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In many complex systems encountered in the natural and social sciences, mechanisms 
governing system dynamics at a microscale depend upon the values of state variables 
characterizing the system at coarse- grained, macroscale (Goldenfeld and Woese, 2011, 
Noble et al., 2019, and Chater and Loewenstein, 2023). State variables, in turn, are aver-
ages over relevant probability distributions of the microscale variables. Neither inferential 
Top–Down nor mechanistic Bottom–Up modeling alone can predict responses of such 
scale- entwined systems to perturbations. We describe and explore the properties of a 
dynamic theory that combines Top–Down information- theoretic inference with Bottom–
Up, state- variable- dependent mechanisms. The theory predicts the functional form of 
nonstationary probability distributions over microvariables and relates the trajectories 
of time- evolving macrovariables to the form of those distributions. Analytic expressions 
for the time evolution of Lagrange multipliers from Maxent solutions allow for rapid 
calculation of the time trajectories of state variables even in high dimensional systems. 
Examples of possible applications to scale- entwined systems in nonequilibrium chemical 
thermodynamics, epidemiology, economics, and ecology exemplify the potential multi-
disciplinary scope of the theory. A worked- out low- dimension example illustrates the 
structure of the theory and demonstrates how scale entwinement can result in slowed 
recovery from perturbations, reddened time series spectra in response to white- noise 
input, and hysteresis upon parameter displacement and subsequent restoration.

complex systems | maximum entropy | non- equilibrium

 “It is advisable to look from the tide pool to the stars and then back to the tide pool 
again.”—John Steinbeck, The Log from the Sea of Cortez 

 Many physical, biological, and social systems can be described at two well-differentiated 
levels: the microscale and the macroscale. In statistical mechanics, for example, the kinetic 
energy of an individual gas molecule is a microvariable, while pressure, volume, and 
temperature are macrovariables (also referred to as state, or macrostate, variables). Wages 
of individual workers are a microvariable in economics; the total annual output of the 
economy is a state variable. And in ecology, the metabolic rate of an individual organism 
and the abundance of a species are microvariables; the total productivity and total number 
of individuals and species in an ecosystem are state variables.

 The dynamics of such systems are especially complex if the microscale and the macroscale 
are “entwined” in the specific sense that there is cross-scale, bidirectional causation. In such 
cases, the equations governing microscale dynamics depend explicitly upon both the microvar-
iables and one or more time-dependent state variables ( 1   – 3 ). In epidemiology, for example, 
the rate constant governing disease transmission between individuals can be influenced by the 
incidence of the disease in the larger population if individuals heed public health warnings 
when that disease incidence is high. In economics, knowledge about the changing state of the 
macroeconomy can influence the economic decisions individuals and firms make. In ecosys-
tems, the reproductive and growth rates of individuals can depend upon the total number of 
species and individuals in a region via crowding and competition.

 Cross-scale, bidirectional causation represents feedback but it differs from the kind of 
feedback that is typically modeled in complex systems analysis. The latter, exemplified by 
ice-albedo feedback in climate models, describes two-way causation between two 
same-level, subsystems of a larger system. The theory advanced here describes feedback 
across hierarchical levels, rather than subsystems at the same level of a complex system.

 Analysis of the dynamics of multilevel systems rarely attempts to capture downward causa-
tion. Instead, models are generally either Top–Down  and statistical ( 4   – 6 ) or, more frequently, 
 Bottom–Up  and mechanistic ( 7 ,  8 ). In the Bottom–Up  approach, interactions among 
microlevel “agents” control larger-scale outcomes; state variables are appropriate sums or 
averages over microvariables. Under the assumption that top–down causation is absent, 
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probability distributions over microvariables are often derived using 
a master equation approach in which transition rates do not depend 
upon mathematical moments of the distributions. Because causal 
influence is often best understood mechanistically at the microlevel, 
 Bottom–Up  approaches can be useful. Alone, however, they fail to 
capture important top–down causal influences.

 In the Top–Down  approach, state variables and other macrolevel 
information provide constraints that allow inference of the functional 
forms of the probability distributions over microvariables. Here, a 
powerful inference method is maximizing information entropy 
(Maxent). The least-biased probability distribution over microvaria-
bles is determined by maximizing information entropy ( 9 ) of the 
distribution subject to the constraints imposed on the distribution 
by prior knowledge at the macrolevel ( 4   – 6 ). Maximization of infor-
mation entropy is carried out using the method of Lagrange multi-
pliers ( 10 ,  11 ). We emphasize that the term entropy as used here refers 
to Shannon information entropy and should not be conflated in every 
case with thermodynamic entropy.

 The Top–Down  approach to inference often yields accurate pre-
dictions of probability distributions over microvariables when the 
constraints imposed by the state variables are relatively constant 
in the time period under consideration ( 12 ). An example in phys-
ics is the derivation of the Maxwell–Boltzmann distribution of 
molecular kinetic energies from the constraints of total energy and 
total number of molecules in an ideal gas in thermal equilibrium 
( 4 ). Other examples include image reconstruction in medicine 
and forensics ( 13     – 16 ), protein folding ( 17 ,  18 ), and a variety of 
applications in neuroscience ( 19 ), ecology ( 20 ,  21 ), climate ( 22 ), 
and economics ( 23 ).

 If state variables are changing relatively rapidly in time, how-
ever, as is in a non-steady-state thermodynamic system, during a 
pandemic, a growing or shrinking economy, or in a highly dis-
turbed or disrupted ecosystem, the Top–Down  Maxent procedure, 
alone, may fail to reliably predict instantaneous distributions over 
microvariables. In thermodynamics this has long been noted ( 24 , 
 25 ) but in other fields as well, such as ecology ( 26               – 34 ), application 
of Maxent inference often fails in rapidly changing systems.

 Here, we present and explore a scale-entwined theory of the 
dynamics of two-tiered systems in which state variables influence 
microscale dynamics and in turn can be calculated by averages 
over derived probability distributions of microvariables. This the-
ory of Dynamic Maxent across Entwined Scales, or DyMES, 
combines the Maxent Top–Down  inference procedure with 
state-variable-dependent mechanisms governing agents at the 
microlevel, to predict the time evolution of both the state variables 
and the probability distributions over the microvariables.

 In a previous specific model application ( 34 ) of DyMES, we 
showed that a static Maxent-based theory of ecology ( 20 ,  21 ) 
could be extended to an ecosystem in which state variables were 
changing over time. We showed that the time-evolving shapes of 
both state variables and probability distributions over microvari-
ables were consistent with the predictions of DyMES. However, 
because of the inevitable uncertainties in census data from whole 
ecosystems, the data used in ref.  34  cannot cleanly validate or 
invalidate DyMES. One goal of this research, then, is to establish 
a broader framework so that other model realizations may be 
constructed and the theory can be more definitively tested. Hence, 
here we generalize that exploratory effort and provide a more 
comprehensive explanation and analysis of the structure, types of 
predictions, and possible applications and tests of DyMES.

 In applications of Maxent to static systems, the information 
entropy of probability distributions over microvariables is maxi-
mized under the constraints derived from knowledge of static 

macrostate variables. This process produces Lagrange multipliers 
that solve the constraints and characterize the resulting microvar-
iable distributions. To construct a dynamic theory, we enlarge the 
set of constraints to include time derivatives of the state variables. 
The set of Lagrange multipliers is correspondingly increased. 
Explicit equations that generate the time dependence of both the 
state variables and the probability distributions over microvariables 
are derived. Remarkably, the Lagrange multipliers that result can 
be shown to obey time-differential equations. This both eliminates 
the task of having to search numerically for entropy-maximizing 
values at every iteration in time and allows for more rapid calcu-
lation of dynamics in high-dimensional systems.

 Central to DyMES is the notion of transition functions, which 
govern microvariable dynamics. Scale entwinement, and in par-
ticular, downward causation, is captured by explicit dependence 
of transition functions on state variables as well as on microvari-
ables. Each choice of state variables and the form of the transition 
functions corresponds to different model realizations of DyMES. 
Eqs.  1               -  9   that follow describe the general theory. The architecture 
of DyMES is shown in  Fig. 1 .         

The General Theory

Some Notation. We consider a system that is characterized by 
m macroscale state variables, X =

(
X1,X2, ⋯ ,Xm

)
 , and up to 

m corresponding microscale variables x =
(
x1, x2, ⋯ , xm

)
 . For 

example, in thermodynamics the state variables might be total 
thermal energy and total number of molecules in a gas, while the 
microscopic variable could be the kinetic energy of a randomly 
selected molecule. We also denote by R(x) the joint probability 
distribution over the microscale variables.

 To determine R ( x  ), the Shannon information entropy of R ( x  ) 
is maximized subject to constraints imposed by  X     and  dX ∕dt     . 
We denote these constraints as  F = (h1(X ), . . . , hm(X ),

dX1
dt

, . . . ,     
 dXm
dt

)    , where the  h�(X )    are functions of the state variables. As in 
the example of classical thermodynamics, where a constraint on 
the distribution of molecular kinetic energies is total thermal 
energy divided by the total number of molecules, the  h�    are often 
ratios of the X i .

 The functions whose averages over R  yield those constraints are 
denoted by  f�(x ,X )    . For  � = 1, ⋯ ,m    the  f�    are functions of 
the  x�    . In the thermodynamic example, the f  corresponding to 
the constraint of total energy divided by total number of molecules 
would just be the microvariable  �,    the kinetic energy of a randomly 
selected molecule, but in more complex cases, the  f�    for 
 � = 1, ⋯ ,m    , can be functions of more than one microvariable 
( 34 ). Scale entwinement arises because for  � = m + 1, ⋯ , 2m    
the  f�    , which are the transition functions, can depend on mac-
rovariables  X     as well as upon microvariables  x    . We assume, for 
simplicity in what follows, that the transition functions do not 
depend explicitly on the time derivatives of the  X   nor explicitly 
on time. We can then write all the constraint conditions as:

     

 where  � = 1, 2, ⋯ , 2m     , the sum denotes a sum over each of the 
 x i , and the conditionality of R  on  X   is explicit. In what follows, 
we often reexpress this sum over microvariables using the notation 
“< >” to denote the average, as  F𝜇 = < f𝜇 >>   .  

The Maxent Solution. Maximizing the Shannon information 
entropy, H = −

∑
xRlog(R) , of R we obtain (4–6)

[1]F� = Σx f�(x,X )R(x|X ),



PNAS  2024  Vol. 121  No. 50 e2408676121 https://doi.org/10.1073/pnas.2408676121 3 of 9

 where  �= (�1, �2, ⋯ , �2m)     are the Lagrange multipliers ( 4 ,  10 ) 
obtained by solving the constraint conditions, and  Z      is a normal-
ization constant. Although each term, F , f , R , and  �    in Eqs.  1   and 
 2   can be time dependent, the time variable is not written explicitly. 
The  x   are summation variables and are not time-dependent.  

Updating the Xi and their Time Derivatives. A defining 
assumption of DyMES is the procedure for updating constraints. 
If the X and dX/dt are known at time t, then the �  are determined 
by the Maxent condition at time t. To obtain the �  at time t + dt, 
we have to update the constraints. X(t + dt) is calculated directly 
using dX(t)/dt:

 To update d  X  /dt , Eq.  1   is modified by evaluating the transition 
functions  f�,     both where they multiply R  and where they appear 
in the second exponent in Eq. 2 , with the value of  X   at t  + dt . The 
 �i    , however, are evaluated at time t . In equation form, and 
for  i = 1, ⋯ ,m   :

     

 Eq.  4   can be contrasted with the  m     constraint equations at time 
 t + dt  which, from Eq.  1  , read:

       The Lagrange multipliers in the constraint Eq.  5   are evaluated 
at t  + dt , while in the updating Eq.  4  , they are evaluated at time t .  
In both, the transition functions, f , are calculated using the value 

of  X   at t  + dt . This updating procedure is the only consistent one 
that we could define and implement, but proof of its uniqueness 
within the overall DyMES framework is lacking.  

Core Differential Equations for the �� and the Xi. Subtracting 
Eq. 4 from Eq. 5, and making use of the form of R in Eq. 2, we 
obtain (SI Appendix, SI I for a derivation):

 where the index i  ranges from 1 to m , and Cov(A , B ) = <AB > −  
<A ><B >. Eq.  6   provides m  relationships among the 2m  time deriv-
atives of the Lagrange multipliers. To proceed, we make use of an 
identity that is valid for any probability distribution of the form 
of Eq.  2   (SI Appendix, SI I  for a derivation):

     

 where A  is any differentiable function of the xi   and the X i . Letting 
 A  =  x    in Eq.  7   results in:

    

 
 Eqs.  6   and  8   can be solved rapidly by matrix inversion to deter-

mine the time derivatives of the  ��    . We can then iterate the 

Lagrange multipliers as  ��(t +dt ) = ��(t ) +
d��(t )

dt
dt   .

 An additional set of equations can be derived for the time evo-
lution of the  X  i . Letting A  in Eq.  7   equal  fm+i    , then for i  = 1, …, m :

[2]R(x�X ) =
e−

∑
��� f�(x ,X )

Z
,

[3]
Xi(t +dt ) = Xi(t ) +

dXi(t )

dt
dt .

[4]
dXi(t +dt )

dt
=

∑

x

fi+m(x ,X (t +dt ))R(x|X (t +dt ),�(t )).

dXi(t +dt )

dt
=

∑

x

fi+m(x,X (t +dt ))R(x|X (t +dt ),�(t + dt )).
[5]

[6]
2m∑

�=1

Cov(fm+i , f�)
d��
dt

= 0

[7]

d <A>

dt
= <

dA

dt
> −

2m∑

𝜇=1

COV
(
A, f𝜇

)d𝜆𝜇
dt

−

2m∑

𝜇=m+1

COV

(
A,

d f𝜇

dt

)
𝜆𝜇,

[8]
dXi
dt

+

2m∑

�=1

(
Cov(fi , f�

)d��
dt

+ Cov

(
fi ,

d f�

dt

)
��) = 0,

Fig. 1.   The essential concepts in Dynamic Maxent across Entwined Scales (DyMES). Maxent imposes constraints derived from the time- evolving macroscale 
state variables on the probability distributions of the microstates of the system, and mechanistic microstate dynamics are expressed using transition function 
that can depend upon state variables as well as upon microvariables. Macroscale variables are updated in time by suitable averages of state variables and their 
time derivatives over the probability distributions. This results in a theory that hybridizes mechanism and Maxent.

http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
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 Eqs.  2  ,  6  ,  8  , and  9   comprise DyMES.  

The Force- Free Limit of DyMES. If all the transition functions f�  
are independent of the Xi but are arbitrary function of the xi, then 
their time derivatives obey d f�∕dt =

∑
i(� f�∕�Xi)

�
dXi∕dt

�
= 0  , 

and so from Eq. 9, d 2Xi/dt2 = 0 in every case. Thus, if downward 
causation in the form of dependence of transition functions on 
state variables is completely absent, systems are effectively force 
free (zero acceleration of the state variables). In that case, only 
exogenous macrolevel forcing mechanisms can accelerate state 
variables. Additional examples of analytically solvable, closed 
form, solutions to model realizations of DyMES are given in 
SI Appendix, SI III.

A Single- Variable Illustrative Model System. To provide a more 
intuitive understanding of DyMES, and show examples of 
applications and potential tests of its predictions, we present a 
model- system realization with a single microvariable, a single state 
variable, and a single transition function. Specifically, consider 
a system with N individual entities divided among S, mutually 
exclusive categories. For simplicity, we assume that S is a fixed 
number, and thus not a state variable, whereas N is a time- 
dependent state variable. Entities could be, for example, molecules 
of a gas, people in a pandemic or an economy, or individual trees 
in a forest. Categories could be energy levels of molecules, social 
clusters in a pandemic, income brackets in an economy, or species 
of trees.

 Let the microscale variable, n , be the number of entities in a 
randomly selected category. We define P (n ) to be the probability 
that if a category is selected at random at time, t , then it contains 
 n  individuals. The Shannon information entropy of P (n ), 
 −
∑

nP(n)log(P(n))    , is maximized at every moment in time sub-
ject to the constraints imposed by the instantaneous values of the 
macrovariable N (t ) and its time derivative. Eq.  1   now take 
the form:

     

 and
     

 where all quantities are evaluated at a common time, t . In Eq.  11  , 
 f (n , N ) is the single transition function describing dynamics at the 
microscale; with scale entwinement, it is a function of N , as well 
as of n . Eq.  2   now becomes:

    

  The Lagrange multipliers,  �i     and the normalization constant, 
 z , will be functions of the time-dependent state variable, N .

 In this simple model, Eqs.  6   and  8   provide two relationships 
between the time derivatives of the two Lagrange multipliers, 
which can be solved to give:

    

    

  and for the time evolution of the state variable, N , Eq.  9   gives:
    

  where  D = COV(n, n)COV
(
f , f

)
− [COV(n, f )]2     . These expres-

sions are derived in SI Appendix, SI II , along with an analytic 
expression for the time derivative of the Shannon entropy. The 
explicit procedure for solving DyMES iteratively, using the illus-
trative model as an example, is given in SI Appendix, SI III .  

Applications of the Simple Model. The Table  1 shows four 
examples of single- state- variable applications of DyMES. After a 
brief description of the first three examples, we explore in more 
detail the ecological example, focusing on some unexpected 
responses of the state variable, N, and distribution, P(n), to several 
types of perturbation from steady state. We argue in the Discussion 
section that these responses are interrelated and are likely to be 
pervasive outcomes in many applications of DyMES.

 The first application and potential test of DyMES in  Table 1  is 
to nonequilibrium chemical thermodynamics. The system consists 
of two gases, chosen to react exothermically but not explosively 
at low concentration within an inert gas in a calorimeter. We can 
use DyMES to address the question: At what rate does the tem-
perature in the vessel increase as the reaction proceeds? Before the 
reaction commences, the Maxwell–Boltzmann distribution char-
acterizes the equilibrium distribution of molecular kinetic ener-
gies. As the reaction proceeds the average kinetic energy of the 
molecules will increase, the reaction will accelerate, and the 
nonequilibrium distribution P  will acquire an  exp

[
−�2f (�,E )

]
     

term as in Eq.  12  , where E  and  �    are defined in  Table 1  and the 
former is now time-dependent. The transition function can be 
calculated by first letting N (t ) equal the number of molecules of 
whichever gas is limiting the reaction, and writing:

    

  where c 0  is a reaction rate constant,  �A     is the activation energy for 
the reaction, and  �

(
�−�A

)
     is a step function equal to 0 for  𝜀 < 𝜀A     

and 1 for  𝜀 >> 𝜀A     . By writing the transition function as in Eq. 
 16  , rather than using the Arrhenius expression, we avoid having 
to assume a Maxwell–Boltzmann distribution for a system out of 
equilibrium. To replace the state variable N  in Eq. 16  with the 
more convenient state variable, E , we let  �H     be the heat produced 
by a single molecular reaction, so that:

    

  Eq.  17   results in the expression for the transition function given 
in  Table 1 . A derivation of the transition function  f (�,E )     and 
more detailed description of the proposed experiment are given 
in SI Appendix, SI IV . By solving DyMES for E (t ), the time 
dependence of the temperature can be calculated using E  = 
(3/2)N T kT , where N T  is the total number of molecules, and com-
pared with the observed rate of temperature increase to provide a 
test of DyMES.

 Another potential application is to the spread of pandemics in 
circumstances in which, at the microlevel, human behavior that 

[9]
d 2Xi
dt2

+

2m∑

�=1

Cov

(
fm+i ,

d f�
dt

)
�� =

⟨
d fm+i
dt

⟩
.

[10]
N

S
=

∑
n
nP(n),

[11]
dN ∕dt

S
=

∑
n
f (n,N )P(n),

[12]P(n|N ) =
e−�1ne−�2f (n,N )

z
,

[13]d𝜆1
dt

=
−
[
COV

(
n,

df

dt

)
𝜆2+ < f >

]
COV

(
f , f

)

D
,

[14]
d𝜆2
dt

=

[
COV

(
n,

df

dt

)
𝜆2+ < f >

]
COV

(
n, f

)

D
,

[15]
d 2N

dt2
= S <

df

dt
> − S𝜆2COV

(
f ,

df

dt

)
,

[16]dN

dt
= − c0N

∑
�
�
(
�−�A

)
P(�),

[17]dE

dt
= − �H

dN

dt
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
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spreads disease among individuals within social clusters is influ-
enced by information about the overall incidence of disease in the 
greater population (macrolevel). For example, consider a nation 
with, at the macrolevel, M  individuals of whom I  are infected and 
upon recovery are again susceptible. The microlevel consists of 
social clusters, for example communities, that in the simplest case 
each contain m  individuals, of whom n  are infected. If individual 
behavior within groups is, for example, influenced by information 
from the media regarding the magnitude of I , then we could write 
 dI /dt  = (M /m ) < f (n , m , I , M )>, where a plausible form for the 
transition function might be f  = r 0 ((1 − I /M )m  − n )n  − d 0 n . The 
term (1 − I /M )m  is the effective group size, with m eff  < m  as a 
consequence of some individuals within groups responding to 
information about overall infection rates by avoiding exposure to 
others. The term r 0 (m eff  − n )n  replaces the traditional term r 0 SI  in 
the expression for dI /dt  in an SIR model ( 7 ).  Application of 
DyMES will predict a time-dependent distribution P (n ) across 
groups as well as the time trajectory of the total number of infected 
individuals, I . The above is easily generalized to the case in which 
infected individuals die or become immune, and in which group 
size varies across groups, resulting in a time-dependent distribu-
tion P (n ,m ).

 In one of many possible economics applications, DyMES could 
predict a pattern-process linkage between income inequality across 
income earners and the growth trajectory of an economy. Assume, 
for example, a transition function f (n , I ) where I  is national income 
and n  is individual share of I . Consider a very simple transition 
function of the form  f = cnaI b∕(K + naI b)     describing personal 
income growth, where a  and b  could be greater or less than 1. The 
exponent a  reflects how fast individual wealth begets more wealth 
(the larger is a , the faster the rich get richer). The exponent b  
reflects the priority given to investing national tax revenue into 
wealth creation. As seen in Eqs.  12   and  15  , both parameters will 
influence, and thus interconnect, the shape of the income distri-
bution, P (n ), and the rate of growth of national income, dI /dt .

 The last application of the illustrative DyMES model in  Table 1  
is to the population dynamics of a multispecies ecological com-
munity. We explore here a transition function that generalizes the 
classic logistic model describing the growth or decline of an 

isolated population of size n  in a closed environment ( 8 ). It 
includes both the nonlinear dependence of the rate of change of 
a population of a randomly selected species on n , as in the logistic 
model, and also a scale entwinement arising from causal depend-
ence of the transition function on the size of the total community 
population, N :

     

 SI Appendix, SI V  further motivates Eq.  18   and describes its 
relationship to both the classical logistic equation for a single 
species and the Lotka–Volterra Eq.  8   for a community of species.

 We examine the responses of N (t ) and P (n ) to a variety of 
perturbations to gain insight into the nature, distinctiveness, and 
potential value, of predictions made by DyMES. We look at dis-
placement from steady state of N , and fixed, periodic, and sto-
chastic changes in a rate constant. For purposes of numerical 
analysis, we choose parameter values that are plausible for a mature 
forest (SI Appendix, SI V  for details).

 Following an initial increase in the death rate parameter d 2  in 
the transition function, Eq.  18  , the state variable N  decreases and 
asymptotes to a new steady state very slowly compared to equili-
bration in the comparable logistic model:  dN

dt
= r0N − d0N

2    
( Fig. 2A  ). Moreover, the displacement of N from its original steady 
state is much greater in DyMES than in the logistic model. The 
Lagrange multiplier  �2    increases from its initial value of 0 and 
approaches a new steady state with  𝜆2 >> 0    (  SI Appendix, Fig. SI 
VII.a  ). Thus, DyMES admits of two classes of steady state: those 
in which the Lagrange multipliers associated with the transition 
functions are zero and nonzero. This same conclusion was reached 
in a more complex application ( 34 ) of DyMES with three dynamic 
state variables.        

 If d 2  is subsequently returned to its original value, then N  
overshoots its original steady state ( Fig. 2B  ) and  �2     does not 
return to zero (  SI Appendix, Fig. SI VII.b  ). The longer the delay 
before restoration of d 2 , the larger the initial drop in the value 
of N,  the faster its rate of recovery and the larger its eventual 
steady state (SI Appendix, Fig. SI VII.c  ). This hysteresis effect 
increases with the magnitude of the initial perturbation as well 

[18]f (n,N ) = r0n − d1n
2 −

d2nN

S
.

Table 1.   Potential applications of the single- variable illustrative model of DyMES

Model 
Structure

State 
Variable

Microlevel 
Variable

Probability 
Distribution Transition Function Goal of Application

 Application      

 Chemical 
reaction 

 Thermal 
energy of 
mixture, E 

 Molecular 
kinetic 
energies, ε 

 Kinetic 
energies 
across 
molecules

  f (�, E) = c

[
E(0)+�

H
N(0)−E(t)�

(
�−�

A

)]
    Predict nonequilibrium 

distribution of molecular 
energies

 Pandemic  Total 
incidence 
of disease, I 

 Incidences 
within social 
clusters, n 

 Incidence 
across 
multiple 
social 
clusters

  f (n, I) = r 0 (1- I/M)m- n)n – d 0 n  Determine influence of 
publicizing disease 
prevalence on incidence

 Wealth 
distribution 

 Gross 
domestic 
income, I 

 Incomes of 
individuals, n 

 Income over 
individuals

   f (n, I) = cn
a
I
b

K +naIb
     Determine effect of policy 

on relationship between 
inequality and GDP 
growth

 Multispecies 
ecological 
community 

 Total 
community 
population 
size, N 

 Abundances 
of species, n 

 Abundances 
over species

   f (n,N) = r
0
n − d

1
n
2 −

d
2
nN

S

     Determine effect of 
perturbation on 
abundance

The transition functions shown here are explained in more detail in the main text, SI Appendix, SI IV and SI V.

http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
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as with its duration before restoration. Hysteresis also arises in 
the more complex model ( 34 ) and appears to be a pervasive 
phenomenon predicted by DyMES. The perturbed logistic 
model, in contrast, exhibits more rapid recovery and no hyster-
esis ( Fig. 2B  ).

 If d 2  oscillates around its original steady-state value then N  
oscillates around a mean that trends slowly toward a value above 
its initial steady-state value (  SI Appendix, Fig. SI VII.d  ). Under 
the same perturbation in the logistic model, N  recovers more 
rapidly than in DyMES and to a state of oscillation around a mean 
that is equal to its original steady-state value.

 In response to white noise, biennial variation in d 2 , DyMES 
exhibits much more variability at low frequency (for example, 
~0.01/y) than does the logistic model ( Fig. 3 A  and B  ). The red-
dened time series spectrum highlights low frequencies that corre-
spond to neither the time scale of the stochastic fluctuations nor 
the intrinsic time scale associated with birth and death processes 
(1/r 0  = 20 y) in the model.        

 Following an initial perturbation in which N  is reduced in value 
from its initial steady state, N  recovers to the original steady state, 
but again much more slowly in DyMES than in the logistic model 
( Fig. 2C  ). Moreover,  �2    also returns to zero, its original steady-state 
value (SI Appendix, Fig. SI VII.e  ).

 A general feature of DyMES is that it predicts a relationship 
between the form of distributions over microvariables, R ( x  ,  X  ) and 
the transition functions governing dynamics. Because in many sys-
tems such distributions are measurable ( 20 ), insight can be obtained 
into the nature of a perturbation from the signature provided by 
the distribution ( 34 ). In the illustrative ecological model, we exam-
ine the effect on P (n ) of initially doubling d 2  at t  = 0 (equivalent to 
a 22% increase in total death rate in eq. 18 ) when the system was 
in steady state, and then restoring d 2  to its original value at  
 t  = 2 y. At t  = 2 y, when N is rapidly changing immediately prior to 
restoration of the death rate, the distribution deviates considerably 
from the steady-state distribution at t  = 0, while at t  = 400 y when 
the system has approached a new steady state, the distribution is 
practically indistinguishable from that at t  = 0 before the perturba-
tion was imposed ( Fig. 4 ). The deviation at t = 2 is a consequence 
of the  e−�2f (n,N )    term in Eq.  12  . The pattern of departure of the 
distribution from its equilibrium form is clearly case-specific because 
the perturbed distribution depends explicitly upon the transition 
functions; different types of perturbations will result in different 
forms of the probability distributions.           

Discussion

 DyMES is a theory of scale-entwined systems in which macroscale 
state variables explicitly influence processes governing microscale 
variables and constrain the probability distributions over those var-
iables. By including time derivatives of state variables in the con-
straint set, an iterative procedure is defined which allows calculation 
of both the state variable trajectories over time and the changing 
shape of the microvariable distributions. The functional form of the 
latter is determined by the dynamics as expressed in transition func-
tions that can depend upon both micro- and macrovariables. 
DyMES hybridizes mechanism with Maxent, effectively linking 
finer-scale phenomena to coarser-scale outcomes via an inferential 
tool that predicts finer-scale distributions from coarser-scale knowl-
edge. DyMES predicts the time evolution of both the state variables 
and the probability distributions over microvariables. 

Relationship to Other Dynamical Models. Several dynamical 
modeling approaches in complex systems theory bear at least some 
similarities to DyMES.

 Incorporation of state variables in transition functions can be 
compared to using a mean field approximation. For example, our 
illustrative DyMES model with transition function given by Eq.  18   
superficially resembles a mean field approximation to the Lotka–
Volterra Eq.  8   used in ecology to describe the dynamics of popula-
tions of a multispecies community. By hybridizing Maxent with 
mechanism, however, dynamics in our theory obey time-evolution 
rules for both state variables and probability distributions over 
microvariables that differ from those in mean field models.

 Another class of models describes time evolution of probability 
distributions as a Markov process ( 35 ) using a master equation 
approach. Unlike DyMES, in most master equation models, the 
transition functions do not depend upon the distributions over 
microvariables. In one Markov model application ( 12 ), however, such 
dependence can be incorporated and Maxent is used to infer the form 
of a transition function using observed time series data as constraints. 
DyMES, in contrast, predicts the time evolution of state variables 
and distributions over microvariables based on the assumed depend-
ence of transition functions on micro- and macrolevel variables.

 Maximum entropy production and maximum caliber ( 6 ,  36 ) 
extend the use of Maxent from distributions over microstates to 
the distribution of paths through phase space during thermody-
namically irreversible transitions. Maximum caliber predicts the 

A B C

Fig. 2.   Responses to perturbations in the DyMES illustrative model. (A) Response of the total abundance, N, to a 10% increase in d2 in Eq. 18, and a comparable 
increase in d0 in the logistic model. (B) Response of the total abundance, N, to a doubling of the death rate parameter d2, followed 2 y (20 iterations) later by 
restoration to the original value, and a comparable increase (SI Appendix, SI V) and recovery of d0 in the logistic model. (C) Response of the total abundance, N, 
to a decrease in the initial value of N from 1,000 to 990 in the illustrative model realization of DyMES and in the logistic model.

http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
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final state to in a nonequilibrium process to be that state to which 
the most paths through phase space that begin at the initial state 
lead. DyMES, too, predicts the trajectory of the macrostate and 
also the time-dependent probability distribution over microvari-
ables throughout the process. An analytic expression for the time 
rate of change of Shannon entropy in DyMES is readily calculated 
(SI Appendix, Eqs. SI–S20 ), but whether the rate of change of 
information entropy in DyMES obeys an extremum principle in 
nonstationary processes remains to be investigated. Thus, for now, 
possible connections between DyMES and either maximum 
entropy production or maximum caliber are open questions.

 Another theory ( 25 ) of nonequilibrium thermodynamic sys-
tems with constant gradients invokes the notion of “second 
entropy,” a dynamic analog of entropy in equilibrium systems. 
Whether this promising approach can be applied to the variety of 

scale-entwined, nonthermodynamic systems, with dynamic 
 gradients and no well-defined thermodynamic entropy, is unclear.

 A recent proposal ( 37 ) to extend Maxent from the static to the 
dynamic domain combines Maxent with explicit stochastic forcing 
in a quasi-stationary approximation. In contrast to DyMES, this 
approach does not address bidirectional causation and does not 
include among the constraint set the rates of change of state 
variables.

 Time derivatives of state variables as constraints in a Maxent 
application have been utilized previously in atmospheric science 
( 38 ), although only for an equilibrium configuration with zero 
average velocity. DyMES is a formulation of a more general theory 
of dynamical systems using arbitrary velocity constraints.

 Finally, an elegant coarse-graining method ( 39 ) of Mori and 
Zwanzig calculates the dynamics of macroscopic variables from 
coarse-grained, multivariate microscopic dynamics. In contrast to 
DyMES, it does not incorporate downward causation in the form 
of explicit dependence of microvariable dynamics on 
macrovariables.  

Linking Pattern to Process with DyMES. DyMES predicts the 
changing shapes of probability distributions over microscale 
variables and, in particular, their deviation from steady state or 
equilibrium when specific processes described by the transition 
functions cause the deviations from steady state. The reason is seen 
in Eq. 2, in which the appearance of the explicit mechanisms at 
the microlevel captured by the f�  , appear in R, the distribution 
over microvariables. In a more complex ecological model (34) 
than our single- variable model above, with three dynamic state 
variables, DyMES relates the empirically changing shape of the 
species abundance distribution in a disrupted ecosystem to specific 
processes that could be causing the perturbation. In a warming 
thermodynamic system, DyMES relates the changing functional 
form of the distribution over molecular kinetic energies to specific 
processes, such as exothermic chemical reactions, driving departure 
from equilibrium.

 DyMES also allows additional information about disruption 
mechanisms to be extracted from observation of the time evolution 
of the state variables ( 34 ). An example of this is seen in  Fig. 2 ; the 

A

B

Fig. 3.   Response to a stochastic death rate. (A) Response of the total 
abundance, N, to uniform stochastic variation every two years in the death 
rate constant, d2 in the illustrative model realization of DyMES, in the interval 
d2 ± 5%, and a comparable stochastic variation in the logistic model death rate 
parameter, d0, in the interval d0 ± 1.1%. (B) Power spectrum of the spectral 
density function (sdf) of N(t) under the same perturbation as in A. Shown is 
the average sdf over 100 model runs, each over 5,000 y, using an iteration 
interval of 0.1 y.

Fig. 4.   Response of P(n) to an initial doubling of the parameter d2 in Eq. 18, 
followed two years later by restoration of d2 to its original value. P(n) is plotted 
at t = 0, at t = 2 y when N is changing rapidly, and at t = 400 y when the system 
has approached a new steady state.

http://www.pnas.org/lookup/doi/10.1073/pnas.2408676121#supplementary-materials
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existence of hysteresis distinguishes a transient perturbation in a 
rate constant from an initial displacement of a state variable.  
 Responses to perturbations.     Four signature responses to pertur-
bations were observed in the illustrative DyMES model output 
when contrasted with a comparable model lacking bidirectional 
causation:

  i)  Relatively slowed response and recovery (decreased resilience) 
and larger magnitude response (decreased resistance) of state 
variables to perturbations (Figs. 2 and 3 and SI Appendix, SI 
VII.e).

 ii)  Hysteresis in the response of state variables to displacement, 
followed by restoration, of a rate constant in a transition func-
tion (Fig. 2B and SI Appendix, Fig. SI VII.b).

iii)  Two classes of steady state, characterized by Lagrange multi-
pliers associated with transition functions that are either zero 
(class 1) or nonzero (class 2), and under perturbations in rate 
constants, systems transition from class 1 to class 2 but not 
vice versa (SI Appendix, Fig. SI VII.b).

 iv)  Considerably reddened time series of a state variable in 
response to white- noise stochastic variation in a rate constant 
in a transition function (Fig. 3 A and B).

 Time series analysis of long-term population census data reveals, 
at least qualitatively, such a spectral reddening ( 40 ). While it has 
been speculated that this observed reddening can be attributed to 
environmental long waves ( 41 ), we suggest such reddened spectra 
arise even in the absence of long-wave exogenous noise.

 Hysteresis, irreversible transitions between the classes of steady 
state, and slower responses to perturbations were also observed in 
the output from a more complex higher-dimensional DyMES 
model ( 34 ) and are plausibly a consequence of both state variable 
dependence of transition functions and the feedback arising from 
the iteration procedure in which Top–Down  and Bottom–Up  causa-
tion alternate. An eigenvalue analysis provides insight into the 
interconnections among these observed outputs. A comparison 
(SI Appendix, SI VI ) of dominant eigenvalues for the logistic 
model (−r = −0.05) and for the illustrative ecological DyMES 
application (−d 2 <n > = −0.011) reveals the latter is smaller in mag-
nitude than the former and thus the recovery time constant 
is longer.

 That analysis may also explain the more reddened response to 
stochastic input in DyMES compared to the logistic model. The 
spectrum of output fluctuations in a dynamical system subjected 
to stochastic input is determined by the form of the spectral trans-
fer function relating the covariance density function of the input 
to that of the output ( 42 ). That transfer function is typically a 
function of frequency and of the magnitude of the dominant 
eigenvalue, which we have seen differs between the logistic model 
and the DyMES population model. Smaller dominant eigenvalues 
tend to correspond to enhanced transfer of long waves ( 42 ). For 
the above reasons, and because the observed signature output 
behaviors are not unique to our simple illustrative model system 
( 34 ), we find it plausible that the observed suite of response sig-
natures will characterize DyMES output more widely. Further 
case-by-case analysis, however, is warranted.  

The Value of Analytic Expressions for the Time Evolution of the 
Lagrange Multipliers. In applications of DyMES, each iteration 
requires finding the maximum of Shannon entropy and as a 
result multiple iterations can be computationally slow. For the 
illustrative single- state- variable DyMES models in Table  1, 
the time saved using Eqs. 13 and 14, or more generally using 

Eqs. 6 and 8 to update the Lagrange multipliers, compared to the 
straightforward method of “brute force” calculations for finding 
the maximum of Shannon entropy, is small (SI Appendix, Fig. SI 
VII.f). But in more complex models, including DynaMETE (34) 
with five Lagrange multipliers, the computational time using 
Eqs. 6 and 8 is reduced by an order of magnitude compared to 
brute force maximization.

Future Tasks. Scale entwinement need not be restricted to 
only a pair of scales, nor to bidirectional causality only acting 
across adjacent scales. A remaining theoretical task is to derive 
explicit analytic generalizations of Eqs. 1- 9 for the time evolution 
of the state variables and the probability distributions over 
microvariables in such systems. Another direction for future work 
is to examine the applicability of other information measures 
besides Shannon’s. Given the central role in DyMES of top–
down causation, quantification of the relative magnitude of 
such causation using transfer entropy could be of interest. In 
many complex systems, causality can be difficult to disentangle; 
DyMES may provide a means of quantifying direction and 
magnitude of causal links. Finally, a critical future task will be to 
test the ability of DyMES to accurately predict the trajectories of 
macrovariables and the time evolution of probability distributions 
over microvariables in nonstationary complex systems; the 
ecological application in ref. 34 is a step toward this goal but 
much more testing is needed.

Conclusion

 In a pertinent commentary, Goldenfeld and Woese ( 1 ) posed a 
challenge to the scientific community. In complex systems, they 
noted, the equations governing dynamics at the microscale can 
depend upon and evolve with the changing macrostate of the 
system; at the same time, the state variables are sums or averages 
over suitable distributions of the microvariables. Thus the simple 
picture of top–down inference, alone, in which macrolevel con-
straints determine distributions over microvariables, or of Bottom–
Up  inference, alone, in which the consequences of mechanisms 
acting at the microlevel can be aggregated to determine macrolevel 
properties of the system, may no longer be useful for predicting 
the dynamics of complex systems. The challenge they posed, and 
that we have responded to here, was to develop theory suitable for 
addressing the complexity of scale entwinement.

 The general theory presented here, and the illustrative model 
realization, incorporate scale entwinement by hybridizing Top–
Down  Maxent with bottom–up mechanism. Simulations of 
DyMES here and in previous work ( 34 ) suggest that the theory 
has the potential to enrich our understanding of perturbed com-
plex systems and to allow attribution of perturbative processes 
from knowledge of distributions over microvariables and trajec-
tories of state variables. Examples of applications and tests pro-
vided here, along with others which we hope readers will envision, 
can determine how widely applicable DyMES will be to under-
standing the dynamics of complex scale-entwined systems across 
many fields of inquiry.    

Data, Materials, and Software Availability. There are no data underlying 
this work.
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