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ABSTRACT OF THE THESIS

Towards Training-Free Controllable Text-to-Image Generation

by

Sicheng Mo

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Bolei Zhou, Chair

Recent large-scale text-to-image (T2I) diffusion models [58, 34, 21, 53] have achieved

remarkable success, enabling the generation of complex and realistic images from any text

prompt that describes the target concept. Despite the significant advantages, the T2I

diffusion model suffers from poor spatial controllability solely from text description. This

thesis focuses on improving the pre-trained T2I diffusion models with additional support

to take spatial reference.

The first part of this thesis proposed FreeControl, a training-free and guidance-based

approach for controllable T2I generation that supports multiple conditions, architectures,

and checkpoints simultaneously. FreeControl enforces structure guidance to facilitate

the global alignment with a guidance image, and appearance guidance to collect visual

details from images generated without control. Extensive qualitative and quantitative

experiments demonstrate the superior performance of FreeControl across a variety of

pre-trained T2I models. In particular, FreeControl enables convenient training-free control

over many different architectures and checkpoints, allows the challenging input conditions

on which most of the existing training-free methods fail, and achieves competitive synthesis

quality compared to training-based approaches.

The second part of this thesis presents Ctrl-X, a training-free and guidance-free

method that supports structure and appearance customization from a large spectrum of

image modalities. Ctrl-X designs feed-forward structure control to enable the structure
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alignment with a structure image and semantic-aware appearance transfer to facilitate

the appearance transfer from a user-input image. Extensive qualitative and quantitative

experiments illustrate the superior performance of Ctrl-X on various condition inputs and

model checkpoints.
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CHAPTER 1

Introduction

Recent large-scale text-to-image (T2I) diffusion models [58, 34, 21, 53] have achieved

remarkable success, enabling the generation of complex and realistic images from any

text prompt that describes the target concept. Despite these advancements, generating

images with specific desired layouts and structures solely from text descriptions remains

a significant challenge. This limitation arises because text descriptions often lack the

precise spatial information needed to dictate the exact arrangement of elements within an

image. Therefore, incorporating spatial references into the diffusion process is essential

for enhancing the capability of T2I generation models to produce images that not only

match the textual descriptions but also adhere to the intended spatial configurations.

Recent advances, such as ControlNet [75], enable spatial control of pre-trained T2I

diffusion models, allowing users to specify the desired image composition by providing a

guidance image from pre-defined modalities (e.g., depth map, human-pose map) alongside

the text description. These methods [75, 36, 41, 78, 66, 7] achieve superior generation

results by integrating additional spatial information, yet they require training an addi-

tional module specific to each spatial condition type. Given the vast array of potential

control signals, the continuously evolving model architectures, and the increasing number

of customized model checkpoints (such as Stable Diffusion [53] fine-tuned for Disney

characters or user-specified objects [55, 27]), this repetitive training for every new model

and condition type becomes highly costly and uneconomical. This process demands con-

siderable computational resources and time, creating a barrier to the widespread adoption

and scalability of these advanced controllable generation techniques. Consequently, there

is a pressing need for more efficient approaches that can leverage existing models and
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adapt to new conditions without the necessity for extensive retraining.

Besides the high training cost and poor scalability, controllable T2I diffusion methods

face several drawbacks stemming from their current training schemes. These methods

are typically trained to output a target image given a spatially-aligned control condition,

which is computed from the same image using an off-the-shelf model (e.g., MiDaS [52]

for depth maps, OpenPose [12] for human poses). This approach inherently limits the

use of many desirable control signals that are difficult to infer directly from an image,

such as meshes or point clouds. Additionally, the reliance on these pre-aligned conditions

introduces a bias in the model, causing it to prioritize spatial conditions over textual

descriptions. This bias occurs because the model can exploit the close spatial alignment

of input-output image pairs as a shortcut, leading to less effective integration of the

textual content. As a result, the flexibility and versatility of these models are significantly

compromised, limiting their practical applications. There is a clear need for developing

new strategies that can handle a broader range of control signals and better balance the

importance of both spatial and textual inputs, thus enhancing the overall performance

and applicability of controllable T2I diffusion methods.

To address the aforementioned limitations, a possible approach is to leverage the

strong generalizability of the pre-trained diffusion models to extract pixel-level structure

information from given reference images in any modality. With this approach, no additional

training will be required, and it can be adapted to any new diffusion network without

re-training. The research in this thesis fulfills the missing study in this possible direction.

1.1 Thesis Outline

This thesis is organized into four chapters, each focusing on different facets of our research

on training-free controllable generation in pre-trained text-to-image models with additional

condition signals. The chapters are outlined as follows:

Chapter 1 introduces the field of controllable text-to-image generation and the moti-

vation behind the research presented in this thesis. It sets the stage for the study and
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provides the context for the subsequent chapters.

In Chapter 2, we present FreeControl, a training-free approach for controllable T2I gen-

eration that supports multiple conditions, architectures, and checkpoints simultaneously.

FreeControl enforces structure guidance to facilitate the global alignment with a guidance

image, and appearance guidance to collect visual details from images generated without

control. Extensive qualitative and quantitative experiments demonstrate the superior

performance of FreeControl across a variety of pre-trained T2I models. In particular,

FreeControl enables convenient training-free control over many different architectures and

checkpoints, allows the challenging input conditions on which most of the existing training-

free methods fail, and achieves competitive synthesis quality compared to training-based

approaches.

In Chapter 3, we present Ctrl-X, a simple framework for T2I diffusion controlling

structure and appearance without additional training or guidance. Ctrl-X designs feed-

forward structure control to enable the structure alignment with a structure image and

semantic-aware appearance transfer to facilitate the appearance transfer from a user-

input image. Extensive qualitative and quantitative experiments illustrate the superior

performance of Ctrl-X on various condition inputs and model checkpoints. In particular,

Ctrl-X supports novel structure and appearance control with arbitrary condition images

of any modality, exhibits superior image quality and appearance transfer compared to

existing works, and provides instant plug-and-play to any T2I and text-to-video (T2V)

diffusion model.

Chapter 4 provides a comprehensive summary of the research conducted in this thesis,

highlighting key findings and contributions to the field of controllable text-to-image

generation. It also discusses the limitations encountered and suggests potential directions

for future research to advance the domain further.

3



CHAPTER 2

FreeControl: Training-Free Spatial Control of Any

Text-to-Image Diffusion Model with Any Condition

Input Condition ControlNetInput Condition

Canny edge “An avocado chair, oil painting”

Segmentation mask “Cartoon of living room” “Modern living room ”

Human pose “Person, outside” “Robot, on the grass”

Depth map “A bear, with an Eiffel Tower in the background”

FreeControl FreeControl

Mesh “A huge building in the shape of cup, with city in background”(b)Point cloud “Sunshine, railway” “Winter, railway”(a)

Figure 2.1: Training-free conditional control of Stable Diffusion [53]. (a)
FreeControl enables zero-shot control of pretrained text-to-image diffusion models given
various input control conditions. (b) Compared to ControlNet [75], FreeControl achieves a
good balance between spatial and image-text alignment, especially when facing a conflict
between the guidance image and text description. Additionally, FreeControl supports
several condition types (e.g.„ 2D projections of point clouds and meshes in the bottom
row), where it is difficult to construct training pairs.
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2.1 Introduction

Text-to-image (T2I) diffusion models [51, 4] have achieved tremendous success in high-

quality image synthesis, yet a text description alone is far from enough for users to convey

their preferences and intents for content creation. Recent advances such as ControlNet [75]

enable spatial control of pretrained T2I diffusion models, allowing users to specify the

desired image composition by providing a guidance image (e.g.„ depth map, human

pose) alongside the text description. Despite their superior generation results, these

methods [75, 36, 41, 78, 66, 7] require training an additional module specific to each

spatial condition type. Considering the large space of control signals, constantly evolving

model architectures, and a growing number of customized model checkpoints (e.g.„ Stable

Diffusion [53] fine-tuned for Disney characters or user-specified objects [55, 27]), this

repetitive training on every new model and condition type is costly and uneconomical.

Besides the high training cost and poor scalability, controllable T2I diffusion methods

face drawbacks that stem from their training scheme: they are trained to output a target

image given a spatially-aligned control condition computed from the same image using an

off-the-shelf model (e.g.„ MiDaS [52] for depth maps, OpenPose [12] for human poses).

This limits the use of many desired control signals that are difficult to infer from an image

(e.g.„ mesh, point cloud). Further, the trained models tend to prioritize spatial condition

over text description, likely because the close spatial alignment of input-output image

pairs exposes a shortcut. This is illustrated in Figure 3.1(b), where there is a conflict

between the guidance image and text prompt (e.g.„ an edge map of a sofa chair v.s.“an

avocado chair”).

To address the aforementioned limitations, we present FreeControl, a versatile training-

free method for controllable T2I diffusion. Our key motivation is that feature maps in

T2I models during the generation process already capture the spatial structure and local

appearance described in the input text. By modeling the subspace of these features, we

can effectively steer the generation process towards a similar structure expressed in the

guidance image, while preserving the appearance of the concept in the input text. To this
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end, FreeControl includes an analysis stage and a synthesis stage. In the analysis stage,

FreeControl queries a T2I model to generate as few as one seed image and then constructs

a linear feature subspace from the generated images. In the synthesis stage, FreeControl

employs guidance in the subspace to facilitate structure alignment with a guidance image,

as well as appearance alignment between images generated with and without control.

FreeControl offers significant strength over training-based methods by eliminating the

need for additional training on a pretrained T2I model, while adeptly adhering to concepts

outlined in the text description. It supports a wide range of control conditions, model

architectures and customized checkpoints, achieves high-quality image generation with

robust controllability in comparison to prior training-free methods [38, 23, 64, 45], and

can be readily adapted for text-guided image-to-image translation. We conduct extensive

qualitative and quantitative experiments and demonstrate the superior performance of

our method. Notably, FreeControl excels at challenging control conditions on which prior

training-free methods fail. In the meantime, it attains competitive image synthesis quality

compared to training-based methods while providing stronger image-text alignment and

supporting a broader set of control signals.

Our contributions. (1) We present FreeControl, a novel method for training-free

controllable T2I generation via modeling the linear subspace of intermediate diffusion

features and employing guidance in this subspace during the generation process. (2)

Our method presents the first universal training-free solution that supports multiple

control conditions (sketch, normal map, depth map, edge map, human pose, segmentation

mask, natural image and beyond), model architectures (e.g.„ SD 1.5, 2.1, and SD-XL

1.0), and customized checkpoints (e.g.„ using DreamBooth [55] and LoRA [27]). (3) Our

method demonstrates superior results in comparison to previous training-free methods

(e.g.„ Plug-and-Play [64]) and achieves comparable performance with prior training-based

approaches (e.g.„ ControlNet [75]).
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2.2 Related Work

Text-to-image diffusion. Diffusion models [60, 24, 62] bring a breakthrough in text-to-

image (T2I) generation. T2I diffusion models formulate image generation as an iterative

denoising task guided by a text prompt. Denoising is conditioned on textual embeddings

produced by language encoders [50, 49] and is performed either in pixel space [42, 51, 58, 8]

or latent space [53, 21, 48], followed by cascaded super-resolution [25] or latent-to-image

decoding [18] for high-resolution image synthesis. Several recent works show that the

internal representations of T2I diffusion models capture mid/high-level semantic concepts,

and thus can be repurposed for image recognition tasks [71, 34]. Our work builds upon

this intuition and exploits the feature space of T2I models to guide the generation process.

Controllable T2I diffusion. It is challenging to convey human preferences and intents

through text description alone. Several methods thus instrument pre-trained T2I models to

take an additional input condition by learning auxiliary modules on paired data [75, 36, 41?

, 66, 7]. One significant drawback of this training-based approach is the cost of repeated

training for every control signal type, model architecture, and model checkpoint. On

the other hand, training-free methods leverage attention weights and features inside a

pre-trained T2I model for the control of object size, shape, appearance and location [46,

11, 70, 17, 20]. However, these methods only take coarse conditions such as bounding

boxes to achieve precise control over object pose and scene composition. Different from

all the prior works, FreeControl is a training-free approach to controllable T2I diffusion

that supports any spatial condition, model architecture, and checkpoint within a unified

framework.

Image-to-image translation with T2I diffusion. Controlling T2I diffusion becomes an

image-to-image translation (I2I) task [29] when the control signal is an image. I2I methods

map an image from its source domain to a target domain while preserving the underlying

structure [29, 44, 57]. T2I diffusion enables I2I methods to specify target domains using

text. Text-driven I2I is often posed as conditional generation [75, 41? , 10, 30, 77]. These

methods finetune a pretrained model to condition it on an input image. Alternatively,
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recent training-free methods perform zero-shot image translation [38, 23, 64, 45] and is

most relevant to our work. This is achieved by inverting the input image [61, 40, 67],

followed by manipulating the attention weights and features throughout the diffusion

process. A key limitation of these methods is they require the input to have rich textures,

and hence they fall short when converting abstract layouts (e.g.,depth) to realistic image.

By contrast, our method attends to semantic image structure by decomposing features

into principal components, thereby it supports a wide range of modalities as layout

specifications.

Customized T2I diffusion. Model customization is a key use case of T2I diffusion in

visual content creation. By fine-tuning a pretrained model on images of custom objects or

styles, several methods [55, 19, 33, 6] bind a dedicated token to each concept and insert

them in text prompts for customized generation. Amid the growing number of customized

models being built and shared by content creators [3, 2], FreeControl offers a scalable

framework for zero-shot control of any model with any spatial condition.

2.3 Preliminary

Diffusion sampling. Image generation with a pre-trained T2I diffusion model amounts

to iteratively removing noise from an initial Gaussian noise image xT [24]. This sampling

process is governed by a learned denoising network ϵθ conditioned on a text prompt c.

At a sampling step t, a cleaner image xt−1 is obtained by subtracting from xt a noise

component ϵt = ϵθ(xt; t, c). Alternatively, ϵθ can be seen as approximating the score

function for the marginal distributions pt scaled by a noise schedule σt [62]:

ϵθ(xt; t, c) ≈ −σt∇xt log pt(xt|c). (2.1)

Guidance. The update rule in Equation 2.1 may be altered by a time-dependent energy

function g(xt; t, y) through guidance (with strength s) [16, 17] so as to condition diffusion

8



Figure 2.2: Visualization of feature subspace given by PCA. Keys from the first
self-attention in the U-Net decoder are obtained via DDIM inversion [61] for five images
in different styles and modalities (top: person; bottom: bedroom), and subsequently
undergo PCA. The top three principal components (pseudo-colored in RGB) provide a
clear separation of semantic components.

sampling on auxiliary information y (e.g.„ class labels):

ϵ̂θ(xt; t, c) = ϵθ(xt; t, c)− s g(xt; t, y). (2.2)

In practice, g may be realized as classifiers [16] or CLIP scores [42], or defined using

bounding boxes [70, 14], attention maps [20, 45] or any measurable object properties [17].

Attentions in ϵθ. A standard choice for ϵθ is a U-Net [54] with self- and cross-

attentions [65] at multiple resolutions. Conceptually, self-attentions model interactions

among spatial locations within an image, whereas cross-attentions relate spatial locations

to tokens in a text prompt. These two attention mechanisms complement one another

and jointly control the layout of a generated image [64, 11, 46, 20].
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Figure 2.3: Method overview. (a) In the analysis stage, FreeControl generates seed
images for a target concept (e.g.„ man) using a pretrained diffusion model and performs
PCA on their diffusion features to obtain a linear subspace as semantic basis. (b) In
the synthesis stage, FreeControl employs structure guidance in this subspace to enforce
structure alignment with the input condition. In the meantime, it applies appearance
guidance to facilitate appearance transfer from a sibling image generated using the same
seed without structure control.

2.4 Training-Free Control of T2I Models

FreeControl is a unified framework for zero-shot controllable T2I diffusion. Given a text

prompt c and a guidance image Ig of any modality, FreeControl directs a pre-trained T2I

diffusion model ϵθ to comply with c while also respecting the semantic structure provided

by Ig throughout the sampling process of an output image I.

Our key finding is that the leading principal components of self-attention block

features inside a pre-trained ϵθ provide a strong and surprisingly consistent representation

of semantic structure across a broad spectrum of image modalities (see Figure 2.2 for

examples). To this end, we introduce structure guidance to help draft the structural

template of I under the guidance of Ig. To texture this template with the content and

style described by c, we further devise appearance guidance to borrow appearance details

from Ī, a sibling of I generated without altering the diffusion process. Ultimately, I

mimics the structure of Ig with its content and style similar to Ī.

Method overview. FreeControl is a two-stage method as illustrated in Figure 3.3. It
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begins with an analysis stage, where diffusion features of seed images undergo principal

component analysis (PCA), with the leading PCs forming the time-dependent bases Bt

as our semantic structure representation. Ig subsequently undergoes DDIM inversion [61]

with its diffusion features projected onto Bt, yielding their semantic coordinates Sg
t . In the

synthesis stage, structure guidance encourages I to develop the same semantic structure

as Ig by attracting St to Sg
t . In the meantime, appearance guidance promotes appearance

similarity between I and Ī by penalizing the difference in their feature statistics.

2.4.1 Semantic Structure Representation

Zero-shot spatial control of T2I diffusion demands a unified representation of semantic

image structure that is invariant to image modalities. Recent work has discovered that

self-attention features (i.e., keys and queries) of self-supervised Vision Transformers [63]

and T2I diffusion models [11] are strong descriptors of image structure. Based on these

findings, we hypothesize that manipulating self-attention features is key to controllable

T2I diffusion.

A naïve approach derived from PnP [64] is to directly inject the self-attention weights

(equivalently the features) of Ig into the diffusion process of I. Unfortunately, this

approach introduces appearance leakage; that is, not only the structure of Ig is carried

over but also traces of appearance details. As seen in Figure 2.6, appearance leakage is

particularly problematic when Ig and I are different modalities (e.g.„ depth v.s.natural

images), common for controllable generation.

Towards disentangling image structure and appearance, we draw inspiration from

Transformer feature visualization [43, 64] and perform PCA on self-attention features of

semantically similar images. Our key observation is that the leading PCs form a semantic

basis; It exhibits a strong correlation with object pose, shape, and scene composition

across diverse image modalities. In the following, we leverage this basis as our semantic

structure representation and explain how to obtain such bases in the analysis stage.
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Figure 2.4: Qualitative comparison of controllable T2I diffusion. FreeControl
supports a suite of control signals and three major versions of Stable Diffusion. The
generated images closely follow the text prompts while exhibiting strong spatial alignment
with the input images.

2.4.2 Analysis Stage

Seed images. We begin by collecting Ns images that share the target concept with

c. These seed images {Is} are generated with ϵθ using a text prompt c̃ modified from

c. Specifically, c̃ inserts the concept tokens into a template that is intentionally kept

generic (e.g.„ “A photo of [] with background."). Importantly, this allows {Is} to

cover diverse object shape, pose, and appearance as well as image composition and style,

which is key to the expressiveness of semantic bases. We study the choice of Ns in

Section 2.5.2.

Semantic basis. We apply DDIM sampling [61] to generate {Is} and obtain time-

dependent diffusion features {Fs
t} of size Ns × C ×H ×W from ϵθ. This yields Ns×H×W

distinct feature vectors, on which we perform PCA to obtain the time-dependent semantic

bases Bt as the first Nb principal components:

Bt = [p
(1)
t ,p

(2)
t , ...,p

(Nb)
t ] ∼ PCA({Fs

t}) (2.3)
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Intuitively, Bt span semantic spaces St that connect different image modalities, allowing

the propagation of image structure from Ig to I in the synthesis stage. We study the

choice of Ft and Nb in Section 2.5.2 and Section B.

Basis reuse. Once computed, Bt can be reused for the same text prompt or shared by

prompts with related concepts. The cost of basis construction can thus be amortized over

multiple runs of the synthesis stage.

2.4.3 Synthesis Stage

The generation of I is conditioned on Ig through guidance. As a first step, we express the

semantic structure of Ig with respect to the semantic bases Bt.

Inversion of Ig. We perform DDIM inversion [61] on Ig to obtain the diffusion features

Fg
t of size C ×H ×W and project them onto Bt to obtain their semantic coordinates Sg

t

of size Nb ×H ×W . For local control of foreground structure, we further derive a mask

M (size H ×W ) from cross-attention maps of the concept tokens [20]. M is set to 1 (size

H ×W ) for global control.

We are now ready to generate I with structure guidance to control its underlying

semantic structure.

Structure guidance. At each denoising step t, we obtain the semantic coordinates St by

projecting the diffusion features Ft from ϵθ onto Bt. Our energy function gs for structure

guidance can then be expressed as

gs(St;S
g
t ,M) =

∑
i,j mij∥[st]ij − [sgt ]ij∥22∑

i,j mij︸ ︷︷ ︸
forward guidance

+ w ·
∑

i,j(1−mij)∥max([st]ij − τ t, 0)∥22∑
i,j(1−mij)︸ ︷︷ ︸

backward guidance

,

where i and j are spatial indices for St, Sg
t and M, and w is the balancing weight. The

thresholds τ t are defined as

τ t = max
i,j s.t. mij=0

[sgt ]ij (2.4)
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with max taken per channel. Loosely speaking, [st]ij > τ t indicates the presence of

foreground structure. Intuitively, the forward term guides the structure of I to align with

Ig in the foreground, whereas the backward term, effective when M ̸= 1, helps carve out

the foreground by suppressing spurious structure in the background.

While structure guidance drives I to form the same semantic structure as Ig, we

found that it also amplifies low-frequency textures, producing cartoony images that lack

appearance details. To fix this problem, we apply appearance guidance to borrow texture

from Ī, a sibling image of I generated from the same noisy latent with the same seed yet

without structure guidance.

Input Condition FreeControl Input Condition FreeControl

Triangular  
mesh “A sketch of a bunny” “A cartoon bunny,  

on the grass”

Wireframe “A teapot, 
 from China”

“An uncolored syderolife 
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(w/ part seg.)

“A plane,  
in the sky”

“A plane on the runway, 
landing”

Point cloud “A SUV car,  
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“A small wooden SUV 
car”

Face mesh 
(3D MM)

“A man,  
with short hair”
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Cumberbatch”
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(MediaPipe)
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“A woman, blonde hair, in 
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(AMASS)

“A man, in a suit,  
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in the snow”

Humanoid “Man, with sword and 
shield, in the river”

“Large robot, with 
weapon, over a city”

“library,  
England”

“library,  
cartoon”

Blender 
viewport

“A house,  
on the grass”

“A gingerbread house, in 
the snow”

AutoCAD 
viewport

Metadrive 
Simulator

“A black Jeep car, on the 
road, raining, back”

“A Ferrari car, sunshine, 
back”

Metadrive 
Simulator

“Road, bird-view, in the 
city, buildings”

“Road, bird-view, in the 
snow, woods”

Input Condition FreeControl

Figure 2.5: Qualitative results for more diverse control conditions. FreeControl
supports challenging control conditions not possible with training-based methods. These
include 2D projections of common graphics primitives, domain-specific shape models (point
cloud, body mesh, and humanoid), graphics software viewports (Blender and AutoCAD),
and simulated driving environments (Metadrive).

Appearance representation. Inspired by DSG [17], we represent image appearance as
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{v(k)
t }

Na≤Nb
k=1 , the weighted spatial means of diffusion features Ft:

v
(k)
t =

∑
i,j σ([s

(k)
t ]ij)[ft]ij∑

i,j σ([s
(k)
t ]ij)

, (2.5)

where i and j are spatial indices for St and Ft, k is channel index for [st]i,j, and σ is the

sigmoid function. We repurpose St as weights so that different v
(k)
t ’s encode appearance

of distinct semantic components. We calculate {v(k)
t } and {v̄(k)

t } respectively for I and Ī

at each timestep t.

Appearance guidance. Our energy function ga for appearance guidance can then be

expressed as

ga({v(k)
t }; {v̄

(k)
t }) =

∑Na

k=1 ∥v
(k)
t − v̄

(k)
t ∥22

Na

. (2.6)

It penalizes difference in the appearance representations and thus facilitates appearance

transfer from Ī to I.

Guiding the generation process. Finally, we arrive at our modified score estimate ϵ̂t

by including structure and appearance guidance alongside classifier-free guidance [26]:

ϵ̂t = (1 + s) ϵθ(xt; t, c)− s ϵθ(xt; t, ∅) + λs gs + λa ga, (2.7)

where s, λs and λa are the respective guidance strengths, and ∅ denotes the null token

input.

2.5 Experiments and Results

We report extensive qualitative and quantitative results to demonstrate the effectiveness

and generality of our approach for zero-shot controllable T2I diffusion. We present

additional results on text-guided image-to-image translation and provide ablation studies

on key method components.
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2.5.1 Controllable T2I Diffusion

Baselines. ControlNet [75] and T2I-Adapter [41] learn an auxiliary module to condition

a pretrained diffusion model on a guidance image. One such module is learned for each

condition type. Uni-ControlNet [78] instead learns adapters shared by all condition types

for all-in-one control. Different from these training-based methods, SDEdit [38] adds

noise to a guidance image and subsequently denoises it with a pretrained diffusion model

for guided image synthesis. Prompt-to-Prompt (P2P) [23] and Plug-and-Play (PnP) [64]

manipulate attention weights and features inside pretrained diffusion models for zero-shot

image editing. We compare our method with these strong baselines in our experiments.

“An 
embroidery of 

a penguin”

“A cartoon of 
a jeep”

“An origami 
of a cello”

“A sculpture 
of a castle”

Condition ControlNet T2I-Adapter Uni-ControlNet Ours Plug-and-Play P2P SDEdit-.85SDEdit-.75
Training-based Methods Training-free Methods

Figure 2.6: Qualitative comparison on controllable T2I diffusion. FreeControl
achieves competitive spatial control and superior image-text alignment in comparison to
training-based methods. It also escapes the appearance leakage problem manifested by the
training-free baselines, producing high-quality images with rich content and appearance
faithful to the text prompt.

Experiment setup. Similar to ControlNet [75], we report qualitative results on eight

condition types (sketch, normal, depth, Canny edge, M-LSD line, HED edge, segmentation

mask, and human pose). We further employ several previously unseen control signals

as input conditions (Figure 2.5), and combine our method with all major versions of

Stable Diffusion (1.5, 2.1, and XL 1.0) to study its generalization on diffusion model

architectures.
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Method Canny HED Sketch Depth Normal

Self-Sim ↓ CLIP ↑ LPIPS ↑ Self-Sim ↓ CLIP ↑ LPIPS ↑ Self-Sim ↓ CLIP ↑ LPIPS ↑ Self-Sim ↓ CLIP ↑ LPIPS ↑ Self-Sim ↓ CLIP ↑ LPIPS ↑
ControlNet [75] 0.042 0.300 0.665 0.040 0.291 0.609 0.070 0.314 0.668 0.058 0.306 0.645 0.079 0.304 0.637
T2I-Adapter 0.052 0.290 0.689 - - - 0.096 0.290 0.648 0.071 0.314 0.673 - - -
Uni-ControlNet 0.044 0.295 0.539 0.050 0.301 0.553 0.050 0.301 0.553 0.061 0.303 0.636 - - -

SDEdit-0.75 [38] 0.108 0.306 0.582 0.123 0.288 0.375 0.135 0.281 0.361 0.153 0.294 0.327 0.128 0.284 0.456
SDEdit-0.85 [38] 0.139 0.319 0.670 0.153 0.305 0.485 0.139 0.300 0.485 0.165 0.304 0.384 0.147 0.298 0.512
P2P [23] 0.078 0.253 0.298 0.112 0.253 0.194 0.194 0.251 0.096 0.142 0.248 0.167 0.100 0.249 0.198
PNP [64] 0.074 0.282 0.417 0.098 0.286 0.271 0.158 0.267 0.221 0.126 0.287 0.268 0.107 0.286 0.347
FreeControl (Ours) 0.080 0.322 0.724 0.078 0.321 0.561 0.090 0.322 0.611 0.090 0.321 0.576 0.086 0.322 0.642

Table 2.1: Quantitative results on controllable T2I diffusion. FreeControl con-
sistently outperforms all training-free baselines in structure preservation, image-text
alignment and appearance diversity as measured by Self-similarity distance, CLIP score
and LPIPS distance. It achieves competitive structure and appearance scores with the
training-based baselines while demonstrate stronger image-text alignment.

For a fair comparison with the baselines, we adapt the ImageNet-R-TI2I dataset from

PnP [64] as our benchmark dataset. It contains 30 images from 10 object categories. Each

image is associated with five text prompts originally for the evaluation of text-guided

image-to-image translation. We convert the images into their respective Canny edge, HED

edge, sketch, depth map, and normal map following ControlNet [75], and subsequently

use them as input conditions for all methods in our experiments.

Evaluation metrics. We report three widely adopted metrics for quantitative evaluation;

Self-similarity distance [63] measures the structural similarity of two images in the feature

space of DINO-ViT [13]. A smaller distance suggests better structure preservation. Similar

to [64], we report self-similarity between the generated image and the dataset image

that produces the input condition. CLIP score [49] measures image-text alignment in

the CLIP embedding space. A higher CLIP score indicates a stronger semantic match

between the text prompt and the generated image. LPIPS distance [76] measures the

appearance deviation of the generated image from the input condition. Images with richer

appearance details yield higher LPIPS score.

Implementation details. We adopt keys from the first self-attention in the U-Net

decoder as the features Ft. We run DDIM sampling on Ns = 20 seed images for 200 steps

to obtain bases of size Nb = 64. In the synthesis stage, we run DDIM inversion on Ig for

1000 steps, and sample I and Ī by running 200 steps of DDIM sampling. Structure and

appearance guidance are applied in the first 120 steps. λs ∈ [400, 1000], λa = 0.2λs, and
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Na = 2 in all experiments.

Qualitative results. As shown in Figure 2.4, FreeControl is able to recognize diverse

semantic structures from all condition modalities used by ControlNet [75]. It produces

high-quality images in close alignment with both the text prompts and spatial conditions.

Importantly, it generalizes well on all major versions of Stable Diffusion, enabling effortless

upgrade to future model architectures without retraining.

In Figure 2.5, we present additional results for condition types not possible with

previous methods. FreeControl generalizes well across challenging condition types for

which constructing training pairs is difficult. In particular, it enables superior conditional

control with common graphics primitives (e.g.„ mesh and point cloud), domain-specific

shape models (e.g.„ face and body meshes), graphics software viewports (e.g.„ Blender [15]

and AutoCAD [1]), and simulated driving environments (e.g.„ MetaDrive [35]), thereby

providing an appealing solution to visual design preview and sim2real.

Comparison with baselines. Figure 2.6 and Table 2.1 compare our methods to the

baselines. Despite stronger structure preservation (i.e., small self-similarity distances), the

training-based methods at times struggle to follow the text prompt (e.g.,embroidery for

ControlNet and origami for all baselines) and yield worse CLIP scores. The loss of text

control is a common issue in training-based methods due to modifications made to the

pretrained models. Our method is training-free, hence retaining strong text conditioning.

In contrast, training-free baselines are prone to appearance leakage, where the appear-

ance of condition images is leaked to generated images, resulting in worse LIPIS scores.

This is because the generated image shares latent states (SDEdit) or diffusion features

(P2P & PnP) with the condition. For example, all baselines inherit the texture-less

background in the embroidery example and the foreground shading in the castle example.

Our method instead decouples structure and appearance, thereby avoiding the leakage.

Handling conflicting conditions. We study cases where spatial conditions have minor

conflicts to input text prompts. We assume that a text prompt consists of a concept (e.g.„

batman) and a style (e.g.„ cartoon), and contrast a conflicting case with its aligned version.

18



Specifically, a conflicting case includes (a) a text prompt with a feasible combination

of concept and style; and (b) a spatial condition (i.e.an edge map) derived from real

images without the text concept. The corresponding aligned case contains a similar text

prompt, yet using a spatial condition from real images with the same concept. We input

those cases into ControlNet, T2I-Adapter, and FreeControl, using a set of pre-trained and

customized models.

Figure 2.7 shows the results. Our training-free FreeControl consistently generates

high quality images that fit the middle ground of spatial conditions and text prompts,

across all test cases and models. T2I-Adapter sometimes fails even with an aligned case

(see Batman examples), not to mention the conflicting cases. Indeed, T2I-Adapter tends

to disregard the condition image, leading to diminished controllability, as exemplified

by Emma Watson example (conflicting). ControlNet can generate convincing images for

aligned cases, yet often fall short in those conflicting cases. A common failure mode is to

overwrite the input text concept using the condition image, as shown by skeleton bike or

house in a bubble examples (conflicting).

Extension to Image-to-Image Translation FreeControl can be readily extended

to support image-to-image (I2I) translation by conditioning on a detailed/real image.

A key challenge here is to allow FreeControl to preserve the background provided by

the condition, i.e., the input content image. To this end, we propose two variants of

FreeControl. The first removes the mask M in structure guidance (i.e., w/o mask), and

the second generates from the inverted latent xg
T of the condition image (i.e., fixed seed).

We find that removing the mask helps extract and maintain the background structure,

and starting inference from xg
T retains the appearance from the condition image.

Figure 2.8 evaluates FreeControl and its two variants for text-guided I2I, and compares

to strong baselines for the I2I task including PnP [64], P2P [23], pix2pix-zero [45] and

SDEdit [38]. The vanilla FreeControl, as we expect, often fails to preserve the background.

However, our two variants with simple modification demonstrate impressive results

as compared to the baselines, generating images that adhere to both foreground and
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Figure 2.7: Controllable T2I generation of custom concepts. FreeControl is com-
patible with major customization techniques and readily supports controllable generation
of custom concepts without requiring spatially-aligned condition images. By contrast,
ControlNet fails to preserve custom concepts given conflicting conditions, whereas T2I-
Adapter refuses to respect the condition image and text prompt.

background of the input image.

Further, we evaluate the self-similarity distance and CLIP score of FreeControl, its

variants, and our baselines on the ImageNet-R-TI2I dataset. The results are summarized

in Figure 2.8. Variants of FreeControl outperform all baselines with significantly improved

structure preservation and visual fidelity, following the input text prompts.
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of a husky”

“A tattoo of a 
jeep”

“An 
embroidery of 

a bustard”

Condition Ours (w/o mask) Plug-and-Play P2P SDEdit-.75 SDEdit-.85Ours (Fixed Seed) Pix2Pix-zeroOurs

Figure 2.8: Qualitative and quantitative comparison on text-guided image-to-
image translation. FreeControl enables flexible control of image composition and style
through guidance mask M and random seed (left). It strikes a good balance between
structure preservation (self-similarity distance) and image-text alignment (CLIP score) in
comparison to the baselines (right, better towards bottom right).

Continuous control. Real-world content creation is a live experience, where an idea

develops from a sketch into a more refined and finished piece of work. The intermediate

states throughout this process may be interpreted as continuously evolving control signals.

Figure 2.10 illustrates how FreeControl may assist an artist in his or her content creation

experience. It produces spatially accurate and smoothly varying outputs guided by

constantly changing conditions, thus serving as a source of inspiration over the course of

painting.

Compositional control. By combining structure guidance from multiple condition

images, FreeControl readily supports compositional control without altering the synthesis

pipeline. Figure 2.11 presents our results using different combinations of condition types.

The generated images are faithful to all input conditions while respect the text prompt.

Combination with ControlNet. Figure 2.9 demonstrates the results of combining

FreeControl and ControlNet(canny), using the wireframe of a teapot and the mesh of a

bunny as the condition. We use FreeContorl to denoise the latent for 30 steps, ControlNet

for the next 70 steps, and the vanilla Stable Diffusion for the rest 100 steps. This hybrid

approach improves the structural alignment of FreeContorl, unlocks the appearance

customization, improves textual alignment, and accommodates un-trained conditions for

ContorlNet.

Inference efficiency. We further study the inference cost of our method in comparison

21



Figure 2.9: Qualitative results of combining ControlNet and FreeControl. Top:
"A Chinese teapot, red" ; Bottom: "A bunny, in the forest".

Figure 2.10: Controllable generation over the course of art creation. Images
are generated from the same seed with the prompt "a photo of a man and a woman,
Pixar style" with a customized model from [2]. FreeControl yields accurate and consistent
results despite evolving control conditions throughout the art creation timeline.

to training-free baselines. Table 2.2 reports the average inference time using a single

Nvidia A6000 GPU. The inference has three stages: (1) Pre-processing stage, where

category-level information is extracted (analysis stage in FreeControl and the computation

of edit direction in Pix2Pix-zero) ; (2) Inversion stage, for extracting the image-level

latent representation from the input condition; and (3) Sampling stage, for generating the

target image. FreeControl is slower than PnP (4.2×) and P2P (1.8×), yet much faster

than Pix2Pix-zero (0.14×). When considering the reused basis and thus only counting

inversion and inference time, FreeControl can achieve 1.1× that of PnP, 0.5× that of
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Figure 2.11: Qualitative results on compositional control. FreeControl allows
compositional control of image structure using multiple condition images of potentially
different modalities.

FreeControl PnP Pix2Pix-zero P2P+NTI

Pre-processing 127.00 0 1236.00 0
Inversion 25.36 31.96 32.57 87.51
Sampling 23.95 10.09 33.03 11.51

Total 176.31 42.05 1301.60 99.02

Table 2.2: Runtime for training-free methods

P2P, and 0.75× that of Pix2Pix-zero, yet still generate diverse images.

2.5.2 Ablation Study

Effect of guidance. As seen in Figure 2.12, structure guidance is responsible for structure

alignment (−gs v.s.Ours). Appearance guidance alone has no impact on generation in

the absence of structure guidance (−ga v.s.−gs,−ga). It only becomes active after image

structure has shaped up, in which case it facilitates appearance transfer (−ga v.s.Ours).

Choice of diffusion features Ft. Figure 2.13 compares results using self-attention

keys, queries, values, and their preceding Conv features from up_block.[1,2] in the U-

Net decoder. It reveals that up_block.1 in general carries more structural cues than

up_block.2, whereas keys better disentangle semantic components than the other features.
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Figure 2.12: Ablation on guidance effect. Top: “leather shoes”; Bottom: “cat, in the
desert”. gs and ga stand for structure and appearance guidance, respectively.

Figure 2.13: Ablation on feature choice. Keys from self-attention of up_block.1 in
the U-Net decoder expose the strongest controllability. PCA visualization of the features
are in the insets.

Size of semantic bases Nb. Figure 2.14 presents generation results over the full spectrum

of Nb. A larger Nb improves structure alignment yet triggers the unintended transfer of

appearance from the input condition. Hence, a good balance is achieved with Nb’s in the

middle range.

Number of seed images Ns. Figure 2.15 suggests that Ns has minor impact on image

quality and controllability, allowing the use of as few as 1 seed image in the analysis stage.

Large Ns diversifies image content and style, which helps perfect structural details (e.g.„

limbs) in the generated images.

Choice of threshold τt. Figure 2.16 demonstrates that no hard threshold within the
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Figure 2.14: Ablation on size of semantic bases Nb. Images are generated using
the prompt “a Lego man giving a lecture". They illustrate an inherent tradeoff between
structure and appearance quality. A good balance can be achieved with Nb’s in the middle
range.

Condition Ns = 1 5 10 20

Condition

Ours w/o 
Appearance 

guidance Ours

Figure 2.15: Ablation on number of seed images Ns. Top: “wooden sculpture of a
man”; Bottom: “dog, in the snow”. Larger Ns brings minor improvement on structure
alignment.

range of [0, 1] can fully eliminate spurious background signal while ensure a foreground

structure consistent with the condition image. By contrast, our dynamic thresholding

scheme, implemented as a per-channel max operation, allows FreeControl to accurately

carve out the foreground without interference from the background.

Condition = 0.1τt 0.7 max0.8 0.9 1.0

Figure 2.16: Ablation on threshold τt. Images are generated using the prompt "leather
shoe on the table". Our dynamic threshold (max) encourages more faithful foreground
structure and cleaner background in comparison to various hard thresholds (e.g.„ 0.1).

Number of guidance steps. Figure 2.17 reveals that the first 40% sampling steps are

key to structure and appearance formation. Applying guidance beyond that point has

little to no impact on generation quality.
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Figure 2.17: Ablation on the number of guidance steps. Images are generated using
the prompt "a modern house, on the grass, side look". Applying guidance beyond the
first 40% diffusion steps (0.4) has little to no impact on the generation result.

Choice of guidance weights λs and λa. Figure 2.19 confirms that FreeControl

produces strong results within a wide range of guidance strengths. In particular, the

output images yield accurate spatial structure when λs ≥ 400 and rich appearance details

when λa ≥ 0.2λs. We empirically found that these ranges work for all examples in our

experiments.

Figure 2.18: Ablation on guidance weights λs and λa. Images are generated with
the prompt "an iron man is giving a lecture". FreeControl yields strong results across
guidance weights.

Basis reuse across concepts. Once computed, the semantic bases St can be reused
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for the control of semantically related concepts. Figure 2.19 provides one such example,

where St derived from seed images of man generalize well on other mammals including

cat, dog and monkey, yet fail for the semantically distant concept of bedroom.

“3D-cartoon 
cat”

“Wooden 
sculpture dog”

C
on
di
tio
n
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om
pt

Fr
ee
C
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tro
l

“Monkey, in 
nature”

“Bedroom, 
Clean”

Figure 2.19: Ablation on basis reuse. The semantic bases computed for "man" enable
the controllable generation of semantically related concepts (cat, dog, and monkey) while
falling short for unrelated concepts (bedroom).

2.6 Conclusion

We present FreeControl, a training-free method for spatial control of any T2I diffusion

model with any condition. FreeControl exploits the feature space of pretrained T2I

models, facilitates convenient control over many architectures and checkpoints, allows

various challenging input conditions on which most of the existing training-free methods

fail, and achieves competitive synthesis quality with training-based approaches. One

limitation is that FreeContorl relies on the DDIM inversion process to extract intermediate

features of the guidance image and compute additional gradients during the synthesis

stage, resulting in increased inference time. We hope our findings and analysis can shed

light on controllable visual content creation.
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CHAPTER 3

Ctrl-X: Controlling Structure and Appearance for

Text-To-Image Generation Without Guidance

Structure

A
pp

ea
ra

nc
e

Structure

A
pp

ea
ra

nc
e

Figure 3.1: Guidance-free structure and appearance control of Stable Diffusion
XL (SDXL) [48]. Ctrl-X enables training-free and guidance-free zero-shot control of
pretrained text-to-image diffusion models given any structure conditions and appearance
images.

3.1 Introduction

The rapid advance of large text-to-image (T2I) generative models has made it possible to

generate high-quality images with just one text prompt. However, it remains challenging

to specify the exact concepts that can accurately reflect human intents using only textual

descriptions. Recent approaches like ControlNet [75] and IP-Adapter [74] have enabled

controllable image generation upon pretrained T2I diffusion models regarding structure

and appearance, respectively. Despite the impressive results in controllable generation,

these approaches [75, 41, 78, 36] require fine-tuning the entire generative model or training
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auxiliary modules on large amounts of paired data.

Training-free approaches [17, 39, 9] have been proposed to address the high overhead

associated with additional training stages. These methods optimize the latent embedding

across diffusion steps using specially designed score functions to achieve finer-grained

control than text alone with a process called guidance. Although training-free approaches

avoid the training cost, they significantly increase computing time and required GPU

memory in the inference stage due to the additional backpropagation over the diffusion

network. They also require sampling steps that are 2–20 times longer. Furthermore, as

the expected latent distribution of each time step is predefined for each diffusion model,

it is critical to tune the guidance weight delicately for each score function; Otherwise, the

latent might be out-of-distribution and lead to artifacts and reduced image quality.

To tackle these limitations, we present Ctrl-X, a simple training-free and guidance-free

framework for T2I diffusion with structure and appearance control. We name our method

“Ctrl-X” because we reformulate the controllable generation problem by ‘cutting’ (and

‘pasting’) two tasks together: Spatial structure preservation and semantic-aware stylization.

Our insight is that diffusion feature maps capture rich spatial structure and high-level

appearance from early diffusion steps sufficient for structure and appearance control

without guidance. To this end, Ctrl-X employs feature injection and spatially-aware

normalization in the attention layers to facilitate structure and appearance alignment with

user-provided images. By being guidance-free, Ctrl-X eliminates additional optimization

overhead and sampling steps, resulting in a 40-fold increase in inference speed compared

to guidance-based methods. Figure 3.1 shows some generation results. Moreover, Ctrl-X

supports arbitrary structure conditions beyond natural images and can be applied to any

T2I and even text-to-video (T2V) diffusion models. Extensive quantitative and qualitative

experiments demonstrate the superior image quality and appearance alignment of our

method over prior works.

We summarize our contributions as follows:

1. We present Ctrl-X, a simple plug-and-play method that builds on pretrained text-
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to-image diffusion models to provide disentangled and zero-shot control of structure

and appearance during the generation process requiring no additional training or

guidance.

2. Ctrl-X presents the first universal guidance-free solution that supports multiple

conditional signals (structure and appearance) and model architectures (e.g.,text-

to-image and text-to-video).

3. Our method demonstrates superior results compared to previous training-based

and guidance-based baselines (e.g.,ControlNet + IP-Adapter [75, 74] and FreeCon-

trol [39]) in terms of condition alignment, text-image alignment, and image quality.

3.2 Related work

Diffusion structure control Previous spatial structure control methods can be cate-

gorized into two types (training-based v.s.training-free) based on whether they require

training on paired data.

Training-based structure control methods require paired condition-image data to train

additional modules or fine-tune the entire diffusion network to facilitate generation from

spatial conditions [75, 41, 36, 78, 73, 7, 79, 68, 80]. While pixel-level spatial control can

be achieved with this approach, a significant drawback is needing a large number of

condition-image pairs as training data. Although some condition data can be generated

from pretrained annotators (e.g.,depth and segmentation maps), other condition data is

difficult to obtain from given images (e.g.,3D mesh, point cloud), making these conditions

challenging to follow. Compared to these training-based methods, Ctrl-X supports

conditions where paired data is challenging to obtain, making it a more flexible and

effective solution.

Training-free structure control methods typically focus on specific conditions. For

example, R&B [69] facilitates bounding-box guided control with region-aware guidance,

and DenseDiffusion [31] focuses on generating images with segmentation map conditions
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by controlling the attention weights. Universal Guidance [9] employs various pretrained

classifiers to support multiple types of condition signals. FreeControl [39] analyzes

semantic correspondence in the sub-space of diffusion features and harnesses it to support

spatial control from any visual condition. While these approaches do not require training

data, they usually need to compute the gradient of the latent to lower an auxiliary loss,

which requires substantial computing time and GPU memory. In contrast, Ctrl-X requires

no guidance at the inference stage and controls structure via direct feature injections,

enabling faster and more robust image generation with spatial control.

Diffusion appearance control Existing appearance control methods that build upon

pretrained diffusion models can also similarly be categorized into two types (training-based

v.s.training-free).

Training-based appearance control methods can be divided into two categories: Those

trained to handle any image prompt and those overfitting to a single instance. The

first category [75, 41, 74, 68] trains additional image encoders or adapters to align the

generated process with the structure or appearance from the reference image. The second

category [55, 27, 19, 6, 47, 56] is typically applied to customized visual content creation

by finetuning a pretrained text-to-image model on a small set of images or binding special

tokens to each instance. The main limitation of these methods is that the additional

training required makes them unscalable. However, Ctrl-X offers a scalable solution to

transfer appearance from any instance without training data.

Training-free appearance control methods generally follow two approaches: One ap-

proach [5, 11, 72] manipulates self-attention features using pixel-level dense correspondence

between the generated image and the target appearance, and the other [17, 39] extracts

appearance embeddings from the diffusion network and transfers the appearance by

guiding the diffusion process towards the target appearance embedding. A key limitation

of these approaches is that a single text-controlled target cannot fully capture the details

of the target image, and the latter methods require additional optimization steps. By

contrast, our method exploits the spatial correspondence of self-attention layers to achieve
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Figure 3.2: Visualizing early diffusion features Using 20 real, generated, and condition
images of animals, we extract Stable Diffusion XL [48] features right after decoder layer 0
convolution. We visualize the top three principal components computed for each time
step across all images. t = 961 to 881 corresponds to inference steps 1 to 5 of the DDIM
scheduler with 50 time steps. We obtain xt by directly adding Gaussian noise to each
clean image x0 via the diffusion forward process.

semantically-aware appearance transfer without targeting specific subjects.

3.3 Preliminaries

Diffusion models are a family of probabilistic generative models characterized by two

processes: The forward process iteratively adds Gaussian noise to a clean image x0 to

obtain xt for time step t ∼ [1, T ], which can be reparameterized in terms of a noise

schedule αt where

xt =
√
αtx0 +

√
1− αtϵ (3.1)

for ϵ ∼ N (0, I); The backward process generates images by iteratively denoising an initial

Gaussian noise xT ∼ N (0, I), also known as diffusion sampling [24]. This process uses a

parameterized denoising network ϵθ conditioned on a text prompt c, where at time step t

we obtain a cleaner xt−1

xt−1 =
√
αt−1x̂0 +

√
1− αt−1ϵθ(xt | t, c), x̂0 :=

xt −
√
1− αtϵθ(xt | t, c)√

αt

. (3.2)

Formally, ϵθ(xt | t, c) ≈ −σt∇x log pt(xt | t, c) approximates a score function scaled by a

noise schedule σt that points towards high density of data, i.e., x0, at noise level t [62].
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Guidance The iterative inference of diffusion enables us to guide the sampling process

on auxiliary information. Guidance modifies Equation 3.2 to compose additional score

functions that point towards richer and specifically conditioned distributions [9, 17],

expressed as

ϵ̂θ(xt | t, c) = ϵ(xt | t, c)− sg(xt | t, y), (3.3)

where g is an energy function and s is the guidance strength. In practice, g can range

from classifier-free guidance (where g = ϵ and y = ∅, i.e.the empty prompt) to improve

image quality and prompt adherence for T2I diffusion [26, 53], to arbitrary gradients

∇xtℓ(ϵ(xt | t, c) | t, y) computed from auxiliary models or diffusion features common to

guidance-based controllable generation [9, 17, 39]. Consequently, though guidance provides

great customizability on the type and variety of conditioning for controllable generation,

as it only requires any loss that can be backpropagated to xt, this backpropagation

requirement often translates to slow inference time and high memory usage. Moreover, as

guidance-based methods often compose multiple energy functions, tuning the guidance

strength s for each g may be finicky and present robustness issues. Thus, Ctrl-X avoids

guidance and provides instant applicability to larger T2I and T2V models with minor

hyperparameter tuning.

Diffusion U-Net architecture Many pretrained T2I diffusion models are text-conditioned

U-Nets, which contains an encoder and decoder that downsamples and then upsamples

the input xt to predict ϵ, with long skip connections between matching encoder and

decoder resolutions [24, 53, 48]. Each encoder/decoder block contains convolution layers,

self-attention layers, and cross-attention layers: The first two both control structure

and appearance, and the last injects textual information. Thus, many training-free

controllable generation methods utilize these layers, whether through direct manipulation

[23, 64, 32, 5, 72] or for computing guidance losses [17, 39], with self-attention commonly

used: Let hl,t ∈ R(hw)×c be the diffusion feature with height h, width w, and channel size
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(a) Ctrl-X pipeline (b) Spatially-aware appearance transfer

Figure 3.3: Overview of Ctrl-X (a) At each sampling step t, we obtain xs
t and xa

t via
the forward diffusion process, feeding them into the T2I diffusion model to obtain their
convolution and self-attention features. Then, we inject convolution and self-attention
features from xs

t and leverage self-attention correspondence to transfer spatially-aware
appearance statistics from xa

t to xo
t . (b) Details of our spatially-aware appearance transfer,

where we exploit self-attention correspondence between xo
t and xa

t to compute weighted
feature statistics M and S applied to xo

t .

c at time step t right before attention layer l. Then, the self-attention operation is

Q := hl,tW
Q
l and K := hl,tW

K
l and V := hl,tW

V
l ,

hl,t ← AV, A := softmax

(
QK⊤
√
d

)
,

(3.4)

where WQ
l ,W

K
l ,W

V
l ∈ Rc×d are linear transformations which produce the query Q, key

K, and value V, respectively, and softmax is applied across the second (hw)-dimension.

(Generally, c = d for diffusion models.) Intuitively, the attention map A ∈ R(hw)×(hw)

encodes how each pixel in Q corresponds to each in K, which then rearranges and weighs

V. This correspondence is the basis for Ctrl-X’s spatially-aware appearance transfer.

34



3.4 Guidance-free structure and appearance control

Ctrl-X is a general framework for training-free, guidance-free, and zero-shot T2I diffusion

with structure and appearance control. Given a structure image Is and appearance image

Ia, Ctrl-X manipulates a pretrained T2I diffusion model ϵθ to generate an output image

Io that inherits the structure of Is and appearance of Ia.

Method overview Our method is illustrated in Figure 3.3 and is as follows: Given

clean structure and appearance latents Is = xs
0 and Ia = xa

0, we first directly obtain

noised structure and appearance latents xs
t and xa

t via the diffusion forward process, then

extracting their U-Net features from a pretrained T2I diffusion model. When denoising

the output latent xo
t , we inject convolution and self-attention features from xs

t and leverage

self-attention correspondence to transfer spatially-aware appearance statistics from xa
t to

xo
t to achieve structure and appearance control.

3.4.1 Feed-forward structure control

Structure control of T2I diffusion requires transferring structure information from Is = xs
0

to xo
t , especially during early time steps. To this end, we initialize xo

T = xs
T ∼ N (0, I)

and obtain xs
t via the diffusion forward process in Equation 3.1 with xs

0 and randomly

sampled ϵ ∼ N (0, I). Inspired by the observation where diffusion features contain rich

layout information [64, 32, 39], we perform feature and self-attention injection as follows:

For U-Net layer l and diffusion time step t, let fol,t and f sl,t be features/activations after

the convolution block from xo
t and xs

t, and let Ao
l,t and As

l,t be the attention maps of the

self-attention block from xo
t and xs

t. Then, we replace

fol,t ← f sl,t and Aol,t ← Asl,t . (3.5)

In contrast to [64, 32, 39], we do not perform inversion and instead directly use forward

diffusion (Equation 3.1) to obtain xs
t. We observe that xs

t obtained via the forward
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diffusion process contains sufficient structure information even at very early/high time

steps, as shown in Figure 3.2. This also reduces appearance leakage common to inversion-

based methods observed by FreeControl [39]. We study our feed-forward structure control

method in Sections 3.5.1 and 3.5.3.

We apply feature injection for layers l ∈ Lfeat and self-attention injection for layers

l ∈ Lself , and we do so for (normalized) time steps t ≤ τ s, where τ s ∈ [0, 1] is the structure

control schedule.

3.4.2 Spatially-aware appearance transfer

Inspired by prior works that define appearance as feature statistics [28, 37], we consider

appearance transfer as a stylization task. T2I diffusion self-attention transforms the

value V with attention map A, where the latter represents how pixels in Q corresponds

to pixels in K. As observed by Cross-Image Attention [5], QK⊤ can represent the

semantic correspondence between two images when Q and K are computed from features

from each, even when the two images differ significantly in structure. Thus, inspired

by AdaAttN [37], we propose spatially-aware appearance transfer, where we exploit this

correspondence to generate self-attention-weighted mean and standard deviation maps

from xa
t to normalize xo

t : For any self-attention layer l, let ho
l,t and ha

l,t be diffusion features

right before self-attention for xo
t and xa

t , respectively. Then, we compute the attention

map

A = softmax

(
QoKa⊤
√
d

)
, Qo := norm(ho

l,t)W
Q
l and Ka := norm(ha

l,t)W
K
l ,

(3.6)

where norm is applied across spatial dimension (hw). Notably, we normalize ho
l,t and ha

l,t

first to remove appearance statistics and thus isolate structural correspondence. Then,

we compute mean and standard deviation maps M and S of ha
l,t weighted by A and use

them to normalize ho
l,t,

ho
l,t ← S⊙ ho

l,t +M, M := Aha
l,t and S :=

√
A(ha

l,t ⊙ ha
l,t)− (M⊙M). (3.7)
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M and S, weighted by structural correspondences between Io and Ia, are spatially-aware

feature statistics of xa
t which is transferred to xo

t . Lastly, we perform layer l self-attention

on ho
l,t as normal.

We apply appearance transfer for layers l ∈ Lapp, and we do so for (normalized) time

steps t ≤ τ a, where τ a ∈ [0, 1] is the appearance control schedule.

Structure and appearance control Finally, we replace ϵθ in Equation 3.2 with

ϵ̂θ
(
xo
t | t, c, {f sl,t}l∈Lfeat , {As

l,t}l∈Lself , {ha
l,t}l∈Lapp

)
, (3.8)

where {f sl,t}l∈Lfeat , {As
l,t}l∈Lself , and {ha

l,t}l∈Lapp corresponds to xs
t features for feature

injection, xs
t attention maps for self-attention injection, and xa

t features for appearance

transfer.

3.5 Experiments

We present extensive quantitative and qualitative results to demonstrate the structure

preservation and appearance alignment of Ctrl-X on T2I diffusion. Appendix ?? contains

more implementation details.

3.5.1 T2I diffusion with structure and appearance control

Baselines For training-based methods, ControlNet [75] and T2I-Adapter [41] learn

an auxiliary module that injects a condition image into a pretrained diffusion model

for structure alignment, and we combine them with IP-Adapter [74], a trained module

for image prompting and thus appearance transfer; Splicing ViT Features [63] trains a

U-Net from scratch per source-appearance image pair to minimize their DINO-ViT self-

similarity distance and global [CLS] token loss. (For structure conditions not supported

by a training-based baseline, we convert them to canny edge maps.) For guidance-based

methods, FreeControl [39] enforce structure and appearance alignment via backpropagated
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(a)

Structure Appearance Output Structure Appearance Output Structure Appearance Output

(b)

a photo of a railway 
during sunset

a painting of a 
railway during the 

harsh winter

a realistic photo of a 
bear and an avocado 

in a forest

a painting of a tiger 
looking at a large 

white egg on a beach 

a photo of a yellow 
sports car speeding

in a city

a painting of an 
abandoned, worn out 

car in a desert

a cartoon of an evil 
goblin holding a

piece of gold

a rough sketch of a 
kangaroo on top of

a mountain

a cartoon of the Grim 
Reapaer sitting on a 
bench looking at his 

phone

a photo of a Stormtrooper 
sitting on a bench looking 

at their phone in a 
futuristic city

a photo of a river 
during winter, 
bird's-eye view

a photo of a city 
intersection at night, 

bird’s eye view

Figure 3.4: Qualitative results for T2I diffusion structure and appearance
control and conditional generation Ctrl-X supports a diverse variety of structure
images for both (a) structure and appearance controllable generation and (b) prompt-
driven conditional generation.

score functions computed from diffusion feature subspaces. For guidance-free methods,

Cross-Image Attention [5] manipulates attention weights to transfer appearance while

maintaining structure. We run all methods on SDXL v1.0 [48] when possible and their

default base models if not.

Dataset Our method supports T2I diffusion with appearance transfer and arbitrary-

condition structure control. Since no benchmarks exist for such a flexible task, we create

a new dataset comprising 256 diverse structure-appearance pairs. The structure images

consist of 31% natural images, 49% ControlNet-supported conditions (e.g.,canny, depth,

segmentation), and 20% in-the-wild conditions (e.g.,3D mesh, point cloud), and the

appearance images are a mix of Web and generated images. We use templates and

hand-annotation for the structure, appearance, and output text prompts.
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Figure 3.5: Qualitative comparison of structure and appearance control Ctrl-X
displays comparable structure control and superior appearance transfer compared to
training-based methods. It is also more robust than guidance-based and -free methods
across a wide variety of structure types.

Evaluation metrics For quantitative evaluation, we report two widely-adopted metrics:

DINO Self-sim measures the self-similarity distance [63] between the structure and output

image in the DINO-ViT [13] feature space, where a lower distance indicate better structure

preservation; DINO CLS measures the loss between the DINO-ViT global [CLS] tokens

of the appearance and output image [63], where a lower loss indicate better appearance

alignment.

Qualitative results As shown in Figures 3.4 and 3.5, Ctrl-X faithfully preserves

structure from structure images ranging from natural images and ControlNet-supported

conditions (e.g.,HED, segmentation) to in-the-wild conditions (e.g.,wireframe, 3D mesh)
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not possible in prior training-based methods while adeptly transfers appearance from the

appearance image with semantic correspondence.

Comparison to baselines Figure 3.5 and Table 3.1 compare our method to the

baselines. For training-based and guidance-based methods, despite T2I-Adapter [41] and

FreeControl’s [39] stronger structure preservation (smaller DINO self-similarity distances),

they generally struggle to enforce faithful appearance transfer and yield worse global

CLS losses, which is particularly visible in Figure 3.5 row 1 and 3. Since the training-

based methods combine a structure control module (ControlNet [75] and T2I-Adapter)

with a separately-trained appearance transfer module IP-Adapter [74], the two modules

sometimes exert conflicting control signals at the cost of appearance transfer (e.g.,row

1)—and for ControlNet, structure preservation as well. For FreeControl, its appearance

score function from extracted embeddings may not sufficiently capture more complex

appearance correspondences, which, along with needing per-image hyperparameter tuning,

results in lower contrast outputs and sometimes failed appearance transfer (e.g.,row 4).

Moreover, despite Splicing ViT Features [63] having the best DINO self-similarity and

CLS scores in Table 3.1, Figure 3.5 reveals that its output images are often blurry while

displaying structure image appearance leakage with non-natural images (e.g.,row 3, 5,

and 6). It benchmarks well because its per-image training minimizes these two metrics

directly.

Guidance-free baseline Cross-Image Attention [5], in contrast, is less robust and more

sensitive to the structure image’s appearance, as the inverted structure latents contain

strong appearance information. This causes both poorer structure alignment and frequent

appearance leakage or artifacts (e.g.,row 6) from the structure to the output images,

resulting in worse DINO self-similarity distances and global CLS losses. In practice, we

find Cross-Image Attention sensitive to its masking domain and sometimes fails to produce

outputs with crossmodal pairs (e.g.,wireframes to photos).
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Method Natural image ControlNet-supported New condition Inference
time (s)

Self-sim ↓ DINO CLS ↓ Self-sim ↓ DINO CLS ↓ Self-sim ↓ DINO CLS ↓

Splicing ViT Features [63] 0.030 0.006 0.043 0.012 0.037 0.013 4289.20
ControlNet + IP-Adapter [75, 74] 0.068 0.109 0.136 0.092 0.139 0.103 23.10
T2I-Adapter + IP-Adapter [41, 74] 0.055 0.119 0.118 0.118 0.109 0.131 17.70
Cross-Image Attention [5] 0.145 0.110 0.196 0.152 0.195 0.139 216.46
FreeControl [39] 0.058 0.132 0.101 0.119 0.089 0.139 1210.02
Ctrl-X (ours) 0.057 0.096 0.121 0.084 0.109 0.097 30.65

Table 3.1: Quantitative comparison of structure and appearance control Ctrl-X
consistently outperforms both training-based and training-free methods in appearance
alignment and shows comparable or better structure preservation compared to training-
based and guidance-free methods, measured by DINO ViT self-similarity and global CLS
token loss [63], respectively.

Structure Ctrl-X (ours)Prompt FreeControl SDEdit ControlNetPrompt-to-Prompt T2I-AdapterPlug-and-Play InfEdit

an embroidery
of a man scuba 

diving in the 
ocean

a photo of a 70s 
style dining room

a photo of a red 
pickup truck in 

front of a 
mountain

a cartoon of a 
wolf howling at 

the moon

Figure 3.6: Qualitative comparison of conditional generation Ctrl-X displays
comparable structure control and superior prompt alignment to training-based methods,
and it also has better image quality and is more robust than guidance-based and -free
methods across different conditions.

Inference efficiency We study the inference time of our method compared to the

baselines, all with base model SDXL v1.0 except Cross-Image Attention (SD v1.5) and

Splicing ViT Features (U-Net). Table 3.1 reports the average inference time using a

single NVIDIA A6000 GPU. Ctrl-X is slightly slower than training-based ControlNet

(1.32×) and T2I-Adapter (1.73×) with IP-Adapter yet significantly faster than per-image-

trained Splicing ViT (0.0071×), guidance-based FreeControl (0.025×), and guidance-free

Cross-Image Attention (0.14×). Our training-free and guidance-free method achieves

comparable runtimes to training-based methods, indicating its flexibility.
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Figure 3.7: Extension to text-to-video (T2V) models Ctrl-X can be directly applied
to T2V models [22, 59] for controllable video structure and appearance control.

Extension to prompt-driven conditional generation Ctrl-X also supports prompt-

driven conditional generation, where it generates an output image complying with the

given text prompt while aligning with the structure from the structure image, as shown in

Figures 3.4 and 3.6. Inspired by FreeControl [39], instead of a given Ia, Ctrl-X can jointly

generate Ia based on the text prompt alongside Io, where we obtain xa
t−1 via denoising

with Equation 3.2 from xa
t without control.

3.5.2 Extension to video diffusion models

Ctrl-X is training-free, guidance-free, and demonstrates competitive runtime. Thus we

can directly apply our method to text-to-video (T2V) models, as seen in Figure 3.7.

Our method closely aligns the structure between the structure and output videos while

transferring temporally consistent appearance from the appearance image.

3.5.3 Ablations

Effect of control As seen in Figure 3.8(a), structure control is responsible for structure

preservation (appearance-only v.s.ours). Also, structure control alone cannot isolate

structure information, displaying strong structure image appearance leakage and poor-

quality outputs (structure-only v.s.ours), as it merely injects structure features, which

creates the semantic correspondence for appearance control.

Appearance transfer method As we consider appearance transfer as a stylization

task, we compare our appearance statistics transfer with and without attention weighting.
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(a) Ablation on control (b) Ablation on appearance transfer method
No control Structure-only Appearance-only OursStructure Appearance Structure Appearance OursWithout attention

(c) Ablation on inversion v.s.our method
Structure Appearance Inversion Ours Structure Appearance Inversion Ours

Figure 3.8: Ablations We study ablations on control, appearance transfer method, and
inversion.

Without attention weighting (equivalent to AdaIN [28]), the normalization is global and

thus cannot consider the semantic correspondence between the appearance and output

images, so the outputs look low-contrast.

Effect of inversion We compare DDIM inversion v.s.forward diffusion (ours) to obtain

xo
T = xs

T and xs
t in Figure 3.8(c). Inversion displays appearance leakage from structure

images in challenging conditions (left) while being similar to our method in others (right).

Considering inversion costs and additional model inference time, forward diffusion is a

better choice for our method.
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CHAPTER 4

Conclusion and Discussion

This final chapter concludes the discussed chapters in this thesis and summarizes their

findings, limitations, and potential future works. The primary objective of this thesis

is to enhance conditional text-to-image generation with pre-trained generative diffusion

models without additional training. Our key question is: How can we leverage pre-trained

T2I diffusion models to take condition signals from a wide spectrum?

In Chapter 2, we present FreeControl, a training-free approach for controllable T2I gen-

eration that supports multiple conditions, architectures, and checkpoints simultaneously.

FreeControl enforces structure guidance to facilitate the global alignment with a guidance

image, and appearance guidance to collect visual details from images generated without

control. Extensive qualitative and quantitative experiments demonstrate the superior

performance of FreeControl across a variety of pre-trained T2I models. In particular,

FreeControl enables convenient training-free control over many different architectures and

checkpoints, allows the challenging input conditions on which most of the existing training-

free methods fail, and achieves competitive synthesis quality compared to training-based

approaches.

In Chapter 3, we present Ctrl-X, a simple framework for T2I diffusion controlling

structure and appearance without additional training or guidance. Ctrl-X designs feed-

forward structure control to enable the structure alignment with a structure image and

semantic-aware appearance transfer to facilitate the appearance transfer from a user-

input image. Extensive qualitative and quantitative experiments illustrate the superior

performance of Ctrl-X on various condition inputs and model checkpoints. In particular,

Ctrl-X supports novel structure and appearance control with arbitrary condition images
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of any modality, exhibits superior image quality and appearance transfer compared to

existing works, and provides instant plug-and-play to any T2I and text-to-video (T2V)

diffusion model.

The research presented in this thesis has significantly advanced the field of controllable

image synthesis, with the proposed method for conditionally controllable generation

having a substantial impact on subsequent studies. While FreeControl and Ctrl-X have

effectively introduced spatial and appearance controllability to several pre-trained text-to-

image diffusion models without additional training, achieving pixel-level control remains

challenging due to the small size of the internal activation maps in the denoiser network.

By continuously pushing the boundaries of current models and fostering innovation, we

can aim to further enhance the capabilities of controllable image generation.
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