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Multicast Networks with Variable-Length Limited
Feedback

Xiaoyi (Leo) Liu, Sudent Member, IEEE, Erdem KoyuncuMember, IEEE, and Hamid Jafarkhankellow, |IEEE

Abstract—We investigate the channel quantization problem for probability with a low average feedback rate. VLQs allow
two-user multicast networks where the transmitter is equigped binary codewords of different lengths to represent diffitre
with multiple antennas and either receiver is equipped withonly channel states. It has been shown in [5] that variable-tengt

a single antenna. Our goal is to design a global quantizer to L .
minimize the outage probability. It is known that any fixed- guantization does not suffer from performance loss in MISO

length quantizer with a finite-cardinality codebook cannotobtain ~ SyStems. o
the same minimum outage probability as the case where all In this paper, we study the channel quantization problem

nodes in the network know perfect channel state information jn multicast networks with two receivers. We use transmit
(CSI). To achieve the minimum outage probability, we propos  peamforming and consider the outage probability gap betwee
a varlable-length global quantizer th'at knows perfect Csl .and the proposed quantizer and the full-CSI case. For a FLQ, the
sends quantized CSI to the transmitter and receivers. With a . A ’ ’
random infinite-cardinality codebook, we prove that the proposed ~ Standard encoding rule is to choose the codeword “closest”
quantizer is able to achieve the minimum outage probability to the channel state. For any finite-cardinality codebobk, t
with a low average feedback rate. We also extend the proposed gutage probability of a FLQ is strictly worse than that of the
quantizer to the multicast networks with more than two users  ||.CS| case [5]. To achieve the full-CSI outage probapili
Numerical simulations validate our theoretical analysis. with a finite average feedback rate, we propose a VLQ with
Index Terms—Multicasting, limited feedback, variable-length g codebook of infinite cardinality. We incorporate the idéa o
feedback, outage probability. variable-length coding and expect that in such a VLQ, the
codeword covering a larger partition of channel space can be
I. INTRODUCTION represented by a fewer number of bits. In this way, the aeerag
_ ) feedback rate can be made finite.
I T is known that using more than one antenna at thepased on the above analysis, we propose a VLQ in multicast
transmitters can greatly improve the performance of COMetworks that has access to full CSI and sends quantized CSI
munication systems. However, the performance dependeon{ the transmitter and receivers via error-free and defag-f
availability of channel state information (CSI) at the Samit-  feedback links. We consider a random codebook with infinite
ters and receivers [1]-[3]. Receivers can obtain CSI thhougardinality that is tractable for analysis [6]. Also, if andom
training sequences; however, the transmitters must reen codebook can provide a certain level of performance, then on
feedback information from receivers to do so. Additionallysgdebook that will surpass this performance can be found.
perfect CSI at the transmitters requires an “infinite” numbgye first prove that the outage probability for the VLQ is
of feedback bits, which is unrealistic due to the limitaBonthe same as that of the full-CSI case. Afterwards, through
of feedback links. Therefore, it is more practical to employ derived upper bound on the average feedback rate, we will
quantized CSI to design efficient transmission schemes KMo that: (i) the average feedback rate is finite and small in
wireless networks. the entire range of transmit power; (ii) the average feeklbac
There has been a lot of work on channel quantizatiqgte will converge to zero when the transmit power approsiche
in point-to-point multiple antenna systems. An overview ghfinity or zero. Moreover, we extend the proposed VLQ to
research on limited feedback can be found in [4]. In multiplghe multicast networks with more than two users. In addition
input single-output (MISO) systems, a fixed-length quantizig theoretical analysis, numerical simulations are preskto
(FLQ) is proposed in [1] to maximize the capacity by apyerify the effectiveness of the proposed VLQ.
plying the beamforming vector at the transmitter. In FLQs, Our contributions in this paper are threefold:

the number of feedback bits per channel state is a fixed1) A novel VLQ is proposed for the multicast networks
positive integer. Compared to the case that all the node&kno  ith two users. It can be extended to the multicast

CSI perfectly, fixed-length quantization always suffersrir networks with more than two users. The performance of
some performance loss. On the other hand, [5] proposes a ihe proposed quantizer is the same as that of a system
variable-length quantizer (VLQ) to achieve the full-CStage with full CSI.

_ _ 2) For the first time, we provide a framework for analyzing
This work was supported in part by the NSF Award CCF-1218771. h £ f d debook . iabl
This work will be presented in part at the IEEE Global Comroations the per_or_mance or random co e 0_0 S using variable-

Conference (GLOBECOM), Dec. 2014. length limited feedback. The derivations based on ran-
X. Liu, E. Koyuncu and H. Jafarkhani are with the Center for-Pe dom codebooks in our paper can be applied to many

vasive Communications and Computing (CPCC), UniversityCafifornia, .

Irvine, Irvine, CA 926972625 USA (Email: {xiaoyil3, ekoyuncu, hamid- other scenarios.

}@uci.edu). 3) Ourwork is an important necessary first-step towards the
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goal of designing VLQs for multicast networks using At the transmitterz € X £ {z:x € C*! ||z|]> =1} is
only local CSI. The availability of a global quantizeremployed as the beamforming vector and a scalar symbol
that achieves the full-CSI performance, as shown i@ is sent throught antennas. The received signal at receiver
this paper, opens the door for designing distributed is
quantizers.

— T

The rest of this paper is organized as follows. In Section II, ym = VP hns + g,
we describe the system model. In Section I1I, we introduee thvhereP denotes the transmit power aggl ~ CN(0, 1) is the
proposed VLQ, including its encoding rule and the infiniteadditive white Gaussian noise term. We assunjes] = 1.
cardinality random codebook. In Section IV, we prove thdtor the multicast network, the maximum achievable rate
the proposed VLQ achieves the minimum outage probabilitg. 10g2(1 + Pmin,,—1 2 |xth,|*) [8].0 Let v (x, H) =
An upper bound on the average feedback rate is given 1ifin,,—; » ]xThm\Q, then for the target data transmission rate
Section V. Numerical simulations are provided in Section \j, an outage event will occur ibg, (1 + P~ (z, H)) < p, or
to validate our theoretical analysis. In Section VII, weesxd equivalently, ify (z, H) < Lp‘l. Without loss of generality,
the proposed VLQ to the multicast networks with more thame assumep = 1 throughout this paper. Thug,;;1 = %.
two users. We draw our main conclusions and discuss futlResults for other values gf can be obtained similarly.
work in Section VIII. Technical proofs are provided in the The full-CSI case where perfect CSl is known by all
appendices. nodes in the multicast network is studied in [8], and the

Notation: For a vector or matrixy represents its transposeoptimal beamforming vector is computed &sll (H) =
andt represents its conjugate transpogedenotes the set of argmax, .y v (z, H). 2 Then the full-CSI outage probability
complex numbers an@™*™ denotes the set of complex vecds

tors or matricesCN (a, b) represents a circulary-symmetric 1

complex Gaussian random variable (r.v.) with mearand Out(Full) = PVOb{’Y(FUH (H),H) < F}
covariance. E[-] denotes the expectation and P{epdenotes Bl 1)
the probabilityN is the set consisting of all natural numbers. = FH Yy (Ful(H) H)<3-

For any real number, |z] is the largest integer that is less In contrast to the full-CSI case where the perfect CSI needs
than or equal ta:. 1sT = 1 when the logical statemeSfI' is to be fed back to all nodes, we consider a global quantizer
true, and0 otherwise. Finally,fx (-) is the probability density denoted byQ which only requires perfect CSI to be available

function (PDF) for r.v.X. at a “genie” in the multicast network. As depicted in Fig. 1,
the “genie” first gatherd; and hy from receivers 1 and 2
Il. SYSTEM MODEL via error-free and delay-free feedback links. Then it gizast

H = [hy hs] and sends limited feedback informati@{H) to
both receivers and the transmitter. The "genie” does noé hav

receiver 1 to be a specific node outside the network and it can be either
— receiver or the transmitter. For example, if receiver 1 pldne
- h, role of “genie”, it only needs to colledi, from receiver 2.
6 For an arbitrary global quantize®, the distortion with
_ 4 respect to the outage probability is defined Bst =
ransmiter gevie | H = b by Out (Q) — Out (Full). SinceOut (Full) is invariant for fixed
? P, minimizing Dist is equivalent to designing a quantizer to
b minimize Out (Q). In the subsequent sections, we are going
Al to propose a VLQ and show that even if perfect CSI is no
receiver 2 longer available at all nodes, the full-CSI outage proligbil

or zero distortion can still be achieved.

Fig. 1. System block diagram (solid and dash lines represignal transmis-

sion qnd feedback links, respectively. The “genie” stamisafglobal channel I11. CHANNEL QUANTIZATION AND ENCODING RULE
quantizerQ) In the multicast network, we consider a global VLQ as-
gociated with a random codebodk;};cny wherez; € X

iIs independent and identically distributed with a uniform
distribution onX’ for i € IN [10]. The random codebook is

Consider the multicast network in Fig. 1, where a transmitt
with ¢ antennast(> 2) is sending common information to two
singe-antenna receivers. The channel vector from thertigns

i i — 1 . . L
ter to receivern is denoted byr,, = [ - BT € Y, ln this paper, we only consider the channel quantizationblpro for
where h,,, ~ (D]N(O, 1) form = 1,2, n = 1,...,t. Let transmit beamforming. Although the precoding matrix camehhigher rank
Xm = ||hm||2 for m = 1,2. Then the entire channel stat han the beamforming vector, it can be inferred from [8, Theo 1] and

: . 8, Theorem 2] that optimal beamforming vector actually ieebs the same
is represented by = [hy hy] € C'*2. We assuméh,, iS  maximum achievable rate as the optimal precoding matrix inltioast
perfectly estimated at receiver and consider a quasi-staticnetworks with two users. This also holds in the three-usee ¢l].
block fading channel model in which the channel realization “For anyH, Full (H) exists becausg (z, H) is a continuous function on

. . z and X is a bounded and closed set. There might exist more than dte un
vary independently from one block to another while rémalibrmal vector that can achieve maximum valueyate, H) and Full (H)
constant within each block [2], [7]. can be any one of them.
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generated each time the channel state changes and revealeditrent channel stat®l falls according to (3) and (4). Then

all nodes in the network. It provides a performance benckmahe corresponding codewote is chosen andlog,(i + 1)

since if a random codebook can achieve certain performanbits are fed back to notify the index af;.> After decoding

one deterministic codebook can be found to surpass tlie feedback informationz; is employed by the transmitter
performance. For any realization df;};cn, the proposed as the beamforming vector. Therefore, the average feedback
VLQ is represented by rate of Qvrq is

Qvrq = {zi, Ri, bi}, 2

R(QvLq) = Z log,(i + 1)|Prob{H € R;}
whereR,; denotes the partition channel regiorugffor i € IN. i=1

In other wordsg; is used as the transmit beamforming vector >

when H € R;. Also, b; is the feedback binary string that Z [logy(i + 1)JExE(z,},cxlHeR, - (5)
represents the index;. We shall later specify; explicitly for =1

everyi € IN. The outage probability is given by

Let us now specify the partition regiof;. In this context, 1
our main observation is that for a given H, it is not neces- 0ut(QviQ) = Efz.}.cn Prob{ (@i, H) < F,Vi € lN}
sary to always choose the best codewstdthat maximizes — EnE . 6)
~ (z,H) amongz € {z;};c. Any codewordz that enables HE (@} ien by @ ) <4 view-
v (z,H) > & can be applied. Hence, different from channel- IV. OUTAGE OPTIMALITY
partition regions of FLQs which consist of channel states th

achieve the best performance with the “centroid” codeword In this section, we show that the proposed VLQ in (2) wil
. . achieve the full-CSl outage probability.
Ro in QvLq is set as

Intuitively, to attain the full-CSI outage probability
) 1 ) 1 means for any channel statd where strict non-outage
Ro = {H + (2o, H) 2 f} Y ﬂ {H 2y (@i, H) < f}’ achieved by the optimal beamforming vectorll (H) (i.e.,
e v (Full (H),H) > %), the proposed VLQ should return a
() unit-normal vectorz that is “close” enough t&ull (H) so
andR; fori € N — {0} is set as that z also succeeds in (z,H) > 5.° For suchH, there
exists a certain region in the unit sphere of beamforming
} ﬂ { ~ (x, H) < l} vectors with non-zero probability, where all the unit-natm
P vectors also result in strict non-outage. In order to “clgse
4) representrull (H) for any H € C*2, we need infinitely
many codewords in the codebook for the proposed VLQ, so
For anyz € X, {H :v(z,H) < $} includes all channel that these infinite vectors ensure at least one efficienbvért
states for which an outage |nC|dent will happenmﬁs em- that region will eventually be chosen to makenon-outage.
ployed as the beamforming vector, al{1ﬂl v(z,H) > P} This also tells why a FLQ with a finite feedback rate cannot
is the complement set. Thug, is the union set of channel achieve the full-CSI outage probability.
states for which using any codeword in the codebook asThe following theorem says the outage probability of the
the transmit beamforming vector cannot prevent outage apbposed VLQ is equal to that of the full-CSI case, the proof
channel states for which using, will not result in outagé. of which is given in Appendix A.
For any: € IN — {0}, R; consists of channel states for whic

R; = {H :y (zi, H

hTheorem 1. For any P > 0, we have

usingz; can prevent outage while using, ...,z;_; cannot.
It can be easily inferred thgtR;} is a collection of disjoint ‘OUt(QVLQ) = Out(Full). ‘ @)
sets andJ;enR; is equal to the entire channel space.
We apply variable-length coding to encodge for i € IN. V. AVERAGE FEEDBACK RATE
To be specific, we séiy = ¢, which is an empty codeword, |5 section IV, we have shown the infinite codebook cardi-

by = {0}, by = {1}, bs = {00}, by = {01} and sequentially pajity is the key to achieve the full-CSI outage probahility
so on for all codewords in the s¢t,0,1,00,01,10,11,...}.  this section, we will show that when variable-length design
The length ofb; is [log,(i + 1)]. in Section 111 is applied to encode these infinite codewoeds,

~ With perfect CSI and any realization dfri};cy, Qviq finite average feedback rate is attainable.
first determines the partition channel regi; in which the Define

31t will be shown |n Appendix A thatR, is equal to the expectation Ho = {H H e ¢ » X1 Z % X2 = %} )
of {H:v(zo,H)> 5} U{H :~(Full (H),H) < +} with regard to Hi=1{H :H € Hp,7 (Fu 1(H),H)<% ,
the random codebool& }iew with probability one. ThereforeQy1,q can ={H-HeH ( 11 (H) H _ 1
determine whetheH belongs to this region or not based on the expression of 2 ’ 0,7 ’ If ’
the optimal beamforming vector given by [8, Theorem 2], eatithan checking Hs = H:H € Hy,~ ( 11 (H) ) > P

all codewords in{z; }; -

4An empty codeword is used here for illustration. Addihgit to each *We reemphasize thdiw;}, .y refers to the infinite-cardinality codebook
codeword to avoid an empty codeword only increases the geeieedback Wwhile z; represents any beamforming vector selected ffamy}, c1y-
rate by1 bit per channel realization, thereby not impacting the ltesuthe SWe will show the channel statl satisfying~ (Full (H),H) = % has
average feedback rate being finite. probability zero.
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As defined in Section Ily,, = ||h.||* for m = 1,2. Based Another upper bound op obtained from Lemma 2 in Appen-
on the encoding rules in (3), (4) and the random codebodices A and D is given as
{z;}:en, the feedback rate in (5) can be rewritten as p<l—(1- H)t‘l, (13)

2

R(QvLq) Z/HGH ¢ fy(H)dH, (8) where

2
[Full (H)] h,| — &
where II=1— min

m=1,2 Xm
o = Zp 1—p)llogy(i+1)],

In addition, a lower bound op (or equivalently, the upper
bound onl — p) is given by
)

2 1 1 t—1

‘ z—}: (1——> . (14)
From the proof of Theorem 1 in Appendix A, it is directly P Px1
obtained thatp = 1 and ® = 0 for any H € #H; U Hs. With bounds onp in (12), (13), (14) and based on (11),
Hence, [, ®fu(H)AH = [y, ®fu(H)dH = 0. Then we deduce an upper bound &riQv1q) and present it in the

1
p= Prob{'y(zi,H) < =

1—p§Prob{x

R (QvLq) in (8) is equivalent to following theorem, the detailed proof of which is shown in
Appendix C.
R(Qurg) = /HEHS ®fg(H)dH. ©) Theorem 2. For any P > 0, we have
The following lemma exhibits an upper bound dn the 1 [1 1 log (1+ P)
proof of which is presented in Appendix B. RQui) =Coe™ 7 |5+ o+t —p5 || (19

Lemma 1. For any 0 < p < 1, we have where Cjy > 0 is a constant that is independent of P.

d<p(l-p)+ <1 6 + 2) >+ 02 p?log (10) Remark 1: We mainly focus on showing how the number

0g2 log 2 1-p of average feedback bits f@v1.q changes withP. Therefore,
Substituting (10) into (9), it follows that !t is beyond the scope of this paper to find the tightest bound,
i.e., the smallest value far.
R(QvLq) <@ + Ir + I, (12) Remark 2: From (15), it can be seen that in the medium

and high regions forP, the derived upper bound on average

where feedback rate is dominated hy 7 {% + M}; in the
1
= Cl/ p(1 —p)fu(H)dH, low region for P, it is dominated by<>-. Moreover, the
Hes upper bound will approach zero whdh — oo and P — 0.
I = 02/ P’ fa(H)dH, The average feedback rate also behaves like this. This can be
HeMs intuitively interpreted as follows: wheR — oo, any vector in

) fu(H)AH the codebook will not cause an outage event, while when

0, any vector will result in outage. According to the encoding
rule of Qyrq, only empty codewords will be fed back in both
situations. Thus the average feedback rate approaches zero

13 = 03/ <10g
HE'Hs

andCy =1, Cy = +2,C3 = lo 5. To further proceed,
we also need usef ? bounds epn For an upper bound op,

using [11, Lemma 2] and [12], we obtain V1. NUMERICAL SIMULATIONS

- 2 prob) |z 2 1 In this section, we perform numerical simulations to verify
pP= Z roby |z: m’ < P the theoretical results for the outage probability and the
m=l average feedback rate.
2 t—1 —_
_ 1-(1— 1 In the pseudo-code, a sufficiently large number of chan-
— Pxm ’ nel realizations will be generated in order to obseid@0

outage events for each and P. Moreover,Out stands for
where the last equality arises from Prﬂrlhm‘ < x} _the simulated outage probability, refers to the simulated
average feedback rate ahdop records the number of channel
1— (1 _ L)“l [12]. Since(1—a)? > 1—abfor0 < a < 1 realizations. For each channel realization, whether theC8l
xom i1 N case could prevent outage will be checked in line 6. If not,
andb > 1, (1 — ﬁ) >1— If,;—}n. Thereforep is upper- an outage event is declared in line 7; otherwise, in lines 9 to

bounded by 14, a random unit-normal vector will be generated repegted|
) until one that allows the current channel realization tospre
p< t—1 Z L (12) outage is found, and the index of the selected codeword is
- P Xm Index. Together with line 16, the simulated feedback rate is

m=1
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Simulation Procedure: .
1: Initialization: Givent, P. SetOut = 0, R = 0, Loop = 0;
2: while 0ut < 1000
3: Index = 0; 07}

4 Loop = Loop + 1; é é
5: Generate a realization df; 2 2l 3
6: if v(Full(H),H) < % 2 e
7: Out = Out + 1; % . %
8: else 2" 3
9: Randomly generate € X’; 3 S
10: while 5 (z’H) < % é 10| —#—OUT(Q,, ). t=2&R(Q, ;) <08 10 —— OUT(Q, ) t=2 &R(Q,, ;) < 0.8
11: Randomly generatg € X; ) OUTQ o) t=3&RQ, )52 5 OUTQy ) t=3&R(Q, o) <2
12: T = y —— OUT(QVLQ), t=3& R(Q/LQ) <3 —— OUT(QVLQ), t=3& R(Q/LQ) <3
13: Index = Index + 1, 10| = o -OUT(QFLQ),'[: 2&R(QFLQ) =4 10| = & _OUT(QFLQ), t=2& R(Q:LQ) =1
) d - = =OUT(Q ) t=3&R(Q,)=6 - = =OUT(Qq ) t=3&R(Q ) =2
14: en - - OUT(QFLQ), t=48& R(Q:LQ) =8 - - OUT(QFLQ), t=48& R(Q:LQ) =3
15 end 10—10 -5 0 5 10 15 10—10 -5 0 5 10 15
16: R =R+ |logy(1 + Index)|; P (dB) P (dB)
L7: end Fig. 3. Simulated out babilities @f, dQ hent = 2,3, 4
. _ _R __ Out 1g. o. Imulated outage probabllities LQ an FLQ Whent = 2, 5,
18: return R = Loop’ Qut = Loop " (t is the number of transmit antennas).

upper bound derived in Theorem’2.

In Figs. 3(a) and 3(b), we compare the outage probabilities
QvLq and a traditional FLQ denoted b@rr.q. For any

ven H, QrrLq employs B bits to quantizeH based on

e random codebook{z;,i=0,...,2% —1} according

the average number of feedback bits calculated in line 1
where the simulated outage probability is computed as 100
divided by the number of all channel realizations. In all th
simulations, no endless iteration has been detected, Wiaicqo Q (H) _ argma . oy (@, H)
equivalent to say that as long as the channel state realizati FLt%e outage probabiﬁte;ziJigodﬁn*f(déi(g) o

able to avoid outage in the full-CSI case, a randomly-gerdra
g y-9 E{mmzﬂ ’25,1}Prob{'y (QFLQ (H) ,H) < %}, and the

codeword that also prevents outage will eventually be founaveragemf'eedback rate #5(Qrr) — B. It is observed from

Fig. 2 thatR (QvLqg) is no larger than0.8,2 or 3 bits per
channel state wheh= 2,3 or 4, respectively. Thus in Fig. 3
(a), we choose the number of feedback bits assignédkiq,

to be B = 4,6 and8 whent = 2,3, 4, respectively. Curves
in Fig. 3(a) demonstrate th&y,q outperformsQrrq even
when the latter one has a much larger feedback rate. In Fig.
3(b), we letB = 1,2,3 for t = 2,3,4, which are close to
(but still larger thank (Qv1q)- It can be seen that the outage
probabilities ofQrr.q are much worse than those QfLq.
Therefore, it is revealed from Figs. 3 (a) and 3(b) tRat.q

is superior toQrLq.

—o—R(Q ) t=2

Simulated Average Feedback Rate

R(Q, ). t=3
= Ve VII. GENERALIZATION TO MULTICAST NETWORKS WITH

——RQoht=4 MORE THAN TWO USERS
162 ‘ ‘ ‘ \ The quantizer proposed for multicast networks with two
10 - ° pam 10 15 users can be applied to the multicast networks with more

than two users after slight modifications. We still name
Fig. 2. Simulated average feedback rates when2,3,4 (¢ is the number jt QVLQ for simplicity. Denote the number of receivers
of transmit antennas). by M. When M > 3, hy, = [Ry1---hmi]” Stands for

the channel vector from the transmitter to receiwerwith

. . hmn ~ CN(0,1) for m = 1,...,M andn = 1,...,t.
Fig. 2 shows the simulated average feedback rates for o — [hy - -has] € CXM represents the entire channel

2,3, 4. The horizontal axis representsin decibels. It can be . ir |2
observed that: (i) all the average feedback rates will deere state. Lety (¢, H) = miny—1,...u [2'hy|” for anyz < 2.

' ) Y o With such modifications, we can apply the proposed quantizer
towards zero wherP increases towards infinity or decreases
to zero; (ii) the average feedback rate is finite and small for7eo; i), the upper bound in Theorem 2 shows the averagebiseid
any P; (iii) the average feedback rates fore= 2, 3,4 coincide rate is dominated by~ % [% + M] in the high® region, which
in the high® region. These observations correspond to theindependent of.
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10 the full CSI. We aim to approach or even achieve the full-CSI
P outage probability at the cost of a finite average feedbaiek ra

APPENDIXA - PROOF OFTHEOREM 1

Proof. Before showing the detailed proof, let us summarize
the main idea behind the proof first. Based on (1) and (6), to
showOut(Qvrq) = Out(Full), it is equivalent to prove:

1 1) For any H satisfying v (Full(H),H) < 4,
l'y(Full(H),H)<% = E{mi}ieml'y(mi,Hk%,VieN =1

2) For anyH satisfyingy (Full (H) ,H) = 5,
/H 1v(Fu11(H),H)<%fH (H) dH

:/HE{Ii}iewl'y(zi,H)<%,Vie]NfH (H)dH = 0;

_e_Out(AéVLQ), M=3&t=2
—=—0u(Q, ) M=3&t=3
—y—0ut(Q, ) M=4&t=2
107k —A— Out(Q, ). M=4&t=3
-0 -R(Q, ) M=3&t=2
- B -RQ, ) M=3&t=3
-v-RQ ) M=4&t=2
-A-RQ,)M=4&t=3

Simulated Outage Probability and Average Feedback Rate

i

i
-10 -5 0 5 10 15

P (dB) 3) For any H satisfying ~ (Full (H),H) > 3,
1 2 =Egvdo et view = 0.
Fig. 4. Simulated outage probabilities and average feddbates when Defi V(Full(H).H)> 5 {midien (@i, H)> 3, VieN
M = 3,4 andt = 2,3 (M is the number of receivers artdis the number efine
of transmit antennas). %o 1
S = H:HE@X,'}/(Full(H),H)<F .

QvLq in (2) with encoding rules in (3), (4) to the multicastFor any realization ofz;}, ., define
networks with more than two users. 1

For the two-user case, we have rigorously pro@d.q S ({zi},cy) = {H ‘H e C™2 vy (x;, H) < F,w € lN}.
could achieve the optimal outage probability with a finite
average feedback rate, and the proofs rely on the closed-faFor brevity, we omit the dependency & ({zi},.) ON
expression ofull (H) given in [8]. But when the multicast {z;},_, and simply useS,. From (1) and (6)0ut (Full)
network has more than two users, there is no optimal solutiand Out(Qvrq) can be rewritten as
for Full (H) in the literature. Thus, we cannot apply the
same method to prov@yr.q could achieve the optimal outage Out (Full) = Eplpes,, (16)
probability with a finite average feedback rate in the genera Out(Qvrq) = Eg, Exlmes.. 17)
case with an arbitrary number of users.

) L . For convenience, we define
Nevertheless, our proposed quanti@gr.q is still effective

in the multicast networks with more than two users. The “clos ~ Sa1 = {H : H € S;,~ (Full(H) ,H) < 5},
est” solution we have found fafull (H) is in [13], which Sy ={H:H¢cS, ~(Full(H),H) =1L},
uses approximation but generates optimal solutions in many Sy = {H:HeS,~(Full(H) . H)> 1)

- . Pl P} ? .

scenarios. In Fig. 4, we simulate the outage probabilitres a
average feedback rates according to the simulation preeed§inceS; = Sa1 U Sa2 U Sa3 and Sa1, S22, Sa3 are mutually
in Section VI when the numbers of users de= 3,4 and exclusive,0ut (Qvrq) in (17) is rewritten as

the numbers of transmit antennas are- 2, 3, respectively. 3

We use the solution in [13] as the base for the simulation Out (Q - N"E Exl (18)
. o VLQ) = E YienEH1HES,, -

procedure, thus its outage probability is treated as tHedI8I (Quea) — {idien o

performance. We believe that if the exactly optimal solutio B .

for Full (H) is found, our proposed quantizer will also yielof(q(;))rgr?é (t;)8§)r\c/)vvee\?vlilI1I:(th\(;5vQ) o Oét(full)’ Eclczzorldlng o

the optimal outage probability. Fig. 4 shows ti@ag.q could £y ' 0 and Eiien EH lHeSm - OH HES s

attain the full-CSI outage probability using finite average(®itien ~H HeS2 = BapenBrlaes,, =0 .
First, to prove k... Enlucs,, = Eglues,, it is suffi-

feedback rates when there are more than two users. . ;
cientto provel ges, = lues,, for any givenH and{z;}, .
Whenlges, = 0, based on the definition of;, it means
VIII. CONCLUSIONS ANDFUTURE WORK H ¢ S and~ (Full (H),H) > 5. From the definition of
In this paper, we have proved that in the two-user multicaSt;, we haveH ¢ Ss; andlgcs,, = 0. Whenlges, = 1,
network, the proposed VLQ can achieve the full-CSl outagd € S;. By the optimality ofFull (H), it must haveH € S,.
probability with a low average feedback rate. We have al€inceSs; = S1 NSy, H € So1 andlyces,, = 1. Therefore,
extended the proposed VLQ to the multicast networks wittyes,, = 1ues, and By, «Enlues,, = Exlues,-
more than two users. In the future, we intend to work on a Second, we will prove E ;.. Enlucs,, = 0. Define
distributed quantizer for the multicast network by localgg S; = {H :H € C"*? ~(Full(H),H) = +}. By defini-
the proposed VLQ. In this scenario, each receiver only feetisn, Sys = S2 N S3 C Ss. Then Bg.y, (ExlHes,, <
backs its local channel information and no node can acquiEglycs, = Prob{~ (Full(H),H)= +}. Let muyy, =
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argmin Y, Mmax = argmax x,, andd = |’;:1h2| According {H 2y (%o, H) > %} U {H : 7_(Full (H),H) < %} with
th§:2Theorem 2], m=1,2 regard to{z; };,cw with probability one.
Xomuy 0> Xmmin APPENDIXB - PROOF OFLEMMA 1
7 (Full (H) . H) = {Xﬂg;, 0 < Eiﬁ, (19) Proof. Forp =0, ® = 0, then the upper bound in (10) holds.

Hence, suppose that< p < 1. Then

whereg = VX i~V Xmmax . Sinced, x1, andys are mutu-

mmax = Xmmax ¢ = (I1—-p)llo 1
ally mdependenté) and x,,_.., and x,,.. are also mutually Zp Lloga(i + 1)

independent [12]. With (19), it is straightforward to shdvat

Prob{y (Full(H) . H) = £} = 0 by fiXing X X +Zp (1 - p)|logy(i + 1)
or # as well as using the fact that the probability of a

continuous r.v. assuming a specific value is zero. Thergfore ,

Efz.}..xEHLlHCS,, < 0. Since the probability is non-negative, ~ < p(1—p) + sz(l —p)logy (i +1)

E{mi}iEINEHlH6822 =0. i=2 .

Finally, we will prove B}, . Exlucs,, = 0. DefineS, = B B - . '
{H:HecC»?~(Full (H),H) > L}. SinceSos = S N =p(1—p)+pQ p)Z}p logy (i +2)
St, E{zi}iEWEHlHESW’ = fH€54 'fH(H)E{“ bien lHésde oo
To prove Bg.),.xEnlues,, = 0, it is sufficicent to show =p(1—p)+p(1—p) |plogy 3+ p'logy(i+2)
ELz VienlHES, = 0 for anyH € S4. By contradiction, assume P

dH € 8y, s.t. By, S =¢>0. Then

}1e1\ He 9 =
<p(1—p)+p(l—p) lplogz?’ + i Zpllogi] :
E{mi}iEIle{682 Rt

N 1 (22)
_Prob{'y(a:i,H) <—,vzelN} _ o _

P We estimate the sumy ", p'logi via the integral of the
function f(x) = e 5% log z, where0 < 8 £ —logp < co. We
calculatef’(z) = e=#* (1 — Blogz), wheref’ represents the

) 111K derivative of f. Forylogy = 4, f'(z) > 0 for 1 <z <y,

= [Prob{'y (xz,H) < ﬁH , (20) f'(z) = 0 for x = y, and f’(z) < 0 for > y. The global
maximum of f is thus f(y). Sinceylogy = % >0,y>1
where /' > 1 can be any finite natural number, and the laghyst hold, which impliesf(y) = e #logy < e Plogy <
equality is becauseforaglveﬂi 'y(a:z, ) fori=1,..., K ¢ f’ylogy_ 7 .Letj=|y|].Thenl <j <y < j+1, and
are mutually independent due to the mdependencaeldbr -
i=1,..., K. We shall use the following lemma, the proof ofz £(9)
which is in Appendix D.

_ 1
< Prob{w (a:i,H) < F’W € {0,1,..., K — 1}}

Lemma 2. If v (Full (H),H) > &, there exists II € (0,1) 4 3
such that for any z € X with ]a:TFull(H)\ >1IL vy (z, H) > J>22f O+ G+ Z:rzf
+ holds. =
From Lemma 1, for a given H, we have = 1J>2Z/ f@)dz + f()+fG+1) Z
] o) | i=j+2
Prob{”y (zl,H) > %} > Prob{’xIFull (H)‘ > H} .

] 1
(1-10)*~! > 0. Therefore, Prol{y (xi,fI) < %} <1-(1- < 1J>2 / flx)da + fy) + f(y Z
=742
I*~* < 1. By (20), it can be derived that(E,, ,1gcs, < "

[1— (-1, LetK = [1og(1_(1_n)t71)5] +1,then =1;> /1 fle)dz +2f(y) + » f(w)div

E < [1 - (1- H)tfl] [log(lf(lfn)ffl) Ehl < ° 2e=F *°
mhenles, < <2 +/ xd:z:<—+/ z)dz, 22
[1— (1 —Tm)t=1]°80-a-m1° — - which contradicts the ) 1 fle)de < g 1 f@) (22)

assumptionthat & 3, \1gcs, =& ThusBq y, \1gcs, =0 where the first inequality follows sincgis increasing orf1, j)
and By, ExlHes,, = 0, which completes the proof.l]  and decreasing ofj + 1, 00). We now estimate the integral.
) . B e
Remark 3: It follows from (7) and (18) that With a change of variables = logx, dv = e P*dx, we

Out (QVLQ) = }E:{:,:i}iel\.EHIS2 = QOut (Full) = Engl, Obtal(r:o

thusEg [1s, — E{z,},cnls,] = 0. Based on the definitions of / Fla)de = (_l log xe—ﬂz) _e—ﬂwdx
ﬁ

Thereforels, — Ez,},.41s, = 0 for any H with probability 1 - 1 <

0g

o)

81 andSz, 1s, —Ez,},.41s, is always non-positive for ankf . B
one. In other wordsR, in (3) is equal to the expectation of = EEl(ﬁ) ﬁ
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Combining with (22) and subsituting = — logp, it follows % / Xy e ds
that o (=1
= | Cs ( 1 >t1 1
i P + = 1— — e X1d
241 1 X1 X1
;f(z)<_1o p[ +og( +—10gp)_ A 2 o
t— —X2
p 1 % / Xo € dye
<1—p[2+1°g<1+1—p>} 0 (-1
— 241 2 _P -3 1 1 < % /OO 1— L o Xt*Qe—deX
<1 D +Og1 <1_p_ +Og1_p ) - p % PXl 1 1
(23) N % - 1 t—1 "y g
where the second inequality is becauséogp > 1 — p for P 1 Px1 X1 € X1

0 < p < 1. Substituting (23) into (21) yields that
whereCg = 5—51 Letting x1 — % = )\, the bound is derived

2p? 1
® <p(l-p)+p*(1— )log23—|—1g <3+1 1_> as

_ 1
6p2  2p? 1 " / Am2e= Mgy,
<p(l - 2p? 1
p( p)+p+1og2+log20g1—p 1+_
6 2 1 %
=p(l - —— +2)p? + ——p?log ——. 5= N temMdA
M p)+(log2+ )p +10g2p g1— e / '
. 1 _L
This concludes the proof. O r / AL=2 e Md), +Cﬁ(t—1) r
_L _ L1
APPENDIXC - PRC.)OF O.FTHEOREMZ (t—2)' +Cﬁ(t— 1) P :C7e p’ (24)
Proof. Based on (11), we will derive upper bounds 6in I, P P
and I3, separately. First, sinclls C H, we get whereC; = (t — 2)!05 + (t — 1)!Cs.
To derive I, applying the upper bound in (12) and based
L <Cy /H Y p(1 —p)fu(H)dH. on the fact that{; C H,, we obtain
€Ho

Substituting the upper bounds in (12) and (14) id{Q it is
derived that

2
Iy < % 1 + 1:| fH(H)dH

HecHg |:X1 X2

1\ _ / { 12 ]
I < - — H)dH, = =z
' Z /HGHO Xm < le) Tu(H) J 1 + Xl X3 X1X2

t— 1 —
. . L X1 X
whereC, = (t — 1)C4. Sincey,, is chi-squared distributed, X [ (- 1) ] [ (2t 1) ] dx1dxe
t—1_,—Xxm : .
the PDF ofy,, is fy,. (Xm) = % for m = 1,2 [14]. 20 o 11—
Then we obtain ' = 78/ Xt*3e*X1dx1/ Xz © "4y,
) " (t — 1)!P2 b 1 L (t — 1)'
> o 1 ( 1 ) [e%s) t— 2 —
Z 1—— 2C% t—2 —x1 / X2 X
—_— d X2 € 4
e / /P Xm Pxa +(t—1)!P2/113 A PR S
t—1_,—x1 t—1_,—x2 _
X1 ¢ ] |:X2 ¢ ] C 00 p—x24y L1
X dxldXQ < _9/ de / id
[ (t—l)! (t—12!1 = p2 1 Xl Ye X1 0 (t—l)! X2
C5 o0 1 B t—2 —x1 C t— 2 —
_ s _ X
P ) (1 PX1> X1 e Mdxa +P_2/1 Xl 2, deXl/ (21571)(1362
o _
[e’s] t—1 —X2 P
X2 € C _ Cho
XA e = P—3/1 Xi e+ oy / X1 te M,
5
Cs [ 1\
+ =2 1— — Tlemaq hereCy = (t — 1)2Cs, C dCip = <2 Wh
P /. Px1 X1 X1 wnhereCg = ( ) 2, Cg = (t 1), an 10 = en
P t > 3, I, is upper-bounded by
/OO X;—Qe—XZd
X X2, C 1 C 1
L (t=1)! L<2r(t-2,=)+2r(t-1,= 25
113 ( ) 2 P2 aP + P2 7P ) ( )

whereCs = =% 1), Noting thatfO 2" le*dr = (n —1)! ey | _
for n > 1 andn € IN [14], I, is bounded by whereT'(n, a) f x"” dx is the incomplete gamma
- function forn > 0,a > 0. The following lemma shows an

I < Cs 1 1 \""! 2,x1 upper bound on the incomplete gamma function, the proof of
=" /. P X1 ¢ mexa which is in Appendix E.
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Lemma 3. For n > 0,n € IN and a > 0, we have Define %y, = {H:H e C™? x1>x2} and H5 =
H:H e C™2 y, < x2}. Substituting (30) and (12) intfy
I'(n,a) <nle™® (1 + a"_l) . (26) ){/ields }
Applying (26) to (25) yields Cis 1 177
Iy < — —+ —
I, < Cg( 2e* (1 1 P2 Jaerom, Lx1 - x2
2=l 'eP(+ ts) I X H)dH
. " o8 @y m -5
10 _ 1
—i—?(t—l)!e P(1+Pt2) +% [i_,_ir
e~ T e~ T e~ T 27) P2 HeHinHs LX1 X2
=Ci—5 +Cra0;= + Cis—, 27 | X2 H)dH
P P P ><ogv(Fun(H)’H)_%fﬂ( )
whereCy; = Cy(t — 2)! + Cio(t — 1)}, C12 = Cy(t — 2)! and 90 - 1 172
C13 = C1o(t — 1)!. Whent = 2, the upper bound o, is = ;‘) / [— + —}
P HeHinHy LXT X2
Cy [ e Xt Cio [* . 1 X1 H)dH
IQSE\/};) del—i_ﬁ\/;l) € Xm X Og’y(Full(H),H)—%fH( ) )
Co 1 e P where C15 = 2(t — 1)*Cs. For any H € H; N Ha,
- ﬁEl P Cro P2 1 172 1 117 _ 4 ;
B B [; + g} < {E + g} = Therefore, it follows that
e r e p
< C log(1+4+ P)+ Cio—5-, 28
= oz e (LD G @) < log My (H) B,
- o _ P2 Juewnom, Xz v (Full(H) H) - 5
whereE, (z) = [~ <—dz is the exponential integral with an (31)

upper bound a&;(z) < e *log (1 + 1) [14]. From (27) and

(28), the upper bound ofy, for any¢ > 2 can be obtained as whereCig = 8Chs.

Define Hs — {H:He%lmm,ng‘h{hz‘} and

— 1

_ 1 1 .
I < Cn% T C’uet—Pl +Chs tp  1iss Hy = SH:H € Hi(\Ha,x2 > ‘hihgl}. With such nota-
P P P tions, v (Full (H),H) in [8, Theorem 2] can be rewritten
R (1+P)+C il IV =
+ 9 59 og 1+ + 10 5 X 1i=2 H
P P ) (P (B H) = ¢ AP T
2 Hc H77
_a1[1 1 log (1 + P) 1+5
s prmt—p |0 @ Vo ima’
wheref = % andf = Xll—; Then the upper bound
whereCiy = [C11 + Cia + Ci3] X 13+ [Co + Cyp] x 14—5. 0N I3 in (31) can be further deduced as
The last inequality is obtained by comparing both cases avher Cie 1 Y1
0<P<landP >1. I < 55 ?ng — fu(H)dH
To derivel;, we need an upper bound éuy = first. By o HeH 12 P
applying (13), we obtain + —126/ — log %fH(H)dH
1 1 P HcH, X2 152 P
log <2(t—1)log - <xi
= e - G = Tlogn) far(H)aH
m=1,2 o P? Jrensun. X3
From (19), it is found when 6 > ;‘Z— =I3,
| FunHE)) R Xompse — 5 ~(Full(H),H)— b | C1e 1 1
min > min P — L. + — — log fu(H)dH
m=he o XmmaxH ( )]T |>§mnlax P2 HcHeg X% X2 — % (
_— . Full(H)|'h,,| =&
when ¢ < —:m:;i I e r - s
_ L
e Therefore, + 2 [ g (1+6) fu(H)aH
e P? Jaen, X3
2
|Fa1H)] | - 5 Ly (Fal1(H) H)— 4 . .
met Xom = X, ' + 28 — log ——— fr(H)dH .
P? Jaen, x5 X2 — —p—
and
IIlaX Xm =Is.a
log <2(t—1)log m=12 —.  (30) Based on the fact thafHes UH7} = {H1iNHa} C Hy C
- v(Full (H),H) - 5 Ho and using a similar mathematical derivation for the upper
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bounds onl, I, the upper bound ot ; is derived as < Ohe epj {% n 1} n %e # log (14 P)
a1 1 log(l+ P)
I371 S 0176 ; [ + = + 7] y (32) 1 1 1 log(l + P)
P p2 P <Coe ® P + Pt + P ) (35)
WhereCl7 = t%—tl(jlﬁ X 1t23 + 2016 X ltzg.
For I3 5, sincets C H,, its upper bound can be where Cz1 = 3Cis. Whent = 2, since y—— +P < P
016 00 [yt=lo- I3 < O3 5 f 1ogA e~*2d)\,. Following the same steps
I32 < P2 / [&_71)] dx1 in (35), I3 can be bounded by
o — 4 10 (1 =+ P)
1 L [xale } Lo < Coe# |54 o+ BUED (5
X — log { dy 3,2 = 22 2t ’
/% X3 T xe—p L (t—1) ’ PP P
Che o -l whereCy; = 3C15. Based on (34), (35) and (36), the upper
< ! dx1 bound onIs , for anyt > 2 is
t—0nre2 ), =1 3,2 yi=
3 a1 1 log(l+ P)
X/}D Xé 38 X2 10g — %dXQ 1372 S 0236 P |:ﬁ ﬁ T] y (37)
_c 87% o0 1 1 A\ 1 t=3 7)‘2(1/\ Wher6023 = (9 X 1,524 4+ Co1 X 143 + Co9 X 14—9.
-V Og)\_z 2t 5 € 2 In I35, since0 < B < 1, log (14 8?) < log2 < 1.
33) Similarly, the bound on'; 5 is obtained as
(33) :
where C15 = —(tcjf)! and the last equality is obtained by Iz < Coye™ P [1 + % + M] , (38)
replacing y2 — % with Ao. Whent > 4, with the help of PP P
(26), we obtain whereCy, = 1)‘ 1.

I3 <

+ rF 1 1\ 3
il il —A2
P /0 (log )\2) ()\2-1- P) e "2d Ay
oW /OO g =) (re+ L) een
— — — e
18 P2 5 g/\z 2 P 2

EERE ) L 1\
og— ) (=+=) d
/0 (Og )\2) (P - P> A

2
2t_3018€_% P 1
_— log —d\
< i Mo g,
/ MteA2dN,
%

2073C
+ 18
:Clge_% |:1 10gP:|+%F<

P2
p1 |PT TP P2
Clgei% 1 (f— )!Clgei%
P2

< pi—1_ | p + 1:| +

11
prpE|

where Cg = 2t73018 and(Cy = 2 % (t — 3)'019 + 2Cho.
Whent = 3, (33) becomes

et E 1
lo e 2d\
P2 /0 ( g/\z) ?
1 00
E ) R e
P2 L <1og/\ )e dXo
b
1
i Cis e
<C 1 dA —_— —dA
18 55~ P2 /0 Og)\Q 2+ PQ/ N 2

ee? [1 logP] C 1
<Cis—7 {——i— = }4—%& (F)

1
55 )
1
o]

(34)

< Cyoe™ 7 [

I35 < Cl8

+ 018

P P

For I3 4, smceX1, Xz and9 are mutually independent, its
upper bound can be derived as

1 ) 1
og ———5
{x1,x2,0}€H, X2 X2 — #

X frr (X1) fxz (X2) fo (8)dx1dx2d0
Cos

1
== log ————
P2 Jixi a0y, < X2 — ﬂ)

X Xy e xg e (1 — 0) 2 dxadx2dd,

C1e
Isas o5

whereCys = — , = andH7 is a transformed version of
the pre- defmedH7 W|t¥1 respect toxi, x2 and d. The PDF
of 0 isgiven byfa(6) = (t—1)(1 -0 2for0 <6 <1
[12]. By changing the integration variables frofyi, x2,6)

into (53, x2,0), we obtain the Jacobian of the transformation

a( 0) F) —Vx10
as ‘76517;;9) 55| ForanyH € Ho, B = \/Xj%,;f; ,
- X2 x| — __2v1=0Ox2 _
X1 = (VT ovice)? and 55 | = Warpvio)" Therefore,

I3 4+ can be bounded by

| 1
0g —— =
{B,x2.0} €M, X2 — &

X |: \/_ X2 :| o e_(\/§+BX721\/TG)2Xt2_367X2
(VO + BVT —0)2
(1 _ 9)1572 V31— 9X2

(V+5vT=0)
_ O / log —
P2 Jig s 0yenl X2 — &
X3 Pex2(1—9)t73

x X2 ¢ IV dyod BdH

(V+svT=a)

134_P—

X

~dx2dAde
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Cas
< -5 log ——75
P2 Jis . e}e%” < X2 — 1}‘52)
N e
: srre (VOrPYIm0tdxedfdd,
(\f +oVT=0)

where Cys = 2C,5 and H7 is a transformed version dﬂ7
with respect tos, y2 and 6. By replacingys — ”5 by ¥,

‘ ﬁ”gf;f)‘ = ‘axz — 1, then1s 4 is further bounded by

2
_ x+%
e (Vo+8vI=0)2

1
1og—)
{B,x; G}EHW < X (\/§+ B /1 — 9)

1+ B2
P

(&7

I34 < P2

2t+1

2t—3 e
X [x—i— } e X7 F dydsde

2
x+ 18

e (\/_+ﬂv 0)2

(153)
{B.x.0)H" X (\/§+ Bﬂ)

1+ 5
p

Cae
S ﬁ

2t+1

2t—3
x [x+ } e~ X~ PdydBdd, (39)

where #; is a transformed version oH with respect to

_ s ‘ xﬁ(’)‘ ‘
6, x and 6. Lettmg o = oy o)’ |00009)
/ 3 148
Since X+ P =0+ BV1I-4, ’ = ¢’21 X+BP
Yo Vi-6
For anyH S 7—[7, X1 > X2, thus ¢ = X—; > 1 and
0 < VO+p/1—60 < 1. Then0 < g8 < 1‘1\/%2 Hence,
1 B D S 1 % 1-ve 1 >
Vi T vie = Vs Vi X Vie RESVENG
0. Therefore, ‘g; < oy x+ 20+ VOVE <
2¢~%/x + 2 due to0 < ¢ < 1. Moreover, sinceH; C

{(B:x,9): 0 S B<1,x>0,¢>0}, the upper bound in
(39) becomes

1

P 1

- / (log —) e ?
{8,x,0yeM] X

P2
t—3

27
e

113 _oo 1 oo 1
log—> e ?
p? /0 /0 /0 ( X

21 t—3
L J;f # e XdxdBde

B e P * i1 -
=200 [/0 gle d¢}

I314 < 2026

X +

< 2026

X | X+

[e%s) 1 2qt—3
x/ / (logl> {x—i— 1+5 ] e Xdxdp
0 0 X P
_ 1 oo 1 21t—3
e~ T 1 1+p _
< A log — Xdyd
< Cor P2 /0 /0 <ng> [x+ iz } e *dxdp,

t—3
where Cor = 2(t — 1)!Co6. Whent > 4, [X+ #} <

[x + %}t_3 due to0 < B < 1. Similar to (34), an upper

11

bound on/s ; 4 is derived as

a1 1
I3.4 < Coge 7 [ﬁ + ﬁ] )
whereCog = 22750, + (t—4)12!72Cy;. Whent = 3, similar
to (35), the upper bound ofy 4 is

(40)

log(1+ P)

_a |1 1
I34 < Cy9e™ P [ﬁ + oo P ] . (41)
P
where Cyy = 3027 Whent = 2, S'ncew < 2 <
P, Is4 < Cyrs5- fo (1og%) e~ Xdy. Similar to (35), we
obtain
1 f1 1 log(l+P)]
I34 < Cz0e™ 7 P+E+T . (42

whereC'3y = 3C57. Combining bounds in (40), (41) and (42),
the upper bound ot 4 for anyt > 2 is

1 1 log(1+ P)]|
prtemt—p |
whereCs; = Cag X lisa 4+ Cog X 14—3 + C3p X 1i—o. Based
on (32), (37), (38) and (43)3 is upper-bounded by
1 1  log(l+P)
it p |
whereC3o = Cig + Coz + Cy + C31. From (24), (29) and
(44), we finally get the upper bound in (15), whetg =
C7 4+ Cia + Csa. O

Ig 4 < 03167% (43)

Ig < 03287% (44)

APPENDIXD - PROOF OFLEMMA 2

Proof. We use the following lemma, the proof of which is
given in Appendix F.

Lemma 4. For unit-normal complex vectors u,v,w € C**!,

we have
[[ufv]? — ulw]?| < /1 [lw]. (45)
For any H satisfying~ (Full (H) ,H) > &, let A, =

%<1f0rm:1,2.

[22]", by applying (45)

2
‘[Full (H)]Thm’ — +, Where0 <

If [zfFull (H)|? >TT=1- m111f12

and lettingu = =, v = z, w = Full (H), we derive that
wt, ||l ’
—g —Full (H)| | <4/1— |2tFull (H) |?
] ’ ] v
2
hl, h!
= —Full (H)| —4/1— |zFull (H)|?
Tl *| = [T \/
NN _VITT>
lhm| | Pxm  xm B me
2 1
h! ‘ > —
= |hnz| 2 5,
where ‘=" represents “it follows that”. Sincé < II < 1,

the proof is complete. O
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APPENDIX E - PROOF OFLEMMA 3

Proof. I'(n,a) can be expanded a%(n,a) (n —
1)le @ ZZ;&‘L—T 14]. When0 < a < 1, I'(n,a) < (n —
Dle=e Y070 & < nlem® whena > 1, T'(n,a) < (n —
Dlem oS0 ok < (n—1)le Y12 an=t = ple~®an 1,
Therefore,I'(n,a) < max {n!e‘“,n!e‘“a"‘l} < nle @ +
nle™®a" "t =nle™® (1+ a”fl). O

—

IA A

(07

APPENDIX F - PROOF OFLEMMA 4

Proof. The left hand side of (45) can be rewritten |@$Gu)|,
where G w! — ww'. Therefore, it is upper-bounde
by the maximum value of|ufv|> — |u'w|?| with respect to

12
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value ofG. Using Gram-Schmidt orthogonalization, we obtai
_wowlw_\which satisfies%vivﬂ2 =1andvfv, =0.

v =
+ Vi-tw?’

Thenw can be rewritten asv = volw + /1 — [viw|*v ..

Therefore, G (1—pfw)?) ool + (jplw? —1)vi0!

and GG' = (1 - plw|?) vo! + (1 - pfw[?)v v . Since
1 — Jv'w|? > 0, the maximum absolute singular value@fis

V1= |vTw|2.
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