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A new approach to high pressure magnetically-confined plasmas is necessary to design efficient fusion
devices. This Letter presents a new sort of equilibrium combining two solutions of the Grad–Shafranov
equation, which describes the magnetohydrodynamic equilibrium in toroidal geometry. The outer
equilibrium is paramagnetic and confines the inner equilibrium, whose strong diamagnetism permits
to balance large pressure gradients. The existence of both equilibria in the same volume yields a dual
equilibrium structure. This combination improves free-boundary mode stability.

© 2008 Elsevier B.V. All rights reserved.
The most promising candidate to a large-scale fusion reactor is
the tokamak concept, a closed magnetic topology confining a hot
ionized gas or plasma, where electrons and ions are not bound to-
gether due to energetic collisions. To reduce particle loss, a strong
toroidal magnetic field Bφ (φ denotes the toroidal axisymmet-
ric direction) is used and effectively locks both charged species
on magnetic field lines. This results in relative thermal insula-
tion. However, turbulence and collisions between particles degrade
confinement. Whilst the plasma core is hot, the edge remains rela-
tively cold and a pressure gradient exists across the plasma section.
In order to obtain a magnetohydrodynamic (MHD) equilibrium,
a toroidal current density Jφ runs inside the plasma and generates
a poloidal field B P and the resulting inward Lorentz force balances
the pressure gradient. While the toroidal field Bφ is the main cost
of the reactor, it does not play any role in the macroscopic MHD
equilibrium. However, it does limit the maximum value of Jφ [1],
in turn controlling the maximum allowable pressure. As a conse-
quence, the fusion power follows the scaling law given in Eq. (1),

P fusion ∝ 〈β〉2 B4a3 A. (1)

a is the plasma minor radius, R is the major radius and A is the
aspect ratio given by R/a. B is the total field inside the plasma
and β measures the efficiency of kinetic pressure confinement by
magnetic fields, i.e.

β = 2μ0
p

B2
and 〈β〉 = 2μ0

〈
p

B2

〉
, (2)
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where 〈·〉 denotes volume average quantities and p the plasma ki-
netic pressure. To obtain an attractive fusion reactor design, Eq. (1)
shows that β has to be maximized, while reactor costs force
lower Bφ . Unfortunately, the Troyon limit [1] restricts the allow-
able plasma 〈β〉 to a few percents. Beyond a critical value βc , MHD
disturbances, or modes, perturb the axisymmetry of the plasma,
leading to loss in confinement and, ultimately, plasma disruptions.
The normal β , defined by

βN = 〈β〉(%)a(m)Bφ(T )

I p(M A)
(3)

is a relative measurement of plasma stability. Here, I P is the total
toroidal plasma current. Instabilities typically occur for βN above
2.5 or 3 (the Troyon limit). This requirement is found to be quite
robust in any experiment running with conventional current pro-
files. However reactor economics requires pressures larger than
presently achievable in conventional tokamaks. Previous research
has demonstrated that high pressure equilibria exist and are stable
to fixed boundary modes n = 1, 2 and 3 [2], internal instabilities
typically leading to confinement degradation or plasma disrup-
tions. Unfortunately free-boundary modes, instabilities developing
on the plasma outer boundary, remained a serious issue. Their sta-
bilization would require a perfectly conducting vacuum vessel wall
next to the plasma edge, a solution which is not realistic. This Let-
ter presents a new type of equilibrium where such internal and
external instabilities are suppressed, even at large plasma pres-
sures.

The extended energy principle [3] assesses the nature of free-
boundary mode stability by studying the perturbed plasma and
vacuum energies caused by infinitesimal displacements. These dis-
placements generate a total perturbed energy δWTotal, which is a
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volume integral over the whole plasma–vacuum system. This inte-
gral can be split into two volume integrals: one over the plasma,
yielding the perturbed energy δWPlasma, and one over the whole
vacuum region, yielding δWVacuum. We will assume here that no
currents run on the plasma edge. The system is stable if and
only if the total perturbed energy is positive for any infinitesimal
displacement. For displacements ξ⊥ locally perpendicular to the
magnetic field, we can express the perturbed energy using the fol-
lowing form [4]:

δWPlasma = 1

2

∫
Plasma

[
Q2⊥
μ0

+ B2

μ0
|∇ · ξ⊥ + 2ξ⊥ · κ |2

− 2[ξ⊥ · ∇p][κ · ξ⊥] − J‖[ξ⊥ × b] · Q⊥
]

dτ . (4)

Here Q⊥ = ∇ × (ξ⊥ × B) is the perturbed plasma magnetic field,
b correspond to the magnetic field direction and the curvature of
the magnetic field lines is given by κ = b · ∇b. While it is evident
from Eq. (4) that large pressures will lead to negative perturbed
energies for some infinitesimal displacements, finite aspect ratio
tokamaks also suffer from a handicapping side effect at high pres-
sure, namely diamagnetism [5]. The loss in magnetic field com-
pressibility (second term in Eq. (4)) is an inconvenient by-product
of high pressure plasmas. Stability is sensitive to this term since
the magnetic field strength has a quadratic contribution. While
diamagnetic plasmas can be stable to fixed boundary modes, this
side-effect is at the origin of the free-boundary mode instability in
unity beta plasmas. Stabilizing such modes is the major problem
of magnetic fusion confinement. One possible solution naturally
comes to mind when looking at Eq. (4). If diamagnetism forces
a negative value of the perturbed plasma energy, it seems possible
to increase the overall plasma perturbed energy by adding an extra
outer layer of plasma which carries a positive value of perturbed
energy. This “rim” needs to contain enough positive perturbed en-
ergy so that the total volume integral of Eq. (4) becomes positive.
For instance, positive perturbed energy could come from the mag-
netic field compressibility, pointing to a paramagnetic plasma rim.

Starting from a typical unity beta equilibrium [2,5], plasma sta-
bility can be restored by “grafting” a supplemental paramagnetic
layer onto this equilibrium. We will use the term “dual equilibri-
um” herein to differentiate this combination from standard plasma
equilibria. Fig. 1(a) shows the pressure and toroidal function pro-
files of a dual equilibrium. The toroidal function F corresponds to
the amount of poloidal currents inside the plasma (these currents
run in the vertical plane). Since they generate a local toroidal mag-
netic field, F also corresponds to the amount of total toroidal field
at a radius R via the simple relation F = R Bφ . Fig. 1 shows both
profiles as a function of ψ , the normalized flux of the poloidal
magnetic field on the plasma mid-plane. The central equilibrium
has a value of F smaller than Fedge, the value of F at the plasma
edge and it is de facto diamagnetic (0 < ψ < 0.37). The outer part
of the equilibrium has a value of F larger than Fedge character-
izing paramagnetism (0.37 < ψ < 1). Fig. 1(b) gives the profile of
the safety factor. It is an important stability parameter which ac-
counts for the ratio of the number of turns a field line executes
in the toroidal (axisymmetric) direction while going once around
the plasma cross-section. The safety factor should always be larger
than 1. The dual equilibrium shown in Fig. 1 was computed using
the free-boundary equilibrium code CUBE [6], with the following
parameters. The plasma major radius R is 6 m, the plasma minor
radius a is 2 m. The plasma elongation factor is 2, triangularity is
0.6 and squareness is 0.1. The toroidal field is 2.5 T at R = 6 m.
These values are comparable to the ITER [7] design, except for the
magnetic field which is half that of ITER. Fig. 2 shows the spa-
tial distribution of this dual equilibrium. Its current profile shares
Fig. 1. (a) Pressure, toroidal function and (b) safety factor profiles versus the nor-
malized poloidal field flux ψ . The dot-dash line marks the interface between the
paramagnetic and diamagnetic equilibria.

strong similarities with experimental current holes [8,9] except for
the distinctive asymmetry in the current wing heights (Fig. 2(a)).
The two different p and F profiles (Fig. 2(a)) and the two differ-
ent flux surface and current distributions (Fig. 2(b) and Fig. 2(c))
clearly show the paramagnetic edge and diamagnetic core. For this
particular equilibrium, the peak β (at the location where pressure
is maximum) is 100% and 〈β〉 is 12% for a total plasma current I P

of 13 MA. Thus the fusion power computed from Eq. (1) is simi-
lar to ITER (〈β〉 ∼ 3%, Bφ ∼ 5 T). The peak pressure is 1 MPa, also
on the order of ITER’s. The major advantage of the dual equilib-
rium is primarily in the lowering of the magnetic field, reducing
significantly the cost of the device.

To finalize the viability of the dual equilibrium, its stability has
been investigated numerically with the DCON code [10]. Fig. 3(a)
shows high-n ballooning [11,12] as well as Mercier [13] stability.
Fig. 3(b) focuses on the stability of the toroidal mode number
n = 1 for both fixed and free boundary modes. We have included
in this study all the poloidal harmonics spanning m = −30 to
m = 30. Fig. 3(b) also shows free-boundary mode stability. While
the criterion behavior changes near the interface location, fixed
boundary mode stability is present in both equilibria. It is inter-
esting to dwell on the free-boundary mode stability since this is
the major issue such high pressure plasmas face. To understand
the stabilizing mechanisms, we have moved the numerical last
closed flux surface of the plasma, assuming vacuum beyond, from
the plasma core all the way to the edge. As we cross the inter-
face between both core and rim equilibria, the change in plasma
energy evolution is clearly observable. The presence of the param-
agnetic padding changes the evolution of the plasma energy. As the
numerical last closed flux surface is moved outwards, the plasma
energy rises rapidly. After we pass the optimum in F , located at
ψ = 0.56, the increase in plasma energy slows down, demonstrat-
ing the strong influence of the magnetic field on free-boundary
mode stability. The plasma energy at the edge is marginally pos-
itive. When the vacuum energy is added to the plasma energy,
the total perturbed energy becomes positive for ψ > 0.75, guar-
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Fig. 2. (a) Current density, pressure and toroidal function profiles versus the major radius R . (b) Flux surface and (c) current density distributions in the (R, Z ) plane. The
vertical dot-dash lines mark the interface between both equilibria.
Fig. 3. (a) Mercier (stable when negative) and high-n ballooning (stable when posi-
tive) criteria. (b) Fixed boundary mode criterion (thick uninterrupted line) and free
boundary energies (NRGs) for the toroidal mode number n = 1 (stable when posi-
tive).

antying free-boundary mode stability for the n = 1 external kink.
This approach demonstrates the influence of the paramagnetic rim
and asserts the plasma energy dependence with magnetic field. We
have also found that fixed and free boundary modes for n = 2 and
3 are stable in DCON. This is not surprising since the βN for this
dual equilibrium is 4.6, a value yielding stable plasmas in some
finite aspect ratio machines [14].

These numerical studies have demonstrated that the dual equi-
librium is a configuration which combines successfully a high
pressure diamagnetic equilibrium with a low pressure paramag-
netic equilibrium. Numerous configurations can be obtained using
this idea. The present Letter focused only on a single instance to
highlight the interesting properties of such equilibria. However a
thorough investigation needs undertaking to fully assess the ex-
perimental potentials of the dual equilibrium.

In conclusion, this Letter has presented a new type of unity β

configuration called dual equilibrium. It is composed of a diamag-
netic core, confining high plasma pressures, and an outer paramag-
netic rim, stabilizing the free-boundary modes with toroidal mode
numbers n = 1, 2 and 3. Hitherto stability results have to be care-
fully interpreted. The dual equilibrium has peculiar features such
as large gradients, requiring high resolution of the computational
grid, or flows, which tend to invalidate stability results. However
the stability study presented in this Letter highlights the physical
mechanisms reducing the impact of free boundary modes. Overall,
the major asset of dual equilibria is the similarity they share with
regular current holes [8,9]. Consequently, unity β plasmas seem
attainable more easily when starting from a regular current hole
configuration. Reaching unity β plasmas when starting from con-
ventional current profiles has proven to be a rather complicated
task [15]. Hence this new type of equilibrium shows great promise
and the viability of economical low field fusion reactors now ap-
pears likely.
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