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Abstract

We discuss the relationship between a symmetry in the neutrino flavour
evolution equations and neutrino flavour oscillations in the collective precession
mode. This collective precession mode can give rise to spectral swaps (splits)
when conditions can be approximated as homogeneous and isotropic. Multi-
angle numerical simulations of supernova neutrino flavour transformation
show that when this approximation breaks down, non-collective neutrino
oscillation modes decohere kinematically, but the collective precession mode
is still expected to stand out. We provide a criterion for significant flavour
transformation to occur if neutrinos participate in a collective precession mode.
This criterion can be used to understand the suppression of collective neutrino
oscillations in anisotropic environments in the presence of a high matter density.
This criterion is also useful in understanding the breakdown of the collective
precession mode when neutrino densities are small.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Because of neutrino–neutrino forward scattering or neutrino self-interaction [1–3], neutrinos
can experience collective flavour transformation in environments such as the early Universe
(e.g., [4–9]) and supernovae (e.g., [10–13]) where neutrino number densities can be very large.
This phenomenon is different from the conventional Mikheyev–Smirnov–Wolfenstein (MSW)
effect [14, 15] in that the flavour evolution histories of neutrinos in collective oscillations are
coupled together and must be solved simultaneously. The possibility and consequences of
collective neutrino oscillations in supernovae were not well appreciated until the discovery
that the ordinary matter can be ‘ignored’ in such phenomena [16] and the first numerical
demonstrations of ‘stepwise spectral swapping’ (or ‘spectral split’) [17, 18] which is the
imprint left by the collective flavour transformation on neutrino energy spectra.
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Significant progress has been made towards understanding collective neutrino oscillations
in supernovae (see, e.g., [19] for a brief review and references therein). In particular, Raffelt and
Smirnov [20] demonstrated an adiabatic (precession) solution for the homogeneous, isotropic
neutrino gas. This solution has been shown to agree in part with the results of ‘single-
angle’ simulations of supernova neutrino oscillations [21]. These single-angle simulations
essentially neglect the anisotropic nature of the supernova environment by assuming that the
flavour evolution histories of neutrinos along all trajectories are identical to those along a
‘representative’ trajectory, usually taken to be the radial trajectory [10, 22]. The adiabatic
precession solution requires that at any time all neutrinos reside in a pure collective oscillation
mode, the ‘precession’ mode, which, as shown by Duan et al [18, 23], would explain the
spectral swap phenomenon in the single-angle simulations.

However, the real supernova environment is highly inhomogeneous and anisotropic. Here
by ‘inhomogeneous’ and ‘anisotropic’, we refer to the neutrino fields. Of course, the matter
density distributions in the supernova environment are also likely to be inhomogeneous and
anisotropic. To date there are a few ‘multi-angle’ simulations [17, 18, 24, 25] which, like
the single-angle calculations, also adopt spherically symmetric supernova models but do
treat flavour evolution along different neutrino trajectories in a self-consistent way. These
multi-angle calculations also exhibit spectral swaps. It is still not understood how the spectral
swap phenomenon arises in the (anisotropic) multi-angle context. In fact, some studies seem to
suggest that collective neutrino oscillations in the isotropic and anisotropic environments can be
very different. For example, collective neutrino oscillations of the bipolar type can experience
‘kinematic decoherence’ and be disrupted in anisotropic environments [26, 27]. Additionally,
a very large matter background can result in neutrino oscillation phase differences between
different neutrino trajectories in an anisotropic neutrino gas [10], and this effect recently has
been shown to result in suppression of collective neutrino oscillations [28].

In this paper we discuss an SU(Nf) rotation symmetry in the neutrino flavour evolution
equations, where Nf = 2 and 3 for the two-flavour and three-flavour neutrino mixing schemes,
respectively. The collective precession mode for neutrino oscillations can ensue from this
symmetry, even in inhomogeneous, anisotropic environments. This result explains the puzzling
observations of the spectral swapping phenomenon in both the single-angle and multi-angle
simulations of supernova neutrino oscillations.

The rest of this paper is organized as follows. In section 2, we lay out the general
framework for neutrino flavour transformation and discuss the SU(Nf) rotation symmetry in
the flavour evolution equations for a dense neutrino gas. In section 3, we show how the
collective precession mode for neutrino oscillations can arise from this symmetry in various
environments. We also give criteria for when the collection precession mode can occur. In
section 4, we present a new multi-angle simulation of supernova neutrino oscillations. We
analyse the results of this calculation guided by our understanding of the collective precession
mode. In section 5, we give our conclusions.

2. Equations of motion and symmetries

2.1. Neutrino flavour polarization matrix

We are interested in collective flavour oscillations in neutrino gases in which neutrinos may
experience only forward scattering on other particles (including other neutrinos), but where
no inelastic scattering occurs. When physical conditions change only slowly with spatial
dimension, the flavour content of neutrinos can be described by semi-classical matrices of
densities [29, 30]
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[ρp(t, x)]αβ =
∑

nν,p(t, x)〈να|ψν,p(t, x)〉〈ψν,p(t, x)|νβ〉, (1)

[ρ̄p(t, x)]αβ =
∑

nν̄,p(t, x)〈ν̄β |ψν̄,p(t, x)〉〈ψν̄,p(t, x)|ν̄α〉, (2)

where α and β are flavour labels (e, μ, τ ), |ψν(ν̄),p(t, x)〉 is the state of a neutrino ν (antineutrino
ν̄) with momentum p at time t and position x, nν(ν̄),p is the corresponding neutrino number
density and the summation runs over all neutrino (antineutrino) states. Matrices of densities
defined in (1) and (2) contain two separate pieces of information. One is the overall number
density of neutrinos or antineutrinos with momentum p at spacetime point (t, x):

np(t, x) ≡
{

Tr ρp(t, x) if p0 > 0,

Tr ρ̄p(t, x) if p0 < 0.
(3)

Here for compactness we use a four-component vector p ≡ [p0, p] to denote a neutrino or
antineutrino momentum mode, where p0 = |p| for the neutrino and −|p| for the antineutrino.
Because neutrinos may experience only forward scattering, np(t, x) satisfies the conservation
equation

(∂t + p̂ · ∇)np(t, x) = 0, (4)

where p̂ ≡ p/|p| is the unit vector along the neutrino propagation direction.
The other piece of information contained in the matrix of density is the ‘flavour

polarization’ of the neutrino. This is in analogy to, e.g., the spin polarization of an electron
gas. We define a traceless ‘neutrino flavour polarization matrix’, or ‘polarization matrix’ for
short,

Pp(t, x) ≡
{

n−1
p (t, x)ρp(t, x) − N−1

f I if p0 > 0,

−n−1
p (t, x)ρp(t, x) + N−1

f I if p0 < 0,
(5)

where I is the identity matrix in flavour space and Nf = 2 and 3 for two-flavour and three-
flavour mixing schemes, respectively. In (5) we define the polarization matrices for neutrinos
and antineutrinos with opposite signs, with the understanding that antiparticles are ‘negative
particles’ or ‘holes’ in the particle sea. This sign convention will make the equations of motion
(e.o.m.) more succinct and is especially appropriate in the two-flavour mixing scheme where 2

and 2̄, the fundamental representations of the SU(2) group, are equivalent [16] (see section 2.2).
The e.o.m. for polarization matrix Pp(t, x) can be derived easily from that for ρp(t, x) [29–31]
and is

(∂t + p̂ · ∇)Pp(t, x) = −i[Hp(t, x), Pp(t, x)]. (6)

Throughout this paper, we assume a vanishing CP -violating phase. (See [32] for a discussion
of collective neutrino oscillations with a non-vanishing CP -violating phase.)

The Hamiltonian for polarization matrix Pp(t, x) is

Hp(t, x) = Hext
p0 (t, x) + Hνν

p̂ (np′(t, x), Pp′(t, x)|∀p′),

= Hvac
p0 + Hmatt(t, x) + Hνν

p̂ (np′(t, x), Pp′(t, x)|∀p′). (7)

The background ‘neutrino field’

Hνν
p̂ (np′(t, x), Pp′(t, x)|∀p′) =

√
2GF

∑
p′

(1 − p̂ · p̂′)np′(t, x)Pp′(t, x) (8)

is a function of both neutrino number densities np′(t, x) and neutrino flavour polarization
matrices Pp′(t, x), and does not depend on the energy of the test neutrino. For convenience,
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we will drop the symbol ‘∀p′’ with the understanding that p′ in Hνν
p̂ (np′(t, x), Pp′(t, x)) refers

to all neutrino modes. In (8), we use
∑

p′ to denote the integration over (p′)0 and p̂′:∑
p′

≡
∫ ∞

−∞
d(p′)0

∫
dp̂′. (9)

The procedure implied in equation (9) is tantamount to a sum over neutrino and antineutrino
energies and trajectory directions. The ‘vacuum field’

Hvac
p0 = M2

2p0
(10)

generates vacuum oscillations, where M is the neutrino mass matrix. Because the trace of a
Hamiltonian has no effect on neutrino oscillations, we will take Hvac

p0 to be traceless hereafter.
With this convention (10) in the vacuum mass basis becomes

Hvac
p0 = −	m2

21

2p0


3

2
−

(
	m2

31 + 	m2
32

4p0

)

8√

3
, (11)

where 	m2
ij = m2

i − m2
j is the difference between the squares of the mass eigenvalues

corresponding to mass eigenstates |νi〉 and |νj 〉 and 
a (a = 1, 2, . . . , 8) are the Gell–Mann
matrices. For the two-flavour mixing scheme

Hvac
p0 = −	m2

2p0


3

2
, (12)

where 
3 is the third Pauli matrix. The 2 × 2 case is analogous to the 3 × 3 case discussed
above except that 
a (a = 1, 2, 3) are the Pauli matrices. The ‘matter field’ in the flavour
basis in the supernova environment is

Hmatt(t, x) = λ(t, x) diag[1, 0, 0] =
√

2GFne(t, x) diag[1, 0, 0], (13)

where GF is the Fermi constant and ne(t, x) is the net electron number density. The vacuum
field Hvac

p0 and the matter field Hmatt(t, x) together constitute the total external field, Hext
p0 (t, x),

which does not depend on neutrino flavours.

2.2. Vector representation of the polarization matrix

An Nf × Nf , traceless, Hermitian matrix A can be written in terms of vector 	A as

A =
	

2

· 	A ≡
∑

a


a

2
Aa. (14)

(We have adopted the convention in [22]. We use boldfaced letters, e.g. A, to denote 3-vectors
in coordinate space; sans-serif letters, e.g. A, for matrices in flavour space; and letters with an
arrow, e.g. 	A, for vectors in flavour space.) The e.o.m. for the ‘polarization vector’ 	Pp(t, x)

is [33]

(∂t + p̂ · ∇) 	Pp(t, x) = 	Hp(t, x) × 	Pp(t, x), (15)

where the cross product between two vectors is defined by the structure constants fabc of the
SU(Nf) group [34]:

( 	A × 	B)a ≡ fabcAbBc. (16)

The definition of the polarization vector 	Pp given by (5) and (14) for the antineutrino has
a different sign as compared with that in [29] and with the eight-dimensional Bloch vector
in [33]. In addition to making the expression of 	Hνν

p̂ (t, x) (see (8)) more compact, this
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convention is especially convenient in the two-flavour mixing scheme. In studying collective
neutrino oscillations, the corotating-frame transformation technique [16] is frequently used.
A corotating-frame transformation corresponds to rewriting (15) in a reference frame that
rotates about 	e3 with angular frequency ω0, where 	e3 is the unit basis vector corresponding to

3 in the vacuum mass basis. According to (7) and (10), this transformation is equivalent to
a change in the momentum of the neutrino p → p′ where

δm2

2(p′)0
= δm2

2p0
− ω0 and p̂′ = p̂. (17)

With the traditional definition, the direction of the polarization vector 	Pp must be reversed
when p0 changes sign under transformation (17). The polarization vector defined by (5)
and (14), however, is invariant under such transformations. This definition has already been
adopted in some recent literature, e.g. [35].

We can define the magnitude of Pp as

|Pp| ≡ | 	Pp| ≡
√∑

a

P 2
a �

√
2

Nf
(Nf − 1). (18)

The equal sign in the above strict inequality relation applies only if the neutrino state is a pure
(quantum) state, i.e. can be described by a single ket. In forward scattering the coherence of
the neutrino is not lost and, therefore, |Pp(t, x)| also obeys the conservation equation

(∂t + p̂ · ∇)|Pp(t, x)| = 0. (19)

In the two-flavour mixing scheme, a notation related to the polarization vector is the
neutrino flavour isospin (NFIS) [16]. It can be defined as

	sp(t, x) ≡
	P(t, x)

2| 	P(t, x)| (20)

if the neutrino state is a pure state. It obeys the e.o.m.

(∂t + p̂ · ∇)	sp(t, x) = 	sp(t, x) ×
[

− 	H vac
p0 − 	H matt(t, x)

− 2
√

2GF

∑
p′

(1 − p̂ · p̂′)np′(t, x)	sp′(t, x)

]
. (21)

Equation (21) shows that two NFISs 	sp(t, x) and 	sp′(t, x) at the same spacetime point are
‘antiferromagnetically’ coupled. Note that we have defined Hamiltonian vector fields in the
same way as [20] but differing by a minus sign from those in the original NFIS notation
[16]. In supernovae, the neutrinos in a given momentum mode usually are not in a pure state.
Assuming that supernova neutrinos are emitted in pure flavour states at the neutrino sphere
and subsequently encounter only forward scattering, we can write

np(t, x) 	Pp(t, x) = 2
∑

α

nα,p(t, x)	sα,p(t, x). (22)

In (22), 	sα,p(t, x) is the NFIS that represents the flavour state of the neutrino or antineutrino
at (t, x) which is pure να or ν̄α at the neutrino sphere and nα,p(t, x) is the associated neutrino
number density. The corresponding replacements in (21) are

	sp → 	sα,p, 	sp′ → 	sα′,p′ , np′ → nα′,p′ and
∑
p′

→
∑
α′,p′

.

5
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Equivalently, we can insist on definition (20) and replace np(t, x) in (21) by

n′
p(t, x) ≡ np(t, x)| 	P(t, x)|. (23)

In the latter approach, NFIS 	sp(t, x) represents the ‘average flavour state’ of the neutrino and
n′

p(t, x) is the ‘net number density’ of the neutrino in the flavour state represented by 	sp(t, x).

2.3. Symmetries and conservation laws

From (8), it is easy to show that Hνν
p̂ (np′(t, x), Pp′(t, x)) satisfies two important identities:∑

p

np(t, x)
[
Pp(t, x), Hνν

p̂ (np′(t, x), Pp′(t, x))
] = 0 (24)

and

U(t, x)Hνν
p̂ (np′(t, x), Pp′(t, x))U†(t, x) = Hνν

p̂ (np′(t, x), U(t, x)Pp′(t, x)U†(t, x)), (25)

where U(t, x) is an arbitrary unitary matrix. Equation (24) implies that if[
G, Hext

p0 (t, x)
] = 0, (26)

where G is a constant Nf × Nf traceless Hermitian matrix, then the lepton current Lμ(t, x)

with temporal and spatial components

L0(t, x) ≡
∑

p

np(t, x) Tr[Pp(t, x)G], (27)

L(t, x) ≡
∑

p

p̂np(t, x) Tr[Pp(t, x)G] (28)

satisfies the continuity equation

∂μLμ(t, x) = ∂tL
0(t, x) + ∇ · L(t, x) = 0. (29)

This can be easily shown using (4), (6), (7), (24) and (26):

∂μLμ(t, x) = i
∑

p

np(t, x) Tr([Pp(t, x), Hp(t, x)]G)

= i
∑

p

np(t, x) Tr
([

Pp(t, x), Hext
p0 (t, x)

]
G

)
= i

∑
p

np(t, x) Tr
(
Pp(t, x)

[
Hext

p0 (t, x), G
]) = 0. (30)

Equation (25) implies that if (26) is true, then the e.o.m. (6) for the polarization matrix is
invariant under the global (i.e., independent of p, t and x) SU(Nf) transformation

Pp(t, x) −→ P̃p(t, x) ≡ exp(−iφG)Pp(t, x) exp(iφG), (31)

where φ is an arbitrary constant scalar. This is because (26) implies

exp(−iφG)Hext
p0 (t, x) exp(iφG) = Hext

p0 (t, x). (32)

Using (6), (25) and (32), it can be shown that

(∂t + p̂ · ∇)P̃p(t, x) = −i
[
Hext

p0 (t, x) + Hνν
p̂ (np′(t, x), P̃p′(t, x)), P̃p(t, x)

]
. (33)

In the two-flavour mixing scheme, it is obvious that 
3 (in the vacuum mass basis)
commutes with Hext

p0 = Hvac
p0 in (12) in the absence of ordinary matter. According to the

above discussion, the e.o.m. (15) for all polarization vectors 	Pp(t, x) are invariant under

6
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simultaneous rotations about 	e3. In a homogeneous and isotropic neutrino gas a collective
neutrino oscillation mode, which is represented by the collective precession of all polarization
vectors about 	e3, can arise because of this symmetry [21, 23]. This precession mode of
collective neutrino oscillations will ultimately cause the energy spectra of neutrinos with
different flavours to be swapped at a critical energy Es, a phenomenon known as the ‘stepwise
spectral swapping’ [18]. Not surprisingly, the value of Es is determined by the conserved
lepton number L0 associated with 
3 [20, 36]. Similar conclusions have also been drawn for
homogeneous, isotropic neutrino gases in the three-flavour mixing scheme [37, 38].

Approximate symmetries and conservation laws can exist for scenarios where matter
densities are large. Noting that Hmatt(t, x) is invariant under any rotation in the νμ–ντ subspace,
one can diagonalize the νμ–ντ submatrix of Hext

p0 (t, x) by a rotation (νe, νμ, ντ ) → (νe, νμ′ , ντ ′).
In this new basis, the external field is written as

Hext
p0 (t, x) = 1

2p0

⎡
⎢⎣

m2
ee + 2

√
2p0GFne(t, x) m2

eμ′ m2
eτ ′

m2
eμ′ m2

μ′μ′ 0

m2
eτ ′ 0 m2

τ ′τ ′

⎤
⎥⎦

� 1

2p0
diag

[
m2

ee + 2
√

2p0GFne(t, x),m2
μ′μ′ ,m

2
τ ′τ ′

]
, (34)

which is approximately diagonalized for any neutrino mode p if GFne(t, x) � |	m2
ij /(2p0)|

(e.g., [39]). The approximate symmetries of the neutrino system about 
3 and 
8, therefore,
exist in the new basis (νe, νμ′ , ντ ′) instead of the vacuum mass basis [37].

3. Collective precession mode for neutrino oscillations

In this section, we discuss the collective precession mode in the two-flavour mixing
scheme. This collective mode solution can arise in various environments because of the
symmetry discussed in section 2.3. Generalization to the full three-flavour mixing scheme is
straightforward when the polarization matrix representation is used [37].

3.1. Stationary, homogeneous and isotropic environments

First, we shall use the symmetry viewpoint to discuss neutrino oscillations in the collective
precession mode in stationary, homogeneous, isotropic environments. In such environments,
no physical quantity depends on the neutrino propagation direction p̂ and neither the external
field Hext

p0 nor the neutrino number density np0 varies with space or time. Also in this case,
the polarization matrices Pp0(t) are uniform and isotropic, which means that the neutrino
self-interaction potential

Hνν(n(p′)0 , P(p′)0(t)) =
√

2GF

∑
(p′)0

n(p′)0 P(p′)0(t) (35)

does not depend on the momentum of the test neutrino. Suppose that the set of variables
{�, P̃p0 |∀p0} solve the following equations:

[
Hext

p0 + Hνν(n(p′)0 , P̃(p′)0) + �

3

2
, P̃p0

]
= 0, (36)

∑
p0

np0 Tr(P̃p0
3) = L0, (37)

7
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where � is a scalar independent of p0, P̃p0 are traceless Hermitian matrices and L0 is a
constant. Here, we adopt the vacuum mass basis (ν1, ν2) if Hmatt(t) is negligible and the
flavour basis (νe, νμ′) (which is also the matter basis) if Hmatt(t) is dominant. Therefore,

Hext
p0 � −(ωp0 − λ)


3

2
�

⎧⎨
⎩

−	m2

2p0

3
2 if λ is negligible,

−(
	m′2
2p0 − λ

)

3
2 if λ is very large,

(38)

where 	m′2 = m2
μ′μ′ − m2

ee [see (34)]. In either case, we have[
Hext

p0 ,
3
] = 0. (39)

Using (25), (36) and (39), we can easily show that

Pp0(t) = exp

[
i(�t − φ0)


3

2

]
P̃p0 exp

[
−i(�t − φ0)


3

2

]
(40)

is a solution to the e.o.m. (6) (without spatial dependence):

d

dt
Pp0(t) = i

[
�


3

2
, Pp0(t)

]

= −i
[
Hext

p0 + Hνν(n(p′)0 , P(p′)0(t)), Pp0(t)
]
, (41)

where φ0 is a constant. The solution obtained from (36), (37) and (40) is called the ‘precession
solution’. Equation (36) is effectively a set of 3 × Nen coupled nonlinear integral equations,
where

Nen ≡
∑
p0

1 (42)

is the number of neutrino/antineutrino energy modes. Raffelt and Smirnov [20] pointed out
that (36) can be reduced to two nonlinear integral equations. This can be shown as follows.
We define

H̃p0 ≡ Hext
p0 + Hνν(n(p′)0 , P̃(p′)0) + �


3

2
. (43)

This Hamiltonian H̃p0 commutes with P̃p0 if (36) is true. This means that 	̃P p0 is either aligned

or antialigned with the vector field 	̃Hp0 :

	̃P p0 = εp0 | 	̃P p0 |
| 	̃Hp0 |

	̃Hp0 , (44)

where εp0 = +1 (−1) if 	̃P p0 is aligned (antialigned) with 	̃Hp0 .
Using (35), (38) and (44), one can obtain [20]

∑
p0

εp0np0 | 	̃P p0 |√[
(ωp0 − λ − �)

/
μ

(
ntot

ν

) − 〈P̃3〉
]2

+ 〈P̃1〉2
= ntot

ν , (45)

∑
p0

εp0np0ωp0 | 	̃P p0 |√[
(ωp0 − λ − �)

/
μ

(
ntot

ν

) − 〈P̃3〉
]2

+ 〈P̃1〉2
= (λ + �)ntot

ν , (46)

where

ntot
ν ≡

∑
p0

np0 (47)

8
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is the total neutrino number density,

μ
(
ntot

ν

) ≡
√

2GFn
tot
ν , (48)

and

〈 	̃P 〉 ≡ 1

ntot
ν

∑
p0

np0
	̃P p0 (49)

is the average polarization vector. Note that we have chosen an appropriate value of φ0 so that

〈P̃2〉 = 0. Given the set of parameters {λ, | 	Pp0 | = | 	̃P p0 |, np0 , εp0 |∀p0}, (37), (45) and (46)

can be solved for the set of quantities {�, 〈P̃1〉, 〈P̃3〉} which, in turn, determine 	̃P p0 through
(44).

It is obvious from (45) and (46) that � has a simple dependence on λ:

�(λ) = �|λ=0 − λ. (50)

In other words, in the presence of a large matter density, �|λ=0 can be calculated as if there is
no ordinary matter (but with ωp0 = 	m′2/2p0), and then � can be obtained using (50). We

note that 〈 	̃P 〉 is independent of λ and, therefore, in this case neutrino flavour transformation
does not depend on the matter density except for an extra rotation in (40). This result is
expected using the corotating-frame technique [16].

We note that (36) (or (44)–(46)) and (37) are not guaranteed to have a solution or solutions.
However, if one can solve these equations, then a ‘precession solution’ (40) is automatically
obtained because of (39). This precession solution corresponds to the collective precession of
polarization vectors about the 	e3 axis.

3.2. Slowly varying, homogeneous and isotropic environments

Once the collective precession mode discussed in section 3.1 is established in the homogeneous,
isotropic neutrino gas, it can be expected that as λ(t) and ntot

ν (t) vary slowly with time t (but
with np0(t)

/
ntot

ν (t) fixed for all p0), the collective mode continues and transforms adiabatically.
In other words, we still have

Pp0(t) = exp

[
−iφ(t)


3

2

]
P̃p0(t) exp

[
iφ(t)


3

2

]
, (51)

except that P̃p0(t) = P̃p0

(
ntot

ν (t)
)

has a weak dependence on t through ntot
ν (t). Because

neutrinos encounter only forward scatterings and, therefore, np0(t)
/
ntot

ν (t) is constant, we
have

d

dt
〈P̃3(t)〉 = d

dt

⎡
⎣ 1

ntot
ν (t)

∑
p0

np0(t) Tr(Pp0(t)
3)

⎤
⎦ = 0. (52)

Similar to (45) and (46), we have

∑
p0

εp0np0(t)| 	̃P p0 |√
{[ωp0 − λ(t) + φ′(t)]/μ(t) − 〈P̃3(t)〉}2 + 〈P̃1(t)〉2

= ntot
ν (t), (53)

∑
p0

εp0np0(t)ωp0 | 	̃P p0 |√
{[ωp0 − λ(t) + φ′(t)]/μ(t) − 〈P̃3(t)〉}2 + 〈P̃1(t)〉2

= [λ(t) − φ′(t)]ntot
ν (t), (54)

9
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where μ(t) = μ
(
ntot

ν (t)
)

depends on t through ntot
ν (t). In (53) and (54), εp0 is constant for the

adiabatic process and | 	̃P p0 | does not vary with time because the coherence in neutrino mixing
is maintained.

Using (52)–(54), 〈 	̃P(t)〉 and φ(t) can be found. The polarization vectors 	̃P p0(t) can then
be found by using

	̃P p0(t) = εp0 | 	̃P p0 |
| 	̃Hp0(t)|

	̃Hp0(t), (55)

where
	̃Hp0(t) = 	H ext

p0 (λ(t)) + μ(t)〈 	̃P(t)〉 − φ′(t)

3

2
. (56)

The full adiabatic precession solution is then obtained using (51).

3.3. Stationary, homogeneous but anisotropic environments

We now consider a neutrino gas in a stationary, homogeneous environment. By stationary
and homogeneous, we mean that neither λ nor np varies with space or time. We note that the
environment is anisotropic if np depends on the neutrino propagation direction p̂. We also
note that Pp(t, x) can vary with time and/or space even if the environment is stationary and
homogeneous. Like in section 3.1, we assume that the set of quantities {�, K, P̃p|∀p} is a
solution to [

Hext
p0 + Hνν

p̂ (np′ , P̃p′) + (� − p̂ · K)

3

2
, P̃p

]
= 0, (57)

∑
p

np Tr(P̃p
3) = L0, (58)

∑
p

p̂np Tr(P̃p
3) = L, (59)

where � and L0 are constant scalars, K and L are constant vectors and P̃p are traceless
Hermitian matrices. Using (25), (39) and (57), we can show easily that

Pp(t, x) = exp

[
i(�t − K · x − φ0)


3

2

]
P̃p exp

[
−i(�t − K · x − φ0)


3

2

]
(60)

is a solution to the e.o.m. (6):

(∂t + p̂ · ∇)Pp(t, x) = i

[
(� − p̂ · K)


3

2
, Pp(t, x)

]
= −i

[
Hext

p0 + Hνν
p̂ (np′ , Pp′(t, x)), Pp(t, x)

]
, (61)

where φ0 is a constant.
Like in the stationary, homogeneous and isotropic case, (57)–(59) are not guaranteed to

have a solution or solutions. If such a solution does exist, however, the symmetry in the
neutrino flavour evolution equations automatically gives a collective precession mode solution

for neutrino oscillations (60). Equation (57) implies that 	̃P p is either aligned or antialigned
with the vector field

	̃Hp ≡ 	H ext
p0 + 	Hνν

p̂ (np′ , 	̃P p′) + (� − p̂ · K)

3

2

= 	H ext
p0 +

∑
p̂′

μp̂ · p̂′
(
ntot

ν

)〈 	̃P p̂〉 + (� − p̂ · K)

3

2
, (62)

10
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and

	̃P p = εp| 	̃P p|
| 	̃Hp|

	̃Hp, (63)

where εp = ±1 for alignment and antialignment, respectively,

ntot
ν ≡

∑
p

np, (64)

μp̂ · p̂′
(
ntot

ν

) ≡
√

2GF(1 − p̂ · p̂′)ntot
ν , (65)

and

〈 	̃P p̂〉 ≡ 1

ntot
ν

∑
p0

np
	̃P p (66)

is the polarization vector averaged across the neutrino/antineutrino energy spectrum and
depends on p̂. Averaging (63) over p0, we obtain

〈 	̃P p̂〉 = 1

ntot
ν

∑
p0

εpnp| 	̃P p|
| 	̃Hp|

	̃Hp. (67)

According to (62), 	̃Hp depends on 〈 	̃P p̂〉, not on each individual 	̃P p. Therefore, (58), (59) and
(67) are a closed set of (3 ×Nang + 4) coupled nonlinear integral equations from which we can

solve for {�, K, 〈 	̃P p̂〉|∀p̂} given a specified set of parameters {λ, | 	Pp| = | 	̃P p|, np, εp|∀p}.
Here

Nang ≡
∑

p̂

1 (68)

is the number of neutrino (angular) trajectories.
As in the stationary, homogeneous and isotropic case, we are able to sum out the energy

modes in obtaining the precession solution and, therefore, reduce the number of equations
in the closed set by a factor of ∼Nen. Nevertheless, (67) can become very difficult to solve
if Nang is more than a few. We also note that in a stationary, homogeneous and anisotropic
environment, for a precession solution 〈 	Pp̂(t, x)〉 and 	Pp(t, x) do not necessarily lie in the
same plane as they would in an isotropic environment.

3.4. Slowly varying, anisotropic environments

Finally, we consider a neutrino gas in an environment where both λ(t, x) and np(t, x) vary
slowly with time and/or space. Like the slowly varying, homogeneous and isotropic case, we
expect the collective precession mode for neutrino oscillations to be of the form

Pp(t, x) = exp

[
−iφ(t, x)


3

2

]
P̃p(t, x) exp

[
iφ(t, x)


3

2

]
. (69)

In (69), P̃p(t, x) = P̃p(λ(t, x), np′(t, x)) has a weak dependence on time and space
which arises from the matter density and neutrino number densities. The set of quantities
{φ(t, x), P̃p(t, x))|∀p} is a solution to the following equations:[

Hext
p0 + Hνν

p̂ (np′(t, x), P̃p′(t, x)) − (∂t + p̂ ·∇)φ(t, x)

3

2
, P̃p(t, x)

]
= 0, (70)

∂tL
0(t, x) + ∇ · L(t, x) = 0, (71)

11
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where

L0(t, x) =
∑

p

np(t, x) Tr[P̃p(t, x)
3], (72)

L(t, x) =
∑

p

p̂np(t, x) Tr[P̃p(t, x)
3]. (73)

As discussed in section 3.3, the equation set (70) can be reduced by a factor of Nen by summing
it across the neutrino/antineutrino energy spectrum.

For the collective precession mode, we expect that all polarization vectors 	Pp(t, x)

precess collectively about 	e3. This collective precession is fully described by φ(t, x) in (69),

and 	̃P p(t, x) must not rotate about 	e3. This additional constraint makes (70) and (71) generally

unsolvable unless all 	̃P p(t, x) lie in the same plane, just as in the homogeneous, isotropic
case. Because (70) determines φ(t, x) up to an arbitrary constant φ0, we choose an appropriate
value of φ0 so that

Tr[P̃p(t, x)
2] ≡ 0 (74)

for any neutrino mode p at any (t, x).
It will prove to be helpful to explore static systems in more detail. In static systems, all

physical quantities including polarization vectors are independent of time t. In such a system,
the collective precession mode (69) describes a wavy distribution of neutrino polarization
Pp(x). If K(x) = ∇φ(x) is constant, then 	Pp(x) rotates about 	e3 clockwise for a complete
cycle as the neutrino travels along its worldline for a distance of 2π/|p̂ · K|. (In the normal
mass hierarchy case, the polarization vector 	Pp(t, x) for a neutrino with p0 > 0 rotates about
	e3 counterclockwise along its worldline.) To gain some insight into the vector K(x), we sum
(70) over all neutrino modes and obtain

K(x) ·
∑

p

p̂np(x)P̃p,1(x) =
∑

p

[λ(x) − ωp0 ]np(t, x)P̃p,1(x). (75)

Equation (75) shows that K(x) describes average oscillation behaviour for neutrinos
propagating along some average direction characteristic of the neutrino (lepton) flux. The
direction of K(x) can be determined easily if the system is fully symmetric about an axis,
e.g. the ẑ-axis, at x. In this case K(x) · p̂, the angular precession frequency of any neutrino
propagating along the direction p̂, must be the same as that for neutrinos propagating along a
different direction p̂′ as long as p̂ · ẑ = p̂′ · ẑ. This means that K(x) must be parallel to ẑ.

We note that the collective precession mode discussed here is different from the self-
maintained coherence of neutrino oscillations in the non-spherical geometry which is discussed
in [22]. What is proposed in [22] is based on the assumption that all neutrino flavour
polarization vectors 	Pp(x) are perfectly aligned or antialigned with each other. This
assumption forms the basis of the single-angle approximation in the non-spherical geometry
which allows the computation of neutrino flavour evolution along the ‘streamlines’. Here,
streamlines are aligned along the direction of the neutrino number flux

F (x) ≡
∑

p

p̂np(x). (76)

In the collective precession mode, polarization vectors are not required to be aligned (and, in
fact, cannot be perfectly aligned) with each other. The vector K(x) is generally not parallel
to the neutrino streamlines, either.

Because it takes little time for neutrinos to traverse the region of high neutrino fluxes in
supernovae, all current numerical calculations for supernova neutrino oscillations are carried

12
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out as if all physical conditions such as neutrino fluxes and the matter profile are static.
Computations with various physical conditions that correspond to supernova evolution over
time can be pieced together to give a dynamic picture of neutrino flavour transformation in
supernovae (e.g., [40, 41]). Generally, the static collective mode parameters computed with
physical inputs at various epochs will not be the same. This will give a time dependence to
φ(t, x) which actually could, at least in principle, be derived from (70) and (71). The dynamic
collective precession mode (69) describes a wave-like distribution of neutrino polarization
whose ‘phase’ φ(t, x) travels with velocity

V (t, x) ≡ �(t, x)
K(t, x)

|K(t, x)|2 , (77)

where �(t, x) = −φ̇(t, x). It is clear that the static assumption is valid if

|�|
|K| � (1.4 × 10−5)

(τdyn

1s

)−1
(

	m2

3 × 10−3eV2

)−1 (
E�

5 MeV

)
� 1. (78)

In (78), we have taken |�| � 2π/τdyn and |K| = 	m2/(2E�), where τdyn is the typical
timescale for the variation of the relevant physical conditions in supernovae.

3.5. Criteria for collection neutrino oscillations

In section 3.4 we have assumed that at any spacetime point the collective precession mode
for neutrino oscillations is the same as that in a stationary, homogeneous environment.
Therefore, the collective precession mode in a time-varying, inhomogeneous environment
can be established only if the variation of the physical conditions are ‘gentle’, so that the
collective precession mode derived from the stationary, homogeneous approximation in the
neighbourhoods of different spacetime points can be connected smoothly. To be more specific,
we require that

|(∂t + p̂ · ∇)θp(t, x)|
| 	̃Hp(t, x)|

� 1, (79)

where

θp(t, x) ≡ arccos

( 	̃Hp(t, x) · 	e3

| 	̃Hp(t, x)|

)
. (80)

Equation (79) is similar to the adiabatic condition used for the collective precession mode in
homogeneous, isotropic neutrino gases [20]. Unlike the adiabatic condition used in the MSW
mechanism, (79) (or the adiabatic condition in [20]) is applicable only after the adiabatic
precession solution has been determined. This is because neutrinos themselves contribute to
the total flavour evolution Hamiltonian and, therefore, help set the adiabatic condition.

A more practical criterion, which leads to a necessary condition for significant collective
neutrino oscillations to occur, can be obtained by comparing the magnitudes of

H̃ext
p (x) ≡ Hext

p0 (x) − p̂ · K(x)

3

2
= [λ(x) − ωp0 − p̂ · K(x)]


3

2
(81)

and

H̃νν
p̂ (x) ≡ Hνν

p̂ (np′(x), P̃p′(x)) =
√

2GF

∑
p′

(1 − p̂ · p̂′)np′(x)P̃p′(x). (82)

Here we have made the static assumption. If∣∣H̃ext
p (x)

∣∣ � ∣∣H̃νν
p̂ (x)

∣∣, (83)
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then (70) requires that 	̃P p(x) is either aligned or antialigned with 	e3. In other words, no
significant flavour oscillations can occur in this case, even if neutrinos are in the collective

precession mode. We can get a crude estimate for (81) and (82) if all 	̃P p(x) are taken to be
aligned or antialigned with one another and we take (see (75))

K(x) �
(∑

p

[λ(x) − ωp0 ]np(t, x)εp| 	̃P p(x)|
) ∑

p p̂np(x)εp| 	̃P p(x)|∣∣ ∑
p p̂np(x)εp| 	̃P p(x)|∣∣2

(84)

in computing H̃ext
p (x), where εp = +1 (−1) if 	̃P p(x) · 	e3 > 0 ( 	̃P p(x) · 	e3 < 0) near the

neutrino source. If (83) is satisfied for most neutrinos in some region, then no significant
collective neutrino oscillations are expected to occur in that region.

In (83),
∣∣H̃ext

p (x)
∣∣ measures how big the difference is between the collective precession

frequency along the worldline of a neutrino in mode p and the intrinsic precession frequency of
the neutrino when there is no neutrino self-interaction. On the other hand,

∣∣H̃νν
p̂ (x)

∣∣ measures
the strength of the neutrino self-interaction which makes collective neutrino oscillations
possible. Therefore, (83) can be intuitively understood as the condition under which neutrino
self-interaction is not strong enough to entrain a neutrino mode p whose intrinsic precession
frequency is too different from the collective one.

The condition in (83) implies that a large matter density can suppress collective neutrino
oscillations in anisotropic environments. This is in contrast to the expected behaviour in the
homogeneous, isotropic case or a supernova model where the single-angle approximation is
employed. Matter density-driven suppression of collective oscillations can be understood as

follows. Using (84) and assuming 	̃P p(x) to be either aligned or antialigned with 	e3 (i.e.,
neutrinos are in pure flavour states), we obtain

K(x) �
√

2GFne(x)L0(x)
L(x)

|L(x)|2 , (85)

where we have ignored vacuum oscillation frequencies. From (82), we have

H̃νν
p̂ �

√
2GF[L0(x) − p̂ · L(x)]


3

2
. (86)

Using (81), (85) and (86), we can rewrite (83) as

ne(x) � |L0(x) − p̂ · L(x)| ×
∣∣∣∣1 − p̂ · L(x)

|L(x)|2 L0(x)

∣∣∣∣
−1

. (87)

Equation (87) gives the criterion for a matter density that is large enough to suppress collective
neutrino oscillations in the anisotropic environment. Far away from the neutrino source, we
have L0(x) � |L(x)| and

ne(x) � L0(x) � [
ntot

νe
(x) − ntot

νμ′ (x) − ntot
ν̄e

(x) + ntot
ν̄μ′ (x)

]
, (88)

where ntot
να(ν̄α) is the number density of the neutrinos or antineutrinos that are initially in the α

flavour state at the neutrino source. The suppression of collective neutrino oscillations by the
large matter density in the supernova environment was first shown in [28].

4. Collective neutrino oscillations in supernovae

In section 3, we have demonstrated that the collective precession mode for neutrino oscillations
can arise because of symmetries in the neutrino flavour evolution equations. There is no
guarantee that the adiabatic precession solution to (70) and (71) exists or that the corresponding
collective oscillation mode is stable. Intuitively, however, we do expect such a collective

14



J. Phys. G: Nucl. Part. Phys. 36 (2009) 105003 H Duan et al

neutrino oscillation mode to stand out under suitable conditions while other non-collective
oscillation modes decohere kinematically. In fact, it has been shown [18] that the stepwise-
spectral-swapping phenomenon can be the result of collective precession of polarization
vectors or NFISs when the single-angle approximation is valid. In this section, we present a
new multi-angle simulation which is engineered to have collective neutrino oscillations occur
closer to the neutrino sphere than in previous simulations. Unlike previous calculations, the
aspects of this simulation are more difficult to capture with a single-angle approximation
calculation. Nevertheless, our new simulation provides compelling evidence for the existence
of the collective precession mode close to the neutrino sphere. We will also highlight the
qualitative, multi-angle features in the calculation which can be explained using the criteria
discussed in section 3.5.

4.1. Collective precession mode

In the new calculation, we adopt the same ‘neutrino bulb’ model as in [18] with the radius of
the neutrino sphere taken to be R = 10 km. We also take similar neutrino energy spectra at
the neutrino sphere, but with

〈
Eνe

〉 = 10 MeV,
〈
Eν̄e

〉 = 12 MeV and
〈
Eνx

〉 = 〈
Eν̄x

〉 = 13 MeV.
Here |νx〉 (|ν̄x〉) corresponds to an appropriate linear combination of |νμ〉 and |ντ 〉 (|ν̄μ〉 and
|ν̄τ 〉). We take the effective vacuum mixing angle to be θv = 0.1 and the mass-squared
difference to be 	m2 = −3 × 10−3 eV2 (inverted neutrino mass hierarchy). Note that in
the effective 2 × 2 mixing scheme which we employ, θv � θ13 and |	m2| is approximately
the atmospheric neutrino mass-squared difference 	m2

atm [42]. We adopt a simple analytical
profile for the electron number density [13]:

ne(r) = (9.2 × 1030 cm−3)

(
100

S

)4 (
10 km

r

)3

, (89)

where r is the distance to the centre of the proto-neutron star and the density profile is
parametrized by S, the entropy per baryon in units of Boltzmann’s constant kB. In the
simulation we discuss here, we take S = 250.

Because the neutrino bulb model possesses spherical symmetry, the common azimuthal
angle φ(r) for all NFISs in the collective precession mode, if it exists, must depend only on r.
As a result, the NFISs for various neutrino trajectories must precess in phase about 	e3 along r.

In figure 1(a) we plot 〈s1(2)(r)〉, the energy-averaged NFIS component, where s1(2)(r) ≡
	sp(r) · 	e1(2), as a function of r for neutrinos emitted as pure νe and propagating along a few
representative trajectories. We here do not distinguish between the vacuum mass basis and the
flavour basis because θv � 1. Because of the spherical symmetry, it suffices to label different
neutrino trajectories by the neutrino emission angle ϑR , which can be defined to be

cos ϑr(p̂) ≡ p̂ · r̂ (90)

evaluated at r = R, with r̂ being the radial direction. (Note that we use θ and ϑ to denote
angles in flavour space and coordinate space, respectively.) Figure 1(a) indeed shows that, as
neutrino oscillations start at r � 40 km, 〈	s(r)〉 begin to precess in phase about 	e3 along r. This
is a clear signature of the existence of the collective precession mode in our numerical result.

In figures 1(b)–(d), we plot s1,2(r) for a dozen individual angular and energy bins for
both neutrinos and antineutrinos. We observe that s1(r) and s2(r) for most neutrinos and
antineutrinos are phase locked at low to modest radii and again at larger radii. The phase lock
at the low to modest radii occurs because the neutrinos and antineutrinos participate in the
collective precession mode, and the phase lock at larger radii occurs because they experience
vacuum oscillations. We note that the precession of NFISs in vacuum oscillations is energy
dependent, and can be in the opposite direction to the sense of precession in the collective
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Figure 1. Oscillations of s1(r) (solid lines) and s2(r) (dotted lines), the projection of the NFIS on
	e1 and 	e2, respectively, as functions of r. The curves in the top panel are for neutrinos emitted as νe

and propagating along trajectories with cos ϑR = 1, 0.5 and 0, respectively. Here 〈s1(2)〉 represents
an average over the initial νe energy spectrum. Clearly, 〈	s(r)〉 for various neutrino trajectories
precesses about 	e3 in phase along r. The curves in the bottom panels show s1,2 for individual energy
and angle bins (as labelled). The neutrinos or antineutrinos corresponding to these curves start as
pure νe or ν̄e , as labelled. Note that s1(r) and s2(r) are phase-locked at low to modest radii and
again at larger radii. This suggests that the NFISs for both neutrinos and antineutrinos precess with
a common frequency at low to modest radii but precess with energy-dependent vacuum oscillation
frequencies at larger radii. In addition, at large radii, the NFISs for antineutrinos precess in the
opposite direction with respect to those for neutrinos.

precession mode. This behaviour is especially prominent for the antineutrino modes in
figure 1(d).

Two important trends in the breakdown of the collective precession mode merit further
elaboration. One of these trends is that along each neutrino trajectory antineutrinos always
drop out of the collective mode earlier than neutrinos, and antineutrinos with smaller energies
drop out earlier than those with larger energies. This trend can be explained using the criterion
in (83). Using (75) and the spherical symmetry of the supernova model, we obtain

K(r) ≡ |K(r)| = λ(r)C(r) − 〈ω(r)〉, (91)

where

C(r) ≡
∑

p np(r)P̃p,1(r)∑
p cos ϑr(p̂)np(r)P̃p,1(r)

> 1, (92)
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and

〈ω(r)〉 ≡
∑

p ωp0np(r)P̃p,1(r)∑
p cos ϑr(p̂)np(r)P̃p,1(r)

. (93)

Combining (81) and (91), we have

∣∣H̃ext
p (r)

∣∣ = |λ(r)[C(r) cos ϑr − 1] − [〈ω(r)〉 cos ϑr − ωp0 ]|, (94)

� |ωp0 − 〈ω(r)〉| if r � R. (95)

Note that in the inverted neutrino mass hierarchy case considered here, we have ωp0 =
	m2/(2p0) < 0 for neutrinos (p0 > 0) and ωp0 > 0 for antineutrinos (p0 < 0). Because
there are more neutrinos than antineutrinos, we expect 〈ω(r)〉 < 0 in this calculation. From
(95) one sees that |H̃ext

p (r)| is generally larger for antineutrinos, and the smaller the energy
of the antineutrino is, the larger |H̃ext

p (r)| is. Therefore, along the same neutrino trajectory
(and with the same value of |H̃νν

ϑR
(r)|), (83) is satisfied at lower radii for the antineutrinos with

smaller energies. These antineutrinos must drop out of the collective precession mode earlier
than other neutrinos do.

The second trend is that neutrinos and antineutrinos propagating along the radial trajectory
(cos ϑR = 1) drop out of the collective precession mode earlier than those with the same
energies but propagating along the tangential trajectory (cos ϑR = 0). This can also be
explained using criterion (83). As a crude estimate of the strength of the neutrino self-
interaction, we can assume that the NFISs are aligned or antialigned with each other and,
therefore,

∣∣H̃νν
ϑR

(r)
∣∣ ∝ 1 −

√
1 −

(
R

r

)2

− 1

2

(
R

r

)2

cos ϑr, (96)

� 1

2

(
R

r

)2

(1 − cos ϑr) +
1

8

(
R

r

)4

if

(
R

r

)2

� 1. (97)

Clearly,
∣∣H̃νν

ϑR
(r)

∣∣ is the weakest along the radial trajectory (cos ϑr = cos ϑR = 1) for which
(83) is satisfied first for a given neutrino energy.

4.2. Stepwise spectral swapping

In figure 2, we plot survival probabilities Pνν(E, ϑR) at r = 200 km as functions of both
neutrino energy E and emission angle ϑR for both neutrinos and antineutrinos. As in previous
calculations, figure 2 shows that νe and νx swap their energy spectra at energies above
∼8 MeV, a phenomenon termed as ‘stepwise spectral swapping’ or ‘spectral split’.

For the single-angle approximated supernova model or for homogeneous, isotropic
neutrino gases, the stepwise-spectral-swapping phenomenon can be explained as the result
of the collective precession mode [18, 20, 23]. If all neutrinos in a homogeneous, isotropic
neutrino gas remain in the collective precession mode to the very end, then the polarization
vector becomes

	Pp0 = εp0 sgn
(
ω0

pr − ωp0

)	e3, (98)
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Figure 2. The neutrino survival probabilities Pνν(E, ϑR) as functions of neutrino energy E and
emission angle ϑR at r = 200 km. The left panel is for neutrinos and the right panel is for
antineutrinos. The shading code for Pνν(E, ϑR) is given at right.

where ε = +1 (−1) if 	Pp0(t) is aligned (antialigned) with 	̃Hp0(t) and ω0
pr is the common

angular precession velocity of 	Pp0(t) about 	e3 when ntot
ν → 0. As a result, the neutrino

survival probability becomes

Pνν(E) �
⎧⎨
⎩

1 for neutrinos with E < Es,

0 for neutrinos with E > Es,

0 for antineutrinos,
(99)

where

Es =
∣∣∣∣∣	m2

2ω0
pr

∣∣∣∣∣ . (100)

The stepwise-spectral-swapping phenomenon in an anisotropic environment, such as
shown in figure 2, can be understood through the collective precession mode discussed
in section 3.4 in a way similar to the above argument based on (98)–(100), except for
the replacement ω0

pr → −K|r→∞. In reality, however, neutrinos and antineutrinos are
not indefinitely entrained in the collective precession mode. The breakdown in collective
behaviour results in some interesting features as shown in figure 2. For example, as explained
in section 4.1, antineutrinos, especially those with low energies and/or propagating along
the radial trajectory, do not participate as well in the collective mode as other neutrinos do.
Therefore, the simplistic prescription in equation (99) works better for neutrinos than for
antineutrinos. In fact, according to figure 2, this prescription breaks down for antineutrinos
with energies ∼5 MeV and/or for those propagating along the radial trajectory. In addition,
antineutrinos with energies E � 0.8 MeV do not participate in collective oscillations at all
and are almost fully converted through the conventional matter-driven MSW mechanism.
Antineutrinos with energies E ∼ 5 MeV do participate in collective oscillations. However,
they encounter MSW resonances after they leave the collective precession mode and, as a
result, are (partially) converted back to their original flavours.

Another important detail in figure 2 is that the critical energy Es is actually different
for neutrinos propagating along different trajectories. In contrast, K(r) is the same along
these trajectories. Two main factors contribute to the variation of Es from trajectory to
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trajectory. The first factor is that the collective precession frequency K(r) cos ϑr along
a neutrino worldline depends on the neutrino propagation direction. It is largest along
the radial trajectory and the smallest along the tangential trajectory. The second factor is
that neutrinos propagating along different trajectories drop out of the collective precession
mode at different radii. Neutrinos propagating along more radially directed trajectories stop
participating in collective oscillations at smaller distances from the proto-neutron star, but
neutrinos propagating along more tangential trajectories stay in collective oscillations out to
larger distances. Our numerical calculations show that the collective precession frequency
always decreases as neutrino fluxes decrease. Therefore, both contributions lead to a smaller
Es for the radial trajectory and a larger Es for the tangential trajectory. Indeed, the left panel
of figure 2 shows that Es for the radial and tangential trajectories differ by ∼ 0.7 MeV.

5. Conclusions

We have demonstrated the existence of the SU(Nf) rotation symmetry in the neutrino flavour
evolution equations. This symmetry can facilitate the establishment of the collective precession
mode for neutrino flavour oscillations in various environments. The stepwise-spectral-
swapping phenomenon can develop from such a collective neutrino oscillation mode in,
e.g., supernovae. We have also given criteria for significant neutrino flavour oscillations to
occur if neutrinos are entrained in the collective precession mode. These criteria can be used
to understand the suppression of collective neutrino oscillations in anisotropic environments
in the presence of a large matter density [28]. These criteria also illuminate the process of
the breakdown of collective oscillations when neutrino densities are low. The results obtained
in both our new simulation and previous multi-angle calculations for supernova neutrino
oscillations can be understood in terms of the collective precession mode and the criteria we
have provided.

There remains much to be learned about the collective precession mode for neutrino
oscillations. This collective mode cannot exist when there is no solution to (70) and (71). A
related interesting observation is that collective oscillations, if any, for a symmetric system
with equal numbers of neutrinos and antineutrinos are quickly disrupted in the presence of
even an infinitesimal anisotropy and flavour equipartition is obtained as a result [26]. In the
flavour pendulum analogy [36], the asymmetry of neutrinos and antineutrinos constitutes the
internal spin of the flavour pendulum. The existence of this internal spin causes the flavour
pendulum to undergo the precession which represents the collective precession mode for
neutrino oscillations. There exists no collective precession mode in a symmetric neutrino–
antineutrino system—this explains the finding in [26]. Meanwhile, it has been shown in [27]
that a typical asymmetry in the neutrino and antineutrino fluxes in the supernova environment
will suppress multi-angle decoherence and, therefore, make the collective precession mode
for neutrino oscillations possible.
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