** SGSM3, RP5-1042K10.13, RP5-1042K10.10, RP5-

1042K10.12, MKL1
11 rs2104012 178340.00 -0.31** RP11-199O14.1
12 rs7789059 177590.00 0.26** CNTNAP2
13 rs6942733 128120.00 -0.39**** POP7, EPO, ZAN, EPHB4
14 rs2326794 113470.00 -0.40**** RP11-73O6.4, LAMA2
15 rs8035855 110760.00 0.34*** RP11-107F6.3, RP11-23P13.4, MGA, MAPKBP1,

JMJD7-PLA2G4B, JMJD7
16 rs10965206 110500.00 0.30** RP11-59O6.3, CBWD1, C9orf66, DOCK8
17 rs7974925 70478.00 -0.24* KSR2
18 rs6001912 67447.00 -0.41**** SGSM3, RP5-1042K10.13, RP5-1042K10.10, RP5-

1042K10.12, MKL1
19 rs4923183 67016.00 -0.29** NELL1
20 rs1568765 63642.00 0.37***
21 rs1783391 61123.00 -0.44****
22 rs10869887 58948.00 0.44**** ATP5J2P3, RP11-490H9.1
23 rs900102 53950.00 0.27** NRG1-IT2, RN5S263, NRG1
24 rs9819616 43242.00 -0.27** U3
25 rs13001721 36716.00 -0.38****
26 rs893188 26801.00 -0.36*** AC012313.1, ZNF584, ZNF132, ZNF324B, ZNF324,

ZNF446, Metazoa SRP, U6, SLC27A5
27 rs954106 23982.00 -0.31** 7SK, U6
28 rs6463224 23585.00 -0.27** C7orf50, GPR146, GPER, RP11-449P15.1,

AC091729.7, AC091729.8
29 rs9984991 23452.00 -0.35*** AP000475.2
30 rs989465 23082.00 -0.37*** NRG1-IT2, RN5S263, NRG1
31 rs6001913 22636.00 -0.42**** SGSM3, RP5-1042K10.12, MKL1
32 rs144173 22257.00 -0.34*** RP11-126L15.4, EPHB4, SLC12A9, ZAN, Meta-

zoa SRP, TRIP6
33 rs6001932 22113.00 -0.39**** RP5-1042K10.12, RP4-591N18.2, AL031594.1,

MKL1
34 rs301624 22078.00 0.23* RP11-463O9.5, RP11-463O9.6, FOXC2, FOXL1,

RP11-58A18.1
35 rs4910295 19999.00 -0.40**** MTND5P21, CTD-3224I3.3, GALNTL4
36 rs10273967 19889.00 0.24* CNTNAP2
37 rs774890 19383.00 -0.26** SLC26A10, B4GALNT1, OS9, RP11-571M6.1,

RP11-571M6.7, snoU13, RP11-571M6.8
38 rs2791708 19352.00 0.33*** PIGR, FCAMR, C1orf116, snoU13
39 rs344934 18974.00 0.28** RP5-817C23.1, GADD45A, Metazoa SRP, GNG12
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40 rs2294352 18861.00 -0.39**** SGSM3, RP5-1042K10.13, RP5-1042K10.10, RP5-
1042K10.12, MKL1

41 rs13116347 17784.00 -0.30** RP11-76G10.1, NR3C2
42 rs1584586 17677.00 -0.38**** RP11-145F16.2, TSC22D2
43 rs10787530 16321.00 -0.34*** AFAP1L2, Metazoa SRP, ABLIM1
44 rs957224 14887.00 0.33*** RP11-3L8.3, LURAP1L, Metazoa SRP
45 rs473818 14572.00 0.31** DLG2
46 rs12446160 14547.00 0.36*** UBA52P8, AC141846.4-001, LONP2, SIAH1
47 rs4675161 14505.00 0.35*** AC097662.2, COL4A3
48 rs6127972 13737.00 -0.28** RP4-813D12.2, BMP7, RP4-813D12.3
49 rs10953303 13193.00 -0.36*** EPO, ZAN, EPHB4
50 rs3731739 13047.00 -0.31** snoU13, SESTD1
51 rs2208363 12784.00 -0.35*** RP5-1185H19.2, MAB21L3
52 rs1344779 12396.00 -0.33*** C12orf75
53 rs2145419 11682.00 0.36***
54 rs11712748 11428.00 -0.30** RP11-454H13.6, ZBTB11, RP11-454H13.5, RPL24,

U6, Y RNA
55 rs3785461 10981.00 0.30** RPS20P35, RP1-56K13.2, RP1-56K13.3, RP1-

56K13.1, C17orf98, RPL23, LASP1, SNORA21
56 rs4489283 10892.00 0.29** NRG1
57 rs722158 10884.00 0.32** RP11-317J19.1, ME3
58 rs6449438 10618.00 -0.34*** AC006499.8, AC006499.5, AC006499.4,

AC006499.3, AC006499.2, AC006499.1
59 rs658624 10568.00 0.34*** TMPRSS4, SCN4B, SCN2B, AMICA1
60 rs6478215 9938.60 -0.30** LINC00474
61 rs6763648 9201.80 0.32** RP11-430J3.1, HMGB1P36, U6
62 rs1760907 8743.60 0.37*** RPPH1, RP11-203M5.2, CCNB1IP1, PARP2, TEP1,

RN5S382
63 rs840966 8655.20 0.32** AC012370.3, AC007389.1, AC007389.2, SPRED2,

AC074391.1
64 rs3743024 8572.00 0.21* RP11-23P13.4, MAPKBP1, JMJD7-PLA2G4B,

JMJD7, PLA2G4B, MIR4310, RN5S393, SPTBN5
65 rs2496737 8569.40 -0.38**** RP11-8L18.3, RP11-8L18.2, PARD3
66 rs12828 8259.50 -0.37*** RP11-679B19.2, WWOX
67 rs2868355 7891.40 0.16 HNRNPD, HNRPDL, IGBP1P4, SNORD42, ENOPH1
68 rs4918844 7577.00 0.26** HABP2, NRAP
69 rs3807496 7564.60 -0.37*** TSPAN13, AGR2
70 rs3804778 7326.60 -0.32** RP11-234A1.1, RP11-454H13.1, RG9MTD1, PCNP,

U6
71 rs3778112 7122.20 -0.38**** RP11-73O6.4, LAMA2
72 rs13072301 6711.00 0.22* FAM172BP, RP11-234A1.1, RP11-454H13.1,

SENP7, RG9MTD1, PCNP
73 rs12297142 6708.30 0.27** RP11-13G14.4, FICD
74 rs622572 6671.90 -0.30** AC009294.1
75 rs10935800 6594.20 -0.31** RP11-145F16.2, TSC22D2
76 rs194741 6449.10 -0.32** RP11-723P16.2, ZFP36L1, Metazoa SRP
77 rs314320 6431.50 -0.31** RP11-126L15.4, EPHB4, SLC12A9, TRIP6, ZAN,

Metazoa SRP, SRRT
78 rs2355097 6404.00 0.29** AC073109.2, THSD7A
79 rs602618 6361.00 -0.40**** RP11-479A21.1, ADRA2A
80 rs134810 6214.20 0.37*** CTA-929C8.5, CTA-929C8.7, CTA-929C8.6
81 rs639847 6107.10 0.36*** EDARADD
82 rs4737872 6016.30 -0.32** PREX2
83 rs1917950 5972.40 -0.32** CNTNAP2
84 rs7997069 5831.30 -0.39****
85 rs7845867 5698.20 0.29** CSMD1
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86 rs6001954 5572.60 -0.41**** RP4-591N18.2, COX6B1P3, AL031594.1, MKL1
87 rs633715 5512.30 -0.24* RP4-798P15.2, SEC16B
88 rs9985057 5406.60 0.34*** DSCAM-AS1, DSCAM
89 rs845561 5322.00 -0.30** RP5-1091E12.1, EGFR
90 rs10781417 5318.20 -0.36*** ATP5J2P3, RP11-490H9.1
91 rs10063964 5240.30 -0.25** CTD-2227I18.1, ANKRD55
92 rs10737764 5227.80 0.30** RP5-1185H19.2, MAB21L3
93 rs6762432 5215.10 0.30** TSC22D2
94 rs1990606 5176.70 0.33*** HMGB1P4, MYO3B, AC007277.3
95 rs7678436 5105.50 0.31** FAM184B, DCAF16, NCAPG, LCORL
96 rs11819326 5096.80 -0.41****
97 rs2425445 5055.80 0.23* RP4-644L1.2, MAFB
98 rs2811659 4803.30 -0.17
99 rs11589250 4751.30 -0.41**** RLF, TMCO2, U6
100 rs2496742 4708.10 -0.35*** RP11-8L18.3, RP11-8L18.2, PARD3

*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001
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Table S2: Top 100 ρl for minimum winter temperature

Rank SNP ID ρl BF Genes within±50kbp
1 rs3827382 -0.49 777660.00**** RP4-591N18.2, AL031594.1, MKL1
2 rs17002034 -0.48 16734000.00**** MKL1, COX6B1P3, CTA-229A8.5
3 rs10869887 0.44 58948.00**** ATP5J2P3, RP11-490H9.1
4 rs1783391 -0.44 61123.00****
5 rs7870404 0.43 252090.00**** ATP5J2P3, RP11-490H9.1
6 rs915624 -0.43 264470.00****
7 rs11698307 -0.42 382.95*** RP11-560A15.4, RP11-560A15.3, BMP7
8 rs6001913 -0.42 22636.00**** SGSM3, RP5-1042K10.12, MKL1
9 rs6792339 -0.42 151.32** MIR3921, C3orf26, FILIP1L
10 rs1871847 -0.42 667.70*** COL8A1, C3orf26, FILIP1L
11 rs12550228 0.42 272.63**
12 rs10056699 -0.42 212.92** CCDC11P1
13 rs6001912 -0.41 67447.00**** SGSM3, RP5-1042K10.13, RP5-1042K10.10, RP5-

1042K10.12, MKL1
14 rs9632856 0.41 546.86*** NKX3-1, NKX2-6, RP11-213G6.2, RP11-175E9.1
15 rs2835190 -0.41 50.32** AP000688.8, RPL23AP3, RUNX1
16 rs4837745 0.41 13.66* MIR147A
17 rs10510925 -0.41 785.22*** ADAMTS9-AS2
18 rs11589250 -0.41 4751.30*** RLF, TMCO2, U6
19 rs1979635 -0.41 102.21** SORCS3
20 rs10739560 0.41 25.61** MIR147A
21 rs6001954 -0.41 5572.60*** RP4-591N18.2, COX6B1P3, AL031594.1, MKL1
22 rs11819326 -0.41 5096.80***
23 rs7848719 -0.41 2465.70*** PALM2, PALM2-AKAP2, AKAP2
24 rs602618 -0.40 6361.00*** RP11-479A21.1, ADRA2A
25 rs12536200 -0.40 3535.30*** CNTNAP2
26 rs2326794 -0.40 113470.00**** RP11-73O6.4, LAMA2
27 rs4910295 -0.40 19999.00**** MTND5P21, CTD-3224I3.3, GALNTL4
28 rs2282537 -0.39 1029.50*** POU2F3, TMEM136, ARHGEF12
29 rs7997069 -0.39 5831.30***
30 rs12364607 -0.39 28.71** ST14, RP11-567O18.1, ZBTB44, DDX18P5
31 rs2294352 -0.39 18861.00**** SGSM3, RP5-1042K10.13, RP5-1042K10.10, RP5-

1042K10.12, MKL1
32 rs3816186 -0.39 221650.00**** MTA3, AC074375.1, U6
33 rs10008679 0.39 2512.30***
34 rs2691269 -0.39 616.05*** KLK13, KLK14, CTU1, SIGLEC9
35 rs17715017 -0.39 1950.70***
36 rs6001932 -0.39 22113.00**** RP5-1042K10.12, RP4-591N18.2, AL031594.1,

MKL1
37 rs6942733 -0.39 128120.00**** POP7, EPO, ZAN, EPHB4
38 rs10506959 0.39 306.37**
39 rs11582490 -0.39 66.66** TSEN15P2, NRD1, Y RNA, MIR761
40 rs1946086 0.38 542.69*** KIRREL3
41 rs420302 0.38 374.55***
42 rs3778112 -0.38 7122.20*** RP11-73O6.4, LAMA2
43 rs10869873 0.38 668.43*** ATP5J2P3, RP11-490H9.1, FOXB2
44 rs17591848 -0.38 3309.20*** LINC00332
45 rs13001721 -0.38 36716.00****
46 rs1122127 -0.38 29.63** RP11-90D11.1, KB-1047C11.2
47 rs4501094 -0.38 1815.40*** ATP2B2-IT1, ATP2B2
48 rs12932768 -0.38 290.64** RP11-509E10.1, RBFOX1, RP11-420N3.2
49 rs1030089 0.38 13.94* AC074391.1
50 rs6563798 -0.38 1359.00*** LINC00332
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51 rs3859379 0.38 621.97***
52 rs2626636 0.38 297.82** RP11-525K10.3
53 rs9288052 -0.38 523.11*** AC009478.2, AC009478.1
54 rs4849387 0.38 38.88** DPP10
55 rs12130516 -0.38 634.77*** HHAT
56 rs17617922 0.38 21.83** TRPM3
57 rs2809936 -0.38 42.40** NRD1, AL589663.1, RAB3B
58 rs6439989 0.38 360.90** RP11-764I5.1, RP11-438D8.2, ACPL2
59 rs1584586 -0.38 17677.00**** RP11-145F16.2, TSC22D2
60 rs6446629 -0.38 436.26*** AFAP1
61 rs17480463 -0.38 794.99*** FGGY
62 rs17583067 -0.38 26.99** RP11-661C8.2, RP11-43F13.3, AC116351.1, RP11-

661C8.3, AC116351.2, NKD2
63 rs856615 -0.38 69.12** TSEN15P2, OSBPL9, Y RNA, MIR761, NRD1
64 rs2496737 -0.38 8569.40*** RP11-8L18.3, RP11-8L18.2, PARD3
65 rs920300 0.38 127.61** NKX3-1, NKX2-6, RP11-213G6.2, RP11-175E9.1
66 rs12743478 -0.38 41.82** NTNG1
67 rs10901091 -0.38 14.79* EIF4A1P3, RAPGEF1, SNORA67, Metazoa SRP,

RP11-323H21.3
68 rs3737002 -0.38 1388.80*** RP11-78B10.2, CR1
69 rs4566993 -0.38 183.73** RP11-981G7.4, PRSS55
70 rs2846063 -0.38 70.98** AP000783.2, AP000783.1, MIR4493
71 rs4361385 -0.38 89.02** AFAP1
72 rs895710 0.38 1305.60***
73 rs16910142 0.38 12.13* RP11-180I4.2, RP11-180I4.1
74 rs17084654 0.38 22.17**
75 rs7911274 -0.37 2357.00***
76 rs2245822 -0.37 27.73** XXbac-BPG299F13.15, XXbac-BPG299F13.16,

USP8P1, RPL3P2, WASF5P, XXbac-BPG248L24.13,
XXbac-BPG248L24.10, HLA-C

77 rs7858354 -0.37 210.12** PALM2, PALM2-AKAP2, AKAP2
78 rs903919 0.37 32.58** SKI, MORN1
79 rs1760907 0.37 8743.60**** RPPH1, RP11-203M5.2, CCNB1IP1, PARP2, TEP1,

RN5S382
80 rs134810 0.37 6214.20*** CTA-929C8.5, CTA-929C8.7, CTA-929C8.6
81 rs879502 0.37 2205.90*** AP000470.2
82 rs1029225 -0.37 2537.30*** LINC00160, AP000330.8, CLIC6
83 rs1492343 -0.37 153.31** COL8A1
84 rs17294590 -0.37 32.44** CPNE4
85 rs1323923 -0.37 50.91** PCDH9-AS3, PCDH9-AS4, PCDH9
86 rs11145093 0.37 410.48*** PCA3, PRUNE2
87 rs12828 -0.37 8259.50*** RP11-679B19.2, WWOX
88 rs2477009 -0.37 1682.80*** RP11-8L18.3, RP11-8L18.2, PARD3
89 rs9515201 0.37 1440.70*** snoU13, COL4A2
90 rs989465 -0.37 23082.00**** NRG1-IT2, RN5S263, NRG1
91 rs12092568 -0.37 202.31** SLC25A39P1, RP11-480I12.10, KDM5B-AS1,

RP11-480I12.5, RP11-480I12.7, RP11-480I12.9,
KDM5B, RP11-480I12.4, RABIF

92 rs12918809 -0.37 247.48** RP11-509E10.1, RBFOX1, RP11-420N3.2
93 rs17186 -0.37 60.33** AC087859.1
94 rs13093976 -0.37 428.40*** IFT57
95 rs3807496 -0.37 7564.60*** TSPAN13, AGR2
96 rs617938 0.37 102.57** CTD-2127H9.1, OSMR
97 rs7764258 -0.37 11.62* RP3-522P13.2, Y RNA, LRRC16A
98 rs6657710 -0.37 57.41** NTNG1
99 rs2041704 0.37 74.90**
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100 rs1568765 0.37 63642.00****
*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001
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Table S3: Top 100XTX signals in the HGDP data

Rank SNP ID XTX conƟnental FST Genes within±50kbp
1 rs1834640 121.02 0.76**** SLC24A5, MYEF2
2 rs28777 112.77 0.43** RP11-1084J3.1, RP11-1084J3.3, RXFP3, SLC45A2,

AMACR, C1QTNF3
3 rs2250072 112.50 0.66**** RP11-208K4.1, SLC24A5, MYEF2
4 rs1419138 111.65 0.42** RP11-354M20.3, RAB11FIP2
5 rs260690 109.69 0.60*** EDAR
6 rs1257016 109.15 0.26* AC079395.1, FAM178B, snoU13, RN5S101
7 rs10886189 108.27 0.51*** RP11-354M20.3, RAB11FIP2
8 rs6500380 108.03 0.59*** UBA52P8, AC141846.4-001, LONP2, SIAH1
9 rs12477830 107.31 0.51*** AC019100.7, RP11-443K8.1, SULT1C2P1, SULT1C2
10 rs6497573 107.06 0.26* RP11-101E7.2, C16orf52, VWA3A, SDR42E2
11 rs260714 106.93 0.58*** EDAR
12 rs12172281 106.76 0.27* MKL1, MCHR1, GAPDHP37
13 rs13054099 106.76 0.31* SLC25A17, ST13, DNAJB7, RP3-408N23.4, JTBP1,

MIR4766, XPNPEP3
14 rs12476238 106.56 0.50*** AC019100.7, RP11-443K8.1, SULT1C2P1, SULT1C2
15 rs3922756 106.50 0.32* INS, TH, IGF2, INS-IGF2, MIR4686
16 rs2424641 106.44 0.31*
17 rs1257029 106.38 0.27* AC079395.1, TRIM43CP, AC018892.8,

AC018892.3, FAM178B, snoU13, RN5S101
18 rs5996039 105.76 0.32* POLR3H, PMM1, DESI1, CSDC2, XRCC6
19 rs5996092 105.64 0.31* SREBF2, SHISA8, TNFRSF13C, CENPM, SEPT3,

CTA-250D10.23, CTA-250D10.15, CTA-250D10.19,
MIR378I, MIR33A

20 rs3750997 105.50 0.08 AP002387.1, RP11-660L16.2, DHCR7, NADSYN1
21 rs133072 105.47 0.28* MKL1, MCHR1, GAPDHP37
22 rs749767 105.45 0.28* AC135050.5, RP11-196G11.4, RP11-388M20.2,

ZNF668, ZNF646, PRSS53, RP11-196G11.1,
VKORC1, BCKDK, KAT8, PRSS8, PRSS36,
AC135050.2

23 rs11055962 105.41 0.28* RP11-515B12.1, ATF7IP
24 rs8139993 105.30 0.32* PMM1, DESI1, Y RNA, CSDC2, XRCC6
25 rs11230851 105.24 0.37** RP11-810P12.1, BEST1, FTH1, U6
26 rs8137373 105.19 0.25* RANGAP1, ZC3H7B, U6, TEF
27 rs2156208 105.14 0.31* RP11-640A1.1
28 rs3927 105.12 0.27* RANGAP1, ZC3H7B, TEF
29 rs8135759 104.86 0.21 RP5-1042K10.12, MKL1
30 rs6761501 104.77 0.47** EDAR
31 rs9837708 104.63 0.61**** FOXP1
32 rs1866694 104.39 0.36** RP11-787D18.2, RP11-787D18.1, CLVS1
33 rs6542787 104.39 0.46** EDAR
34 rs509360 104.36 0.23 RP11-467L20.10, RP11-467L20.9, RP11-467L20.7,

DAGLA, C11orf9, AP002380.1, C11orf10, FEN1,
FADS1, MIR611, MIR1908, FADS2

35 rs1136348 104.24 0.25* RP11-430L17.1, FBXO42, C1orf144
36 rs6990312 103.93 0.38** EBAG9, SNORD112, SYBU
37 rs10202644 103.89 0.27* snoU13, RN5S101, FAM178B
38 rs4820437 103.85 0.26* ZC3H7B, TEF, U6
39 rs10871454 103.82 0.37** RP11-196G11.2, AC135050.5, HSD3B7, STX1B,

STX4, ZNF668, AC135050.1, ZNF646, PRSS53,
RP11-196G11.1

40 rs202654 103.72 0.24* TEF, TOB2, PHF5A, ACO2
41 rs260698 103.67 0.54*** EDAR
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42 rs1701930 103.67 0.28* KLKP1, AC011483.1, KLK2, KLK4, KLK5, KLK6
43 rs1256991 103.58 0.29* AC079395.1, TRIM43CP, AC018892.8,

AC018892.3, AC018892.5, AC018892.6,
FAM178B, snoU13, RN5S101

44 rs17740937 103.54 0.22 RP11-1A16.1
45 rs11020772 103.35 0.33* RNU6-16, GRM5
46 rs7483764 103.30 0.32* RNU6-16, GRM5
47 rs10483393 103.30 0.38** RP11-187E13.1, RP11-187E13.2
48 rs3742000 103.29 0.37** RPS2P41, ADAM1, AC003029.4, MAPKAPK5,

TMEM116
49 rs2305884 103.13 0.22 CTF2P, FBXL19-AS1, AC135048.13, FBXL19,

ORAI3, SETD1A, HSD3B7, STX1B
50 rs12913832 102.91 0.36** OCA2, HERC2
51 rs1257017 102.90 0.24* AC079395.1, FAM178B, snoU13, RN5S101
52 rs2441727 102.85 0.43** snoU40, CTNNA3
53 rs7238925 102.85 0.17 ZCCHC2
54 rs12440301 102.84 0.61**** RP11-208K4.1, SLC24A5, MYEF2
55 rs1561277 102.79 0.28* ZRANB3
56 rs139533 102.78 0.30* L3MBTL2, CHADL, RANGAP1, ZC3H7B
57 rs1873933 102.75 0.19 GULOP, EPHX2, CLU
58 rs7498665 102.71 0.16 RP11-1348G14.5, RP11-24N18.1, RP11-22P6.2,

RP11-22P6.3, ATXN2L, TUFM, SH2B1, ATP2A1,
SNORA43, MIR4721, RABEP2

59 rs139553 102.66 0.33* MEI1, CCDC134, RP5-821D11.7, Y RNA, SREBF2
60 rs1468253 102.65 0.39** RPL7AP60, RP3-521E19.3, C12orf51
61 rs139528 102.62 0.30* L3MBTL2, CHADL, RANGAP1, ZC3H7B
62 rs11066322 102.40 0.34* PTPN11
63 rs897986 102.37 0.21 FBXL19-AS1, AC135048.13, FBXL19, ORAI3,

SETD1A, HSD3B7, STX1B
64 rs12049408 102.35 0.23 RP1-224A6.3, LINC00339, HSPG2, CELA3B,

CELA3A, U6, Metazoa SRP
65 rs4788102 102.31 0.16 RP11-1348G14.4, RP11-1348G14.1, RP11-

1348G14.5, RP11-24N18.1, RP11-22P6.2,
RP11-22P6.3, ATXN2L, TUFM, SH2B1, ATP2A1,
SNORA43, MIR4721, RABEP2

66 rs889548 102.26 0.35** RP11-196G11.4, RP11-388M20.2, RP11-
388M20.7, RP11-388M20.8, ZNF646, PRSS53,
RP11-196G11.1, VKORC1, BCKDK, KAT8, PRSS8,
PRSS36, AC135050.2

67 rs8104441 102.23 0.43** AC011483.1, KLK4, KLK5, KLK6, KLK7
68 rs1796045 102.11 0.23 snoU13, RN5S101, FAM178B
69 rs1348587 102.09 0.37** GALNT13
70 rs5751080 102.05 0.22 RANGAP1, ZC3H7B, U6, TEF
71 rs692804 102.01 0.37** RP11-778O17.4, TRIM29, OAF, POU2F3
72 rs6731972 102.01 0.46** AC064847.4, ASXL2, KIF3C
73 rs126092 101.94 0.31* MEI1, CCDC134, Y RNA, RP5-821D11.7
74 rs2339941 101.87 0.37** RP1-267L14.3, TMEM116, ERP29, Y RNA,

MIR3657, NAA25
75 rs4299060 101.83 0.32* RP11-326E7.1
76 rs6583859 101.76 0.56*** RP11-280G19.1
77 rs6730157 101.59 0.28* RAB3GAP1, SNORA40, ZRANB3
78 rs7584385 101.48 0.29* GKN1, ANTXR1
79 rs876251 101.46 0.20 AC093690.1, RP11-731I19.1, BRE
80 rs9611613 101.32 0.24 ACO2, POLR3H, PMM1, CSDC2, DESI1
81 rs9323160 101.26 0.25*
82 rs6802472 101.25 0.44** FOXP1

Günther and Coop 9 SI



83 rs12992554 101.23 0.33* EDAR
84 rs4833103 101.19 0.34* TLR10, TLR1, TLR6
85 rs4820425 101.19 0.28* RP11-12M9.3, RP11-12M9.4, AL080243.1, Y RNA
86 rs1999618 101.17 0.33* RP11-1A16.1
87 rs886205 101.13 0.37** RP3-462E2.3, ACAD10, RP11-162P23.2, ALDH2
88 rs1572018 101.12 0.43** CALM2P3, KBTBD6, snoU13, Metazoa SRP,

MIR3168, KBTBD7
89 rs1796028 101.11 0.23 snoU13, RN5S101, FAM178B
90 rs7974383 101.02 0.35** RP3-521E19.3, C12orf51, RPL6
91 rs133070 100.93 0.26* MKL1, MCHR1, GAPDHP37
92 rs12891534 100.92 0.26* CEP128
93 rs932206 100.91 0.24* AC068492.1, CXCR4
94 rs853577 100.91 0.44** RP11-354M20.3, RAB11FIP2, CASC2
95 rs4757108 100.87 0.31* CTC-497E21.5, RP11-413N13.1
96 rs12889337 100.86 0.34* RP11-1A16.1
97 rs7090105 100.73 0.53*** RP11-537A6.9, TTC18, ANXA7, Y RNA
98 rs4757894 100.73 0.43** NAV2-AS1, NAV2, DBX1
99 rs5758314 100.69 0.22 ZC3H7B, TEF, U6
100 rs7304572 100.67 0.35** RP1-267L14.3, NAA25, Y RNA, MIR3657, TRAFD1

*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001
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Figure S1: TransformaƟon of normalized laƟtude Y to Y ′.
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Figure S2: TransformaƟon of normalized laƟtude Y (full symbols) to Y ′ (open symbols).
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Figure S4: TransformaƟon of normalized minimum winter temperature Y (full symbols) to Y ′ (open symbols).
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52 distribuƟon, which is expected if Xl

would followMVN(0, I). XTX was calculated in two different ways, first using the final generaƟon of theMCMC
(X(M)T

l X
(M)
l ) and the second using the average XT

l Xl across all M samples for each locus l (XT
l Xl). The

esƟmates based on single samples from the MCMC show a somewhat higher variance. The averaging, on the
other hand, led to a smaller variance, indicaƟng that this approach is slightly over-conservaƟve. Both observed
distribuƟons are not consistent with the expected χ2

52 distribuƟon (Kolmogorov-Smirnov tests, both p-values
< 10−6). We chose to use XT

l Xl, as it averages over our uncertainty in the sample frequencies, and so should
be more robust to outliers due to small sample sizes.
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Figure S6: Two expemplarily chosen SNP from the top 20 Bayes factors. Both are characterized by similarly high
Bayes factors (Supplementary Table 1) and extreme allele frequencies in the Yakuts. (A) Allele frequencies and
standardized minimum winter temperatures of rs6001912 which is among the top 25 SNPs of both staƟsƟcs BF
and ρ, (B) shows the geographical distribuƟon of rs6001912. (C) rs7974925 is among the top 20 BFs but only
the top 7,000 ρ signals which is mainly caused by the two outlier populaƟons, (D) shows the geographical dis-
tribuƟon of rs7974925. Plots of geographic distribuƟons were downloaded from the HGDP selecƟon browser
(hgdp.uchicago.edu).
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SNP: rs12172281

Ancestral Allele: C

Derived Allele: T
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Figure S7: Geographical distribuƟon of our 12th highest SNP for XTX , rs12172281. This plot was downloaded
from the HGDP selecƟon browser (hgdp.uchicago.edu).

Günther and Coop 17 SI

http://hgdp.uchicago.edu/


SNP: rs133072

Ancestral Allele: A*

Derived Allele: G
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Figure S8: Geographical distribuƟon of our 21st highest SNP forXTX , rs133072. This plot was downloaded from
the HGDP selecƟon browser (hgdp.uchicago.edu).
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