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Coot is a molecular-graphics application for model building

and validation of biological macromolecules. The program

displays electron-density maps and atomic models and allows

model manipulations such as idealization, real-space refine-

ment, manual rotation/translation, rigid-body fitting, ligand

search, solvation, mutations, rotamers and Ramachandran

idealization. Furthermore, tools are provided for model

validation as well as interfaces to external programs for

refinement, validation and graphics. The software is designed

to be easy to learn for novice users, which is achieved by

ensuring that tools for common tasks are ‘discoverable’

through familiar user-interface elements (menus and toolbars)

or by intuitive behaviour (mouse controls). Recent develop-

ments have focused on providing tools for expert users,

with customisable key bindings, extensions and an extensive

scripting interface. The software is under rapid development,

but has already achieved very widespread use within the

crystallographic community. The current state of the software

is presented, with a description of the facilities available and of

some of the underlying methods employed.
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1. Introduction

Macromolecular model building using X-ray data is an inter-

active task involving the iterative application of various

optimization algorithms with evaluation of the model and

interpretation of the electron density by the scientist. Coot is an

interactive three-dimensional molecular-modelling program

particularly designed for the building and validation of protein

structures by facilitating the steps of the process.

In recent years, initial construction of the protein chain has

often been carried out using automatic model-building tools

such as ARP/wARP (Langer et al., 2008), SOLVE/RESOLVE

(Wang et al., 2004) and more recently Buccaneer (Cowtan,

2006). In consequence, relatively more time and emphasis is

placed on model validation than has previously been the case

(Dauter, 2006). The refinement and validation steps become

increasingly important and also more time-consuming with

lower resolution data. Coot aims to provide access to as many

of the tools required in the iterative refinement and validation

of a macromolecular structure as possible in order to facilitate

those aspects of the process which cannot be performed

automatically. A primary design goal has been to make the

software easy to learn in order to provide a low barrier for

scientists who are beginning to work with X-ray data. While

this goal has not been met for every feature, it has played a

major role in many of the design decisions that have shaped

the software.



The principal tasks of the software are the visualization of

macromolecular structures and data, the building of models

into electron density and the validation of existing models;

these will be considered in the next three sections. The

remaining sections of the paper will deal with more technical

aspects of the software, including interactions with external

software, scripting and testing.

2. Program design

The program is constructed from a range of existing software

libraries and a purpose-written Coot library which provides

a range of tools specific to model building and visualization.

The OpenGL and other graphics libraries, such as the X

Window System and GTK+, provide the graphical user-

interface functionality, the GNU Scientific Library (GSL)

provides mathematical tools such as function minimizers and

the Clipper (Cowtan, 2003) and MMDB (Krissinel et al., 2004)

libraries provide crystallographic tools and data types. On

top of these tools are the Coot libraries, which are used to

manipulate models and maps and to represent them graphi-

cally.

Much of this functionality may be accessed from the

scripting layer (see x8), which allows programmatic access to

all of the underlying functionality. Finally, the graphical user

interface is built on top of the scripting layer, although in some

cases it is more convenient for the graphical user interface to

access the underlying classes directly (Fig. 1).

3. Visualization

Coot provides tools for the display of three-dimensional data

falling into three classes.

(i) Atomic models (generally displayed as vectors

connecting bonded atoms).

(ii) Electron-density maps (generally contoured using a

wire-frame lattice).

(iii) Generic graphical objects (including the unit-cell box,

noncrystallographic rotation axes and similar).

A user interface and a set of controls allow the user to interact

with the graphical display, for example in moving or rotating

the viewpoint, selecting the data to be displayed and the mode

in which those data are presented.

The primary objective in the user interface as it stands today

has been to make the application easy to learn. Current design

of user interfaces emphasizes a number of characteristics for a

high-quality graphical user interface (GUI). Such character-

istics include learnability, productivity, forgiveness (if a user

makes a mistake, it should be easy to recover) and aesthetics

(the application should look nice and provide a pleasurable

experience). When designing the user interface for Coot, we

aim to respect these issues; however, this may not always be

achieved and the GUI often undergoes redesign. Ideally, a

user who has a basic familiarity with crystallographic data but

who has never used Coot before should be able to start the

software, display their data and perform some basic manip-

ulations without any instruction. In order for the software to

be easy to learn, it is necessary that the core functionality of

the software be discoverable, i.e. the user should be able to

find out how to perform common tasks without consulting the

documentation. This may be achieved in any of three ways.

(i) The behaviour is intuitive, i.e. the behaviour of user-

interface elements can be either anticipated or determined

by a few experiments. An example of this is the rotation of

the view, which is accomplished by simply dragging with the

mouse.

(ii) The behaviour is familiar and consistent, i.e. user-

interface elements behave in a similar way to other common

software. An example of this is the use of a ‘File’ menu

containing ‘Open . . . ’ options, leading to a conventional file-

selection dialogue.

(iii) The interface is explorable, i.e. if a user needs an

additional functionality they can find it rapidly by inspecting

the interface. An example of this is the use of organized menus

which provide access to the bulk of the program functionality.

Furthermore, tooltips are provided for most menus and

buttons and informative widgets explain their function.

3.1. User interface

The main Coot user interface window is shown in Fig. 2 and

consists of the following elements.

(i) In the centre of the main window is the three-dimen-

sional canvas, on which the atomic models, maps and other

graphical objects are displayed. By default this area has a

black background, although this can be changed if desired.

(ii) At the top of the window is a menu bar. This includes

the following menus: ‘File’, ‘Edit’, ‘Calculate’, ‘Draw’,

‘Measures’, ‘Validate’, ‘HID’, ‘About’ and ‘Extensions’. The

‘File’, ‘Edit’ and ‘About’ menus fulfill their normal roles.

‘Calculate’ provides access to model-manipulation tools.

‘Draw’ implements display options. ‘Measures’ presents access

to geometrical information. ‘Validate’ provides access to

validation tools. ‘HID’ allows the human-interface behaviour

to be customized. ‘Extensions’ provides access to a range
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Figure 1
Coot architecture, showing the layers of functionality from the user
interface down to some of the low-level libraries. The libraries are
described in more detail in the main text (xx3.4, 3.5, 4.3 and 4.4).



of optional functionalities which may be customized and

extended by advanced users. Additional menus can be added

by the use of the scripting interface.

(iii) Between the menu bar and the canvas is a toolbar

which provides two very frequently used controls: ‘Reset

view’ switches between views of the molecules and ‘Display

Manager’ opens an additional window which allows individual

maps and molecules to be displayed in different ways. This

toolbar is customizable, i.e. additional buttons can be added.

(iv) On the right-hand side of the window is a toolbar of

icons which allow the modification of atomic models. By

default these are displayed as icons, although tooltips are

provided and text can also be displayed.

(v) Below the canvas is a status bar in which brief text

messages are displayed concerning the status of current

operations.

The user interface is implemented using the GTK+2 widget

stack, although with some work this could be changed in the

future.

3.2. Controls

User input to the program is primarily via mouse and

keyboard, although it is also possible to use some dial devices

such as the ‘Powermate’ dial. The mouse may be used to select

menu options and toolbar buttons in the normal way.

In addition, the mouse and the keyboard may be used to

manipulate the view in the three-dimensional canvas using the

controls shown in Fig. 3.

In a large program there is often tension between software

being easy to learn and being easy to use. A program which is

easy to use provides extensive shortcuts to allow common

tasks to be performed with the minimum user input. Keyboard

shortcuts, customizations and macro languages are common

examples and are often employed by expert users of all types

of software. Coot now provides tools for all of these. Much of

the functionality of the package is now accessible from both

the Python (http://www.python.org) and the Scheme (Kelsey et

al., 1998) scripting languages, which may be used to construct

more powerful tools using combinations of existing functions.

One example is a function often used after molecular

replacement which will step through every residue in a

protein, replace any missing atoms, find the best-fitting side-

chain rotamer and perform real-space refinement. This func-

tion is in turn bound to a menu item, although it would also be

possible to bind it to a key on the keyboard.

3.3. Lighting model

The lighting model used in Coot is a departure from the

approach adopted in most molecular-graphics software. It

is difficult to illustrate a three-dimensional shape in a two-

dimensional representation of an object. The traditional
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Figure 3
Mouse controls: a schematic mouse is shown with the clicked button in
grey. Additional keys to be pressed are shown to the left of the mouse. On
the right-hand side is a schematic of the mouse control action together
with an explanation.

Figure 2
The Coot main window. The main display area shows a molecule and
electron density. At the top of the window is a menu bar providing access
to most of the tools. Commonly used model-manipulation tools are also
available through the toolbar on the right. Below the menu bar is an area
for user-definable buttons. A status bar is displayed below the three-
dimensional canvas.



approach is to use so-called ‘depth-cueing’: objects closer to

the user appear more brightly lit and more distant objects are

more like the background colour (usually darker). In the Coot

model, however, the most brightly lit features are just forward

of the centre of rotation. This innovation was accidental, but

has been retained because it seemed to provide a more natural

image and has generated positive feedback from users once

they become accustomed to the new behaviour. It is now

possible to offer an explanation for this result.

Depth-cueing is an algorithm which adjusts the colours of

graphical objects according to their distance from the viewer.

Depth-cueing is used in several ways. When rendering outdoor

scenes, it is used to wash out the colours of distant features

to simulate the effect of light scattering in the intervening air.

When rendering darkened scenes, the same effect can be used

to darken distant objects in order to create the effect that

the viewer is carrying a light source which illuminates nearer

objects more brightly than distant ones. Note that both of

these usages assume a ‘first-person’ view: the observer is

placed within the three-dimensional environment. This is also

borne out in the controls for manipulating the view: when the

view is rotated, the whole environment usually rotates about

the observer.

However, fitting three-dimensional atomic models to X-ray

data is a different situation. It is not useful to place the

observer inside the model and rotate the model around them,

not least because the scientist is usually more interested in

looking at the molecule or electron density from the outside.

As a result, it is normal to rotate the view not about the

observer but rather about the centre of the feature being

studied. Since the central feature is of most interest, it helps

the visualization if it is the brightest entity. To properly light

the model in this way is relatively slow, so in Coot an

approximation is used and the plane perpendicular to the

viewer that contains the central feature is most brightly lit.

3.4. Atomic model

Coot displays the atoms of the atomic models as points on

the three-dimensional canvas. If the points are within bonding

distance then a line symbolizing a bond is drawn between the

atomic points; otherwise the atoms are displayed as crosses. By

default the atoms are coloured by element, with carbon yellow,

oxygen red, nitrogen blue, sulfur green and hydrogen white.

Bonds have two colours, with one half corresponding to each

connecting atom. Additional atomic models are distinguished

by different colour coding. The colour wheel is rotated and the

element colours are adjusted accordingly. However, there is

an option to fix the colours for noncarbon elements and the

colour-wheel position can be adjusted for each molecule

individually. Furthermore, Coot allows the user to colour the

atomic model by molecule, chain, secondary structure, B

factor and occupancy. Besides showing atomic models, Coot

can also display C� (or backbone) chains only. Again the

model can be coloured in different modes, by chain, secondary

structure or with rainbow colours from the N-terminus to the

C-terminus. Currently, Coot offers some additional atomic

representations in the form of different bond-width or ball-

and-stick representation for selected residues.

Information about individual atoms can be visualized in the

form of labels. These show the atom name, residue number,

residue name and chain identifier. Labels are shown upon

Shift + left mouse click or double left mouse click on an atom

(the atom closest to the rotation/screen centre can be labelled

using the keyboard shortcut ‘l’). This operation not only

shows the label beside the atom in the three-dimensional

canvas, but also gives more detailed information about the

atom, including occupancy, B factor and coordinates, in the

status bar.

Symmetry-equivalent atoms of the atomic model can be

displayed in Coot within a certain radius either as whole chains

or as atoms within this radius. Different options for colouring

and displaying atoms or C� backbone are provided. The

symmetry-equivalent models can be labelled as described

above. Additionally, the label will provide information about

the symmetry operator used to generate the selected model.

Navigation around the atomic models is primarily achieved

with a GUI (‘Go To Atom . . . ’). This allows the view to be

centred on a particular atom by selection of a model, chain ID,

residue number and atom name. Buttons to move to the next

or previous residue are provided and are also available via

keyboard shortcuts (space bar and Shift space bar,

respectively). Furthermore, each chain is displayed as an

expandable tree of its residues, with atoms that can be selected

for centring. Additionally, a mouse can be used for navigation,

so a middle mouse click centres on the clicked atom. A

keyboard shortcut for the view to be centred on a C� atom of a

specific residue is provided by the use of Ctrl-g followed by

input of the chain identifier and residue number (terminated

by Enter).

All atomic models, in contrast to other display objects, are

accessible by clicking a mouse button on an atom centre. This

allows, for example, re-centring, selection and labelling of the

model.

3.5. Electron density

Electron-density maps are displayed using a three-dimen-

sional mesh to visualize the surface of electron-density regions

higher than a chosen electron-density value using a ‘marching-

cubes’-type algorithm (Lorensen & Cline, 1987). The spacing

of the mesh is dictated by the spacing of the grid on which

the electron density is sampled. Since electron-density maps

are most often described in terms of structure factors, the

sampling can be modified by the user at the point where the

electron density is read into the program. The contour level

may be varied interactively using the scroll wheel on the

mouse (if available) or alternatively by using the keyboard

(‘+’ and ‘-’). In most cases this avoids the need for multiple

contour levels to be displayed at once, although additional

contour levels can be displayed if desired.

The colour of the electron-density map may be selected by

the user. By default, the first map read into the program is

contoured in blue, with subsequent maps taking successive
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colour hues around a colour wheel. Difference maps are by

default contoured at two levels, one positive and one negative

(coloured green and red, respectively).

The electron density is contoured in a box about the current

screen centre and is interactively re-contoured whenever the

view centre is changed. By default, this box covers a volume

extending at least 10 Å in each direction from the current

screen centre. This is an appropriate scale for manipulating

individual units of a peptide or nucleotide chain and provides

good interactive performance, even on older computers.

Larger volumes may be contoured on faster machines. A

‘dynamic volume’ option allows the volume contoured to

be varied with the current zoom level, so that the contoured

region always fills the screen. A ‘dynamic sampling’ option

allows the map to be contoured on a subsampled grid (e.g.

every second or fourth point along each axis). This is useful

when using a solvent mask to visualize the packing of the

molecules in the crystal.

3.6. Display objects

There are a variety of non-interactive display objects which

can also be superimposed on the atomic model and electron

density. These include the boundaries of the unit cell, an

electron-density ridge trace (or skeleton), surfaces, three-

dimensional text annotations and dots (used in the MolProbity

interface). These cannot be selected, but aid in the visualiza-

tion of features of the electron density and other entities.

3.7. File formats

Coot recognizes a variety of file formats from which the

atomic model and electron density may be read. The differ-

ences in the information stored in these various formats mean

that some choices have to be made by the user. This is

achieved by providing several options for reading electron

density and, where necessary, by requesting additional infor-

mation from the user. The file formats which may be used for

atomic models and for electron density will be considered in

turn.

In addition to obtaining data from the local storage, it is

also possible to obtain atomic models directly from the Protein

Data Bank (Bernstein et al., 1977) by entering the PDB code

of a deposited structure. Similarly, in the case of structures for

which experimental data have been deposited, the model and

phased reflections may both be obtained from the Electron

Density Server (Kleywegt et al., 2004).

3.7.1. Atomic models. Atomic models are read into Coot by

selecting the ‘Open Coordinates . . . ’ option from the File

menu. This provides a standard file selector which may be used

to select the desired file. Coot recognizes atomic models stored

in the following three formats.

(i) Protein Data Bank (PDB) format (with file extension

.pdb or .ent; compressed files of this format with extension

.gz can also be read). The latest releases provide compat-

ibility with version 3 of the PDB format.

(ii) Macromolecular crystallographic information file

(mmCIF; Westbrook et al., 2005) format (extension .cif).

(iii) SHELX result files produced by the SHELXL refine-

ment software (extension .res or .ins).

In each case, the unit-cell and space-group information are

read from the file (in the case of SHELXL output the space

group is inferred from the symmetry operators). The atomic

model is read, including atom name, alternate conformation

code, monomer name, sequence number and insertion code,

chain name, coordinates, occupancy and isotropic/anisotropic

atomic displacement parameters. PDB and mmCIF files are

handled using the MMDB library (Krissinel et al., 2004), which

is also used for internal model manipulations.

3.7.2. Electron density. The electron-density representation

is a significant element of the design of the software. Coot

employs a ‘crystal space’ representation of the electron

density, in which the electron density is practically infinite in

extent, in accordance with the lattice repeat and cell symmetry

of the crystal. Thus, no matter where the viewpoint is located

in space density can always be represented. This design

decision is achieved by use of the Clipper libraries (Cowtan,

2003).

The alternative approach is to just display electron density

in a bounded box described by the input electron-density map.

This approach is simpler and may be more appropriate in

some specific cases (e.g. when displaying density from cryo-

EM experiments or some types of NCS maps). However, it has

the limitation that no density is available for symmetry-related

molecules and if the initial map has been calculated with the

wrong extent then it must be recalculated in order to view the

desired regions.

This distinction is important in that it affects how electron-

density data should be prepared for use in Coot. Files pre-

pared for O or PyMOL may not be suitable for use in Coot. In

order to read a map file into Coot, it should cover an asym-

metric unit or unit cell. In contrast, map files prepared for O

(Jones et al., 1991) or PyMOL (DeLano, 2002) usually cover a

bounded box surrounding the molecule. While it is possible

to derive any bounded box from the asymmetric unit, it is not

always possible to go the other way; therefore, using map files

prepared for other software may lead to unexpected results in

some cases, the most common being an incorrect calculation of

the standard deviation of the map. If one uses more advanced

techniques that involve masking, the electron-density map

must have the same symmetry as the associated model mole-

cule.

Electron density may be read into Coot either in the form of

structure factors (with optional weights) and phases or alter-

natively in the form of an electron-density map. There are

a number of reasons why the preferred approach is to read

reflection data rather than a map.

(i) Coot can always obtain a complete asymmetric unit of

data, avoiding the problems described above.

(ii) Structure-factor files are generally smaller than electron-

density maps.

(iii) Some structure-factor files, and in particular MTZ files,

provide multiple sets of data in a single file. Thus, it is possible

to read a single file and obtain, for example, both best and

difference maps.
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The overhead in calculating an electron-density map by FFT

is insignificant for modern computers.

3.7.3. Reading electron density from a reflection-data file.

Two options are provided for reading electron density from

a reflection-data file. These are ‘Auto Open MTZ . . . ’ and

‘Open MTZ, mmcif, fcf or phs . . . ’ from the ‘File’ menu.

(i) ‘Auto Open MTZ . . . ’ will open an MTZ file containing

coefficients for the best and difference map, automatically

select the FWT/PHWT and the DELFWT/DELPHWT pairs

of labels and display both electron-density maps. Currently,

suitable files are generated by the following software: Phaser

(Storoni et al., 2004), REFMAC (Murshudov et al., 1997),

phenix.refine (Adams et al., 2002), DM (Zhang et al., 1997),

Parrot (Cowtan, 2010), Pirate (Cowtan, 2000) and BUSTER

(Blanc et al., 2004).

(ii) ‘Open MTZ, mmcif, fcf or phs . . . ’ will open a reflection-

data file in any of the specified formats. Note that XtalView

.phs files do not contain space-group and cell information: in

these cases a PDB file must be read first to obtain the relevant

information or the information has to be entered manually.

MTZ files may contain many sets of map coefficients and so it

is necessary to select which map coefficients to use. In this case

the user is provided with an additional window which allows

the map coefficients to be selected. The standard data names

for some common crystallographic software are provided in

Table 1.

SHELX .fcf files are converted to mmCIF format and the

space group is then inferred from the symmetry operators.

4. Model building

Initial building of protein structures from experimental

phasing is usually accomplished by automated methods such

as ARP/wARP, RESOLVE (Wang et al., 2004) and Buccaneer

(Cowtan, 2006). However, most of these methods rely on a

resolution of better than 2.5 Å and yield more complete

models the better the resolution. The main focus in Coot,

therefore, is the completion of initial models generated by

either molecular replacement or automated model building as

well as building of lower resolution structures. However, the

features described below are provided for cases where an

initial model is not available.

4.1. Tools for general model building

4.1.1. Ca baton mode. Baton building, which was intro-

duced by Kleywegt & Jones (1994), allows a protein main

chain to be built by using a 3.8 Å ‘baton’ to position successive

C� atoms at the correct spacing. In Coot, this facility is coupled

with an electron-density ridge-trace skeleton (Greer, 1974).

Firstly, a skeleton is calculated which follows the ridges of the

electron density. The user then selects baton-building mode,

which places an initial baton with one end at the current

screen centre. Candidate positions for the next �-carbon are

highlighted as crosses selected from those points on the

skeleton which lie at the correct distance from the start point.

The user can cycle through a list of candidate positions using

the ‘Try Another’ button or alternatively rotate the baton

freely by use of the mouse. Additionally, the length of the

baton can be changed to accommodate moderate shifts in the

�-carbon positions. Once a new position is accepted, the baton

moves so that its base is on the new �-carbon. In this way, a

chain may be traced manually at a rate of between one and ten

residues per minute.

4.1.2. Ca zone!main chain. Having placed the C� atoms,

the rest of the main-chain atoms may be generated auto-

matically. This tool uses a set of 62 high-resolution structures

as the basis for a library of main-chain fragments. Hexapeptide

and pentapeptide fragments are chosen to match the C�

positions of each successive pentapeptide of the C� trace in

turn, following the method of Esnouf (1997), which is similar

to that of Jones & Thirup (1986). The fragments with the best

fit to the candidate C� positions are merged to provide a full

trace. After this step, one typically performs a real-space

refinement of the subsequent main-chain model.

4.1.3. Find secondary structure. Protein secondary-

structure elements, including �-helices and �-strands, can be

located by their repeating electron-density features, which

lead to high and low electron-density values in characteristic

positions relative to the consecutive C� atoms. The ‘Find

Secondary Structure’ tool performs a six-dimensional rotation

and translation search to find the likely positions of helical and

strand elements within the electron density. This search has

been highly optimized in order to achieve interactive perfor-

mance for moderately sized structures and as a result is less

exhaustive than the corresponding tools employed in auto-

mated model-building packages: however, it can provide a

very rapid indication of map quality and a starting point for

model building.

4.1.4. Place helix here. At low resolution it is sometimes

possible to identify secondary-structure features in the elec-

tron density when the C� positions are not obvious. In this

case, Coot can fit an �-helix automatically. This process

involves several stages.

(i) A local optimization is performed on the starting posi-

tion to maximize the integral of the electron density over a 5 Å

sphere. This tends to move the starting point close to the helix

axis.

(ii) A search is performed to obtain the direction of the

helix by integrating the electron density in a cylinder of radius

2.5 Å and length 12 Å. A two-dimensional orientation search
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Table 1
Map data labels output by common crystallography software, including
DM (Zhang et al., 1997), Parrot (Cowtan, 2010), Pirate (Cowtan, 2000)
and autoSHARP (Vonrhein et al., 2007).

Source of MTZ Column labels for ‘best’ map

DM FDM, PHIDM
Parrot parrot.F_phi.F, parrot.F_phi.phi
Pirate pirate.F_phi.F, pirate.F_phi.phi
autoSHARP (phasing) FP, PHIB (or Fcent, PHIcent if

light atoms only)
autoSHARP (post-SOLOMON) FBsol, PHIBshasol (or Fcentshasol,

PHIcentshasol if light atoms only)



is performed to optimize the orientation of the cylinder. This

gives the direction of the helix.

(iii) A theoretical �-helical model (including C, C�, N and O

atoms) is placed in the density in accordance with the position

and direction already found. Different rotations of the model

around the helix axis must be considered. Each of the resulting

models is scored by the sum of the density at the atomic

centres. At this stage the direction of the helix is unknown and

so both directions are tested.

(iv) Next, a choice is made between the best-fitting models

for each helix direction by comparing the electron density at

the C� positions. In case neither orientation gives a significant

better fit for the C� atoms, both helices are presented to the

user.

(v) Finally, attempts are made to extend the helix from the

N- and C-termini using ideal ’,  values.

4.1.5. Place strand here. A similar method is used for

placing �-strand fragments in electron density. However, there

are three differences compared with helix placement: firstly

the initial step is omitted, secondly the length of the fragment

(number of residues) needs to be provided by the user and

finally the placed fragments are obtained from a database. The

first step (optimizing the starting position) is unreliable for

strands owing to the smaller radius of the cylinder, i.e. main

chain, combined with larger density deviations originating

from the side chains. Hence, it is omitted and the user must

provide a starting position in this case. The integration

cylinder used in determining the orientation of the strand has

a radius of 1 Å and a length of 20 Å. The ’,  torsion angles in

�-strands in protein deviate from the ideal values, resulting

in curved and twisted strands. Such strands cannot be well

modelled using ideal values of ’ and  ; therefore, candidate

strand fragments corresponding to the requested length are

taken from a strand ‘database’ (top100 or top500; Word,

Lovell, LaBean et al., 1999) and used in the search.

4.1.6. Ideal DNA/RNA. Coot has a function to generate

idealized atomic structures of single or double-stranded

A-form or B-form RNA or DNA given a nucleotide sequence.

The function is menu-driven and can produce any desired

helical nucleic acid coordinates in PDB format with canonical

Watson–Crick base pairing from a given input sequence with

the click of a single button. Because most DNA and RNA

structures are comprised of at least local regions of regular

near-ideal helical structural elements, the ability to generate

nucleic acid helical models on the fly is of particular value for

molecular replacement.

Recently, a collection of short ideal A-form RNA helical

fragments generated within Coot were used to solve a struc-

turally complex ligase ribozyme by molecular replacement

(Robertson & Scott, 2008). Using Coot together with the

powerful molecular-replacement program Phaser (Storoni et

al., 2004) not only permitted this novel RNA structure to be

solved without resort to heavy-atom methods, but several

other RNA and RNA/protein complexes were also subse-

quently determined using this approach (Robertson & Scott,

2007). Since Coot and Phaser can be scripted using embedded

Python components, an automated and integrated phasing

system is amenable for development within the current soft-

ware framework.

4.1.7. Find ligands. The automatic fitting of ligands into

electron-density maps is a frequently used technique that is

particularly useful for pharmaceutical crystallographers (see,

for example, Williams et al., 2005). The mechanism in Coot

addresses a number of ligand-fitting scenarios and is a modi-

fied form of a previously described algorithm (Oldfield, 2001).

It is common practice in ‘fragment screening’ to soak different

ligands into the same crystal (Blundell et al., 2002). Using Coot

one can either specify a region in space or search a whole

asymmetric unit for either a single or a number of different

ligand types. In the ‘whole-map’ scenario, candidate ligand

sites are found by cluster analysis of a residual map. The

candidate ligands are fitted in turn to each site (with the can-

didate orientations being generated by matching the eigen-

vectors of the ligand to that of the cluster). Each candidate

ligand is fitted and scored against the electron density. The

best-fitting orientation of the ligand candidates is chosen.

Ligands often contain a number of rotatable bonds. To

account for this flexibility, Coot samples torsion angles around

these rotatable bonds. Here, each rotatable bond is sampled

from an independent probability distribution. The number of

conformers is under user control and it is recommended that

ligands with a higher number of rotatable bonds should be

allowed more conformer candidates. Above a certain number

of rotatable bonds it is more efficient to use a ‘core + fragment

by fragment’ approach (see, for example, Terwilliger et al.,

2006).

4.2. Rebuilding and refinement

The rebuilding and refinement tools are the primary means

of model manipulation in Coot and are all grouped together in

the ‘Model/Fit/Refine’ toolset. These tools may be accessed

either through a toolbar (which is usually docked on the right-

hand side of the main window) or through a separate ‘Model/

Fit/Refine’ window containing buttons for each of the toolbar

functions.

The core of the rebuilding and refinement tools is the real-

space refinement (RSR) engine, which handles the refinement

of the atomic model against an electron-density map and

the regularization of the atomic model against geometric

restraints. Refinement may be invoked both interactively,

when executed by the user, and non-interactively as part of

some of the automated fitting tools. The refinement and

regularization tools are supplemented by a range of additional

tools aimed at assisting the fitting of protein chains. These

features are discussed below.

4.3. Tools for moving existing atoms

4.3.1. Real-space refine zone. The real-space refine tool

is the most frequently used tool for the refinement and

rebuilding of atomic models and is also incorporated as a

final stage in a number of other tools, e.g. ‘Add Terminal

Residue . . . ’. In interactive mode, the user selects the RSR

button and then two atoms bounding a range of monomers
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(amino acids or otherwise). Alternatively, a single atom can be

selected followed by the ‘A’ key to refine a monomer and its

neighbours. All atoms in the selected range of monomers will

be refined, including any flanking residues. Atoms of the

flanking residues are marked as ‘fixed’ but are required to be

added to the refinement so that the geometry (e.g. peptide

bonds, angles and planes) between fixed and moving parts is

also optimized.

The selected atoms are refined against a target consisting of

two terms: the first being the atomic number (Z) weighted sum

of the electron-density values over all the atomic centres and

the second being the stereochemical restraints. The progress

of the refinement is shown with a new set of atoms displayed in

white/pale colours. When convergence is reached the user is

shown a dialogue box with a set of �2 scores and coloured

‘traffic lights’ indicating the current geometry scores in each

of the geometrical criteria (Fig. 4). Additionally, a warning is

issued if the refined range contains any new cis-peptide bonds.

At this stage the user may adjust the model by selecting an

atom with the mouse and dragging it, whereby the other atoms

will move with the dragged atom. Alternatively, a single atom

may be dragged by holding the Ctrl key. As soon as the atoms

are released, the selected atoms will refine from the dragged

position. Optionally, before the start of refinement atoms may

be selected to be fixed during the refinement (in addition to

the atoms of the flanking residues).

4.3.2. Sphere refinement. One of the problems with the

refinement mode described above is that it only considers a

linear range of residues. This can cause difficulties, with some

side chains being inappropriately refined into the electron

density of neighbouring residues, particularly at lower reso-

lutions. Additionally, a linear residue selection precludes the

refinement of entities such as disulfide bonds. Therefore, a new

residue-selection mechanism was introduced to address these

issues: the so-called ‘Sphere Refinement’. This mode selects

residues that have atoms within a given radius of a specified

position (typically within 4 Å of the centre of the screen). The

selected residues are matched to the dictionary and any user-

defined links (typically from the mon_lib_list.cif in the

REFMAC dictionary), e.g. disulfide bonds, glycosidic linkages

and formylated lysines. If such links are found and the

(supposedly) bonded atoms are within 3 Å of each other then

these extra link restraints are added into the refinement.

4.3.3. Ramachandran restraints. At lower resolution it is

sometimes difficult to obtain an acceptable fit of the model to

the density and at the same time achieve a Ramachandran plot

of high quality (most residues in favourable regions and less

than 1% outliers). If a Ramachandran score is added to the

target function then the Ramachandran plot can be improved.

The analytical form for torsion gradients (@�/@x1 and so on)

for each of the x, y, z positions of the four atoms contributing

to the torsion angle has been reported previously (Emsley &

Cowtan, 2004) (in the case of Ramachandran restraints, the

� torsions will be ’ and  ). The extension of the torsion

gradients for use as Ramachandran restraints is performed in

the following manner.

Firstly, two-dimensional log Ramachandran plots R are

generated as tables (one for each of the residue types Pro, Gly

and non-Pro or Gly). Where the Ramachandran probability

becomes zero the log probability becomes infinite and so it

is replaced by values which become increasingly negative with

distance from the nearest nonzero value. This provides a weak

gradient in the disallowed regions towards the nearest allowed

region. The log Ramachandran plot provides the following

values and derivatives:

Rð’; Þ;
@Rð’; Þ

@’
and

@Rð’; Þ

@ 
: ð1Þ

The derivative of R with respect to the coordinates is required

for the addition into the target geometry and is generated as

@Rð’;  Þ

@x1

¼
@Rð’; Þ

@’

@’

@x1

þ
@Rð’; Þ

@ 

@ 

@x1

ð2Þ

(and so on for each of the x, y, z positions of the atoms in the

torsion).

Adding a Ramachandran score to the geometry target

function is not without consequences. The Ramachandran

plot has for a long time been used as a validation criterion,

therefore if it is used in geometry optimization it becomes less

informative as a validation metric. Kleywegt & Jones (1996)

included the Ramachandran plot in the restraints during

refinement using X-PLOR (Brünger, 1992) and reported that

the number of Ramachandran outliers was reduced by about

a third using moderate force constants. However, increasing

the force constants by over two orders of magnitude only
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Figure 4
Real-space refinement of a mispositioned residue. The coloured bonds
show the original structure. The white bonds show the refined atoms after
dragging and refinement. The coloured boxes in the pop-up window
indicate how well the new model obeys various geometric restraints.
Clicking the ‘Accept’ button will cause the coloured atoms to be moved to
the new positions.



marginally decreased the number of outliers. As a result,

Kleywegt and Jones note that the Ramachandran plot retains

significant value as a validation tool even when it is also used

as a restraint. Using the Ramachandran restraints as imple-

mented in Coot with the default weights, the number of out-

liers can be reduced from around 10% to 5% (typical values).

4.3.4. Regularize zone. The ‘Regularize Zone’ option

functions in the same way as ‘Real-Space Refine Zone’ except

that in this case the model is refined with respect to stereo-

chemical restraints but without reference to any electron

density.

4.3.5. Rigid-body fit zone. The ‘Rigid-Body Fit Zone’

option also follows a similar interface convention to the other

refinement options. A range of atoms are selected and the

orientation of the selected group is refined to best fit the

density. In this case the density is the only contributor to the

target function, since the geometry of the fragment is not

altered. No constraints are placed on the bonding atoms. If

atoms are dragged after refinement, no further refinement is

performed on the fragment.

4.3.6. Rotate/translate zone. Using this tool, the selected

residue selection can be translated and rotated either by

dragging it around the screen or through the use of user-

interface sliders. No reference to the map is made. The rota-

tion centre can be specified to be either the last atom selected

or the centre of mass of the fragment rotated. Additionally, a

selection of the whole chain or molecule can be transformed.

4.3.7. Rotamer tools. Four tools are available for the fitting

of amino-acid side chains. For a side chain whose amino-acid

type is already correctly assigned, the best rotamer may be

chosen to fit the density either automatically or manually. If

the automatic option is chosen then the side-chain rotamer

from the MolProbity library (Lovell et al., 2000) which gives

rise to the highest electron-density values at the atomic

centres is selected and rigid-body refined (this includes the

main-chain atoms of the residues). Otherwise, the user is

presented with a list of rotamers for that side-chain type

sorted by frequency in the database. The user can then scroll

through the list of rotamers using either the keyboard or user-

interface buttons to select the desired rotamer. Rotamers are

named according to the MolProbity system. Briefly, the �
angles are given letters according to the torsion angle: ‘t’ for

approximately 180�, ‘p’ for approximately 60� and ‘m’ for

approximately �60� (Lovell et al., 2000).

The other two options (‘Mutate & Auto Fit’ and ‘Simple

Mutate’) allow the amino-acid type to be assigned or changed.

The ‘Mutate & Auto Fit Rotamer’ option allows an amino-acid

type to be selected from a list and then immediately performs

the autofit rotamer operation as above. The ‘Simple Mutate’

option changes the amino-acid type and builds the side-chain

atoms in the most frequently occurring rotamer without

further refinement.

4.3.8. Torsion editing (‘Edit Chi Angles’, ‘Edit Backbone
Torsions’, ‘Torsion General’). Coot has different tools for

editing the main-chain and side-chain (or ligand) torsion

angles. The main-chain torsion angles, namely ’ and  , can be

edited using ‘Edit Backbone Torsion . . . ’. With two sliders,

the peptide and carbonyl torsion angles can be adjusted. A

separate window showing the Ramachandran plot with the

two residues forming the altered peptide bond is displayed

with the position of the residues updated as the angles change.

Side-chain (or ligand) torsion angles must be defined prior

to editing. Either the user manually defines the four atoms

forming the torsion angle (‘Torsion General’) or the torsion

angles are determined automatically and the user selects the

one to edit. In the latter case the bond around which the

selected torsion angle is edited is visually marked. Using the

mouse, the angle can then be rotated freely.

4.3.9. Other protein tools (‘Flip peptide’, ‘Side Chain 180���

Flip’, ‘Cis!Trans’). There are three other tools to perform

common corrections to protein models. ‘Flip peptide’ rotates

the planar atoms in a peptide group through 180� about the

vector joining the bounding C� atoms (Jones et al., 1991). ‘Side

Chain 180� Flip’ rotates the last torsion of a side chain through

180� (e.g. to swap the OD1 and ND2 side-chain atoms of Asn).

‘Cis!Trans’ shifts the torsion of the peptide bond through

180�, thereby changing the peptide bond from trans to cis and

vice versa.

4.4. Tools for adding atoms to the model

4.4.1. Find waters. The water-finding mechanism in Coot

uses the same cluster analysis as is used in ligand fitting.

However, only those clusters below a certain volume (by

default 4.2 Å3) are considered as candidate sites for water

molecules. The centre of each cluster is computed and a

distance check is then made to the potential hydrogen-bond

donors or receptors in the protein molecule (or other waters).

The distance criteria for acceptable hydrogen-bond length

are under user control. Additionally, a test for acceptable

sphericity of the electron density is performed.

4.4.2. Add terminal residue. The MolProbity ’,  distri-

bution is used to generate a set of randomly selected ’,  
pairs.

To build additional residues at the N- and C-termini of

protein chains, the MolProbity ’,  distribution is used to

generate a set of positions of the N, C�, O and C atoms of the

next two residues. The conformation of these new atoms is

then scored against the electron-density map and recorded.

This procedure is carried out a number of times (by default

100). The best-fitting conformation is offered as a candidate to

the user (only the nearest of the two residues is kept).

4.4.3. Add alternate conformation. Alternate conforma-

tions are generated by splitting the residue into two sets of

conformations (A and B). By default all atoms of the residue

are split, or alternatively only the C� and side-chain atoms are

divided. If the residue chosen is a standard protein residue

then the rotamer-selection dialogue described above is also

shown, along with a slider to specify the occupancy of the new

conformation.

4.4.4. Place atom at pointer. This is a simple interface to

place a typed atom at the position of the centre of the screen.

It can place additional water or solvent molecules in un-

modelled electron-density peaks and is used in conjunction
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with the ‘Find blobs’ tool, which allows the largest unmodelled

peaks to be visited in turn.

4.5. Tools for handling noncrystallographic symmetry (NCS)

Noncrystallographic symmetry (NCS) can be exploited

during the building of an atomic model and also in the analysis

of an existing model. Coot provides five tools to help with the

building and visualization of NCS-related molecules.

(i) NCS ghost molecules. In order to visualize the simi-

larities and differences between NCS-related molecules, a

‘ghost’ copy of any or all NCS-related chains may be super-

imposed over a specific chain in the model. The ‘ghost’ copies

are displayed in thin lines and coloured differently, as well as

uniformly, in order to distinguish them from the original. The

superposition may be performed automatically by secondary-

structure matching (Krissinel & Henrick, 2004) or by least-

squares superposition. An example of an NCS ghost molecule

is shown in Fig. 5.

(ii) NCS maps. The electron density of NCS-related mole-

cules can be superimposed in order to allow differences in the

electron density to be visualized. This is achieved by trans-

forming the coordinates of the three-dimensional contour

mesh, rather then the electron density itself, in order to

provide good interactive performance. The operators are

usually determined with reference to an existing atomic model

which obeys the same NCS relationships. An example of an

NCS map is shown in Fig. 6.

(iii) NCS-averaged maps. In addition to viewing NCS-

related copies of the electron density, the average density of

the related regions may be computed and viewed. In noisy

maps this can provide a clearer starting point for model

building.

(iv) NCS rebuilding. When building an atomic model of

a molecule with NCS, it is often more convenient to work on

one chain and then replicate the changes made in every NCS-

related copy of that chain (at least in the early stages of model

building). This can be achieved by selecting two related chains

and replacing the second chain in its entirety, or in a specific

residue range, with an NCS-transformed copy of the first

chain.

(v) NCS ‘jumping’. The view centre jumps to the next NCS-

related peer chain and at the same time the NCS operators are

taken into account so that the relative view remains the same.

This provides a means for rapid visual comparison of NCS-

related entities.

5. Validation

Coot incorporates a range of validation tools from the com-

parison of a model against electron density to comprehensive

geometrical checks for protein structures and additional tools

specific to nucleotides.

It also provides convenient interfaces to external validation

tools: most notably the MolProbity suite (Davis et al., 2007),
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Figure 5
A model with an NCS ghost. The thick bonds represent the atoms in one
chain of the protein. The thin bonds represent an NCS-related chain
transformed to superpose on the first chain. At the bottom of the screen
the atoms coincide; at the top the main chain deviates and a side chain is
in a different conformation.

Figure 6
Electron density with NCS map for the same model and in the same
orientation as the previous figure. The blue density is for the original
chain. The magenta contour represents the electron density for the NCS-
related chain transformed back onto the original chain and clearly
showing the differences.



but also to the REFMAC refinement software (Murshudov et

al., 1997) and dictionary (Vagin et al., 2004).

Many of the internal validation tools provide a uniform

interface in the form of colour-coded bar charts, for example

the ‘Density Fit Analysis’ chart (Fig. 7). This window contains

one bar chart for each chain in the structure. Each chart

contains one bar for each residue in the chain. The height and

colour of the bar indicate the model quality of the residue,

with small green bars indicating a good or expected/conven-

tional conformation and large red bars indicating poor-quality

or ‘unconventional’ residues. The chart is active, i.e. on moving

the pointer over the bar tooltips provide relevant statistics

and clicking on a bar changes the view in the main graphics

window to centre on the selected residue. In this way, a rapid

overview of model quality is obtained and problem areas can

be investigated. In order to obtain a good structure for sub-

mission, the user may simply cycle though the validation

options, correcting any problems found.

The available validation tools are described in more detail

in the following sections.

5.1. Ramachandran plot

The Ramachandran plot tool (Fig. 8) launches a new

window in which the Ramachandran plot for the active

molecule is displayed. A data point appears in this plot for

each residue in the protein, with different symbols distin-

guishing Gly and Pro residues. The background of the plot

shows frequency data for Ramachandran angles using the

Richardsons’ data (Lovell et al., 2003).

The plot is interactive: clicking on a data point moves the

view in the three-dimensional canvas to centre on the corre-

sponding residue. Similarly, selecting an atom in the model

highlights the corresponding data point. Moving the mouse

over a data point corresponding to a Gly or Pro residue causes

the Ramachandran frequency data for that residue type to be

displayed.

5.2. Kleywegt plot

The Kleywegt plot (Kleywegt, 1996; Fig. 9) is a variation

of the Ramachandran plot that is used to highlight NCS
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Figure 7
A typical validation graph. Bars represent individual residues in a chain,
with an indication of quality for the residue being given by both the size
and colour of the bar. The plot is interactive, i.e. clicking on a bar takes
the user to the corresponding residue.

Figure 8
Screenshot of a classical Ramachandran plot showing all residues, with the
axes defining the ’ and  angles (angles in degrees). Preferred regions
are coloured in pink, allowed regions in yellow and the background in
grey for disallowed regions. Standard residues are shown as dark blue
squares, Pro residues as light blue squares and Gly residues as light blue
open triangles. Residues in the disallowed regions are coloured red.

Figure 9
Screenshot of a Kleywegt plot (Kleywegt, 1996) showing Ramachandran
differences between two NCS-related chains by connecting lines (angles
in degrees). Labels, colouring and symbols are as in the previous figure.
Arrows link NCS-related residues.



differences between two chains. The Ramachandran plot for

two chains of the protein is displayed, with the data points of

NCS-related residues in the two chains linked by a line for the

top 50 (default) most different ’,  angles. Long lines in the

corresponding figure correspond to significant differences in

backbone conformation between the NCS-related chains.

5.3. Incorrect chiral volumes

Dictionary definitions of monomers can contain descrip-

tions of chiral centres. The chiral centres are described as

‘positive’, ‘negative’ or ‘both’. Coot can compare the residues

in the protein structure to the dictionary and identify outliers.

5.4. Unmodelled blobs

The ‘Unmodelled Blobs’ tool finds candidate ligand-binding

sites (as described above) without trying to fit a specific ligand.

5.5. Difference-map peaks

Difference maps can be searched for positive and negative

peaks. The peak list is then sorted on peak height and filtered

by proximity to higher peaks (i.e. only peaks that are not close

to previous peaks are identified).

5.6. Check/delete waters

Waters can be validated using several criteria, including

distance from hydrogen-bond donors or acceptors, tempera-

ture factor or electron-density level. Waters that do not pass

these criteria are identified and presented as a list or auto-

matically deleted.

5.7. Check waters by difference map variance

This tool is used to identify waters that have been placed in

density that should be assigned to other atoms or molecules.

The difference map at each water position is analysed by

generating 20 points on each sphere at radii of 0.5, 1.0 and

1.5 Å and the electron-density level at each of these points

is found by cubic interpolation. The mean and variance of

the density levels is calculated for each set of points. If, for

example, a water was misplaced into the density for a glycerol

then (given an isotropic density model for the water molecule)

the difference map will be anisotropic because there will be

unaccounted-for positive density along the bonds to the other

atoms in the glycerol. There may also be some negative

density in a perpendicular direction as the refinement program

tries to compensate for the additional electron density. The

variances are summed and compared with a reference value

(by default 0.12 e2 Å�6). Note that it only makes sense to run

this test on a difference map generated by reciprocal-space

refinement (for example, from REFMAC or phenix.refine)

that included temperature-factor refinement.

5.8. Geometry analysis

The geometry (bonds, angles, planes) for each residue in the

selected molecule is compared with dictionary values (typi-

cally provided by the mmCIF REFMAC dictionary). Torsion-

angle deviations are not analysed (as there are other valida-

tion tools for these; see x5.9).

The statistic displayed in the geometry graph is the average

Z value for each of the geometry terms for that residue

(peptide-geometry distortion is shared between neighbouring

residues). The tooltip on the geometry graph describes the

geometry features giving rise to the highest Z value.

5.9. Peptide x analysis

This is a validation tool for the analysis of peptide ! torsion

angles. It produces a graph marking the deviation from 180� of

the peptide ! angle. The deviation is assigned to the residue

that contains the C and O atoms of the peptide link, thus

peptide ! angles of 90� are very poor. Optionally, ! angles of

0� can be considered ideal (for the case of intentional cis-

peptide bonds).

5.10. Temperature-factor variance analysis

The variance of the temperature factors for the atoms of

each residue is plotted. This is occasionally useful to highlight

misbuilt regions. In a badly fitting residue, reciprocal-space

refinement will tend to expand the temperatures factors of

atoms in low or negative density, resulting in a high variance.

However, residues with long side chains (e.g. Arg or Lys) often

naturally have substantial variance, even though the atoms

are correctly placed, which causes ‘noise’ in this graph. This

shortcoming will be addressed in future developments. H

atoms are ignored in temperature-factor variance analysis.

5.11. Gln and Asn B-factor outliers

This is another tool that analyses the results of reciprocal-

space refinement. A measure z is computed that is half of

the difference of the temperature factor between the NE2 and

OE1 atoms (in the case of Gln) divided by the standard

deviation of the temperature factors of the remaining atoms

in the residue. Our analysis of high-resolution structures has

shown that when z is greater than +2.25 there is a more than

90% chance that OE1 and NE2 need to be flipped (P. Emsley,

unpublished results).

5.12. Rotamer analysis

The rotamer statistics are generated from an analysis of the

nearest conformation in the MolProbity rotamer probability

distribution (Lovell et al., 2000) and displayed as a bar chart.

The height of the bar in the graph is inversely proportional to

the rotamer probability.

5.13. Density-fit analysis

The bars in the density-fit graphs are inversely proportional

to the average Z-weighted electron density at the atom centres

and to the grid sampling of the map (i.e. maps with coarser

grid sampling will have lower bars than a more finely gridded

map, all other things being equal). Accounting for the grid

sampling allows lower resolution maps to have an informative

density-fit graph without many or most residues being marked
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as worrisome owing to their atoms being in generally low

levels of density.

5.14. Probe clashes

‘Probe Clashes’ is a graphical representation of the output

of the MolProbity tools Reduce (Word, Lovell, Richardson

et al., 1999), which adds H atoms to a model (and thereby

provides a means of analyzing potential side-chain flips), and

Probe (Word, Lovell, LaBean et al., 1999), which analyses

atomic packing. ‘Contact dots’ are generated by Probe and

these are displayed in Coot and coloured by the type of

interaction.

5.15. NCS differences

The graph of noncrystallographic symmetry differences

shows the r.m.s. deviation of atoms in residues after the

transformation of the selected chain to the reference chain has

been applied. This is useful to highlight residues that have

unusually large differences in atom positions (the largest

differences are typically found in the side-chain atoms).

6. Model analysis

6.1. Geometric measurements

Geometric measurements can be performed on the model

and displayed in a three-dimensional view using options from

the ‘Measures’ menu. These measurements include bond

lengths, bond angles and torsion angles, which may be selected

by clicking successively on the atoms concerned. It is also

possible to measure the distance of an atom to a least-squares

plane defined by a set of three or more other atoms. The

‘Environment Distances’ option allows all neighbours within

a certain distance of any atom of a chosen residue to be

displayed. Distances between polar neighbours are coloured

differently to all others. This is particularly useful in the initial

analysis of hydrogen bonding.

6.2. Superpositions

It is often useful to compare several related molecules

which are similar in terms of sequence or fold. In order to do

this the molecules must be placed in the same position and

orientation in space so that the differences may be clearly

seen. Two tools are provided for this purpose.

(i) SSM superposition (Krissinel & Henrick, 2004).

Secondary Structure Matching (SSM) is a tool for superposing

proteins whose fold is related by fitting the secondary-

structure elements of one protein to those of the other. This

approach is automatic and does not rely on any sequence

identity between the two proteins. The superposition may

include a complete structure or just a single chain.

(ii) LSQ superposition. Least-squares (LSQ) superposition

involves finding the rotation and translation which minimizes

the distances between corresponding atoms in the two models

and therefore depends on having a predefined correspondence

between the atoms of the two structures. This approach is very

fast but requires that a residue range from one structure be

specified and matched to a corresponding residue range in the

other structure.

7. Interaction with other programs

In addition to the built-in tools, e.g. for refinement and

validation, Coot provides interfaces to external programs.

For refinement, interfaces to REFMAC and SHELXL are

provided. Validation can be accomplished by interaction with

the programs Probe and Reduce from the MolProbity suite.

Furthermore, interfaces for the production of publication-

quality figures are provided by communication with the

(molecular) graphics programs CCP4mg, POV-Ray and

Raster3D.

7.1. REFMAC

Coot provides a dialogue similar to that used in CCP4i for

running REFMAC (Murshudov et al., 2004). REFMAC is a

program from the CCP4 suite for maximum-likelihood-based

macromolecular refinement. Once a round of interactive

model building has finished, the user can choose to use

REFMAC to refine the current model. Reflections for the

refinement are either used from the MTZ file from which the

currently displayed map was calculated or can be acquired

from a selected MTZ file. Most REFMAC parameters are set

as defaults; however, some can be specified in the GUI, such as

the number of refinement cycles, twin refinement and the use

of NCS. Once REFMAC has terminated, the newly generated

(refined) model and MTZ file from which maps are generated

are automatically read in (and displayed). If REFMAC

detected geometrical outliers at the end of the refinement,

an interactive dialogue will be presented with two buttons for

each residue containing an outlier: one to centre the view on

the residue and the other to carry out real-space refinement.

7.2. SHELXL

For high-resolution refinement, SHELXL can be used

directly from Coot. A new SHELXL.ins file can be generated

from a SHELXL.res file including any manipulations or

additions to the model. Additional parameters may be added

to the file or it can be edited in a GUI. Once refinement in

SHELXL is finished, the refined coordinate file is read in and

displayed. The resulting reflections file (.fcf) is converted

into an mmCIF file, after which it is read in and the electron

density is displayed. An interactive dialogue of geometric

outliers (disagreeable restraints and other problems discov-

ered by SHELXL) can be displayed by parsing the .lst

output file from SHELXL.

7.3. MolProbity

Coot interacts with programs and data from the MolProbity

suite in a number of ways, some of which have already been

described. In addition, MolProbity can provide Coot with a list

of possible structural problems that need to be addressed in
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the form of a ‘to-do chart’ in either Python or Scheme format;

this can be read into Coot (‘Calculate’!‘Scripting . . . ’).

7.4. CCP4mg

Coot can write CCP4mg picture-definition files (Potterton

et al., 2004). These files are human-readable and editable and

define the scene displayed by CCP4mg. Currently, the view

and all displayed coordinate models and maps are described in

the Coot-generated definition file. Hence, the displayed scene

in Coot when saving the file is identical to that in CCP4mg

after reading the picture-definition file. For convenience, a

button is provided which will automatically produce the

picture-definition file and open it in CCP4mg.

7.5. Raster3D/POV-Ray

Raster3D (Merritt & Bacon, 1997) and POV-Ray (Persis-

tence of Vision Pty Ltd, 2004) are commonly used programs

for the production of publication-quality figures in macro-

molecular crystallography. Coot writes input files for both of

these programs to display the current view. These can then

be rendered and ray-traced by the external programs either

externally or directly within Coot using ‘default’ parameters.

The resulting images display molecular models in ball-and-

stick representation and electron densities as wire frames.

8. Scripting

Most internal functions in Coot are accessible via a SWIG

(Simplified Wrapper and Interface Generator) interface to the

scripting languages Python (http://www.python.org) and Guile

(a Scheme interpreter; Kelsey et al., 1998; http://www.gnu.org/

software/guile/guile.html). Via the same interface, some of

Coot’s graphics widgets are available to the scripting layer (e.g.

the main menu bar and the main toolbar). The availability of

two scripting interfaces allows greater flexibility for the user

as well as facilitating the interaction of Coot with other

applications.

In addition to the availability of Coot’s internal functions,

the scripting interface is enriched by a number of provided

scripts (usually available in both scripting languages). Some of

these scripts use GUIs, either through use of the Coot graphics

widgets or via the GTK+2 extensions of the scripting lan-

guages. A number of available scripts and functions are made

available in an extra ‘Extensions’ menu. Scripting not only

provides the user with the possibility of running internal Coot

functions and scripts but also that of reading and writing their

own scripts and customizing the menus.

9. Building and testing

When Coot was made available to the public, three initial

considerations were that it should be cross-platform, robust

and easy to install. These considerations continue to be a

challenge. To assist in meeting them, an automated scheduled

build-and-test system has been developed, thus enabling

almost constant deployment of the pre-release software.

The subversion version-control system (http://svnbook.

red-bean.com/) is used to manage source-code revisions. An

‘integration machine’ checks out the latest source code several

times per hour, compiles the software and makes a source-

code tar file. Less frequently, a heterogeneous array of build

machines copies the source tar file and compiles it for the host

architecture. After a successful build, the software is run

against a test suite and only if the tests are passed is the

software bundled and made available for download from the

web site. All the build and test logs are made available on the

Coot web site. Fortunately, users of the pre-release code seem

to report problems without undue exasperation. It is the aim

of the developers to respond rapidly to such reports.

9.1. Computer operating-system compatibility

Coot is released under the GNU General Public License

(GPL) and depends upon many other GPL and open-source

software components. Coot’s GUI and graphical display are

based on rather standard infrastructure, including the X11

windowing system, OpenGL and associated software such as

the cross-platform GTK+2 stack derived from the GIMP

project. In addition, Coot depends upon open-source crystal-

lographic software components including the Clipper libraries

(Cowtan, 2003), the MMDB library (Krissinel et al., 2004), the

SSM library (Krissinel & Henrick, 2004) and the CCP4

libraries. In principle, Coot and its dependencies can be in-

stalled on any modern GNU/Linux or Unix platform without

fanfare. A Windows-based version of Coot is also available.

9.2. Coot on GNU/Linux

Compiling and installing Coot on the GNU/Linux operating

system is probably the most straightforward option. GNU/

Linux is in essence a free software/open-source collaborative

implementation of the Unix operating system that is compa-

tible with most computer hardware. Coot’s infrastructural

dependencies, such as GTK+2 and other GNU libraries, as

well as all of its crystallographic software dependencies, were

selected with portability in mind. Most of the required

dependencies are either installed with the GNOME desktop

or are readily available for installation via the package-

management systems specific to each distribution.

It is possible that in future Coot (along with all its depen-

dencies) will be made available via the official package-

distribution systems for several of the major GNU/Linux

distributions. When an end-user chooses to install the Coot

package, all of Coot’s required dependencies will be installed

along with it in a simple and painless procedure.

An official Coot package currently exists in the Gentoo

distribution (maintained by Donnie Berkholz), a Fedora

package (maintained by Tim Fenn) is under development at

the time of writing and unofficial Debian and rpm Coot

packages are also available. Binary Coot releases for the most

popular GNU/Linux platforms are available from the Coot

website: http://www.ysbl.york.ac.uk/~emsley/software/binaries/.

Additional information on installing Coot on GNU/Linux,

either as a pre-compiled binary or from source code, is avail-
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able on the Coot wiki: http://strucbio.biologie.uni-konstanz.de/

ccp4wiki/index.php/COOT.

9.3. Coot on Apple’s Mac OS X

With the release of Apple’s Mac OS X, a Unix-based

operating system, it became possible to use most if not all of

the standard crystallographic software on Apple computers.

OS X does not natively use the X11 windowing system, but

rather a proprietary windowing technology called Quartz. This

system has some benefits over X11, but does not support X11-

based Unix software. However, the X11 windowing system can

be run within OS X (in rootless mode) and as of OS X version

10.5 this has become a default option and operates in a

reasonably seamless manner.

Unlike GNU/Linux, Apple does not provide the X11-based

dependencies (GTK+2, GNOME libraries) and many of the

other open-source components required to install and run

Coot. However, third-party package-management systems

have appeared to fill this gap, having made it their mission to

port essentially all of the most important software that is freely

available to users of other Unix-based systems to OS X. The

two most popular package-management systems are Fink and

MacPorts. Of these, Fink makes available a larger collection

of software that is of use to scientists, including a substantial

collection of crystallographic software. For that reason, Fink

has been adopted as the preferred option for installing Coot

on Mac OS X. Fink uses many of the same software tools as

the Debian GNU/Linux package-management system and

provides a convenient front-end.

In practice, this requires the end user to do three things in

preparation for installing Coot under OS X.

(i) Install Apple’s X-code Developer tools. This is a free

gigabyte-sized download available from Apple.

(ii) Install the very latest version of X11. This is crucial, as

many bug fixes are required to run Coot.

(iii) Install the third-party package-management system

Fink and enable the ‘unstable’ software tree to obtain access

to the latest software.

Coot may then be installed through Fink with the command

fink install coot.

9.4. Coot on Microsoft Windows

Since Microsoft Windows operating systems are the most

widely used computer platform, a Coot version which runs on

Microsoft Windows has been made available (WinCoot). All

of Coot’s dependencies compile readily on Windows systems

(although some require small adjustments) or are available

as GPL/open-source binary downloads. The availability of

GTK+2 (dynamically linked) libraries (DLLs) for Windows

makes it possible to compile Coot without the requirement

of the X11 windowing system, which would depend on an

emulation layer (e.g. Cygwin). Some minor adjustments to

Coot itself were necessary owing to differences in operating-

system architecture, e.g. the filesystem (Lohkamp et al., 2005).

Currently WinCoot, by default, only uses Python as a scripting

language since the Guile GTK+2 extension module is not seen

as robust enough on Windows. WinCoot binaries are, as for

GNU/Linux systems, automatically built and tested on a

regular basis. The program is executed using a batch script and

has been shown to work on Windows 98, NT, 2000, XP and

Vista.

WinCoot binaries (stable as well as pre-releases) are avail-

able as a self-extracting file from http://www.ysbl.york.ac.uk/

~lohkamp/coot/.

10. Discussion

Coot tries to combine modern methods in macromolecular

model building and validation with concerns about a modern

GUI application such as ease of use, productivity, aesthetics

and forgiveness. This is an ongoing process and although

improvements can still be made, we believe that Coot has an

easy-to-learn intuitive GUI combined with a high level of

crystallographic awareness, providing useful tools for the

novice and experienced alike.

However, Coot has a number of limitations: NCS-averaged

maps are poorly implemented, being meaningful only over a

limited part of the unit cell (or crystal). There is also a mis-

match in symmetry when using maps from cryo-EM data

(Coot incorrectly applies crystal symmetry to EM maps). Coot

is not at all easy to compile, having many dependencies: this is

a problem for developers and advanced users.

10.1. Future

Coot is under constant development. New features and

bug fixes are added on an almost daily basis. It is anticipated

that further tools will be added for validation, nucleotide and

carbohydrate model building, as well as for refinement. Inter-

active model building will be enhanced by communication

with the CCP4 database, use of annotations and an interactive

notebook and by adding annotation representation into the

validation graphs. The embedded scripting languages provide

the potential for sophisticated communication with model-

building tools such as Buccaneer, ARP/wARP and PHENIX;

in future this may be extended to include density modification

as well.

In the longer term tools to handle EM maps are planned,

including the possibility of building and refining models. The

appropriate data structures are already implemented in the

Clipper libraries but are not yet available in Coot.

The integration of validation tools will be expanded,

especially with respect to MolProbity, and an interface to the

WHAT_CHECK validation program (Hooft et al., 1996)

will be added. WHAT_CHECK provides machine-readable

output and this can be read by Coot to provide both an

interactive description and navigation as well as (requiring

more work) a mode to automatically fix up problematic

geometry.

Note added in proof: Ian Tickle has noted a potential

problem with the calculation of �2 values resulting from real-

space refinement. Coot will be reworked to instead represent
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the r.m.s. deviation from ideality of each of the geometrical

terms.

KC would like to thank the Royal Society and the United

Kingdom BBSRC (BBF0202281) for funding. BL acknowl-

edges the United Kingdom BBSRC (BB/D522403) for

funding. PE acknowledges CCP4 for funding.

References

Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R.,
McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter,
N. K. & Terwilliger, T. C. (2002). Acta Cryst. D58, 1948–1954.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice,
M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M.
(1977). J. Mol. Biol. 112, 535–542.

Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S. M. &
Bricogne, G. (2004). Acta Cryst. D60, 2210–2221.

Blundell, T. L., Jhoti, H. & Abell, C. (2002). Nature Rev. Drug Discov.
1, 45–54.
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