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Abstract:
This paper suggests the use of simple minimum distance methods to estimate restricted
cointegrating vectors.  The method directly employs minimum distance methods on unrestricted
cointegrating matrices estimated in the usual way to estimate restricted parameters which are
linearly or nonlinearly related to the unrestricted cointegrating vector coefficients.  The limiting
distribution of the estimates as well as the usual test for the restrictions are derived.  A Monte
Carlo experiment is undertaken to examine the effectiveness of these methods for cointegrating
vectors.

JEL classification : C13, C32

Keywords: Cointegration, Minimum Distance Estimation, Nonlinear Restrictions.
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1. INTRODUCTION

Theory often posits the existence of long run relationships between economic quantities.  If the

data contain a unit root, then cointegrating methods are appropriate.  Quite a large number of

methods for the estimation of cointegrating models are available (the most often employed

estimator is due to Johansen (1988), see Watson (1994) for a review).  Methods have been

developed to estimate and/or test various linear restrictions on these cointegrating vectors,

however many practical problems arise.  Likelihood methods can be used in many cases

(Johansen 1995) however algorithms for estimation are often quite complex.

This paper suggests a very simple asymptotically efficient two step method for undertaking the

estimation of restricted cointegrating models.  First, obtain unrestricted cointegrating vector

estimates from one of the available methods.  Second, use minimum distance methods to estimate

and test the restricted cointegrating vector.  The methods presented are valid for nonlinear as

well as linear restrictions (with some regularity conditions on the functional relationship between

the restricted and unrestricted estimates). The estimates have the property that if the original

estimates have an asymptotic conditional mixed normal distribution, then so do the restricted

estimates.  The tests for overidentfying restrictions will have χ2 limit distributions in this case.

The paper is set up as follows.  The next section introduces the general theory showing

consistency of the restricted parameter estimates and derives the asymptotic distributions of these

estimates and the tests for overidentifying restrictions.  The following section examines the

properties of the suggested method for a variety of linear and nonlinear restrictions.  The

methods are then applied to the model of King, Plosser, Stock and Watson  (1991). The final

section concludes.  Proofs are contained in Appendix A.

2. MINIMUM DISTANCE AND COINTEGRATION.

2.1. Model

The data  yt can be modeled as a vector autoregression

y m L yt t t= + +−Ψ( ) *
1 ε
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where yt is a nx1 vector, Ψ( )L is a polynomial in the lag operator (potentially infinite order), m

are deterministic terms and ε t
*   is a martingale difference sequence residual.  This can be

rewritten as

∆ Ψ Π ∆y m y L yt t t t= + + +− −1 1( ) *ε           (1)

where Ψ Ψ Π Ψ= − + = −
= = +∑ ∑In ii i jj i1 1

,  and the sums run to the order of the polynomial

Ψ( )L .

We assume that the data yt individually have unit roots (are I(1)) so cointegration analysis is

appropriate (Engle and Granger 1987).  If there is a long run relationship in the data such that βyt

is stationary when yt is nonstationary (where β is n2xn and n2<n), then this implies that in the

above model that Ψ has reduced rank.   As examined in Johansen (1988) amongst others, there

are many ways to normalize the cointegrating vectors β, i.e. we can partition β into [β1 β2] where

the partition is after the n1th column, so that we can construct new cointegrating vectors by

premultiplying by the inverse if the square matrix β2 so long as this inverse exists, and obtain the

cointegrating vectors β β β β2
1

2
1

1 2 2
− −= = −[ , ] [ , ]I In nΓ .  Note that the partition is arbitrary so long

as the inverse exists.

Using this normalization and following Watson (1994), we can typically write this model in

triangular form (see Phillips (1991)) as

y d y u
y d y u

t t t t

t t t t

1 1 1 1 1

2 2 1 2

= + +
= + +

−

Γ
         (2)
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where y1t  is n1x1, y2t is n2x1, (i.e. conformably partitioned with β) and ut = [u1t’ u2t’]’ is an nx1

vector of potentially serially correlated residuals.  Here d1t and d2t are deterministic terms where

dit=δi‘zit, δi are unknown parameters and we consider three cases, z1t=z2t=0, z1t=0 and z2t=1, and

finally z1t=1 or 0 and z2t=[1,t].  We assume that in the first case no deterministics are included in

(1), in the second a constant is included, and in the third a constant and a time trend are included

in the actual regression and that the restrictions implicit on m are not tested (the extension is

straightforward).  As the partition of the cointegrating vector was arbitrary, so is the partition of

yt.  Define Ω as the spectral density matrix of ut at frequency zero divided by 2π, and assume that

ut satisfies 
[ ]

T u B Wt
t

T
−

=
∑ ⇒ =1 2

1

1 2/ /( ) ( )
λ

λ λΩ for λ ∈[ , ]0 1  where W(λ) is an n dimensional

standard Brownian motion and ⇒ denotes weak convergence.

In this paper we are interested in restrictions of the form vec g( ) ( )Γ = θ  where θ is a qx1 vector

of unknown parameters with true values θ0 and q<n1n2 (i.e. contains less parameters than does Γ).

The mapping may be linear or nonlinear.  We are interested in obtaining estimates and limit

distributions for θ and testing the over-identifying restriction vec g( ) ( )Γ = θ .

With various assumptions on the error terms and the lag polynomial in (1) or their equivalents,

many papers have derived estimators for the cointegrating vector Γ (Johansen 1988, Ahn and

Reinsel 1990, Phillips and Hansen 1990, Stock and Watson 1993, Saikkonen 1991,1992, see

Watson 1994 for a review).  In this paper we will derive minimum distance methods applicable

to the unrestricted estimates of  $Γ  for all of these methods.
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2.2. Minimum Distance

We will obtain estimates for θ using standard minimum distance methods applied to the

unrestricted estimates of Γ .  Thus our estimate for θ,  denoted $θ , is the θ that minimizes

{ } { }vec g V vec g( $ ) ( ) ' $ ( $ ) ( )Γ Γ− −−θ θ1         (3)

where $V is an estimate of the variance covariance matrix of the vec( $Γ ) estimates.

For linear relationships between Γ and θ a closed form solution will be available for $θ .  In this

case we have restrictions of the form vec G r( )Γ = +θ , where G is (n1n2 x q) with all elements

known and r is (n1n2 x 1) again with elements known. Here the $θ  minimizing (3) is

[ ]( )$ ( ' $ ) ' $ ( $ )θ = −− − −G V G G V vec r1 1 1 Γ           (4)

All linear restrictions (within and cross equation) yield a closed form solution.  For restrictions

that cannot be written in this form search procedures will be required to estimate θ.

2.3. Limiting Results

Theorem 1. (Consistency of $θ )

 If (a) plim $Γ  = Γ , (b) $V => Vn   for some Vn   positive definite with probability one and full

rank, (c) g(θ) is continuous in θ, (d) Θ is a compact subset of ℜq  containing θ0  (the true θ) (e)

g(θ) = g(θ0) for θ ∈Θ implies  θ = θ0., then $θ θp → 0 .

This result is not very restrictive, allowing estimation of $θ  from any consistent estimates of $Γ .

This includes those that have asymptotically mixed normal asymptotic distributions or even

simple OLS estimates which are known to be inefficient.  The weighting matrix used may be
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constant or converge to a matrix which is potentially random so long as it is positive definite (i.e.

we need not use $V here but could employ any positive definite weight matrix).

The main restriction placed on the problem in Theorem 1 is the limiting of the types of

restrictions that can be handled (i.e. the g(.) functions), however this is just the standard

restriction in the minimum distance literature.  Restrictions that can be handled include all forms

of linear restrictions, either within or across equations.  The limitation is on the forms the

nonlinear restrictions can take, they must be such that  g(θ) is continuous.  Thus consistent

estimates of a wide range of restricted cointegrating vector parameters are available from this

simple procedure.

Whilst the results of Theorem 1 show that we can turn any consistent unrestricted estimates into

consistent restricted estimates, we are more likely to prefer to use estimators that efficiently (in

the case of normal errors) use the information in the simultaneity of the residuals.  These are the

so called optimal set of estimators (see Saikkonen 1991 or Phillips 1991).  Estimators in this

class all have the mixed normal limit distribution conditional on y1t

{ }$ [ ( $ ) ( )] ( ' )( ' ) ~ ( , )/
.

/V T vec g vec dW W W W MN Id d d
n n

− −− ⇒ ∫∫1 2
0 2 1 1 1 1

1 2
1 20Γ θ

when suitably scaled where W W W( ) [ ( )' , ( )' ]'λ λ λ= 1 2  and the partition is after the n1th row of W,

W W W2 1 2 21 11
1

1. ( ) ( ) ( )λ λ λ= − −Ω Ω , Ω
Ω Ω
Ω Ω

=










11 12

21 22

 where the partition is after the n1th row and

column and W d ( )λ is a detrended Brownian Motion where

(i) W Wd ( ) ( )λ λ=  if no deterministic terms are included,

(ii) W W W s dsd ( ) ( ) ( )λ λ= − ∫
0

1

  if a constant is included,
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(iii) W W W s ds sW s dsd ( ) ( ) ( ) ( ) ( ) ( )λ λ λ λ= − − − −∫ ∫4 6 12 6
0

1

0

1

  if a constant and time trend are

included.

The scaling for this class of estimators (and weighting matrix used) is of the form  $ $ $
.V V= ⊗1 2 1Ω

where Ω Ω Ω Ω Ω2 1 22 21 11
1

12. = − − , $ .Ω2 1  is a consistent estimator of Ω2.1 and $V1
1− is such that it

converges to B Bd d
1 1∫ '  where B Wd d( ) ( )/λ λ= Ω1 2  and B d

1 ( )λ are the first n1 rows of B d ( )λ .

Different estimators of the unrestricted cointegrating vectors suggest different estimators of $V .

They will be examined in the next section.  The remainder of the paper deals with unrestricted

estimates of estimators that are in this class.

Theorem 2 (Asymptotic distribution of $θ )

If (a) { }$ [ ( $ ) ( )] ( ' )( ' ) ~ ( , )/
.

/V T vec g vec dW W W W MN Id d d
n n

− −− ⇒ ∫∫1 2
0 2 1 1 1 1

1 2
1 20Γ θ (b) $V =>

Vn,  (c) Θ has a neighborhood of θ0  in which g(.) has continuous second partial derivatives and

(d) rank G(θ0) =q where G
g

( )
( )

'
θ

∂ θ
∂θ θ

0

0

=  then T( $ )θ θ− 0 has a mixed normal limiting

distribution conditional on y1t  with mean zero and limiting variance covariance matrix

( ( )' ( ))G V Gnθ θ0
1

0
1− − .

Theorem 2 limits the results to the estimates for $Γ  that have asymptotic mixed normal

distributions, obtaining asymptotic distributions for $θ  that also have asymptotic mixed normal

distributions.  These are the standard estimators used in practice.  An analog to Theorem 2 for
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OLS estimates of $Γ  is available by the same method as the proof of Theorem 2 but results in a

nonstandard asymptotic distribution for $θ .

In practice we need to estimate the variance covariance matrix of the estimates, and G is often

unknown when there are nonlinear restrictions as it is a function of the unknown restricted

parameters θ0 .  This approximation can be done by using $θ  in place of θ0 and noting that by the

consistency results of Theorem 1 the estimated G ( $)θ  converges to the true G ( )θ 0 .

The variance covariance matrix, as in the unrestricted case, is stochastic however this presents no

problems in practice as in the unrestricted case.  Hypothesis tests and confidence intervals can be

set up in the usual way.

We can test the above restrictions by constructing the test

{ } { }J T vec g V vec gT = − −−2 1( $ ) ( $ ) ' $ ( $ ) ( $ )Γ Γθ θ

where we multiply the function used to estimate θ by T2 and replace θ with $θ .

Theorem 3 (Asymptotic distribution of the test for overidentifying restrictions)

Under the conditions of Theorem 2 the test for overidentifying conditions JT  has a χ2 distribution

conditional on y1t with n1n2-q degrees of freedom.

This theorem shows the usual result that the standard overidentifying test has a chi squared

distribution with degrees of freedom equal to the number of restrictions (n1n2 - q) being tested.

The test itself is simple to implement as it only requires objects that have already been calculated

to estimate $θ .
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Tests of a subset of the over-identifying restrictions available through these methods are

available directly in a number of ways.  For a subset of the possible linear restrictions, Johansen

(1995) details likelihood ratio tests for restrictions.  Warne (1997) considers non linear Wald

tests in a Sims, Stock and Watson (1990) framework which includes cointegration.  In general,

all of the methods can be used to construct Wald statistics of linear restrictions on the

cointegrating vectors after they have been normalized.  The JT test when restrictions are linear

will result in numerically equivalent tests to these Wald tests using the same unrestricted

estimates of the cointegrating vector and variance covariance matrix.

2.4. Optimality.

Saikkonen (1991) and Phillips (1991) detail optimality properties for the unrestricted

cointegrating vector estimators when residuals are normally distributed.  This optimality occurs

within the locally asymptotically mixed normal (LAMN) family.  The methods developed above

retain optimality within this family by choosing the variance covariance matrix as the weighting

matrix.  Of course in small samples there may be a loss of efficiency in small samples as √T

convergent parameters are treated as nuisance parameters rather than estimated simultaneously.

As in the regular application of minimum distance (Rothenberg 1973) any other choice of

weighting matrix  than the one suggested here results in a wider asymptotic distribution of the

restricted estimates.
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3. EXAMPLES AND A MONTE CARLO EVALUATION

This section examines a number of examples of restrictions and also examines the performance

of the procedures for different initial estimators of the cointegrating vector by way of Monte

Carlo experiments.  In each case we examine the performance in large samples (showing the

above limit theory to be applicable) and in small samples (to examine the applicability of the

large sample theory for samples encountered in practice).

There are available a reasonably large number of estimators that satisfy the restrictions of

Theorems 1 and 2.  These were classed by Saikkonen (1991) as the efficient class of estimators

and include those of Johansen (1988), Phillips and Hansen (1990), Ahn and Reinsel (1990),

Phillips and Loretan (1991), Saikkonen (1991,1992), Stock and Watson (1993) etc., see Watson

(1994) for a review.  Each of these provide asymptotically similar estimators of the cointegrating

vector and have associated with them asymptotically similar estimators of the variance

covariance matrix of these estimates.  Here we will evaluate the above methods for three

different estimators; the Saikkonen (1992) VAR method, the Johansen (1988) full information

maximum likelihood estimator, and the DOLS (Stock and Watson 1993) method.  These methods

are detailed in an appendix.  As each differ in their small sample results, Monte Carlo results for

rejection rates under the null and alternative will be presented for each of these estimators.

3.1.  Setting a cointegrating vector element to a known value.

Consider a model where n1 = 2 (there are two distinct unit roots in the model), n2=1 (there is only

one cointegrating vector) so Γ = [ Γ1 , Γ2].  Further, we will estimate Γ2 given that we know the

true value for Γ1.  In this case the restriction can be written as vec(Γ) = Gθ + r  where G = [0, 1]’

and r = [ Γ1 , 0]’.  The estimator for $θ  = $ ( ' $ ) ( ' $ [ $ ' ])Γ Γ2
1 1 1= −− − −G V G G V r .  As results are

numerically equivalent for all Γ1 we set Γ1 = 0.
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Results when the null hypothesis is true are given for each of the three sets of unrestricted

estimates for T=50, 100 and 250 and for three different values of the variance covariance matrix

in Table 1A.  The results presented in the first six columns are features of the original estimator -

average bias and standard error of the estimated bias as well as size for each of the two

coefficients in the unrestricted model.  The final four columns give the same statistics for the

restricted estimate as well as size for a test of the (true) restriction using the JT statistic.

A number of results are apparent.  First, the performance of the asymptotic approximation in

small samples does not appear to be qualitatively any different to those for the unrestricted

estimates.  This can be seen by comparing the tests of the unrestricted estimates to their true

values and also examining the test of the restricted estimate for its true value and the test for

overidentification.  The size distortion on the restricted coefficient is nearly always less than or

equal to the size distortion on the unrestricted estimates. As the sample size increases the

differences are less (size distortions are all disappearing).  Second, the restricted estimates vary

less than the unrestricted estimates.  This is a reflection of their smaller sampling variance.

Third, the test for overidentifying restrictions appear also to have similar small sample properties

to the unrestricted estimates.  In general the size performance of these statistics is no worse than

for the usual cointegrating estimates.



13

Table 1: Size Results for Model 3.1.

E( $ )Γ1 st dev. ( $ )Γ1 test ( $ )Γ Γ1 1= E( $ )Γ2 st dev. ( $ )Γ2 test ( $ )Γ Γ2 2= E( $ )θ1 st dev. ( $ )θ1 ( )test $Γ Γ2 2= JT rej.

T=50 Ω12=0.5 Ω13=0.3 Ω23=0.5
Saik 0 0.089 0.121 0.006 0.091 0.124 0.002 0.064 0.113 0.124
Johan 0 0.101 0.144 -0.002 0.104 0.139 -0.001 0.07 0.123 0.139
DOLS -0.001 0.087 0.071 0.001 0.087 0.072 0 0.063 0.069 0.072
T=100
Saik 0 0.043 0.095 0.002 0.042 0.09 0 0.031 0.086 0.09
Johan 0 0.044 0.097 0 0.043 0.09 -0.001 0.032 0.085 0.09
DOLS 0 0.042 0.065 0 0.041 0.063 0 0.031 0.063 0.064
T=250
Saik 0 0.016 0.063 0 0.016 0.061 0 0.012 0.06 0.061
Johan 0 0.016 0.062 0 0.016 0.061 0 0.012 0.059 0.061
DOLS 0 0.016 0.054 0 0.016 0.053 0 0.012 0.052 0.053

T=50 Ω12=0.5 Ω13=0.5 Ω23=0.5
Saik 0.003 0.085 0.122 0.004 0.085 0.124 0.004 0.061 0.114 0.124
Johan -0.001 0.094 0.138 -0.001 0.096 0.133 -0.001 0.066 0.12 0.134
DOLS -0.001 0.082 0.071 0.001 0.082 0.072 0 0.06 0.069 0.072
T=100
Saik 0.001 0.04 0.095 0.001 0.039 0.09 0.001 0.029 0.084 0.09
Johan 0 0.041 0.096 0 0.041 0.09 0 0.03 0.083 0.09
DOLS 0 0.04 0.065 0 0.039 0.063 0 0.029 0.063 0.064
T=250
Saik 0 0.015 0.062 0 0.015 0.061 0 0.011 0.059 0.061
Johan 0 0.015 0.062 0 0.015 0.06 0 0.011 0.059 0.06
DOLS 0 0.015 0.054 0 0.015 0.053 0 0.011 0.052 0.053

T=50 Ω12=0.5 Ω13=0.7 Ω23=0.5
Saik 0.005 0.072 0.122 0.002 0.072 0.118 0.004 0.052 0.111 0.118
Johan -0.001 0.079 0.127 0 0.079 0.124 0 0.056 0.114 0.124
DOLS -0.001 0.07 0.071 0 0.07 0.072 0 0.051 0.069 0.072
T=100
Saik 0.001 0.034 0.091 0 0.033 0.087 0.001 0.025 0.083 0.087
Johan 0 0.035 0.091 0 0.034 0.084 0 0.025 0.08 0.084
DOLS 0 0.034 0.065 0 0.033 0.063 0 0.024 0.063 0.064
T=250
Saik 0 0.013 0.062 0 0.012 0.059 0 0.009 0.059 0.059
Johan 0 0.013 0.06 0 0.013 0.059 0 0.01 0.058 0.059
DOLS 0 0.013 0.054 0 0.012 0.053 0 0.009 0.052 0.053

Note: In all cases unknown parameters in Γ are set to one.  The data is generated according to equation (2)
with no deterministics but estimated with a constant in the regressions.  We set Φ(L)=I in the model and this
is known in the simulations.  The variance covariance matrix for ut=εt has ones on the diagonal and off
diagonal elements as indicated.  The variance covariance matrices for the unrestricted cointegrating vector
estimates are calculated as in Appendix B.  All the reported tests on the unrestricted estimates are Wald
tests (t tests) based on these VCV matrices.  Results are calculated from 5000 simulations.
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Fourth, whilst the individual size performance and biases of the estimates vary slightly with the

variance covariance matrix, the relationship between the performance of tests in the unrestricted

model and the restricted model detailed above holds for each of the models.

Rather than compare directly to the unrestricted estimates, we can compute the (pseudo)

maximum likelihood estimates of θ.  In Table 2 we examine such estimates from the model

∆ Φ Γy m y yt t t t= + − +− −( )2 1 1 1 η

where Γ is restricted as above, m and Φ are nx3 vectors of unknown parameters, and we assume

that η t N~ ( , )0 Σ .  This is the implied error correction form for the model investigated above,

so we do not use the Johansen method as it assumes less information and hence would be less

efficient.

Table 2: Restricted Estimates
Ω12 Ω13 Ω23 Bias (mle) Bias  (md) MSE(mle) MSE (md)

Panel 1
0.5 0.3 0.5 0.001 0.015 0.089 0.087
0.5 0.5 0.5 -0.001 0.014 0.078 0.078
0.5 0.7 0.5 -0.002 0.012 0.056 0.056

Panel 2
0.5 0.3 0.5 -0.019 -0.030 0.071 0.067
0.5 0.5 0.5 -0.016 -0.023 0.060 0.057
0.5 0.7 0.5 -0.010 -0.013 0.045 0.043

Panel 3
0.5 0.3 0.5 -0.084 0.051 0.307 0.013
0.5 0.5 0.5 0.035 0.048 0.011 0.011
0.5 0.7 0.5 -0.273 0.049 0.962 0.008

Panel 4
0.5 0.3 0.5 0.049 0.010 0.028 0.028
0.5 0.5 0.5 0 -0.030 0.022 0.022
0.5 0.7 0.5 0.01 -0.010 0.014 0.014

Note: Reported are averages over 2000 replications with 100 observations in each pseudo-
sample.  The model is as in equation (2)  with ut~N(0,Ω), d1t=d2t=0 but a constant is estimated.
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The results presented are for the same three models (parameterizations of the variance covariance

matrix) and T=100.  Each panel contains the average estimated bias (times 100) and mean square

error (times 100) of the restricted estimates, with Panel 1 according to the model and Γ of this

subsection (other panels are for models in subsections 3.2 to 3.4).  For this model there are no

differences between the MSE’s for either estimation method, with the average bias being a little

smaller for the MLE.  Thus we see here that the simpler minimum distance method involves very

little if any loss over the correctly specified MLE.

3.2. Cross equation linear restrictions

In this case we have n1 =1 and n2=2 so there are two cointegrating vectors, and Γ = [ Γ1 Γ2]’.  The

restriction we will test is that θ = Γ1 = Γ2, i.e. that the two cointegrating vectors are equivalent.

In this case G = [1, 1]’.  In this case again the closed form solution

$θ = $ ( ' $ ) ( ' $ $ )Γ Γ2
1 1 1= − − −G V G G V  is available. The results here are similar in nature to those in the

model in Section 3.1.  For this reason only one panel of the results (comparable to Table 1) is

reported in the first panel of Table 3, that for when Ω12= Ω13= Ω23= 0.5. The restricted estimates

are more precise, and the hypothesis tests both on the restricted estimates and the overidentifying

restrictions have similar size properties to the tests on the unrestricted estimates.

Panel 2 of Table 2 gives the restricted estimates for this model using minimum distance and the

MLE as above.  Here the correctly specified MLE’s have mean square errors slightly above than

the minimum distance estimator, however they are fairly close.
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Table 3 : Size for Models 2.2,2.3 and 2.4 for Ω12=0.5, Ω13=0.5, Ω23=0.5

E( $ )Γ Γ1 1− st dev. ( $ )Γ1 test ( $ )Γ Γ1 1= E( $ )Γ Γ2 2− st dev. ( $ )Γ2 test ( $ )Γ Γ2 2= E( $ )θ θ1 1− st dev. ( $ )θ1 test ( $ )θ θ1 1= JT rej.

T=50 Model 2.2
Saik 0.001 0.063 0.092 0.002 0.064 0.102 0.002 0.053 0.117 0.11

Johan -0.002 0.067 0.098 -0.001 0.069 0.108 -0.001 0.056 0.122 0.118
DOLS -0.001 0.062 0.059 -0.001 0.063 0.065 -0.001 0.051 0.072 0.061
T=100
Saik 0.001 0.031 0.07 0 0.031 0.083 0.001 0.026 0.081 0.074

Johan 0.001 0.031 0.07 0 0.032 0.079 0 0.026 0.082 0.074
DOLS 0.001 0.03 0.057 0 0.031 0.061 0 0.025 0.063 0.059
T=250
Saik 0 0.012 0.066 0 0.012 0.058 0 0.01 0.065 0.062

Johan 0 0.012 0.069 0 0.012 0.059 0 0.01 0.064 0.061
DOLS 0 0.012 0.062 0 0.012 0.051 0 0.01 0.059 0.053

T=50 Model 2.3
Saik 0.003 0.085 0.122 0.004 0.085 0.124 0.002 0.023 0.115 0.127

Johan -0.001 0.094 0.138 -0.001 0.096 0.133 0 0.026 0.123 0.14
DOLS -0.001 0.082 0.071 0.001 0.082 0.072 0 0.023 0.07 0.076
T=100
Saik 0.001 0.04 0.095 0.001 0.039 0.09 0 0.011 0.078 0.091

Johan 0 0.041 0.096 0 0.041 0.09 0 0.011 0.081 0.095
DOLS 0 0.04 0.065 0 0.039 0.063 0 0.011 0.058 0.069
T=250
Saik 0 0.015 0.062 0 0.015 0.061 0 0.004 0.06 0.062

Johan 0 0.015 0.062 0 0.015 0.06 0 0.004 0.057 0.062
DOLS 0 0.015 0.054 0 0.015 0.053 0 0.004 0.051 0.052

T=50 Model 2.4
Saik 0.001 0.063 0.092 0.002 0.064 0.102 0.001 0.032 0.12 0.098

Johan -0.002 0.067 0.098 -0.001 0.069 0.108 -0.001 0.035 0.124 0.108
DOLS -0.001 0.062 0.059 -0.001 0.063 0.065 -0.001 0.031 0.072 0.061
T=100
Saik 0.001 0.031 0.07 0 0.031 0.083 0 0.016 0.085 0.073

Johan 0.001 0.031 0.07 0 0.032 0.079 0 0.016 0.084 0.074
DOLS 0.001 0.03 0.057 0 0.031 0.061 0 0.015 0.06 0.057
T=250
Saik 0 0.012 0.065 0 0.012 0.059 0 0.006 0.059 0.062

Johan 0 0.012 0.067 0 0.012 0.059 0 0.006 0.059 0.065
DOLS 0 0.012 0.06 0 0.012 0.052 0 0.006 0.052 0.057

Note:  As per Table 1.
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3.3. Non- linear Restriction

This model is similar to that in Section 3.1 except that now the restriction is that θ = Γ1 = Γ2
1/2.  In

this case there is no closed form solution so numerical optimization was used.  Here the

restrictions can be written as vec g( ) ( )Γ
Γ
Γ

=








 =









 =1

2
2

θ
θ

θ  so the matrix G is a function of θ. In

constructing the variance covariance matrix for $θ  we use the consistent estimate $θ  .  In this case

G(θ) = [1, 2θ]’.

Given the many approximations used to derive the limit distributions in this case we pay

particular attention to the size results for the test of overidentifying conditions.  Again, as the

results are similar over different models only the results for the same variance covariance matrix

as in Section 3.2 are reported in the second panel of Table 3. We see that there are no major

problems apparent here, indeed qualitatively there is no real difference in the results from those

in Section 3.1.  The size performance for the tests on the restricted estimates is better in each

case than the unrestricted estimates.  The test of overidentifying restrictions has similar size

performance to the tests on the unrestricted estimates.

Comparing the correctly specified restricted MLE’s to the minimum distance estimates (Panel 3

of Table 2), in each model here the minimum distance method has either the same or slightly

better MSE.  The difference in the third row of the panel is due to a small number of outlier

MLE’s, which presumably would disappear as the sample size increases.
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3.4. Cross Equation Non-Linear Restrictions.

This case is the same as in Section 3.2 except now the restriction is that θ = Γ1 = Γ2
1/2 .  Again

there is no closed form solution so optimization methods were used.  The matrix G(θ) in this case

is G(θ) = [1 2θ]’.

Results for the model with Ω12= Ω13= Ω23= 0.5 are reported in the last panel of Table 3.  Again,

estimates are considerably more precise that the unrestricted estimates and the size properties of

hypothesis tests on unrestricted estimates are similar to tests on restricted estimates.

Comparing again the restricted MLE’s to the minimum distance estimates for this model, Panel 4

of Table 2 shows similar results to that of the model in the previous subsections.  Overall, the

relationships between the estimators are that the results are model dependent, but fairly close for

each of the models and hence there does not appear to be too much if any loss from using

minimum distance over the correctly specified maximum likelihood estimator.

4.  EXAMPLE

King et al (1991) identify a six variable VAR of the macro economy with cointegration amongst

the variables.  The variables in the system are the M2 measure of money supply (mt ), prices (pt),

real consumption (ct), real investment (it), real private income (yt
p) and the 3 month Treasury Bill

(Rt).  All variables except the interest rate are in logs.  They have three restricted cointegrating

equations in their system; these are

Consumption c y m R p ut t
p

t t t− = + − +21 1 21φ ( )∆

Investment i y m R p ut t
p

t t t− = + − +22 2 22φ ( )∆

and Money Demand m p m y R ut t Y t
p

R t t− = + + +23 23β β .
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Ordering the variables [yt
p , Rt, ∆pt, ct, it, (mt-pt)] where the first three variables make up y1t  of the

notation in the theoretical part of the paper and the remaining three variables make up y2t in the

theoretical part of the paper we have a set of cointegrating relationships given by

β
φ φ
φ φ

β β
=

− −
− −

− −

















1
1

0

1 0 0
0 1 0
0 0 1

1 1

2 2

Y R

 thus we have Γ =
−
−

















1
1

0

1 1

2 2

φ φ
φ φ

β βY R

.  If we were to estimate

the unrestricted cointegrating vector, as reported in Table 3 Panel A of King et al (1991), we

would obtain nine unrestricted estimates.  The restrictions show that there are four free

parameters in the cointegrating vector - we have two within equation restrictions and three

known values so have 5 overidentifying restrictions.

To estimate the restricted cointegrating vectors, there is no natural system reparameterization that

allows restricted estimation.  King et al. (1991) estimate the model equation by equation,

imposing the restrictions for each equation.  The methods above allow the restrictions to be

directly employed to obtain the efficient system estimates of the restricted cointegrating vector

coefficients.  As the restrictions are linear here a closed form solution is available.  The

restrictions can be written as vec(Γ) = Gθ + r  where

G =

−
−



































0 0 0 0
0 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1
1 0 0 0

0 1 0 0
0 0 0 0

, r =



































1
1
0
0
0
0
0
0
0

 and θ

φ
φ
β
β

=



















1

2

Y

R

.

The restricted estimates and their standard estimates from King et al (1991) are reproduced in the

first two columns of Table 4 below (All regressions here correspond to those in King et al (1991)

including sample length (quarterly data 1954:1 to 1988:4, earlier data used for lags) and number
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of lags in DOLS estimation procedure (5 leads and lags, 4 periods used to estimate

autoregressive robust errors, we thank Jim Stock for supplying data for this analysis and

programs to reproduce these results).  The remaining two columns give the minimum distance

system restricted estimates and their standard errors.

Table 4: Restricted Cointegrating Vector Estimates

King et al.(1991) Minimum Distance
Est. s.e Est. s.e

φ1 0.0033 0.0022 0.0030 0.0015
φ2 -0.0028 0.0050 0.0041 0.0029
βY 1.197 0.062 1.242 0.041
βR -0.013 0.004 -0.015 0.003

Note: Est. refers to the point estimate, s.e. refers to the estimate of the standard error.

Several points are noticeable.  First, the minimum distance estimates all have smaller estimated

standard errors.  The standard error on the income elasticity in the demand for money equation

for the equation by equation approach is 51% larger than the minimum distance system approach

standard error. The standard error on the effect of the real interest rate on investment for the

equation by equation approach is 72% larger than the minimum distance system approach

standard error.

Second, the system point estimates differ from the equation by equation point estimates by up to

a (equation by equation) standard error in most cases.  The income elasticity coefficient in the

system estimation is almost one standard deviation larger than that in the equation by equation

estimation.  The effect of the real interest rate, negative and significantly different from zero in

the equation by equation estimates, is in the minimum distance estimation more negative with a

smaller standard error. Of course, with a single sample we cannot be sure that the reduction of

the standard errors is due to greater efficiency, however the change in the standard errors is in the
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direction we expect given the likely high degree of simultaneity in the model and the effect that

using this information would have on the standard errors.

The test for overidentifying restrictions here is equal to 7.59, numerically equivalent to the Wald

test for these restrictions reported in King et al (1991) Table 3 Panel B.  This corresponds to a p-

value of 0.18 (the asymptotic distribution is χ 5
2 ) so the over-identifying restrictions are not

rejected.

5. CONCLUSION

The minimum distance methods give an extremely simple way to estimate and test quite a large

range of models with restrictions on the cointegrating vectors.  Restrictions on the cointegrating

vectors may be linear or nonlinear.  For linear restrictions, a closed form solution for the

restricted estimates exists; for both cross equation and within equation restrictions.  For

nonlinear restrictions, search procedures are required but only over the dimension of the

cointegrating parameters rather than the whole model.

These methods thus make available simple procedures for estimating restricted cointegrating

vectors.  An example of an application is in King et al (1991), where in estimating restricted

cointegrating vectors in a macroeconomic model they had to undertake substantial rearrangement

of the model and then estimated each equation individually.  Such an approach, whilst yielding

consistent estimates, provides inefficient estimates as the methods do not jointly use all of the

restrictions implied by the economic model.  For their problem in the minimum distance

framework, a closed form solution for the restrictions and a joint test of the restrictions is trivial.
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Appendix  A: Proofs

Theorem 1.

The proof of consistency is similar the usual proof except that the weight matrix is stochastic in

the limit.

Define d vec g V vec gn ( ) [ ( $ ) ( )]' $ [ ( $ ) ( )]θ θ θ= − −−Γ Γ1 .  Rewrite this as

d vec g V vec g g g V vec g

vec g V V vec g g g V g g
n n n

n n

( ) [ ( $ ) ( )]' [ ( $ ) ( )] [ ( ) ( )]' [ ( $ ) ( )]

[ ( $ ) ( )]'[ $ ][ ( $ ) ( )] [ ( ) ( )]' [ ( ) ( )]

θ θ θ θ θ θ

θ θ θ θ θ θ

= − − + − −

+ − − − + − −

− −

− − −

Γ Γ Γ

Γ Γ
0

1
0 0

1
0

1 1
0

1
0

2

First, we need to show that d dn
p( ) ( )θ θ → 0  where d g g V g gn0 0

1
0( ) [ ( ) ( )]' [ ( ) ( )]θ θ θ θ θ= − −−

for all θ. Each of the first three pieces converge in probability to zero regardless of the choice of

θ.  First, as Vn is positive definite with probability one then the first term converges to zero in

probability by condition (a) of the theorem.  Noting that [ ( ) ( )]g gθ θ0 − is constant for all θ the

second term also converges to zero by condition (a).  Finally, as [ ( $ ) ( )]vec gΓ − θ is 0p(1) for all

θ≠θ0 and converges to zero otherwise then by condition (b) the third term converges to zero.  The

remaining term is d0(θ) .  Thus d dn
p( ) ( )θ θ → 0  for all θ.  This implies that $θ θp → 0

following arguments analogous to Amemiya (1985) Theorem 4.1.1.

Theorem 2.

This result follows directly through application of the Mean Value theorem and application of

the continuous mapping theorem and functional central limit theorem.

Define S
d g

V vec gn(
~

)
( ) ( )

'
' $ [ ( $ ) (

~
)]

~ ~
θ

∂ θ
∂θ

∂ θ
∂θ

θ
θ θ

= = −








 −−2 1 Γ   for any ~θ ∈Θ .

By the mean value theorem, where θ* lies between $θ  and θ0, we have
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S S
S

( $ ) ( )
( )

'
( $ )

*

θ θ
∂ θ

∂θ
θ θ

θ

= = +








 −0 0 0 .

This can be rearranged to obtain

T C G V T vec g( $ ) ( *)' $ [ ( $ ) ( )]θ θ θ θ− = −− −
0

1 1
0Γ

where C
S

=










1
2

∂ θ
∂θ θ

( )
' *

and we define G
g

( *)
( )

' *

θ
∂ θ

∂θ θ

=








 .  The limit results for

T vec g[ ( $ ) ( )]Γ − θ 0  and $V −1 come from conditions (a) and (b) of the theorem.

For the stated result we require that C G V Gn⇒ −( ( )' ( ))θ θ0
1

0 . By differentiation, we have that

C
g

V vec g G V G R= −








 −









= +− −∂
∂θ

∂ θ
∂θ

θ θ θ
θ'

( )
'

' $ [ ( $ ) ( *)] ( *)' $ ( *)
*

1 1
2Γ  where R2 has typical

element −












−−∂ θ

∂θ ∂θ
θ

θ

2
1g

V vec gj

i j

( ) $ [ ( $ ) ( *)]
*

Γ .  First, note that R2 is op(1) as from the consistency

of $θ , that θ* is between $θ  and θ0, and assumption c) then 
∂ θ

∂θ ∂θ
θ

2 g j

i j

( )

*













 is Op(1) in the limit,

$V −1 is 0p(1) in the limit and [ ( $ ) ( *)]vec gΓ − θ is op(1) by assumption a).

Second, note that from White (1984) that from the consistency of $θ , that θ* is between $θ  and

θ0, and continuity of the derivative that plim G ( *)θ =G(θ0) . Thus from condition b) and the

continuous mapping theorem we have G V G G V Gn( *)' $ ( *) ( )' ( )θ θ θ θ− −⇒1
0

1
0  as required.

Putting these results together using the FCLT and continuous mapping theorem we have that

{ }T G V G G V vec dW W W Wn n
d d d( $ ) ( ( )' ( )) ( )' ( )( ' )/

.
/θ θ θ θ θ− ⇒ ∫∫− − − −

0 0
1

0
1

0
1 2

2 1 1 1 1
1 2
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This implies that ( ( $ )' ( $ )) ( $ )/G V G Tnθ θ θ θ− −1 1 2
0 has an asymptotic mixed normal distribution

conditional on y1t with mean zero and variance covariance matrix Iq.

Theorem 3.

Write T vec g T vec g T g g( ( $ ) ( $ )) ( ( $ ) ( )) ( ( $ ) ( ))Γ Γ− = − − −θ θ θ θ0 0 .  From the Mean Value

Theorem g g G( $ ) ( ) ( *)( $ )θ θ θ θ θ= + −0 0  so with the results in Theorem 2 we have

{ }T vec g I G C G V T vec g

V PV T vec g

n n( ( $ ) ( $ )) ( ( *) ( *)' $ ) ( ( $ ) ( ))

$ $ ( ( $ ) ( ))/ /

Γ Γ

Γ

− = − −

= −

− −

−

θ θ θ θ

θ

1 2
1 1

0

1 2 1 2
0

where P I V G C G Vn n= − − − −
1 2

1 2 1 1 2$ ( *) ( *)' $ '/ /θ θ .

We now have

{ } { }
{ } { } { }
{ } { }

J T vec g V T vec g

T vec g V P V V V P V T vec g

V T vec g P V T vec g

T = − −

= − −

= − −

−

− − −

− −

( ( $ ) ( $ )) ' $ ( ( $ ) ( $ ))

( ( $ ) ( )) ' $ ' ' $ ' $ $ $ ( ( $ ) ( ))

$ ( ( $ ) ( )) ' $ ( ( $ ) ( ))

/ / / /

/ /

Γ Γ

Γ Γ

Γ Γ

θ θ

θ θ

θ θ

1

0
1 2 1 2 1 1 2 1 2

0

1 2
0

1 2
0

as P is idempotent (it is a projection matrix).  By the results of Theorem 1 and Theorem 2 we

have that P I V G G V G G Vn n n n n⇒ − − − − −
1 2

1 2
0 0

1
0

1
0

1 2/ /( )( ( )' ( )) ( )' 'θ θ θ θ  and by condition (a)

{ }$ ( ( $ ) ( ))/V T vec g− −1 2
0Γ θ has an asymptotic mixed standard normal distribution.  By the results

of Chan and Wei (1988) the two pieces are asymptotically independent.  Thus the statistic is of

the form z’Kz where z is normally distributed and asymptotically independent of K (the limit of

P).  Further, the limit for P is of rank n1n2-q and has unit eigen values so by lemma 8.2 of White

(1994) this quadratic has a χ2 limit distribution with n1n2-q degrees of freedom.
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Appendix B: Constructing $Γ  and $V  for each of the three methods examined.

Saikkonen (1992).

Run the VAR in equation (1) and construct $ $ * $ *'Σ = ∑1
T t tε ε  and $ $ ' $ $

$ $
$ $S
S S
S S

= =










−Ψ Σ Ψ1 11 12

21 22

.

Then the unrestricted estimates of the cointegrating vector are $ $ $Γ = − −S S22
1

21  , $ $
.Ω2 1 22

1= −S  , and $V1

is the upper n1xn1 block of  Λ Λ− −∑1 1x xt t* *'  where  xt* = [y1t-1’ zt’]’ and Λ is a square scaling

matrix with upper left hand block TIn1 , second block  with zeros in off diagonals, (1,1) element

√T and (2,2) element T3/2 (if time is included as a regressor) with all other elements zero. The

variance covariance matrix is then $ $ $
.V V= ⊗1 2 1Ω

Johansen (1988).

Solve the equation | $ | , $λ λS S S Skk k k− =−
0 00

1
0 0  being a diagonal matrix of eigen values $λ i ,

Sij=ΣRitRjt, i,j=0,k where R0t ( resp. Rkt) are the residuals of a regression of ∆yt (yt-1) on lags of ∆yt.

Normalize the n2xn eigen vectors ( $β ) associated with the smallest n2 eigen values by

premultiplying by $β 2
1−  where we have partitioned β into [β1 β2] where the partition is after the

n1th column. Now $ $ [ $ $ , ] [ $ , ] $ *β β β β2
1

2
1

1 2 2
− −= = − =I In nΓ Γ .  A natural estimator for

$ ( $' $ $).Ω Σ2 1
1 1= − −a a where $a  is the nxn2 matrix of error correction coefficients.  The MLE for these

estimates depends on the normalization used and is $ ( $ * $*' ) $ *a S Skk k= − −Γ Γ Γ1
0 .  We can use the

upper n1xn1 block of TSkk if y1t  is ordered first as an estimate of $V1 .

Phillips and Loretan (1991), Saikkonen (1991), Stock and Watson (1993),

This method involves the running of the set of regressions y m y d L yt t t t2 2 1 1= + + +Γ ∆( ) η

where d(L) includes leads and lags (two sided polynomial lag operator).  The unrestricted

estimates for $Γ  are simply the equation by equation OLS estimates of this model.  An estimate

for $ .Ω2 1 can be obtained by any method of estimating the spectral density at frequency zero of

$η t , the OLS residuals from the above equation. The estimator for $V1  comes from the n1xn1 block

of the denominator of the OLS estimates of the coefficient vector corresponding to the y1t

coefficients in the DOLS regression above.




