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ABSTRACT OF THE DISSERTATION 

 

Molecular Dynamics Simulations of Shock in Silicon and Diamond 

 

 

by 

 

Alex Ceng Li 

 

Doctor of Philosophy in Materials Science and Engineering 

University of California San Diego, 2024 

Professor Marc A. Meyers, Chair 

 

 

The dynamic behavior of materials under shock has been a deeply studied topic due to the 

different ways materials respond to high strain rate situations compared to static compression or 

tension conditions. The methods to study shock behavior of materials have advanced greatly since 

World War II, with the development of better and more controllable methods of producing shock 
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such as gas guns, flier plate systems, or at the highest range of experiment and application, high-

power pulsed lasers. The ability to simulate materials using atomic forces to recreate physical 

properties has also been developed and continues to grow with the rise in computational power at 

supercomputing centers like those available at the national laboratories. These simulations can 

now allow for reproduction or simulation of experiments containing billions of atoms that are on 

the micrometer scale and can occur on timescales up to microseconds, placing them squarely in 

the territory of high strain rate shock experiments.   

This work focuses on the study of shock behavior in the covalently bonded materials silicon 

and diamond carbon. The behavior of these materials compared to others such as metals varies 

greatly due to the bonding, especially the strength of the sp3 bonds present in these diamond cubic 

materials. Under shock conditions the differences of the way in which these materials behave is of 

great interest due to the uses that these materials may have under high strain rate conditions. 

Diamond in particular is important as an ablative material for use in high energy density physics 

experiments, such as in the capsule material for holding deuterium and tritium fuel in the inertial 

confinement fusion effort at the National Ignition Facility. This diamond is produced via chemical 

vapor deposition, and defects such as voids may be introduced both through the growth process 

and the preparation methods for filling the capsules. 

For silicon, a study is performed between different interatomic potentials that compare and 

contrast their efficacy in recreating experimental phenomena such as elastic constant, melting 

points, phase transformations, and amorphization. A method for easily identifying structure is 

applied using the angular distribution function of bonds within unidentified phase changed regions 

in shear bands caused by the shock and compared with pristine crystalline units of known possible 

phases. 



xviii 

For diamond, laser shock experiments were performed on [001] oriented diamond above 

and below its Hugoniot elastic limit and confirmed that no dislocations were present even above 

the expected plasticity threshold. In simulations, the effect of orientation and the presence of voids 

was investigated. At a piston velocity of 3.5 km/s resulting in pressures of over 130 GPa, the [001] 

orientation still produced no dislocations, while the [011] and [111] orientations produce 

considerable dislocation activity, with the [111] orientation with a 4nm diameter void present 

producing ½ <110>{001} and ½ <112>{111} dislocations in a three-fold symmetric fashion from 

the void. A resolved shear stress analysis was performed to explain why certain slip planes were 

active, dependent upon the loading conditions and the orientations diamond. This analysis is 

termed the Lu Factor.  

Additional simulations were performed in the [111] orientation, investigating plasticity 

thresholds and their dependence on void size, with 2 nm diameter voids requiring 232 GPa shock 

pressures to produce dislocations, down to only 135 GPa for 18 nm voids. An analytical model 

previously used for determining critical stress thresholds against void size in metals is modified 

for diamond by including an important Peierls-Nabarro term, and also extending its applicability 

to covalently-bonded materials and a wide range of void sizes.  

The results of this dissertation shed light on some of the behaviors of plasticity in silicon 

and diamond carbon, as well as developing and refining analytical methods for the defects 

generated in these materials under shock compression. 



 

1 

Chapter 1 Introduction 

 

The study of how materials deform is fundamental to our understanding of strength and 

how they may undergo permanent change and eventual failure. There exists a myriad of 

mechanisms for plastic behavior. In crystal lattices, the nucleation and flow of dislocations occurs 

in response to shear stresses and are governed by available slip systems, local dislocation densities, 

and the applied strain rate. Twinning can occur to relieve large shear stresses and in cases where 

mobile dislocations are unfavored. Local instabilities can cause materials to deform via shear 

localization, resulting in amorphous bands of disordered atoms within the material. Phase 

transformations can change the crystal structure of the material itself to a more favorable energetic 

configuration. All of these can be considered defects within the material, changes in the local 

structure in response to applied stresses, strains, temperature conditions that govern the stability 

of the composition. 

Defect generation under shock deformation is an even more complex phenomenon; point 

defects, dislocations, stacking faults, and phase transformations are produced by the extreme 

stresses generated. It is essential to recognize that many of these defects are the result of deviatoric 

stresses, and not of hydrostatic pressure. The study of these defects stems from WW2 and the 

Manhattan project. Smith (1) was one of the first to address the problem; dislocations were 

proposed to accommodate the change in the lattice parameter at the shock front. There has been a 

cornucopia of activity in this field in the past 70 years, exploring in detail the formation of the 

various defects in many materials (2, 3). 

The experimental study of shock deformation has evolved greatly over the years. The two-

stage light gas gun, first invented in 1948, presented the ability to controllably and reproducibly 

accelerate targets to supersonic velocities through the compression of a column of gas and then 
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the quick release of built-up pressure by a quick-release valve (4–6). For the acceleration of flier 

plates for planar shock impacts, modern gas gun designs (Fig.1-1) can accelerate light targets in 

excess of 10 km/s. A range of other techniques can achieve these hypervelocity impacts as well, 

from older implementations of explosive lenses or electromagnetic railguns with velocities similar 

to gas guns, to modern facilities like the Z magnetic pulsed power facility at Sandia National Labs 

that can reach speeds of 45 km/s (7, 8) (Fig. 1-2). At the pinnacle of our abilities to create extreme 

shock pressures is laser shock, where facilities like the National Ignition Facility at Lawrence 

Livermore National Laboratories have achieved implosion speeds of near 400 km/s (9) and have 

reached the requisite conditions for nuclear fusion (10). 

 

 

 

Figure 1-1 Sketch of a Two-stage light gas gun. Often used for shock experiments, capable of 

accelerating projectiles up to 10km/s. Taken from (6). 
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Figure 1-2 a) Sketch of a typical anode-cathode flier plate setup in the Z accelerator at Sandia. 

The current flowing through the magnetic field provides the Lorentz force which accelerates the 

flier plates. b) The stripline configuration, with currents of 20 MA and a magnetic field of 

1200T, accelerated aluminum plates up to 45 km/s. Taken from (7).  

 

 At the same time as experiments were developing better and higher velocity shock impacts, 

the growth of computational tools and the computational power needed to simulate materials at an 

atomic level was also increasing exponentially. With the supercomputing clusters available today, 

billions of atoms can be simulated over microseconds, approaching the sizes and timescales of 

these real-world shock experiments. With these resources in hand, we can use simulations to model 

the development of materials under shock conditions, with atomic scale size resolution and 

femtosecond time resolution, to model from pure atomic interactions how materials deform under 

shock conditions.  

 The use of computer simulations to perform in silico evaluations of high energy density 

physics experiments can dramatically benefit their design and increase our understanding of the 

principles behind material behavior. Laser shock experiments can be expensive and time 

consuming to set up, while computational modeling in comparison can have higher throughput, 

providing guidance on what should be investigated. Current experimental diagnostic tools are also 



 

4 

unable to reach the spatial and temporal resolutions required for analysis of nanometer and 

nanosecond events simultaneously as they are occurring. A combination of experiments and 

simulations can provide the basis for constitutive models that reflect the fundamental physics of 

the deformation processes that may lead to plasticity and failure. 

 

1.1 Research Objectives 

The crystallinity of solids makes it so that the response of solids to shock is completely 

different from that of better-behaved shock in gases or liquids. The presence of material strength, 

plastic flow, phase transitions, and other consequences of atomic bonding result in a viscoplastic 

heterogeneous response that is not in an equilibrium state. Even between materials, the differences 

in atomic bonding types and strengths heavily affect shock response. Under static loading 

conditions, metals deform far more easily than brittle covalently bonded solids. Under the high 

strain rate conditions however, even covalently bonded solids can exhibit plasticity. 

The objective of the present investigation was to advance our understanding of model 

covalently bonded crystal structures under shock by performing computational simulations of the 

materials under shock conditions, focusing primarily on silicon and diamond carbon. The overall 

investigation had three components; the initial investigation involved simulation of phase 

transformations and possible amorphization in silicon. Silicon undergoes deformation processes 

at much lower pressures than carbon, and its multiple phase changes are better experimentally 

documented and understood. The second component involved transferring our understanding of 

shock in silicon to the similarly structured but much stronger diamond carbon. Different 

microstructural morphologies or shock orientation directions can be tested to see how the strength 

of diamond may vary depending on shock conditions, and if dislocations or other defects would 

form before the diamond would fail catastrophically. The third component involves an extension 
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of the study of voids from the initial diamond investigation, to find how their sizes affect plasticity 

thresholds and the strength of diamond before it would deform plastically. 

When possible, theoretical models are applied or adjusted to help explain or justify our 

results. The mixing of theory and simulation can help provide deeper understanding of the 

fundamental physics behind the phenomena that are being observed in both materials. 
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Chapter 2 Background 

2.1 Shock 

Before we discuss how materials and deformation modes are affected by shock 

compression, we must first understand shock itself. Shock compression is a dynamic mechanical 

process, defined as a large-amplitude wave across which there is a discontinuity in the pressure, 

density, particle velocity, temperature and other properties before and after the shock wave front. 

It occurs when material is subjected to rapid impulsive loading, on a timescale where body as a 

whole cannot respond inertially. In solids, this one-dimensional loading and inertial confinement 

result in a state of uniaxial strain, as seen in Figure 2-1. 

 

Figure 2-1 A shock wave traveling from left to right. Ahead of the shock front, the ambient crystal 

is undisturbed. As the elastic wave passes, a state of uniaxial strain is imposed. Finally, a plastic 

wave follows where the material may attempt to undergo plasticity to relieve strain in the system. 

Taken from (11). 

 

Shock waves travel faster than the sound speed of the material, with a velocity that is 

dependent on the amplitude of the wave. Shock-wave behavior in a material can be compared to 

how a snowplow operates, as illustrated in Figure 2-2. The snowplow is moving at a velocity of 

𝑈𝑝, pushing the snow and snowpack directly in front of it at that same velocity. However, snow 

is continuously piling up ahead of the snowplow, and this region separating the fresh snow from 
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the packed snow is moving at a velocity 𝑈𝑠. Empirically, a linear relationship called the shock 

wave equation of state is observed for most materials between the piston or particle velocity and 

the resulting shock velocity.  

𝑈𝑠 = 𝐶0 + 𝑆𝑈𝑝 (1) 

𝐶0 is the longitudinal sound speed of the material, and 𝑆 is empirically derived. If the material 

undergoes phase transformation or is porous, this equation of state needs to be modified with 

additional terms. 

The Rankine-Hugoniot equations are derived by applying the conservation of mass, 

momentum, and energy across the discontinuity; they describe the states of matter before and after 

the discontinuity of the shock wave (12, 13). 

𝜌0𝑈𝑠 = 𝜌(𝑈𝑠 − 𝑈𝑝) (2) 

𝑃 − 𝑃0 = 𝜌0𝑈𝑠𝑢𝑝 (3) 

𝐸 − 𝐸0 =
1

2
(𝑃 + 𝑃0)(𝑉 − 𝑉0) (4) 

where 𝜌 is the density, 𝑈𝑠 is the shockwave velocity, 𝑈𝑝 is the particle or piston velocity, 𝑃 is the 

pressure, 𝑉 is the specific volume, and 𝐸 is the energy. Through combination with the equation of 

state, these equations may be expressed as functions of each other. 
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Figure 2-2 Illustration of how material piles up in front of a piston and a shock wave is created. 

The boundary between the compressed area in front of the piston and the uncompressed fluid is 

the shock wave discontinuity. Taken from (14). 

 

The pressure-density relationship of the material before and after the shock front can be 

visualized as the “Hugoniot” curve seen in Figure 2-3. It is the locus of all shock states for a 

material. When a material is shocked, it follows the Rayleigh Line, going directly from the state 

𝑃0, 𝑉0 to state 𝑃1, 𝑉1. The slope of this line is proportional to the square of the velocity 𝑈𝑠 of the 

shock wave. A steeper slope, meaning a larger change in pressure, results in a higher shock wave 

velocity, and vice versa. 
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Figure 2-3 Characteristic Hugoniot (P-V) curve showing Rayleigh Line. Taken from (14) 

 

Shock waves in experiments can generate extremely high strain rates of 108 𝑠−1 to 

109 𝑠−1. The large strain rates may suppress other more conventional deformation modes such as 

fracture. Under shock, high deviatoric stresses may exist which can lead to unexpected results, 

such as dislocations or phase changes that are not predicted from static compression at equilibrium 

conditions.  

Shock in a material is also accompanied by extreme increases in the internal energy of the 

material. This can result in rapid temperature rises, sometimes beyond the melting points of the 

material. Even below the melting point, temperature changes may affect the deformation processes 

during plasticity or failure. This temperature rise is exceedingly difficult to measure 

experimentally and must usually be calculated. Temperatures are often calculated directly along 

the Hugoniot line, by integrating the two coupled differential equations (15) 
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𝑑𝑇

𝑇
= −𝛾

𝑑𝑉

𝑉
+

𝑑𝑆

𝐶𝑣

(5) 

2𝑇𝑑𝑆 = (𝑉0 − 𝑉)𝑑𝑃 + (𝑃 − 𝑃0)𝑑𝑉 (6) 

where 𝛾 is the Gruneisen parameter and 𝐶𝑣 is the specific heat at constant volume.  

2.2 Laser Shock Compression 

Laser ablation is the current method used to generate the highest strain rates and pressures 

that are experimentally possible. It is the primary method that the inertial confinement fusion effort 

at the National Ignition Facility has been using to achieve controlled nuclear fusion for energy 

purposes (10).  

The core concept of producing a shock wave lies in the exchange of momentum. In flyer 

plate setups, the flyer plate impacts the target and two shock waves are created, one in the target 

and an opposite wave in the flyer plate. Momentum is exchanged for the duration of the contact 

between the flyer plate and the target, typically 0.1-1 𝜇s for gas guns.  

Pulsed lasers for generating shock waves have become commonly used in high energy 

density physics experiments (16–18). In shock compression via direct bombardment laser ablation, 

laser energy is delivered directly to an ablator, generally made of low Z materials such as CH 

plastics, beryllium, or most recently diamond (19–22). The laser interacts with the electrons in the 

ablator, causing it to heat up to millions of degrees and hundreds of millions of atmospheres of 

pressure. The heated material rapidly expands and is propelled away at a high velocity, causing 

the remaining material to accelerate in the opposite direction. This method is the same as how 

rocket propulsion works: 

𝑥̇ = 𝜈 ln
𝑚0

𝑚1

(7) 

The shock velocity is then governed by the lost mass 𝑚 and velocity of the plasma 𝜈. 
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Figure 2-4 Left: schematic of the target and laser configuration including the hohlraum. Bottom 

right: the HDC capsule and DT fuel configuration. Top right: total laser power vs time and 

radiation temperature 𝑇𝑟 as a function of time. Taken from (10). 

 

Figure 2-4 shows the current setup used at the NIF that reached ignition, with a spherical 

high density carbon diamond shell surrounding the DT fuel. Instead of direct drive, lasers instead 

shine onto the inside of a gold capsule called a hohlraum, which produces x-rays. These x-rays 

then couple to the ablator surface and the rocket effect takes place.  

The Lindl equation empirically relates the laser parameters and the shock pressure achieved 

(23): 
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𝑃 = 𝐶𝐴 (
𝐼12

𝜆𝜇𝑚
)

2
3

(8) 

Where 𝑃 is the shock pressure in GPa, 𝐼12 is the laser intensity in TW/cm2 , 𝜆 is the wavelength in 

micrometers, and 𝐶𝐴is the adsorption coefficient, typically 40 for low Z ablation material. For 

diamond ablators tested at the OMEGA laser facility at the University of Rochester Laboratory for 

Laser Energetics, it has been found that an exponent of 0.71 is more appropriate (24). The laser 

intensity in this equation can be calculated from the laser energy 𝐸, pulse duration 𝑡, and spot size 

𝐴 as:  

𝐼12 =
𝐸

𝐴𝑡
(9) 

For an example pulse on OMEGA, a 532 nm wavelength laser with 300 J energy and a 3 ns 

duration with a spot size of 1 mm2 results in a peak pressure of around 100 GPa. 

2.3 Laser Shock Sample Preparation and Recovery 

In laser shock experiments, the targets involved are often subjected to such extreme 

conditions that they may undergo unrecoverable transformations, such as fragmentation by spall. 

If the sample is intended to undergo post-shock characterization, some soft recovery technique 

must be employed to prevent destruction of the sample (24, 25). One method is the use of low-

density aerogels to slowly catch the sample, along with the encapsulation of the target in 

impedance matched material. Shock impedance is calculated as the product of the initial density 

of the material by its longitudinal wave velocity. For silicon, aluminum is a good match to its 

shock impedance. Matching the impedance allows for the shock wave energy to transfer over the 

material barrier more efficiently, preventing rebounding waves from reflecting back into the 

material and creating the tensile state that could initiate spalling. The samples can thus be 
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recovered after the shock, and sent for characterization such as transmission electron microscopy 

(TEM).  

 

Figure 2-5 a) Sample Recovery setup for a laser shock experiment b) Example of a silicon sample 

encased in impedence matched aluminum. The CH ablator provides the pressure shock pressure 

after being heated by the pulased laser. Taken from (24). 

 

 

2.4 Dislocations 

The first theories for describing the necessary shear stress required for atomic planes to 

slip in a perfect crystal predicted a minimum stress of 
𝐺

2𝜋
. This predicted value was far higher than 

experimentally recorded values for any material by multiple orders of magnitude. The description 

of the elastic fields created by defects was first developed by Volterra (26) in 1907. The theory of 

dislocations used this analytical framework and was first proposed in 1934 simultaneously by 

Orowan (27), Taylor (28, 29), and Polanyi (30). Dislocations explained the lower barrier to 

plasticity by positing that a half plane of atoms could advance by only breaking one line of bonds 

at a time, instead of breaking all of the bonds within the half plane at the same time. Burgers (31, 

32), Cottrell (33), Nabarro (34), and Eshelby (35) followed up on this work, proposing other types 

of imperfections and interactions between defects which have helped to explain the mechanical 

properties of crystalline material. Many books exist on the topic of dislocations including the work 

of Hull and Bacon (36). Bulatov and Cai (37) focuses on the simulation of dislocations. Meyers 

(3) covers how shock can affect and be affected by dislocation slip, density, and mobility. 
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2.5 Voids 

Voids play an important role in shock wave studies, either through their nucleation and 

growth during the ductile failure, or when they are pre-existing defects in material that undergo 

collapse during the compression of the sample. When shock waves reach the free surface of a 

material, they reflect and form a rarefaction wave which can result in large tensile stress in the 

material. This can lead to spalling, planar separation of the material parallel to the wave front; the 

growth and coalescence of voids is crucial to this behavior (38). While there were continuum level 

studies of void growth, they did not have specific explanations for the atomic level mechanisms 

that enabled voids to grow. Reisman (39)performed shock compression of irradiated steel filled 

with nanosized voids resulting in their collapse above 40 kbar and noted that only the emission of 

vacancy-type dislocation loops could result in both void shrinkage and overall volume reduction 

of the steel. Rudd and Belak’s (40)atomistic simulations of copper with voids undergoing triaxial 

expansion also saw dislocations transporting platelets of material away from the void, allowing it 

to grow. Erhart et al. (41) performed molecular dynamics simulations of void collapse in 

nanoporous metals and also found that voids served as dislocation sources and enabled massive 

plastic deformation, as seen in Figure 2-5. Lubarda et al. (42)proposed a specific mass transport 

mechanism for void growth based on the emission of dislocations from the surface of the void. 

Through laser shock experiments and measurements of voids in the material, they determined that 

vacancy diffusion alone was insufficient for explaining the sizes of the voids in the material at the 

strain rates present. Instead, a non-homogeneous plastic deformation process was involved where 

the maximum shear stress at 45° to the void surface produces prismatic shear loops, which for a 

loop of radius 𝑅/2 would carry away material and increase the void volume by 𝜋𝑅2𝑏/2.  
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Figure 2-6 Shock moving through 3% porous copper, producing shear dislocation loops from 

voids. Taken from (41). 

 

Lubarda et al. (42) also observed that the critical stress for dislocation emission decreased 

with increasing void size and with wider dislocation cores. Hatano (43) performed shock on an fcc 

Lennard-Jones solid and also found the emission of dislocations and a decrease in the Hugoniot 

elastic limit with increasing void size. Tang et al. (44, 45) proposed a new model for the nucleation 

and emission of dislocation loops from a void based on its size. The required shearing stress was 

based on two components: the creation of a new surface step during emission, and the stress 

required to generate and bow a dislocation loop to a radius 𝑅1 a certain fraction of the void’s radius. 

The total shear stress required is given as:  

𝜏 =
2𝛾

𝜋𝜌𝑏
+

𝐺𝑏(2 − 𝜈)

4𝜋(1 − 𝜈)𝑅1
ln

8𝑚𝑅1

𝑒2𝜌𝑏
(10) 

where 𝛾 is the surface energy, 𝜌𝑏 is the size of the dislocation core, 𝑏 is the Burgers’ vector, 𝜈 is 

the Poisson ratio, and 𝑚 is a geometric factor for the shape of the dislocation (2.2 for a semi-
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circular loop). After conversion to a global von Mises stress by solving the elastic field around the 

void, when plotted against their molecular dynamics simulations of shock in tantalum for critical 

stresses vs void size they saw good agreement, as seen in Figure 2-6. 

 

Figure 2-7 Normalized von Mises stress for dislocation nucleation from a void surface as a function 

of normalized void radius R/b. Taken from (44). 
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2.6 Molecular Dynamics Simulations 

Molecular Dynamics is a simulation method to analyze the physical behavior of atomistic 

systems. At its core, individual atoms are modeled using Newton’s equations of motion to see how 

the system evolves. The forces on each atom in the simulation are calculated to determine their 

trajectory, then all the atoms are advanced in time, the forces are recalculated, so on and so forth, 

in a loop illustrated in Figure 2-5. This method records the complete information for each atom at 

each time step, allowing for direct observation of atomic mechanisms through the position, 

velocity, and even energies of individual participating atoms. Every timestep in the simulation 

must capture thermal vibrations of the atoms, known as the Debye period (around 10-13 seconds), 

so individual timesteps are typically set as 1 femtosecond. For simulations where atoms are moving 

fast enough that even 1 femtosecond may cause unintentional and unphysical overlapping of 

atoms, even shorter timesteps may be required. While there are even more ground level 

calculations that can be made (quantum mechanics), molecular dynamics simulations can provide 

a near ground-up recreation of macroscale characteristics like material strength, melting points, 

and other parameters, without making any assumption beyond the force or energy interactions 

between individual atoms. Laser shock experiments in particular are well-suited to be simulated 

via molecular dynamics, as the high strain rates and short timescales currently involved lie in the 

domain of modern molecular dynamics simulation capabilities. 
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Figure 2-8 A single step in the molecular dynamics simulation loop for updating atomic positions. 

Taken from (46). 

 

2.6.1 Computational Capabilities 

The computational power available in computers has grown exponentially since their 

invention. At the forefront of computational power are the supercomputing clusters that are 

available at national laboratories around the world. Advances in both raw computational speed as 

well as the rise of parallel processing using GPU architectures has enabled simulations to reach 

unprecedented size and time scales. Molecular dynamics in particular is well-suited to the parallel 

processing method as each individual atom can be calculated concurrently with every other atom 

in the system. Current trends expect that computational power should be able to increase 1000-

fold every 13-17 years (47). The top computing resources recently achieved the performance 

milestone of 1 Flop, or 1018 floating point operations per second (48). If this were to be converted 
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to the possible size of a simulation utilizing the full resources available, then over a 24 hour period 

the maximum grain size 𝐷 of a polycrystalline simulation can be (11): 

𝐷 =
2.494 × 10−6𝑎0

𝑥𝑟𝑐
√

𝐴𝑊Δt

𝜌𝑚𝑡𝑠
(𝐴𝑃 × 𝑃𝑆𝑃 × 𝑃𝑀−1)

3

× √𝐹𝐿𝑂𝑃𝑃𝑆
3

(11) 

Table 2-1 Parameters for calculation of grain size simulation capabilities 

Parameter Meaning Example Value 

𝑎0 Lattice Parameter 4.090 Angstroms 

𝐴𝑊 Atomic Weight 107.8682 AU 

𝜌𝑚 Mass Density 10.501 g/mol 

𝑥 Grains 1 

𝑟𝑐 Cutoff Radius (Neighbors) 7.2 Angstroms 

Δ𝑡 Timestep 1fs 

𝑡𝑠 Simulated Time 1ns 

𝐴𝑃 Allocation Percentage 100% 

𝑃𝑆𝑃 Parallel Scaling Performance 0.8 

𝑃𝑀 Potential Multiplier 2.3 

𝐹𝐿𝑂𝑃𝑃𝑆 Floating Operations per Second 1018 

 

An example of possible parameter values is given in Table 2.1. With these values, it would be 

possible to compute a fully atomic simulation of a 1𝑢𝑚 sized single grained sample with 

femtosecond time resolution over a period of 1 nanosecond, all within 24 hours of maximum 

computation utilization. The ability to simulate real world experiment size samples has come to 

fruition, even if still on shorter time scales.  
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 Previous work has already shown the capabilities of simulations with micrometer 

dimensions along at least one axis, and much smaller periodic boundaries in the others (49). 

Advances in possible computational methods and programs utilizing different methods of storing 

and calculating atomic data have led to the ability to perform calculations on up to twenty trillion 

atoms at a time (50). More advanced and computationally expensive machine learning potentials 

that can approach quantum accuracy without associated quantum computing costs have also 

reached the billion-atom simulation range (51).  

2.7 Interatomic Potentials 

At the heart of classical molecular dynamics simulations lies the interatomic potential. 

These potentials describe the forces between an atom and its neighbors based on a range of factors 

such as distance, bond order, embedding energy, quantum mechanical calculations, and others. 

The accuracy of a potential determines its ability to reproduce the physically correct behavior of a 

material, and to predict real phenomena and material properties without having to be directly fitted 

to those situations. The parameters of a potential are often fit to data outside the regime of shock 

physics. As such, determining the transferability of those potentials into the higher pressure and 

temperature ranges can be a key component of producing accurate simulations of shock. There 

exist a large variety of different potentials with different formulations, parameters, and physical 

models. This can affect their accuracy when applied in different scenarios; for example, a ReaxFF 

potential is designed with chemical reactions and multi-component interactions in mind, but may 

not perform as well when subjected to hundreds of gigapascal pressure situations because the 

parameters are not parameterized in detail.  

These potentials can be derived in many ways with a range of complexity, from the simplest 

Lennard-Jones pair descriptor to the recent advancements in machine learning. The classical 

potentials are semi-empirical, with the parameters being fitted to experimental results or to 
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quantum mechanical modeling results from ab initio studies such as Density Functional Theory 

(DFT) simulations. The properties that are being fit to include the cohesive energy, vacancy 

energy, elastic tensor values, surface energies, melting points, and many other measurable 

quantities. Due to their simplified empirical nature, they are less expensive than direct quantum 

mechanical calculations of atomic interactions and therefore can be applied to much larger systems 

for the same computational cost. 

The basis of these empirical potentials is still deeply rooted in how electrons operate in 

solids and how those bonds between atoms operate (52). One of the simplest interatomic potentials 

that still finds use in calculating the behavior of some gases and fluids is based on the Lennard-

Jones pair potential (53, 54) 

𝜙(𝑟) =
6𝑚𝜖

𝑚 − 6
(
1

𝑚
(
𝜎

𝑟
)
𝑚

−
1

6
(
𝜎

𝑟
)
6

) (12) 

where 𝜎 is the separation distance and 𝜖 is the well-depth. A classic plot of this potential can be 

seen in Figure 2-6, for m=12. With the distances between atoms calculated during the simulation, 

the potential energies between them can be extracted and used to update forces and positions, 

advancing the simulation in time. Other simple two-body potentials have also been proposed and 

see use in molecular dynamics simulations as well such as the Morse potential (55) and 

Buckingham potential (56). These two-body potentials are also often used as the bases for 

describing two-body interactions in more complex potentials. 
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Figure 2-9 A potential profile for the Lennard-Jones pair potential. From (57).  

 

 More complex potentials were not devised until after the rise of computers and molecular 

dynamics simulations became possible. One early potential that was a significant advancement in 

describing metal properties was the Embedded Atom Model (EAM) created by Daw and Baskes 

(58). This potential included delocalized interactions along with nearest neighbor contributions 

and had the form 

𝐸𝑡𝑜𝑡 = ∑𝐹𝑖(𝜌𝑖(𝑅𝑖)) +
1

2
∑𝜑(𝑅𝑖𝑗)

𝑖,𝑗

 

𝑖

(13) 

where 𝜌𝑖 is the electron density for each site 𝑅𝑖, through an embedding function 𝐹. This embedding 

function represents the energy required to place an atom into the electron cloud. The second term 

is the short-range pair potential for each pair of atoms 𝑅𝑖𝑗 with the ½ added to avoid double 

counting. Because the electron cloud density is a summation over all atoms, limited by some cutoff 

radius for mathematical purposes, this potential acts as a many-body potential. All of the multibody 

interactions are contained within the first embedding function term. 

 The Tersoff (59–62) potential was another early potential whose formulation enabled it to 

describe 2-body and 3-body interactions through bond angles and environmental functions. It was 
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initially developed for describing the covalently bonded crystal structure of Si and was extended 

to SiC and C as well. It is considered a bond order potential that incorporates structural chemistry 

into its formula.  

𝐸𝑖𝑗 = ∑𝐸𝑖

𝑖

=
1

2
∑ 𝑉𝑖𝑗

𝑖,𝑗≠𝑖

(14) 

𝑉𝑖𝑗 = 𝑓𝑐(𝑟𝑖𝑗)[𝐴 exp(−𝜆1𝑟𝑖𝑗) − 𝐵𝑖𝑗 exp(𝜆2𝑟𝑖𝑗)] (15) 

𝐵𝑖𝑗 = 𝐵0 exp (−
𝑧𝑖𝑗

𝑏
) (16) 

𝑧𝑖𝑗 = ∑ [𝑤(𝑟𝑖𝑘)/𝑤(𝑟𝑖𝑗)]
𝑛

𝑘≠𝑖,𝑗

× [𝑐 + exp(−𝑑 cos 𝜃𝑖𝑗𝑘)]
−1

(18) 

𝑤(𝑟) = 𝑓𝑐(𝑟) exp(−𝜆2𝑟) (19) 

The A term describes repulsive forces, as seen in other two body potentials. The B term describes 

bonding forces, including bond order and local environment. Any considerations for bond angles, 

competing bonds, and bond strengths are folded into this variable. This equation is further 

expanded upon by Tersoff’s parameterization seen in the trial potential 𝐵𝑖𝑗. 𝑧𝑖𝑗 measures number 

of bonds competing, 𝑏 measures how bond strength falls with increasing coordination, 𝑤 is the 

ratio of bond strengths, 𝑛 determines how much closer bonds are favored, and is arbitrarily chosen. 

𝜃𝑖𝑗𝑘 is the angle between bonds 𝑖𝑗 and 𝑖𝑘, and 𝑓𝑐 is the cutoff function, which limits the range at 

which atoms will interact with each other, substantially reducing the computational load. For 

certain choices of the parameters in the Tersoff and EAM potentials, it can be seen that the 

equations describe the same things (63). The main difference between the two is how the bond 

angles are incorporated into the equations. 

 These potentials and other candidates for use in the simulation of silicon and carbon will 

be discussed in the overview of potentials for each element in chapters 3 and 4.  
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2.8 Other Computational Simulation Types 

 

Figure 2-10 System size and simulation periods of various computer simulation types. Taken 

from (64). 

 

 There are plenty of other computer simulation methods besides classical molecular 

dynamics modeling, which span across multiple timescales and length-scales, as seen in Figure 2-

7. Each of these simulation types can have their own domain in which they can be considered the 

best choice for efficiently producing the desired results. While using ab-initio or molecular 

dynamics simulations to calculate entire engineering component evolution over years would 

provide the most accurate data, it would also be prohibitively expensive or time consuming to 

perform those simulations. Conversely, a higher level modeling cannot be applied to inform 

behavior on a lower level, such as trying to use Finite Element Analysis to try to determine how 

dislocations occur, because the higher level models do not contain that information within them. 

2.8.1 Ab Initio and Quantum Mechanics 

One of the other simulations that is particularly relevant to molecular dynamics is the most 

accurate method currently available for calculating the behaviors of atoms. At the quantum 
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mechanical level, the interactions between electrons and electronic states control nearly everything 

about the interactions between atoms. Therefore, by understanding exactly how those electronic 

states will behave, the deepest understanding of material properties can arise. 

The origin of quantum mechanical calculations began with the Schrödinger equation in 

1926 (65): 

𝛨̂|Ψ⟩ = 𝐸|𝛹⟩ (19) 

𝐻̂ = ∑(−
ℏ2

2𝑚𝑖
∇2𝑖) +

1

2
∑∑

𝑍𝑖𝑍𝑗

4𝜋𝜖0|𝒓𝒊 − 𝒓𝒋|

𝑁

𝑗≠𝑖

𝑁

𝑖=1

𝑁

𝑖

(20) 

This is an eigenvalue equation where the Hamiltonian 𝐻̂ of the N-body wave function Ψ is equal 

to the energy eigenvalues 𝐸 of wave function. 𝒓 denotes the spatial positions and 𝑍 indicates the 

charges of the particles. For an electron in a hydrogen atom, the Schrödinger equation is  

𝐸𝜓 = −
ℏ2

2𝜇
∇2𝜓 −

𝑞2

4𝜋𝜀0𝑟
𝜓. (21) 

When the number of particles, 𝑁, starts to increase, an exact solution usually cannot be found (66). 

The general time-independent Schrödinger equation has 3N degrees of freedom, where N is the 

number of electrons, and this quickly makes systems larger than just a few atoms unsolvable. This 

is where approximations need to be made so that larger systems can calculated. Several types of 

approximation can be used to simplify the equations such as the Born-Oppenheimer approximation 

(67), the Hartree-Flock method (68), configuration interaction (69), coupled-cluster (70), and 

more. However, in the realm of computational simulations, the Kohn-Sham Density Functional 

Theory method has found the most success. This theory reduces the complexity of the system from 

a 3N-Body problem to N-number of single body problems. The simplification follows from two 

theorems (71, 72):  
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• Theorem 1 - The external potential is a unique functional of the electron density only. Thus 

the Hamiltonian, and hence all ground state properties, are determined solely by the 

electron density. 

• Theorem 2 - The groundstate energy may be obtained variationally: the density that 

minimizes the total energy is the exact groundstate density. 

The first theorem allows for one representation of electron density to work for all atoms in the 

system. From the second theorem, the groundstate electron density corresponds to the full solution 

of the Schrödinger equation, and from it all properties may be calculated. Figure 2-8 illustrates the 

simplification of the many electron interactions into one electron density cloud.  

Using these theorems, the Kohn-Sham equation represents a single electron Schrödinger 

equation for a fictitious system.  

−
1

2
∇2𝜙𝑖(𝑟) + [𝑉𝑒𝑥𝑡(𝑟) + ∫𝑑𝑟′

𝑛(𝑟)

|𝑟 − 𝑟′|
+ 𝜖𝑥𝑐[𝑛] + 𝑛(𝑟)

𝛿𝜖𝑥𝑐[𝑛]

𝛿𝑛(𝑟)
] 𝜙𝑖(𝑟 ) = 𝜖𝑖𝜙𝑖(𝑟) (22) 

 

Figure 2-11 The assumption made to simplify the solution of electronic structure calculation for 

Density Functional Theory. Taken from (73).  
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The first potential 𝑉𝑒𝑥𝑡 describes the interaction between an electron and the collection of 

atomic nuclei in the system. The second part of the equation is 𝑉𝐻, the Hartree potential, describes 

Coulomb repulsion between the electron being considered and the total electron density defined 

by all the electrons in the system. The final term containing 𝜖𝑥𝑐 is the exchange correlation 

potential, which is simply the rest of the effects not considered, and its true form is unknown. 

Models such as local density approximation and generalized gradient approximation go towards 

approximating this 𝜖𝑥𝑐 term.  

Thus, the Kohn-Sham Equation can become a set of equations to describe each electron in 

the system. The system can then be iteratively solved to find the true ground state electron density, 

which allows for finding the properties of the system (74). 

Density functional theory is valuable because it is a practical method of performing ab 

initio accuracy calculations on numbers of atoms that can now reach into the hundreds and 

thousands, allowing larger structures and crystals to be composed. The values of material 

properties from these calculations can be used to fit the properties of higher level empirical 

interatomic potentials, or even used to create training datasets for the latest machine learning 

potentials. 

2.8.2 Machine Learning Potentials 

Ab initio quantum mechanical calculations still provide the highest level of accuracy for 

calculating the properties and evolution of systems. However, their usage is still limited to small 

systems or shorter timescales. Even with current computational power they can simulate only up 

to thousands of atoms and picoseconds on the time scale. Practical approximations based on those 

quantum data can be used to speed up calculation and expand the range of possible calculations. 

Some early models attempted to fit DFT data to high dimensional six degrees of freedom models 

of hydrogen adsorption (75, 76). While these early interpolation methods worked, they were 
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inflexible in their application outside of the defined systems and their complexity grew rapidly 

with increasing degrees of freedom. A new type of computer-based interpolation method has come 

about recently called machine learning. One type of machine learning method is the neural 

network. The neural network is a highly flexible nonlinear model that can theoretically 

approximate any continuous function to arbitrary accuracy. It is composed of nodes arranged in 

layers, interconnected via a set of links. Each node in a layer is connected to all the nodes in the 

layers before and after it, but not to the nodes within its layer. Each link is multiplied by a weight 

before it is supplied to a new node. These weights are the parameters adjusted to fit the neural 

network to a set of inputs and outputs. 

The neural network error is minimized via the cost function, whose square root is the root 

mean square error, and this process is called learning. In each epoch, or set of inputs and outputs 

during the training process, the cost function is minimized by adjusting the weights of the links. 

The way in which this minimization is performed is an evolving field with many different 

algorithms and methods to choose from. The process of machine learning has advanced beyond 

simple neural networks with many more complex algorithms and additions to the types and 

interconnectivity of the layers involved.  

A machine learning potential created and improved to describe amorphous carbon utilized 

a Gaussian Approximation Potential (GAP) to interpolate interatomic potential energy surfaces 

using a Gaussian process regression (77). Two and three body terms were added into the machine 

learning process, improving the accuracy and extending the range at which the potential 

performed. The potential was then used to recreate many amorphous carbon structures and 

compared with DFT and empirical potential values.  
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Another machine learning potential based on the spectral neighbor analysis potential 

developed by Thompson et al. (78) has been fitted to quantum molecular dynamics data for 

extreme pressures of up to 5 TPa and tens of thousands of degrees Kelvin (Fig 2-9) (79). The 

ability to perform quantum molecular calculations at such a wide range of pressures and 

temperatures and then fit much faster performing machine learning potentials to them will improve 

the speed and accuracy of future simulations that reach extreme regimes of pressure and 

temperature such as shock loading. However, these machine learning potentials tend not to be 

generally transferable and can only predict within the ranges they were trained on, and only on the 

data they were given. For example, if there was no data on dislocations or vacancies present in the 

training set for the potential, it is unlikely that it will be able to reproduce those physical 

characteristics naturally.  

 

 

Figure 2-12 Training database for the carbon SNAP machine learning potential. (a) Pressure-

temperature map of QMD and static DFT simulations included in the database, each represented 

by a 𝑃-𝑇 point on carbon phase diagram sampling diamond (FC8), body-centered cubic (BC8), 

and simple cubic (SC) solid and liquid phases (total number of structures - 636). (b) Pressure-

temperature-density-energy/atom distribution. Taken from (79). 

 

2.9 Simulation Codes 

There are a variety of molecular dynamics codes that have been developed with various 

types of simulations in mind. Each code is unique in its implementation of the basic simulation 
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process and with different computational efficiencies as well, depending on the system being 

simulated. Some codes may specialize in handling large amounts of atoms at a time, others may 

be focused on protein folding or other biomolecular mechanics, and others prioritizing accurate 

chemical reactions. The generally open-source nature and accessibility of these simulation codes 

such as Amber (80) and GROMACS (81) has helped MD simulations grow as a widely applied 

tool, with many users also contributing their own advancements to the capabilities of the programs. 

The primary code utilized for the work in this dissertation is the Large-scale Atomic/Molecular 

Parallel Simulator (LAMMPS) code, originally developed by Steve Plimpton at Sandia National 

Laboratories (82, 83). One of LAMMPS strengths is the algorithms used to enable parallelization 

of the calculations within the atomistic simulations. Each processor running the simulation can be 

assigned a fixed amount of atoms, a fixed subset of the interatomic forces, or a fixed spatial region 

(82). The ability to perform spatial decomposition and to shrink-wrap the boundary conditions to 

only the atoms present makes for efficient parallel computation and no extra power dedicated to 

calculating unintended free volumes. This works well for the simulation of shock because the box 

can expand to match the atoms as they are compressed and moved by the expanding shock wave.  

2.10 Simulation Process 

Molecular dynamics simulations procedures are performed in the following order of stages: 

1) Construction and initialization of the simulation domain and relevant parameters such as atom 

types, crystal structure, interatomic potential, etc. ; 2) Ensembles are defined, fixes are 

implemented, and equilibration is performed; 3) The simulation is run following the sequential 

integration of newton’s laws according to the set potential and data is output. The following 

sections describe each of these steps in more detail. 
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2.10.1 Initialization 

 Simulations allow a researcher to decide many properties about the system that they are 

trying to model. Sometimes called a simulated fabrication, the initialization step involves setting 

the boundary conditions, simulation size, crystalline structure, and the interatomic potential 

describing the atomic interactions. Periodic boundaries allow the material to repeat infinitely in 

specified directions, allowing for pseudo-bulk material modeling instead of being limited to the 

nanometer dimensions that computational limits may restrict. Fixed boundaries can act as spectral 

reflectors instead, or the boundaries may be shrink-wrapped so they can adjust themselves to the 

motion of the atoms which may grown beyond the barrier when expanding or retract from it when 

compressed. The choice of crystal structure is important for the material as well and allows the 

atoms to propagate a standard unit cell through the defined simulation space. If desired, the 

orientation of the crystal can also be changed for testing different loading directions.  

 It is possible to create more complicated geometries by using the commands within 

LAMMPS, or third-party software like atomsk (84) can also be used for manipulating atomic 

systems in even more complex ways, such as creating complex polycrystalline samples, inserting 

point, line, or planar defects, and other possible transformations. An example of a polycrystalline 

silicon sample can be seen in Figure 2-13. 

 The overall domain size and simulated time is limited by the available computational power 

and time. Typical simulations can contain anywhere from 104 to 109 atoms, simulating anywhere 

between just a few picoseconds to multiple nanosecond events. It is important to take into account 

what is achievable when setting up the simulation, and what the simulation can then tell us about 

the underlying physics. 

 The interatomic potential describing the energies and forces between the atoms present in 

the simulation is also set at this stage.  
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Figure 2-13 Silicon Polycrystal with diamond-cubic grains created with atomsk. Grains are colored 

by orientation, with periodic boundary conditions. 

 

2.10.2 Equilibration and Ensembles 

 To ensure that the created material is physically representative of reality, equilibration is 

performed to minimize the entire system’s potential energy. This includes any present defects that 

may already be present in the simulation, such as intentionally included dislocations, voids, 

inhomogeneous material interfaces, or in polycrystalline materials the presence of grain 

boundaries which can adjust during annealing. The lattice parameter of a material is also 

temperature dependent. In the equilibration process, all atoms are given an initial thermalization 

temperature and then allowed to settle into the stable low energy state. If equilibration or 

minimization are not performed properly, residual stresses could remain and affect the simulation 

results. 

 Additional boundary conditions are considered in the form of the thermodynamic ensemble 

choice. The microcanonical ensemble (NVE) is commonly used for shock simulations, also known 

as non-equilibrium molecular dynamics. NVE stands for a constant Number of atoms, a constant 

Volume, and a constant Energy. Within the ensemble there may be additional conditions that relax 

or restrict these parameters, such as adjusting the Volume of the simulation in accordance with an 

applied uniaxial load. The shrink-wrap variable allows for the volume in an NVE ensemble to 

change as well.  
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2.10.3 Run Integration 

Integration involves the sequential application of Newton’s equations according to the 

defined boundary conditions. These conditions can be adjusted during the simulation as the user 

desires in the input script. Some conditions which may be included are homogeneous tension or 

compression, nanoindentation, set strain rates in tension or compression, shearing, and shock 

loading. The system is usually integrated over a discrete time step, 𝛿𝑡, by the method of finite 

differences. A velocity Verlet algorithm is used in LAMMPS and is written as a change of 

momentum: 

𝒑 (𝑡 +
1

2
𝛿𝑡) = 𝒑 (𝑡 −

1

2
𝛿𝑡) + 𝑭(𝑡)𝛿𝑡 (23) 

𝒓(𝑡 + 𝛿𝑡) = 𝒓(𝑡) +
1

𝑚
𝒑(𝑡 +

1

2
𝛿𝑡) 𝛿𝑡 (24) 

Momentum is 𝑝 and position is 𝑟, written as functions of half steps forward and backward. In 

practice, implementation may looks like this: 

𝒑 (𝑡 +
1

2
𝛿𝑡) = 𝒑(𝑡) +

1

2
𝑭(𝑡)𝛿𝑡 (25) 

𝒓(𝑡 + 𝛿𝑡) = 𝒓(𝑡) +
1

𝑚
𝒑(𝑡 +

1

2
𝛿𝑡) 𝛿𝑡 (26) 

𝒑(𝑡 + 𝛿𝑡) = 𝒑 (𝑡 +
1

2
𝛿𝑡) +

1

2
𝑭(𝑡 + 𝛿𝑡)𝛿𝑡. (27) 

The updated momentum is first calculated at a half step by using the interatomic potential to find 

the current forces between atoms. This updated half-step momentum is used to calculate the 

positions that the particles will be in at the next timestep. These new positions are used with the 

interatomic potential to recalculate the forces between atoms. These new updated forces are then 

used to update the half-step momentum to the next full timestep. From these equations, the 
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velocity-Verlet algorithm can provide the position and momentum/velocity of each atom for each 

time step in the simulation (85, 86).  

2.10.4 Producing Shock in Simulations 

There are several methods to produce shock loading conditions in molecular dynamics 

simulations, including simulations of collision between a target and a flyer plate (87), moving a 

momentum mirror reflective boundary at a set speed through the sample, or using a rigid piston to 

compress the sample, along with several variations in this piston method including the shrinking 

periodic boundary condition (88), shock front absorbing boundary condition (89), and moving 

window method (90, 91). The piston method and the momentum mirror method are illustrated in 

Figure 2-11.  

 

Figure 2-14 Two methods of simualting shock in non-equilibrium molecular dynamics 

simulations. a) Piston moving at a speed 𝑈𝑝 produces shock of speed 𝑈𝑠. b) Compression of the 
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material as a function of time. c) Moving a sample at speed −𝑈𝑝 into a momentum mirror produces 

a reflecting shock wave. Taken from (92).  

 

The piston method is used for the simulations in this dissertation. It is suited for modeling 

general loading conditions such as those from high explosive or laser drives. The piston’s velocity 

can be changed to reproduce stress profiles similar to those experienced in laser shock experiments 

(93–95). The imposed piston velocity directly translates to the particle velocity 𝑈𝑝 and describes 

the shock volume and strain rate. In the silicon simulations, piston velocity was varied from 0.9 to 

1.5 km/s. For the carbon diamond simulations, piston velocities between 1.9 and 3.5 km/s were 

tested, depending on orientation and void size. Further discussions of methodology can be found 

in the relevant sections for silicon and diamond, with full input scripts found in the appendix. 

2.11 Data Processing 

Pre-processing means using preparatory simulations or other manipulations to do things 

like sample construction, such as via atomsk. Peri-processing includes processing that is done 

concurrently with the simulation. This includes things like specifying different compute, or 

thermodynamic readouts from the LAMMPS log file. Post-processing takes place after the 

simulation has completed, using the files that the simulation has output to perform additional 

analysis. In LAMMPS a log file is output during the run, and includes global parameters such as 

total energies, box lengths and volume, temperatures, pressures, or any other user defined 

computes of global values. Another output command is the “dump” command which dictates per-

atom data output, and can include values such as the atomic positions and velocities in x, y, and z, 

or user defined compute quantities such as the virial stresses, mean square displacement, 

coordination, potential and kinetic energies, or many more possible measurements.  
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Classical molecular dynamics is concerned with crystalline materials at the atomic scale, 

and is often used as a method to investigate defects at this scale. Therefore, proper identification 

or material phenomena is important for understanding their physical behavior. The post-processing 

of the atomic dump files can be a time consuming process longer than the simulation time itself, 

involving searching for defects within the simulation and utilizing various visualization methods 

to better illustrate and help with interpreting the characteristics that are present.  

The primary visualization tool used in this dissertation was the Open Visualization Tool 

OVITO (96). Figure 2-12 illustrates a potential process for aiding in turning simulation data into 

visually intelligible pictures. 

 

Figure 2-15 Post-processing pipeline in OVITO. Taken from (96). 

 

LAMMPS includes many built-in computes that allow output of calculated measurements 

to the log or dump files. OVITO also has built in modifications which can help with visualization, 

as well as allowing custom criteria and calculations. The following sections cover some of the 

defect identification methods that have been used in these studies, as well as discussions of strain, 

strain-rate, and stress. 

2.11.1 Strain-Rate  

In a shocked sample, strain rate can be calculated along the direction of shock loading using 

the first derivative of the density: 
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𝜀̇ = −
1

𝜌

𝛿𝜌

𝛿𝑡
|
𝑧

(28) 

At a single timestep, the strain rate can be evaluated using the derivatives of the velocity 𝑢 and 

density 𝜌 

𝜀̇ = (
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𝛿𝑧
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𝑢

𝑝

𝛿𝑝

𝛿𝑧
)|

𝑡

. (29) 

2.11.2 Stress State 

The stress state is measured by the simulation, and is heavily dependent on the interatomic 

potential as it describes the forces between the atoms. In continuum mechanics, the stress is the 

first volumetric derivative of potential energy, but in a discretized atomic system this definition 

does not work. Virial stresses are instead calculated based on atom’s interactions with their 

neighbors, their own velocities, and their atomic volume. The virial stress is defined as (97): 

𝜎𝛼𝛽 = −
1

Ω𝑎
[𝑚𝜈𝛼𝜈𝛽 +

1

2
∑ 𝑟1𝛼𝐹1𝛽 + 𝑟2𝛼𝐹2𝛽

𝑁

𝑛=1

] (30) 

 Where Ω𝑎 is the atomic volume, 𝑚 is the mass, 𝜈 is the velocity, 𝛼 and 𝛽 mark cartesian 

components, 𝑁 is the number of paired neighbors looped over 𝑛, 𝐹 are the forces on the atoms, 

and 𝑟 are the atomic positions. 

 For the simulations in this dissertation, shock is directed along the z-axis and given as 𝜎𝑧𝑧. 

The hydrostatic pressure can be taken from the log files or calculated as  

𝑃 =
𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧

3
. (31) 

For the diamond cubic materials in this study, the lateral stresses 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are roughly 

equivalent, and can be used to calculate the deviatoric stress (87) 

𝜏 =
1

2
(𝜎𝑧𝑧 −

1

2
(𝜎𝑥𝑥 + 𝜎𝑦𝑦)) . (32) 
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2.11.3 Temperature 

Temperature is output in the log file in LAMMPS, but due to the additional energy imparted 

by the piston in the shock simulation, the extra kinetic energy from the translational movement of 

the atoms along the shock direction may result in inaccurate temperatures from the standard 3-

dimensional temperature calculation of: 

𝑇 =
1

𝑁
∑

𝑚

3𝑘𝑏𝑁𝐴

|𝑢𝑛⃗⃗ ⃗⃗⃗|2
𝑁

𝑛=1

(33) 

Where 𝑁 is the number of atoms, 𝑘𝑏 is Boltzmann’s constant, 𝑁𝐴 is Avogadro’s number, 𝑚 is the 

atomic mass, and 𝑢𝑛 is the velocity vector for each atom. When shocked along the z-axis, it may 

be best to employ a 2-dimensional temperature measurement ignoring the velocity in the z-

direction: 

𝑇 =
1

𝑁
∑

𝑚

2𝑘𝑏𝑁𝐴
(𝑢𝑛,𝑥

2 + 𝑢𝑛,𝑦
2 )

𝑁

𝑛=1

(34) 

2.11.4 Common Neighbor Analysis, Polyhedral Template Matching, Identify Diamond 

 Structure analysis algorithms can be used to characterize atomic arrangements. The 

common neighbor analysis (CNA) computation, available either directly in LAMMPS or through 

OVITO, is a useful measure of local crystal structure around an atom (98, 99). It uses a fixed cutoff 

radius to determine whether two atoms are bonded, then each neighbor is taken into account when 

calculating the orientations of bonds to determine crystal structure. CNA is however unsuited to 

identifying less symmetric structures like diamond cubic. 

 The Adaptive Common Neighbor Analysis (a-CNA) works off CNA as its basis but is 

better suited to identifying multi-phase systems as it can automatically identify optimal cutoff 

values for each particle (100). It has been extended to the silicon system, where knowledge of 
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second common neighbors is necessary as the atoms in the diamond cubic system do not 

necessarily share common neighbors. 

 The polyhedral template matching function in OVITO promises greater reliability than the 

CNA, especially in the presence of thermal fluctuations or high strain (101). It can provide a direct 

calculation of local crystal orientation, elastic deformation, and strain. It identifies local crystalline 

order by matching the local atomic neighborhood to templates of structural types in the PTM 

algorithm, using a mix of nearest neighbors and second nearest neighbors.  

The identify diamond modification in OVITO can also be used for identifying diamond 

structure (102). It avoids the problems of CNA by first identifying the nearest neighbors, then 

identifying the nearest neighbors of those nearest neighbors to obtain the list of second nearest 

neighbors. The CNA fingerprint is then run on this extended list. If it forms an FCC structure, the 

central atom is classified as cubic diamond, and if it forms an HCP structure, it is classified as 

hexagonal diamond. 

2.11.5 Coordination and Radial Distribution Function 

The coordination calculation is available both as a compute within LAMMPS or through 

OVITO. It measures the number of neighbors within a spherical shell around a given atom. The 

pair correlation or radial distribution function (RDF) is calculated based on the probability that an 

atom will be lying within one of these spherical shells at a given distance away from any atom in 

the simulation, normalized by the number of atoms and the simulation volume. Strong peaks in 

the RDF can be correlated to the structure factor through a Fourier transform, and can provide 

similar results to diffraction patterns for finding characteristic lattice spacing. Coordination 

number can assist in identifying free surfaces or voids, as there is less coordination where these 

surface bonds are dangling and can also help in identifying phase changes to disordered regions 

where liquid or amorphous structures may be. Disordered structures tend to have broader spreads 
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of the RDF. A comparison of how crystal order can affect the RDF is seen in Figure 2-13. The 

cumulative radial distribution function can also be measured, summing up each of the bins in the 

original radial distribution function. This can provide additional information such as atomic 

density within a certain cutoff radius. 

 

Figure 2-16 Differences between RDF for crystalline, paracrystalline, and amorphous cellulose. 

Taken from (103). 

 

2.11.6 Angular Distribution Function 

The angular distribution function (ADF) is available as built in compute for LAMMPS. It 

calculated one or more ADFs between groups of particles. Each ADF is calculated between a 

central atom and its bond angle to two neighbor atoms within a specified spherical shell range. A 

histogram is built up to show the relative prevalence of angles present within the structure. The 

angular distribution function is commonly used for characterizing electronic orbitals, and may be 

extended to characterizing molecular bonding.  

2.11.7 Dislocation Extraction Algorithm 

The Dislocation Extraction Algorithm (DXA) in OVITO was developed and refined by 

Stukowski (104, 105). It is capable of identifying line defects within an atomistic crystal, determine 

their Burgers vectors, and create a line representation of those dislocations in a dislocation 
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network. It can recognize partial dislocations and secondary grain boundary dislocations, such as 

twinning in FCC. It can also create a defect mesh, separating areas where the good crystal region 

can map atoms to a perfect reference state and the bad region where they cannot. This can help in 

identifying surfaces, voids, or other unidentified defects. The fundamental concept behind DXA 

is the Burgers circuit construction (35). It utilizes Delaunay tessellation of the dislocated crystal 

and compares each atom to atom edge to a perfect reference crystal. Combined with CNA, it can 

identify which atoms do not fit on the perfect lattice and separate them into good and bad regions. 

The interface mesh between these regions contains all dislocations in the crystal, and by 

constructing trial Burgers circuits over it, the Burgers vectors of the dislocations can be identified. 

The DXA process requires a large amount of memory and computing power to perform. Figure 2-

14 shows a completed DXA analysis with dislocations and defect mesh shown. 

 

 

Figure 2-17 DXA analysis of a diamond nanoparticle a) after loading to 0.42 strain and b) After 

relaxation and annealing at 2000K over 1ns. Taken from (106). 
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Chapter 3 Silicon Under Extremes 

 

3.1 Introduction 

Silicon is one of the most studied elemental materials, primarily because of its ubiquity in 

semiconductors; a large variety of semi-empirical potentials and parameterizations exist for 

specific environments and desired properties. Both supporting and contrasting simulations have 

fueled debate for shock responses ranging from phase changes, fracture, amorphization, twinning, 

full dislocation activity, and combinations thereof (24, 107–114). However, none of the 

interatomic potentials developed and explored in the literature were fit with elevated pressure or 

substantial shear stresses in mind. Individual atomic potentials succeed in reproducing thermal 

properties and melting temperatures (115–117), dislocation properties (118, 119), phase 

transformations (60–62, 120, 121), defects and disordered phases (122–124), and brittle behavior 

(121, 125, 126), but no single potential currently has the capability or transferability to reproduce 

all properties of interest over a wide variety of environments - a challenge ubiquitous in 

computational materials science (127). A comparison of a few potentials can be found in previous 

reports (115, 128). It should be emphasized that none of these potentials have been developed 

specifically for high stress conditions. Special consideration must be given to accurately simulate 

the uniaxial strain state achieved during shock loading of silicon. 

Plasticity and atomic structural transformations induced by high pressure shock 

compression in monocrystalline silicon have remained a prevalent research focus for a 

considerable period of time (24, 94, 129–138). A significant number of shock studies have been 

performed in silicon, including impact driven (136–140) and laser shock experiments (94, 129, 

132–134, 141, 142) as well as molecular dynamics shock simulations (107, 108, 111, 112, 143–

145). The intriguing quasi-brittle quasi-ductile response of silicon under shock conditions 

continues to be challenging to model. Capturing the brittle fracture observed at impact and rear 
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surfaces (131, 133, 146) as well as the more ductile response of the confined material within 

remains an outstanding goal. Furthermore, as Smith et al. (133) discuss, as temperature or strain 

rate are increased, structures with different coordination systems, dislocations, amorphization, and 

melting may be observed. 

Here we discuss several prominent molecular dynamics (MD) studies and their results. 

Oleynik et al. (111) carried out large-scale shock simulations and showed that shocks could heal 

defects in bulk single crystal silicon. In another study Oleynik at al. (147) showed that the 

Stillinger-Weber (SW) potential provides stress-strain curves for the diamond-cubic structure that 

compares well with ab-initio results when the strain is below 15-20%, translating to shear stresses 

below 7.5 GPa. Another investigation using an environmentally dependent interatomic potential 

(EDIP) (112) reproduced two-wave shocks consisting of a plastic wave preceded by an elastic 

precursor. Work by Mogni et al. (114) used a Tersoff potential (parameterized by Erhart and Albe 

(EA) (148)) to shock compress Si along the 〈001〉 axis and identified an Imma phase transition, 

noting consistency with shear stress relief provided by direct shock-induced phase transition 

without intermediate plastic deformation. A modified form of the Tersoff bond-order potential 

(MOD) developed by Kumagai et al. (116), reproduces the experimental melting point in addition 

to the ambient elastic moduli and has been shown to reasonably well describe both crystalline and 

disordered phases such as liquid and solid amorphous structures, the kinetics of the crystalline to 

liquid transition (149), the decrease of melting temperature with pressure between -1 and 3 GPa 

(150), and has been successfully applied to the shock regime to predict amorphization under shock 

compression (24). 

Of foremost importance is the far-from-equilibrium pressure-temperature phase space 

generated by shock compression of silicon. The need to characterize this space is emphasized by 
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the variety of phase changes (Table 3-1) and interatomic potentials to draw from. The Stillinger-

Weber potential was recently surveyed and a simple cubic allotrope, sc16, was shown to co-exist 

with the β-Sn structure between pressures of 9.54 and 13.67 GPa (151). Si-III, or bc8, was shown 

to be energetically unfavorable compared to sc16 for all temperatures and pressures. Romano et. 

al. showed that the negative Clausius-Clapeyron melting temperature with increasing pressure was 

again demonstrated and a triple point was defined between dc, liquid, and sc16 at 1302 K and 7.28 

GPa. In fact, the point represents a quadruple point including the hexagonal diamond (hd) structure 

of thermodynamically equivalence to dc (151). 

Four prominent experimental works identify additional phases. In-situ quasi-static 

investigations indicate that amorphization results from an intermediate hd phase (152) and that 

dislocations play a critical role (153). State of the art shock experiments by Turneaure et al. (129) 

completed at the Dynamic Compression Sector (located at the Advanced Photon Source) were able 

to identify a transition of dc silicon to a simple hexagonal (sh) structure at 19 GPa. Shock recovery 

efforts have identified bulk amorphization and directional amorphization in concert with 

dislocation activity, but no phase changes were reported in the recovered samples (24, 94, 131). 

Thus, the plethora of available phase changes, deformation modes, and their interplay 

strongly compel a comparative study of the predominant silicon potentials under shock conditions 

in order to evaluate our current capability to model silicon in extreme environments.  
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Table 3-1 Predominant ambient and high pressure (P < 25 GPa) polymorphs of silicon. Data 

from multiple sources (142, 154–156). 

  

Structure Space Group Unit Cell 

Diamond cubic  

(dc) 

(Si-I) 

Fd-3m 

a=b=c=5.43053 

 
 

Body-centered tetragonal 

five 

(bct5) 

I4/mmm 

a=b=3.369 c=5.470 

 

Imma Imma 

 

a=4.373 b=4.502 c=2.550 

  
 

β-Sn 

(Si-II) 
I41/amd 

a=b=4.686 c=2.585 

 

Simple hexagonal  

(sh) 

(Si-IV) 

P6/mmm 

 

a=b=2.527 c=2.373 

 

Hexagonal diamond 

(hd) 
P63mmc 

 

a=b=5.392 c=5.392 
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3.2 Computational Methods 

The purpose of this study is to understand and illustrate how different interatomic potentials 

are used to simulate the deformation of silicon under shock loading. All simulations are performed 

using the open-source LAMMPS package (82, 83) with a few different schematics in order to 

understand the suitability for each potential prior to shock loading. Six interatomic potentials are 

used to simulate the response of silicon to shock-wave propagation: two Tersoff parameterizations 

(148), a modified Tersoff form (116), Stillinger-Weber (118), an environmentally dependent 

interatomic potential (122), and a modified embedded atom method (MEAM) potential (157). Of 

the Tersoff potentials we employ, both are parameterizations from Erhart and Albe (148) referred 

to as EA (originally developed for Si-C, Si-Si, and C-C interactions) and EA2 (developed solely 

for Si-Si interactions). The modified Tersoff form, developed by Kumagai et al. (116), relaxes the 

original restrictions of the angular dependent term and adds several additional fitting terms. Table 

3-2 provides a reference for the interatomic potential forms, parameterizations, and their common 

abbreviations.  

 

Table 3-2 Table of common semi-empirical silicon potentials, parameterizations, and their 

abbreviations. 

 

Interatomic Potential [ref] Parameterization [ref] Abbreviation 

Stillinger-Weber (118) Stillinger and Weber (118) SW 

Tersoff (60) Erhart and Albe (148) EA, EA2 

Modified Tersoff (116) Kumagai et al. (116)  MOD 

Modified Embedded Atom Model (157) Baskes (157) MEAM 

Environmentally Dependent Interatomic 

Potential (122) 
Bazant et al. (122)  EDIP 

Reactive Force Field (158) van Duin et al. (159)  ReaxFF 
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A preliminary calculation of the elastic moduli (note that the term elastic constant does not 

appreciate that the elastic response will change as a function of applied pressure, temperature, etc.) 

for dc Si as a function of pressure was conducted in order to evaluate which potentials may be 

suited to faithfully reproduce shock wave propagation. Even as the material transitions from an 

elastic to plastic response, elastic strains remain present and their pressure dependence is 

paramount to describing the balance between hydrostatic and deviatoric stress components. To 

calculate the elastic moduli, a cubic cell of Si having 3x3x3 units lattice (where the lattice constant 

is 0.5431 nm) is created with periodic boundaries. Affine displacements are applied to the volume 

and the resultant pressure is calculated (in this way no relaxation of the material is allowed). 

Subsequently, small affine deformations are applied along specific directions and the change in 

forces are registered and translated to their corresponding elastic constituent. While the elastic 

moduli do not fully describe the behavior of the unit cell under these high stress conditions, they 

portray a unique ability of MD simulations to isolate properties from one another compare an 

important component of each potentials. In particular the MEAM potential is significantly “stiffer” 

than the other potentials, which results in it exhibiting elastic behavior throughout the ranges 

probed in the present study. 

 Another crucial factor in the effectiveness of silicon potentials subjected to extreme 

conditions is the accuracy of the melt temperature (as a function of pressure), of direct relevance 

to solid-state amorphization or melting, both of which depend on the disruption of the atomic 

lattice in favor of disorder. We employ a two phase method (150) to calculate the melt conditions 

with increasing pressure. A single crystal dc Si sample is generated, measuring 10x10x50 units 

lattice with periodic boundaries divided into three sections; the first and last are fixed to remain 

solid while the inner third is melted. The probed temperature and pressure states are selected and 
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iterated through via a combination of the velocity verlet algorithm, Nose-Hoover thermostat-

barostat (NPT), NVE integration, and energy minimization. 

 Prior to large-scale shock loading, several locus states on the shock Hugoniot were mapped 

using the Multi-scale shock technique (MSST) (160). The MSST restrains the system to the 

macroscopic conservation laws of a shock front by altering the cell volume and temperature to 

remain along the shock Hugoniot and Rayleigh line. A dc Si cell measuring 10x10x18 units lattice 

with periodic boundaries is defined and equilibrated via minimization followed by the application 

of the MSST with variable shock velocities. Here the standard shock formalism is followed with 

the z-direction as the shock direction, which is aligned with the [001] crystallographic direction. 

While the MSST allows for a calculation of the Hugoniot curve, the method does not describe the 

role that the shock front may impart, instead providing an evolving snapshot of the material located 

a distance behind the shock front and also neglects the full range of multi-wave effects, i.e. for a 

split-wave elastic-plastic shock the MSST will show only either the elastic or plastic volume, but 

not both simultaneously.  

To observe time-resolved deformation under shock loading, large-scale molecular 

dynamics (MD) simulations of [001] single crystal dc silicon with dimensions of 25 nm x 25 nm 

x 300 nm containing ~107. atoms were used, equilibrated at 300K and zero pressure (using NPT). 

These shock simulations impose periodic boundary conditions transverse to the shock direction, 

corresponding to laser-shock experiments that produce uniaxial strain during loading (95). In order 

to study the heterogeneous nucleation of defects from the target surface, a frozen piston consisting 

of a few layers of silicon is initially separated from the bulk target and subsequently impacted and 

evolved using a microcanonical ensemble (NVE). If the piston is perfectly bonded to the specimen 

it is possible that nucleation of defects is suppressed due to the elimination of natural surface 
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defects. The piston moves with a specified velocity, v, as a function of time, imparting a 

compression wave with a particle velocity, Up (where v = Up) (161). In order to mimic modern 

laser-driven setups, the imposed piston velocity (and thus shock pressure) follows a pseudo-

Gaussian form, taken as ~e-t t3; this form arises from the physics of laser ablation using temporal 

Gaussian laser pulses ablating a polymer (132). The full width half max of the pulse is 16.5 

picoseconds (ps) with the maximum occurring at 12 ps, half maxima at 5.5 and 22 ps, and a 

velocity tail that goes to zero at 50 ps. The material will quickly “shock up”, but it is important to 

note that the leading edge provides a quasi-ramp loading, providing a limited time for the lattice 

to adjust to the ultimate stress state. This process has been shown to be important in the production 

of realistic defect structures (161). 

3.3 Elastic moduli, Melt temperature vs. pressure, and Hugoniot calculations 

The behavior of material under shock loading is complex, requiring thorough analysis of 

potentials prior to large-scale simulations of Si under shock loading to ensure the accuracy of these 

simulations. Although shock studies tend to focus on plastic deformation, elastic deformation 

remains present and accurately capturing the elastic behavior allows for confidence in the 

structural changes observed during shock. The results of our calculated elastic moduli are shown 

in Figure 1 and are compared with ab-initio calculations by Karki et al. (162) as well as a reactive 

force field (reaxF (159), designed to evaluate brittle cracks in silicon.) As seen in Fig. 3-1a, C11 

increases with pressure for all potentials except for SW and ReaxFF. MOD provides the best fit to 

the ab-initio results, followed by EA2. Notably, both SW and EA significantly underestimate C44 

(Fig. 3-1c). The effect of pressure on the shear modulus follows the same trend (Fig. 3-1d).  

Figure 3-1 also contains the results of the melting temperature as a function of pressure 

analysis in Fig. 3-1e and are compared to data drawn from Mazhukin et al. (163), limited 

experimental data, a linear Clausius-Clapeyron equation, and an analytical calculation by Deb et 
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al. (164) . MOD, SW, EDIP, and MEAM most closely match the curves presented by the Clausius-

Clapeyron assumption and the curve by Deb et al. More negative 𝑑𝑇/𝑑𝑃 slopes results in lower 

melting temperatures at higher pressures, which may influence the tendency of a potential to favor 

disordered states at elevated temperature and pressure conditions. The EA and EA2 potentials 

substantially overestimate the melting temperature at both ambient conditions and under pressure 

compared to experimental and theoretical results, indicating that melting and amorphization will 

be suppressed relative to the other potentials. 

The culmination of the preliminary analysis is the calculation of Hugoniot states using 

MSST (160) and NEMD simulations. Note that while the large-scale atomistic shock simulations 

provide the most informative details about deformation under shock loading, they are significantly 

more computationally expensive, while each Hugoniot state requires one full simulation but at 

much reduced computational cost to probe the macroscopic shocked state and evaluate the 

Hugoniot curve. The locus of Hugoniot states calculated via this method provides important insight 

as to how we can expect different potentials to behave. The relationship between the shock and 

particle velocities is fundamental to the nature of the shock wave (and is influenced heavily by the 

elastic moduli). Figure 3-2a presents the plot of the shock velocity, Us, versus the particle velocity, 

Up, for EA, EA2, EDIP, MEAM, MOD, and SW potentials in comparison to available 

experimental data. Each of the potentials form nearly linear trends which is characteristic of the 

relation between the particle and shock velocities. While at low particle velocities this relationship 

breaks down due to the split-wave structure, none of the potentials accurately capture this response 

fully and are instead clustered above near the longitudinal sound velocity of the material at zero 

pressure. Because silicon is expected to have a multi-wave structure consisting of elastic and 
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plastic components, the accuracy of the longitudinal sound velocity (along [001]) is quite relevant 

to how the elastic wave evolves and the separation of the elastic and wave fronts. 

 Figure 3-2b shows the relationship between shock stress, σzz, and normalized specific 

volume. Figure 3-2c shows data in the elastic and early plastic regimes. The potentials closely 

match the elastic experimental curve at low compression but lie above the experimental data 

describing the elastic plastic transition. However this is not expected based on the strain rates 

applied and idealized defect-free initial conditions. Isolating potentials that show tolerable 

agreement, MOD and EA2 most closely match the elastic shock response as expected from the Cij 

response, due to the well-known relationship between stiffness, density, and wave speeds.  

Although the pressures probed subsequently are far below the strong shock regime, when 

assessing a potential’s ability to capture shock phenomena, it is important to bound the area of 

study. We note again that none of these potentials were designed to be applied to shock conditions 

and great care must be taken when assessing transferability. Furthermore, MD time scales and 

strain rates are expected to suppress many transitions (plasticity, phase transitions, etc.) and only 

at higher pressures may the relevant phenomena be observed, which often nudges researchers to 

simulate beyond appropriate limits. The higher stresses required for equivalent volume 

compression in the strong shock regime as compared to experiments suggests that the liquid 

“stiffness” is much greater than in reality. This is of particular relevance because silicon is 

notorious for a liquid phase of both high- and low-density variants (similar to the amorphous 

phases) and possibly indicates that these potentials predict the stiffer variant to dominate. 
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Figure 3-1 - Elastic moduli (a) C11, (b) C12, (c) C44 and (d) G (shear modulus) calculated as a 

function of increasing hydrostatic pressure; compared against density functional theory results of 

Karki et al. (162) (e) Pressure dependent melting temperature plotted alongside shock-induced 

temperature rise. The experimentally derived melting temperature calculated by Deb et. al. (164) 

according to the Clausius-Clapeyron equation for dc Si is shown in black. Note that if the transition 

between dc and β-Sn is suppressed that this curve would extrapolate and intersect the melting curve 

between 12-13 GPa.  
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Figure 3-2 - a) Hugoniot (as calculated for each potential) compared to experimental measurements 

(95, 137, 138, 165–168). b) Pressure-volume diagram for the same potentials and experiments. c) 

Pressure-volume diagram focused on the elastic and early plastic transition. 
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3.4 Plasticity  

As may be expected, each potentials predicts varying shock thresholds to induce plasticity. 

For direct comparison, simulations shown are conducted at Up = 1.2 km/s for the EDIP and MOD 

potentials, and 2.0 km/s for EA, EA2, SW, and MEAM because these potentials do not display 

plasticity at Up = 1.2 km/s. All simulations exhibit plastic deformation at Up = 2.0 km/s except for 

those conducted with the MEAM potential which requires a higher shock stress to induce 

deformation, in agreement with simulations by Lane et al. (108). Because we are particularly 

interested in studying the complexity of the deformation dependance below 25 GPa (where the 

vast majority of the experimental data resides), the MEAM potential is not explored further.  

The Hugoniot elastic limit (HEL) is an important material property describing the elastic 

to plastic transition. The HEL is often difficult to accurately simulate without introducing pre-

existing defects, which are typically absent in single crystalline MD simulations (169). Smith et 

al. (95) shocked silicon samples of different thicknesses in order to measure the elastic limit for 

silicon as a function of strain rate for strain rates up to 4x108 s-1. The [001] HEL measured by 

Smith et al. (95) can be extrapolated to the strain-rates in the present molecular dynamics 

simulations (109-1010 s-1) to be ~ 16-38 GPa. Presently, for SW, we observe homogeneous 

nucleation of partial dislocations at Up = 1.89 km/s corresponding to a normal stress of 31.3 GPa 

and heterogeneous nucleation of partial dislocations at Up = 1.30 km/s corresponding to a 

longitudinal shock pressure of 19.1 GPa. For MOD, heterogeneous nucleation of dislocations 

begins at Up = 0.82 km/s corresponding to a longitudinal shock pressure of 12.1 GPa. Homogenous 

thresholds for SW, MOD, and EDIP are consistent with experimental results and projected range 

detailed by Smith et al. (95).  

The initiation of plasticity in shocked silicon is commonly due to emission of partial 

dislocations bounding stacking faults. Interestingly, in MOD this occurs on both {111} and {110} 
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crystal planes. Partials of both slip systems can later react and lead to full dislocations. A similar 

observation has been observed in the deformation of Si nanospheres compressed by a flat indenter, 

where partial dislocations were emitted from the curved surface of spheres with 10 nm and 5.16 

nm radii at normal stresses of 23.5 GPa and 21.3 GPa, respectively; and further compression 

ultimately led to the formation of a full dislocation (170). Density functional theory has also been 

applied (171) to evaluate the stacking-fault energy and predict the tendency to slip along {110} 

planes at uniaxial compressive strains between 0 and 20% strain; a first order approximation places 

the transition around 12%. Achieving such elastic strains without prior nucleation of dislocations 

on {111} planes is possible for both shock loading conditions as well in defect-starved nanoscale 

structures. For direct comparison to the present work in terms of the balance between {111} and 

{110} slip, the SW potential under shock at Up = 2 km/s results in a ~9.5% volumetric strain.  

At large elastic strains we observe a preferential nucleation of {110} stacking faults over 

{111} stacking faults with subsequent faults tending to prefer {111} slip as the strain relaxes 

during plastic relaxation. Here, stacking faults are identified as intrinsic stacking faults consisting 

of two atomic layers. The typical diamond stacking sequence is AA’BB’CC’ where each letter 

denotes a set of positions on the {111} plane and prime indicates a plane separated by a covalent 

bond length in tetragonal arrangement. The diamond cubic structure is referred to in this form by 

two interpenetrated fcc unit cells with atoms at (0,0,0) and (
𝑎0

4
,
𝑎0

4
,
𝑎0

4
). The Burgers vector of a 

full dislocation for silicon is 𝑏 =  
𝑎0

2
〈1,1,0〉 and during intermediate slip atoms on the untraditional 

{110} slip plane may move by 
𝑏

2
= 

𝑎0

4
〈1,1,0〉 (172). Corroborating simulations of plasticity in Si 

nanospheres that employ the SW potential also showed a {110} slip response in addition to the 

expected {111} shuffle/glide-set planes.  
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Figure 3-3 Figure 3-4 Snapshots from NEMD shock simulation performed at Up = 2 km/s (12 

GPa) using the MOD potential displaying simultaneous {111} and {110} stacking faults. (a) 

depth perspective showing interaction between the mutual stacking fault planes. (b) thin section 

illustrating the resultant angles of the {111} and {110} stacking fault planes with the <110> 

direction. (c) and (d) simulated diffraction patters of the faulted areas. Taken from (11). 

 

The simulations conducted herein show that only the Stillinger-Weber and MOD potentials predict 

the quasi-stability of the {110} stacking faults under compression. Figure 3-3 shows the 

simultaneous activation of both slip systems during shock compression of [001] silicon at 12 GPa, 

for the MOD potential. Simulated diffraction patterns are provided for comparison with future 

experimental results.  

 

Phase transformations 

The predominant equilibrium phase transformation of Si under pressure is the transition from 

diamond cubic to β-Sn between 11-13 GPa, with a reported volume change of around 30% (133). 

Table I shows the range of polymorphs that may be expected in shocked Si. In general, shear stress 

is known to encourage polymorphic transitions and change reaction speeds (173–175); shear stress 

has been shown to change the dc to β-Sn transition from 11.4 to 3.9 GPa (176–178). In shocked 

systems, an absence of the dc to β-Sn phase transition at elevated strain rates may be expected due 
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to kinetic suppression (179–182) as evidenced by experiments by Loveridge et al. up to 20 GPa at 

106 s-1 with no observable phase change (134). However, it is possible that detectors were not 

positioned in such a way to capture phase changes other than dc to β-Sn.  

Other phase transitions in silicon under high pressure and temperature indentation have 

also been reported (129, 142, 154, 183) and a recent review of diamond machining of silicon offers 

considerable insight into potential phase transformations and anisotropy of deformation (184, 185). 

Earlier, Boyer et al. (155) demonstrated the (meta)stability of a body-centered tetragonal five 

(bct5) structure using the SW potential by the application of specific strains. It was emphasized 

that for such strains to be reached, other deformation modes such as fracture would need to be 

suppressed and that shock conditions provide an avenue to achieve large lattice strains. Kaxiras 

and Boyer (186, 187) were the first to thoroughly explore such large lattice strains in silicon. They 

were able to identify a pathway from the dc structure to the bct5 structure by applying large strains 

along specific crystallographic directions and evaluating structural energy barriers. In their 

discussion it is noted that in order for such strains to be reached, any sort of plasticity or 

polymorphism occurring at moderate strains must be suppressed. This highlights the importance 

of strain rate and kinetics in the role of deformation in covalently bonded materials such as silicon. 

The bct5 phase has also recently been identified in nanoindentation simulations conducted by Kim 

and Oh (113) and Zhang et al. (188), agreeing with in-situ Raman measurements taken during 

indentation and retraction experiments conducted by Gerbig et al. (189, 190). Note that the bct5 

structure is visualized in Table 3-1.  
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Figure 3-4 - Shocked silicon single crystals ([001]) and the location of bct5-Si structure for (a) 

SW, (b) EDIP, and (c) MOD at 22 ps 

 

Several of the potentials evaluated here produce directional bands of bct5 under shock 

compression, yet to be reported in any shock experiments. The bct5 phase was identified in SW, 

EDIP, and MOD potentials (Figure 3-4) and occurs in concert with the formation of successive 

stacking fault layers, while the bct5 phase was not observed in the EA or EA2 potentials. Figure 

3-5 gives energy-volume (U-V) and enthalpy-pressure (H-P) relationships for several possible 

phase transitions for the SW potential. These calculations show that the transition from dc to bct5 

is comparable to the β-Sn transition pressure, whereas in other potentials, such as EA and EA2, 

the higher energy barriers can explain the absence of bct5 and the presence of other favorable 

transitions such as Imma (and Pmma) in the work of Mogni et al. (114). 
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Figure 3-5 - (a) Internal energy as a function of volume and (b) enthalpy as a function of pressure 

for polymorphs of silicon calculated using the SW potential 
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3.5 Alternative Structure Identification Method 

The identification of the BCT5 phase in the previous section was done by manually 

matching the unidentified phase within the shocked silicon shear bands to templates of BCT5. 

Here, several methods are explored for identifying the phase of the shocked silicon without 

requiring manual template matching. The MOD potential by Kumagai et al. (116) was selected for 

its performance in recreating the conditions for plasticity in silicon accurately. 

The first step in this method was to isolate the shocked silicon shear bands from the 

untransformed bulk silicon. The bulk silicon retained its diamond cubic nature and thus did not 

need to be characterized. The still diamond-cubic atoms could be removed from the visualization 

of the simulation, and then one of the diagonal shear bands was cut out. Figure 3-6 shows the 

different silicon structures.

 

Figure 3-6 a) Shocked Silicon imaged from the [010] face. The diamond-cubic atoms have been 

removed from the simulation, leaving only the silicon in the shear bands that has undergone 

phase transformations to either a new phase or to disordered amorphous clusters. b) One of the 

shear bands is cut out and imaged face-on. There is still plenty of long-range order present, 

indicating the shear bands are not fully amorphous.  
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 The idea behind the structure identification of the shocked sample would be to compare 

easily accessible measurements from pristine crystalline structures and compare them to the 

shocked silicon structures within the shear bands. The first measurement tested was the radial 

distribution function. As seen in figure 3-7, the peaks of the radial distribution function for Beta-

tin did match up favorably against the shocked silicon structure, especially at the elevated 

temperatures we would expect in a shock heated sample. However, several other polymorphs of 

silicon also exhibited similar results for the radial distribution of atoms. The bond length across 

these different structures of silicon simply do not change enough for significant differences in the 

radial distribution functions to appear and clearly define one structure versus another. 

 

Figure 3-7 Radial Distribution Function for the shocked silicon versus different temperatures of 

the Beta-tin structure 
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 The cumulative distribution function was also imaged, as seen in figure 3-8. Although there 

are some clear differences that can be seen here from the shocked sample, the features are still too 

similar for clear delineation.  

 

Figure 3-8 Comparison of Cumulative Radial Distribution function for shocked silicon versus 

beta-tin structure 

 

 The next method tested was using the angular distribution function instead of the radial 

distribution function. For this method, the angles between a center atom and any two neighboring 

atoms in the simulation are calculated, and shown in a histogram form. This method is sensitive to 

the angles of the bonds between the silicon atoms instead of just the distance between atoms. The 

results for several mismatched structures are shown in figure 3-9. The shocked silicon sample 

clearly has its own peaks for the most common angles within its structure, and none of the other 

samples match up well against it, with mismatched peaks at multiple locations. 
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Figure 3-9 Angular Distribution Function for several forms of silicon, including BC8, Simple 

Cubic, Amorphous Melt, and ST12. 

 

 Finally, the match between the BCT5 phase ADF and the shocked silicon ADF can be seen 

in Figure 3-10. The peaks match up perfectly between the pristine BCT5 sample and the highly 

thermalized silicon sample, which causes broadening of the peaks. Finally, to fully validate the 

match between the two, the BCT5 unit crystal was formed into a superlattice and imaged for 

comparison to the atomistic view of the shocked silicon, as seen in Figure 3-11. The same structure 

can be seen between the two, although the strain and temperature present in the shocked sample 

show a less perfect arrangement of atoms.  

 This method of using the angular distribution function to quickly match known structures 

of elements to unidentified phases within simulations could serve as another alternative method 

for structure identification without the need to manually match atoms to templates of structures 

and should be broadly applicable to any potential for silicon or other elements and the structures 

they may form.  

 



 

64 

 

Figure 3-10 ADF match between BCT5 and the shocked silicon shear bands 

 

 

Figure 3-11 Atomistic view of a) the perfect BCT5 structure and b) the shocked silicon structure 
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3.6 Amorphization 

Amorphization is another mode of structural transformation, expected to form during shock 

compression and release as evidenced by recent laser-recovery experiments (24). Silicon is known 

to have at least two amorphous phases, one high density and one low density (164), in addition to 

the disordered liquid phases. Notably, the SW potential exhibits a liquid-liquid transition (191). 

The EA, EA2, and MOD potentials also produced amorphous regions during simulation, while 

EDIP and MEAM did not. The multiple disordered phases are thought to play a role in solid state 

amorphization. This is made clear by Zhao et al. (94) in their study that identifies amorphization 

using postmortem Raman spectroscopy and transmission electron microscopy (TEM). According 

to Zhao et al. (24), the appearance of amorphization, along with its relative location, temperature, 

and density, is influenced by concomitant shear and hydrostatic stresses that arise during uniaxial 

shock compression. The result of this stress state is the formation of profuse stacking faults that 

travel great distances into the silicon sample (107). The maximum shear stress can be visualized 

as a cone extending at 45° degrees from the direction of shock wave propagation. Amorphization 

occurs in the slip planes that align the closest to the direction of maximum shear stress, where the 

many partial dislocations generated by the shock wave collapse to form the amorphous regions 

(94). The expected slip systems will intersect at different degrees with this cone based on the 

loading direction of the sample (3). Several experimental modes of amorphization are shown in 

Fig. 3-12. Fig. 3-12a depicts bulk amorphization possible due to solidification of liquid melts in 

the strong shock regime. This is a regime for which the potentials are particularly ill-suited to 

reveal the exact behavior, so no direct comparison is made at the present. Fig 3-12b displays an 

amorphous region similar to Fig. 3-12c, while Fig. 3-12c can be compared directly to the 

simulations shown in Fig. 3-14. Fig. 3-12d demonstrates stacking fault bands similar to those 

observed in Fig. 3-13, where many bands, some amorphous and some ordered are shown. The 
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angle in which the amorphous bands occur matches that of the slip planes closest to the direction 

of maximum shear, and matches the simulation results seen in Figures 3-13 and 3-14. The 

potentials which best matched the experimental observations of the amorphous regions in 

recovered shock experiments were the SW, EA, EA2, and MOD potentials which are further 

examined in Figure 3-13. 

 

Figure 3-12 Transmission electron microscopy identification of features in shock compressed 

silicon. (a-c) Configurations of amorphous material, from planar fronts near the shock interface, 

to bands that do not have adjacent stacking faults, to bands that form at the junction of stacking 

faults. d) Bands of stacking faults also exist with no amorphous features. Insets in (a, c) show 

diffraction patterns of stacking faults, the crystalline lattice, and amorphous phases. Figure is 

reproduced from (24). 
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In Figure 3-13, select disordered regions are identified during shock compression. For 

further study of the amorphous phase, computation of g(r), the radial distribution function, is 

conducted here. According to plots of g(r) versus r, the probability of existence of an atom in 

different radii can be observed; the similarities between liquid and amorphous silicon are such that 

they cannot be simply differentiated; a detailed evaluate of the local coordination of amorphous 

silicon is left for future study. Analyses of properties along the shock direction provide insight into 

the conditions for amorphization. The shear stress prior to plastic deformation is significant and 

can be as much as one half the shock pressure (192). After defect nucleation, the shear stress begins 

to relax, eventually dropping to zero within the amorphous region. Full relaxation of shear stress 

does not confirm or deny this as a solid-state process. A liquid would be unable to sustain shear 

stress, but full 3D plastic relaxation during amorphization is just as plausible. 

 

Figure 3-13 (a) Rendition of the shocked systems at 22 ps. The location of the amorphous spheres 

with maximum volume are identified. From top to bottom: SW, EA, EA2, MOD potentials. Atoms 

are colored by “Identify Diamond Structure” in OVITO. Blue atoms are diamond cubic; white 

atoms are unknown, and light blue atoms indicate 2nd nearest neighbor dc atoms. Atoms are 

subsequently identified and colored red which belong to disordered regions. (b) The pair 

correlation functions from the top down are (1) EA2, (2) bulk MOD, and (3) “directional” MOD. 

(c) A comparison with shocked silicon, showing amorphous bands of material coming at 

approximately 45-degree angles from the shocked direction. 

(c) 
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(c) 

Figure 3-14 - Slice along the [111] direction of a MD simulation of [100] shocked silicon using 

the MOD potential. (a) Overall image showing bulk amorphization/melting near the shocked 

surface, directional amorphization/melting, partial dislocation activity, and formation of bct5 

bands. Atoms are colored according to local coordination evaluated with a cutoff of 0.3 nm. (b) 

Region showing stacking fault bounded by partial dislocations. (c) TEM image of amorphous 

bands in shocked silicon surrounded by stacking faults 
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3.7 Summary 

In this section on silicon under extremes, we report on potential-dependent shock response 

of silicon along the [001] orientation. Analysis of stresses and temperature along the direction of 

shock compression is critical to the understanding of resultant phase changes and plasticity. A 

transition to the bct5 phase is observed in 3 potentials: MOD, SW, and EDIP. This structure 

originates along bands of stacking faults and is related to the atomic structure of the stacking fault 

and the hexagonal diamond phase. Amorphous pockets at the intersection of defect bands are 

identified in SW, EA, EA2, and MOD during shock compression. MOD also displays bulk 

amorphization/melting near the impact interface in addition to the directional amorphous bands, 

which are magnified by underestimation of melting temperature at elevated pressure. 

A separate method of identifying the structure of shocked silicon was tested and verified 

by use of the angular distribution function to match bond angles within the shocked regions of the 

silicon against pristine crystalline units of known possible phases. For the MOD potential, the 

BCT5 phase was successfully matched to the phase change identified within the shear bands 

formed through the plastic response of silicon to shock compression of over 11GPa.  
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Chapter 4 Diamond under Extremes 

 

Carbon is sometimes called the “king of the elements” due to its amazing ability to bond 

with both itself and other elements. It is one of the most common elements in the universe, and is 

intimately connected with life on earth. Whether as a part of organic material bonded to many 

other elements such as oxygen and hydrogen or in its elemental form as graphite or diamond, 

carbon is a part of so much of the world around us. Even in just its elemental forms, its applications 

are diverse and dependent upon its morphology, whether from the nanoscale properties of carbon 

nanotubes and graphene, or to the bulk properties of solid diamond. Its resilience, luster, and clarity 

has made it popular for jewelry symbolic of unending devotion, while its more practical 

applications in industry include use in diamond saws or polishing agents, where its high hardness 

and strength allows it to act as an abrasive for removing other, softer material. Under the immense 

pressures found in planetary interiors, it adopts the diamond phase, which is the only allotrope that 

exists up to terapascal (TPa) pressures. Understanding these phase transitions holds the key to 

unlocking both technological applications and the composition of distant planets.  

While theories predict a new carbon phase---BC8 (body-centered with each atom heaving 

eight nearest neighbors)---emerging at pressures beyond 1 TPa, experimental evidence remains 

elusive. The mechanisms by which diamond transitions to this new phase are just being 

investigated by atomistic simulations-based machine learning (193), but probing these conditions 

is very challenging for experiments. Traditional methods like shock compression face limitations, 

often reaching the melting point before achieving the desired pressure. 

 However, recent efforts through the ramp compression technique have allowed shockless 

compression that enable access to TPa pressures with decreased temperature rise, maintaining the 

sample in the solid phase (194). Remarkably, recent experiments compressed diamond to a 
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staggering 5 Terapascal using this method (195), yet no signs of a phase transition to BC8 were 

observed later (196). Nevertheless, the question of BC8's existence persists. 

 The combination of cutting-edge ramp compression with sophisticated characterization 

tools to bridge the gap between theory and reality should not only confirm the existence of BC8 

but also unlock its synthesis pathway, paving the way for exploring high-pressure carbon’s 

implications for planetary understanding and material science advancements. 

In this section, we focus on the synthesis and some high energy density uses of carbon 

diamond under extremes, where some of its unique properties make it an attractive choice for 

experiments working at the highest temperatures and pressures that humans can achieve. In 

comparison to other Group IV elements on the periodic table which exhibit similar bonding 

behavior, diamond has a tensile strength of 95 GPa, almost 5 times that of both silicon and 

germanium, and a shear strength of almost 15 times (197, 198). This order of magnitude difference 

comes from the strength of the sp3 covalent bonds between the carbon atoms. This extreme 

strength makes it attractive for applications that require high pressures, such as its use as the 

confining material in diamond anvil cells. A combination of this material strength and other factors 

such as diamond’s thermal conductivity, density, optical transparency and other factors have also 

made diamond the material of choice as an ablator for high energy density experiments, such as 

forming the capsules which hold the fusion fuel in current National Ignition Facility experiments 

for controlled fusion research (20).  
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4.1 Diamond Synthesis 

Natural diamonds form deep beneath the earth’s surface, involving the reduction of 

carbonates and oxidation of methane to form diamond crystals within kimberlite (199). This 

kimberlite is carried up closer to the earth’s surface by the exsolution of carbon dioxide from the 

mineral-rich magma (200). 

It was not until the 1950s that diamond was reproducibly synthesized by researchers at 

General Electric, dissolving graphite in molten transition metals under high pressures and high 

temperatures. Calculations of diamond’s phase diagram gave scientists an idea of the kinds of 

temperatures and pressures that were needed for the conversion from the more common graphite 

phase into the metastable diamond phase. Improvements to pressure vessels finally enabled the 

achievement of up to 10 GPa pressure and over 2300 K temperature, leading to the first synthesized 

diamonds (201, 202). 

Further research into the synthesis of diamonds yielded several other methods to produce 

them by imposing thermodynamically favorable conditions to convert graphite to diamond, 

whether through flash-heating at high static pressure (203) or synthesis through shock (204). 

However, the now dominant method of synthesizing diamond came about with advancements in 

chemical vapor deposition (CVD) processes using gaseous hydrocarbons in an excess of hydrogen 

(205–207). This method involved the preferential nucleation and growth of diamond crystals at 

pressures and temperatures where graphite should be the more stable form. Further enhancements 

involving the methods for controlling the activation of the gas-phase carbon precursors, such as 

use of plasma jets or combustion flame synthesis (208–211). While growth rates for these diamond 

films were measured in hours per micrometer in the early stages of the technology, modern growth 

rates in CVD diamond synthesis can be measured in hundreds of micrometers per hour (212, 213). 

The enhanced growth speed and controllability of these CVD processes are what allow the precise 
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design and implementation of diamond for use in research today. As the technology matures it has 

become possible to produce single crystalline diamond wafers of increasing size and perfection, 

as seen in Fig. 4-1. 

 

Figure 4-1 A large 155 carat single crystal diamond wafer, heteroepitaxially grown via ion 

bombardment on a Ir/YSZ/Si 001 substrate. (taken from Ref. (214)) 

 

4.1.1 Diamond Synthesis via Shock 

The formation of small diamond clusters using shock impacts was one of the earlier 

methods used to reach the high pressure and temperature conditions necessary for the equilibrium 

formation of the diamond phase. The first reproducibly created diamonds via shock synthesis were 

made by DeCarli in 1959 when investigating the similarities between radiation damage and shock 

wave damage on nuclear-grade graphite, with results published in 1961 after rigorous confirmation 

via XRD performed by Jamieson (204). Typical experimental setups begin with graphite sheets, 

which are then subjected to shock pressures of at least 20 GPa (215–217) driven by explosives or 

gas gun impact (218). Modern use of lasers to produce shock in graphite precursors have also 

produced diamond and even hexagonal diamond, lonsdaleite, at sufficient shock pressures (219). 
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The shock pressure and associated temperature rise create the stable conditions for diamond to 

form, but the time that these conditions are held are so small that usually only small clusters of 

diamond are formed before the system returns to a graphite stable zone. The fast quenching of the 

diamond is necessary for it to retain its form and not revert to a graphitic phase, and the method of 

quenching is also capable of producing different morphologies of diamond (220–222). Because of 

these fast formation timeframes, shock synthesis is generally unable to create large diamond 

samples, and the sizes of the clusters themselves are not tightly controlled either. Figure 4-2 shows 

the different P-T regions for several methods of synthesizing diamond. Shock synthesis uses higher 

pressures than static methods. 

 
Figure 4-2 Phase diagram of carbon showing the various temperature and pressure conditions that 
the various methods of creating diamond are located in. (taken from Ref. (223).) 
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Meteor impacts also can create the conditions necessary for diamonds to form. Many crater 

impact sites have found evidence of diamond formed via the impact with the earth, such as Canyon 

Diablo in Arizona (224–227), the Ries crater in South Germany (228), the Popigai Crater in Russia 

(229), intact meteorites from Antarctica (230), or the possible origin of carbonado (black diamond) 

in Brazil and Central Africa (231). Figure 4-3 shows a diamond sample embedded within the 

meteorite sample from the Canyon Diablo site. While not manmade diamonds, the shock produced 

by the meteor impact produces the conditions necessary for the shock formation of diamond, and 

several unusual forms of diamond have been found from these impact sites. 

 

Figure 4-3 375x zoom on a diamond fragment embedded within the Canyon Diablo meteorite. 

Taken from (225). 
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4.1.2 Diamonds from Detonation of Explosives (Ultra Dispersed Diamonds) 

Diamond can also be the product of the detonation itself. These nanosized diamonds (4-7 

nm) were found to be 25\% of the soot resulting from the detonation of TNT/RDX, TNT/TATB, 

and TNT/IIGU mixtures, as reported by Greiner et al. (232) in 1988. This work was simultaneously 

reported in the US and USSR. In the USSR, it was pursued with the recovery of the nanosized 

diamonds for technological applications. One of them was the mixing of the powders with 

lubrication oil for automotive engineering order to ‘break them in’ by smoothing the cylinder 

bores. Newer technology producing smoother bores rendered this product obsolete.  

Volkov et al. (233) analyze the formation of diamond and propose that it forms at the Chapman-

Jouguet pressure (19-35 GPa) and temperature (3500-4400 K). The carbon is produced by the 

reaction: 2𝐶𝑂 ↔ 𝐶𝑂2  +  𝐶. Carbon is liquid in the Chapman-Jouguet region and therefore liquid 

droplets are formed, which crystallize upon rapid cooling if conditions are right. Volkov et al. 

(233) claim that the first experiments forming ultra dispersed diamond date from 1963.  

Figure 4-4 shows the Chapman-Jouguet states for a variety of explosives. They are in the liquid 

region and this explains the formation of nanosized diamond upon solidification. 
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Figure 4-4 Pressure vs. temperature diagram for carbon; points 1 to 7 represent different 

Chapman-Jouguet states for different explosives. It can be seen that, except for Explosive 1, the 

points are in the liquid region. Taken from Volkov (233). 

 

4.1.3 Shock Consolidation 

Diamond powder with fine particles can be consolidated into a more solid diamond bulk 

by use of a mechanical means: a shock wave in a process called shock consolidation. This process 

is more akin to sintering than the formation of diamond from graphite. The important 

understanding from these experiments are the effects of the diamond particle sizes on how the 

particles consolidate, as well as the quality of the diamond samples that can be obtained from these 

methods. Because of diamond’s high hardness, pressures of about 100 GPa or above are required 

for the consolidation process (234), but could be lowered with the presence of graphite powders 

added to diamond (235). However, because of these high pressure shock waves, cracking is also 
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likely in the consolidated samples (236). In general, the density of the consolidated samples can 

go as high as 90% (237). Diamond has a natural hardness in the range of 100-150 GPa, and these 

consolidated samples range from 25 to 80 GPa in hardness (234, 237, 238). 

4.1.3 Presence of Flaws in Diamond 

Field studied strength and fracture properties of manufactured diamonds and has shown 

that they tend to be full of flaws (239). When compared to natural diamond, manufactured 

diamonds were on average 3-4 times weaker (198). Testing of tensile strength in CVD diamond 

samples, with equivalent flaw size calculated from an assumed 𝐾𝑖𝑐 value of 6 𝑀𝑁/𝑚
3

2, revealed 

flaw sizes ranging from 40 to 150 micrometers, obtained from a bursting membrane method. The 

larger the testing area of the diamond, the more likely that larger flaws are present, resulting in 

lower values of the strength of diamond for larger samples. 

4.1.4 Brown Diamond 

Some of the color in diamonds may be a consequence of the presence of dislocations 

created by plastic deformation, rather than just the presence of elemental impurities. Both natural 

and CVD diamonds have been observed with brown coloring. Willems finds evidence of both 

[101] and [112] type dislocations in brown diamonds (240), and further research showed evidence 

that small vacancy clusters may affect the coloration as well (241). There is also evidence that high 

pressure/high temperature treatment of these brown diamonds can remove these discolorations 

(242). 

4.2 Static Compression of Diamond 

 

4.2.1 Diamond Anvil Cell Experiments 

Diamond’s unique properties led to it becoming the material of choice in the creation of 

the Diamond Anvil Cell (DAC) in 1959 (243). By sandwiching other materials between two 

diamond faces, a very high pressure can be applied to the sample. Due to diamond's remarkable 
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compressive strength and extreme hardness, it can exert pressures on the sample ranging from tens 

of gigapascals to even terapascals (244). 

Since it is optically transparent, direct microscopic observation of the sample under 

pressure can be made. However, diamond is transparent to more than just visible light. X-rays 

were another extremely valuable source of spectroscopic data, and diamond’s low atomic number 

means it has a low absorption. By utilizing the single crystalline nature of the diamonds used in 

DACs, if the diamond was oriented such that it did not fulfill the Bragg condition, then the x-rays 

also minimally attenuate due to Rayleigh scattering. Infrared, gamma, UV, and even photons also 

prove that diamond’s transparency make it perfect for the purposes of studying other material 

under high pressure (245, 246). Figure 4-5 shows the structure and imaging within a DAC. 

 

Figure 4-5 Schematic and images of a diamond anvil cell.(a) Diagram of the DAC (b) Zoom in on 

the high pressure chamber (c) Real image of the sample chamber within the DAC. Taken from 

(247). 

 

When DACs subject other materials to these high pressures, the diamond itself also 

experiences those pressures. Physical analysis of anvil cells removed after experiments to pressure 

of 170 GPa found macroscopic plastic deformation in one of the faces, seemingly dependent on 

nitrogen platelet concentration (248). Further experiments studying the response of the diamond 
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itself under these conditions have been performed, observing the deformation of the anvil face up 

to 400 GPa (249). A theoretical first-principles study of the non-hydrostatic tetragonal 

compression present in DACs found that the diamond begins to yield when the shear stress present 

exceeds 200 GPa, or expected experimental pressure in the 300 GPa range (250). These predictions 

line up with some of the changing properties of the DACs around these conditions, including the 

fluorescence of the diamond itself interfering with commonly used ruby fluorescence (251). 

Another study used a moissanite anvil cell capable of pressures up to 500 GPa to study diamond’s 

raman spectra and the effects of hydrostaticity or nonhydrostaticity in loading (252, 253). 

First principles calculations and finite element analysis of diamond and its use in DACs 

has shown good agreement with experimental results, where properly designed setups with [001] 

oriented diamond can reach pressures of over 500 GPa, and dual stage nano-twinned diamond can 

reach up to 1TPa (254). 

4.2.2 Indentation Testing 

Indentation testing of materials is a common method of relatively non-destructive 

characterization of physical properties. Hardness values are taken by indenting a material with a 

tip of a specific shape, depending on the type of indenter test being performed. Diamond’s place 

as the hardest natural material makes it perfect for use as the indenter tip, as it can easily penetrate 

the surface of other less hard materials, but issues arise when diamond itself needs to be tested. 

Since diamond is used to indent diamond, deformation or even failure of the indenter tip can occur. 

The Vickers and Berkovich indenters are unsuitable to the task as they tend to produce irregular 

indentations on the testing surface (255). Use of the shallower Knoop indenter made of high quality 

single crystalline or nanopolycrstalline diamond has shown the most consistent results but must 

still be paired with additional microscopy such as AFM or SEM to accurately measure the size of 

the indentation (256). One of the earliest measurements of plasticity in diamond used a Knoop test 
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and interestingly found that shear events formed along the (100) planes rather than the (111) planes 

as expected (257). A review of diamond indentation hardness by Chaudhri (258) argues that much 

of the previous data for diamond indentation hardness is incorrect due to these factors, and the true 

hardness for diamond is likely to lie between 130 and 145 GPa.  

Nanoindentation studies on small diamond crystals found a strong orientation dependence 

in the loading response of diamond. Hardness values of 95 GPa were found for the {100} surface, 

and 117 for the {111} surface (259). Nanoindentation characterization of thin diamond films 

grown on a substrate found that hardness tended to increase with pressure, as the deformation 

increased the sp3 bonding within the nanocrystalline material (260). Another study looking at 

obtaining the Young’s modulus from nanoindetation tests found it to be 1090 GPa in the [001] 

orientation, in fair agreement with literature values (261). 

4.2.3 Diamond Nanopillar Experiments 

Nanopillar experiments provide a unique set of conditions for observing plasticity in 

diamond. Recent advances in nanopillar construction techniques and electrostatic deformation 

have enabled the study of nanoscale diamond pillars under load. These nanoscale experiments may 

exhibit very different mechanical properties than their bulk counterparts, but are a means to 

provide insight into its mechanical response.  

Researchers at Zhejiang university used in-situ TEM to perform nanopillar compression 

experiments on diamond. They were able to directly observe dislocation loops forming at the 

compression zone and were able to identify that these dislocation loops actually lie on the {100} 

planes (262, 263). A different study observed bending of diamond nanopillars and found that their 

(111) oriented samples would only deform elastically, returning to their original shapes or failing 

in a brittle fashion, while their (100) oriented samples underwent plastic deformation, and possibly 

formed new O8 phase of carbon under these loads (264). 
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4.3 Diamond Phase Diagram 

 

Figure 4-6 A phase diagram for diamond up to 3.5 TPa and 15000K has been consolidated from 

several sources, including early first principles estimates of the phase boundaries, up to the most 

recent machine learned calculations for the phase transitions of diamond. Aside from the earliest 

calculations performed for the transition from cubic diamond to BC8 in 1987, the general 

features of the different phases tend to line up well. The cubic diamond to BC8 has a negative 

slope between temperature and pressure, as well as the transition from BC8 to simple cubic at 

even higher pressures. The BC8 to liquid transition begins with a positive slope which then turns 

downwards. Eggert’s experimental data on the diamond Hugoniot also captures a portion of the 

melt line. 

  

Figure 4-6 shows a phase diagram that is constructed from an early model by Young and 

Grover (265) as well as several ab initio calculations of the high pressure and temperature phases 

in diamond (79, 266–269). Willman's (79) carbon SNAP machine learning potential results are 

also included. The graphite phase is not shown, but would occupy a sliver of the leftmost portion 

of the chart, as it is stable only to at most 15 GPa. Experimental data of the shock melting curve 

can be seen from Eggert’s (270) experimental data. The features of most of the phase diagrams are 

quite similar, apart from the earliest calculations. The transition from diamond cubic to BC8 takes 

place at around 1 TPa, and diamond’s melting point increases with pressure until around 400 GPa, 
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where it begins a negative Clapeyron slope. This negative slope is also seen for the transition from 

diamond cubic to BC8. A simple cubic phase exists above ~2.8 TPa at 0K, and even further beyond 

the boundaries of the figure hexagonal phases are predicted.  

While the BC8 phase is predicted to occur at 1TPa and above, experimentally it has not been 

observed (196). Ab initio predictions of the phase changes of diamond agree with the experimental 

results as well, with the diamond cubic phase remaining as the metastable state until reaching the 

threshold for the simple cubic phase to occur at >2 TPa (271, 272). The kinetic limits and high 

energy barriers between the two phases simply do not allow for diamond to directly transition to 

the BC8 phase. While some calculations did show that relaxation of the simple cubic phase into 

the equilibrium BC8 region would produce the elusive phase, another pathway for creating it is 

currently under investigation at the NIF (193, 269). By taking the metastable nanocrystalline 

diamond into the BC8 phase but above the extended diamond melt line, a metastable supercooled 

liquid state is formed. If this liquid state is then cooled and held in the thin BC8 region as seen in 

Figure 4-7, the new crystal phase eventually forms. 
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Figure 4-7 A possible metastable pathway towards experimentally forming BC8 diamond. A) 

Shows the extended diamond melting line, where if the diamond is taken above this line will form 

a metastable supercooled liquid. If the temperature can then be lowered into the green BC8 zone, 

the BC8 crystal structure should form. b) A timelapse of the change in diamond simulated when 

taken from the metastable diamond phase up to the supercooled liquid state, then lowered to the 

BC8 formation zone. 

 

4.4 Molecular Dynamics for Diamont Under Extremes 

Simulating diamond using molecular dynamics or ab initio calculations begins with the 

ability to model carbon. The first potential developed and widely adopted was the Tersoff potential 

(61) in 1988. It has a simple description for bonding strength based on the number of nearest 

neighbors. It is still one of the fastest carbon potentials available and is often used as a benchmark 

for comparison with other more recent or complex carbon potentials. Further developments in 
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these types of classical potentials have given rise to other potentials which may all describe a 

particular part of carbon diamond’s behavior well. However, in general these potentials fail to 

capture every aspect of the behavior across the full range of temperatures and pressures, 

environments, or bonding behaviors, that diamond and carbon can exhibit. Thus, many studies use 

molecular dynamics with classical potentials to study diamond behavior. Especially at the lower 

end of the HEDP regime, below 200 GPa and below the melting curve, the behavior of these 

potentials can still provide insight into mechanical properties of diamond such as dislocations, 

stacking fault energies, tensile or yield strengths, and others. Modifications to parameters such as 

bonding cutoff lengths, bond angle strengths, attractive pair potential, are common in attempts to 

improve the performance of the Tersoff potential for different ranges of pressure or temperature. 

Each of these potential endeavor to describe particular system conditions better, such as graphite 

interlayer interactions, hydrocarbons, and metallic alloy interactions. 

4.4.1 Tersoff Potential 

The Tersoff Potential (61) is one of the earliest and still most widely used classical 

interatomic potentials; it was originally developed for silicon and later adapted to silicon carbide, 

while also describing the pure carbon-carbon bonds as well. Previous 3-body attempts to describe 

silicon had proven unsatisfactory for the range of bonding geometries and coordination numbers 

and increasing the number of bodies considered introduced too many variables to the problem. 

Tersoff decided to implement the physics of the problem directly into the equation, where the bond 

order, or bond strength, was influenced by those geometries and coordination. The formulation of 

the potential and explanation of its parameters can be seen in Section 2.7. 

Several different variants of the Tersoff potential exist with just slight tweaks in the 

parameters used. There are many versions of the Tersoff potential with simply adjusted cutoff 

distances that improve performance in varieties of pressure environments (273, 274). 
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The Tersoff potential described physical properties of diamond with good agreement to 

both experimental data and first principles calculations. Cohesive energies, bond lengths, elastic 

properties, and point defect properties all were within reasonable error. 

4.4.2 Other Potentials 

The Brenner potential's function is based on Tersoff’s covalent-bonding formalism with 

additional terms that correct for an inherent overbinding of radicals and that include nonlocal 

effects (275). It is one of the most widely implemented and cited versions of the Tersoff potential 

used. Glosli used the potential in atomistic simulations of diamond melting (276). 

The Erhart-Albe potential (148) is a bond order potential fitted for silicon, carbon, and 

silicon carbide. Compared to previous potentials, it describes elastic properties even better, and 

demonstrates transferability across regimes by simulating condensation of silicon-carbide in an 

inert gas environment. It has been used often in conjunction with the Tersoff potential to 

corroborate results in nanotwinned diamond (277).  

The carbon MEAM potential (278) is based on the embedded atom potential. It attempts to 

describe both the structures of carbon while providing the ability to describe metals and metallic 

interactions. This allowed it to be extended for use in alloyed metal-carbon systems (279). 

Another potential was a formulation based on Tight Binding model (280) to capture the 

quantum mechanical nature of covalent bonding in carbon. While this potential has been of most 

interest in the simulations of other carbon materials such as nanotubes (281, 282), there have been 

some applications for studying diamond as well (283). 

The Environment Dependent Interaction Potential (284) is better fitted to liquid and 

amorphous carbon phases, with superior performance to Tersoff and Brenner in these areas. 

Buchan used this potential to study radiation damage cascades within diamond (285). 
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The original reactive force field potential (158) was created with bond order considered 

specifically for modeling interactions within a chemical system. Modifications of the ReaxFF C-

2013 potential (286, 287) were made from a previous potential developed for hydrocarbons. Fitting 

parameters for the potential were obtained from equations of state for graphite and diamond 

calculated via DFT. This potential is still best suited for chemical reaction descriptions, as was the 

original intention of the reactive force field potential.  

The Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was 

another potential (288) originally created for hydrocarbons, this was an improvement over the 

previous REBO potential by including torsion, dispersion, and non-bonded repulsion interactions. 

Repulsive and attractive terms are combined with a proportional bonding term in the Tersoff style, 

with repulsive terms in the Brenner style.  

For the Long-range Carbon Bond Order Potential (LCBOP) potential (289), short-range 

interactions are described by bond order, while also including long-range interactions for non-

nearest neighbors. Short range interactions are based on the Brenner potential. Ghiringelli used 

this potential to create a very accurate graphite-diamond melt curve and triple point prediction 

(290). 

4.4.3 Monte Carlo Simulations 

Classical molecular dynamics modeling is limited in the timescales it can reproduce, but 

Monte Carlo simulations instead model events directly and then calculate timescales. Kinetic 

Monte Carlo has been used to simulate the growth of diamond being produced via chemical vapor 

deposition (291, 292). Atomistic level definition is given as each step of the vapor deposition 

growth is simulated with one reaction occurring at each one, with statistically variable time 

increments between. Different reaction species (293), gaseous environments, and other 

environmental factors can all affect the growth rates of diamond. As CVD is one of the most 
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common methods of producing diamond, these studies are important for the optimization of the 

CVD process. With modern computing power, more complicated geometries and factors can be 

included in these simulations (294), as well as multiscale combinations of molecular dynamics and 

Monte Carlo for ultrafine particle growth (295). 

4.5 Preliminary Simulations of Diamond Shock to High Pressures 

Preliminary simulations testing out the performance of the Tersoff potential for [001] 

oriented diamond were performed to observe the effects of extreme pressures on the formation of 

defects. Although the Tersoff potential is only accurate to around 200 GPa for reproducing the 

elastic constants of diamond, we simulated pressures far above this just to see how this model of 

diamond would respond to up to Terapascal pressures. Figure 4-8 shows the compression of 

diamond using a piston velocity of 6 km/s, producing average pressures of over 250 GPa. While 

the algorithm for identifying the diamond phase has at this point failed to identify the compressed 

portion of the image, it is still only being purely elastically compressed along the shock direction. 

Figure 4-9, shows a similar result for a piston velocity of 8 km/s There are still no dislocations 

being formed, but there is much more disorder within the crystalline structure when compared to 

the results from the 6 km/s piston velocity. At 8 km/s, the average pressure reached within the 

simulation was over 400 GPa.  

 



 

90 

 

 

Figure 4-8 6 km/s piston velocity driving shock compression of cubic [001] diamond. Only elastic 

compression is observed, even as the structure identification algorithm fails to identify the 

compressed portion. 
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Figure 4-9 8 km/s piston velocity driving shock compression of cubic [001] diamond. Still, only 

elastic compression is observed. However, much more disorder within the crystalline phase can be 

seen. 

 

 At a piston velocity of 10 km/s, we see the onset of melting or amorphization and the 

recrystallization of heavily twinned regions. Figure 4-10 shows a comparison between the structure 

identification and the potential energies of the simulation, indicating that the recrystallized regions 

are at a lower potential energy state, releasing some of the energy that is present within the 

amorphous melt. Figure 4-11 shows a closer look at some of those crystals, with the seemingly 

twinned recrystallized grains. 

 From these simulations it was gathered that for the [001] orientation of diamond was 

extremely strong and not prone to the formation of defects, even up to the point where it could 

undergo melting and recrystallization. 
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Figure 4-10 Comparison of the (top) diamond cubic recrystallized grains within an amorphous 

melt and the (bottom) potential energies of atoms within the simulation. The recrystallized grains 

are of a much lower potential energy, indicating a more stable form. 

 

 

Figure 4-11 A closeup of the transition region between the elastically compressed portion at the 

right of the image and the amorphous melt and recrystallization that follows in a second plastic 

wave. The recrystallized grains look to exhibit twinning-like features, due to the patterns of the 

atomic order present within the simulation.  
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4.6 Diamond Experimental Laser Shock 

To test the strength of diamond along, laser compression experiments were also performed 

at the Laboratory for Laser Energetics (LLE) at the University of Rochester. We were allowed to 

place our targets in ride-along shots with Dr. Camelia Stan from Lawrence Livermore National 

Labs. Three samples were prepared, with the same target dimensions. Figure 4-12 shows the design 

of our targets, for the purposes of post-shock recovery and characterization. Each sample was 

shocked at a different laser energy to produce the desired pressures. Three laser energies of 200, 

300, and 400 J were used. From the Lindl equation and our laser specifications we reached peak 

pressures of around 100 GPa. Although the Hugoniot elastic limit (HEL) for diamond is predicted 

to be lower than this value (296) , from our previous simulation results we could reasonably expect 

that no dislocations would form for the [001] orientation. Our three shots would probe the pressure 

ranges above and below the HEL to see if it could be an accurate predictor for the plasticity 

threshold in diamond along this orientation. 

 

Figure 4-12 Target design for the laser shock of [001] oriented diamond. The diamond was 

wrapped in a shell of gold and molybdenum, both impedance matched materials to aid in the 

recovery of the diamond sample for post-shock characterization.  
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Figure 4-13 Diamond shocked to 60 GPa, below the Hugoniot elastic limit. As expected, the 

crystalline structure is perfectly preserved. 

 

 The samples were recovered post shock and characterized using the resources at the Nano3, 

MRC facilities at UC San Diego and the Materials Research Institute at UC Irvine. Raman 

spectroscopy established that no chemical reactions had occurred at the surface of our first two 

shocked samples. SEM and FIB-SEM tools were used for initial micro-scale characterization of 

the surface and for preparation of the TEM samples. TEM was then used to gather atomic-scale 

resolution images of the crystalline lattice within the shocked samples to identify whether any 
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plasticity had occurred. As seen in Figure 4-13, for the samples below the HEL the perfect 

crystallinity of the lattice remained with no dislocations in sight.  

 The 300J shot post recovery had too jagged of a surface for successful creation of a TEM 

sample through use of the FIB-SEM process.  

 

Figure 4-14 The second shot (300J) had too jagged of a surface to allow for TEM characterization 

  

 For the highest energy tested, 400J, we were able to recover the sample and perform some 

SEM and TEM analysis. However, there appears to be some form of amorphous film on the surface 

of the diamond sample. This could be a contamination issue, or it could have been a reaction on 

the surface due to possible outgassing of the sample upon laser ablation. There is a crater in the 

middle, smaller than the one seen in the second sample in Figure 4-14. The SEM image can be 

seen in Figure 4-15. 
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Figure 4-15 400J Diamond 3 sample shot. Crater in the middle, with an amorphous film on the top 

surface.  

FIB-SEM was successful in preparing several samples of the surface of this diamond sample, 

showing that the material present was indeed amorphous in nature, with diffuse rings shown in the 

diffraction pattern of the material as seen in Figure 4-16. However, it is still inconclusive whether 

this is a result of the laser shock pressure driving an amorphization of the sample, or whether this 

could have been a contamination or reaction from a different source. Further testing is ongoing, 

involving attempts to create a cross section of the diamond sample to observe how deep the layer 

goes and whether dislocations could be present underneath the surface of the topmost layer. 
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Figure 4-16 Sample of Amorphous surface and diffuse ring pattern from the diffraction. 

 

4.7 Diamond Capsules at the NIF 

 One of the reasons for the increased interest in diamond in the past decade is its use as the 

capsule material in the National Ignition Facility fusion shots. The materials and design for the 

capsule have gone through many iterative improvements before reaching the net gain of energy 

shot in December 2022. The first capsules were made of plastic with a tent-like wrap to hold the 
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capsule within its hohlraum shell (20, 297). The switch to diamond ablators reduced sensitivity to 

the tent’s perturbations due to its higher density as well as improving symmetry by allowing shorter 

laser pulses to be used. The December 5th shot managed to couple 2.05 MJ of energy into the target 

capsule and produced energy of 3.15 MJ out. This shot has since been exceeded on July 29, 2023, 

where the use of a higher quality diamond capsule achieved 3.88 MJ of fusion energy (297). 

 The current capsule design is called the Hybrid-E design. A depleted uranium hohlraum, 

or cylindrical shell, 11.24mm in length and 6.4mm in diameter, is heated by lasers to >300 eV 

creating a radiation oven. The diamond capsule, 1050𝜇𝑚 inner radius and 85𝜇𝑚 thick, contains 

the DT fuel, a 65𝜇𝑚 thick ice layer with a gaseous core. The x-rays from the hohlraum heat and 

ablate the diamond which expands outwards, while causing the remaining capsule and fuel to 

accelerate inwards at velocities reaching 400 km/s.  

 The uniformity of the diamond capsule used in the July 29 shot was the reason it performed 

so well. The presence of tungsten-carbide chunks along the doped layer of the diamond shell 

caused some degradation of the initial December 5th shot. The July 29th shot was actually predicted 

to have worse symmetry, but still performed better due to the quality of the capsule. 

 It is important to note that the capsules used at the NIF are made of polycrystalline 

diamond, while the research in this dissertation is looking only at single crystalline diamond. The 

grain size of the capsules at the NIF is not expressly measured, but reports place it in the 

microcrystalline to nanocrystalline regime. Polycrystalline diamond has grain boundaries which 

may have a large effect on the evolution of the dislocations present, possible providing an alternate 

pathway for the shock wave energy to dissipate. Grain boundaries can provide obstacles to the 

growth of dislocations but may also be the source for dislocations to grow from. The randomized 

orientation of polycrystalline samples also means that in general, no one orientation is dominant. 
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This also means that the weakest orientations are likely to be present and may be the limiting grains 

where defects or dislocations first begin to emerge. As such, it is still valuable to identify the 

effects of orientation and possible defects in single crystalline samples. Further simulations beyond 

those presented in Chapters 5 and 6 could look at the effects of grain boundaries on dislocation 

evolution from a void. Figure 4-17 shows a possible setup for such a simulation, with 3 different 

grains present oriented in the [001], [011], and [111] directions, with grain boundaries between 

each. 

 

Figure 4-17 A polycrystalline diamond sample. Alternating grains of [001] and [111] oriented 

diamond are present in the center, bounded by [011] grains at the tops and bottoms. A void placed 

in the center of the [111] grain would be affected by the presence of the grain boundaries 

surrounding it.  
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Chapter 5 Diamond Dislocations and Effects of Voids on Shocked Diamond 

 

Diamond is, by virtue of its high bonding forces and Peierls-Nabarro barrier stresses, 

among the hardest materials on earth. This extreme hardness is a direct consequence of the 

difficulty to generate and move dislocations. Thus, dislocations are rarely formed under 

conventional deformation and extreme regimes of loading are required. Here we demonstrate, 

using molecular dynamics and analytical calculations, that the generation of defects is highly 

dependent on the loading orientation. Shock loading single-crystal diamond along [001] and [011] 

to a shock stress of 137 GPa did not reveal dislocations. On the other hand, loading along [111] 

generated profuse dislocations at this shock stress, and at even lower stresses down to 72.6 GPa 

when a nanoscale void was introduced. Two slip systems were identified: <011>{100} and 

<112>{111}. These results demonstrate that the threshold for plastic deformation in diamond is 

orientation dependent and significantly lower than reported in previous diamond studies as a 

fraction of the shear modulus: 0.14 G. While no dislocations were formed in [001] loading, in the 

case with a void its collapse generated localized amorphization, demonstrating that the full elastic-

plastic transition requires not only shock stress but superposed shear. These results on the 

anisotropy of plasticity and effect of voids have relevance for the improvement of symmetry in the 

collapse of diamond capsules in inertial fusion experiments. 

5.1 Introduction 

Diamond carbon is one of nature’s strongest naturally occurring materials. In spite of the 

low atomic packing factor for diamond cubic systems, the immense strength of the carbon-carbon 

bonds and the related limitations on dislocations gives diamond extreme hardness and stiffness 

(298, 299). It is a material of great interest in many applications, including the evolving 

understanding of carbon-rich exoplanets (300–302), as well as in the material for the fuel-holding 
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capsules used in recent National Ignition Facility (NIF) inertial confinement fusion experiments 

(20, 303, 304). It is well known, by virtue of its covalent bonding, that the bonds of diamond are 

highly directional (197). This results in difficulty in the generation and mobility of dislocations 

within its crystalline lattice. Moreover, diamond also exhibits strong anisotropic behavior 

depending on the direction of applied stress (262, 296, 305). In many shock compression 

experiments, diamond has shown little to no plastic behavior until reaching extreme conditions for 

both pressure and temperature (254, 305, 306).  

Understanding the response of diamond under shock is particularly important for its role 

in the current inertial confinement fusion effort. The diamond capsules used in these experiments 

hold the tritium and deuterium fuel, and act as ablative material to produce the extremely high 

pressures and temperatures needed to initiate fusion. Porosity or other imperfections in the 

diamond can generate instabilities within the inertial confinement process, leading to imperfect 

compression and a failure to reach the critical conditions required for fusion (307). By better 

understanding diamond’s behavior under shock, the instabilities and their disastrous effects could 

be eliminated.  

A study of compression of diamond nanopillars with in-situ TEM found a lack of activity 

when compressed in the [100] direction, but profuse dislocation generation in the [110] and [111] 

directions (262). An image showing the dislocations and their character can be seen in Figure 5-1. 

The compression of diamond nanospheres also gives evidence of the effects of nanostructure 

morphology on defect generation (308). It is well known that voids can act as stress concentrators, 

lowering the critical stress necessary for the development of dislocations and defects in materials 

(45, 309, 310), and that small-grained industrial diamond is commonly under-dense. 
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Figure 5-1 Anisotropy of the dislocation response to compression of a diamond nanopillar. Taken 

from (262) 

 

The molecular dynamics study supplemented by analytical calculations reported here had 

as primary objective the characterization of defects introduced by high strain rate compressive 

shock stresses. When shock wave compression produces extremely high strain in uniaxial strain, 

more conventional modes of deformation or failure can be suppressed. This is the regime 

experienced by capsules in the National Ignition Facility experiments and by diamond in other 

ablation experiments. The uniaxial strain state also produces alternate stress states compared to 

classic uniaxial stress compression, which can alter the types of dislocations generated within the 

material. In order to generate defects in this study, the applied loading direction was varied; voids 

were also introduced in order to increase the local shear stresses in an effort to propitiate conditions 
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for defect generation in diamond-like carbon. Indeed, the voids often occur in experiments and can 

affect the symmetry of capsule collapse. 

5.2 Simulation Results 

We performed molecular dynamics (MD) simulations on three orientations of diamond 

under shock compression. Here and below “diamond” refers to carbon in the diamond-cubic 

structure. It has been shown (262, 296, 311) that diamond has a strong anisotropic behavior, and 

this stimulated our exploration of the three loading directions [001], [110], and [111]. Shock 

compression was applied because this is the regime experienced during impact events. Shock 

compression generates a state of uniaxial strain, in contrast with conventional compression 

loading, which generates a state of uniaxial stress. The piston velocities, shock pressures, and 

stresses imposed are provided in Table 1. 

Table 5-1 - Loading Orientations, Piston velocities, global pressure, and shock/transverse/shear 

stresses (GPa) for the simulations presented in this paper. 

Loading 

Orientation 

Piston Velocity Global 

Pressure 
𝜎33 𝜎11 𝜎22 𝜏𝑚𝑎𝑥 𝜏𝑙 

 

[001] 3.5 km/s 137 GPa 267 72.3 72.3 97.6 196 

[011] 3.5 km/s 123 GPa 272 83.1 14.3 129 260 

[111] 2.0 km/s 54.2 GPa 145 9.49 8.05 68.6 133 

[111] 2.5 km/s 72.6 GPa 188 15.8 13.5 87.5 171 

[111] 3.0 km/s 91.4 GPa 226 25.6 23.0 101 198 

[111] 3.5 km/s 119 GPa 266 50.3 40.2 113 223 

 

5.2.1 Shear Stresses Generated in Shock Compression 

The maximum shear stress for uniaxial strain compression along the x3 direction is (45, 

309),  

𝜏𝑚𝑎𝑥 =
|𝜎3 − 𝜎1|

2
 (1) 
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where 𝜎3 and 𝜎1 are the largest and smallest principal stresses, respectively. For the case of stress 

localization at the surface of a void, using the equation for a spherical inclusion (312) the maximum 

local shear stress (𝜏𝑙) is 

𝜏𝑙 = [1 +
13 − 5𝜈

2(7 − 5𝜈)
] 𝜏𝑚𝑎𝑥 (2) 

 

where the Poisson ratio 𝜈 for uniaxial strain, defined as the ratio of lateral (𝜀11 = 𝜀22) and 

longitudinal strain (𝜀33) can be written as  

𝜈 =
𝜎11

𝜎33 + 𝜎11
 . (3) 

because under uniaxial strain:  

 

𝜀11 = 𝜀22 = 0 =
1

𝐸
[𝜎11 − 𝜈(𝜎33 + 𝜎22)] =

1

𝐸
[𝜎22 − 𝜈(𝜎33 + 𝜎11)] (4) 

 

Previous work has shown that the addition of voids can aid in defect generation, including 

dislocations. This effect is due to the fact the presence of a void increases the shear stresses in 

selected places in the surface. The normal stress at the void surface is zero (traction free), 

generating maximal shear stresses at 45° to it. This was quantified by Traiviratana et al. (313), 

Bringa et al. (314), and Flanagan et al. (309, 310), among others (42, 315–319). Thus, an 8-nm 

diameter void was introduced in our simulations in order to increase the local stresses within our 

simulation and stimulate the generation of defects in diamond. 

5.2.2 Simulations of Shock Compression in [001] Oriented Diamond  

For the case of a piston driving the [001] sample at 3.5 km/s, the total pressure (P) within 

the system reached 137 GPa, with a shock stress (𝜎33) of 267.4 GPa in the direction of loading (x3) 

and 72.26 GPa in the transverse directions (𝜎11, 𝜎22). Applying Equation 1, a maximum bulk 

(global) shear stress (𝜏𝑚𝑎𝑥) of 97.5 GPa is obtained. The Poisson’s ratio 𝜈 = 0.2132 is obtained 

from Equations 2 and 3; thus, 𝜏𝑙 = 195.5 GPa, or almost exactly a factor of two higher than the 

maximum bulk shear stress. 
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In the [001] direction, little to no dislocation activity is observed (Figure 1a). The diamond 

structure identification algorithm in OVITO31 shows that some areas of elastic compression change 

local coordination by amounts enough to register as only first or second nearest neighbor 

crystalline diamond, but no defects or dislocations are formed or propagated. For the {001} slip 

systems observed by Nie et al. (262) for diamond, the resolved shear stress for the [001] loading 

direction is 0. It will be shown in the analysis section that the resolved shear stress for {100} slip 

is zero. Highly unusual for a cubic crystal, this characteristic helps explain the lack of defect 

generation. The introduction of a void did not generate dislocations in this orientation. Only some 

amorphization of material was observed, an irreversible transformation due to the extreme 

deformation involved in the collapsing void (Figure 5-2b). This lack of defect generation for shock 

in the [001] direction of diamond is supported by TEM results taken for diamond shocked up to 

40 GPa in pulsed laser shock compression experiments, as seen in section 4.6. A sample of a shock 

script run on LAMMPS can be found in the Appendix. 
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Figure 5-2 137 GPa simulation (3.5 km/s piston velocity) for [001] shock loading direction. Blue 

color indicates perfectly matched diamond structure, green indicates first or second nearest 

neighbor diamond cubic, and white indicates a non-diamond structure.a) In the absence of a void, 

no dislocations or non-diamond regions can be seen under these shock loading conditions. b) With 

a void there is a region of crystallinity that OVITO does not recognize as diamond cubic, but it is 

simply compressed beyond the ability for the algorithm to categorize it as such. No lasting 

dislocations or defects form from the void, though some material jetted into the void. 
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5.2.3 Simulations of Shock Compression in [111] Oriented Diamond  

 Simulations performed on diamond with the shock propagation direction oriented along its 

[111] axis yielded defects at pressures where little to no activity was observed for the [001] shock 

propagation direction. In the absence of a void, planar defects emerged from the piston impact 

surface creating dislocations in the {100} planes with ½ <110> Burgers vectors. As these 

dislocations advance, they leave planar stacking faults in their wake, with a constant width 

bounded by a screw-character dislocation with the same Burgers vector (Figure 5-3).  

 

Figure 5-3 Simulation of [111] compressed diamond at 91.4 GPa (2.5 km/s piston velocity) 5 

picoseconds into the simulation. Two distinct defects can be seen emanating from the piston 

surface. The orientations of these faults are in the {100} family of planes in the <110> directions. 
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The maximum pressure within the system for the [111] oriented shock propagation 

direction at a pressure (piston velocity of 3.5 km/s) is 118 GPa, with corresponding values of 𝜎11 =

50.3 GPa, 𝜎22 = 40.2 GPa, and 𝜎33 = 266.0 GPa. Applying Equations 1 through 3, a maximum 

shear stress of 𝜏𝑠𝑔 = 129.1 GPa and 𝜏𝑠𝑙 = 302.0 GPa is obtained. Thus, the presence of the void 

significantly increases the shear stresses. 

In the presence of a void, similar ½<011>{100} defects are generated at three points 

symmetrically around the void, corresponding to the {100} planes. The initial formation of these 

dislocations from the void can be seen in Figure 5-4. Two views are imaged: a) facing the [111] 

direction and b) from the side [011̅] direction. These are perfect dislocations on {100} planes with 

½<011> directions. Five of the six systems activate dislocations. The dislocations emanating from 

the void surface relax the elastic shear stresses in the region, and thus some systems are inhibited 

from growing. There is a competition among the dislocations and some advance faster than the 

others. This is seen all the way to their full development. Two of these move towards the front and 

three away from it. As the shock progresses, these initial defects are joined by half loops with 

½<112>{111} Burgers vectors (Figure 5-5). These ½<112>{111} half loops are consistent with 

the sum of the two ½<011> Burgers vectors that they connect. Thus, {111} is also a slip plane, 

with a Burgers vector ½<112>{111}. ½<112>{111} seems to be a new superdislocation that has 

formed as a result of the interaction between the void and the ½<011>{100} dislocations 

emanating from it. A visualization of the shear stress magnitudes resolved on these different slip 

systems is provided in Figure 5-6. The per atom virial stresses were rotated onto the relevant slip 

planes, and when comparing the averages of the maximum [100] atomic shear stresses at the void 

surface with the 𝜏𝑚𝑎𝑥 , the stresses around the void were found to be between between 1.6 to 3.4 

times higher, as seen in Table 5-2. This stress concentrations matches our expected stress 
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concentration for an ideal spherical void, and the higher stress concentrations could come from the 

void’s collapse which changes its shape from spherical to a prolate ellipsoid, thus increasing the 

stress concentration. 

 

 

Table 5-2 - Stress concentration factors for slip systems comparing the stress at the void surface 

vs the bulk 

Slip 

System 

[011](100) [101](010) [110](001) [112](111̅) [121](11̅1) [211](1̅11) 

Stress 

Concentratio

n 

1.64 3.37 2.89 3.22 2.03 3.16 

 

 

 

 

 

  

Figure 5-4 Initiation of Defects from the void. Image captured using DXA analysis at 1.5ps in 

the [111] loading orientation, just as the shock wave has finished passing over the void and the 

defects have initiated. Several defects can be seen to initiate opposite to the direction of shock. 

Blue dislocation lines indicate dislocations that lie in the {100} planes. Red dislocation lines are 

in various other slip systems. a) Viewed facing the [111] direction, shock direction out of the 

page. b) Viewed from the side [011̅] direction, with shock direction to the right. 
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Figure 5-5 Evolution of the defects emanating from the void for [111] loading orientation. The 

three-fold symmetric straight bands are the same as the bands seem in the case without a void 

present, <110> direction in the {100} plane. In addition, loops with Burgers vector 1/2<112> 

appear on the {111} planes between these 3 straight bands. While the straight <110> defects 

leave behind a stacking fault, the <112> dislocations do not. a) 1 ps b) 2.5 ps c) 4 ps. 

 

Interestingly, Pirouz et al. (320), in a systematic transmission electron microscopy study 

of diamond deformed at 1,800°C, observed the formation of dislocations on {111} planes. The 

½<110>{111} dislocations decomposed into partials with a separation of ~4 nm, from which the 

stacking-fault energy could be calculated. The three-fold symmetry of these stacking faults and 

half loops is reminiscent of the results obtained by Nie et. al. (262) in their nanopillar experiments, 

with the rectangular stacking faults consistent in plane and direction with the {100} half-loops that 

they found. However, the presence of the ½<112>{111} dislocation is a new feature in this shock 

compression MD study. The DXA analysis on the defects within the simulation was performed in 

OVITO (105) was used to determine the location and Burgers vector of these dislocations (Figure 

5-7). 
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Exploring further, [111] simulations were performed at several different piston velocities 

to obtain information on the threshold of dislocation generation with and without voids. The 2.0 

km/s piston velocity generates a maximum total pressure of 54.2 GPa, with maximum bulk shear 

and local shear stresses of 𝜏𝑠𝑔 = 68.6 GPa and 𝜏𝑠𝑙 = 133.4 GPa respectively. At 2.5 km/s the 

maximum total pressure is 72.6 GPa, with maximum bulk and local shear stresses of 𝜏𝑚𝑎𝑥 =

87.5 GPa and 𝜏𝑙 = 170.6 GPa respectively. At 3.0 km/s the maximum total pressure is 92.4 GPa, 

with maximum bulk and local shear stresses of 𝜏𝑚𝑎𝑥 = 101.3 GPa and 𝜏𝑙 = 198.4 GPa 

respectively. 

 

Figure 5-6 Resolved Shear Stresses along different slip systems. A sphere was formed around the 

void with a 6nm radius, and per atom stress values were taken after the shock wave had passed 

through the void and dislocations just began to form. The different resolved shear stresses show 

the directional differences in the stress concentrations for the different slip systems, which may 

result in the formation of dislocations. The color scale on the right indicates the magnitude of the 

stress being experienced by the atoms, with red and blue indicating the two extremes. a) 

[011](100) b) [101](010) c) [110](001) d) [112](111̅) e) [121](11̅1) f) [211](1̅11) 
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Figure 5-7 Dislocations around a void. a) DXA dislocation and defect analysis of the [111] 

shocked diamond system at 3.25 ps. b) A graphical representation of the planes and orientations 

of the system. The rectangular bands propagate within the {100} planes, while the half-loops 

connecting them are present along the {111} planes. 
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At 52.4 GPa (2.0 km/s piston velocity), and in the absence of a void, no defects are 

generated at the planar impact surface (Figure 5-8a). When a void is introduced, the onset of 

½<110>{100} dislocations can be seen emerging from the compressed void (Figure 5-8b). From 

this emission it is concluded that the presence of a void or other defect generation site can 

significantly lower the threshold for dislocation activity and the beginning of plasticity within 

diamond, depending on its orientation. This effect has been previously analyzed and quantified by 

Traiviratana et al.(313), Bringa et al. (314), and Flanagan et al. (309, 310) for other materials and 

is a direct consequence of the increased maximum shear stress generated by the presence of a void. 

The threshold stress is also dependent on void size, as has been demonstrated (45). This 

dependence is due to the image forces produced by the free surface of the void, proportional to the 

curvature (inverse of radius). As the pressure is increased to 72.6 GPa (piston velocity of 2.5 km/s), 

the defect generation from both the planar impact surface and the compressed void increase 

rapidly. At 91.4 GPa (3.0 km/s), defect generation was even more pronounced.  
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Figure 5-8 54 GPa (2 km/s piston velocity) simulation for [111] diamond shock at 10 ps. a) A view 

of all atoms within the system with coordination number other than 4, the usual value for diamond. 

No atoms beyond the piston surface are detected, i.e., all are diamond. b) The beginnings of 

dislocations can be seen to form when a void is present and shocked, but never begin to propagate 

within the system. 

 

Measurements of the elastic wave and defect propagation velocities indicate that the 

defects within the simulations approach the shear wave velocity limit of diamond (Figure 5-9), 

without exceeding it. Shear wave velocities were calculated directly from the Tersoff potential as 

√
𝐺

𝜌
 where G is the relevant shear modulus for the shear wave direction and polarization, and  is 

the density in the compressed state. For the three orientations of interest, G is C44 for <001> (both 

polarizations), C’ and C44 for <110> and C111 for <111> (both polarizations). Here C’=(1/2)(C11-

C12) and C111=(2C’+C44)/3. The wave velocities compare favorably with those taken from 

literature (321). As the pressure is increased, the dislocation velocity also increases, without 

reaching the shear-wave velocity. This is in line with the expected relativistic behavior of fast 
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dislocations, whose energy increases with velocity. Partial dislocations, on the other hand, are 

known to sporadically exceed the shear wave velocity, but only for picoseconds (322, 323), and 

transonic dislocations have been observed in special cases in MD simulation but not yet in 

experiment (107). 

 

Figure 5-9 Defect propagation velocity at varying simulation pressures and piston velocities (72.6 

GPa = 2.5 km/s, 91.4 GPa = 3 km/s, and 123 GPa = 3.5 km/s). An additional measurement was 

made at 120 GPa (3.5 km/s) corresponding to the green line, measuring the propagation velocity 

of a dislocation. Shear wave velocity calculated for carbon at 120 GPa using Tersoff potential. 

  



 

117 

 

5.2.4 Simulations of Shock Compression in [011] Oriented Diamond  

 When simulating [011] oriented diamond without a void, no plasticity was observed, as in 

the [001] oriented diamond. No defects formed from the piston surface or within the bulk 

simulation at a pressure of 123 GPa (piston velocity 3.5km/s), with values of 𝜎11 = 83.1 GPa, 

𝜎22 = 14.3 GPa, and 𝜎33 = 272 GPa. However, the presence of a void triggers the formation of a 

dislocation loop in the ½ <112>{111} system but lacks the ½ <110>{001} dislocations that might 

have been expected to form (Figure 10). There is still significantly more dislocation activity 

present than in the [001] case, and the presence of large <112> oriented defects may be explained 

by the large resolved shear stress for the [211](1̅11) slip system. While there was a high 

population of non-diamond atoms within the [011] oriented system, the DXA algorithm was not 

as able to conclusively identify the presence of large and sustained dislocation loops as observed 

in the [111] oriented system.  

 

Figure 5-10 Non-diamond atoms and DXA analysis for [011] shocked diamond at 2.5 ps. The defect 

bands emanating from the void are oriented in the ½ <112> directions, and are semicircular in shape as 

they expand away from the void surface. 
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Analysis: Calculation of Resolved Shear Stresses on the Slip Systems 

 

The generation and motion of dislocations is driven by the shear stresses applied to the slip 

systems. The direction of maximum shear forms a cone 45° away from the direction of shock 

propagation, and the slip systems most closely aligned with this maximum shear experience the 

highest resolved shear stress (94). These calculations have traditionally been done using the 

Schmid factor and, in the simplified case, assuming isotropy in the elastic properties of materials. 

We conduct here a more rigorous analysis which accounts for the uniaxial strain state produced by 

shock compression and the anisotropy of the elastic stiffness matrix of diamond. When 

transforming the stiffness tensor to the [111] orientation and applying a condition of [111] uniaxial 

strain, values are obtained for all 6 components of the stress within the system. A similar procedure 

is followed for the [001] orientation. The presence of these shear stresses drives the 3-

dimensionality of the defects and dislocations observed in our diamond simulations. This is 

presented below. 

Dislocation generation and motion is driven by shear stresses. The general form of the 

resolved shear stress on a slip plane is given as  

 
𝜎1′2′ = 𝜎11𝑙1′1𝑙2′1 + 𝜎22𝑙1′2𝑙2′2 + 𝜎33𝑙1′3𝑙2′3

+𝜎12(𝑙1′1𝑙2′2 + 𝑙1′2𝑙2′1) + 𝜎23(𝑙1′2𝑙2′3 + 𝑙1′3𝑙2′2) + 𝜎13(𝑙1′3𝑙2′1 + 𝑙1′1𝑙2′3). (5)
 

 

The cosine matrix 𝑙𝑖𝑗 is used, where the values are defined as the direction cosines of the loading 

coordinate system and the coordinate system defined by the slip direction, slip plane normal, and 

normal to slip direction in the slip plane. The angles between directions are calculated by the scalar 

product of vectors (324). The rotation matrix is  

 

𝑙𝑖𝑗 = cos(𝑒𝑖⃗⃗ ⃗
′
, 𝑒𝑗⃗⃗ ⃗) = [

𝑙1′1 𝑙1′2 𝑙1′3

𝑙2′1 𝑙2′2 𝑙2′3

𝑙3′1 𝑙3′2 𝑙3′3

] (6) 
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where 𝑒𝑖⃗⃗ ⃗
′
 is the new rotated coordinate system and 𝑒𝑗⃗⃗ ⃗ is the old coordinate system.  

 

For a state of uniaxial stress, the resolved shear stress (𝜏𝑟) on the slip plane and slip 

direction is calculated through the well-known Schmid factor (𝑚): 

 

𝜏𝑟 = 𝑚𝜎33 (7) 

𝑚 = cos(𝜆) cos(𝜙) (8) 

 

where 𝜆 and 𝜙 are the angles between the loading direction and the vector along the slip direction 

and the vector normal to the slip plane respectively. For the Schmid factor, cos(𝜆)and cos(𝜙) 

correspond to 𝑙1′3 and 𝑙2′3 respectively. Because in this case there are no lateral stresses present, 

all stress terms other than 𝜎33 are zero. In terms of the generalized indicial notation, the shear stress 

is expressed as: 

 

𝜎1′2′ = 𝜎33𝑙1′3𝑙2′3 . (9) 

 

While the Schmid factor describes a state of uniaxial stress, for a uniaxial strain state 

generated by shock compression, lateral expansion is constrained. Thus, in addition to the shock 

stress generated by the piston, lateral compressive stresses are generated which have to be 

computed in the calculation of the resolved shear stresses. Figure 5-11 shows a unit cube subjected 

to tridimensional compression and the relationship of the slip system (plane and direction) with 

the cube coordinate axes, which have the x3 direction aligned with the shock propagation direction. 

This is done here, following the procedure developed by Lu (93). The first step is to obtain the 

stiffness matrix for the three orientations by applying a rotation of the stiffness tensor. The elastic 

stiffness (𝑪𝒊𝒋𝒌𝒍
′ ) transformation equation is 
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𝑪𝒊𝒋𝒌𝒍

′ = 𝑙𝑖𝑚𝑙𝑗𝑛𝑙𝑘𝑜𝑙𝑙𝑝𝑪𝒎𝒏𝒐𝒑 . (10) 

 

A sum over indices repeated on the right-hand side is implied. Each value in the original stiffness 

tensor is transformed through four cosine matrix values, then summed together to form one 

element in the rotated stiffness tensor. The values for the tensors in the [001], [011], and [111] 

directions are provided in Table 5-3. 

 

To calculate the stress in the system from the transformed stiffness tensor, we require the 

true strain within the deformed material, as  

𝜎 = 𝐶𝜀 . (11) 

 

The true strain within the shocked material can be obtained from the Rankine-Hugoniot 

equations for conservation of mass, momentum, and energy as 

 

𝜀33 = ln (
𝑉

𝑉0
) = ln (1 −

𝑈𝑝

𝑈𝑠
) = ln (1 −

𝑈𝑝

𝐶0 + 𝑆𝑈𝑝
) . (12) 

Values for 𝐶0 and S for diamond are taken from Hicks et al. (324), as 11.9 km/s and 1.01, 

respectively.  
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Table 5-3 Transformed Stress Tensors at ~140 GPa with change of basis loading direction. Original 

values from Orlikowski et al.(325), Güler et al (321), González-Cataldo et al (326) 

𝐶[001] =

[
 
 
 
 
 
2000 500 500 0 0 0
500 2000 500 0 0 0
500 500 2000 0 0 0
0 0 0 1200 0 0
0 0 0 0 1200 0
0 0 0 0 0 1200]

 
 
 
 
 

          𝜀 =

[
 
 
 
 
 
0
0
𝜀3

0
0
0 ]

 
 
 
 
 

          𝜎3 = 𝜀3

[
 
 
 
 
 
500
500
2000

0
0
0 ]

 
 
 
 
 

  

𝐶[011] =

[
 
 
 
 
 
2000 500 500 0 0 0
500 1550 950 −300 0 0
500 950 1550 300 0 0
0 −300 300 1050 0 0
0 0 0 0 1200 0
0 0 0 0 0 1200]

 
 
 
 
 

        𝜀 =

[
 
 
 
 
 
0
0
𝜀3

0
0
0 ]

 
 
 
 
 

          𝜎3 = 𝜀3

[
 
 
 
 
 
500
950
1550
300
0
0 ]

 
 
 
 
 

  

𝐶[111] =

[
 
 
 
 
 
1550 650 800 81.6 −70.7 57.7
650 1550 800 −244 −212 −173
800 800 1400 163 282 115
81.6 −244 163 700 −115 −212

−70.7 −212 282 −115 1100 −81.6
57.7 −173 115 −212 −81.6 1150 ]

 
 
 
 
 

   𝜀 =

[
 
 
 
 
 
0
0
𝜀3

0
0
0 ]

 
 
 
 
 

         𝜎3 = 𝜀3

[
 
 
 
 
 
800
800
1400
163
282
115 ]
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Figure 5-11 Orientation Relationships for Shock Loading and Slip Planes 

 

 

The resulting shear stress can be normalized to the shock stress to provide the Lu factor: mLu = 

1’2’/33 in uniaxial strain. In Table 3 the Schmid and Lu factors are presented for the two families 

of slip systems: <211>{111} and <110>{001}. The Lu factor requires knowledge of the strain and 

shock stress for normalization; the values for the 3.5 km/s simulations were chosen in each 

orientation.  
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Table 5-4 Schmid and Lu Factors (resolved shear stress with transformed tensor) for relevant slip 

systems. 

Loading Direction  [Slip Direction] (Slip Plane) 𝑚 Schmid Factor 

(Uniaxial 

Stress) 

𝑚𝐿𝑢 Lu Factor 
𝜎

1′2′

𝜎33
 

(Uniaxial Strain, 3.5 

km/s) 

[001] [011](100) 0 0 

[001] [101](010) 0 0 

[001] [110](001) 0 0 

[001] [112](111̅) -0.47 -0.339 

[001] [121](11̅1) 0.23 0.169 

[001] [211](1̅11) 0.23 0.169 

[011] [011](100) 0 0 

[011] [101](010) 0.35 0.327 

[011] [110](001) 0.35 0.327 

[011] [112](111̅) 0 0.035 

[011] [121](11̅1) 0 0.035 

[011] [211](1̅11) 0.47 0.366 

[111] [011](100) 0.47 0.415 

[111] [101](010) 0.47 0.415 

[111] [110](001) 0.47 0.415 

[111] [112](111̅) 0.31 0.277 

[111] [121](11̅1) 0.31 0.277 

[111] [211](1̅11) 0.31 0.277 
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Table 5-4 provides the uniaxial stress (Schmid) and uniaxial strain (Lu) factors for the three 

shock propagation orientations. The Schmid factor is a simple ratio of the stress on the associated 

slip system with respect to the applied loading direction under the condition of uniaxial stress, a 

common loading condition in practice and analysis. The Lu factor is similar, giving the same ratio 

of stress on the slip system to the shock stress but with the uniaxial loading condition appropriate 

to bulk shocked materials. In the case of uniaxial strain, the system experiences transverse stresses 

which do not relax since the transverse strain remains zero due to inertial confinement (experiment) 

or periodic boundary conditions (simulations). These additional stresses lower the shear stress 

experienced by the slip systems. In the limiting case of hydrostatic loading, where the stress in all 

directions is equal, there would be no shear stress within the system, whereas the case of uniaxial 

loading maximizes the shear stress. The condition of uniaxial strain experienced under shock 

loading lies in between those. For example, in [001] propagation the transverse stress is equal to 

(C12/C11)33, so the stress state is a sum of the uniaxial stress [1-(C12/C11)]33 and a hydrostatic 

pressure. By the same rationale as explained above, multiplying by the Schmid factor gives the 

resolved shear stress, since the resolved shear stress is independent of hydrostatic pressure. Thus, 

for [001] uniaxial strain, the Lu factor is mLu = [1-(C12/C11)]m. In general the Lu factors within 

Table 5-4 are lower in magnitude compared to the Schmid factors, meaning that the slip systems 

in shock loading experience less shear stress due to the different loading conditions. 

For the ½<110>{001} dislocations, the relative values for the Schmid factors and Lu 

factors are quite close. Notably, the value for the [001] loading case are all 0 for both the Schmid 

and Lu factors, which explains the lack of dislocation activity in this loading direction. The [011] 

loading case has similar results for both as well, with two slip systems having non-zero resolved 
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shear stress. In the [111] direction, all slip systems are active, and this activity is seen in our 

simulations as well. 

For the ½<112>{111} dislocations, the [001] loading direction in fact has non-zero values 

of resolved shear stress for both the Schmid and Lu factors. However, we still see no dislocation 

activity along these slip systems for the [001] loading case. These dislocations likely have other 

conditions necessary for them to form, such as a reaction between two different ½<110>{100} 

dislocations present in the other systems but not [001]. In the [011] case two of the Schmid factors 

are zero, but we still have large activity along one slip system. The corresponding Lu factors are 

non-zero, but the values in the slip systems corresponding to the zero-stress Schmid factors are 

still apparently too small to generate dislocations. We observe one slip system in the MD 

simulations for the [011] loading case, matching what is seen in our simulation. For [111] loading, 

the Schmid factor predicts equal values for each slip system much like for the ½<110>{100} 

dislocations, and our Lu factors predict the same thing, though with reduced values for the resolved 

shear stress. However, in our calculation of the resolved shear stress at the void’s surface, we found 

that for the two directions where the half-loop is present, the average stress concentration at the 

void’s surface was over 20 times that of the bulk, whereas for the missing direction it was only 3 

times that of the bulk. This difference in the stress concentration along the particular orientation 

could explain why the final half-loop was missing. 

 While molecular dynamics simulations are helpful tools for understanding materials 

behavior and exploring atomistic detail, they are not without limitations. All calculations 

performed in a simulation are dependent upon the accuracy of the interatomic potential being used. 

The Tersoff potential used in this paper is an empirical potential and has shown good performance 

in modelling both mechanical properties as well as dislocations in diamond carbon, but it fails to 
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produce accurate results when under even higher pressure (>150 GPa) or temperature conditions. 

While density functional theory simulations provide the highest accuracy available, they are 

limited to small numbers of atoms due to their computational complexity. Recently, machine 

learning potentials that are trained on DFT data such as the Gaussian Approximation Potential 

(GAP) (327) or the Spectral neighbor Analysis Potential (SNAP) (79) have been developed that 

can simulate higher energy conditions more accurately, but they are still much more costly in terms 

of computational power required. Another issue with computation power is that because of time 

constraints on running simulations, larger simulations and longer simulations are both limited. 

This means that some size effects may be absent as they cannot be captured, and any defects that 

do not appear within the short time frame of the simulation may be missed. For example, classical 

molecular dynamics is a bad choice for modelling diffusion activity, which happens on much 

longer time scales than what is traditionally modelled in these types of simulations. With more 

computing power available it will be possible to extend both the size and time of our simulations 

to capture more of the development of how the material reacts to shock. Real diamond could have 

larger defects or elemental impurities that cannot be captured here, which could further lower 

thresholds for dislocation activity. Amorphization within diamond is another topic of interest, 

whose nucleation and growth may not be able to be captured within the time frame used here. 

However, as computing technology improves and access to faster systems becomes available, 

these issues may be addressed, leading to longer and larger simulations with more accurate 

potentials that could fully capture the response of diamond or any other material.  

5.3 Conclusions 

 It is demonstrated that shock compression at pressures in the range of 72.6 GPa can 

generate dislocations in single-crystal diamond. A significant orientation dependence of defect 

generation was observed through shock compression MD simulations. While few if any defects 
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are generated with shock propagation in the [001] direction, significantly more defect activity is 

observed in the [011] and [111] orientations under the same shock compression conditions. When 

a void was introduced into the system, even more defects were generated, including novel ½ <112> 

superdislocations in the [111] oriented system which formed half loops connecting the three-fold 

symmetric ½<110>{001} dislocations formed at the compressed edge of the void. While the 

½<110>{001} dislocations have been experimentally observed before, the influence of voids or 

similar defect-generation sites may give rise to new dislocation activity such as seen in our 

simulations and may help us better understand the response of diamond in experiments which may 

include such voids or defect sites. These results are consistent with transmission electron 

microscopy observation of quasistatically loaded single crystals with the same orientations by Nie 

et al. (262).  

The results presented here are of relevance in predicting the anisotropy of plastic 

deformation of polycrystalline diamond under compression and are important in the understanding 

of the asymmetry of collapse of a capsule under hydrostatic compression. Another important 

aspect of the findings presented here is a more precise characterization of ablator response. 

Diamond is among the low Z elements, one of the best choices for ablator in pulsed laser energy 

deposition (19). Dislocation generation, amorphization, and energy deposition at voids can lead to 

shear localization. These effects have not been systematically investigated and the simulations 

point to an approach that can elucidate the occurrence and effect of these phenomena. 
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Chapter 6 Effects of Void Size on Diamond Plasticity Thresholds 

 

6.1 Introduction 

Diamond plays a critical role in achieving ignition of inertial confinement fusion (ICF) at 

the National Ignition Facility (10). High-density carbon (HDC), synthetic diamond, is the only 

successful the capsule material to date, containing the deuterium-tritium fuel and serving as the 

ablator (19, 20, 328). Figure 6-1 shows the cryogenic target assembly into which up to 192 laser 

beams are directed into a cylindrical hohlraum (329). The laser beams hit the sides of the hohlraum, 

generating X-rays which ablate the HDC and drive the compression of the capsule. The 2-mm 

diameter capsule is suspended in the center of the hohlraum, containing the fuel as a layer of DT 

ice on the inner surface of the HDC shell. Numerous technical challenges had to be overcome to 

achieve ignition. A persistent challenge has been the occurrence of defects in the HDC capsule. 

The symmetric implosion of the capsule is necessary to reach the critical fusion fuel density and 

temperature required for ignition (303, 304, 330). The presence of voids in the HDC shell can spoil 

the symmetry, induce meteors and other plasma jets (331), and promote mixing of the carbon and 

other high-Z elements into the fuel where they radiate and suppress fusion (332). The voids form 

in the HDC capsules during the manufacturing process which involves chemical vapor deposition, 

surface polishing, laser-drilling of the filling hole, and pressure cycling to remove the Si mandrel 

below the diamond shell (21, 333). Their populations have been quantified through non-destructive 

testing (10, 304, 332). Despite diligent characterization of the defects that form during 

manufacturing, the shock-wave interaction with the voids during implosion has not been 

investigated carefully and the process of inelastic deformation of the diamond as the void is 

compressed is poorly understood. The diamond is still a solid following the first shock (10), and 

the extraordinary mechanical properties of diamond are certain to influence the void collapse and 

resulting perturbations to the material flow. Here we use molecular dynamics simulation to 
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characterize the irreversible deformation around a void in diamond subjected to a strong shock 

wave, revealing the link between the void characteristics and the requisite shock strength for 

collapse. We find the ICF first shock is more than strong enough to induce void collapse.  

 

Figure 6-1 – Schematic illustration of the hohlraum and capsule used in NIF experiments. 

The NIF lasers enter from the top and the bottom, impinging on the gold shell of the hohlraum and 

heating it up, producing X-rays. These X-rays couple to the surface of the diamond capsule, 

causing it to ablate away, compressing the remaining capsule and fuel and creating the conditions 

necessary for fusion to occur. The close-up shows a tomographic image of a void present in a 

diamond capsule, reproduced from https://lasers.llnl.gov/news/high-quality-diamond-capsule-

enhanced-nifs-record-energy-shot 

 

  

https://lasers.llnl.gov/news/high-quality-diamond-capsule-enhanced-nifs-record-energy-shot
https://lasers.llnl.gov/news/high-quality-diamond-capsule-enhanced-nifs-record-energy-shot
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6.2 Void Size Effects in [111] Oriented Diamond Shock Compression 

It was recently established through laser-driven shock loading (306) and flyer-plate impact 

(296) that there is considerable anisotropy in the mechanical response of monocrystalline diamond. 

Whereas inelastic deformation during [111] shock loading occurred at a stress as low as 60 GPa, 

for [100] loading higher stresses were required. The observations were not consistent with 

conventional bulk dislocation plasticity (296). Molecular dynamics simulations provided a direct 

visualization of the deformation processes (334). Whereas in the perfect crystal dislocation 

emission occurred from the (111) piston surface at a shock stress of 226 GPa, the presence of an 

8-nm diameter void reduced the threshold to between 145 and 188 GPa. In each case the 

introduction of voids decreased the threshold to generate dislocations, allowing a detailed 

investigation of the nature and configuration of dislocations for an 8-nm void within the shocked 

material (334). These results stimulated the current investigation which seeks to establish whether 

there is an effect of void size on the formation of dislocations. 

In the present work, we determine the effect of void size on the threshold stress for 

dislocation generation. Different size voids were introduced within [111] oriented diamond 

samples to study their effect on the dislocation generation stress threshold. Previous work on shock 

compressed copper and tantalum revealed that the threshold decreased with increasing void size 

(44, 45). For our work, voids ranging in size from 2 nm to 18 nm were introduced into single 

crystal diamond bulk; shocks were driven at varying amplitudes until dislocations were observed 

to emanate from the void. We note that voids in the size range studied here have been observed 

experimentally in brown diamond (241). 
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6.2.1 Predictions of Threshold stress from molecular dynamics 

 

We find the presence of voids in shocked diamond lowers the threshold stress for 

dislocation emission. Simulation details are given in Materials and Methods. Dislocation loops 

are emitted from the voids, as shown in Fig. 6-2. Voids act as both stress concentrators and 

preferential nucleation sites. The dislocation loops are generated in the regions of highest shear 

stress on the void surface, establishing the threshold stress required. A shock stress of 232 GPa 

or greater is required to generate a loop from a 2-nm void (Fig. 6-2a), whereas a much lower 

stress of 135 GPa generated loops in the larger, 18-nm void (Fig. 6-2d). 

The similarity between these events is illustrated in Fig. 6-2. Perfect dislocations form on 

{100} planes closest to the maximum shear stress plane for all void sizes. The smallest voids limit 

the sizes of the dislocation loops that are emitted, which increases the stress threshold needed to 

initiate the dislocations. As the voids become larger, the length of the [110] dislocation loops seem 

to approach a limit, and instead multiple dislocations appear along parallel planes. This process is 

shown in greater detail for the largest and smallest voids modeled, 2 and 18 nm. For the 18-nm 

void, dislocations on two families of planes are emitted, as indicated in Fig. 2f: {100} and {111}. 

Their Burgers vectors are identified as (334): 

𝑏100 =  ½ [110]{100} 

𝑏111 =  ½ [112]{111}. 

We note that the presence of the unusual {100} slip was observed in experiments of 

diamond nanopillar compression (262) and indentation testing (257). These dislocations form an 

expanding front moving behind the shock front and constitute a plastic wave following the initial 

elastic wave (306). Their velocities can be measured from the absolute positions of atoms at the 

front of the wave during different snapshots of the simulation. 
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Figure 6-2 - MD simulations showing the threshold for dislocation generation for different void 

sizes (diameters) and the shock pressure at which they first form dislocations from the void. a) 2 

nm, 232 GPa b) 4 nm, 177 GPa c) 12 nm, 146 GPa d) 18 nm, 135 GPa e) and f) Differences in 

dislocation configurations between e) 2-nm and f) 18-nm voids. Longitudinal position of atoms 

indicated by color scale, to help visualize three dimensionality. Only dislocations on {100} planes 

with direction [110] are formed in the 2-nm void, whereas in the 18-nm void multiple dislocations 

are created along parallel planes and both {100} and {111} planes are activated. The 2-nm 

simulation also had dislocations emanating from the planar impact surface, whereas in the 18-nm 

void case the pressure was too low for surface dislocations to form. 
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 A closer examination of the properties of vicinity of the 12nm radius void shows additional 

detail in Figure 6-3. The local crystallinity around the void is preserved, except in the areas where 

the dislocations are being produced, and the compressed zone at the equator of the void. The 

potential energy of the atoms about the equator of the void are also increased, and there is a split 

in the orientational rotation of the void on either side of the compression zone.  

 

Figure 6-3 12 nm diameter void. Slice, 0.2 nm thick, with different color scales. (a) Structure 

type: diamond (blue), unknown (white). (b) Atomic potential energy (PE). (c) Atomic rotation, 

X component of the quaternion from PTM, with rmsd=0.1. The shock moves along z, causing an 

increase of PE in the equator, where dislocations nucleate. There are local lattice rotations 

associated with the large shear at the void surface and nearby. 

 

 

6.3 Prediction of threshold stress from dislocation mechanics 

Analytical predictions can capture the physics of the emission of dislocations from voids 

using the fundamental equations of dislocation theory, rooted in elasticity theory (44, 45, 312, 335) 

. Analysis of the effects of void size on dislocation emission stress thresholds show that the shear 

stress for dislocation emission can be expressed as the sum of three terms:  

  

𝜏𝑚𝑎𝑥 =
2𝛾

𝜋𝜌𝑏
+

𝐺𝑏(2 − 𝜈)

4𝜋(1 − 𝜈)𝑅1
ln

8𝑚𝑅1

𝑒2𝜌𝑏
+ 𝜏𝑃𝑁 . (1)  

The first term is the shear stress required to create a surface step by emitting a dislocation 

over the distance 𝜌𝑏, where  is the surface energy and 𝜌 is an integer multiplier of the length of 

(b) (c) (a) 
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the Burgers vector b, representing the size of the dislocation core. The original derivation is by 

Rice and Thompson (316).  

The second term is comprised of two contributions, the dislocation line energy and the 

image forces that attract the dislocation to the free surface as it forms. This analysis follows Rice 

and Anderson (336), Wolfer (337) and Ahn (338). 𝑚 describes the geometry of the dislocation; 

for a mixed character dislocation like the ones seen in our simulations a value of 2.2 is used. For a 

semi-circular loop, the distance from a surface varies with position. The formation and expansion 

of a loop also requires additional energy because of the increasing length. 𝑅1 is the loop radius and 

is taken as a quarter of the void diameter (44, 45). 

The third term is the Peierls-Nabarro (PN) stress. We add it to account for the stress 

required to move a dislocation over the barrier between adjacent crystal lattice sites. Diamond is a 

covalently bonded material with high Peierls-Nabarro stresses required for dislocation motion to 

occur. The ratio of the PN stress to shear modulus for tetrahedrally coordinated crystals is around 

𝑃𝑁𝐷𝑖𝑎 = 0.1 𝐺 (339, 340). This is also in line with first-principles calculated values for the PN 

stress of a screw dislocation in diamond (341), which is the controlling stress under the kink-pair 

mechanism responsible for plasticity in tetrahedrally coordinated crystals (340, 342). It adds a 

significant barrier to the creation and movement of new dislocations and is a large contribution to 

the total stress required for dislocations to form. 

Equation 1 does not include any consideration for the strain-rate dependence of the 

dislocation energy. Dislocation velocities in a compressed diamond nanoparticles were found to 

be around 1 km/s (106). This is significantly lower than the shear wave velocity of around 14 km/s 

at the pressures investigated in this paper. From the shock simulations, measurements of the 

dislocation velocities directly after nucleation were around 0.3 to 0.4 of the shear wave velocity, 
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𝐶𝑠 for each simulated void size and piston velocity. These were measured for the dislocations along 

the [111] direction just after formation, rather than the established [112] dislocations measured in 

previous work (334). This is in the relativistic regime of dislocation motion, and the energy is 

expressed as (335) 

𝐸 =
𝐸0

√1 − (
𝜈𝑑

𝐶𝑠
)
2

 

 (2)
 

 

where 𝐸0 is the energy of the dislocation at rest, 𝑣𝑑  is the dislocation velocity, and 𝐶𝑠 is the shear 

wave velocity, considered to be the limiting velocity of subsonic dislocations. 𝐶𝑠 represents a 

singularity in the dislocation energy. Exceeding this value creates transonic dislocations. Including 

this kinetic energy factor into the line energy of the dislocation would leave the whole modified 

equation for the shear stress as: 

𝜏𝑚𝑎𝑥 =
2𝛾

𝜋𝜌𝑏
+

𝐺𝑏(2 − 𝜈)

4𝜋(1 − 𝜈)𝑅1

(

 
ln

8𝑅1

𝑒2𝜌𝑏

√1 − (
𝑣𝑑

𝐶𝑠
)
2

 

+ ln𝑚

)

 + 𝜏𝑃𝑁 (3) 

 

where the value of the dislocation velocity affects only the dislocation energy itself, and not the 

image forces contributed by the geometric factor 𝑚. 

It is arguable whether the kinetic energy of the dislocation has an effect during the initial 

formation of the dislocation at the void surface, as discussed in this work. For our measurements 

of the dislocation velocity in diamond from a void, the contribution would increase the stress 

threshold by around 2-3% of the total value. For cases where the dislocation velocity is closer to 

the shear wave velocity, this relativistic effect could be more pronounced.  

The threshold formula (1) gives the minimum shear stress required for nucleation of a 

dislocation within diamond. It is expressed in terms of the shear stress on the dislocation slip plane 

at the surface of the void, where the stresses are concentrated. For comparison to the average far-
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field shock stress, we must divide this value by the Lu factor (93, 334), 𝑚𝐿𝑢 = 0.415, for the stress 

in plane strain resolved onto the slip plane, and divide by the stress concentration factor for a 

spherical void (312):  

𝜎𝑧𝑧𝑉𝑜𝑖𝑑 = [1 + 13 −
5𝜈

2(7 − 5)
] 𝜎𝑧𝑧 . (4) 

For our diamond sample with a Poisson ratio of 𝜈 = 0.2 calculated at the shock pressure of 232 

GPa, this stress concentration factor is equal to 2. Our final conversion is then 

𝜎𝑧𝑧 =
𝜏𝑚𝑎𝑥

𝑚𝑙𝑢 × [1 +
13 − 5𝜈

2(7 − 5𝜈)
]
= 1.205 𝜏𝑚𝑎𝑥. (5)

 

 

6.4 Effect of Void Size on threshold stress 

The MD predictions of dislocation nucleation thresholds of voids from 2nm to 18nm are 

plotted in Fig.3. For a 10-nm void the shock stress was 155 GPa, which is close to the compression 

stress of 160 GPa to generate dislocations inside a diamond NP with 10-nm diameter (308), which 

constitutes a dual problem, with similar geometry and material parameters.  

This decrease is significant and has been observed before for other materials with voids 

including Cu and Ta (45). For the larger voids the dislocation loops expand with greater ease, their 

ends staying attached to the void surface. 
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Figure 6-4 - Shock stresses for the emission of dislocations as a function of void diameter; 

comparison of MD results with analytical predictions (1) and (5). 

 

The analytical formula (1) similarly predicts a decrease in the stress with increasing void 

size. The dislocation core radius is taken equal to b, i.e., 𝜌 = 1. This value reflects the MD 

dislocation cores being narrow, as shown in Fig. 6-2. We calculated the shear modulus, 𝐺, for each 

value of the shock pressure from the elastic constants at that pressure. Poisson’s ratio is taken to 

be 𝜈 = 0.2. The calculations are performed for a {100} dislocation, for which 𝑏 = 0.309 nm, with 

a stress concentration of 2 for a spherical void. The surface energy for a dislocation on the (100) 

plane is given as 𝛾 = 6.910 J/m2 (343).  
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The final prediction combining equations (1) and (3) agree well with our MD results, as 

shown in Fig. 6-3. This threshold formula should be applicable to voids in other single-crystal 

materials as well, with the addition of the Peierls-Nabarro stress additionally providing non-

negligible stresses for more strongly bonded materials such as diamond, oxides, or ceramic 

crystals.  
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Chapter 7 Conclusions 

 

The shock response of the covalently bonded materials of silicon and diamond were 

investigated. In the silicon simulations, several interatomic potentials were tested to observe and 

compare their results for reproducing elastic constants, melting points, phase changes, plasticity 

thresholds, and amorphization. A separate method of structure identification within shocked 

silicon was also tested and verified for the modified Tersoff potential, able to identify the phase 

change within the shear bands produced by the shock wave from the diamond cubic to the BCT5 

phase. 

The plastic deformation of diamond monocrystal under shock compression was 

investigated and the effects of the presence of flaws were established. While experimental shots 

that went beyond the HEL for diamond in the [100] orientation were performed, no dislocations 

have yet been observed in our TEM work. Using molecular dynamics to investigate, a significant 

difference in the generation of defects was observed based on the orientation of the diamond, the 

presence of defects such as voids, and the size of the void included in shock simulations. The 

following conclusions are drawn from this investigation using molecular dynamics: 

1. Spherical voids provided preferential nucleation sites for shock-induced defects. 

2. The [001] orientation of diamond is the strongest with respect to the condition of plasticity. 

No dislocations were identified within this orientation for conditions leading up to the 

melting or amorphization and recrystallization of the lattice structure. 

3. The [011] and [111] orientations produce far more defect activity, with the [111] 

orientation being the most active.  

4. In the [111] orientation, two types of dislocations were observed emerging from 4nm or 

larger voids, the ½ <110>{001} dislocations and ½ <112>{111} dislocations. 
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5. The Lu Factor was established as a method of quantifying the resolved shear stress along 

certain slip planes, as a corollary to the Schmid factor but for the case of uniaxial strain, 

which is the condition present under shock. 

6. MD calculations predict that the shock pressure for the initiation of plastic deformation 

decreases with void size, from a shock stress of 232 GPa for a 2-nm void to 135 GPa for 

an 18-nm void. 

7. An analytical model of the threshold stress for shock-induced plasticity was introduced, 

extending prior work on metals. Based on an analysis of the stress for dislocation emission 

from the void surface, it incorporates three terms: formation of a step at the void surface, 

the work put into the dislocation line energy and elastic field associated with the image 

force at the void surface, and the Peierls-Nabarro stresses to overcome the lattice friction.  

8. The analytical model predicts stresses that agree well with MD calculations. 

9. The analytical model is formulated allowing it to be applied to other orientations, void 

sizes, or materials.  

10. The threshold stresses calculated here are exceeded in the solid diamond following the first 

shock during the ICF implosion process, so the voids are predicted to collapse and generate 

plastic deformation. 

 

Our extension of the threshold stress formula for plasticity from a void to account for the Peierls-

Nabarro stress is important for strongly bonded materials such as diamond, a contribution that 

could be neglected in the metals studied previously. Diamond capsules in NIF ignition experiments 

depend on a symmetric implosion with limited mixing to attain fusion. Through the reduced 

threshold for plasticity and resulting localized shear flow, we have shown that voids clearly affect 
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the shock compression of diamond. By better understanding the effects of these void defects on 

the plasticity thresholds in diamond, we may better model how diamond under high pressure 

deforms.  
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APPENDICES 

Appendix A – LAMMPS Input Files 

 

The large-scale, open-source MD code LAMMPS was employed to perform classical 

atomistic molecular dynamics simulations (82, 83). The Tersoff potential (60–62) was used as the 

interatomic potential for carbon, having shown good performance in modeling the mechanical 

properties of diamond up to the pressures used in this paper. Simulations were performed with 

parallel optimizations on GPUs (344) on the supercomputers at Lawrence Livermore national 

Labs. All simulations were performed with the shock along the z-direction oriented along the [111] 

diamond cubic lattice direction. The initial simulation box size for the simulations of the 

2,4,6,8,10, and 12nm diameter voids were 100 x 100 x 200 lattice parameters in the x, y, and z 

axes, or approximately 35.6 x 35.6 x 71.3 nm. For the 18nm void diameter, a larger box simulation 

size of 150 x 150 x 200 lattice parameters was used, or 53.5 x 53.5 x 71.3 nm, to reduce self-

interaction of the void across the periodic boundaries. Periodic boundaries were applied in the x 

and y dimensions, with a shrink-wrapped boundary for z. A piston was formed of the atoms in the 

first 10 lattice parameters in the z-direction, and atoms in the region between 11 and 13 lattice 

parameters were removed. The void was placed centered in the x and y dimensions and placed 30 

lattice parameters plus the void radius into the bulk to prevent it from interacting with the piston 

surface. The time step was 0.5 fs to prevent carbon atoms from interacting unphysically if particle 

velocities became too high. Piston velocities for each void size were sequentially raised by 

increments of 0.05 km/s until observations of dislocations were found. Far-field shock pressure 

measurements were taken when then shockwave reached the end of the box and the box average 

pressure peaked. All visualization was performed using OVITO (96). Defect analysis was 

performed using the DXA analysis package included in OVITO (104).  
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# Carbon Void Shock in the 111 Direction 

# Half Time Step (0.0005 picoseconds) 

# Additional Analysis added for resolved shear stresses 

# Dump files every 500 times steps (0.1 picosecond) 

# 2150 m/s piston velocity (2.15 angstroms/picosecond) 

# 2 nm void size, centered in X+Y, 30 lattice spacing+Void size into Z 

# Alex Li, R. E. Rudd 

 

#Variable Setup 

#t sets piston velocities per run 

#voidradius sets radius of centered void 

variable t index 2.15  

variable voidradius equal 40  

 

label loop 

 

variable  a0 equal 3.565 

 

log log.$t.111 

 

#Setup parameters 

units   metal 

atom_style   atomic 

boundary    p p s 

 

neighbor    2.0 bin 

neigh_modify  every 1 delay 2 check yes 

 

variable  xlattice equal floor(100/sqrt(2.25)) 

variable ylattice equal ceil(100/sqrt(2)) 

variable  zlattice equal ceil(200/sqrt(3)) 

 

lattice     diamond ${a0} orient z 1 1 1 orient y 0 1 -1 orient x 2 -1 -1  

region     box block 0 ${xlattice} 0 ${ylattice} 0 ${zlattice} 

create_box   1 box 

create_atoms  1 box 

 

mass      1 12.0107 

 

 

# Potentials 

pair_style   tersoff 

pair_coeff   * * SiC.tersoff C 

 

#Creating a Single Large, centered void 

#Void is centered in X and Y, then placed 30 lattice units into the block 
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variable xmid equal (xlo+xhi)/2 

variable ymid equal (ylo+yhi)/2 

variable zloc equal zlo+v_voidradius+30*v_a0 

variable zmid equal (zlo+zhi)/2 

 

region void sphere v_xmid v_ymid v_zloc v_voidradius units box 

delete_atoms region void 

run 0 

region void delete 

 

#Create region and group for stress measurements 

variable voidsphereradius equal v_voidradius+20 

region voidreg sphere v_xmid v_ymid v_zloc v_voidsphereradius units box  

group voidgroup region voidreg 

 

compute vs voidgroup stress/atom NULL pair 

 

#Create vectors for resolved shear stress analysis 

variable bhat1_1 equal 0.5428/sqrt(2) 

variable bhat1_2 equal 1.3017/sqrt(2) 

variable bhat1_3 equal -0.1125/sqrt(2) 

variable nhat1_1 equal 0.7677/1 

variable nhat1_2 equal -0.3838/1 

variable nhat1_3 equal -0.3838/1 

 

variable bhat2_1 equal 1.3105/sqrt(2) 

variable bhat2_2 equal 0.2108/sqrt(2) 

variable bhat2_3 equal 0.2108/sqrt(2) 

variable nhat2_1 equal 0 

variable nhat2_2 equal 0.7071 

variable nhat2_3 equal -0.7071 

 

variable bhat3_1 equal 0.7677/sqrt(2) 

variable bhat3_2 equal 0.3232/sqrt(2) 

variable bhat3_3 equal -1.0909/sqrt(2) 

variable nhat3_1 equal 0.5428 

variable nhat3_2 equal 0.5946 

variable nhat3_3 equal 0.5946 

 

variable bhat4_1 equal 1.8533/sqrt(6) 

variable bhat4_2 equal 1.5125/sqrt(6) 

variable bhat4_3 equal 0.0983/sqrt(6) 

variable nhat4_1 equal 0.2248/sqrt(3) 

variable nhat4_2 equal -0.2713/sqrt(3) 

variable nhat4_3 equal -1.6856/sqrt(3) 
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variable bhat5_1 equal 1.3105/sqrt(6) 

variable bhat5_2 equal 1.6250/sqrt(6) 

variable bhat5_3 equal -1.2034/sqrt(6) 

variable nhat5_1 equal 1.3105/sqrt(3) 

variable nhat5_2 equal -0.4963/sqrt(3) 

variable nhat5_3 equal 0.9179/sqrt(3) 

 

variable bhat6_1 equal 2.0781/sqrt(6) 

variable bhat6_2 equal 0.5341/sqrt(6) 

variable bhat6_3 equal -0.8801/sqrt(6) 

variable nhat6_1 equal -0.2248/sqrt(3) 

variable nhat6_2 equal 1.6856/sqrt(3) 

variable nhat6_3 equal 0.2713/sqrt(3) 

 

#Create resolved stress calculations for each set of vectors 

variable rs_011_100 atom 

v_bhat1_1*c_vs[1]*v_nhat1_1+v_bhat1_2*c_vs[2]*v_nhat1_2+v_bhat1_3*c_vs[3]*v_nhat1_3

+2*v_bhat1_2*c_vs[4]*v_nhat1_3+2*v_bhat1_1*c_vs[5]*v_nhat1_3+2*v_bhat1_1*c_vs[6]*v_

nhat1_2 

variable rs_101_010 atom 

v_bhat2_1*c_vs[1]*v_nhat2_1+v_bhat2_2*c_vs[2]*v_nhat2_2+v_bhat2_3*c_vs[3]*v_nhat2_3

+2*v_bhat2_2*c_vs[4]*v_nhat2_3+2*v_bhat2_1*c_vs[5]*v_nhat2_3+2*v_bhat2_1*c_vs[6]*v_

nhat2_2 

variable rs_110_001 atom 

v_bhat3_1*c_vs[1]*v_nhat3_1+v_bhat3_2*c_vs[2]*v_nhat3_2+v_bhat3_3*c_vs[3]*v_nhat3_3

+2*v_bhat3_2*c_vs[4]*v_nhat3_3+2*v_bhat3_1*c_vs[5]*v_nhat3_3+2*v_bhat3_1*c_vs[6]*v_

nhat3_2 

variable rs_112_11n1 atom 

v_bhat4_1*c_vs[1]*v_nhat4_1+v_bhat4_2*c_vs[2]*v_nhat4_2+v_bhat4_3*c_vs[3]*v_nhat4_3

+2*v_bhat4_2*c_vs[4]*v_nhat4_3+2*v_bhat4_1*c_vs[5]*v_nhat4_3+2*v_bhat4_1*c_vs[6]*v_

nhat4_2 

variable rs_121_1n11 atom 

v_bhat5_1*c_vs[1]*v_nhat5_1+v_bhat5_2*c_vs[2]*v_nhat5_2+v_bhat5_3*c_vs[3]*v_nhat5_3

+2*v_bhat5_2*c_vs[4]*v_nhat5_3+2*v_bhat5_1*c_vs[5]*v_nhat5_3+2*v_bhat5_1*c_vs[6]*v_

nhat5_2 

variable rs_211_n111 atom 

v_bhat6_1*c_vs[1]*v_nhat6_1+v_bhat6_2*c_vs[2]*v_nhat6_2+v_bhat6_3*c_vs[3]*v_nhat6_3

+2*v_bhat6_2*c_vs[4]*v_nhat6_3+2*v_bhat6_1*c_vs[5]*v_nhat6_3+2*v_bhat6_1*c_vs[6]*v_

nhat6_2 

 

#shell commands to navigate to proper directories 

#shell cd RUNS 

#shell cd $t 

 

#Settings regions for lindemann parameter calculations 

region  box1 block INF INF INF INF 14 39 units lattice 
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group   box1 region box1 

 

region  box2 block INF INF INF INF 40 64 units lattice 

group   box2 region box1 

 

region  box3 block INF INF INF INF 65 89 units lattice 

group   box3 region box1 

 

region  box4 block INF INF INF INF 90 115 units lattice 

group   box4 region box1 

 

#Group Based Computes 

#compute voro1 box1 voronoi/atom  

#compute voro2 box2 voronoi/atom  

#compute voro3 box3 voronoi/atom  

#compute voro4 box4 voronoi/atom  

# 

#compute v1 box1 reduce sum c_voro1[1] 

#compute v2 box2 reduce sum c_voro2[1] 

#compute v3 box3 reduce sum c_voro3[1] 

#compute v4 box4 reduce sum c_voro4[1] 

# 

#compute boxtemp1 box1 temp 

#compute boxtemp2 box2 temp 

#compute boxtemp3 box3 temp 

#compute boxtemp4 box4 temp 

# 

#compute boxperpress1 box1 stress/atom boxtemp1 

#compute boxperpress2 box2 stress/atom boxtemp2 

#compute boxperpress3 box3 stress/atom boxtemp3 

#compute boxperpress4 box4 stress/atom boxtemp4 

# 

#compute p1 box1 reduce sum c_boxperpress1[1] c_boxperpress1[2] c_boxperpress1[3] 

c_boxperpress1[4] c_boxperpress1[5] c_boxperpress1[6] 

#compute p2 box2 reduce sum c_boxperpress2[1] c_boxperpress2[2] c_boxperpress2[3] 

c_boxperpress1[4] c_boxperpress1[5] c_boxperpress1[6] 

#compute p3 box3 reduce sum c_boxperpress3[1] c_boxperpress3[2] c_boxperpress3[3] 

c_boxperpress1[4] c_boxperpress1[5] c_boxperpress1[6]  

#compute p4 box4 reduce sum c_boxperpress4[1] c_boxperpress4[2] c_boxperpress4[3] 

c_boxperpress1[4] c_boxperpress1[5] c_boxperpress1[6] 

# 

#variable press1avg equal -(c_p1[1]+c_p1[2]+c_p1[3])/(3*c_v1) 

#variable press2avg equal -(c_p2[1]+c_p2[2]+c_p2[3])/(3*c_v2) 

#variable press3avg equal -(c_p3[1]+c_p3[2]+c_p3[3])/(3*c_v3) 

#variable press4avg equal -(c_p4[1]+c_p4[2]+c_p4[3])/(3*c_v4) 
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#variable press1VM equal sqrt(0.5*((c_p1[1]-c_p1[2])^2+(c_p1[1]-c_p1[3])^2+(c_p1[2]-

c_p1[3])^2+6*(c_p1[4]^2+c_p1[5]^2+c_p1[6]^2)))/(c_v1) 

#variable press2VM equal sqrt(0.5*((c_p2[1]-c_p2[2])^2+(c_p2[1]-c_p2[3])^2+(c_p2[2]-

c_p2[3])^2+6*(c_p2[4]^2+c_p2[5]^2+c_p2[6]^2)))/(c_v2) 

#variable press3VM equal sqrt(0.5*((c_p3[1]-c_p3[2])^2+(c_p3[1]-c_p3[3])^2+(c_p3[2]-

c_p3[3])^2+6*(c_p3[4]^2+c_p3[5]^2+c_p3[6]^2)))/(c_v3) 

#variable press4VM equal sqrt(0.5*((c_p4[1]-c_p4[2])^2+(c_p4[1]-c_p4[3])^2+(c_p4[2]-

c_p4[3])^2+6*(c_p4[4]^2+c_p4[5]^2+c_p4[6]^2)))/(c_v4) 

 

#Defining shock driving piston region 

region   pistonR block INF INF INF INF INF 10 units lattice  

group   piston region pistonR 

 

#Defining Gap between piston and bulk 

region   gap block INF INF INF INF 11 13 units lattice 

group   gap region gap 

 

delete_atoms group gap compress yes 

 

#Defining the bulk 

group   bulk subtract all piston gap 

 

#preset defined computes 

compute kea bulk ke/atom 

#compute 2 bulk centro/atom 14 

compute pea bulk pe/atom 

compute s bulk stress/atom NULL pair 

#compute 5 bulk cna/atom 4.0 

compute coord bulk coord/atom cutoff 2.1 

 

#MSD Lindemann Compute 

#compute  msdall bulk msd 

#compute  msdbox1 box1 msd 

#compute  msdbox2 box2 msd 

#compute  msdbox3 box3 msd 

#compute  msdbox4 box4 msd 

#variable    lindparmallx equal sqrt(c_msdall[1])/(${a0}*0.7071067811865475) 

#variable    lindparmbox1x equal sqrt(c_msdbox1[1])/(${a0}*0.7071067811865475) 

#variable    lindparmbox2x equal sqrt(c_msdbox2[1])/(${a0}*0.7071067811865475) 

#variable    lindparmbox3x equal sqrt(c_msdbox3[1])/(${a0}*0.7071067811865475) 

#variable    lindparmbox4x equal sqrt(c_msdbox4[1])/(${a0}*0.7071067811865475) 

#variable    lindparmally equal sqrt(c_msdall[2])/(${a0}*0.7071067811865475) 

#variable    lindparmbox1y equal sqrt(c_msdbox1[2])/(${a0}*0.7071067811865475) 

#variable    lindparmbox2y equal sqrt(c_msdbox2[2])/(${a0}*0.7071067811865475) 

#variable    lindparmbox3y equal sqrt(c_msdbox3[2])/(${a0}*0.7071067811865475) 

#variable    lindparmbox4y equal sqrt(c_msdbox4[2])/(${a0}*0.7071067811865475) 
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#variable    lindparmallz equal sqrt(c_msdall[3])/(${a0}*0.7071067811865475) 

#variable    lindparmbox1z equal sqrt(c_msdbox1[3])/(${a0}*0.7071067811865475) 

#variable    lindparmbox2z equal sqrt(c_msdbox2[3])/(${a0}*0.7071067811865475) 

#variable    lindparmbox3z equal sqrt(c_msdbox3[3])/(${a0}*0.7071067811865475) 

#variable    lindparmbox4z equal sqrt(c_msdbox4[3])/(${a0}*0.7071067811865475) 

 

 

#RDF Compute 

compute rdfbulk bulk rdf 100 1 1 

compute rdfbox1 box1 rdf 100 1 1 

compute rdfbox2 box2 rdf 100 1 1 

compute rdfbox3 box3 rdf 100 1 1 

compute rdfbox4 box4 rdf 100 1 1 

 

 

#initialize velocity 

velocity   bulk create 300.0 376847 dist gaussian 

velocity    bulk zero linear 

velocity  piston set 0.0 0.0 0.0 sum no units box  

 

#nve fix 

fix     1 all nve 

 

#piston fix 

fix  2 piston setforce 0.0 0.0 0.0  

 

#Processor balance fix 

fix bal all balance 500 1.1 shift z 10 1.2 weight time 0.8 

 

#equilibration thermo 

thermo_style custom step temp ke pe etotal press pxx pyy pzz pxy pxz pyz ly lx lz vol 

thermo_modify  lost warn norm yes 

thermo     500 

 

#equilibration run 

run       5000 

 

reset_timestep 0 

 

#Dump end of equilibration 

dump VOIDALL all custom 1 C-eqall.* id type x y z 

# 

run 0 

# 

#undump EQPISTON 

undump VOIDALL 
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#Test Peratom Stress total 

compute peratom all stress/atom NULL 

compute p all reduce sum c_peratom[1] c_peratom[2] c_peratom[3] 

variable peratompresssum equal -(c_p[1]+c_p[2]+c_p[3])/(3*vol) 

 

#Reset Thermo style for shock  

 

#thermo_style custom step temp ke pe etotal press pxx pyy pzz pxy pxz pyz lx ly lz vol 

thermo_style custom step temp ke pe etotal press pxx pyy pzz pxy pxz pyz lx ly lz vol 

v_peratompresssum 

thermo_modify lost warn norm yes 

thermo   100 

 

#rdf fixes 

fix rdfbulk bulk ave/time 10 10 10000 c_rdfbulk[*] file RDF/bulk.rdf mode vector 

fix rdfbox1 box1 ave/time 10 10 10000 c_rdfbox1[*] file RDF/box1.rdf mode vector 

fix rdfbox2 box2 ave/time 10 10 10000 c_rdfbox2[*] file RDF/box2.rdf mode vector 

fix rdfbox3 box3 ave/time 10 10 10000 c_rdfbox3[*] file RDF/box3.rdf mode vector 

fix rdfbox4 box4 ave/time 10 10 10000 c_rdfbox4[*] file RDF/box4.rdf mode vector 

 

#Average stress per time 

 

variable period equal 500 

 

fix avgstr voidgroup ave/atom 1 ${period} ${period} v_rs_011_100 v_rs_101_010 

v_rs_110_001 v_rs_112_11n1 v_rs_121_1n11 v_rs_211_n111 

 

variable ave_rs_011_100 atom f_avgstr[1] 

variable ave_rs_101_010 atom f_avgstr[2] 

variable ave_rs_110_001 atom f_avgstr[3] 

variable ave_rs_112_11n1 atom f_avgstr[4] 

variable ave_rs_121_1n11 atom f_avgstr[5] 

variable ave_rs_211_n111 atom f_avgstr[6] 

 

#Defining dumps for entire system 

#dump OUT1 all custom 100 DUMP/Cshock.$t.* id type x y z c_coord c_pea c_kea vx vy vz 

c_s[1] c_s[2] c_s[3] c_s[4] c_s[5] c_s[6] 

 

dump OUT2 bulk custom 500 DUMP/$t.CnotD.* id type x y z c_coord c_pea c_kea vx vy vz 

c_s[1] c_s[2] c_s[3] c_s[4] c_s[5] c_s[6] 

dump_modify OUT2 thresh c_coord != 4  

 

dump OUT3 voidgroup custom 500 DUMP/Cvoidstress.$t.* id type x y z vx vy vz c_vs[1] 

c_vs[2] c_vs[3] c_vs[4] c_vs[5] c_vs[6] & 
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 v_ave_rs_011_100 v_ave_rs_101_010 v_ave_rs_110_001 v_ave_rs_112_11n1 

v_ave_rs_121_1n11 v_ave_rs_211_n111 

dump_modify OUT3 sort id  

 

timestep 0.0005 

variable piston_vel equal 10*$t 

print      "Vel=$t km/s" 

velocity piston set 0.0 0.0 ${piston_vel} sum no units box 

 

run  4000 

 

 

dump OUT1 all custom 500 DUMP/Cshock.$t.* id type x y z c_coord c_pea c_kea vx vy vz 

c_s[1] c_s[2] c_s[3] c_s[4] c_s[5] c_s[6] 

 

run   4000 

 

undump OUT1 

 

#run   5800  

 

#write_data 111.10000.data 

#write_restart 111.10000.restart 

 

clear 

 

next t 

 

#shell cd .. 

 

jump SELF loop 
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Appendix B – Calculation of the Lu Factor 

 

Derivation by Dr. Rob E. Rudd 

 

INTRODUCTION 

The Schmid factor is the constant of proportionality that relates the resolved shear stress 

on a glide system to the applied uniaxial stress. For wave propagation, uniaxial strain is relevant 

instead of uniaxial stress. In C. H. Lu’s 2013 doctoral dissertation (93), she and Marc Meyers 

computed these resolved shear stresses for many glide systems in tantalum. Li et al. pointed out 

that the generalization of the Schmid factor to the diamond shock application is useful and 

potentially powerful and termed it the Lu factor (334). Here we have some brief notes on how to 

calculate it. 

The strategy here is to do the calculation in a few steps: 

• Calculate the strain 

• Multiply by the elastic constant tensor to get the stress 

• Dot the stress into the Burgers vector and glide plane normal to get the resolved shear stress 

• Dot the stress into the wave propagation direction to get the reference stress 

• Divide the resolved shear stress by the reference stress to get the generalized Schmid factor 
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CUBIC ELASTICITY 

Consider uniaxial elastic strain. We want to calculate the ratio of the resolved shear stress on a 

glide system to the longitudinal stress. For uniaxial stress, this ratio would be the Schmid factor: 

𝑚 =
𝜎1′2′

𝜎33

(1) 

We consider a cubic crystal with elastic constants C11, C12, and C44. Let the longitudinal axis of 

the compression be kˆ, let the Burgers vector be 𝑏⃗⃗ and the glide plane normal be 𝑛̂ . Then 𝑏⃗⃗ =  
𝑏̃

|𝑏̃|
. 

Throughout these notes, the vectors with hats like 𝑛̂ are unit vectors. 

Consider the case of [001] compression. The strain tensor is given by 

𝜖 = 𝜖0 (
0 0 0
0 0 0
0 0 1

) (2) 

And 𝑘̂ = (0,0,1). 

So the strain may be expressed as: 

 

𝜖 = 𝜖0𝑘̂ ⊗ 𝑘̂ (3) 

This expression is independent of the coordinate system, so it must be correct regardless of the 

direction of compression. 

SCHMID FACTOR 

The Schmid factor is easier to calculate, so let’s start with it. Suppose the uniaxial stress is 

𝜎 = 𝜎0𝑘̂ ⊗ 𝑘̂ (4) 

𝑚 =
𝜎1′2′

𝜎33

(5) 



 

185 

 

=
𝑏̂ ⋅ 𝜎 ⋅ 𝑛̂

𝑘̂ ⋅ 𝜎 ⋅ 𝑘̂
 (6) 

=
𝜎0𝑏̂ ⋅ 𝑘̂𝑘̂ ⋅ 𝑛̂

𝜎0𝑘̂ ⋅ 𝑘̂𝑘̂ ⋅ 𝑘̂
(7) 

= 𝑏̂ ⋅ 𝑘̂𝑘̂ ⋅ 𝑛̂ (8) 

So the Schmid factor m is purely geometrical, the product of two directional cosines, as expected. 

GENERALIZED SCHMID FACTOR FOR UNIAXIAL STRAIN 

In general, the uniaxial strain is 

𝜖 = 𝜖0𝑘̂ ⊗ 𝑘̂ (9) 

So for 𝑘̂ = [0 0 1], the strain is 

𝜖 = 𝜖0 (
0 0 0
0 0 0
0 0 1

) (10) 

For 𝑘̂  = [0 1 1]/√2, the strain is 

𝜖 =
1

2
𝜖0 (

0 0 0
0 1 1
0 1 1

) (11) 

For 𝑘̂  = [1 1 1]/√3,, the strain is 

𝜖 =
1

3
𝜖0 (

1 1 1
1 1 1
1 1 1

) (12) 

 

For the cubic system, the elastic constant tensor 𝐶𝑖𝑗𝑘𝑙 reduces to the three independent 

moduli noted above: C11, C12, and C44. So, the Hooke’s Law stress 
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𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 (13) 

can be calculated by inspection. 

For 𝑘̂ = [0 0 1], the stress is 

𝜎 = 𝜖0 (
𝐶12 0 0
0 𝐶12 0
0 0 𝐶11

) (14) 

= 𝐶12𝜖0𝐼 + (𝐶11 − 𝐶12)𝜖0𝑘̂ ⊗ 𝑘̂ (15) 

Where 𝐼 is the 3x3 identity matric (tensor). 

For 𝑘̂  = [0 1 1]/√2, the stress is 

𝜎 =
1

2
𝜖0 (

2𝐶12 0 0
0 𝐶11 + 𝐶12 2𝐶44

0 2𝐶44 𝐶11 + 𝐶12

) (16) 

𝜎 =
1

2
𝜖0 (

0 0 0
0 𝐶11 − 𝐶12 − 2𝐶44 0
0 0 𝐶11 − 𝐶12 − 2𝐶44

) + 𝐶12𝜖0𝐼 + 2𝐶44𝜖0𝑘̂ ⊗ 𝑘̂ (17) 

For 𝑘̂  = [1 1 1]/√3, the stress is 

𝜎 =
1

3
𝜖0 (

𝐶11 + 2𝐶12 2𝐶44 2𝐶44

2𝐶44 𝐶11 + 2𝐶12 2𝐶44

2𝐶44 2𝐶44 𝐶11 + 2𝐶12

) (18) 

𝜎 =
1

3
(𝐶11 + 2𝐶12 − 2𝐶44)𝜖0𝐼 + 2𝐶44𝜖0𝑘̂ ⊗ 𝑘̂ (19) 

We now have everything needed to calculate the generalized Schmid factor for uniaxial 

strain. In fact, since 𝑚 = 𝑏̂ ⋅ 𝑘̂𝑘̂ ⋅ 𝑛̂ by Eq. (8) and 𝑏̂ ·  𝐼 ·  𝑛̂  =  0 because the Burgers vector 

and glide plane normal are orthogonal, the expressions for the generalized Schmid factor in 

the [0 0 1] and [1 1 1] directions are particularly simple: 

𝑚𝐿𝑢 =
𝜎1′2′

𝜎33

(20) 
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[0 0 1]𝑚𝐿𝑢 = (1 −
𝐶12

𝐶11
)𝑚 (21) 

[1 1 1]𝑚𝐿𝑢 =
6𝐶44

𝐶11 + 2𝐶12 + 4𝐶44
𝑚 (22) 

[0 1 1]𝑚𝐿𝑢 =
4𝐶44

𝐶11 + 𝐶12 + 2𝐶44
𝑚 −

𝐶11 − 𝐶12 − 2𝐶44

𝐶11 + 𝐶12 + 2𝐶44
𝑏̂1𝑛̂1 (23) 

  

The expression in the [0 1 1] is not too complicated, but it is not just proportional to the 

Schmid factor m, as in the other cases. There is an extra term that is proportional to the 

elastic anisotropy (C11 − C12 − 2C44). Generally, we have 

𝜎𝑖𝑗

𝜖0
= 2𝐶44𝑘̂𝑖𝑘̂𝑗 + 𝐶12𝛿𝑖𝑗 + (𝐶11 − 𝐶12 − 2𝐶44)𝑘̂𝐼

2𝛿𝑖𝑗 (24) 

And 

𝑘̂ ⋅ 𝜎 ⋅ 𝑘̂

𝜖0
= 𝐶12 + 2𝐶44 + (𝐶11 − 𝐶12 − 2𝐶44)∑𝑘̂𝑖

4

3

𝑖=1

 (25) 

𝑏̂ ⋅ 𝜎 ⋅ 𝑛̂

𝜖0
= 2𝐶44𝑚 + (𝐶11 − 𝐶12 − 2𝐶44)∑𝑘̂𝑖

2𝑏̂𝑖𝑛̂𝑖

3

𝑖=1

 (26) 

𝑚𝐿𝑢 =
2𝐶44𝑚 + (𝐶11 − 𝐶12 − 2𝐶44)∑ 𝑘̂𝑖

2𝑏̂𝑖𝑛̂𝑖
3
𝑖=1  

𝐶12 + 2𝐶44 + (𝐶11 − 𝐶12 − 2𝐶44)∑ 𝑘̂𝑖
43

𝑖=1

(24) 

 

Tables 

Here we present numerical results for diamond (diamond cubic carbon) at absolute zero 

temperature based on Density Functional Theory calculations of the zero-temperature elastic 

constants up to 200 GPa. 
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Table A-1 Table of generalized Schmid factors for uniaxial [001] strain. The 3 left-most columns 

show the longitudinal direction, the direction of the Burgers vector and the direction of the glide 

plane normal. The other columns contain the data values at the pressures shown at the top. The 

spacing between the rows help guide the eye to cases with equal generalized Schmid factors. 
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Table A-2 Table of generalized Schmid factors for uniaxial [011] strain. The 3 left-most columns 

show the longitudinal direction, the direction of the Burgers vector and the direction of the glide 

plane normal. The other columns contain the data values at the pressures shown at the top. The 

spacing between the rows help guide the eye to cases with equal generalized Schmid factors. 
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Table A-3 Table of generalized Schmid factors for uniaxial [111] strain. The 3 left-most columns 

show the longitudinal direction, the direction of the Burgers vector and the direction of the glide 

plane normal. The other columns contain the data values at the pressures shown at the top. The 

spacing between the rows help guide the eye to cases with equal generalized Schmid factors. 

 




