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Abstract

Flexible Integro-Differential Equations for Bayesian Modeling of Spatio-Temporal

Data

by

Robert Richardson

Integro-Differential Equations (IDEs) are a novel way of dynamically modeling spatio-

temporal data. IDEs are characterized by a kernel which controls the spatial and temporal

associations. The ubiquitous choice for kernel has been Gaussian. We explore advantages

of more flexible kernel choices. One-dimensional space is considered initially, replacing the

Gaussian IDE kernel with more flexible parametric families of distributions. The kernels

are chosen based on stochastic partial differential equation approximations which connect

characteristics of the kernel with interpretable physical properties of the underlying process

controlling the data. Next, Dirichlet process mixtures of normal distributions are used to

model non-parametrically the IDE kernel. Computational issues arise using non-parametric

kernels which are solved using Hermite polynomials and Hamiltonian Monte Carlo sampling.

To develop flexible modeling in two-dimensional space, we propose bivariate stable distribu-

tions as IDE kernels. By using Bernstein polynomials as a prior for the measure defining the

bivariate stable, a wide variety of shapes can be achieved. Bivariate stable kernels will be

shown to outperform the Gaussian kernel by comparing K-step ahead predictions for Pacific

sea surface temperature anomalies. Through study of properties for the proposed models,

and empirical investigation with synthetic and real data, we demonstrate that the method-



ology has the potential to significantly improve the inference and forecasting capacity of

IDE models based on Gaussian kernels.
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Chapter 1

Introduction

A spatio-temporal data set refers to data collected across a spatial field and over

several time points. Climatological and environmental variables provide several common

and abundant examples of data recorded in space and time. In addition to traditional

examples of environmental space-time variables, such as temperature or precipitation, there

is an increasing ability to store and monitor the dynamics of different types of georeferenced

processes. Data for housing costs, crime rates, population growth, soil content, and disease

incidence, are some of the many examples of variables that are of interest in areas as diverse

as spatial econometrics, epidemiology, and geography, to mention a few.

The field of time series has produced a rich body of literature during at least

the last 50 years (Hamilton, 1994; Shumway and Stoffer, 2011). Spatial statistics, despite

the seminal work by Matheron (1963), was a fringe area as recently as the early 1990s

(Cressie, 1993), but has since received a great deal of attention within the statistical com-

munity. Spatio-temporal models stem naturally from these areas, but a systematic treat-
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ment of spatio-temporal statistical models has only recently been developed (Cressie and

Wikle, 2011). Compared to times series and spatial statistics, the fundamental challenge

of spatio-temporal models is to capture the interactions between the spatial and temporal

components.

Three general methods are currently used to analyze data from spatio-temporal

processes of the form {Xt(s) : s ∈ S, t ∈ T }, where s indexes the spatial domain S

and t indexes the time domain T . The first involves an extension of the traditional ap-

proach to modeling random fields, that focuses on the first and second moment of the

process. The goal is to find general families of space-time correlation functions of the form

Cov(Xt(s), Xu(v)) = C(s, v, t, u), which are “smooth everywhere” and yet “allow different

degrees of smoothness” (Stein, 2005b). In this setting, both s and t are considered as con-

tinuous indexes. This lends flexibility to the models, but requires dealing with potentially

large covariance matrices. This approach can thus have important computational draw-

backs when large spatial domains or long time periods are considered. Much of the current

work in this area is dedicated to developing non-stationary and non-separable covariance

structures (Gneiting, 2002; Schmidt and O’Hagan, 2003). A spatio-temporal covariance

function is separable if C(s, v, t, u) = C1(s, v)C2(t, u) where C1 is a spatial covariance and

C2 is a temporal covariance. A stationary spatio-temporal covariance function has the prop-

erty that the spatial and temporal components enter only through the difference between

two locations and times, C(s, v, t, u) = C(s − v, t − u). Variations include where only the

spatial or only the temporal dependence is stationary. While the computational efficiency

of separable and stationary covariance functions has made them useful, they are simply not
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realistic for most naturally occurring physical processes. Two additional considerations for

spatio-temporal processes are linearity and Gaussianity. Linearity has come to refer to the

relationship between Xt(s) and Xt−1(s). Non-linear models have been constructed by using

interaction terms between different locations at the previous time point to determine the

value of the process at the current time point (Wikle and Hooten, 2010). Assuming Gaus-

sian data may be too restrictive for many applications. Gelfand et al. (2005) and Kottas

et al. (2008) use fully flexible error distributions to model spatial and spatio-temporal data.

These extensions are difficult to achieve with covariance modeling alone.

A second common modeling approach for spatio-temporal data is an extension

of deterministic dynamical models that incorporates stochastic components. This leads

to stochastic partial differential equation (SPDE) models. For instance, Jones and Zhang

(1997) consider the SPDE ∂
∂tXt(s)−β ∂2

∂s2
Xt(s)+αXt(s) = δt(s), where δt(s) is a zero mean

error process. This SPDE is called a diffusion-injection equation and is just one of the

various SPDE-based models commonly used for naturally occurring physical processes. The

deterministic relationships which motivate SPDEs will often involve non-linear components

(Hooten and Wikle, 2008).

The third method is to obtain an explicit description of the dynamics of the process

by specifying its evolution as a function of the spatial distribution of the process. A dynamic

spatio-temporal model can be written as

Xt(s) =M(Xt−1(s), s,θ) + ωt(s), t = 1, . . . , T,

where M represents a specific model configuration, governing the transfer of information

from time t − 1 to time t. Here, θ is a parameter vector, and εt(s) is a zero mean noise
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process which may have a spatially dependent covariance structure. In these models, the

process evolves as an entire spatial field over a discrete time component. Cressie and

Wikle (2011) strongly support this approach, and suggest a “hierarchical dynamical spatio-

temporal model” of the form

Yt = HtXt + εt, εt ∼ N(0,Vt), t = 1, . . . , T (1.1)

Xt = Mt(Xt−1,θ) + ωt, ωt ∼ N(0,Wt), t = 1, . . . , T, (1.2)

where Yt is the vector of data, Xt a vector of latent variables representing an underlying

process that is linked to Yt through the incidence matrix Bt. Moreover, εt and ωt are noise

terms with specified covariances Vt and Wt, respectively.

A specific case of the model described by equations (1.1) and (1.2) is the integro-

difference equation (IDE) spatio-temporal model. We consider IDE models of the form

Xt(s) = eλ
∫
k(u|s,θ)Xt−1(u)du+ ωt(s), (1.3)

where k(·) is a redistribution kernel with parameter vector θ, and ωt(s) is an error process

which may be spatially colored. This kernel weights the contribution of the process at time

t − 1 to the process at time t at location s. The scaling term λ controls the growth or

decay of the process. Typically, the center of the kernel for each location is somewhere

near s, resulting in nearby values being weighted more heavily than others. The spatial

dependency in the IDE model arises from nearby observations sharing large contributions

from many of the same observations of the previous time point. Thus, the spatial and

temporal relationships interact with each other as the process evolves.

Originally used by ecologists studying the growth and spread of species (Kot et al.,

1996), integro-difference equations were introduced for general spatio-temporal processes in
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Wikle and Cressie (1999). In Wikle (2002) the IDE kernel is specified parametrically through

a Gaussian distribution with unknown location and scale parameters. The stochastic prop-

erties of the process that results from an IDE, such as stationarity and separability, are

explored in Brown et al. (2000) and Storvik et al. (2002). An important extension where

the parameters of the kernel are spatially indexed is presented in Wikle (2002) and Xu et al.

(2005).

Overall, the literature is dominated by IDE models based on Gaussian kernels.

Though there is some mention of non-Gaussian kernels, it is without exploring the modeling

benefits and inferential issues arising from the use of wider kernel families. Spatio-temporal

data can have a variety of features that may not be represented well by a Gaussian kernel

IDE model. In this report, we focus on the exploration of the properties and the development

of inferential methods to deal with non-Gaussian kernel IDE models. We will show that,

for hierarchical models as in equations (1.1) and (1.2), an IDE with a kernel more flexible

than the Gaussian can lead to improved model performance and prediction, and capture a

wider array of process dynamics. Initially, this extension will be limited to one-dimensional

kernels to more thoroughly compare the models with different kernels and to match some

theoretical results which are presented.

Chapter 2 includes a review of IDE modeling. In this chapter, details of fitting

spatio-temporal data with IDE models are specified. Chapter 3 introduces two parametric

alternatives to the Gaussian kernel: the asymmetric Laplace and the stable family. These

kernels allow a process following an IDE structure to maintain certain physical character-

istics. We show that prediction and accuracy can be improved by using a more flexible
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kernel. Chapter 4 builds upon the idea that more flexibility yields better models and places

a non-parametric prior on the kernel. Computational solutions are presented which account

for the difficulty in learning the high-dimensional kernel parameter set in this setting. When

the kernel can be learned properly, IDE models with spatially varying non-parametric ker-

nels are very promising. The prospect of learning non-parametric kernel parameters when

extending to 2-dimensional space seems to be too ambitious. The solution is to achieve a

wide variety of kernel shapes by semi-parametrically modeling the measure which controls

the shape of a bivariate stable distribution. Details of fitting IDE models with bivariate

stable kernels are shown in Chapter 5.
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Chapter 2

Review of IDE Modeling

Using integro-difference equations to model spatio-temporal data is relatively new.

Initial approaches did not require the kernel to be a density, but rather decomposed the

kernel into a basis function expansion and estimated the coefficients directly (Wikle and

Cressie, 1999). While this non-parametric approach to modeling the kernel may have pro-

duced accurate results, it reveals no information about the physical process controlling the

data. In Brown et al. (2000) and Storvik et al. (2002), a process following a Gaussian kernel

IDE model is studied carefully. It was shown that the process has an equivalent stochastic

partial differential equation representation and has a stationary covariance function. In

this chapter we review these results and extend them to wider classes of kernels. We also

review the general methodology associated with fitting IDE models and learning the ker-

nel parameters. In chapters 3-5, the kernel is modeled in different ways, but the actual

method of fitting the data will remain mostly the same. The methodology described in this

chapter will be referred to in future chapters and can be used for general IDE modeling of

7



spatio-temporal data.

2.1 Stationarity of IDE Models

Due to the linearity of IDEs, the expected value and covariance of a process follow-

ing an IDE without noise are E [Xt(s)] =
∫
k(u|s,θs)E[Xt−1(u)]du and Cov(Xt(s), Xt(r)) =∫

k(u|s,θs)k(v|r,θr)Cov(Xt−1(u), Xt−1(v))dudv. If the IDE process at time t − 1 and lo-

cation u has mean function mt−1(u) and covariance function ρt−1(u, v), then the mean

process for time t is mt(s) =
∫
k(u|s,θs)mt−1(u)du and the covariance function is ρt(s, r) =∫ ∫

k(u|s, θs)k(v|r,θr)ρt−1(u, v)dudv. Brown et al. (2000) showed that IDE models are

stationary in space, but the work was limited to kernels with parameters which were not

spatially varying. That work is reviewed here in the context of spatially varying kernels.

Lemma 1. Consider an IDE process, Xt(s), with a stationary initial process X0(s). Then,

consider a family of kernels belonging to a location family of distributions. The process will

be stationary for all t > 0 only when the parameters of the kernel do not depend on the

location s.

Proof. Assume Cov[Xt−1(s), Xt−1(r)] = ρ(|s − r|), a stationary covariance function and

that the error process ωt(s) is also spatially stationary with covariance function γ(|s− r|).

Then,

Cov[Xt(s), Xt(s+ r)] = Cov

[∫
k(u|s,θs)Xt−1(u)du+ ωt(s),

∫
k(v|s+ r,θs+r)Xt−1(v)dv + ωt(s+ r)

]
=

∫ ∫
k(u|s,θs)k(v|s+ r,θs+r)ρ(|u− v|)dudv + γ(r).

Using the transformations η = u − v and w = v − s, when k(u|s,θs) = k(u − s|θs), the

8



covariance function simplifies to

Cov[Xt(s), Xt(s+ r)] =

∫
k(η + w|θs)k(w − r|θs+r)ρ(|η|)dηdw + γ(r)

The covariance is a function of s and r, which implies non-stationarity. However, when

the parameter vector does not depend on the location, meaning θs = θ, the location s

disappears from the covariance and the process is stationary.

This result relies on the kernel belonging to a location family, which is the case for

all modeling examples that we are aware of. According to the lemma, even very complicated

kernels will yield stationary processes when the parameters are constant for every location.

The temporal stationarity of an IDE model is explored in both Brown et al. (2000)

and Storvik et al. (2002), and we review the latter’s explanation. In order for the process

to have spatio-temporal stationarity, the spatial covariance at each time point must be

the same. Even when the spatial process at each time point is stationary, the covariance

structure may change from one time point to the next. If the kernels are location family

kernels and the process is spatially stationary at each time point then the covariance function

at time t between the process at locations s and s+r is ρt(r) =
∫ ∫

k(u|θs)k(v|θs+r)ρt−1(r+

v − u)dudv + γ(r). Let f ∗r g denote a convolution about r of the functions f and g. Then

the covariance can be rewritten as ρt(r) = k ∗r k ∗−r ρt−1(r) + γ(r). Let H(ω),Γ(ω), and

R(ω) be the inverse fourier transform of the kernel, k(u), the error covariance, γ(r), and

covariance of the process, ρt(r), respectively. When ρt(r) = ρ(r) for all t, the inverse Fourier

transform of the covariance of the process must be

R(ω) =
Γ(ω)

1−H(ω)H(−ω)
(2.1)
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This is the spectral density of the covariance of the process, and it corresponds to a unique

covariance function, which will be the Fourier transform of R(ω). The implication is that,

while stationarity can be achieved for a specific covariance function of the process, IDE

modeling is not restricted to stationarity. Even though the stationary covariance is a func-

tion of the kernel, the ability to model non-stationarity in time is not kernel-specific. By

choosing the kernel and error process carefully, the covariance structure of the process can

be reconstructed by the Fourier transform of R(ω) in equation (2.1), if it is stationary. If

the inverse Fourier transforms of the kernel, error covariance, and process covariance yield

an inequality in (2.1), the process will be non-stationary.

2.2 PDE Approximations

Partial differential equations have provided a powerful way to represent scientifi-

cally motivated relationships. This section reviews and expands on the connection between

PDEs and IDEs. Two different PDE representations of the IDE process will be shown.

2.2.1 High Order Moments SPDE Representation

Brown et al. (2000) consider an IDE model where the time increment is infinitesi-

mal. This is only possible when the kernel is infinitely divisible, which means that for any

integer n, there exist n identically distributed random variables whose sum is a random

variable belonging to the kernel family of distributions. Using Taylor series expansions,

the solution of the IDE in equation (1.3), when the kernel is infinitely divisible and from a
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location family, satisfies the approximation

∂Xt(s)

∂t
≈ λXt(s)− µ

∂Xt(s)

∂s
+

1

2
σ2
∂2Xt(s)

∂s2
+Bt(s) (2.2)

where µ and σ2 are, respectively, the mean and the variance of the kernel, and Bt(s) is

Brownian motion. A distribution, F , is infinitely divisible if any random variable X ∼ F

can be written as X =
∑n

i=1Xi, for any n, where Xi are identically distributed random

variables (Steutel and Harn, 2003). Intuitively, the effect of an infinitely divisible kernel

controlling the evolution of an IDE for one unit of time can be decomposed into the sum

of the effects of n IDEs operating on 1/n units of time. Thus, infinite divisibility allows a

discrete time IDE to be approximated by an SPDE, which is a continuous time model. The

model in equation (2.2) depends on two parameters, µ and σ2, that control, respectively,

the advection and diffusion of the process Xt(s). Thus, the SPDE approximation of the

IDE sheds light on how the kernel parameters control the physical properties of the process

Xt(s).

Following the framework in Brown et al. (2000), we establish the following result

that provides an SPDE representation of an IDE using moments of order higher than two.

Lemma 2. Consider the IDE model in (1.3) with λ = 0, and with an infinitely divisible

kernel from a location family for which the first J central moments, µ1, . . . , µJ , exist. More-

over, assume that ∂j

∂sj
Xt−δ(s) exists for any (small) δ > 0 and for j = 1, ...J . Then, the

solution to the IDE equation can be approximated by the solution of the equation

∂Xt(s)

∂t
≈

J∑
j=1

(−1)j
1

j!
µj
∂jXt(s)

∂sj
+Bt(s) (2.3)

where Bt(s) is Brownian motion.
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Proof. For an infinitely divisible location kernel k(s − u|θ), we define k 1
n

(s − u|θ 1
n

) as an

n-fold self convolution, k 1
n

(x)∗k 1
n

(x)∗ ...∗k 1
n

(x) = k(x), and θ 1
n

as the adjusted parameter

set induced by the self-convolution. Let δ = 1/n. Then, by representing the process at time

t− δ as a Taylor series with J terms, we can write Xt(s) as

∫
kδ(u|θδ)Xt−δ(s− u)du+ ωt,δ(s) =

∫
kδ(u|θδ)

[
J∑
j=0

(−1)j
1

j!
uj

∂j

∂sj
Xt−δ(s) + o(uJ)

]
du+ ωt,δ(s)

≈ Xt−δ(s) +

J∑
j=1

(−1)j
1

j!
Ekδ

[
uj
] ∂j
∂sj

Xt−δ(s) + ωt,δ(s)

where Ekδ is the expected value with respect to the distribution with density kδ, and ωt,δ(s)

is the transformed error process. By rearranging terms and dividing by δ we have

Xt(s)−Xt−δ(s)

δ
=

J∑
j=1

(−1)j
1

j!
(µj + h(δ))

∂j

∂sj
Xt−δ(s) +

1

δ
ωt,δ(s).

where h(δ) is a polynomial in δ with lowest order of 1. As δ → 0, the function h(δ) → 0

and we are left with the desired result.

The first two moments of the kernel control the advection and diffusion of the

resulting process. Extra-diffusive dynamics depend on even terms of order higher than two.

The third moment is known to control dispersion, which in this context allows for extra

variability in how the process behaves from one spatial location to the next. Lemma 2

suggests that a more flexible kernel can model more complicated dynamics.

2.2.2 Hazard Function PDE Representation

An alternative characterization of an IDE in terms of a differential equation has

been studied by ecologists dealing with the dispersal of organisms after their introduction

in a foreign region (Neubert et al., 1995). A simple experiment would consist of a researcher

placing a foreign species in the middle of an open field. After a specified period of time,
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they would return and measure how the plant spread over the field. They would use what

is essentially an one time step IDE process to describe the behavior of how the organism

spread.

Lemma 3. Let k, S, and h be, respectively, the kernel density, and the corresponding

survival and hazard functions defined as S(s) = 1 −
∫ s
−∞ k(u)du and h(s) = k(s)/S(s).

Then, setting the initial condition to u0(s) = Xt−1(s), the system of differential equations

∂uτ (s)

∂τ
= −∂uτ (s)

∂s
− h(τ)uτ (s) and

∂vτ (s)

∂τ
= h(τ)S(0)uτ (s) (2.4)

has the solution

uτ (s) = Xt−1(s− τ)
S(τ)

S(0)
and vτ (s) =

∫
Xt−1(s− u)k(u)du .

Proof. We confirm that this is an IDE representation using the method of characteristics.

To use this method, we find curves where the PDE is trivial and then create functions of

those curves based on the initial conditions. The characteristics curves can be found by

solving the differential equations dτ = ds and dτ = −(h(τ)u)−1du. The first PDE is simple

to integrate both sides. The second can be solved for u = C exp
[
−
∫
h(τ)dτ

]
.

According to the method of characteristics, the general solution can be written as

u = g(s − τ) exp
[
−
∫
h(τ)dt

]
. Neubert et al. (1995) assume the initial condition u(s, 0) =

δ(s) because all the organisms begin in one location, but in general we can use the initial

condition u(s, 0) = Xt(s), that is, our initial condition is the process at the previous time.

Using properties of hazard functions, based on this initial condition, the general function for

u(s, τ) is Xt−1(s− τ)S(τ)/S(0) where S(·) is the survival function. Solving for v proceeds
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by integrating both sides of dv
dτ = Xt−1(s− τ)S(τ)S(0)h(τ)S(0), which then becomes

v(s, τ) =

∫
Xt−1(s− τ)k(τ)dτ.

If the initial condition for u(x, 0) is Xt−1(s), then the solution for v(s, τ) is Xt(s).

In ecology, the interpretation of uτ (s) is that of a latent process representing the

path of particulates in motion. The process vτ (s) is a measure of the organisms once they

have settled. The variable τ is an index of the path of the process in-between time steps.

As τ travels from 0 to∞, the process Xt(s) moves from time t to time t+1, and the process

uτ (s) becomes 0 as all the particulates settle into locations contributing to vτ (s). To make

this a multi-step process we set the initial value for u
(t)
τ (s) equal to Xt−1(s) and solve the

series of differential equations {(u(t)τ (s), v
(t)
τ (s)) : t = 1, ..., T} piece by piece.

From the above discussion, we can identify vτ (s) with Xt(s), implying that the

dynamics of a process that satisfies an IDE with no random shocks, are regulated by the

PDE in equation (2.4). This indicates that the behavior of an IDE process depends on the

hazard function associated with the kernel. Tail behavior and hazard functions are directly

related. This is illustrated in Figure 2.1 for three densities with different tails. Thus, we

expect that a kernel with thick tails, such as a Cauchy, will produce solutions to the IDE

that behave very differently than those that correspond to a Gaussian kernel IDE.

Lemmas 2 and 3 indicate that there is merit in using IDE kernels with more general

high order moments and tail behavior than the Gaussian kernel. In line with the results

considered in this section, we seek alternative kernels that belong to infinitely divisible,

location families of distributions that possess higher order moments and/or have more

flexible tails than the normal. Two parametric families that offer flexibility along these
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Figure 2.1: The hazard functions for the standard normal, standard Cauchy, and expo-

nential distributions are shown. The Cauchy has polynomial tails that yield a decreasing

hazard function. The normal distribution has a hazard function which is increasing, and

the exponential hazard is constant.

lines, without compromising tractability, will be presented in Chapter 2.

2.3 Basis Expansion for Model Fitting

We will use an orthogonal basis expansion for both the kernel and the process,

where the basis functions, {ψ1, ψ2, ...}, are common to both. In particular,

Xt(s) =
∞∑
i=1

ψi(s)ai(t) and k(u|s,θ) =
∞∑
j=1

bj(s,θ)ψj(u), (2.5)
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where ai(t) are coefficients for the basis expansion of the process, and bj(s,θ) are coefficients

for the basis expansion of the kernel at location s. Using a set of basis functions where

truncation is appropriate, both series in equation (2.5) may be truncated to the first K

terms. The value for K should be sufficiently large for the basis expansion to accurately

approximate both the kernel and the process.

Due to the orthogonality of the basis functions, the components of the inte-

gral in equation (1.3) can be replaced with the basis expansions in equation (2.5) and

rewritten as
∫
k(s − u|θ)Xt(u)du = a′tb(s,θ), where at = (a1(t), ..., aK(t))′ and b(s,θ) =

(b1(s,θ), ..., bK(s,θ))′. Moreover, by placing Xt+1(s) =
∑K

i=1 ψi(s)ai(t+1) into the left side

of equation (1.3), we obtain a′t+1ψ(s) = a′tb(s,θ)+ωt+1(s), whereψ(s) = (ψ1(s), ..., ψK(s))′.

The values for bj(s,θ) are deterministic, given the choice of kernel and the cor-

responding parameters. The values for ai(t) are unknown and vary with time. Under the

basis expansion, a data vector, Yt, can be summarized hierarchically as follows:

Yt = Ψat + εt (2.6)

Ψat = Bθat−1 + ωt, (2.7)

where Yt = (Yt(s1), ..., .Yt(sn))′ is a noisy realization from the process at time t, Bθ =

(b(s1,θ) . . .b(sn,θ)) is a matrix whose columns consist of the vectors of the kernel basis

coefficients, and the (i, j)th element of Ψ is ψi(sj). The vectors εt and ωt account for

observational error and process error, respectively. This representation of an IDE model

becomes a state space model by removing Ψ from the left side of equation (2.7). If a

discrete orthonormal basis is used, the matrix Ψ′Ψ is equal to the identity matrix, then

at = Ψ′Bθat−1 + Ψ′ωt. For continuous bases, the orthogonality of Ψ is not guaranteed.
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Then we create a state space model by rewriting equation (2.7) as at = (Ψ′Ψ)−1Ψ′Bθat−1+

(Ψ′Ψ)−1Ψ′ωt.

2.3.1 Selecting the Appropriate Basis

If we are to assign physical interpretations to the estimated kernel, such as the ones

implied by (2.3) and (2.4), then the kernel must be appropriately approximated. Choosing

the basis used to decompose the IDE model and selecting the number of basis functions

must be carefully considered. Depending on the basis chosen, there may be additional

considerations. Accuracy improves with a larger number of basis functions, but the size of

the latent state vector, at, in equations (2.6) and (2.7) increases with the number of basis

functions. The result is an inverse relationship between accuracy and computational speed.

Fourier Basis

For a bounded spatial domain, say [r1, r2], it is natural to consider the orthogonal

family given by the Fourier basis. In such case, the kernel need only be specified through its

characteristic function. For example, a Gaussian kernel has Fourier coefficients b2j−1(s,θ) =

r−1/2 exp (−.5ρ2jσ2) cos(ρj(s+µ)), and b2j(s,θ) = r−1/2 exp (−.5ρ2jσ2) sin(ρj(s+µ)), where

r = r2 − r1 and ρj = 2πj/r is the spatial frequency. Both the number of basis functions

and the spatial domain must be specified. One major issue is that if the kernel parameters

change, the optimal number of basis functions changes as well. Figure 2.2 shows that kernels

with a smaller variance are more difficult to approximate well with a small number of basis

functions. Calling the variance small or large is relative to the range [r1, r2]. For example,

in Figure 2.2 the same normal density is approximated in the left and right images, but the
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range has changed. If some information about the kernel width in relation to the range of

the data is known, it can be used to estimate the optimal number of basis functions to be

used. However, if it is unknown, it may be safer to select a larger number of basis functions

and check the posterior to see how appropriate the choice was. Another factor to consider is
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Figure 2.2: 15 Basis functions are used to approximate a normal density. On the left, the

Fourier approximation works well for a normal density with a larger variance and a Fourier

period of 10. When the variance is smaller (middle), or when the period is larger (right),

the approximation is much worse.

the periodicity implied by a Fourier basis. If the density function contains significant mass

outside the defined region it will wrap around the other edge of the region. This can be

seen in Figure 2.3 where the range is -2 to 2 and the density extends past the range. When

this happens, the IDE integral in equation (1.3) will artificially give weight locations which

are on the opposite end of the spatial domain. To avoid this, the values for the range r1 to

r2 should be chosen to be larger than the actual bounds of the data. For example, if the

data locations extend from -4 to 4, the period of the Fourier approximation should be from

18



-5 to 5, or when a larger kernel is used, from -6 to 6. To make many of these calculations

more simple, the data locations can be centered around 0 to make r2 = −r1.
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Figure 2.3: A normal density with mean 1.5 and standard deviation .5 is approximated

with Fourier basis coefficients on the range of -2 to 2. The effect of the implied periodicity

is shown.

Empirical Orthogonal Functions

A method of reducing the dimensionality of spatial processes is to use Empirical

Orthogonal Functions (EOF). This involves a reduction of the data based on the principal

components. The continuous analog of this, known as the Karhunen-Loeve expansion can

be shown to minimize squared mean distance between the target process and the approxi-

mation. In practice, one would determine an empirical covariance matrix from data lying

on a regular grid and finding the eigenvalues λ1, ..., λN and eigenvectors e1, ..., eN . The

eigenvectors form a basis which can represent the data. The amount of variation in N
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observations explained by n eigenvectors where n < N is 100% ×
∑n

i=1 λi/
∑N

j=1 λj . To

approximate a kernel with an EOF basis, one would need to discretize the kernel density

function to the same grid as the data and apply a discrete transform. Choosing the number

of basis functions may be simpler in this case, because the number of basis functions to

be chosen may relate to a desired percent of variation explained in the data. Because this

is a data-based basis, the uncertainty introduced by the approximation will typically not

propagate.

Other Basis Function Choices

There are a number of other basis function choices which could be made, such

as wavelets or splines. Orthogonal polynomial basis functions could also be an effective

basis for modeling the kernel accurately in a reasonable number of basis functions. A

polynomial basis P1, P2, ... is orthogonal with respect to a weight function w(x) when the

inner product, < Pi, Pj >w=
∫
Pi(x)Pj(x)w(x)dx, is 0 when i 6= j and is not 0 when

i = j. There are a variety of these for a number of weight functions including Legendre

polynomials for w(x) = 1[0,1](x), Laguerre polynomials when w(x) = e−x1[0,∞)(x), and

Hermite polynomials when w(x) = e−x
2
. From the equations in (2.4), it can be seen

that tail behavior may have a significant impact on the process. Approximating this tail

behavior accurately may be more difficult for standard basis choices, but perhaps using

an orthogonal polynomial basis where the weight function mirrors the tail behavior will

improve accuracy in approximating these kernel densities. For example, the Gaussian kernel

has squared exponential tails so using Hermite polynomials where the weight function is

a squared exponential may be a very natural way to represent the density. Likewise with
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an exponential kernel and the Laguerre polynomials. Many of the basis function choices

mentioned here do not require a range to be specified as in the Fourier basis, but do require

the number of basis functions to be chosen carefully. Again, the number of basis functions

required will depend on kernel width.

2.4 MCMC Details

This section details the procedure used for learning model parameters in an IDE

spatio-temporal model. As outlined in Cressie and Wikle (2011) and summarized in equa-

tions (1.1) and (1.2), we use a hierarchical dynamic linear model framework. For a data

vector, Yt = (Yt(st,1), ..., Yt(st,nt))
′, using a basis function expansion, the full IDE model

can be written as

Yt|at, σ2 ∼ N(Ψtat, σ
2Int), t = 1, ..., T (2.8)

at|at−1, τ2,θ ∼ N(GtBθ,tat−1,GtWtG
′
t) (2.9)

θ|γ ∼ p(θ|γ), σ2,Wt ∼ p(σ2)p(Wt), (2.10)

where at are the latent state variables representing the stochastic basis coefficients of the

process and Gt = (Ψ′tΨt)
−1Ψ′t. The length of the state vector is equal to the number of

basis functions. The observational variance is σ2Int and the variance of the process level

is GtWtGt. The (i, j)th element of Ψt is ψi(st,j), the i-th basis function evaluated at st,j

and the (i, j)-th element of Bθ,t is bi(st,j |θ), the i-th basis coefficient of the kernel at the

location st,j . In full generality, the dimension of these matrices are time-indexed because

the locations at which the data occurs may change. The parameters involved in the model

are σ2, Wt, θ, and possibly γ if hyper-priors are used. The prior for the kernel parameter
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set θ depends on the family of distributions chosen for the kernel. For example, a Gaussian

kernel parameter vector includes the mean and variance of the distribution, and a normal

prior could be placed on the mean and a Gamma or inverse Gamma prior could be placed

on the variance. The posterior for σ2 will be conjugate if the prior is inverse gamma with

parameters ασ and βσ. We also need to define a prior for a0, the coefficients of the basis

expansion of the time zero process. This will be a multivariate normal with mean m0 and

variance C0. The priors for at for t > 0 are stated in equation (2.9).

The spatial locations used to determine Ψt in the observation equation shown

in equation (2.8) must be the observed locations of the data. The number of locations

and where they occur do not need to be the same for each time point. For simplification

in computation, we can select a grid to obtain a representation for the evolution equation

which is different than that in the observation equation. A new grid can be defined on points

r1, ..., rn, which is the same for all time points. Then set Gt = G = (Ψ′Ψ)−1Ψ′, where

Ψ is determined using the new grid. Also, Bθ,t = Bθ is determined using the new grid.

The advantage of using locations which are constant in time for the process level is that

populating the matrix Bθ,t can be time consuming for a complicated kernel distribution.

Over the course of a lengthy Monte Carlo algorithm, the speed-up of simplifying to a single

Bθ may be significant.

Utilizing Gibb’s sampling, this model becomes a conditional dynamic linear model.

When θ, σ2, and Wt are known, methods to sample from the posterior of the state variables

have been developed in the literature. Specifically, we will use Forward Filtering Backwards

Sampling (West and Harrison, 1997) to draw a sample for a0, ...,aT . Conditional on sampled
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state vectors, the posterior for σ2 is

σ2|· ∼ IG

(
ασ +

nT

2
, βσ +

1

2

T∑
t=1

(Yt −Ψtat)
′(Yt −Ψtat)

)
(2.11)

The set of kernel parameters, θ, must be estimated using a Metropolis-Hastings algorithm or

something similar. The conditional posterior of θ is proportional to
∏T
t=1 p(at|at−1,Wt,θ)p(θ|γ).

For applications with a complicated kernel, such as a Dirichlet process mixture of normals,

learning the parameters may be very difficult using standard Metropolis-Hastings. For sit-

uations such as these, a Hamiltonian Monte Carlo algorithm (Neal, 2011) may be used to

sample from the posterior distribution of θ.

Estimating the states is done using standard filtering formulas as found in Prado

and West (2010). First the prior mean and covariance estimates for X0 must be set as m0

and C0. Let Qt = GtWtGt and Rt = σ2Int Given all information up to time t, denoted

as Dt, the posterior distributions of the state vectors Xt|Dt are N(mt,Ct). These can be

found using recursive formulas

mt = GtBθ,tmt−1 +Kt (Yt −ΨtGtBθ,tmt−1)

Ct = (I −KtΨt)
(
GtBθ,tCt−1B

′
θ,tG

′
t +Qt

)
,

whereKt =
(
GtBθ,tCt−1B

′
θ,tG

′
t +Qt

)
Ψ′t

(
Ψt

(
GtBθ,tCt−1B

′
θ,tG

′
t +Qt

)
Ψ′t +Rt

)−1
. The

covariance matrixQt can be estimated using discount factors. This involves settingQt equal

to 1−δ
δ GtBθ,tCt−1B

′
θ,tG

′
t, for some fixed value for δ. More details are provided in Prado

and West (2010). Another option is to parametrize Wt as τ2Vt where Vt is a spatial co-

variance matrix. If the prior for τ2 is inverse Gamma with parameters ατ and βτ then the
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conditional posterior is

τ2|· ∼ IG

(
ατ +

KT

2
, βτ +

1

2

T∑
t=1

(at −GtBθ,tat−1)
′V −1(at −GtBθ,tat−1)

)
. (2.12)

Given these covariances and the states, the parameters in the kernel and the variance

σ2 can be updated using Metropolis-Hastings steps. The distribution of Yt|Dt,θ, σ
2 is

N(Ψtmt,ΨtCtΨ
′
t +Rt). New values for θ∗ are proposed from a proposal distribution q(·).

Typically, the variables are transformed so that the proposal distribution could be a normal

distribution. The variance of this normal proposal distribution was tuned to an appropriate

acceptance rate. If the value of the parameters at the previous iteration of the MCMC is

θ(B−1), then the new values will be accepted with probability

min

(
p(Yt|Dt,θ

∗, σ2)p(θ∗)q(θ(B−1)|θ∗)
p(Yt|Dt,θ(B−1), σ2)p(θ(B−1))q(θ∗|θ(B−1))

, 1

)

and, otherwise, set θ(B) = θ(B−1).

2.5 Summary

We have reviewed some general theory regarding IDE modeling of spatio-temporal

data. Additionally, we have provided some motivation for more flexible kernels. Careful

study of these principles will result in successful IDE modeling of spatio-temporal data.
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Chapter 3

IDE Modeling Using Flexible

Parametric Kernels

Equations (2.3) and (2.4) imply that choosing kernels which have more control

of higher order moments and tail behavior will allow an IDE to model a broader range of

physical processes. There are approaches to define a kernel in an IDE to have full flexibility

in moments and tail behavior. One of these is discussed in chapter 4. However, learning

the kernel in this setting is very difficult and for some situations, it may be reasonable to

assume a simpler model. This chapter explores alternatives to the Gaussian kernel which

add one or two parameters, and which are infinitely divisible to match the theory from the

previous chapter. The added complexity of the model, therefore, is not too extreme. We

introduce these kernels and then explore the advantages of using them instead of a Gaussian

kernel. We restrict our attention to one-dimensional space and to kernel parameters which

are constant in space. The extensions are more applicable, but for this illustrative setting,
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these assumptions will be sufficient to show the advantages of non-Gaussian kernels.

3.1 Alternatives

We present two alternatives to the Gaussian kernel. The first is the asymmetric

Laplace, which has an additional parameter which controls skewness. The second is the

stable family of distributions which has a parameter controlling skewness and one con-

trolling tail behavior. Both of these kernels are infinitely divisible, which makes the PDE

approximations developed in Chapter 2 applicable.

3.1.1 Asymmetric Laplace

The asymmetric Laplace is an infinitely divisible, location family distribution

which allows for skewness and heavier tails than the normal. The distribution is char-

acterized by its mode ξ, a scale parameter σ, and a parameter controlling the skewness and

other shape properties, κ > 0. The density function is given by

k(x|ξ, σ, κ) =

√
2

σ

κ

1 + κ2


exp

(
−
√
2κ
σ |x− ξ|

)
if x ≥ ξ

exp
(
−
√
2

σκ |x− ξ|
)

if x < ξ,

which shows how the asymmetric Laplace can be formed from two exponentials with dif-

ferent intensities. When κ = 1, the distribution simplifies to the (symmetric) Laplace

distribution. The property of infinite divisibility can be found in Kotz et al. (2001). Figure

3.1 shows different asymmetric Laplace densities for varying values of κ.

The asymmetric Laplace can be written as a mixture of normals with mean ξ+µW
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Figure 3.1: Asymmetric Laplace densities for different values of the skewness parameter κ.

The distribution is symmetric when κ = 1 and can be highly skewed in either direction

when κ is large or small.
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and variance σ2W , where µ = 2−1/2σ
(
κ−1 − κ

)
andW is an exponential distributed random

variable with mean 1 (Kotz et al., 2001). This mixture representation yields the following

result.

Lemma 4. The Fourier coefficients of the basis expansion for a kernel in the asymmetric

Laplace family are:

b2j−1(s,θ) =
(1 + .5ρ2jσ

2) cos(ρj(s+ ξ)) + ρjµ sin(ρj(s+ ξ))

(−1− .5ρ2jσ2)2 + (ρjµ)2

and

b2j(s,θ) =
(1 + .5ρ2jσ

2) sin(ρj(s+ ξ))− ρjµ cos(ρj(s+ ξ))

(−1− .5ρ2jσ2)2 + (ρjµ)2
.

Proof. The asymmetric Laplace distribution can be written as a mixture of normals. If

X is a standard normal and W is a standard exponential, then Y = ξ + µW + σ
√
WX

has an asymmetric Laplace distribution. Hence, conditional on W , Y has a normal dis-

tribution with mean ξ + µW and variance σ2W . Recall that the N(µ, σ2) kernel can be

decomposed into
∑

j bj(s,θ)φj(u), where the basis functions are φ2j−1(u) = cos(ρju) and

φ2j(u) = sin(ρju), and the coefficients are b2j−1(s,θ) = exp (−.5ρ2jσ2) cos(ρj(s + µ)) and

b2j(s,θ) = exp (−.5ρ2jσ2) sin(ρj(s+µ)). Therefore, by mixing onW , the asymmetric Laplace

distribution coefficients for the Fourier basis expansion can be found through

b2j−1(s,θ) =

∫ ∞
0

exp (−.5ρ2jσ2W ) cos(ρj(s+ ξ + µW )) exp (−W )dW

=
1

(−1− .5ρ2jσ2)2 + (ρjµ)2
[
(1 + .5ρ2jσ

2) cos(ρj(s+ ξ)) + ρjµ sin(ρj(s+ ξ))
]
.

Similarly, we obtain

b2j(s,θ) =
1

(−1− .5ρ2jσ2)2 + (ρjµ)2
[
(1 + .5ρ2jσ

2) sin(ρj(s+ ξ))− ρjµ cos(ρj(s+ ξ))
]
.
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Computationally, the non-differentiability of the density at its mode makes it

harder to approximate using basis functions. To get a working approximation using a

Fourier basis, the truncation point required is much larger for the asymmetric Laplace than

it is for the Gaussian density, typically ranging from 30 to 100 basis functions. The more

skewed the distribution is, the harder it becomes to approximate well.

3.1.2 Stable Distributions

Lemma 3 suggests that the kernel tail behavior will affect IDE evolution. To

explore infinitely divisible kernels with tails that are substantially heavier than those of a

Gaussian, we consider the family of stable distributions. A distribution belongs to the class

of stable distributions if any linear combination of two random variables from a particular

class of distributions also belong to that same family. Thus, this is a subset of infinitely

divisible distributions, as shown in Samorodnitsky and Taqqu (1997) and Nolan (2003).

Stable distributions include the Gaussian, Cauchy, and Levy distributions as special cases

shown in Table 3.1. They are governed by 4 parameters, µ ∈ R, c > 0, α ∈ (0, 2], and

β ∈ [−1, 1], and a wide range of skewness and tail behavior can be achieved by varying the

parameters appropriately. A characteristic of the family of stable distributions is that, in

general, it does not have an analytically available form for the density function, or moments.

These do exist for special cases, such as the Gaussian distribution. The family is generally

defined through its characteristic function, which for α 6= 1 is given by

g(t|µ, c, α, β) = exp {itµ− |ct|α(1− iβsgn(t) tan(πα/2))} . (3.1)
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Figure 3.2 shows how the shape of the density changes with α and β. Note that α controls

the tails and β controls the skewness, while µ and c are location and scale parameters,

respectively.

Distribution α β

Gaussian 2 [−1, 1]

Cauchy 1 0

Levy 1/2 1

Table 3.1: Special cases of the stable family of distributions, including the Gaussian, Cauchy,

and Levy distributions.

Lemma 5. The Fourier coefficients of the basis expansion for a kernel in the family of

stable distributions are:

b2j−1(s,θ) = cos (ρj(s+ µ) + |cρj |αβsgn(ρj) tan(πα/2)) exp (−|cρj |α)

b2j(s,θ) = sin (ρj(s+ µ) + |cρj |αβsgn(ρj) tan(πα/2)) exp (−|cρj |α) .

Proof. The stable family of distributions with α 6= 1 has characteristic function of the form

g(t) = exp {itµ− |ct|α (1− iβsgn(t) tan(πα/2))}. Decomposing the characteristic function

into its real and imaginary parts and then applying Euler’s formula, we find the coefficients

for the sine and cosine basis functions:

g(t) = cos (tµ+ |ct|αβsgn(t) tan(πα/2)) exp(−|ct|α)

+ i sin (tµ+ |ct|αβsgn(t) tan(πα/2)) exp(−|ct|α).

The real part of this equation corresponds to the cosine coefficients and the sine part refers

to the sine coefficients in a Fourier transform.
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Figure 3.2: Densities from the stable class of distributions with µ = 0 and c = 1, for

different values of the stability parameter α (left panel) and skewness parameter β (right

panel). Smaller α values result in heavier tails and β values far from 0 result in greater

skewness. The left panel fixes β = 0 and the right panel fixes α = 1.1.
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The quality of this Fourier series approximation depends on the shape of the dis-

tribution. To avoid requiring a large truncation point, it is computationally convenient to

restrict α ∈ (1, 2]. This restricts the tail behavior to be between the Cauchy and the Gaus-

sian distributions, but still ensures polynomial tail behavior for all values of α < 2. For

α < 1, the required truncation level for a Fourier basis expansion increases tremendously.

With α > 1, the number of terms required is comparable to the normal, and thus compu-

tational expense will be similar. The high degree of flexibility in modeling the heaviness

of the tails and the skewness combined with similar computational burden as the Gaussian

kernel IDE makes the stable family a very attractive choice for the IDE kernel.

3.1.3 Prior Simulation

To empirically study how the various kernels affect the IDE model, we perform a

series of prior simulations under four different kernels. The first of these kernels is normal

with a mean of −.67 and a variance of 2. The second kernel is an asymmetric Laplace

with the same mean and variance as the normal kernel, but with a left skewed density.

By matching the means and the variances of these two kernels, we can explore whether

the first two moments dominate the IDE process or if a non-zero third moment results in

different process realizations, as suggested by equation (2.3). The third kernel is a stable

distribution which is skewed and shaped to match the asymmetric Laplace. The final kernel

is also a stable distribution with quartiles and a median which match the normal kernel,

having heavy tails and no skewness. This will test how tail behavior affects the IDE model

for otherwise similar kernels.

Process realizations are simulated from the IDE model according to equation (1.3).
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Figure 3.3: IDE prior simulations in one-dimensional space for four distinct kernels. From

top to bottom the kernels are normal, asymmetric Laplace, stable with skewness, and

stable with heavy tails and no skewness. The first column is the density of the IDE kernel

distribution, the second column is the simulated process for 5 time points, and the last

column compares the spatial field between the particular kernel and the Guassian kernel

for the third time point. 33



The initial condition at t = 0 is a realization from a Gaussian process and the error process

is not included, such that the process evolves without any noise added. The resulting IDE

processes are shown in Figure 3.3. These simulations show that, while the general trend

is similar across each kernel choice, the localized features differ for each time point. The

process for the IDE with more flexible kernels behaves as a more colorful version of the

process using a Gaussian kernel, as can be seen best in the third column.

3.2 Illustrative Data Examples

The theory supports the use of the asymmetric Laplace and the stable family as

possible extensions to the normal distribution for the IDE kernel. To see how these kernels

compare in actual model performance, we apply the IDE model with all three kernels and

compare the predictive results. In Section 3.2.1 two synthetic data sets will be fit and

compared. In Section 3.2.2, the methods will be compared using real data collected by

ozonesonde readings on ozone pressure.

3.2.1 Comparing Model Fits with Synthetic Data

To test the asymmetric Laplace and stable distributions against the normal, data is

simulated under the IDE setting from two different kernels. The first is a mixture of normal

distributions, .35N(−3, 1) + .25N(−1, 1) + .15N(1, 1) + .1N(3, 1) + .1N(5, 1) + .05N(7, 1),

which results in a skewed density with exponential tails. The second simulation is from an

IDE with a Cauchy kernel, which is a special case of the stable with α = 1 and β = 0. Each

of these simulated data sets spans over 200 gridded spatial locations and over 50 time points,
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and contains a reasonable amount of observational and process error. Posterior mean and

interval estimates for the kernel densities are shown in Figure 3.4. Based on these plots,

the Gaussian kernel is unsuccessful in recreating the truth. The more flexible kernels more

appropriately capture the skewness and tail behavior of the underlying IDE kernel.
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Figure 3.4: Synthetic data. Posterior mean and interval estimates for the IDE kernel density

under the model with the Gaussian, asymmetric Laplace, and stable kernels. The top row

corresponds to the data generated from an IDE model with a normal mixture for the kernel,

and the bottom row to the simulated data based on an IDE model with a Cauchy kernel.

The fitting of the models involves dynamic linear model theory. Because the kernel
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parameters are embedded within the structure of the evolution matrix, we use Metropolis-

Hastings steps to obtain samples from the posterior distribution of those parameters. Details

were given in Chapter 2. We compare the predictions from Markov chain Monte Carlo

(MCMC) runs using an energy score, following Gneiting et al. (2008). This procedure

allows for simultaneous scoring of a whole spatial field. The energy score is calculated as

ês(F, y) =
1

m

m∑
i=1

||y(i) − y|| − 1

2m2

m∑
i=1

m∑
j=1

||y(i) − y(j)||, (3.2)

where y(1), ..., y(m) are samples from F , the posterior predictive distribution and y denotes

the data vector. For each of the simulated data sets we compute energy scores for one step

ahead out-of-sample predictions for 50 time points. Table 3.2 shows the percentage of times

each of the kernels scored the lowest.

True kernel

Fitted kernel Mixture Cauchy

Gaussian 16% 0%

Asymmetric Laplace 70% 4%

Stable 14% 96%

Table 3.2: Synthetic data. The percentage of times for which each of the kernels had the

lowest energy score for each of the simulated data sets. The asymmetric Laplace performed

the best for the mixture kernel and the stable family performed the best for the Cauchy

kernel.

The scoring indicates clearly which kernel performs the best in each case. The

asymmetric Laplace outperforms the others for the skewed mixture, whereas the stable

distribution outperforms the others for the Cauchy kernel. To offer an explanation, note that

the polynomial tails of the stable may not match up well with the exponential tails of the
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mixture IDE kernel and the Gaussian could not capture the skewness, but the asymmetric

Laplace is able to capture skewness and tail behavior better. Whereas with the Cauchy

IDE kernel, only the stable distribution could match the polynomial tails.

3.2.2 Ozone Data

The study of ozone has provided an abundant source of environmental and statisti-

cal literature over the past decades. The effect of lower atmosphere ozone measurements has

been seen to affect other climate variables such as concentration of certain pollutants and

temperature (Robeson and Steyn, 1990). Other studies have shown how ozone concentra-

tions affect crop yields and other agricultural variables (Heck et al., 1984). Understanding

lower atmosphere ozone levels may help to understand and predict many other important

variables which have a direct societal impact.

To study how the kernel choice may affect IDE model performance, we fit our pro-

posed models to 10 years of low atmosphere ozone pressure data. These data are collected by

ozonesondes, which are balloons that ascend into the atmosphere and record measurements

at regular intervals. The data set we study includes biweekly ozone pressure from October

1996 to October 2006 collected at Koldewey Station near the North Pole. Details about

this weather station and others related to it can be found at http://www.awi.de/en/home/.

The data is collected by releasing a balloon in the air which, at certain intervals

throughout its flight, takes a measurement of ozone pressure in millPascals (mPa). The

resulting data structure poses many issues for modelers. First, the locations at which the

data are collected vary across time. The balloon usually takes measurements at regular

intervals, but this rarely corresponds to a consistent pattern with surrounding time points.
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Another issue is that the data collecting mechanism would often fail to reach higher alti-

tudes, leaving the entire upper half of the observation interval missing. Yet another major

issue is that the data is somewhat irregular and hard to model using standard methods. For

this particular illustration, we restrict our focus to the first 6,000 feet, which corresponds to

lower-atmosphere ozone pressure. The data is collected almost every week, though several

weeks are missing. Since this is an illustration, we opt to use biweekly data to avoid missing

time points.

Because the balloon moves only in one direction, the domain for space is one-

dimensional. The data is displayed in Figure 3.5 by altitude and time. There are a few

stretches with outlying observations which are included in the analysis but are not shown

so that the finer details of the data can be viewed, and also to help compare with the fitted

values in Figure 3.9. In Figure 3.5, we note a potential seasonal trend. To account for this

seasonality, we add two harmonics, Zti = (Z
(1)
ti , Z

(2)
ti ), for i = 1, 2. These variables will

evolve through a rotation matrix with frequency λi. The resulting process has a cyclical

forecast function with a period of 2π/λi (West and Harrison, 1997, Chp. 8). By including

two harmonics we can account for seasonal variability with two different periods. The full

model is

Yt(s)|Xt(s), Z
(1)
t1 , Z

(1)
t2 , σ

2 = Xt(s) + Z
(1)
t1 + Z

(1)
t2 + εt(s), εt(s)

i.i.d.∼ N(0, σ2)

Xt(s)|{Xt−1(s) : s ∈ D},θ =

∫
D
k(s− u|θ)Xt−1(u)du+ ωt(s) Z

(1)
ti

Z
(2)
ti

 =

 cos(λi) sin(λi)

− sin(λi) cos(λi)


 Z

(1)
t−1,i

Z
(2)
t−1,i

+ νt, i = 1, 2

σ2 ∼ gamma(a, b), θ ∼ p(θ), νt|WZ
t ∼ N2(0,W

Z
t ),
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where, for any points s1, ..., sn, the vector (ωt(s1), ..., ωt(sn)) has a normal distribution with

a zero mean and covariance function Wt. The state variables a0, ...,aT are sampled using

forward filtering backwards sampling techniques described in section 2.4. The matrices

Wt and WZ
t are modeled using discount factors, which is also discussed in section 2.4.

The IDE kernel is chosen to be Gaussian, asymmetric Laplace, and then stable in three

different model fits. The prior parameters a and b are fixed. An exploratory analysis was

performed where the periods of the two harmonics were included as parameters in the model

and a cluster of posterior mass around 6 months and 12 months was observed. The two

harmonics were then fixed to have periods of 6 and 12 months, which results in λ1 = 2π/26

and λ2 = 2π/13, assuming 52 weeks per year.

For the kernel parameters and the observational variance, the posterior distribu-

tions are robust to a wide range of priors. We use a N(0, 3002) prior for the location

parameter, and a gamma(1, .01) prior for the scale parameter in each case. The skewness

parameter κ in the asymmetric Laplace received a gamma(1, 1) prior. The stable param-

eters α and β were assigned scaled Beta(2, 2) prior distributions to match their support.

The important prior specification is for m0 and C0, which are the mean and covariance,

respectively, of the basis coefficients for the time 0 process. Poor choices for these can

greatly affect the posterior for the kernel parameters. Ozone pressure typically does not

stray too far from the range of 2 to 4. Our best guess of the time 0 process is a constant

function at 3. The basis coefficients that define m0 are (3/
√

2r, 0, ..., 0), where r is the

period of the Fourier transform used for the basis. We constructed C0 as a diagonal matrix

with decreasing values down the diagonal so that variances of the higher order terms of
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Figure 3.5: Biweekly ozone pressure measured on a vertical profile, plotted across altitude

(0 to 6,000 feet) and over time (October 1996 to October 2006).
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the basis function expansion are close to 0. We present results based on 50,000 samples for

every parameter of every model using MCMC after a burn-in of 50,000. Convergence was

confirmed using several methods found in the “boa” package in R (Smith, 2007).

To demonstrate the practical utility of non-Gaussian IDE kernels, we can study the

kernel estimates, and the posterior distribution of the parameters which control skewness

and heavy tails. The posterior mean estimates for the kernel density under each model are

shown in Figure 3.6, and it can be clearly seen that the kernel tends to be asymmetric for

models where that is allowed. The posterior distribution for κ in the asymmetric Laplace,

and the stable parameters α an β are shown in Figure 3.7. Recall that κ controls the

skewness of the asymmetric Laplace, and α and β control the tail behavior and skewness

of the stable distribution. The credible intervals for each of these parameters are shown

in Table 3.3. The asymmetric Laplace parameter κ includes 1 in the credible interval,

suggesting that we can not rule out symmetry based on the parameter estimates. However,

the credible interval for the stable distribution parameter β does not include 0, suggesting

that the model with the stable distribution kernel is not symmetric. Figure 3.8 shows

profiles of the fitted values of one step ahead predictions for three observations from the

data set using each kernel. Using such profiles, it can be seen that the Gaussian kernel IDE

does not appropriately model ozone pressure in several regions. The stable distribution,

however, seems to perform much better. The model residuals for the stable distribution

IDE model are shown in Figure 3.9.

The one step ahead predictions shown in Figure 3.8 are calculated for the data set

for all three models. As in the simulated example, these predictions can be scored using the
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Figure 3.6: Ozone data. Posterior mean estimates for the IDE kernel under the Gaussian,

asymmetric Laplace, and stable models.

Parameter Median 2.5% 97.5%

κ 1.22 .69 1.75

α 1.48 1.26 1.80

β −.57 −.86 −.17

Table 3.3: Ozone data. Posterior median and 95% credible intervals for certain parameters

of the IDE models with non-Gaussian kernels.
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Figure 3.7: Ozone data. Posterior density for the skewness parameter κ of the asymmetric

Laplace kernel (left panel). Posterior densities for parameters α and β which control the

tails and the skewness of the stable kernel (middle and right panel).

measure in equation (3.2). The results of the energy scores can help determine which model

performs the best in one step ahead predictions. Table 3.4 shows each possible ordering

for the scores and how often they occur. Recall that lower scores refer to a better fit. The

stable distribution has the lowest energy score for 73% of the observations. Only 10% of

the observations have the Gaussian kernel as the lowest score. These scores help discern the

differences that the figures themselves are not able to show. It is clear that the particular

criterion favors the stable distribution over the Gaussian and asymmetric Laplace.

To summarize these results, the posterior distribution of the stable kernel param-

eters suggest that normality and symmetry are poor assumptions for the IDE kernel. The

posterior distribution of the asymmetric Laplace does not rule out symmetry, but the esti-

mate shown in Figure 3.6 for the asymmetric Laplace kernel is clearly asymmetric. Scoring
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Figure 3.8: Ozone data. The profiles of ozone concentration are shown for three different

months with 95% credible intervals shaded in for each of the three different kernels.
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Figure 3.9: Ozone data. Fitted values (left) and residuals (right) are shown for the fitted

model with the stable distribution kernel for every observation. The overall fit is good with

the exception of a few outlying stretches.

Order Frequency

S<AL<G 53%

AL<S<G 11%

G<S<AL 6%

S<G<AL 20%

AL<G<S 6%

G<AL<S 4%

Table 3.4: Ozone data. Each possible ordering for the scores of the IDE models under the

three distinct kernels are shown with the percentage of observations that the scores followed

that order. S refers to the stable distribution, AL to the asymmetric Laplace, and G to the

Gaussian kernel.
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procedures for the out of sample predictions suggest that the model with the stable kernel

distribution performs the best in terms of predictive model accuracy.

3.3 Conclusion

Spatio-temporal data often present complicated space-time interactions that are

difficult to model accurately. Under the IDE model framework, electing to use a kernel more

flexible than the Gaussian, which is used in nearly all IDE modeling, provides better predic-

tive accuracy and more potential for successfully capturing the spatio-temporal evolution

of the field. Compared to Gaussian kernel densities, kernels with flexible tail behavior and

potential skewness, facilitate more complicated transfer of dynamics from one time point

to the next. In this paper, we have shown how the choice of kernel influences the process

through theory, simulations, and data analysis. We have proposed two alternative kernel

families with desirable theoretical and computational properties.

Computations for the models proposed in this paper are based on truncated ex-

pansions on Fourier bases. In our experience, asymmetric Laplace kernels require a larger

number of coefficients than stable distribution kernels, with α > 1. The latter can be well

approximated with a computational effort comparable to the one needed for Gaussian ker-

nels. Hence, when alternatives to the Gaussian IDE model are needed for very large data

sets, the stable family of distributions seems a more practical choice than the asymmetric

Laplace.

The models proposed in this paper can be extended in at least three different ways.

First, we can place a Gaussian process prior on the location parameter and scale parameters,
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along the lines of (Wikle, 2002). This will achieve non-stationarity. The remaining kernel

parameters can also be spatially varying by using, for example, transformations of Gaussian

processes. Second, we can further extend the flexibility of the kernel shape by considering

non-parametric representations of the kernel. This extension is discussed in Chapter 4. The

third extension pertains the development of models with non-Gaussian kernels for spaces of

dimension higher than one, most importantly, two dimensions. Conceptually, this extension

is straightforward. Nevertheless, inference and computations for the families proposed are

quite challenging. Starting from a multivariate characteristic function, it is possible to

obtain the Fourier basis expansion in order to evaluate the IDE integral, along the lines

of the one-dimensional case. For the asymmetric Laplace, a two-dimensional characteristic

function is readily available (Kotz et al., 2001). However, the computational burden due

to the large number of basis functions required for a good approximation of the kernel is

compounded by the dimensionality. For the stable family, multivariate generalizations are

not immediate. Bivariate stable kernels are explored in Chapter 5.
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Chapter 4

Bayesian Non-parametric Kernel

IDE Modeling

4.1 Introduction

The previous chapter focused on simple extensions of the IDE kernel from Gaussian

to more flexible families of distributions. The result was an improvement in model accuracy

and prediction. Building upon this idea, we propose non-parametric kernels for use in IDE

models. This chapter begins with a review of Dirichlet process mixtures in section 4.2, which

will be used as a prior for the kernel. The methods used for fitting the data are presented

in section 4.3 They are similar to those presented in Chapter 2, however, the parameter set

in the kernel increases tremendously. Advanced MCMC methods will be used to learn the

kernel parameters. To decrease computational time, Hermite polynomials will be used to

construct a basis which may be more effective at approximating the Gaussian density than
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more traditional methods. Simulations in section 4.4 will show that the model can learn

spatially varying kernels. These methods are applied to the ozone data set in section 4.5

and posterior results are compared between the parametric models studied in Chapter 3

and the non-parametric kernel IDE models presented in this chapter.

4.2 Dirichlet Process and Dirichlet Process Mixtures

A Dirichlet process (DP) is a random probability measure on the space of prob-

ability distributions (Ferguson, 1973). The DP is a core modeling tool for Bayesian non-

parametric methods, especially after the constructive definition was introduced in Sethu-

raman (1994). The constructive definition of a Dirichlet process, G ∼ DP (α,G0), is

G =
∑∞

l=0wlδθl where each θl is drawn i.i.d. from the base distribution G0 for all l. The

weights come from a process commonly referred to as stick-breaking, where latent variables

ξ1, ξ2, ... are drawn i.i.d. from a Beta(1, α) distribution, and the weights are assigned as

wl = ξl
∏l−1
i=1(1 − ξi). The parameter α controls how close the random distributions will

be to the base distribution G0, with larger values of α leading to realizations which are

closer to G0. To define a flexible continuous kernel, the parameters of a Gaussian distribu-

tion is mixed with a DP (Antoniak et al., 1974). The result is a very flexible continuous

distribution which can capture heavy tails, light tails, skewness of any kind, and complete

flexibility of higher order moments. Because the weights of the constructive definition of

the DP are generally decreasing, the constructive definition can be reasonably truncated to

a finite sum. The choice for the number of weights to use depends on α and the data, but

it should be considered carefully. When the DP is truncated, the final weight, wL, is equal
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to
∏L−1
l=1 (1− ξl), and should be very small.

The construction of spatially varying kernels in the IDE literature has focused

mainly on the Gaussian kernel. A more flexible prior model for spatially varying kernels

would be a spatial Dirichlet process (SDP) mixture (Gelfand et al., 2005). An SDP is a

specific application of dependent Dirichlet processes defined by MacEachern (2000). As

illustrated in Kottas et al. (2008), spatial and spatio-temporal data has been analyzed

using an SDP mixture of normals model. Though we will work with the basic version, there

are generalizations, such as the ones found in Duan et al. (2007). Using the constructive

definition, a spatial DP can be formulated similar to that of the DP. The weights are still

found using stick breaking, but the atoms are now realizations from a spatially dependent

process, G0(s). The resulting random measure is G(s) =
∑L

l=1wlδθl,D where θl,D = {θl(s) :

s ∈ D}. For any finite set of points s1, ..., sn, the atom, θl(s1), ..., θl(sn), forms a vector

drawn from a multivariate normal, arising as the finite dimensional distribution of G0(s).

Flexible continuous kernels will again be obtained by mixing the mean of a normal kernel

with the SDP.

By using an SDP mixture for the kernel, we are allowing the kernel to change

across the entire spatial field. The power of this model is that it can capture drastically

different kernel behaviors for different locations. For example, when using an IDE model

with an SDP mixture kernel, one region may exhibit long-tail dependence while another

exhibits thinner tails. Neither stationary DP kernels nor spatially varying Gaussian kernels

will allow for such characteristics to be modeled.
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4.3 Methods

Using an appropriate truncation, the kernel from equation (2.2) for an IDE with a

DP mixture kernel is k(u|s,θ) =
∑L

l=1wlφ(u|µl, σ2), where φ(·) is the density corresponding

to a normal distribution. Each µl is drawn i.i.d. from a N(µ0, σ
2
0) base distribution and the

weights arise from stick breaking. Equation (2.2) can be written for this model as

Xt(s) =

∫ L∑
l=1

wlφ(u; s+ µl, σ
2)Xt−1(u)du+ ηt(s)

=
L∑
l=1

wl

∫
φ(u; s+ µl, σ

2)Xt−1(u)du+ ηt(s),

which is a weighted sum of L Gaussian kernel IDE models with different means.

When the kernel is an SDP mixture of normals, µl is replaced by µl(s), where, for

any set D, {µl(s) : s ∈ D} ∼ G0,D(µ0(s),Σ0(s, s
′)), where µ0(s) is a mean function and

Σ0(s, s
′) is a covariance function corresponding to the Gaussian process G0,D. Typically, the

process will be evaluated at a finite number of locations, s1, ..., sn, so the base distribution

is defined through the finite dimensional distribution of the underlying Gaussian process

for any set of points s1, ..., sn. In both the DP mixture and the SDP mixture kernel IDE

models, the result that the process is a weighted sum of Gaussian kernel IDE models will

be used to find an appropriate method for fitting the model. Each Gaussian kernel IDE

component will be approximated individually using a basis function decomposition and then

recombined using a weighted sum.

Using these representations, the hierarchical IDE model from equations (2.8) and
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(2.9) with a Dirichlet process mixture kernel can be written as

Yt(s) =

K∑
i=1

ai(t)ψi(s) + εt(s)

K∑
i=1

ai(t)ψi(s) =

L∑
l=1

K∑
i=1

ai(t− 1)bi(s,θl) + ηt(s),

where bi(s,θl) is the i-th basis coefficient of the basis expansion of the l-th component of

the mixture.

4.3.1 Hermite Polynomial Basis

As discussed in section 2.3.1, the number of basis functions used for the series

expansion approximations is directly related to the accuracy of the approximation to the

kernel and inversely related to the computational speed. A poor kernel approximation

invalidates any attempts to interpret physical characteristics of the process implied by the

kernel. For example, Xu et al. (2005) connects the mean of a spatially varying Gaussian

kernel to average wind speed. Connections such as these would be impossible if the kernel

is not accurately represented by the basis. Conversely, relying on a large number of basis

functions will improve accuracy, but may make practical computation unreasonable. The

choice of which basis function to use and how many to include are made prior to fitting the

model. Section 2.3.1 also discussed practical usage of two popular basis function choices, the

Fourier basis and Empirical Orthogonal Functions (EOFs). The advantage of the Fourier

basis is that bi(s,θ) is related directly to the characteristic function for any distribution

used as the kernel. However, a large spatial range compared to the width of the kernel can

lead to poor approximations or will require a very large number of basis functions. EOFs

are a popular choice for dimension reduction of spatial and space-time models (Cressie and
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Wikle, 2011). This may be an excellent choice for representing the process, except it is a

discrete basis and requires a regular grid. Also, while it approximates the process well, it

typically requires a large truncation to approximate the kernel with desired accuracy. The

solution we present is the orthonormal basis corresponding to Hermite polynomials (Olver,

2010).

Physicist’s Hermite polynomials are defined as Hn(x) =
(
2x− d

dx

)n · 1. These

polynomials are orthogonal with respect to the weight function w(x) = e−x
2
. The specific

inner product for Hermite polynomials is
∫
Hm(x)Hn(x)w(x) =

√
π2nn!δnm. If we define

new polynomials h(x) = H(x)
√
w(x)/

√
(
√
π2nn!) then h(x) forms an orthonormal basis,

meaning that
∫
hm(x)hn(x) = δnm. These functions, h0, h1, h2, ..., are called Hermite

functions and they provide a basis which can be used for the series expansion in IDE

modeling. When using Hermite functions in a series expansion approximating a normal

density with mean µ and variance σ2, the coefficient corresponding to the n-th Hermite

function is

bn(µ, σ2) =
1√

(
√
π2nn!) (1 + σ2)

exp

(
− µ2

2(1 + σ2)

) n∑
k=0

Hn,kmk (4.1)

where Hn,k is the k-th coefficient in the n-th Hermite polynomial and mk is the k-th raw

moment of a normal distribution with mean µ/(σ2 + 1) and variance σ2/(σ2 + 1). Then

decomposing the kernel results in k(u|s,θ) =
∑K

n=0 bn(µ, σ)hn(x) and decomposing the

process yields Xt(s) =
∑K

m=0 am(t)hm(x). Because of the orthogonality of the Hermite

functions, the IDE integral in equation (2.2) becomes
∑K

n=1 an(t− 1)bn(s,θ), exactly what

is needed to obtain the representations in equation (2.5).

Figure 4.1 shows the shape of a few of these Hermite functions, as well as illustrates
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a potential problem. As can be seen, the squared exponential weight function causes the
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Figure 4.1: A few of the Hermite function basis functions are shown. The relative range of

the function increases as n increases.

function to decrease to 0 far from the origin, so Hermite functions are limited past a certain

value. For example, if the first 20 Hermite functions are used to estimate a kernel centered

at 15 and a variance of 1, the approximation would be inappropriate because the Hermite

functions near the mode of the distribution are restricted by the weight function. To avoid

this, the spatial locations for the data should be scaled. Resulting estimates of kernel

densities can be scaled back without consequence after they are sampled. If the spatial

locations are s1, s2, ..., sn with a range of sn − s1 = R and a center of c, define new spatial

locations s∗1, ..., s
∗
n where s∗i = (si − c)/(R/4). These new spatial locations are restricted
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Number of basis functions Suggested range

10 (-4,4)

20 (-5,5)

30 (-6.5,6.5)

40 (-8,8)

50 (-9,9)

Table 4.1: Suggested ranges are given for the corresponding number of basis functions.

between -4 and 4, but relative distances between adjacent points remain the same. The

actual distances will change, however, requiring such things as the range parameters in the

process covariance structure to be adjusted. Scale back the spatial locations afterwards by

si = (R/4)s∗i +c. If the new range is too small with respect to the number of basis functions

chosen, there is a risk of computational singularities when sampling from the posterior. If

the new range is too large, the approximation to the kernel is potentially inaccurate. Some

suggested ranges are given in Table 4.1. These ranges are found by graphical exploration

using a kernel with a standard deviation of .25. Using more than 60 basis functions may

require changing the floating point precision due to automatic rounding of small coefficients,

which can significantly alter the higher order terms of the polynomial. However, 50-60

Hermite basis functions will typically be more than sufficient for an accurate representation

of kernel shapes within a range of about -9 to 9. Depending on how wide the range is

with respect to the estimated kernel, a Hermite function basis may accurately approximate

a mixture of normals kernel with as few as 10 basis functions. Figure 4.2 shows how the

Hermite basis and Fourier basis differ when approximating the normal density using a small

number of basis functions. The difference can become even more dramatic when the kernel

width becomes smaller. There may be many reasons the Hermite basis performs better than
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the Fourier basis when approximating the Gaussian kernel. The first is that the exponential

weight of the Hermite functions matches the exponential tails of the Gaussian kernel, while

the Fourier basis is composed of functions with sinusoidal tails. Also, the range used for

the Fourier basis needs to be expanded past the data to account for its periodic nature.

Otherwise, the kernel would wrap around the edge of the data giving weight to the process

at locations on the opposite side of the range. The Hermite functions do not share this

concern.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

11 Hermite Basis Functions

x

fx

Gaussian Density
Basis approximation

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

11 Fourier Basis Functions

x

fx

Figure 4.2: The approximation to a normal density with mean 1 and variance .62 is compared

using 11 Hermite basis functions and 11 Fourier basis function over a range of -4 to 4.

4.3.2 Posterior Inference

The model to learn is given in equations (2.8) - (2.10). Section 2.4 outlines exactly

how to use FFBS to sample from the state parameters conditional on the kernel parameters

and observational and process variance. They can then be used in a Gibb’s sampler to
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conditionally sample from the posteriors of the other parameters. Standard kernel parame-

ter estimation involves Metropolis-Hastings. However, there may not be information in the

likelihood about the kernel parameters when using a DP mixture kernel to correctly learn

the posterior kernel. Estimation for DP kernel parameters is typically done by clustering

data (Ishwaran and James, 2001). Since no data is available to cluster and standard MCMC

methods will not work, we proposed advanced MCMC methods to learn the non-parametric

kernel.

Hamiltonian Markov Chain Monte Carlo (HMCMC) introduces latent variables,

p1, ..., pm for each parameter. These represent the momentum of the path the parameter

follows in the HMCMC chain and have N(0,Mi) priors. The momentum and position of

the proposal will change according to Hamiltonian physics. Standard Metropolis-Hastings

may take an excessive amount of iterations to converge to the posterior, if it ever does.

HMCMC is better suited for the large number of parameters and the complicated way

they are embedded in the likelihood. Not every parameter needs to be estimated using

HMCMC. For example, the atoms of the DP mixture may be sampled using HMCMC while

the common variance of the mixture component kernels may be estimated using standard

MCMC.

Hamiltonian Monte Carlo

Hamiltonian Markov chain Monte Carlo (HMCMC) involves taking the derivative

with respect to unknown parameters of the negative log of the target function, which in

this case is the posterior (Neal, 2011). If the prior of the parameter the derivative is being
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taken with respect to is p(θ), then the negative log of the relevant parts of the posterior is

−l(θ) = − log(p(θ)) +
1

2

T∑
t=1

(
at −Ψ′Bθat−1

)′
W−1

t

(
at −Ψ′Bθat−1

)
.

Expanding this out results in

−l(θ) = − log(p(θ)) +
1

2

T∑
t=1

(
a′tW

−1
t at − 2atW

−1
t Ψ′Bθat−1 + a′t−1B

′
θΨW

−1
t Ψ′Bθat−1

)
Using a handful of properties from matrix calculus we can find

d(−l(θ))
dθ

= −d(− log(p(θ)))

dθ
+

1

2

T∑
t=1

−2atW
−1
t Φ′

dBθ

dθi
at−1+2 tr

(
at−1a

′
t−1BθΨW

−1
t Ψ′

dBθ

dθi

)
,

where dBθ
dθ is a element-wise derivative of Bθ with respect to θ.

With the derivatives of the negative log posterior we apply the HMCMC leapfrog

algorithm. We can refer to the negative log posterior as E. A step size ε and number of

iterations, L, must be defined prior to the algorithm. Thus each proposal moves a total

distance of Lε. Latent variables, pi, are introduced for each parameter as independent

normal variables with zero mean and variance Mi. Then one leapfrog step given current

iteration (θb,pb) is

p(b+ε/2) = pb − ε

2

dE

dθ
(θ(b))

θ(b+ε) = θb + ε
p(b+ε/2)

m

p(b+ε) = p(b+ε/2) − ε

2

dE

dθ
(θ(b+ε))

The parameters leapfrog L times ending at new proposals for the posterior. The function

H(θ, p) is defined to be E(θ), which is the negative log likelihood, plus K(p) = 1
2

∑ p2i
Mi

The

new values (θ(b+1),p(b+1)) are accepted with probability

min(1, exp
(
H(θ(b+1),p(b+1))−H(θb,pb)

)
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. If the new value is rejected, it is set to the previous values. The method must be tuned to

accept and reject at reasonable rates, perhaps accepting between 40 and 60% of proposed

samples. Both L and ε can be tuned, where L × ε is closely associated with acceptance

rates.

For a normal distribution being approximated by a Hermite polynomial basis,

the derivative dBθ
dθi

is found by taking element-wise derivatives of the coefficients found in

equation (4.1). The derivative is

dbn
dθ

=
1

σ2
1√

(
√
π2nn!) (1 + σ2)

exp

(
− µ2

2(1 + σ2)

) n∑
k=0

Hn,k (µmk −mk+1) .

Again, Hn,k is the k-th coefficient in the n-th Hermite polynomial and mk is the k-th raw

moment of a normal distribution with mean µ/(σ2 + 1) and variance σ2(σ2 + 1). This can

be rewritten in terms of the coefficients as

dbn
dθ

=
1

σ2

(
µbn − bn+1 +

1√
(
√
π2nn!) (1 + σ2)

exp

(
− µ2

2(1 + σ2)

))
. (4.2)

Mixtures of normals result in more complex calculations than the normal, but the basis

coefficients of the mixture as a whole is simply the sum of the individual basis coefficients.

The derivative of the basis coefficients needed for the Hamiltonian MCMC is the weighted

sum of the derivatives of the basis coefficients of the normal components.

4.4 Simulations

To demonstrate how the spatial Dirichlet process mixture models will work in

the IDE setting with one-dimensional space, we fit the model to simulated data. Spatio-

temporal data following an IDE model is simulated at 300 spatial locations and 30 time
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points. The kernel is normal with mean 0 and variance 100 for locations 1 to 100, asymmetric

Laplace with θ = 0, µ = 5 and σ = 6 for locations 101 to 200 and stable with µ = 0, σ =

3, α = 1.3 and β = .5 for the last 100 points. The data is shown in Figure 4.3.

5 10 15 20 25 30

50
10

0
15

0
20

0
25

0
30

0
Simulated Data

Time

S
pa

ce

−0.6

−0.4

−0.2

0.0

0.2

0.4

Figure 4.3: Synthetic data. The data shown is simulated using the IDE model in equations

(2.8) and (2.9). The three partitioned areas use different kernels. There are 300 spatial

locations and 30 time points.

The model in equations (2.8) and (2.9) is fit to the data. The parameter set for an

SDP mixture kernel includes the variance of the individual component densities, σ20, which

will be the same value for every location and for every mixture component, the vectors of

atoms (µl(s1), ..., µl(sn)) for l = 1, ..., L, and the set of latent variables {ξ1, ..., ξL−1} which

contribute to the weights through stick-breaking. When using a Hermite function basis, the
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elements of the matrix Bθ are

Bθ(n, r) =
L∑
l=1

wl
1√

(
√
π2rr!) (1 + σ20)

exp

(
− µl(sn)2

2(1 + σ20)

) r∑
k=0

Hr,km
(l)
k (4.3)

where Hr,k is the k-th coefficient in the r-th Hermite function and m
(l)
i is the i-th raw

moment of a normal distribution with mean µl(s)/(σ
2
0 + 1) and variance σ20/(σ

2
0 + 1).

The number of spatially dependent parameters is reduced, using the discrete ap-

proximation of a kernel convolution (Higdon, 1998) on {µl(si); i = 1, ..., n}, such that

µl(s) ≈
∫
kζ(u, s)ζl(u)du, where ζl(u) is a white noise process. Functionally, we define

a kernel function and a grid, u1, ..., uq and draw ζl(ui)
i.i.d.∼ N(0, σ2ζ ), then set µl(s) =

µ0 +
∑q

i=1 kζ(ui, s)ζl(ui). To ease in estimation and interpretation, a smooth Gaussian pro-

cess is assumed for the kernel convolution. A Matern kernel is used with κ = 2.5 and an effec-

tive range of 40, and q is chosen to be smaller than n. The simulation uses 300 data locations,

but q is set to 50. This forces smoothness which is not appropriate when modeling data, but

in this application, a smooth transition of kernel shape from one location to the next is ex-

pected. This data reduction has consequences in the Hamiltonian MCMC, because inference

is now needed for the latent ζ variables. Because the variables are linearly related, an appli-

cation of the chain rule shows that ∂Bθ(n, r)/∂ζl(uj) =
∑M

m=1 kζ(uj , sm)∂Bθ(n, r)/∂µl(sm)

The posteriors for σ2 and τ2 are sampled conditionally from equations (2.11) and

(2.12) using IG(3, 2) priors. The matrix V is a Matern correlation matrix with κ = 1.5

and an effective range of 20. Then the kernel parameters σ20 and {ξl : l = 1, ..., L} are

sampled using standard Metropolis Hastings with posterior distributions proportional to

p(at|at−1, τ2, σ20, {ξl : l = 1, ..., L}, {ζl : l = 1, ..., L})p(σ20)
∏L−1
l=1 p(ξl), where the prior for

σ20 is a standard exponential distribution and the latent ξl variables have i.i.d. Beta(1, α)
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priors. The value for α is fixed at 2.5. Hamiltonian MCMC will be used to sample from the

posterior distributions of the latent variables {ζl(uj); l = 1, ..., L, j = 1, ..., q}. There are Lq

of these latent parameters, but the HMCMC is split up into L blocks, where each atom is

updated individually. HMCMC is used to propose and then accept or reject ζ1(u1), ..., ζ1(uq)

as a block, then move on to ζ2(u1), ..., ζ2(uq) and so on. The hyperparameters µ0 and σ2ζ are

sampled conjugately using N(0, 5) and IG(3, 10) priors respectively. The number of Hermite

polynomials used is truncated to 20 and the number of atoms used is truncated to 30.
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Figure 4.4: Synthetic data. Posterior mean kernel densities are shown from simulated data.

The three midpoints of the regimes are chosen to display. The posterior credible interval

for the kernel contains the true kernel well in each of these cases.

The posterior mean kernels for the midpoints of the three regions (locations 50,

150, and 250) are shown in Figure 4.4 along with 95% credible bands. The results show that

the three different kernels are successfully recovered. The computational methods employed

have allowed accurate estimation of an IDE model with a spatial DP mixture kernel. Figure

4.5 shows the advantage of using HMCMC on the DP atoms. The model has converged
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Figure 4.5: Synthetic data. Trace plots for the densities of the kernel at location s = 50

evaluated at u = 0. In the plot on the left, the atoms are updated via HMCMC and on the

right they are updated using Metropolis-Hastings.

when using HMCMC at 10,000 iterations. Using Metropolis-Hastings, it is not clear if it

has converged at all through 100,000 iterations, and if it has, the the chain shows a strong

autocorrelation. We will now see how the model performs when applied to a real data set.

4.5 Ozone Data Analysis

To illustrate the potential of the IDE model with DP and SDP mixture kernels, we

analyze the data set of ozone pressure and compare the model fits. Specifically, we will show

that the SDP mixture kernel IDE model performs significantly better in prediction than any

of the parametric kernels previously studied, including a spatially varying normal kernel.

The data is the same as that studied using parametric kernels in Section 3.2.2. We define

ozone variables for time t and location s as Yt(s) and the vector Yt = {Yt(st,1), ..., Yt(st,nt)}
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where there are nt spatial locations at time t. Similar to the model shown in section 3.2.2,

the model for a general kernel with parameter set θ is

Yt|at, σ2 ∼ N(Ψtat + Z
(1)
t1 + Z

(1)
t2 , σ

2I), t = 1, ..., T

at|at−1, τ2,θ ∼ N(GBθat−1, τ
2GV G′), Z

(1)
ti

Z
(2)
ti

 ∼ N


 cos(zi) sin(zi)

− sin(zi) cos(zi)


 Z

(1)
t−1,i

Z
(2)
t−1,i

 ,W
(Z)
t

 , i = 1, 2

σ2, τ2,W
(Z)
t ∼ p(σ2)p(τ2)p(W

(Z)
t )

θ|γ ∼ p(θ|γ), γ ∼ p(γ).

The matrices Ψt, Bθ, and G are derived from the basis function choice and the kernel

choice, as described in section 2.3. The matrix V is a fixed spatial covariance matrix.

To perform conditionally linear filtering for this model with the seasonal variables, we

augment the state vector to (a′t, Z
′
t1, Z

′
t2)′ and augment the process level evolution matrix

as a block diagonal. The model parameters σ2, τ2, and W
(Z)
t are treated similarly for each

model. The parameters σ2 and τ2 are given IG(3, 3) priors. The matrix W
(Z)
t is given a

prior of IW (10, 10I), which results in a conjugate posterior inverse Wishart distribution

conditional on the state vector. The model fit using a DP mixture kernel reacts poorly to

non-informative priors, but is insensitive to a wide variety of informative priors. For the

filtering, priors must be defined for m0 and C0, the mean vector and covariance matrix

of the time 0 state vector a0. The model may be sensitive to the specification of m0, so

some care must be taken to inform a prior for the time 0 process which lies relatively near

the data. For this analysis, m0 is specified to give the prior mean of the time 0 process

a constant value of 3. The covariance matrix C0 is specified as 4I, which is considerably
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diffuse for Hermite basis coefficients.

4.5.1 Dirichlet Process Mixture Kernel

This data set is analyzed using parametric kernels in section 3.2.2, where it was

determined that the stable distribution performed better in prediction and scoring. The

energy scores from equation (3.2) are calculated for each time point, resulting in 260 energy

scores for each model. This scoring procedure will be used again to compare different

models. The stable is a very flexible distribution with polynomial tails when α < 2. The

results of the previous analysis showed that, when a stable family of distributions is used

for the kernel, the posterior distributions of certain parameters suggest the true kernel is

skewed left. The Dirichlet process can also represent heavy tailed and skewed distributions,

but it can go beyond the stable family in representing a variety of other features as well.

For the DP mixture kernel, the parameter set includes the latent variables defining

the weights, ξ1, ..., ξL−1, the atoms µ1, ..., µL, and the kernel variance σ20. The priors for

the atoms is N(µ0, σ
2
µ) and the prior for the latent variables are Beta(1, 2.5). We place

hyperpriors on µ0 of N(0, 1002) and on σ2µ of IG(2.5, 300). Again, the model is insensitive to a

wide array of informative priors, but using priors which are too diffuse can delay convergence

of the HMCMC. Figure 4.6 shows the estimated posterior means of the densities.

The two densities are very similar. The main difference is the thickness of the

left tail. The DP mixture kernel model scored lower than the stable distribution model

64% of all time points, suggesting that there is an advantage to using the DP mixture,

but perhaps for many situations, it may not be enough of an advantage considering the

extra parameters. Of course, if this data is non-stationary, then these results will be greatly
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Figure 4.6: Ozone data. The posterior mean densities are shown for the stable distribution

and the Dirichlet process mixture of normals kernels, with 95% credible bands. The two

fits are very close to each other.

66



affected. Further studies on stationary data sets will reveal more information on how these

two models compare. To improve upon the model fit for ozone data, the SDP mixture

kernel should be used.

4.5.2 Spatial Dirichlet Process Mixture Kernel

In all, six different kernels are used to fit the IDE model to the ozone pressure

data: normal, asymmetric Laplace, stable, Dirichlet process mixture of normals, spatially

varying normal, and spatial Dirichlet process mixture of normals. The size of the kernel

parameter set, θ, for this analysis varies from 2 for the normal to over 1,000 for the SDP

mixture. The spatially varying normal kernel IDE model uses a convolution described in

the section 4.4 simulation for both the mean and the log variance. Again q is set to 50,

which is to say there are 50 locations to place knots ζ = (ζ(u1), ..., ζ(uq))
′, which are

distributed as normal random variables with mean 0 and variance σ2ζ . Then a discretized

version of the kernel convolution is used by assigning the mean process at points s1, ..., sn to

(µ(s1), ..., µ(sn))′ = Kζ+µ01. The random variables in ζ will be estimated using HMCMC.

By construction, the prior for each ζ random variable is N(0, σ2ζ ). A similar treatment is

used for the log variance, with latent variables η = (η(u1), ..., η(uq))
′ which are i.i.d. from

N(0, σ2η). The log variance is set to (log(σ2(s1)), ..., log(σ2(sn)))′ = Kη + µσ1.

For the spatially varying Gaussian kernel and the SDP mixture kernel, the prior

mean µ0 has a N(0, 502) hyerprior and the variance of the SDP mixture kernel, σ20, has a

Gamma(10, .1) prior. An IG(3, 100) prior is placed on σ2ζ and σ2η, and a N(100, 100) prior is

used for µσ. While extensions can be made, for simplicity in the illustration α is fixed at 2.5

and the DP is truncated to 30 atoms. The location of the knots used in the convolution and
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the amount chosen may significantly impact the model. Choosing too few knots or failing to

place knots outside the spatial boundary of the data can affect how well the model performs

in certain regions.
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Figure 4.7: Ozone data. The curves are estimated posterior means of the kernel densities

for the spatial DP mixture kernel IDE. The X’s on the x-axis show the spatial location

associated with the kernel of the matching color.
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Figure 4.8: Ozone data. Mean expected value and variance of the sampled SDP mixture

kernel and spatially varying normal kernel across the locations of the data.

20,000 samples from the posterior were taken after careful tuning of the Hamilto-

nian MCMC and Metropolis-Hastings steps. The estimated posterior mean of the kernel
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density for the SDP mixture model will change across space. Figure 4.7 shows the posterior

mean point estimates of the kernel for an array of spatial locations. The X’s on the x-axis

show the spatial location and the density with the matching color is the estimated posterior

mean kernel at that location. The kernel shifts skewness from left to right throughout the

range of the data. The kernels in the higher altitudes of the data have heavier tails than

the kernels in the lower altitudes. Also, some bimodalilty is seen. While bimodality may be

tough to interpret in a physical sense, it is a feature which would be impossible to recreate

using a less flexible kernel. To compare with the spatially varying normal kernel, Figure 4.8

shows how the expected value and variance of the sampled kernels vary across space. There

is a clear association. The variance of the SDP mixture, however, is consistently larger than

the spatially varying normal. One-step ahead prediction profiles for 3 different time points

are shown for all 6 of the models in Figure 4.9. We see how the model improves with the

flexibility of the kernel.

For each time point we calculate the energy scores from equation (3.2) and com-

pare. Lower is better for these energy scores and for 222 of the 260 time points, the spatial

DP mixture of normals kernel IDE model has the lowest energy score. The spatially varying

normal kernel IDE model has the lowest score for 20 of the remaining time points. The

stable and the Dirichlet process kernels scored lowest 9 times each and the stationary nor-

mal and asymmetric Laplace never did. The stable and DP mixture models did have lower

scores than the Gaussian process mean kernel 12% of the time. From the profiles and the

scoring procedures, it is clear that using spatially varying parameters is advantageous de-

spite the difficulty of learning the complicated models. Also, the spatial DP mixture model
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Figure 4.9: Ozone data. Profiles for one-step ahead predictions for all 6 models are shown

for 3 time points. 72



clearly performs the best. Figure 4.10 shows the fitted values and residuals for the SDP

mixture model.
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Figure 4.10: Ozone data. On the left are the fitted values for the SDP mixture kernel IDE

model. The right plot shows residuals for the IDE model.

The frequencies of the harmonics were chosen by comparing model fits when using

the parametric kernels, but the non-stationary models or the DP mixture kernel models

may require different harmonics or more of them. By using harmonics the resulting forecast

function includes a cyclical sinusoidal element. The amplitude and phase of this forecast

function for the SDP kernel IDE model can show how the harmonics affect the model.

According to West and Harrison (1997), we find the amplitude from the state variables as∑2
i=1

√∑2
j=1 Z

(j)2
ti . The amplitude of the first harmonic averages 0.108 for all time points

and decreases slightly from 1996 to 2006. The second harmonic averages 0.76 and increases
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slightly over the time span. The values for the phase shift are arctan(−Z(2)
ti /Z

(1)
ti ). The

posterior means for the phase vary randomly about 0.

4.6 Conclusion

We have explored the full potential of IDE models by using Bayesian nonparametric

kernels. Despite the computational concerns, when the model can be fit properly, it is very

powerful. The spatial Dirichlet process mixture of normals kernel is able to capture a

variety of spatio-temporal effects which are unable to be recovered using other kernels. For

our ozone example, we saw our model switch the direction it was skewed several times.

There may be some underlying physical explanation as to why we observe this. Also,

different regions can have heavier tails. Capturing complicated tail behavior may be easier

when it is allowed to change over space instead of coercing the tails of all locations to be

equal. Scoring procedures and profile plots have shown that for prediction, the SDP mixture

kernel IDE model performed better than the stationary IDE models. The spatially varying

normal kernel also seemed to perform better than the stationary kernel IDE models, but

not as convincingly. To avoid the many potential pitfalls to fitting these models, we propose

careful consideration of basis function, estimation technique, as well as truncations points.

The Hermite basis function appears to be a good basis choice for a mixture of normals,

if used properly. We have proposed Hamiltonian MCMC updates for the atoms of the

Dirichlet process mixture.

Extending this to two dimensions has proven to be difficult. Any computational

problems in one-dimensional space are much more severe in two-dimensional space. Simu-
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lations suggest that not even HMCMC techniques are able to learn the SDP mixture kernel

parameters. Some other advanced sampling methods may be able to learn the parameters

in this case.
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Chapter 5

Bivariate Stable Kernel IDE

Modeling

5.1 Introduction

Previous chapters have argued the value of using flexible kernels in IDE modeling

and have provided strong evidence that it results in improvement of model accuracy and

prediction. To help in interpretation of the more complex kernels and to provide a more

complete illustration of the added benefits, these arguments were made in one-dimensional

space. There are a number of practical concerns for extending the model to two dimen-

sions. Convergence of parameters has proven difficult for non-parametric 2-dimensional

kernels, and reproducing kernels used for simulated data has not been achieved. While

one-dimensional data sets exist, such as the ozone data presented in chapters 3 and 4,

river data, and ocean depths, the majority of spatio-temporal data sets are measured in
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two-dimensional space. In this chapter we propose flexible kernel IDE modeling for two di-

mensions. We achieve this by using a stable kernel, which is defined through a measure, Γ,

which controls characteristics of the shape of the kernel. Flexible modeling of the measure

results in a large variety of kernel shapes. While estimation of stable kernel IDE models is

more feasible than non-parametric kernels, it is not without challenges. Flexibly modeling

the measure itself must be carefully considered.

Section 5.2 covers some relevant details which will be used in the fitting of IDE

models with stable distributions. Methods of modeling the measure and learning the model

are given in section 5.3. Section 5.4 details an analysis of sea surface temperature data

with the focus on prediction. We show that the IDE model with a stable kernel improves

prediction over the normal kernel IDE model.

5.2 Theory

Several details must be specified for successful IDE modeling using bivariate stable

kernels. We begin with definitions in section 5.2.1, including the connection between the

measure, Γ, and the shape of the kernel. To measure the advantages of using a stable kernel

over the elliptically symmetric Gaussian kernels, symmetry considerations of the stable

kernel are discussed in section 5.2.2. Finally, details of using real-valued Fourier series for

the bivariate stable density are detailed in section 5.2.3.
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5.2.1 Stable Distributions

A bivariate vector X belongs to the stable family of distributions if and only if

for any constants A and B and independent copies X(1) and X(2), there exists a constant

C and vector D ∈ R2 such that AX(1) + BX(2) = CX +D (Samorodnitsky and Taqqu,

1997). Many additional properties stem from this definition, such as infinite divisibility

and the lack of finite moments. As a family of distributions with no finite moments, the

stable family has been used for a variety of infinite variance applications, such as financial

data (Nolan, 2014; Panorska, 1996) and signal processing with heavy-tailed noise (Nolan

et al., 2010). The one-dimensional stable distribution is described in section 3.1.2. In one

dimension, the stable family is defined by 4 parameters: µ ∈ R is a location parameter,

c > 0 is a scale parameter, α ∈ (0, 2] controls the thickness of the tails, and β ∈ [−1, 1]

controls skewness. The characteristic function in one dimension is given in equation (3.1).

The multivariate stable characteristic function for α 6= 1 is

g(t|α,µ,Γ) = exp

{
it′µ+

∫
s∈Sd

|t′s|α(1− i sign(t′s) tan(πα/2))Γ(ds)

}
. (5.1)

Relating this to the one-dimensional stable distribution, the vector µ is a location parameter,

α controls tail behavior, and the measure Γ controls characteristics of the distribution such

as skewness, orientation, and spread, effectively replacing both c and β. For a stable vector

of size d, the integration space Sd is the unit sphere is Rd. For 2 dimensions, S2 is the

unit circle. For this special case, a change of variables can be made to s = (cos(z), sin(z))′

where the integral will now be taken over z ∈ [0, 2π]. The unscaled density of the measure,

γ = dΓ, must be non-negative, but can take on a variety of other shapes. Figure 5.1 shows

how the shape of the distribution changes with γ. The skewness of the data set changes

78



when γ(z) and γ(z + π) are more disparate. The spread of the distribution changes with

the scale of the measure, meaning a measure which is larger for all z will have a larger

spread. The orientation of the distribution will rotate with a shift in γ. A variety of other

distributional shapes can be achieved by combining these properties.

5.2.2 Symmetry

Elliptically contoured stable distributions are a simplification of stable laws (Nolan,

2013) and have characteristic functions of the form exp (−(t′Σt)α/2 + it′µ). Tasks which

have proven difficult for the multivariate stable, such as evaluating the density and estimat-

ing parameters, are simplified when using elliptically contoured stable distributions. These

are also referred to as sub-Gaussian distributions because they can be represented as a scale

mixture of normals. A stable distribution is called symmetric α-stable if there exists a µ

such that −X + µ
d
= X + µ. This property is equivalent to that of elliptical symmetry,

although elliptical symmetry is often defined using the first and second moments, which

the stable distribution will not have. A major advantage the stable kernel IDE model will

have over the Gaussian kernel IDE model is that it can achieve skewness, thus it will be

important to measure how skewed a given stable distribution is. There is a specific form of

Γ which ensures elliptically contoured stable laws (see equation 2.5.8 in Samorodnitsky and

Taqqu (1997)). The measure Γ can also determine elliptical symmetry.

Lemma 6. Let X follow a bivariate stable distribution with location parameter µ and

measure Γ. The property that γ(z) = γ(z + π) for z ∈ [0, π] is necessary and sufficient for

the distribution of X to be elliptically symmetric.
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Figure 5.1: The shape of the bivariate stable changes with Γ. For all these plots, µ = (0, 0)′

and α = 1.5. In the top row γ is a changing step function resulting in a skewed distribution.

In the middle row, γ is a changing constant function resulting in different spreads of the

distribution. In the bottom row γ is a sine function with a changing shift, resulting in

different orientations of the distribution.
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Proof. Without loss of generality, assume µ = 0. Using a Fourier representation of the

density, f(X) = (2π)−2
∑
t∈Z2

g(t|α,Γ)eit
′X . The value f(X) − f(−X) can be simplified

to (2π)−2
∑
t∈Z2

(g(t|α,Γ)− g(−t|α,Γ)) eit
′X using a simple transformation. First assume

that the distribution is symmetric, which implies f(X)−f(−X) = 0. Properties of Fourier

and inverse Fourier transforms show that this is equivalent to g(t|α,Γ)−g(−t|α,Γ) = 0 for all

t ∈ Z2. By collecting terms and dividing constants, this becomes
∫ 2π
z=0 sign(t′s)|t′s|αΓ(dz) =

0. The integral can be split and simplified into
∫ π
z=0 |t

′s|αdΓ(z) −
∫ π
θ=0 |t

′s|αdΓ(z + π) = 0

for all t ∈ Z2, which holds true only when γ(z) = γ(z + π) for z ∈ [0, π].

To find the reverse, assume that γ(z) = γ(z + π). By working backwards in the

above proof, this implies
∫ 2π
z=0 sign(t′s)|t′s|αΓ(dz) = 0. The characteristic function then

becomes g(t|α,µ,Γ) = exp
{∫ 2π

z=0 |t
′s|α tan(πα/2))Γ(dz)

}
. Then g(t|α,Γ)− g(−t|α,Γ) = 0

and f(X)− f(−X) = 0, resulting in the property of elliptical symmetry.

Varying degrees of skewness can be achieved with more or less disparate values of

γ(z) and γ(z + π).

5.2.3 2-Dimensional Fourier Series

The typical method for fitting an IDE model to spatio-temporal data involves

decomposing the process and the kernel into an orthonormal basis series expansion. A

frequent choice is the Fourier series, due to the connection between the Fourier transform

for probability densities and the characteristic function. In one dimension, the Fourier

basis functions {exp (ikx) : k = 0,±1,±2, ...} are often replaced with real valued functions

cos(kx) and sin(kx) for k = 0, 1, 2, .... The replacement of the bivariate Fourier complex-
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valued basis functions with real-valued functions is not used as frequently in literature.

If the characteristic function of a density is g(t) then the function can be represented as

f(x) = (2π)−2
∑

t1=0,±1,...
∑

t2=0,±1,... e
it′xg(t). When g(t) = exp (a(t) + ib(t)) the real

basis functions are cos (t′x) and sin (t′x) and the attached coefficients of the expansion

are respectively exp (a(t)) cos (b(t)) and exp (a(t)) sin (b(t)). The basis coefficients can be

simplified further by combining the positive and negative indices of the expansion. The basis

functions would remain the same, but only the indices where t1 ≥ 1 for all t2 or for t2 ≥ 0

when t1 = 0 will be included in the basis function set. The new coefficients of these basis

functions in an expansion for a density will be exp (a(t)) cos (b(t)) + exp (a(−t)) cos (b(−t))

and exp (a(t)) sin (b(t))− exp (a(−t)) sin (b(−t)) except for when j = k = 0, for which case

the basis coefficient is exp (a(0)) cos (b(0)). The specific application of the Fourier series

expansions used for IDE modeling requires this simplification to make the matrix which

maps the basis coefficients to the data to be full rank.

The stable distribution is used in a variety of applications where the density is

required. This has led to a number of efforts to approximate or recreate the kernel in some

way. These include discretization of the Γ measure (Byczkowski et al., 1993), and using one-

dimensional projections (Abdul-Hamid and Nolan, 1998; Matsui and Takemura, 2009). A

motivation for these approaches is computational feasibility in higher dimensions. The lack

of scalability of Fourier series approximations could be a reason why it is not commonly used

to represent the stable density. For the specific application of the IDE, only a bivariate stable

is required, so a Fourier series approximation will be a reasonable method of approximating

the density. The characteristic function for the multivariate stable in equation (5.1) can be
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written for the bivariate case as exp (a(t) + ib(t)) where a(t) =
∫ 2π
z=0 |t

′s|α tan (πα/2)Γ(dz)

and b(t) = t′µ−
∫ 2π
z=0 sign(t′s)|t′s|α tan (πα/2)Γ(dz). Recall that s = (cos(z), sin(z))′. Table

1 reviews the properly scaled Fourier basis functions and coefficients for the bivariate stable

distribution. These basis coefficients are for t1 ≥ 1 for all t2 and for t2 ≥ 1 when t1 = 0.

The basis coefficient when t1 = t2 = 0 is (2π)−1, and only the cosine basis function should

be included.

Basis Function Coefficient

(2π)−1 cos (t′x) (π)−1 exp (
∫ 2π

z=0
|t′s|α tan (πα/2)Γ(dz)) cos (t′µ−

∫ 2π

z=0
sign(t′s)|t′s|α tan (πα/2)Γ(dz))

(2π)−1 sin (t′x) (π)−1 exp (
∫ 2π

z=0
|t′s|α tan (πα/2)Γ(dz)) sin (t′µ−

∫ 2π

z=0
sign(t′s)|t′s|α tan (πα/2)Γ(dz))

Table 5.1: Basis functions and coefficients for a real-valued Fourier basis expansion of the

bivariate stable distribution.

5.3 Methods of Posterior Inference

Using the basis function decomposition of the process and the distribution, the

IDE model with a stable kernel can be represented by equations (2.8) - (2.10). For the

bivariate stable kernel, the parameter set, θ, includes µ, α, and Γ. A rich body of literature

has been dedicated to learning the parameters of the stable distribution. These methods

are typically data-based, such as forming an empirical characteristic function (Nolan et al.,

2001), or empirical likelihoods (Ogata, 2013). A Bayesian treatment of estimating stable

parameters is found in Salas-Gonzalez et al. (2010), though it is restricted to modeling

mixtures of symmetric α-stable distributions. Estimation can be simplified by restricting to
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elliptically contoured stables (Nolan, 2013). Data based methods will not be possible with

how the distribution is embedded into the IDE model. Using the Fourier representation,

likelihood based inference methods are possible for the kernel parameters.

5.3.1 Bernstein Polynomials

We place a Bernstein polynomial basis prior on Γ to produce a flexible construction

(Petrone, 1999). Because Γ need not be a proper probability distribution, a scale parameter

which contributes to the spread of the distribution is added. The measure can be written

as

γ(θ) = c

M∑
m=1

wM,mB(θ;m,M −m+ 1)

where B(θ/2π;m,M − m + 1) is a Beta density function. The weights are deterministic

given a base distribution F . They are

wM,m = F
(m
M

)
− F

(
m− 1

M

)
.

By making F random and choosing a large value of M , the resulting measure becomes a non-

parametric prior on the space of 0 to 2π. For example, the weights can be realizations from

a Dirichlet distribution with parameters {α
(
F0

(
m
M

)
− F0

(
m−1
M

))
,m = 1, ...,M}, where F0

is some base distribution. With this definition of γ, a very large set of probability measures

can be used.

Because these parameters are learned in an MCMC setting while embedded into a

complicated model, learning the weights may be difficult with a Dirichlet process motivating

the base distribution. To simplify the model while maintaining a great deal of flexibility,

we use a geometric weights prior for F (Mena et al., 2011). This is done by drawing atoms
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x1, ..., xJ from a uniform on 0 to 2π and assigning weight q(1 − q)j−1 to atom xj , where

q ∼ Beta(1, α). Combining equations (2.8) and (2.9) with details about the kernel the full

IDE model is

Yt|at, σ2 ∼ N(Ψtat, σ
2It), t = 1, ..., T (5.2)

at|at−1, τ2,θ ∼ N(GtBθ,tat−1, τ
2GtVtG

′
t) (5.3)

γ(z) = c
K∑
k=1

wM,mBeta(z/2π|m,M −m+ 1)/2π (5.4)

wM,m = F
(m
M

)
− F

(
m− 1

M

)
, f(·) =

J∑
j=1

q(1− q)j−1δxj (·) (5.5)

q ∼ Beta(1, α), xj
i.i.d.∼ Un(0, 2π), µ, c ∼ p(µ)p(c). (5.6)

The latent xj variables only enter into the model by assigning weight q(1−q)j−1 to whichever

region, ((m−1)/M,m/M), it lies in. Thus we can reparameterize the Bernstein polynomial

weights as

wM,m =
J∑
j=1

q(1− q)j−1Zjm (5.7)

(Zj1, ..., ZjM ) ∼ Multinomial(1, (1/M, ..., 1/M)), j = 1, ..., J (5.8)

This replaces a continuous latent variable with a discrete variable, which will aid in the

estimation. By construction, only one of Zj,1, ..., Zj,M will be 1 and the rest will be 0, so

the dimensionality of the new parameter set is effectively the same as it was before. The

parameters in Γ are c, q, and {Zj,m, j = 1, ..., J,m = 1, ...,M}.

To construct a non-stationary spatio-temporal process, the parameters µ, c, and q

will be spatially varying. The result will be Gaussian process priors on µ(s) and log (c(s)).

To generate a spatially varying geometric weight, we remove the Beta prior and make a
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latent process u(s) which has a Gaussian process prior. Then q(s) = φ(u(s)), where φ

is the standard normal distribution function. The latent assignment variables {Zj,m, j =

1, ..., J,m = 1, ...,M} will not be spatially varying. Figure 5.2 shows how the kernel can

change with q. Even though the atoms are the same for each kernel, the shape can drastically

change in both skewness and orientation by only varying q. Also, Figure 5.2 shows that

the kernel will vary smoothly with q, so because kernels at nearby locations will have more

similar values for q, the kernel shape will be more similar. This smooth transition of kernel

shape is what will be expected for spatio-temporal models. One computational advantage

this model will have compared to the spatially varying Gaussian kernel IDE model is that

it can achieve a wider array of kernel shapes with one fewer spatially varying parameter.

5.3.2 Posterior Sampling

The state vectors {a0, ..., aT } will be sampled via dynamic linear model filtering

as shown in section 2.4. The kernel parameters will be updated using MCMC sampling.

In the spatially varying case, the spatial process parameters will be calculated via a kernel

convolution (Higdon, 1998) for µ1, µ2, c, and q. There will be a grid of knots u1, ..., uQ

and latent variables ζµ1 = ζµ1(u1), ..., ζµ1(uQ) which are i.i.d. N(0, σµ1). Then the process

will be µ1(s) = µµ1 +
∑Q

i=1 kζ(ui, s)ζµ1(ui). Using Gibb’s sampling within MCMC, the

posterior distribution for the latent variables are proportional to p(at|at−1, τ2, σ20, {ζµj (ui) :

j = 1, 2}, {ζc(ui)}, {ζq(ui)})p({ζµ1(ui)}). The process will be similar for µ2(s), c(s) and

q(s). The prior for the latent variables ζµ2(ui) are N(0, σµ2). The kernel convolution will

be applied to the log variance, resulting in a prior of N(0, σc) for ζc(ui) where log(c(s)) =

µc+
∑Q

i=1 kζ(ui, s)ζc(ui). Using a probit transform, we can assign a Gaussian process to the
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Figure 5.2: A bivariate stable density is shown with a scaled Bernstein polynomial measure

and a geometric weights base distribution. µ = (0, 0)′ and c = 2π for each plot. Only the

geometric weight, q, changes. The first 10 atoms are (2, 5.14, 3.6, .4, 3.4, .6, 3.5, .5, 3.5, .5).

The other atoms were randomly drawn.
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inverse normal CDF of the process q(s). This results in φ−1(q(s)) = µq+
∑Q

i=1 kζ(ui, s)ζq(ui)

where ζq(ui) ∼ N(0, σq). The parameter σµ1 is given an Inverse Gamma (IG) prior. Con-

ditional on ζµ1(ui) for i = 1, ..., Q, the posterior distribution for the hyperparameter will

also be IG. The posterior distributions for σµ2 , σc, and σq will also be conjugate if they

are paired with IG priors. With normal priors on µµ1 , µµ2 , µc, and µq, the posteriors are

conjugate as well.

The parameter α for the stable distribution can be difficult to learn. To aid in

estimation, we assume a discrete prior for α, between 1 and 2. With a uniform discrete

prior, the posterior probability that α = ai is proportional to the likelihood evaluated at

α = ai. Another advantage of discretizing α is that the integrals in the basis coefficients

from Table 5.1 can be calculated prior to the MCMC for each Bernstein polynomial and for

each possible value for α, resulting in a significant speed-up. The Zj,m variables are also

discrete. For each set Zj1, ..., ZjM , the single variable which is equal to 1 can be sampled

from a discrete posterior. Allowing lj to be an indicator variable where lj = m when Zjm

is 1, the probabilities are again proportional to the likelihood evaluated at lj = m, which

means that it can be sampled discretely with posterior probability

p(lj = m|{at : t = 1, ..., T}, ·) =

∏T
t=1 p(at|at−1, ·, lj = m)p(lj = m)∑M

i=1

∏T
t=1 p(at|at−1, ·, lj = i)p(lj = i)

.

This should be done for all J sets of latent variables. The discreteness of these variables

lends itself to parallelization, as does sampling the discretized variable α. This is done by

sending the calculations of the components of the discrete probabilities to different nodes

and then collecting the proportional posteriors to calculate the probabilities. For a large

enough data set and using M nodes, this has been seen to double the speed of the MCMC.
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For this work, the parallelization was done in C++ using openMP.

5.3.3 Thresholding

The method of decomposing the process and the kernel using a basis expansion

requires specification of how to truncate to a finite number of basis functions. In one

dimension, the number of basis functions required for accurately representing the kernel

in IDE modeling is reasonable, perhaps between 20 and 100. To achieve the same level

of accuracy in 2 dimensions, hundreds of basis functions could be required. The main

determining factor of the optimal number of basis functions to use is the width of the

kernel compared to the range of the data. For example, when using a normal kernel, a

higher variance requires fewer basis functions. This means that the optimal number of

basis functions to use is not constant but changes throughout the MCMC. Recall that Bθ

is a matrix where the (i, j)-th element is the j-th basis function at location si. Figure 5.3

shows how the width of the kernel affects the number of influential basis functions. The left

plots show the kernel and the right plots show the largest basis coefficient of all the locations

by basis function. Essentially, it is the column maximum of the matrix Bθ. The kernel is

the stable distribution. The only difference between the kernel in the top and bottom rows

is the parameter c, which doesn’t affect the location or orientation, just the scale. The plots

on the right show that the larger kernel requires a smaller number of basis functions. Two

other observations can be made from this. The first is that a small percentage of these

are significantly larger than 0. The other observations is that the size of the coefficient is

not fully determined by the order of the frequencies. As basis function index increases, the

frequency of the function increases. The general trend is that the coefficients get smaller,
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Figure 5.3: The left plots show the kernel and the right plots shows the maximum coefficient

for every basis function. The first half corresponds to cosine basis coefficients and the second

half corresponds to sine basis coefficients, hence the two peaks.
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but several smaller frequency basis functions are not significant. By exploiting these facts

the dimension of the state space can be intelligently decreased.

The MCMC can be adjusted at each iteration to include only the most important

basis functions and decrease computational time of the algorithm. After calculating Bθ,

the column maximum of Bθ can be used to decide the number of basis functions. There are

several options for thresholding in the literature. Hard thresholding and soft thresholding

are two of the most common. Hard thresholding involves setting all coefficients less than

a certain value to 0, b∗j = bj × I(|bj | > ε). Soft thresholding additionally subtracts ε from

values which are non-zero, b∗j = sign(bj)(|bj | − ε)I(bj > ε). There are several arguments for

and against either of these thresholding techniques. A more elegant option is the threshold

based on the generalized double Pareto distribution (Armagan et al., 2013). Using this more

technical approach maintains the continuity of the target function without over-shrinking.

This method sets bj to 0 when bj < ε
√

(α+ 1). When bj > ε
√

(α+ 1) then

b∗j =


bj−ε
√

(α+1)+[b2j+2bjε
√

(α+1)−3ε2(α+1)]1/2

2 if bj > 0

bj+ε
√

(α+1)−[b2j+2bjε
√

(α+1)−3ε2(α+1)]1/2

2 if bj < 0

The value for ε defines the level of truncation and α controls the shrinkage. In order to be

able to predict the length of the learning algorithm, it may help to keep the number of basis

functions constant. The only way to accomplish this would be to change the thresholding

level, which is ε in the equations above. This approach will also ensure that a reasonable

number of basis functions will always be present. For this work, the generalized double

Pareto thresholding was used with ε chosen to yield a fixed number of basis functions for

each iteration of the MCMC.
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5.4 SST Data Analysis

Sea surface temperature (SST) in the tropical Pacific Ocean has been useful in

predicting certain phenomenon (Philander, 1985). The most prominent of these is the

El Niño, which is a warming occurring between -5◦ and 5◦ Latitude and 180◦ and 240◦

E Longitude. This warming results in a shift of nutrients in the water which can affect

agriculture and economy in several countries. There is a rich history of work dedicated to

predicting when El Niño will occur, and its counterpart La Niña which follows. It follows

a 2 to 7 year cycle and typically begins in Autumn, staying as long as a year. While many

deterministic physical models have arisen to explain and predict the occurrences (Jan van

Oldenborgh et al., 2005), much success has come from simply using Sea Surface temperature

data over a large region in the Pacific Ocean in a stochastic model. These methods include

linear systems (Penland and Magorian, 1993), but nonlinear methods have proven more

successful (Wikle and Hooten, 2010; Cressie and Wikle, 2011). Non-linear methods have

been applied to this exact SST data in the context of IDE models (Wikle and Holan, 2011),

although the specific nature of the kernel distribution was not the focus of that application.

We will illustrate the bivariate stable kernel for IDE modeling using SST data.

The data includes 2261 locations on a 2◦ by 2◦ resolution grid. It is collected monthly

from January 1970 to March 2003. The anomalies of 9 months of this data is shown in

Figure 5.4. It is known that a mild El Niño began in late summer of 2002. It can be seen

in the figure how the warm temperatures gather near the equator East of the Date Line,

indicating El Niño. We will compare the spatially varying stable kernel with the spatially

varying Gaussian kernel to see how effective it is in prediction, and specifically to see how
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the models perform when predicting the 2002 El Niño phenomenon months in advance.

We apply the model in equations (5.2) - (5.6) to the SST monthly anomalies, sub-

stituting in equations (5.7) and (5.8) when appropriate. The parameter space is quite large,

including the observational variance σ2, the process variance τ2 and the kernel parame-

ters, which include the latent variables involved in the kernel convolution for the processes

µ(s), q(s), and c(s), and the hyperparameters for the latent ζ parameters for each process.

The locations of the data are given in latitude and longitude, but for the analysis they

are scaled to between -10 and 10 in both directions and then scaled back to the original

locations for inference. The full model is:

Yt|at, σ2 ∼ N(Ψat, σ
2It), t = 1, ..., T, σ2 ∼ IG(ασ, βσ)

at|at−1, τ2,θ ∼ N(GBθat−1, τ
2GV G′), τ2 ∼ IG(ατ , βτ )

γ(z) = c(s)

M∑
k=1

wM,mBeta(z/2π|m,M −m+ 1)/2π, α ∼ p(α)

wM,m =
J∑
j=1

q(s)(1− q(s))j−1Zjm, (Zj1, ..., ZjM ) ∼ MN(1, (1/M, ..., 1/M))

φ−1(q(s)) = µq1 +Kζζq, ζq(ui) ∼ N(0, σq), µq, σq ∼ p(µq)p(σq)

log c(s) = µc1 +Kζζc, ζc(ui) ∼ N(0, σc), µc, σc ∼ p(µc)p(σc)

µi(s) = µµi1 +Kζζµi , ζµi(ui) ∼ N(0, σµi), µµi , σµi ∼ p(µµi)p(σµi)

The construction of Bθ, Ψ, and G are detailed in section 2.3. The matrix V is the unscaled

spatial covariance matrix based on a Matern covariance function with κ = 1.5 and an

effective range of 2. The number of Bernstein polynomials used is M = 40. The priors for

σ2 and τ2 are IG(5, 3). The matrix Kζ maps the latent ζθ = (ζθ(u1), ..., ζθ(uQ))′ vectors for

θ ∈ {q, σ, µ1, µ2} to the processes governing the IDE kernel parameters. The values of Kζ
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(a) April 2002 (b) May 2002

(c) June 2002 (d) July 2002

(e) August 2002 (f) September 2002

(g) October 2002 (h) November 2002

Figure 5.4: Data is shown for sea surface temperature anomalies from April to December

2002.
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correspond to convolution kernel where the (i, j)-th element is kζ(si−uj). The convolution

kernel is a Matern function with κ = 2.5 and an effective range of 4 for all the parameters,

forcing a smooth evolution of the processes across the domain. The knots are chosen on

a 20 by 20 grid from -11 to 11 in both directions, resulting in a dimension reduction of

the spatially varying parameter sets from 2261 to 400. The priors for the means of these

processes are µq ∼ N(−1, .5), µc ∼ N(0, 4), and µµ1 , µµ2 ∼ N(0, 1). The scale terms for

the process covariances are given priors of IG(4, 3) for σc and σµi and IG(10, 6) for σq.

These priors are based on the scale of the data and reasonable shapes of kernels, but aren’t

too restrictive. The process q(s) is very sensitive to these priors, as the posterior is not

necessarily identifiable, especially for very diffuse priors. There may be several combinations

of q(s) and the latent Zjk variables which results in the same values for wM,m, which should

be identifiable. The other parameters are not overly sensitive to the prior.

The model is fit using MCMC methods described in 2.4. 75,000 samples were

taken of the posterior distributions with the first 60,000 as burn-in, leaving 15,000 samples.

The convergence was checked using trace plots of the values of the kernel densities at each

location. That is to say that the trace plots suggested convergence by 60,000 iterations of

the values for k(s|µ(s), σ(s), q(s)) for various locations throughout the domain of the data.

The means of the in-sample posterior predictive distributions of the data for the months

leading up to the 1997 El Niño are shown in Figure 5.5. Similar accuracy can be seen for

all time points.

The posterior kernel and associated measure may reveal information about the

nature of dependence between locations. In section 5.2.2, the property of elliptical symmetry

95



(a) Data June 1997 (b) Fitted June 1997

(c) Data July 1997 (d) Fitted July 1997

(e) Data August 1997 (f) Fitted August 1997

Figure 5.5: Data and fitted values are compared for the months leading up to El Niño in

1997. The fitted values are the means of the in-sample posterior predictive distributions.
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is connected to the values of γ. The posterior kernel for 3 locations is shown in Figure 5.6

with the associated densities scaled by 2π. It is hard to detect differences by eye between

the kernels at the different locations. The differences in the measure are much more easily

detected and are clearly different for these three locations.

To detect trends, we devise a method of measuring symmetry across the spatial

field. Lemma 6 states that elliptical symmetry is equivalent to the property that γ(z) =

γ(z + π) for all z. We can create a metric of elliptical using symmetry

symell(s) =

∫ π

0
(γs(z)− γs(z + π))2dz.

Similarly, a metric of spherical symmetry can be defined as

symsph(s) =

∫ 2π

0
(γs(z)/c(s)− (2π)−1)2dz.

These symmetry metrics are plotted by the spatial location in Figure 5.7. The kernels at

locations north of the equator are symmetric whereas the kernels for locations south of the

equator are non-symmetric. Additionally, the spherical symmetry map is very similar to

the elliptical symmetry map.

We will assess model performance through its predictive power. An additional

model fit was conducted based on a spatially varying Gaussian kernel, following Wikle (2002)

and Xu et al. (2005). We score the one-step ahead predictions for 399 time points based on

energy scores from equation (3.2). We find that the stable kernel IDE model scores better

in 229 time points, which is 57.4% of all time points. Based on these alone, the advantage

seems minimal. However slight the departures from elliptical symmetry were, they do exist,

but this does not seem to affect the scoring results. We also compare the models using
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Figure 5.6: The scaled density corresponding to the measure Γ and associated 95% credible

bands are shown for three locations on the left with the associated posterior mean kernel

on the right.
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(a) Elliptical Symmetry (b) Spherical Symmetry

Figure 5.7: The symmetry metrics are shown across the spatial field for both elliptical and

spherical symmetry. For both metrics, smaller values are associated with more symmetric

kernels.

K-step ahead forecasts. This is done by propagating the state variables through the process

level of the model, a∗t ∼ N(GBθat−1, τ
2GV G′). This can be propagated several steps

ahead followed by drawing the prediction Y ∗t ∼ N(Ψa∗t , σ
2I). To draw from the posterior

K-step ahead predictive distribution, the last year of data was left out of the analysis,

resulting in 387 time points ending in March 2002 being included in the model fit. The

posterior distributions for Y ∗388, ..., Y
∗
399 will be drawn as part of the MCMC. The means of

these posterior distributions are shown in Figure 5.8 for the stable and normal kernel IDE

models compared against the truth for April through July 2002. Figure 5.9 shows the same

for the months August through November 2002. The real data shows the El Niño which is

known to have occurred in 2002. Both the predictions include the El Niño warming to some

degree, but it is clear that the intensity of the predicted warming using the stable kernel

IDE model is much closer to the truth than the normal kernel IDE model.

To assign specific values to these predictions, we again use energy scores. The
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(a) April 2002 Truth (b) April 2002 Stable Predictions (c) April 2002 Normal Predictions

(d) May 2002 Truth (e) May 2002 Stable Predictions (f) May 2002 Normal Predictions

(g) June 2002 Truth (h) June 2002 Stable Predictions (i) June 2002 Normal Predictions

(j) July 2002 Truth (k) July 2002 Stable Predictions (l) July 2002 Normal Predictions

Figure 5.8: The data and posterior K-step ahead predictions using the stable and normal

kernels are shown given information through March 2002. The months April 2002 through

July 2002 are shown.
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(a) Aug 2002 Truth (b) Aug 2002 Stable Predictions (c) Aug 2002 Normal Predictions

(d) Sept 2002 Truth (e) Sept 2002 Stable Predictions (f) Sept 2002 Normal Predictions

(g) Oct 2002 Truth (h) Oct 2002 Stable Predictions (i) Oct 2002 Normal Predictions

(j) Nov 2002 Truth (k) Nov 2002 Stable Predictions (l) Nov 2002 Normal Predictions

Figure 5.9: The data and posterior K-step ahead predictions using the stable and normal

kernels are shown given information through March 2002. The months August 2002 through

November 2002 are shown.
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energy scores for each prediction is shown in Figure 5.10. The very first step is the only

step where the Gaussian is lower. The stable kernel IDE model scores better for all steps

after 1. The effect seems to be diminishing after 12 steps, which should be expected. This

strongly supports the stable kernel IDE model to fit this data over the Gaussian kernel.
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Figure 5.10: Scoring for the K-step ahead predictions. The first 9 of these are the scores

for the panels shown in Figures 5.8 and Figure 5.9 for the stable and Gaussian respectively.

There are several ways to numerically declare an El Niño event. Most of these

involve high SST anomalies in certain regions in the Pacific. For example, the official

National Oceanic and Atmospheric Administration (NOAA) criterion involves the block
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average SST anomalies in El Niño region 3.4 to be above .5◦ C for 3 consecutive months,

although this is modified to 5 consecutive months for the NOAA’s Climate Prediction Center

(Larkin and Harrison, 2005). The El Niño region 3.4 includes 120◦ to 170◦ W Longitude

and -5◦ to 5◦ Latitude. Figure 5.11 shows the block averages for the data and fitted models.

These estimates are sampled from the posterior predictive distributions for K-steps ahead

given all information through March 2002. While the point estimates severely undershoot

the data for both models, the stable kernel IDE model contains the truth in every credible

band whereas the normal kernel IDE model misses in several months. Also, by the NOAA

definition of an El Niño occurrence, the point estimate for the stable kernel IDE model

would have predicted an El Niño whereas the normal kernel IDE model would not have. In

fact, out of 15,000 samples, the normal kernel IDE model predicted a 55% chance of an El

Niño event for a 3-month criterion and a 20% chance for the 5 month criterion. The stable

kernel IDE model predicted a 76% chance of an El Niño event for the 3-month criterion

and 37% chance for th 5 month criterion.

5.5 Summary

The bivariate stable kernel has been proposed as an alternative to the normal

kernel in spatio-temporal IDE modeling. Using the normal kernel as proposed in Xu et al.

(2005) results in 5 spatial processes for the parameters. One of the advantages of the

bivariate stable kernel as proposed in this chapter is that it provides more flexibility than

the Gaussian kernel with only 4 spatial processes on the parameters. Using a geometric

weights prior for the Bernstein polynomials allows a great deal of flexibility, but could be
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Figure 5.11: Block average SST anomalies for the El Niño regions 3.4 for the data are shown,

as well as the estimated posterior predictive means for the IDE model with the stable and

Gaussian kernel. 95% credible bands are shown for the model fits as well.
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extended even more. For example, Petrone (1999) uses the Dirichlet process for the base

distribution controlling the weights. The flexibility comes with the cost of ease in estimation.

Using the SST data, we have shown the value of using these models. Prediction improves,

especially for more than one step ahead.
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Chapter 6

Conclusion

There are several ways to extend IDE modeling which were not discussed in this

dissertation. Polynomial IDE modeling is discussed in Wikle and Holan (2011). Interactions

between different locations of the process at previous time points in the model contribute to

the process at the current time point. While it is possible to assign a physical interpretation

of the process to characteristics of the kernel in linear IDE modeling, the interpretations

of the kernel contribution in the polynomial IDE case is not clear. Despite the lack of

interpretability, the result is a non-linear model, which may be more appropriate than

linear modeling in several cases. In fact, Wikle and Holan (2011) compares polynomial IDE

modeling with linear modeling using the SST data from Chapter 5 and concludes that the

model improves in several measurable ways when using non-linear models. While using a

non-parametric kernel in an IDE model is very flexible, the relationship between Yt and

Yt−1 is still linear. It may be possible to define the kernel in some way to induce a non-linear

model without the interactions. It may also be possible to apply more flexible kernels to
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polynomial IDE modeling. Kernel estimation in linear IDE modeling is difficult as it is.

Trying to learn flexible kernels defining the interaction may be impossible, but also may be

an area of expansion for this topic.

Non-Gaussian kernels have been the focus of this dissertation, but all the error

functions are assumed to be Gaussian. Another extension is to allow the error function to be

more flexible. The IDE model becomes a state space model, and methods to fit non-Gaussian

state-space models have been studied. For example, Kitagawa (1996) details filtering and

smoothing for high-dimensional non-Gaussian and non-linear state space models. For many

data sets, the assumption of Gaussianity may be restrictive for the variances. Estimation

for complicated kernels has been achieved in this dissertation and estimating non-Gaussian

state space models is in the literature, but computational issues may arise from combining

the methods.

Even without these extensions, we have provided powerful motivation for extending

the Gaussian kernel IDE models to non-Gaussian kernels. We have detailed practical ways

to fit such models and demonstrated how results can be produced. We have provided an

array of options, including models which are slightly more complicated to models which

have full kernel flexibility. Due to the complicated way the kernels are embedded in the

IDE model, much of this dissertation has been dedicated to computational methods, such

as Hermite Polynomials, Hamiltonian Monte Carlo, and thresholding the basis coefficients.

By using these proposed methods, flexible IDE modeling may be possible for general spatio-

temporal modeling.
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