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ARTICLE

Configurable topological textures in strain graded
ferroelectric nanoplates
Kwang-Eun Kim1, Seuri Jeong1, Kanghyun Chu1, Jin Hong Lee 1, Gi-Yeop Kim2,3, Fei Xue4, Tae Yeong Koo5,

Long-Qing Chen4, Si-Young Choi 2,6, Ramamoorthy Ramesh7,8,9 & Chan-Ho Yang1,10

Topological defects in matter behave collectively to form highly non-trivial structures called

topological textures that are characterised by conserved quantities such as the winding

number. Here we show that an epitaxial ferroelectric square nanoplate of bismuth ferrite

subjected to a large strain gradient (as much as 105 m−1) associated with misfit strain

relaxation enables five discrete levels for the ferroelectric topological invariant of the entire

system because of its peculiar radial quadrant domain texture and its inherent domain wall

chirality. The total winding number of the topological texture can be configured from − 1 to 3

by selective non-local electric switching of the quadrant domains. By using angle-resolved

piezoresponse force microscopy in conjunction with local winding number analysis, we

directly identify the existence of vortices and anti-vortices, observe pair creation and

annihilation and manipulate the net number of vortices. Our findings offer a useful concept

for multi-level topological defect memory.
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Topological defects are singularities such as vortices in real,
momentum and complex-phase spaces1–3. Topological
defects are unstable in terms of their own energy, but they

are created by other constraints such as given boundary condi-
tions and system-specific symmetry4. The topological concept has
been broadly applied to a variety of subjects and has led to novel
physical phenomena such as the quantum Hall effect and the
topological insulator5 based on the topology of the quantum
mechanical wave function, i.e., the orbital degree of freedom in
solids. Magnetic vortices and skyrmions are also topological
objects that are relevant to the spin degree of freedom6–8. The
remaining fundamental degree of freedom that has been relatively
rarely explored concerns the lattice in crystalline solids. Despite
the identification of electric vortex structures9–21, electric
switching of competing vortex textures with deterministic con-
figurability of the topological number remains experimentally
unconfirmed. Therefore, the study of configurable topological
defects in electrically polarised media such as a ferroelectric
presents an opportunity for a complete understanding of the
universal topological features in matter.

In this study, we explore the role of an inhomogeneous strain
field as a mechanism for topological defects in ferroelectrics.
Elastically deformed lattice in an inhomogeneous strain state is
coupled with the ferroelectric property through the mechano-
electric effect22–24. Nevertheless, the strain-gradient-induced
effect has been overlooked as an origin of topological ferro-
electric textures, because the polarisation induced by macroscopic
bending is negligible relative to the typical value of spontaneous
ferroelectric polarisation. However, recent advances in nanoscale
characterisation have led to the discovery that large strain gra-
dients are often present in epitaxial films relaxed from misfit
strains23,24, self-assembled nanostructures25, dislocations26,
domain and twin walls2, and morphotropic phase bound-
aries27,28. The challenge at hand, therefore, is to demonstrate
ferroelectric materials subjected to significantly large inhomoge-
neous strains to clamp non-trivial textures and facilitate
inter-phase switching. Direct observation and analysis of electric
vortices in the context of the topological winding number in such
curved lattices can provide an unprecedented view of
ferroelectrics.

In the following results, we study how to stabilise, observe and
control the ferroelectric topological textures in the epitaxial
square nanoplate of bismuth ferrite subjected to a large strain
gradient. The piezoresponse vector map of the ferroelectric
nanoplate is obtained by angle-resolved piezoresponse force
microscopy (PFM) and the positions of the vortices and
antivortices are determined by winding number calculation based
on the piezoresponse vector map. In addition, the effect of
inhomogeneous strain in the ferroelectric nanoplate on non-
trivial topological texture formation is investigated by phase field
simulation. Finally, we show that the total winding number of the
topological texture can be modulated by selective domain
switching.

Results
Emergence of a radial quadrant domain structure. Self-
assembled BiFeO3 (BFO) nanoplates were synthesized by pulsed
laser deposition using a composite target mixing BFO with
cobalt-ferrite spinel (see Methods section for the details). BFO has
a rhombohedral structure with a large spontaneous ferroelectric
polarisation (almost 100 μC cm−2) along a pseudocubic <111>
direction in bulk29 and weakly strained epitaxial films30,31. The
large-area topographic image (Fig. 1a) shows the emergence of
protruding square BFO plates with a typical lateral size of
approximately 300 nm. Out-of-plane (OOP) and in-plane (IP)

PFM images reveal that a quadrant domain structure emerges on
the BFO nanoplates (Fig. 1b, c). This unusual domain structure is
attributed to the anisotropic mechanical boundary condition, i.e.,
the bottom of the BFO nanoplate is compressively strained while
the other side and top faces experience no external stress.
Quantitative analysis of the strain relaxation using X-rays and
theoretical understanding based on phase field simulation will be
discussed later in this study.

In the as-grown state, outward/upward polarisations are
stabilised in most quadrant domain areas, but slim buffer
domains with inward/downward polarisations are identified in
the form of a cross. The electric poling over a square region by a
positively biased tip switches the upward polarisation to the
downward direction (Fig. 1d). Interestingly, this OOP switching is
accompanied by the reversal of IP piezoresponse. The clamping
of OOP and IP components suggests that each quadrant is subject
to ferroelastic elongation along <111> and the poling gives rise to
180° ferroelectric switching along the rhombohedral axis.
The switched configuration can be reversed to the original
upward/outward state, as demonstrated by the reverse poling
(Fig. 1e). Similar quadrant textures are commonly observed in
almost all nanoplates regardless of differences in the lateral size
and shape, which indicates the stability of the quadrant domain
textures.

Detailed intra-structure of a quadrant domain texture. One of
the greatest challenges in ferroelectric defect studies is to devise a
direct real-space detection technique that observes the behaviour
of electric vortices with nanoscale spatial resolution in a non-
destructive manner, particularly when related to mechanical
deformation. Angle-resolved PFM was used to construct IP
piezoresponse vector map (Fig. 2). The in-plane PFM technique
can distinguish only the perpendicular component to the canti-
lever, because it relies on the torsional vibration mode of the
cantilever. The in-plane piezoresponse vector can be determined
by using several high-resolution PFM images acquired in a
quasi-identical region with different tip orientation angles,
respectively. We carried out trigonometric curve fitting to
determine the amplitude and phase shift of the sinusoidal fit
function per position and mapped out the piezoresponse vector
spatially.

We successfully visualised the piezoresponse vector distribu-
tion, thereby disclosing detailed features on an emergent radial
quadrant domain structure (Fig. 3). The second and fourth
quadrant ferroelastic domains of the rhombohedral BFO were
split into a quadrant domain and a thin buffer domain with
forming a 180° charged domain wall, respectively. At the
ferroelectric domain walls, not only does the polarisation rotate
to avoid uncompensated charge density, but the amplitude of
polarisation is reduced to avoid imposing a significant energy cost
for rotating the polarisation away from the easy axis in the
lattice32. According to the locations of the buffer domains on the
second and fourth quadrants, the measured nanoplate corre-
sponds to the type 2 configuration (as will be addressed later) that
contains two vortices at the ferroelectric domain walls and a
single antivortex at the centre. Scanning transmission electron
microscopy (TEM) of a cross-section of a nanoplate underpins
the outward/upward quadrant polarisations and the downward
buffer domain (Supplementary Fig. 5). Although the PFM vector
map provides a useful insight into ferroelectric domain structures
under the assumption that piezoresponse vector has a linear
correlation with electric polarisation, we should be cautiously
aware of the limitation. For example, it has been reported that
180° domain walls can generate a lateral piezoreponse due to a
topographical slope at the domain boundary caused by opposite
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deformations on the neighbouring up and down polarised
domains33. We are not sure how largely the effect is involved
in our case, and thus, it is desirable to interpret the detailed
feature of the domain walls based on theoretical supports through
topological analysis and phase field simulation.

Topological winding number analysis. We analysed the mea-
sured vector map by calculating local winding numbers to iden-
tify the precise positions of the vortices (Fig. 3d). The winding
number is a topological quantity that counts the singularities in
vector fields and is defined in a two-dimensional space by contour
integration of the variation of the vector direction along a given
closed loop1,2,34; it is an integer that indicates the net number of
singularities inside the loop, so the number is preserved in con-
tinuous deformations. The integral over a large enclosed space is
equivalent to the total sum of all individual local winding num-
bers for small areas that comprise the large space (Supplementary
Fig. 1). This conservation property ensures that the topological
number of an entire system is determined only by the boundary
condition and does not vary, regardless of any interior
configuration.

We tiled small edge sharing loops and calculated local winding
numbers (see the Methods section for the details). As a result, two
vortices and a single antivortex were clearly identified. A single
vortex point was found on each 180° charged domain wall. The
anti-vortex was detected at the central merging point of the two-
in/two-out domain configuration. The net sum of the vortex
points in this as-grown state was + 1 and this net value was equal
to the total winding number calculated along a large closed loop
near the edge of BFO nanoplate. We emphasise that the

topological point affects not only the small loop area but also
its far-field configuration globally; it can be easily verified that any
other larger loops that only enclose a vortex result in the same
winding number. Any random noise in the angle distribution
from measurement artefacts and/or intrinsic incoherent fluctua-
tions hardly destroys the robust topological nature.

Phase field simulation. Although the non-trivial topological
texture consumes considerable energy in terms of mutual inter-
actions among electric dipoles, their inevitable presence is due to
a larger energy gain in another degree of freedom, namely the
elastic energy. To reveal the origin of the radial quadrant domain
structure, we calculate the inhomogeneous strain distribution in a
nanoplate as illustrated in Fig. 4a by phase field simulations (see
methods for details). As the bottom interface is constrained while
the other five surfaces are stress-free, the mechanical boundary
condition gives rise to the distribution of shear strain εxz or εyz as
shown in Fig. 4b. Owing to the electrostrictive interaction
q1313εxzPxPz and q2323εyzPyPz with qijkl as the electrostrictive
coefficients, the quadrant domains will be induced. After
including the effect of depolarisation field, a domain pattern
shown in Fig. 4c is obtained. The polarisation vectors on the top
surface is demonstrated in Fig. 4d, which agrees well with the
experimental observation in Fig. 3c. Therefore, the spontaneous
rhombohedral deformation of BFO (rhombohedral angle ~ 0.6°)
35, combined with the specific distribution of shear strains caused
by the mechanical boundary conditions of a nanoplate, leads to
the formation of a quadrant ferroelastic domain structure in
which each quadrant domain is elastically elongated along an
outward <111> axis.

a
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Fast scan axis
b

+3 V

–3 V

c

d e

Fig. 1 Large area PFM images of a double box switching region. a Surface topographic image. b OOP PFM image. c IP PFM image. All as-grown BFO
nanoplates were observed to have an upward polarisation with the outward radial-quadrant domain structure. d IP PFM and OOP PFM (inset) images
acquired after an electric poling. Inset: the upward polarisation in the as-grown state (bright contrast) was switched to a downward one (dark contrast) in
the red box area that was scanned by a dc biased tip at +3 V. Simultaneously, IP PFM contrasts within the nanoplates were reversed by the poling, indicting
a strong coupling between the OOP and IP polarisations. We note that various irregularly shaped nanoplates exhibit the similar radial-quadrant domain
structure. eWe attempted additional switching using a dc biased tip at −3 V inside the blue box to confirm the reversible nature of the switching. Scale bars
represent 2 μm. The horizontal axes of images are parallel to the crystallographic peudocubic axis [100]
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As shown in Supplementary Fig. 2a, the gradients of normal
strains are largest at the four corners and the polarisations therein
are enforced to be upward by the flexoelectric interactions24,36.
Thus, the depolarisation field can only flip down the polarisation
in the middle part, and the buffer domains are created in the
vicinity of ferroelastic walls.

Domain wall chirality and topological domain textures. Under
the elastic constraints, ferroelectric polarisation values are
assigned to the quadrant domains. A ferroelastic quadrant
domain can have two variant ferroelectric polarisations harmo-
nised with each <111> elongation axis. In the as-grown state,
upward/outward radial polarisations are stabilised and encounter
electric frustration in the central region, thereby leading to non-
trivial topological textures with a total winding number of + 1. A
buffer ferroelectric domain with an inward/downward polarisa-
tion is built on one side of a ferroelastic domain wall to reduce the
depolarisation energy, as indicated by the dark grey boxes in
Fig. 5a. One end of the 180° domain wall between a buffer

domain and a quadrant domain is terminated at an edge where a
strong strain gradient is present. The different strain states in
both sides of the domain wall deviates the in-plane polarisation
inter-angle between two neighbouring ferroelectric domains from
180°, pinning the domain wall chirality at the edge because IP
polarisations in the domain wall should rotate gradually along an
acute angle.

We note that a single (anti)vortex must exist at a point at
which two different chiral domain walls are encountered.
Although the nanoscale vortex itself is energetically unstable,
the existence cannot be avoided topologically between two end
points clamped to have mutually opposite chiralities. This vortex
is expected to be readily movable between the two end points,
potentially offering an isolated quasi-particle carrying energy
along the one-dimensional chain. The observed vortex in the
second quadrant (on the upper left) in Fig. 3d was located away
from the symmetric position, suggesting a vortex formed by the
domain wall chirality is less massive between the pinning ends
and thus the location is vulnerable to influence from strain
variations and/or uncontrolled perturbations.

The existence of buffer ferroelectric domains and the diversity
of their locations create more abundance in possible topological
textures (Fig. 5b, c). In the as-grown state in which ferroelectric
polarisations in the quadrant domains are restricted outward
(simultaneously upward), we can classify all 16 possible
configurations into four types according to the locations of the
buffer domains on one side of each red ferroelastic wall. However,
the total winding number in the as-grown state is still + 1, because
any buffer domain between two quadrant domains equally
outward does not affect the total winding number (Supplemen-
tary Fig. 3). All the four types of buffer domain arrangements in
the as-grown state can be stabilised by phase field simulations
(Fig. 5b).

Non-local domain switching and buffer domains control. The
central region of the BFO nanoplate can be electrostatically
unstable due to the same polarity of the electric dipoles merging
at the centre. Because of electrical frustration, unexpected
complex domain structures are easily created alongside pair
creations by an electrical writing at the centre of the nanoplate.
To avoid touching the central region with the biased tip and
minimise low-lying excitations, we used a non-local domain
switching technique. When we apply a dc bias to switch the
electric polarisation on the corner of a ferroelastic domain, as
described in Fig. 6a, the entire region of a ferroelastic domain is
switched in addition to the electrically written area. In the
nanoplate structure, the domain wall energy is comparable to
the bulk energy because of the large surface-to-volume ratio.
Therefore, the entire region of a ferroelastic domain is switched
instead of creating a domain wall. This non-local switching
offers a useful pathway into domain switching minimising
artificial pair creations at the sensitive centre area leading to the
minimum states. Figure 6b demonstrates our non-local domain
switching process in a deterministic way. We applied dc − 4 V to
the bottom electrode and scanned the corner part that was
approximately 100 nm from the central area using a grounded
tip. The electrical writing size was 400 × 400 nm, drawing 128
lines at a tip speed of 400 nm s–1, including the corner region.
We recognised the nanoplate region using the deflection error
simultaneously acquired during the poling, which clearly indi-
cated the boundary of the BFO nanoplate in real time. After
non-local domain switching, PFM was measured to check the
switching effect. We performed non-local domain switching at
each corner of the BFO nanoplate one by one in a clockwise
direction. Eventually, the entire ferroelastic domains were

0

1

–1

0

1

2

0

1

–2

–1

0

–1

0

1

2

–1

0

1

–1

0

1

0
–2

–1

0

1

–2
–1

0
1
2

0° 30°

45° 60°

90° 135°

` ` `

` ` `

` ` `

Sample rotation angle (degrees)

IP
-P

F
M

 r
ea

l (
m

V
)

`

50 100 0 50 100 0 50 100

0 50 100 0 50 100 0 50 100

0 50 100 0 50 100 0 50 100

Fig. 2 Construction of an IP piezoresponse vector map. IP PFM real part
contrast images of a BFO nanoplate in the as-grown state of the type 2. As
the IP PFM measurement can detect the perpendicular component to
cantilever orientation, it is necessary to collect angle-dependent IP PFM
signals at each position, in order to determine both the magnitude and
direction of an IP piezoresponse vector. Angle-dependent IP PFM signals
were fitted to a trigonometric curve at the representative positions marked
by red rectangles. The amplitude and phase information of the fitting curve
determine the amplitude and direction of the IP piezoresponse vector,
respectively. A data point in the graph consists of an average value of 5 × 5
pixels in the PFM image and the error bar is defined by half of the difference
between the maximum value and the minimum value within 5 × 5 pixels.
The scale bar in the IP PFM image represents 200 nm
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switched to downward/inward polarisation from upward/out-
ward polarisation.

Using non-local domain switching, we can control the
existence or non-existence of the buffer domain and its location,
which offers a useful pathway into manipulation of the total
winding number. For example, we consider an initial domain
structure with two neighbouring upward quadrant domains with
a downward buffer domain placed on the left side of the
ferroelastic wall between them (Fig. 6c). The right ferroelastic
quadrant domain that does not contain the buffer domain is

switched first and the left ferroelastic domain is switched later.
This sequence causes all relevant regions to have downward
polarisations without creating a buffer domain. However, the
reversal of the switching order leaves a buffer domain on the right
side of the ferroelastic wall between quadrant domains that are
otherwise the same. These multiple states can be understood on
the basis of the competition between the depolarisation energy
gain and the domain wall energy loss. The first domain switching
causes positive and negative bound charges at the surface. In this
case, the depolarisation energy is already stable without regard to
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Fig. 3 Observation of the vortex and antivortex points in a BFO nanoplate in an as-grown state by angle-resolved PFM measurements. a IP PFM image was
measured at a tip orientation described by the illustration at the upper right corner. The bright (dark) contrast represents the IP piezoresponse vector
component perpendicular to the tip orientation, i.e., pointing to the positive (negative) vertical direction. b OOP PFM image simultaneously measured.
Most areas inside the plate region exhibit upward polarisation except for the buffer domains, in which a weak piezoresponse (shown in brown) was
detected. c Map of local IP piezoresponse vectors. This map was constructed by combining the six IP PFM images measured with different tip orientation
angles. Each colour arrow represents the direction of the piezoresponse vector as depicted in the coloured circle in d. The locations of the buffer domains
indicate that this nanoplate corresponds to the type 2 configuration (Fig. 5c). d Colour map indicates the direction (angle) of IP piezoresponse vector. We
tiled small-closed square (3 × 3) loops by overlapping their edges and calculated the winding number at each loop, thereby constructing the winding
number map (WN map). Most areas appeared to have a winding number of 0, except for two vortices (red boxes; each + 1) and one antivortex (blue box;
each − 1), as depicted in the schematic on the right-hand side. This as-grown domain configuration consists of upward polarisations in all quadrant
domains, and topologically it results in a total winding number of 1. Scale bars represent 200 nm
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the buffer domain, so the switching forms a single ferroelectric
domain in the corresponding quadrant without creating a buffer
domain. As for the second domain switching, bound charges of
the same polarity are located at the surface, so the existence of a
buffer domain helps to reduce such unstable depolarisation
energy.

Configuration of the topological winding number. We
demonstrate that the system’s total winding number can be
configured artificially by electric fields. As the net winding
number of topological defects is invariable for any continuous
deformations of the order parameter, we should introduce a
catastrophic transformation such as 180° polarisation switching
of quadrant domain(s) to modify the total winding number. The
total winding number of a BFO nanoplate relies on the relative
arrangement of the quadrant and buffer domains. Provided that
the polarisations of two neighbouring quadrant domains point
outward (Supplementary Fig. 3), the partial winding number
calculations along a line segment from a point in the first
quadrant domain to another point in the second quadrant

domain are equally 1/4 (i.e. the angle of polarisation is finally
increased by 90°) irrespective of the presence of a buffer domain.
In the as-grown state, all quadrant domains point outward, so the
total winding number is + 1 without regard to different buffer
domain formations. On the contrary, if one points outward and
the other points inward, the presence of a buffer domain between
them increases the winding number by + 1 compared with the
absent case. Using this rule, we inspected all possible domain
configurations and found total winding numbers ranging from −
1 to 3.

We list each of the domain configurations eligible for the BFO
nanoplate and classify them into five levels of topological
invariants from a single antivortex to three vortices (Supplemen-
tary Fig. 4). Several representative configurations were chosen
with four more total winding numbers in addition to the + 1
winding number of the as-grown states among the 1296 possible
textures; these configurations are experimentally demonstrated in
Fig. 7. The selective domain switching technique without
invoking unintended pair creations was essential to stabilise the
quasi-ground state. Remarkably, we found that electrical poling
on the corner region (less than a quarter of a single quadrant

–4 V

a

b

Poled
region

c

[010] [100]

Poled re
gion

Fig. 6 Non-local domain switching to control quadrant and buffer domains. a Schematic of a non-local switching process. b OOP PFM images showing
domain switching one by one in a clockwise direction. The red and blue lines representing ferroelastic and ferroelectric domain walls, respectively. They
were determined together with simultaneously measured IP PFM images (not shown here). c Buffer domain can be written or erased by control of the
switching sequence. The pink circles indicate feasible routes verified by experiments
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area) resulted in the reversal of the corresponding quadrant
domain while inhibiting the production of a new domain wall.
The non-local domain reversal provides a tremendous advantage
by switching not only selective quadrant domains but also writing
or erasing buffer domains deterministically by managing the
switching sequence (see the schematics in the right-hand side
column of Fig. 7), enabling us to realise all the possible
configurations in principle.

We verify that interior modifications are unrelated to the total
winding number. Figure 8 exhibits an excited state with vortex-
antivortex pair creations. When all polarisations point inward
without buffer domains, the central region becomes highly
frustrated with competing local textures. Small electric perturba-
tions easily induce new small domains via unintended pair
creations. In the winding number map, many vortex–antivortex

pairs are clearly identified near the conjugate small domains, but
the total winding number remains + 1 because of the topology.

Evaluation of strain relaxation. These exotic domain textures
and switching behaviour are attributed to the radial strain
relaxation from the residual compressive strain (as much as −
0.6% at the interface with edge dislocations; see Supplementary
Fig. 5). Although the three-dimensional strain relaxation is
complicated with the delicate features involved in spontaneous
rhombic deformation, we obtained experimental hints regarding
strain relaxation with the use of various diffraction techniques.
The diffusive feature of the asymmetric peaks observed in X-ray
reciprocal space maps (RSMs) is a clear signature of gradual
strain relaxation (Supplementary Fig. 6). The broadening of the
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domain configurations show various total winding numbers, such as a ntot= 0, b ntot= − 1, c ntot= 2, and d ntot= 3. Left: Vector maps of IP piezoresponse
overlaid on the corresponding OOP PFM contrast; (middle) IP piezoresponse angle maps extracted from the yellow boxes; (right) Simplified schematics
describing the domain switching sequence with expected vortex (red box) and/or antivortex (blue box) points; winding number maps were determined
experimentally. The dark grey background regions have downward polarisations in contrast to the as-grown white regions with upward polarisations as a
result of non-local ferroelectric switching of selected quadrant domains. It is noteworthy that the case of ntot= 2 includes the creation of an unintended
vortex–antivortex pair, but the measured total winding number is the same as the expected one that contains the two topologically protected vortices. Scale
bars represent 200 nm
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diffraction peak was also analysed with a Williamson-Hall plot
and the inhomogeneous strains were quantitatively determined to
be 0.60% and 0.46% for the OOP and IP lattice parameters,
respectively (Supplementary Fig. 7a). Furthermore, the grazing
incidence geometry enabled direct investigation of the depen-
dence of the IP lattice parameter on the x-ray penetration depth
(Supplementary Fig. 7b and c). These structural characterisations
complementarily suggest that the compressive strain is almost
relaxed within the 60 nm-thick nanoplates, resulting in a strain
gradient whose order of magnitude is 105 m−1. In addition, we

note that the strain gradient has a crucial role in the upward self-
polarisation in the quadrant domains via the flexoelectric effect36,
because normal BFO films on the Pr0.5Ca0.5MnO3 (PCMO)
bottom electrode have been downward.

Discussion
Our demonstration by using the unique visualisation approach
and the winding number analysis not only offers a useful concept
for multi-level topological defect memory, but also provides an
avenue into strain-gradient-mediated clamping of topological
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Fig. 8 An excited state due to the creation of multiple vortex and antivortex pairs. a, b IP and OOP PFM images measured after electrical poling on the
entire top surface of the plate with the type 2 state (the same plate in Fig. 3) by a dc biased tip at +3 V. The OOP polarisations in most areas were switched
to downward polarisations (detected as dark contrast in the OOP PFM image) and flipped to inward IP polarisations. The same polarity of the polarisation
merging at the central region produced a complex domain structure of relatively weak polarisation-up piezoresponses to partially avoid a strongly charged
domain wall and reduce electrostatic energy. c IP piezoresponse vector map overlaid on OOP PFM contrast. d The corresponding colour map of IP
piezoresponse directional angle. Vortex–antivortex pair generations are observed near polarisation-up regions. The central region contains one more vortex
inevitable for this structural geometry, as explained in the schematic, thereby leading to a total winding number of 1. The electric frustration at the central
region leads to the generation of various competing states and the strong electric perturbation during the whole-area poling offers more chances for
excited states with multiple pairs of the particle and its anti-particle in the ferroelectric nanostructures subject to a strain gradient. Scale bars represent
200 nm

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02813-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:403 |DOI: 10.1038/s41467-017-02813-5 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


ferroelectric textures and non-local switching among symmetry-
protected quantised states. The findings of this study also offer
useful insights into electric pair creation, electric frustration and
programmable charged domain walls. Of obvious future interest
is an examination of the dynamic motion of the topological
vortices along the chiral domain walls for energy efficient infor-
mation technology: electric topological defectronics.

Methods
Growth of composite thin films. BFO-CoFe2O4 (BFO-CFO) composite thin films
were synthesised by pulsed laser deposition using a single target composed of
Bi1.1FeO3 (65 atomic %) and CFO (35 atomic %). The self-assembled nanoplate
structures of BFO-CFO were grown on (001) LaAlO3 (LAO) substrates with a
bottom electrode that comprised a ~ 4 nm-thick PCMO layer. Growths were made
at 630 °C in an oxygen environment of 100 mTorr. A KrF excimer pulsed laser (λ =
248 nm) was used at a frequency of 7 Hz to create a laser fluence of 0.8 J cm–2 on
the target surface. After the growths were completed, the samples were cooled to
room temperature at a rate of 10 °Cmin–1 in an oxygen environment of 500 Torr to
minimise the current leakage of BFO.

Angle-resolved PFM technique. The surface topography and ferroelectric
domains of BFO nanoplates were investigated with a scanning probe microscope
(Bruker MultiMode V equipped with a Nanoscope controller V). PFM measure-
ments were performed at a scanning rate of 3 μm s−1 using Pt-coated Si conductive
tips (MikroMasch, NSC35) applying an ac driving voltage of 2 Vpp at a frequency
10 kHz in ambient conditions. In this study, all PFM images plot the real part
piezoresponse signal, i.e., amplitude × cos(phase). In the OOP PFM images, the
bright (dark) contrast represents upward (downward) polarisation. In the IP PFM
images, the bright (dark) contrast indicates the IP piezoresponse vector pointing to
[010] ([0–10]) when a cantilever is oriented towards [−100]. IP PFM exploits the
torsional motion of the cantilever to sense the IP oscillations of the sample
underneath. The IP PFM signal depends on the sample orientation with respect to
the cantilever (i.e., the IP PFM signal is proportional to the projected component of
the IP piezoresponse vector on the axis perpendicular to the cantilever). It was
necessary to align these PFM images to correct pixel misalignment from an
asymmetric tip shape and/or the tip-drift issue in nanoscale measurements. Several
specific positions, including the domain walls and the corners of the nanoplates,
were selected as reference points to determine the coordinate conversion matrices
among the images. After this alignment, each position has tip-orientation-
dependent IP PFM signals. Although a data pixel has a physical size of 3 × 3 nm,
the signals in a single position for the vector maps are prepared by averaging over a
15 × 15 nm area to improve statics, considering our instrument resolution and
sensitivity, and thus pair creations with a separation of less than the average
distance are hardly detected. We also used finer 9 × 9 nm averaging for the angle
maps to calculate the local winding number with 3-by-3 (27 × 27 nm) loops.

Winding number calculation. The vortex—a spatially confined object—has a core
region with a discontinuous order parameter. Despite the singularity, the existence
of a vortex affects the far-field region, where the order parameter changes slowly in
space. Therefore, the presence of a vortex can be determined by measuring the
variance of the order parameter such as the orientation of ferroelectric polarisation
(θ) on any closed contour that encloses the vortex core. Mathematically, the
winding number n in two-dimensional space is defined by the contour integral of
an orientation change Δθ of two neighbouring IP ferroelectric polarisations along a
given loop divided by 2π. The winding number gives information regarding the net
number of vortices and anti-vortices enclosed by the loop. For example, if a large
closed loop encloses a pair of vortex and antivortex points with opposite winding
numbers in a uniform far-field configuration of polarisation, the total winding
number for the entire enclosed area is 0. We performed such winding number
calculation as follows:

n ¼ 1
2π

I

C

∇θ � dr ð1Þ

where θ is measured anticlockwise from the [100] direction. We assume that θ is
continuous everywhere, except for vortex or antivortex points, and we used a
condition of Δθ< |180°| to determine the angle rotation direction. We tiled 3 × 3-
pixel square loops on angle maps that shared the boundaries, to calculate the local
winding number at each loop. A pixel of the angle maps includes an average IP
PFM direction of a 9 × 9 nm area. Such a small loop has the advantage of mea-
suring the precise position of each vortex or antivortex core.

Phase field simulation. In the phase field simulations, we introduce both polar-
isation, Pi(i = 1–3), and oxygen octahedral tilt order parameters, θi(i = 1–3), to
describe the domain structures in BFO. The total free energy density includes the
contributions from the Landau bulk free energy, gradient energy, elastic energy and

electrostatic energy:

F ¼ R
V

αijPiPj þ αijklPiPjPkPl þ βijθiθj þ βijklθiθjθkθl
h

þtijklPiPjθkθl þ 1
2 gijkl

∂Pi
∂xj

∂Pk
∂xl

þ 1
2 κijkl

∂θi
∂xj

∂θk
∂xl

þ1
2 cijkl εij � ε0ij

� �
εkl � ε0kl
� �� EiPi � 1

2 ε0κbEiEi
i
dV

ð2Þ

where αij, αijkl, βij, βijkl and tijkl are the coefficients of the Landau polynomial under
stress-free boundary conditions, gijkl and κijkl are the gradient energy coefficients, xi
is the spatial coordinate, cijkl is the elastic stiffness tensor, εij and ε0kl are the total
strain and eigenstrain, respectively, Ei is the electric field, ε0 is the permittivity of
free space, and κb is the background dielectric constant. The eigenstrain is related to
the order parameters through ε0ij ¼ hijklPkPl þ λijklθkθl þ εlatticeij , where λijkl and hijkl
are coupling coefficients, and εlatticeij is eigenstrain caused by lattice parameter
mismatch between BFO and the substrate. The current simulations use the para-
meters from Ref. 37, and a more comprehensive thermodynamic potential for BFO
is available at Ref. 38.

To describe the mechanical boundary conditions of BFO nanoplates, the system
consists of three types of materials, i.e., BFO, air and substrate. BFO possesses
nonzero polarisation and the polarisation in the air and substrate is zero. The
elastic stiffness of the air is zero and we assume that the elastic stiffness of the
substrate is the same as BFO. Temporal evolution of the order parameter is
described by the time-dependent Ginzburg–Landau equation, ∂Pi=∂t ¼
�LP δF=δPið Þ and ∂θi=∂t ¼ �Lθ δF=δθið Þ, which is solved numerically using the
semi-implicit Fourier spectral method39. Periodic boundary conditions are applied
along three directions, and a spectral iterative perturbation method is used to solve
the mechanical and electrostatic equilibrium conditions40. Taking the lattice
parameter of the substrate as the reference, εlatticeij can be calculated as

εlatticeij ¼ 0:3965�0:3821
0:3821 ¼ 3:8%. To consider the effect of the depolarisation field along

the out-of-plane direction, we calculate the average polarisation P3 ¼
Pn

i¼1
P3

n , and

the depolarisation electric field E3 ¼ � P3
εbε0

þ Eex, where Eex is the extra electric
field caused by other factors such as the flexoelectric effect and its magnitude is
tuned to obtain the domain structures similar to experiments.

The whole system grid is 128Δx × 128Δx × 60Δx with Δx = 0.38 nm, with
128Δx × 128Δx × 24Δx for the substrate and 64Δx × 64Δx × 12Δx for the BFO
island. In the calculation of strain distributions, the order parameter Pi and θi are
maintained at zero. Thus, the distribution of strain is caused by the relaxation of
the nanoplate rather than by the BFO domain structures.

High-angle annular dark-field scanning TEM. To gain more insight into the
depth profile of the BFO nanoplate, we performed TEM for a cross-sectional view
of a nano-composite thin film. As shown in Supplementary Fig. 5a, a low-
magnification dark-field TEM image clearly revealed that a nanoplate with a lateral
size of ~ 300 nm has a thickness of approximately 60 nm and a very thin PCMO
layer that uniformly covers the substrate as a bottom electrode. CFO clusters were
also seen around the nanoplate with relatively weak contrast in this Z-contrast
image. To determine the epitaxial relationships among the nanoplate, the PCMO,
and the substrate, we obtained high-angle annular dark-field (HAADF) images at
the interfacial region of the central nanoplate (Supplementary Fig. 5b). The 4 nm-
thick PCMO conducting layer was coherently deposited on LAO, that is, the IP
lattice parameter of the PCMO was exactly matched with the substrate. However,
the BFO nanoplate turned out to be partially relaxed at the initial stage, which
created edge dislocations at the interface with the PCMO (red arrows in figure).
The edge dislocations appear regularly with an interval of ~ 10 nm (~ 25 unit cells)
along the interface at the measured central region. Accordingly, the IP lattice
parameter of BFO at the central region is found to be relaxed to 3.94 Å, because the
lattice expands by 1/25 from the lattice parameter (3.789 Å) of LAO. The origin of
the regular edge dislocations that emerging at an interval of ~ 10 nm is inferred
from a large lattice mismatch between the BFO and LAO substrate (~ 4.4%
compressive strain compared with the lattice parameter of bulk BFO). Although a
significant fraction of the strain is relaxed near the substrate, a compressive strain
of ~ 0.6% remains and relaxes gradually across the BFO from the bottom to the top
of the nanoplate. Furthermore, atomic-scale HAADF scanning TEM (STEM)
images taken from the left, middle and right areas of the plate allowed us to check
the local ferroelectric polarisation (Supplementary Fig. 5c-e), which could be
identified by a relative Fe ion displacement with respect to the Bi cage. As the Fe
ion of BFO drags the oxygen anions, which were unseen in our measurements, the
position of the Fe ion enabled us to presume the negative centre of a unit cell. The
observed Fe ion shifts led us to the conclusion that the local polarisations on the left
and right areas were upward and outward. Meanwhile, the Fe off-centring at the
middle area was downward, and the magnitude was less than those of the outer
areas. These observations showed good agreement with the radial quadrant domain
structure verified by the angle-resolved PFM. For the cross-sectional observation
on the BFO nanoplate, the specimens were prepared by a dual-beam focused ion
beam system (JIB-4601F, JEOL, Japan). To protect the BFO plates and CFO films,
an amorphous carbon layer was deposited on the top surface before ion beam
milling. A Ga+ ion beam with an acceleration voltage of 30 kV was used to fabricate

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02813-5

10 NATURE COMMUNICATIONS |  (2018) 9:403 |DOI: 10.1038/s41467-017-02813-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


the thin TEM lamella. To minimise the surface damages induced by Ga+ ion beam
milling, the sample was further milled with an Ar+ ion beam (PIPS II, Gatan, USA)
with an acceleration voltage of 0.8 kV for 15 min. Z-contrast HAADF STEM
images were taken with a scanning transmission electron microscope (JEM-2100F,
JEOL) at 200 kV with a spherical aberration corrector (CEOS GmbH, Germany).
The optimum size of the electron probe was approximately 0.9 Å. The collection
semi-angles of the HAADF detector were adjusted from 80 to 220 mrad to exploit
the large-angle elastic scattering of electrons for clear Z-sensitive images. The raw
images obtained were processed with a Wiener filter with a local window to reduce
background noise (HREM Research Inc., Japan).

X-ray diffraction. RSMs: X-ray diffraction measurements were carried out at
beamline 3 A of the Pohang Light Source with a wavelength of 0.9428 Å. To
investigate the lattice parameters in detail, we measured RSMs around the asym-
metric crystallographic peaks of randomly distributed ~ 60 nm-thick nanoplates in
a BFO-CFO composite film grown on an LAO substrate. As shown in Supple-
mentary Fig. 6, two distinct BFO phases (R and T) with significantly different c-axis
lattice parameters were detected on both (104) and (114) RSMs. By analysing the
two RSMs, we determined the pseudo-cubic symmetry of each phase and lattice
parameters. The peaks of our main interest R-BFO have diffusive shapes with their
tails pointed toward smaller IP reciprocal positions, indicating the existence of
significant strain relaxation within the nanoplates. In particular, we observed a
more prominent diffusive feature in the (114) RSM than the (104) RSM and
inferred that a more well-defined strain gradient appears along the [HHL] crys-
tallographic axis.

Williamson–Hall plots: The inhomogeneous strain distribution within
nanoplates was measured quantitatively in the context of the Williamson–Hall
plot41,42. First, we performed longitudinal θ–2θ scans for OOP (00L) peaks up to
the fifth order and collected diffraction patterns of the IP (H00) peaks using
grazing incidence geometry. We then examined the evolution of the peak
broadenings depending on the order (H or L) of the peaks. The broadness of the
diffraction peaks can be influenced by the size-broadening (βL) effect (e.g., film
thickness) and the strain-broadening (βe) effect (e.g., a strain gradient along the
longitudinal direction). These two effects can be distinguished by their different
dependences on the Bragg angle θ, i.e. βL � 0:9λ

t cos θ and βe � 4εI tan θ, where λ is the
wavelength of an incident X-ray beam, t stands for the film thickness and εI
represents the SD of the strain distribution known as inhomogeneous strain. By
combining the two broadenings in a linear regime, the intrinsic line broadening (β)
of diffraction peaks can be written as β cos θ � 4εI sin θ þ 0:9λ

t . Accordingly, the
Williamson–Hall plot (β cos θ vs. 4 sin θ) gives information regarding the
inhomogeneous strain from the slope and the film thickness from the intercept.
The values of εI for the c-axis and a-axis lattice parameters were determined to be
0.0060 and 0.0046, respectively (Supplementary Fig. 7a). The linear fitting lines in
the plot were constrained in such a way that they intersected at an identical point at
θ = 0. From the intercept, the film thickness is determined to be ~ 60 nm, which is
consistent with the TEM cross-sectional image.

Grazing incidence XRD: A variation of the IP lattice parameter was directly
measured as a function of the probing depth (dp) by using the grazing incidence
geometry (Supplementary Fig. 7b). The penetration depth of the X ray is nearly
proportional to the incidence angle μ, according to dp ¼ λsinμ=4πβ� , where the
effective imaginary part of reflective index β* was set to be the BFO value
(4.3 × 10−7)43. The depth profile shows that the lateral strain (εxx and εyy) is rapidly
relaxed near the surface (Supplementary Fig. 7c). To explain the observed strain
depth profile, the strain ε(z) was written as εðzÞ ¼ �ε1 þ ε0eαz where ε1, ε0 and α
are coefficients, and z is the distance from the substrate. We fit the average strain

model εh idp¼ 1
dp

R dp
0 εðt � z′Þdz′ to the experimental data, where t denotes the film

thickness (60 nm) and the variable of integration z′ measures from the top surface.
The coefficients ε1, ε0 and α were determined to be 0.0043, 2.6 × 10−9 and
0.24 nm−1, respectively. The fitting was well matched with an R2 value of 0.9874.
We thus estimate the average strain gradient across the entire BFO nanoplate dε

dz

� �
t

as 0.8 × 105 m−1, which agrees well with the inhomogeneous strain.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files.
Additional data are available from the corresponding author upon reasonable
request.
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