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Abstract
Purpose: Automation and computer assistance can support quality assurance
tasks in radiotherapy. Retrospective image review requires significant human
resources, and automation of image review remains a noteworthy missing ele-
ment in previous work. Here, we present initial findings from a proof-of -concept
clinical implementation of an AI-assisted review of CBCT registrations used for
patient setup.
Methods: An automated pipeline was developed and executed nightly, utilizing
python scripts to interact with the clinical database through DICOM network-
ing protocol and automate data retrieval and analysis. A previously developed
artificial intelligence (AI) algorithm scored CBCT setup registrations based on
misalignment likelihood, using a scale from 0 (most unlikely) through 1 (most
likely). Over a 45-day period, 1357 pre-treatment CBCT registrations from 197
patients were retrieved and analyzed by the pipeline. Daily summary reports
of the previous day’s registrations were produced. Initial action levels targeted
10% of cases to highlight for in-depth physics review. A validation subset of
100 cases was scored by three independent observers to characterize AI-model
performance.
Results: Following an ROC analysis,a global threshold for model predictions of
0.87 was determined,with a sensitivity of 100% and specificity of 82%. Inspect-
ing the observer scores for the stratified validation dataset showed a statistically
significant correlation between observer scores and model predictions.
Conclusion: In this work, we describe the implementation of an automated
AI-analysis pipeline for daily quantitative analysis of CBCT-guided patient
setup registrations. The AI-model was validated against independent expert
observers, and appropriate action levels were determined to minimize false
positives without sacrificing sensitivity. Case studies demonstrate the potential
benefits of such a pipeline to bolster quality and safety programs in radiotherapy.
To the authors’ knowledge, there are no previous works performing AI-assisted
assessment of pre-treatment CBCT-based patient alignment.
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1 INTRODUCTION

As technology and techniques for radiotherapy treat-
ment have evolved, the prevalence of image guidance
has increased. Since image-guidance is the final step
in the radiotherapy workflow prior to initiating beam
delivery, any error during pre-treatment imaging and
positioning can severely impact treatment.1,2 As such,
multiple levels of quality assurance have been imple-
mented which require human observers to review
pre-treatment image registrations. Therapists review all
registrations at the console during treatment, physi-
cians review and approve all image guidance daily, and
physicists typically perform some level of review dur-
ing weekly chart checks. With the increased use of
image-guidance, the workload for each of these review-
ers increases in kind, carrying a danger of inducing
fatigue in the reviewer and allowing errors to pass by
undetected.3 Quantifying registration performance has
historically been a difficult task.4,5 Intensity-based met-
rics (such as correlation coefficient) and feature-based
metrics (such as mutual information) have many limita-
tions, including sensitivity to intensity range differences
and artifacts. In addition, most onboard tools to assist
in pre-treatment image registration rely on these met-
rics, so they offer little additional benefit as a secondary
safety layer.

Recent years have seen a significant effort to apply
artificial intelligence (AI) and deep learning techniques
in radiotherapy with the aim to improve overall quality
and efficiency by utilizing the abundance of prior data to
standardize and optimize steps in the radiotherapy work-
flow.Recent publications detail the efforts in the areas of
automatic segmentation, treatment planning, treatment
optimization,patient-specific QA, treatment log analysis,
and plan adaptation.6,7

There remains a significant gap in the radiotherapy
workflow where AI and deep learning have not yet
been applied—image review. As discussed in the pre-
vious paragraph, most current applications are built
on the treatment planning data to include dose distri-
butions, structure sets, and dose volume constraints.
McNutt et al. expanded the scope and discussed the
application of big data for QA purposes, particularly
for identifying anomalies.6 However, patients continue
producing data throughout the entire course of treat-
ment, and more so now than ever with the increased
reliance on image-guided radiotherapy (IGRT)
techniques.

In 2020, the American Association of Physicists in
Medicine published the findings of their Task Group
275, on effective strategies for physics plan and chart
review.8 In this report, they recommend that software
vendors develop methods to automate chart reviews,
and “highlight items that are difficult to check and review.”
Additionally, AAPM’s recently published practice guide-

lines for plan and chart review emphasizes the safe
application of computer-aided programs by ‘calling spe-
cial attention to missed or mismatched items’but should
not fully replace a thorough and robust chart review.9

With most of the field transitioned to electronic
medical records (EMR), tools have been developed
to automate routine chart checks—comparing logisti-
cal data within the database to identify and highlight
discrepancies.10–12 To the authors’ knowledge, there is
no current tool available on the market to provide an
automated, independent evaluation of the pre-treatment
image-guided patient alignment and anatomy-of-the-
day.

In this work, we examine the implementation of a
deep learning algorithm as a decision-support tool for
image review in weekly physics chart checks. Algo-
rithms were previously developed for the detection of
IGRT setup errors such as misalignments of 1−2 cm
or more, alignments to the incorrect vertebral body, and
anatomic misidentifications using IGRT images.13–15

These algorithms were originally developed to detect
rare but serious gross errors and return a misalign-
ment score based on similarity of the aligned IGRT
image with the planning CT, accounting for applied
IGRT shifts. An appropriately high threshold value of
the misalignment score detects gross errors with high
sensitivity and specificity.Recently,we hypothesized that
an intermediate threshold could be used to differen-
tiate perfectly aligned cases needing minimal human
review, from imperfectly aligned cases that, while not
gross errors, require human review, clinical judgment,
and potentially remediating actions. In this manuscript,
we evaluate a working prototype of such a system.
We discuss considerations of clinical implementation,
including strategy, validation, impact, effectiveness, and
efficiency.

The following points summarize the main contribu-
tions of this study:

1. We present the methodology of implementation of an
emerging AI-based error detection tool for automatic
assessment of pre-treatment imaging alignment and
validated its clinical utility against expert observers,
which is a significant and necessary step toward
clinical adoption.

2. While the development of the AI-based tool was pre-
sented in a prior publication, its evaluation was only
performed using simulated off -by-one vertebral body
misalignments in the thoracic and lumbar regions.
This study is an expansion of the prior work by
including models which deal with setup errors in addi-
tional treatment regions. Furthermore, by including
case reviews using select data presentation modes,
we showcased the supplemental benefits the tool
can offer during quality assurance image reviews in
addition to gross setup error detection.
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2 METHODS

2.1 Error detection algorithm

Our group has developed a convolutional neural net-
based algorithm designed to verify agreement between
online CBCT images and the registered planning CTs.15

The algorithm was trained to detect positioning misalign-
ments such as translational errors of 1 cm or more and
off -by-one vertebral body errors. Initial testing demon-
strated an ability to distinguish perfectly aligned patients
from alignments that were sub-optimal due to a vari-
ety of challenges including patient weight loss or gain,
bladder. and bowel filling changes versus simulation,
and body pose changes such as spine curvature or
hip tilt.

Algorithm design and development is briefly described
in the following section. Further details are available
elsewhere.15 Separate neural net models were used
for each body site: head and neck, thoracic-abdominal
(TA), and pelvic. Each anatomy-specific model follows
a 4-level Dense-Net architecture.16 Each model takes
as input 3 orthogonal planes of the CBCT and corre-
sponding planes from the planning CT according to the
rigid registration used to align the patient at time of
treatment. For the head & neck (HN) and TA models,
the orthogonal 2D slices were automatically extracted
about a point within the vertebral column which was
obtained from either the spinal canal structure set
within the RTSTRUCT file or a dedicated spinal canal
segmentation model.For pelvis (PL) cases,as the regis-
tration is highly reliant on the tumor position and fiducial
markers around it, the orthogonal planes were con-
sequently extracted about the centroid of the primary
target volume (PTV) or treatment isocenter.

The output of the model is a misalignment likeli-
hood prediction with 0 indicating perfect alignment and
1 indicating the highest probability of misalignment.
The models were trained and validated on a total of
6376 image pairs obtained from 680 patients as part
of an IRB-approved retrospective study at UCLA and
Virginia Commonwealth University. Further details are
provided in Table SA1. Training images consisted of
clinically aligned cases (representing “no error”) and
simulated misalignments obtained by translating images
away from the correctly aligned state. For the head and
neck and PL models, 10 mm translations in multiple
directions were used. For the TA model, off -by-one ver-
tebral body misalignments (superior and inferior) were
used.

An anatomical region labeling (ARL) model17 was
used to stream CBCT images to the appropriate
anatomy-specific pipeline. The ARL model was trained
and tested on the UCLA patient datasets.For each scan,
the coronal slice taken from the middle of the CBCT
scan was extracted and inputted to the ARL model. This
particular plane was selected as it contains overall body

shape information and organ structures which could be
useful for the anatomy region classification. The ARL
model was based on the Dense-Net architecture which
made use of densely contracting paths to capture con-
textual information from a selected coronal slice from the
CBCT scan before outputting a probability for each of
the three anatomical regions. During model training, the
model was validated using the CBCT scans in the val-
idation datasets, and the validation accuracy was used
to test for model convergence.

2.2 Proof-of-concept implementation

In accordance with the recommendation in the AAPM
practice guidelines7 the intent of integrating automated
software-based supervision into the radiotherapy QA
process was not to supplant weekly physics chart
reviews,but to supplement it and aid in identifying cases
which may need closer inspection. As such, our imple-
mentation strategy was to highlight a subset of cases
each day for in-depth investigation.

The proof-of -concept implementation was developed
with Python scripting and utilized a DICOM network-
ing protocol to query and retrieve data from the clinical
record and verify (R&V) system. The prototype system
was developed to interface with the ARIA R&V sys-
tem (Varian Medical Systems, Palo Alto, CA) using the
pynetdicom1 Python package. Results were compiled
into daily reports and aggregated into an interactive
dashboard. The workflow is illustrated in Figure 1, and
the nine modular components can be described as
follows: (1) Query the clinical database for a list of
daily treatments. (2) Query the clinical database for
a list of daily cone-beam CT (CBCT) acquisitions. (3)
Cross-reference lists to identify patients for analysis. (4)
Retrieve relevant DICOM Registrations (REGs) for iden-
tified patients. (5) Inspect REGs,and retrieve referenced
RTPlans. (6) Inspect RTPlans, and retrieve associated
RTStructs, planning CT images, and CBCT images. (7)
Run an AI-based misalignment model on each dataset.
(8) Compile predictions into a daily report. (9) Archive
intermediate results, logs, and remove temporary
files.

A web-based dashboard was implemented to facil-
itate access to the daily reports, where results are
sorted by prediction value and highlight the most likely
misalignments from the previous days’ treatments.Addi-
tional features were developed to facilitate a superficial
review, but with the stipulation that full in-depth review
should still be performed using the R&V system’s built-
in tools. These features included single-slice CT-CBCT
fusions along each axis to quickly identify if there was an
issue with the data retrieval or preprocessing. The user

1 https://pydicom.github.io/pynetdicom
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F IGURE 1 Workflow illustration of the automated pipeline.

may also scroll quickly through the patient’s past treat-
ments to compare the registrations or look for trends.
Lastly, summary statistics are compiled and charted,
allowing breakdown by machine, date, treatment site,
prediction value,and so forth.to help explore overall data
trends in the clinic.

The AI-algorithm scored the likelihood of a misalign-
ment between 0 and 1: 0 being most unlikely and 1
being most likely for a misalignment. An initial threshold
was implemented at 0.1 with the intention of flagging
5%−10% of cases for further investigation.

A clinical validation study was performed to assess
the suitability of the chosen threshold and the ability of
the algorithm to identify setup images that might, in the
clinical judgment of a medical physicist, require further
investigation. In an IRB approved study, the proof-of -
concept implementation was run retrospectively on data
from treatments between 7 February 2022 and 10 May
2022. Treatments were performed on four machines:
1 NovalisTx, 1 NovalisSTx, and 2 TrueBeams (Varian
Medical Systems, Palo Alto, CA). A total of 1357 treat-
ment cases comprising registered (post-shift) CBCT
images, were analyzed from 197 unique patients.

From this data, 100 cases were selected for expert
review based on the following criteria: 50 cases having
the highest misalignment scores (lowest model predic-
tion – 0.495), and 50 randomly selected cases from
the rest of the population. Each case was from a
unique patient to avoid image-score correlations.The list
of cases was then randomly permutated. Three inde-
pendent observers, board certified medical physicists,
manually reviewed each of the 100 cases and scored

them from 1 to 4. Review criteria were based on clin-
ical action levels, and were scored based on overall
alignment, taking into account the reviewer’s estima-
tion of whether a given target should be aligned to
soft tissue or bone. The numerical review score was
defined as follows: 1 showing a perfect match of target
and surrounding anatomy; 2 showing some deviation,
but clinically acceptable; 3 showing enough deviation
to require further investigation, and 4 showing sig-
nificant deviation that would preclude treatment until
investigation is resolved.

The mean values of the reviewer’s score were corre-
lated with the AI prediction. Algorithm performance at
discriminating cases with mean overall score greater
than 2 (i.e., action level requiring investigation) was
quantified using a receiver operating characteristic
(ROC) curve. As a random selection process was
applied to the stratified patient dataset (50 highest-
scoring cases, then 50 randomly chosen from the
remaining 147 cases), the weight of each sample was
calculated by taking the inverse of the sample propor-
tion from each of the two strata. The weight of a sample
found in the lower 147 cases was 147/50 = 2.97. The
samples found in the 50 highest-scoring cases were
assigned a weight of 1 as the whole population was
used in the analysis. Using these weights, the weighted
sensitivity and specificity were calculated and used to
build a weighted ROC curve. This weighting method
has been established as an effective method to extrap-
olate the findings from a sample study to the entire
dataset.18 Additionally, selected representative cases
were examined further with temporal trend-line plots.
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TABLE 1 Performance of each model in our error detection pipeline

Model Error type AUC Specificity Sensitivity

Thoracic-abdominal (TA) Off -by-one vertebral body misalignment 99.4% 99% 95%

Head & neck (HN) 10 mm shift 99.6% 99% 89%

Pelvis (PL) 10 mm shift 99.2% 99% 89%

Abbreviation: AUC, area under curve.

3 RESULTS

3.1 Error detection algorithm

The region receiving the highest output score from
the anatomic region labeling (ARL) model was cho-
sen as the final model prediction and was compared
to the ground truth region. The accuracy of the ARL
model was found to be 99.4% on the test dataset, with
two misclassifications out of 1611 coronal slices from
256 patients. For the TA, HN, and PL error-detection
models, the area under curve (AUC) of the ROC curve
was used to assess the performance of each model
in classifying the registrations from their respective test
dataset.19 Due to the rarity of registration errors in the
clinic,a minimum threshold value yielding a specificity of
at least 99% was selected.Using this threshold, the sen-
sitivity was calculated for each model. The performance
of each model is presented in Table 1.

3.2 Proof-of-concept implementation

Data was automatically collected and processed over a
45-day period, resulting in 1357 registrations from 197
unique patients being analyzed. The distribution of reg-
istrations by anatomical region included 506 HN, 464
PL, and 387 TA. To ensure the validity of our proof-
of -concept study, the patient population for this study
was kept independent of the patient population used for
model training and validation, described in Table SA1.

The full distribution of observer scores obtained from
the 100 case reviews are shown in Table SB1. Figure 2
illustrates the relationship between the observer scores
and model predictions for the 100 registrations in the
validation set. Cases were binned by average observer
score, and a box and whisker plot were constructed to
show the distribution of the model predictions for each
group.

After confirming the correlation of model predictions
to observer scores, the focus shifted to determining an
optimal threshold prediction when flagging cases for fur-
ther investigation. Ideally,a threshold could be found that
would catch all cases tagged by the observers as less
than ideal, while also minimizing false positives. It was
considered a priority to minimize false positives to limit
the time required for daily review and avoid inducing
alarm fatigue.

F IGURE 2 Box and whisker plot to show the distribution of the
model predictions, grouped by average observer score. The box
shows the median, 25th percentile, and 75th percentile, while the
whisker shows the minimum and maximum values. The cross within
each box represents the mean model prediction for the respective
group.

Figure 3 plots the ROC curves for the validation set,
as well as individual ROC curves for each anatomical
region. True positives were categorized as cases where
the mean observer score was greater than 2, where a
score of 2 was considered clinically acceptable but not
perfect. From the ROC analysis, it is apparent that using
a threshold of 0.87 achieves 100% sensitivity while min-
imizing false positives. Applying this threshold to the
validation data set of 100 cases,40 would be flagged for
further investigation. Note, this proportion is not reflec-
tive of a broader patient population since the validation
dataset included the 50 cases receiving the highest
model prediction scores (mean prediction of 0.91 [top
50] vs. 0.05 [the rest]—p-value < 0.0001). Inspecting
the observer scores for the stratified validation dataset
shows an average of 1.65 ± 0.51 for model predictions
≥0.87, and 1.33 ± 0.33 for model predictions <0.87. A
two-tailed t-test results in a p-value of 0.0002 between
these cohorts.

4 DISCUSSION

To explore how the proposed tool could potentially
impact clinical workflow,we present case studies for dis-
cussion.With most clinics transitioned to EMR, it is trivial
for software tools to compare values between database
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F IGURE 3 Weighted receiver operating characteristic (ROC)
curves obtained using a mean observer threshold >2. The bold blue
curve represents the results from the entire 100 patient validation
dataset, and the other curves represent the results from each
respective anatomical region only. The area under curve (AUC) is
also given for each curve. The model prediction threshold (0.87)
leading to a sensitivity of 100% and a specificity of 82% (depicted by
the yellow star) was obtained and used for further analysis.

entries and highlight discrepancies.The task is more dif-
ficult and nuanced for image review, and requires both
broad clinical knowledge and patient-specific insight to
determine relevance and priority. The proposed deep

learning pipeline aims to provide a quantitative anal-
ysis of daily pre-treatment CBCT alignment, and has
the potential to facilitate the recognition of anomalies.
Thresholding may be used to identify a manageable
number of datasets for manual review. A trendline
may provide added value when used in parallel to the
hard-thresholding method.

One example is illustrated in Figure 4. The time-
line in Figure 4a plots the model prediction from each
fraction by date over the patient’s treatment course.
While none of the model prediction scores approach
our global threshold to be flagged for further inspec-
tion, there are clearly two fractions where the deep
learning model identified an increased probability of
misalignment. One of these fractions was included in
our validation dataset, and an observer commented, “Air
in bowel precluded definitive alignment of nodal targets.”
Figure 4b,c display the anatomy from this fraction,where
increased air cavities in the bowel resulted in artifacts on
the CBCT image which made target identification and
pre-treatment setup more difficult.

Over the course of treatment, gradual anatomical
and physiological changes can also make pre-treatment
setup more difficult and may indicate the necessity
for intervention. Figures 5 and 6 highlight two such
instances.

For the case illustrated in Figure 5,the trendline shows
consistently good alignment for the first few fractions,

F IGURE 4 This diagram depicts a case where the deep learning model would not have flagged the registration due to the low prediction
score (2 × 10−5). However, the trendline in (a) suggests a relatively high escalation in the model prediction on that particular day (24 March
2022) as compared to the previous treatment days, demonstrating the potential value the trendline can provide when used in parallel to the
hard-thresholding method. Images (b) and (c) are select axial slices from the planning CT and pre-treatment CBCT (24 March 2022),
respectively. The presence of gas in the bowel resulted in artifacts on the CBCT image and inhibits identification of targets within the 50 Gy
planning tumor volume (PTV) coverage (blue contour) and the 62.5 Gy gross node PTV coverage (red contour).
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F IGURE 5 Highlight of a case which obtained a relatively high mean observer score (2.33) and a high model prediction score (0.88). The
trendline in (a) shows the model prediction scores of the registrations performed over the course of the patient’s treatment. The red circled point
represents the case which was reviewed by expert observers for validation. Images (b) and (c) are select sagittal slices from the planning CT
and setup CBCT (22 April 2022), respectively. Differences in the 25 Gy planning tumor volume (PTV) coverage (blue contour) and in the gross
node PTV coverage (orange contour) can be observed between (b) and (c).

F IGURE 6 Highlight of a case which obtained a relatively high mean observer score (2.67) and a high model prediction score (1.0). The
trendline in (a) shows the model prediction scores of the registrations performed over the course of the patient’s treatment. The red circled point
represents the case which was reviewed by expert observers for validation. The other registrations were reviewed post-analysis for comparison.
(b) Shows a selected coronal slice from the planning CT, with the planning tumor volume (PTV) shown as the yellow overlay and the treatment
isocenter shown as the red target. (c) Shows the pre-treatment CBCT from 14 March 2022.
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then a relative increase for fraction 4, before a dramatic
jump on fraction 5.Reviewing the images,there is a clear
shift of the bony anatomy between the plan (Figure 5b)
and the CBCT (Figure 5c). Additionally, the lymph node
boost volume is difficult to visualize but may be pos-
terior to the nodal PTV in the CBCT image. Fraction 5
was included in the validation dataset, and one of the
observers noted, “If done in weekly checks, I would have
brought to doctor’s attention.”

To contrast the case in Figure 5, which displayed sub-
tle differences that could be attributed to user judgment
during registration at the treatment console, the case
illustrated in Figure 6 shows drastic anatomic changes.
The patient had a large mediastinal mass that shrunk
significantly over a 5-fraction treatment course, as well
as pleural effusion that showed improvement.The fourth
fraction was included in the validation dataset, and the
tumor shrinkage was noted with two observers scoring
the case “3”and one commenting, “Tumor shrinkage; tra-
chea goes into field. If done in real-time, would have
brought to doctor’s attention.”The model prediction time-
line shows a clear progression, for longer treatment
courses or more drastic anatomic changes, this could
be a valuable tool to anticipate re-planning.

While a deep learning model can identify and quan-
tify differences between the planning CT image and the
daily CBCT image, a human observer is still required
to review the flagged cases and judge whether the dif-
ferences are clinical relevant and actionable. To further
aid the observer, a debugging tool was incorporated into
the proof-of -concept pipeline,which overlays a heatmap
of the model activation on the patient anatomy, indicat-
ing the areas contributing to the misalignment prediction.
Figure 7 demonstrates this debugging tool on a bilateral
neck case.Figure 7a shows a sagittal slice the CT-CBCT
fusion with target contours overlaid.A colormap fusion is
displayed in Figure 7b,with the planning CT in the green
channel and the CBCT in the red and blue channels.
The activation heatmap is overlaid on the planning CT in
Figure 7c. This heatmap could be used as a debugging
tool for the end-user to visualize the model prediction.

The case studies above illustrate the potential uses
of the pipeline. Nevertheless, some limitations apply to
the current proof-of -concept system. The deep learn-
ing model, at least in its current iteration, does not
incorporate clinical context and determine relevance of
a misalignment. Additionally, as with many computer
vision tools, it will preferentially focus on high-contrast
image features such as bone and tissue-air interfaces.
Lastly,while intended to be vendor agnostic,utilizing only
DICOM networking protocol to interface with the clinical
database, the proof-of -concept pipeline was developed
referencing only a single vendor’s DICOM conformance
statement and the built-in DICOM queries reflect that.
Connecting to another vendor R&V system, or even
a different version of the same vendor’s R&V system
would almost certainly require further development of
the DICOM handling.

F IGURE 7 Debugging the misalignment predictions with a
model activation heatmap. (a) Shows the CT-CBCT fusion with target
contours overlaid, (b) shows a colormap fusion of planning CT
(green) and CBCT (purple), and (c) shows the activation map of our
deep learning model overlaid on the planning CT. The mandible is
clearly misaligned in this case, and the heatmap shows a hotspot for
model activation at the mandible. This feature provides an avenue for
the user to better understand the reason behind the model’s
misalignment predictions.

5 CONCLUSION

Due to time and manpower constraints, it is often
not feasible for physicists to perform in depth
examination of every pre-treatment alignment registra-
tion. As discussed in the introduction, image guidance is
one of the most pivotal steps in the treatment workflow,
with a significant risk that a mistake could lead to a
mistreatment.

In this work, we presented a proof-of -concept clinical
implementation of an automated pipeline for AI-assisted
CBCT alignment retrospective review. The purpose of
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the pipeline was to provide quantitative assessment
and visualization tools to improve the efficiency and
efficacy of periodic chart reviews. The predictions of
the deep learning model were validated against expert
observers, and demonstrated that a prediction thresh-
old could be identified to stratify pre-treatment images
with a statistically significant correlation to the observer
scores. In addition to the validation study, we demon-
strated through anecdotal examples how these tools
could be beneficial to the clinical workflow through quan-
tification of daily alignments and patient/plan specific
timelines to identify trends and flag anomalies. Effective
visualization of this data, made quickly accessible
and easily digestible, can expedite the image review
component of periodic physics chart checks.

Future work will aim to leverage the speed of deep
learning inference to move this system from retrospec-
tive to real-time, integrating directly with the treatment
machine to interlock the beam if the AI-model flags a
potential setup misalignment. Such a system would ide-
ally require the operator to either revise the alignment
or acknowledge the interlock before proceeding with
treatment. An automated AI-assisted tool could allow
for independent, quantitative review of every alignment
registration in the future.
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