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ABSTRACT OF THE THESIS 

Imbalanced Binary Classification On Hospital Readmission Data  

With Missing Values 

by 

Hui Zhang 

Master of Applied Statistics 

University of California, Los Angeles, 2018 

Professor Yingnian Wu, Chair 

Hospital readmission is a costly, undesirable, and often preventable patient outcome of inpatient 

care. Early readmission prediction can effectively prevent life-threatening events and reduce 

healthcare costs. However, imbalanced class distribution and high missing value rates are usually 

associated with readmission data and need to be handled carefully before building classification 

models. In this paper, we investigate the prediction of hospital readmission on a dataset with high 

percentage of missing values and class imbalance problem. Different methods are applied to 

impute missing values in the categorical variables and numerical variables. In addition, SMOTE  

(Synthetic Minority Over-sampling Technique) and cost-sensitive learning are combined with 

different classification methods (LASSO logistic regression, random forest, and gradient 
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boosting) to explore which one will yield the best classification performance on the readmission 

data. Total misclassification cost and area under ROC curve are used as evaluation metrics for 

model comparison. Our results show that the SMOTE method causes overfitting on our 

readmission data and cost-sensitive learning outperforms SMOTE in terms of total 

misclassification cost.  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CHAPTER 1.  Introduction 

Classification is one of the most common and important tasks in machine learning. A classifier 

can be learned from a set of training samples with predefined class labels, and can be used to 

predict new observations into said classes. The class label is usually discrete and finite, and the 

problem is known as binary classification when there are only two classes. Many classification 

modeling algorithms, such as logistic regression, decision tree, random forest, gradient boosting, 

support vector machine, and neural network, have been well developed and successfully applied 

to many application domains.  

In this paper, we propose to develop, validate and assess classification algorithms that predict 

hospital readmission for individual patients. A hospital readmission is defined as admission to a 

hospital within a specified time frame after being discharged. Different time frames such as 30-

day, 90-day, and 1-year readmissions have been used for research purposes. Readmission is a 

costly, undesirable, and often preventable patient outcome of inpatient care. High readmission 

rate reflects relatively low quality and also has negative social impacts on the patients and on the 

hospital. Nearly 20 percent of hospital patients are readmitted within 30 days of discharge, a $35 

billion problem for both patients and the healthcare system. Avoidable readmissions account for 

around $17 billion a year [1]. In the hope of reducing hospital readmission rates, federal 

government is penalizing hospital based on 30-day readmissions being over certain standard 

rates. Therefore, 30-day readmission has become an important indicator for evaluating the 

healthcare effectiveness of a hospital. 

The dataset we use in this paper is provided by Providence Health. It contains 552,816 

observations and 116 predictor variables. The response variable READMITIN30DAYS is a binary 
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variable with values 0 or 1 for each instance, 1 represents the discharged patient was readmitted 

within 30 days after the original admission, and 0 means the opposite. Although we have more 

than enough examples and predictors to train binary classification models, there are two main 

issues in this dataset: high percentage of missing values and imbalanced class distribution. In 

particular, the missing rates for some variables are even higher than 60%, and only 13.5% of the 

observations will be included in the analysis if we only use complete cases. For binary 

classification problem, imbalanced class distribution is characterized as having many more 

instances of one class (majority class) than the other (minority class). In the readmission dataset, 

approximate 87% of the examples are labeled as negative class, and 13% of the examples are 

labeled as positive class. 

The impact of missing data can be serious, leading to loss of information, biased estimates of 

parameters, increased standard errors, and weakened generalizability of findings. Learning from 

datasets with imbalanced class distribution is also a difficult task since most learning algorithms 

are not designed to cope with a large difference between the number of cases belonging to 

different classes [2]. Standard classification algorithms usually perform poorly on imbalanced 

datasets because they focus on maximizing the overall classification accuracy, but in the 

imbalanced class scenario, high accuracy can simply be achieved by just predicting all instances 

as the majority class. Consequently, test samples belonging to the minority class are 

misclassified more often than those belonging to the majority class. 

The rest of the paper is organized as follows. Following the introduction, Chapter 2 introduces 

some machine learning algorithms that are most commonly used for binary classification, 

including LASSO logistic regression, random forest, and gradient boosting. Chapter 3 provides a 

!2



thorough discussion on the missing value problem and imputation algorithms. Chapter 4 presents 

a comprehensive study on the class imbalance problem, including the nature of the problem, 

resampling and cost-sensitive learning approaches as solutions to the class imbalance problem, 

and proper evaluation measures for classification with class imbalance problem. Chapter 5 

analyzes and compares the performance of resampling and cost-sensitive learning methods on 

our readmission dataset, and reports our experimental results. 
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CHAPTER 2.  Common Machine Learning Methods For Binary 

Classification 

2.1 Logistic regression 

The logistic regression model is one of the most common methods used to estimate the 

probability of a binary response based on input data. The key idea for logistic regression is as 

follows: Consider a dataset with n training examples, where !  consists of p 

predictors, !  is the outcome or class label. The model parameter is 

! . In the logistic regression, we assume ! , i.e., 

! , and we assume 

Then we have 

where the sigmoid function is the inverse of the logit function. By default, a threshold of 0.5 is 

used to decide the predicted label of a new observation. Therefore, the final prediction is !  

if and only if  ! .  

For logistic regression, in order to learn !  from the training examples, we usually maximize the 

likelihood function, which is 

That is, we want to find !  to maximize the probability of the observed !  given ! . The maximum 

likelihood estimate gives the most plausible explanation to the observed data. For ! , 

XT
i = (xi1, ⋯, xip)

yi ∈ {0,1}

β = (β0, β1, β2, ⋯, βp)T yi ∼ Ber noulli(pi)

P(yi = 1 |Xi, β ) = pi

̂yi = 1

P(yi = 1 |Xi, β ) > 0.5

β

β yi Xi

yi ∈ {0,1}
!4

pi = sigmoid(XT
i β ) =

exp(XT
i β )

1 + exp(XT
i β )

=
1

1 + exp(−XT
i β )

logit (pi) = log
pi

1 − pi
= XT

i β

n

∏
i=1

P(yi |Xi, β )

(2.1)

(2.2)

(2.3)



one can find that the log-likelihood is ! . 

And the loss function is defined as the negative log-likelihood 

Then we just need to find the !  that minimize the loss function, which is the same as maximizing 

the log-likelihood. 

2.2 Regularized logistic regression 

Regularized logistic regression is usually used when we have many parameters to estimate, i.e., !  

is a high dimensional vector. In this case, we need to regularize !  by adding a penalty term to the 

logistic loss function as the following equation 

where !  is a regularization function and !  is a regularization constant to be carefully tuned 

using a validation set or cross-validation. Popular choices of !  include (1) !  regularization, 

where ! , which is the sum of the absolute values of the components of ! . (2) !  

regularization, where ! , which is the sum of squares of the components of ! . A 

regression model that uses !  regularization technique is called LASSO (least absolute shrinkage 

and selection operator) Regression and model which uses !  regularization is called Ridge 

Regression. In the case of ridge regression, the effect of the penalty term is to shrink the 

coefficients that contribute most to the error. In contrast, in the case of LASSO regression, the 

effect of the penalty term is to set these coefficients exactly to zero. 

n

∑
i=1

logP(yi |Xi, β ) =
n

∑
i=1

[yiXT
i β − log(1 + exp(XT

i β ))]

β

β

β

ρ(β ) λ

ρ(β ) ℓ1

ρ(β ) = ∥β∥ℓ1 β ℓ2

ρ(β ) = ∥β∥2
ℓ2 β

ℓ1

ℓ2

!5

n

∑
i=1

L (yi, XT
i β ) = −

n

∑
i=1

[yiXT
i β − log(1 + exp(XT

i β ))]

ℒ(β ) =
n

∑
i=1

L (yi, XT
i β ) + λρ(β )

(2.4)

(2.5)



2.3 Random forest 

Random forest is an ensemble method for classification and has been shown to reduce the 

variance and prevent overfitting. Given a dataset ! , we create a new dataset 

by bootstrapping, i.e., randomly sampling the examples with replacement, and then grow a 

decision tree on this new dataset. For each split, instead of going over all the features, we use a 

random subset and only run through this subset of variables to decide on which variable we split. 

We then repeat this procedure B times to grow a large number of trees, i.e., a forest. The number 

of variables randomly sampled as candidates at each split is an important hyper-parameter that 

need to be tuned carefully during the model training stage. In the case of classification, the final 

prediction of random forest is based on the majority vote of classification results in B trees. 

2.4 Gradient boosting 

Gradient boosting is a machine learning technique for regression and classification problems. It 

combines weak prediction models into a single strong learner in an iterative fashion. Typically, 

shallow decision trees are used as weak learners in the gradient boosting model. 

The gradient boosting algorithm is as follows in pseudocode: 

Given !  as training dataset, a differentiable loss function ! , and 

number of iterations ! . In the case of binary classification, the loss function is defined as  

1. Initialize model with a constant value: 

2. For m=1 to M: 

{(Xi, yi), i = 1,⋯, n}

{(xi, yi), i = 1,⋯, n} L (y, F(x))

M
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L = −
1
n

n

∑
i=1

(yilog(pi) + (1 − yi)log(1 − pi))

F0(x) = arg min
γ

n

∑
i=1

L (yi, λ)

(2.6)

(2.7)



A. Compute so-called pseudo-residuals: 

B. Fit a base learner !  to pseudo-residuals, i.e., train it using the training set 

! . 

C. Compute multiplier !  by solving the following one-dimensional optimization 

problem: 

D. Update the model: 

3. Output !  

In addition, for each gradient step, the step magnitude !  can also be multiplied by a factor 

between 0 and 1 called learning rate. Although gradient boosting model has many hyper-

parameters that need to be tuned during the training stage, the most important ones are the 

maximum tree depth, number of iterations, and learning rate.  

hm(x)

{(xi, rim), i = 1,⋯, n}

γm

FM(x)

γm
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rim = − [
∂L (yi, F(xi))

∂F(xi)
]F(x)=Fm−1(x) for i = 1,⋯, n

γm = arg min
γ

n

∑
i=1

L (yi, Fm−1(xi) + γhm(xi))

Fm(x) = Fm−1(x) + γmhm(x)

(2.8)

(2.9)
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CHAPTER 3.  Missing Value Problem And Imputation 

Algorithms 

3.1 Nature of the problem 

In statistics, missing values occur when no data value is stored for a particular variable in 

an observation. Missing data are a common problem and can have a significant effect on the 

conclusions that can be drawn from the data. By far, the most common means of dealing with 

missing data is to only include complete cases in the analysis, i.e, only keep those instances that 

have no missing data in any of the variables required for the analysis. However, results of such 

analyses can be biased if the observations with missing values differ systematically from the 

completely observed cases. Furthermore, the cumulative effect of missing data in several 

variables often leads to exclusion of a substantial proportion of the original sample, which in turn 

causes a substantial loss of information. 

The risk of bias due to missing data depends on the reasons why data are missing. Reasons for 

missing data are commonly classified as: missing completely at random (MCAR), missing at 

random (MAR), and missing not at random (MNAR) [3]. 

• Missing completely at random - There are no systematic differences between the missing 

values and the observed values. For example, blood pressure measurements may be missing 

because of breakdown of an automatic sphygmomanometer. 

• Missing at random - Any systematic difference between the missing values and the 

observed values can be explained by differences in observed data. For example, missing 

!8

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Value_(mathematics)
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Unit_of_observation#Data_point


blood pressure measurements may be lower than measured blood pressures but only 

because younger people may be more likely to have missing blood pressure measurements. 

• Missing not at random - Even after the observed data are taken into account, systematic 

differences remain between the missing values and the observed values. For example, 

people with high blood pressure may be more likely to miss clinic appointments because 

they have headaches. 

3.2 Missing value imputation 

If data are missing completely at random, then throwing out examples with missing data will not 

bias the results and inferences. However, analyses only based on complete cases may be biased 

when the data are missing at random, but not completely at random. Such biases can be 

overcome by conducting missing value imputations. Many imputation approaches have been 

studied and reported by researchers. These include replacing missing values with the mean of the 

observed values for that variable, replacing missing values with the last measured value, and 

using information from related observations. However, none of these approaches is statistically 

valid in general, and they can lead to serious bias.  

Another popular approach is to use indicator variables for missingness of categorical or 

continuous data. In particular, for categorical predictors, we can add an extra category for the 

variable indicating missingness. And for continuous predictors, the method is to include for each 

continuous predictor variable with missing values an extra indicator identifying which 

observations on that variable have missing data. Then the missing values in the partially 

observed predictor are replaced by mean. This strategy is usually appropriate for categorical data, 

but not very useful in the case of continuous data since missing values are still imputed by the 
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mean, which in turn may cause serious bias on the results. Therefore, we need a more complex 

and subtle approach to impute missing values for the continuous data. Below we introduce two 

popular and principled methods for missing value imputation. Both of these two approaches can 

handle multivariate imputations on mixed-data type. 

3.2.1 Multivariate imputation by chained equations 

Multivariate imputation by chained equations (MICE) operates under the assumption that 

missing data are missing at random. In the MICE procedure a series of models are run whereby 

each variable with missing data is modeled conditional upon the other variables in the data. 

Specifically, linear regression and predictive mean matching is used to predict continuous 

missing values, logistic regression is used for binary variable missing values, bayesian 

multinomial logistic regression is used for categorical variables with more than 2 levels, and 

proportional odds model is used for ordered categorical variables with more than 2 levels. 

The MICE steps are as follows [4]: 

1. A simple imputation, such as imputing the mean, is performed for every missing value in 

the dataset. These mean imputations can be thought of as “place holders.” 

2. The “place holder” mean imputations for one variable (“var”) are set back to missing. 

3. The observed values from the variable “var” in step 2 are regressed on the other variables 

in the imputation model, which may or may not consist of all of the variables in the 

dataset.  

4. The missing values for “var” are then replaced with predictions from the regression 

model. When “var” is subsequently used as an independent variable in the regression 

models for other variables, both the observed and these imputed values will be used. 
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5. Steps 2 through 4 are then repeated for each variable that has missing data. The cycling 

through each of the variables constitutes one iteration or “cycle.” At the end of one cycle 

all of the missing values have been replaced with predictions from regressions that reflect 

the relationships observed in the data. 

6. Steps 2 through 4 are repeated for a number of cycles, with the imputations being updated 

at each cycle. By the end of the cycles the distribution of the parameters governing the 

imputations (e.g., the coefficients in the regression models) should have converged in the 

sense of becoming stable. 

The final imputations are retained at the end of these cycles, resulting in one imputed dataset. 

3.2.2 MissForest 

As the name suggests, MissForest is an implementation of random forest algorithm. It is able to 

deal with mixed-type data and as a non-parametric method it allows for interactive and non-

linear effects. This method address the missing data problem using an iterative imputation 

scheme by training a random forest on observed values in a first step, followed by predicting the 

missing values and then proceeding iteratively [5]. 

To be more specific, we assume !  is a !  data matrix. Then for an arbitrary 

variable !  including missing values at entries ! , we can separate the dataset into 

four parts: The missing values of variable ! , denoted by ! ; The observed values of variable 

! , denoted by ! ; The variables other than !  with observations ! , denoted by ! ; And the 

variables other than !  with observations ! , denoted by ! . The algorithm begins with an 

initial guess for all missing values in !  using mean imputation. Then, sort the variables 

X = (X1, X2, ⋯, Xp) n × p

Xs i(s)
mis ⊆ {1,⋯, n}

Xs y(s)
mis

Xs y(s)
obs Xs i(s)

mis x(s)
mis

Xs i(s)
obs x(s)

obs

X
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!  according to the amount of missing values starting with the lowest amount. For 

each variable ! , the missing values are imputed by first fitting a random forest with response 

!  and predictors ! , then predicting the missing values !  by applying the trained random 

forest to ! . This imputation procedure is repeated until a stopping criterion is met. 

Xs, s = 1,⋯, p

Xs

y(s)
obs x(s)

obs y(s)
mis

x(s)
mis
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CHAPTER 4.  Class Imbalance Problem 

4.1 Nature of the problem 

Class imbalance problem typically refers to a classification problem where the classes are not 

represented equally. Generally speaking, any dataset can be considered as imbalanced dataset if 

the number of observations between classes are not equal. However, the common understanding 

of imbalanced dataset is that a dataset exhibits significant, and even extreme imbalanced [6]. As 

discussed in Chapter 1, learning from datasets with imbalanced class distribution is a difficult 

task since high accuracy can simply be achieved by just predicting all instances as the majority 

class in the imbalanced class scenario. The imbalanced nature of the data is typical of many 

applications such as medical diagnosis, credit card fraud detection, and text classification.  

4.2 Reported research solutions 

A number of solutions to the class imbalance problem are reported in the literature. These  

include the solutions at data level, algorithmic level, and cost-sensitive approach. The objective 

for methods at the data level is to rebalance the class distribution by resampling the data space. 

On the other hand, algorithmic-level approaches try to adapt existing classification algorithms, 

such as decision tree, to strengthen learning with regard to the minority class. Cost-sensitive 

learning is a type of machine learning that takes the misclassification costs into consideration. It 

assumes higher misclassification costs with samples in the minority class and the goal of this 

type of learning is to minimize the total cost. 

!13



4.2.1 Data-level approaches 

Methods at data level include different kinds of resampling, such as under-sampling, over-

sampling, and SMOTE (Synthetic Minority Over-sampling Technique). Under-sampling consists 

in removing examples in the majority class at random until the dataset is balanced, while over-

sampling randomly replicates examples in the majority class.  

SMOTE is another powerful over-sampling approach that was proposed by Nitesh V. Chawla, 

Kevin W. Bowyer, Lawrence O. Hall and W. Philip Kegelmeyer in 2002. SMOTE was originally 

designed to conquer imbalanced datasets with numerical variables only. Given a dataset with 

imbalanced class distribution, the minority class is oversampled by taking each sample in the the 

minority class and creating !  synthetic samples along with the !  minority class nearest 

neighbors [6]. To be more specific, synthetic data points are generated in the following way: 

Take a minority class sample from the imbalanced dataset and compute its !  nearest neighbors, 

then take the vector between the current data point and one of those !  neighbors, multiply this 

vector by a random number between 0 and 1, and add it to the data point under consideration. As 

for generating synthetic samples for categorical variables, one simple and straightforward 

method is to randomly pick one neighbor from its !  nearest neighbors and just assign the 

categorical feature value of that neighbor to the new synthetic sample. On the other hand, 

majority vote is another strategy for that implement more diversity into the algorithm. A couple 

of hyper-parameters need to be predefined in the algorithm: the number of synthetic samples we 

want to generate per original minority instance, and the number of neighbors we want to consider 

during the generation of each synthetic sample. 

N K

K

K

K
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Although resampling is a widely used method in dealing with the class imbalance problem, there 

are known disadvantages associated with this method. The disadvantage with under-sampling is 

that it discards potentially useful data. The main disadvantage with over-sampling is that by 

making exact copies of existing examples, it makes overfitting likely [7]. Even for SMOTE, the 

performance is still extremely dependent on the data nature and distribution. For instance, adding 

too many similar synthetic data points will also lead to the increase of the probability of 

overfitting.  

Another issue regards how to decide the optimal class distribution given a data set. A thorough 

experimental study on the effect of a training set’s class distribution on a classifier’s performance 

is conducted and the general conclusion is that, with respect to the classification performance on 

the small class, a balanced class distribution with approximate 1:1 class size ratio performs 

relatively well but is not necessarily optimal [8].  

4.2.2 Cost-sensitive learning 

Cost-sensitive classification takes the costs of different misclassification errors into consideration 

during model building. These costs can be given in a cost matrix, as shown in Table 4.1. In the 

table, !  denotes the cost of false positive, !  denotes the cost of false negative, !  

and !  are the costs of true negative and true positive respectively. In the case of class 

imbalance problem, the minority class is usually regarded as the positive class, and the cost of 

false negative is usually more expensive than that of false positive. In addition, the costs of true 

negative and true positive are usually regarded as “benefit” and set as 0. That is, making a correct 

classification usually presents 0 penalty [8,9]. 

C(1,0) C(0,1) C(0,0)

C(1,1)
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Table 4.1  Cost Matrix For Binary Classification 

Generally speaking, cost-sensitive learning techniques fall into two main categories. The first 

one is to design a specific cost-sensitive learning algorithm and directly utilize misclassification 

costs in the algorithm. Examples of this strategy include the cost-sensitive decision tree 

(Drummond and Holte, 2000; Ling et al, 2004). The cost information is used to choose the best 

split point and determine whether a subtree should be pruned.  

The other category is to design a “wrapper” that converts an existing cost-insensitive 

classification algorithm into a cost-sensitive one. This can be easily accomplished by assigning 

different weights to positive and negative instances. According to Ref. [10], given the cost matrix 

and original threshold !  as 0.5, we keep the weight for negative class as 1, then the weight for 

observations in the positive class should be 

In addition, since we usually assume there is no penalty for correct classification, the equation 

above can be further simplified as  

That is, the weight for positive class should be equal to the cost of false negative divided by the 

cost of false positive. In this paper, we use the wrapper-based approach (second one) to build 

cost-sensitive classification models on the hospital readmission dataset. 

t0

!16

Actual negative Actual positive

Predict negative C(0,0) C(0,1)

Predict positive C(1,0) C(1,1)

Wpos =
C(0,1) − C(1,1)
C(1,0) − C(0,0)

Wpos =
C(0,1)
C(1,0)

(4.1)

(4.2)



4.2.3 Neyman-Pearson classification 

Neyman-Pearson (NP) classification paradigm is designed to address the need to limit the more 

severe type of error so that it remains below a desired threshold. It provides the ability of 

probabilistic control on the errors by minimizing the less severe type of error while enforcing an 

upper bound, ! , on the more severe type of error.  A main advantage of the NP classification is 

that it is a general framework that allows users to find classifiers with the more severe type of 

error under !  with high probability. However, it can not guarantee that the less severe type of 

error is small or the overall classification error is small. To reduce the other two errors, the 

modification should be made to the classification method, e.g., replacing the logistic regression 

by Neural Network. Although the NP paradigm has a long history in hypothesis testing, it has not 

been well recognized and implemented in classification schemes, primarily because of the 

challenge on how to implement it with diverse classification algorithms. In Ref. [12], the authors 

proposed an umbrella algorithm to implement a broad class of classification methods under the 

NP paradigm, along with a visualization tool for NP classification - NP receiver operating 

characteristic (NP-ROC) bands. The NP-ROC bands can be used to choose !  in a data-adaptive 

way and compare different NP classifiers. It is important to note that the Neyman-Pearson 

classification is not a competitor of various classification methods, but an umbrella algorithm 

that is compatible with those methods. Therefore, the NP umbrella algorithm and NP-ROC bands 

together provide a flexible pipeline to implement binary classification in broad applications 

where controlling the prioritized type of error is needed. 

α

α

α
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4.3 Evaluation metrics for class imbalance problem 

Evaluation metric is a crucial measure for both the assessment of classification models and 

hyper-parameter tuning during the training stage. Traditionally, accuracy is the most common 

measure for classification problem 

where TP, FP, FN, TN are defined in the confusion matrix in Table 4.2. However, for class 

imbalance problem, accuracy is no longer a proper measure since the minority class has very 

little impact on accuracy as compared to the majority class.  

Table 4.2  Confusion Matrix 

Other traditional evaluation metrics include F1-score, G-mean, and AUC-ROC (Area Under 

Receiver Operating Characteristic Curve). F1-score can be interpreted as the harmonic mean 

between precision and recall and is a proper measure when only the performance of the positive 

class prediction is considered. 
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Accurac y =
TP + T N

TP + FP + FN + T N

F1 Score =
2 × Recall × Precision

Recall + Precision

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Predicted as positive Predicted as negative

Actually positive True positives (TP) False negatives (FN)

Actually negative False positives (FP) True negatives (TN)

(4.4)

(4.5)

(4.6)

(4.3)



G-mean is a more appropriate evaluation metric when the performance of both classes is 

concerned. It is defined as the following 

The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate 

(FPR) at various threshold settings, where the definitions of TPR and FPR are listed as below. 

The area under the ROC curve is a widely used evaluation metric in machine learning 

community for the purpose of model comparison, the higher the value is, the better classification  

performance the model has. 

In the case of cost-sensitive learning where the cost matrix is given as Table 4.1, the best metric 

for evaluating classifier performance is total misclassification cost. The formula below shows 

how we calculate the total cost, where !  is the number of false negative predictions and !  is 

the number of false positive predictions. 

Nfn Nfp
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G − mean =
TP

TP + FN
×

T N
T N + FP

TPR =
TP

TP + FN

FPR =
FP

FP + T N

Total Cost = Nfn × C(0,1) + Nfp × C(1,0)

(4.7)

(4.9)

(4.8)

(4.10)



CHAPTER 5.  Experiment 

5.1 Methodology 

As mentioned in Chapter 1, the hospital readmission dataset we use in this paper contains 

552,816 observations and 116 predictor variables, and there are two issues in the dataset we need 

to handle before building classification models: high percentage of missing values and 

imbalanced class distribution. Therefore, missing value imputations are first conducted on the 

dataset. For categorical variables with missing data, we add an extra category “unknown” in each 

variable and use it to replace missing values. For numerical variables with missing data, a second 

dummy variable is created per numeric to identify which observations on that variable have 

missing data. Then MICE is applied to impute missing values in those numerical variables. The 

binary response variable and newly created dummy variables are not included in the data matrix 

for MICE imputation. 

Next we randomly split the dataset into 3 parts, training set, validation set, and test set. The 

training set with 288,681 negative examples and 43,010 positive examples is used for model 

fitting. Hyper-parameter tuning and model comparison are conducted by using the validation set 

and test set respectively. 

The main part in this experiment is to implement resampling method and cost-sensitive learning  

separately on our hospital readmission dataset and compare which approach will yield a better 

classification performance.  

• For the resampling method, we assume the cost matrix is not known in advance. Therefore, 

according to our discussions in Section 4.2.1, SMOTE is first applied to create a new 

balanced training set (approximate 1:1 class size ratio) by generating synthetic data and 
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downsizing the majority class simultaneously on the original training set. Then three 

different classification models including LASSO logistic regression, random forest, and 

gradient boosting machine are fitted on the rebalanced training data. During the training 

stage, hyper-parameters are tuned based on the AUC-ROC value as shown in Figures 

5.1-5.3. Particularly, for each of the three classification methods, the hyper-parameter 

values that yield highest AUC on validation set are selected for the training of the final 

model. 

• In the scenario of cost-sensitive learning, the misclassification costs are known in advance 

so that we can calculate the weights for positive and negative examples separately based on 

our discussions in Section 4.2.2. According to Ref. [11], the cost matrix for hospital 

readmission is shown in Table 5.1. Assuming a weight of 1 for observations in negative 

class, then the weight for examples in positive class is calculated by equation (4.2), which 

yields a value of 7.125. Then LASSO logistic regression, random forest, and gradient 

boosting machine are fitted on the original training data but with different weights on 

positive and negative instances. During the training stage, hyper-parameters are tuned based 

on the total misclassification cost as shown in Figures 5.4-5.6. Particularly, for each of the 

three classification methods, the hyper-parameter values that yield lowest misclassification 

cost on validation set are selected for the training of the final model. 

Table 5.1  Cost Matrix For Hospital Readmission 
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Actual negative Actual positive

Predict negative $0 $5700

Predict positive $800 $0



Figure 5.1  Hyper-parameter Tuning For LASSO Logistic Regression With SMOTE 

Figure 5.2  Hyper-parameter Tuning For Random Forest With SMOTE 
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Figure 5.3  Hyper-parameter Tuning For Gradient Boosting With SMOTE 

Figure 5.4  Hyper-parameter Tuning For LASSO Logistic Regression With Cost Sensitive 

Learning 
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Figure 5.5  Hyper-parameter Tuning For Random Forest With Cost Sensitive Learning 

Figure 5.6  Hyper-parameter Tuning For Gradient Boosting With Cost Sensitive Learning 
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5.2 Results 

By far, total of six classification models have been trained. These include LASSO logistic 

regression, random forest, and gradient boosting machine fitted on the SMOTEd data, and those 

three classification models trained by using the cost-sensitive learning approach. The 

performance of these six models are compared by using ROC curve and total misclassification 

cost on the test dataset. Results are exhibited in Figures 5.7-5.14.  

In particular, the ROC curves on training and test sets for LASSO logistic regression, random 

forest, and gradient boosting machine fitted on the SMOTEd data are shown in Figures 5.7-5.9. 

Figures 5.10-5.12 plot ROC curves on training and test sets for models trained by using the cost-

sensitive learning. The AUC-ROC value and total misclassification cost on test set for each of 

the models are plotted in Figure 5.13 and Figure 5.14 respectively. 

Figure 5.7  ROC Curve For Lasso Logistic Regression With SMOTE 

!25



Figure 5.8  ROC Curve For Random Forest With SMOTE 

Figure 5.9  ROC Curve For Gradient Boosting With SMOTE 
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Figure 5.10  ROC Curve For Lasso Logistic Regression With Cost Sensitive Learning 

Figure 5.11  ROC Curve For Random Forest With Cost Sensitive Learning 
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Figure 5.12  ROC Curve For Gradient Boosting With Cost Sensitive Learning 

Figure 5.13 Model Comparison By AUC On Test Set 
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Figure 5.14 Model Comparison By Total Misclassification Cost On Test Set 
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CHAPTER 6.  Conclusions 

In this paper, six misclassification models are fitted on the hospital readmission data after 

missing value imputations. These models include LASSO logistic regression, random forest, and 

gradient boosting machine fitted on the SMOTEd data, and those three classification models 

trained by using the cost-sensitive learning approach. The performance of these six models are 

compared and displayed in Section 5.2. According to the results, we can draw conclusions as 

listed below. 

1. The classification models fitted on the SMOTEd readmission data are overfitted on the 

training set. This is clearly shown in Figures 5.7-5.9 where the AUC values on training set 

are significantly higher than that on test set. This result supports the idea that over-sampling  

methods make overfitting more likely by making exact copies or even synthetic data of 

existing examples 

2. Although there is no significant difference on the AUC value between models fitted on the 

SMOTEd data and models trained by using the cost-sensitive approach, cost-sensitive 

learning outperforms SMOTE with regard to total misclassification cost.  

3. According to the Figure 5.14, the gradient boosting model with cost-sensitive learning 

approach returns the lowest misclassification cost on test set. This model also yields one of 

the highest AUC values on the test set. 
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