
UCLA
UCLA Electronic Theses and Dissertations

Title
Imbalanced Binary Classification On Hospital Readmission Data With Missing Values

Permalink
https://escholarship.org/uc/item/5sd904v5

Author
Zhang, Hui

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5sd904v5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Imbalanced Binary Classification On Hospital Readmission Data

With Missing Values

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Applied Statistics

by

Hui Zhang

2018

© Copyright by

Hui Zhang

2018 

ABSTRACT OF THE THESIS

Imbalanced Binary Classification On Hospital Readmission Data

With Missing Values

by

Hui Zhang

Master of Applied Statistics

University of California, Los Angeles, 2018

Professor Yingnian Wu, Chair

Hospital readmission is a costly, undesirable, and often preventable patient outcome of inpatient

care. Early readmission prediction can effectively prevent life-threatening events and reduce

healthcare costs. However, imbalanced class distribution and high missing value rates are usually

associated with readmission data and need to be handled carefully before building classification

models. In this paper, we investigate the prediction of hospital readmission on a dataset with high

percentage of missing values and class imbalance problem. Different methods are applied to

impute missing values in the categorical variables and numerical variables. In addition, SMOTE

(Synthetic Minority Over-sampling Technique) and cost-sensitive learning are combined with

different classification methods (LASSO logistic regression, random forest, and gradient

!ii

boosting) to explore which one will yield the best classification performance on the readmission

data. Total misclassification cost and area under ROC curve are used as evaluation metrics for

model comparison. Our results show that the SMOTE method causes overfitting on our

readmission data and cost-sensitive learning outperforms SMOTE in terms of total

misclassification cost.  

!iii

The thesis of Hui Zhang is approved.

Nicolas Christou

Jingyi Li

Yingnian Wu, Committee Chair

University of California, Los Angeles

2018

!iv

TABLE OF CONTENTS

CHAPTER 1. Introduction 1 ...

CHAPTER 2. Common Machine Learning Methods For Binary Classification 4

2.1 Logistic regression 4 ..

2.2 Regularized logistic regression 5 ...

2.3 Random forest 6 ...

2.4 Gradient boosting 6 ..

CHAPTER 3. Missing Value Problem And Imputation Algorithms 8

3.1 Nature of the problem 8 ...

3.2 Missing value imputation 9 ...

3.2.1 Multivariate imputation by chained equations 10 ..

3.2.2 MissForest 11 ..

CHAPTER 4. Class Imbalance Problem 13 ...

4.1 Nature of the problem 13 ...

4.2 Reported research solutions 13 ..

4.2.1 Data-level approaches 14 ..

4.2.2 Cost-sensitive learning 15 ...

4.2.3 Neyman-Pearson classification 17 ..
!v

4.3 Evaluation metrics for class imbalance problem 18 ..

CHAPTER 5. Experiment 20 ...

5.1 Methodology 20 ...

5.2 Results 25 ...

CHAPTER 6. Conclusions 30 ..

References 31..

!vi

LIST OF FIGURES

Figure 5.1 Hyper-parameter Tuning For LASSO Logistic Regression With SMOTE 22

Figure 5.2 Hyper-parameter Tuning For Random Forest With SMOTE 22

Figure 5.3 Hyper-parameter Tuning For Gradient Boosting With SMOTE 23

Figure 5.4 Hyper-parameter Tuning For LASSO Logistic Regression With Cost Sensitive

Learning 23 ..

Figure 5.5 Hyper-parameter Tuning For Random Forest With Cost Sensitive Learning 24

Figure 5.6 Hyper-parameter Tuning For Gradient Boosting With Cost Sensitive Learning 24 .

Figure 5.7 ROC Curve For Lasso Logistic Regression With SMOTE 25

Figure 5.8 ROC Curve For Random Forest With SMOTE 26 ...

Figure 5.9 ROC Curve For Gradient Boosting With SMOTE 26 ...

Figure 5.10 ROC Curve For Lasso Logistic Regression With Cost Sensitive Learning 27

Figure 5.11 ROC Curve For Random Forest With Cost Sensitive Learning 27

Figure 5.12 ROC Curve For Gradient Boosting With Cost Sensitive Learning 28

Figure 5.13 Model Comparison By AUC On Test Set 28 ...

Figure 5.14 Model Comparison By Total Misclassification Cost On Test Set 29.......................

!vii

LIST OF TABLES

Table 4.1 Cost matrix for binary classification 16 ..

Table 4.2 Confusion Matrix 18 ...

Table 5.1 Cost Matrix For Hospital Readmission 21...

!viii

CHAPTER 1. Introduction

Classification is one of the most common and important tasks in machine learning. A classifier

can be learned from a set of training samples with predefined class labels, and can be used to

predict new observations into said classes. The class label is usually discrete and finite, and the

problem is known as binary classification when there are only two classes. Many classification

modeling algorithms, such as logistic regression, decision tree, random forest, gradient boosting,

support vector machine, and neural network, have been well developed and successfully applied

to many application domains.

In this paper, we propose to develop, validate and assess classification algorithms that predict

hospital readmission for individual patients. A hospital readmission is defined as admission to a

hospital within a specified time frame after being discharged. Different time frames such as 30-

day, 90-day, and 1-year readmissions have been used for research purposes. Readmission is a

costly, undesirable, and often preventable patient outcome of inpatient care. High readmission

rate reflects relatively low quality and also has negative social impacts on the patients and on the

hospital. Nearly 20 percent of hospital patients are readmitted within 30 days of discharge, a $35

billion problem for both patients and the healthcare system. Avoidable readmissions account for

around $17 billion a year [1]. In the hope of reducing hospital readmission rates, federal

government is penalizing hospital based on 30-day readmissions being over certain standard

rates. Therefore, 30-day readmission has become an important indicator for evaluating the

healthcare effectiveness of a hospital.

The dataset we use in this paper is provided by Providence Health. It contains 552,816

observations and 116 predictor variables. The response variable READMITIN30DAYS is a binary

!1

variable with values 0 or 1 for each instance, 1 represents the discharged patient was readmitted

within 30 days after the original admission, and 0 means the opposite. Although we have more

than enough examples and predictors to train binary classification models, there are two main

issues in this dataset: high percentage of missing values and imbalanced class distribution. In

particular, the missing rates for some variables are even higher than 60%, and only 13.5% of the

observations will be included in the analysis if we only use complete cases. For binary

classification problem, imbalanced class distribution is characterized as having many more

instances of one class (majority class) than the other (minority class). In the readmission dataset,

approximate 87% of the examples are labeled as negative class, and 13% of the examples are

labeled as positive class.

The impact of missing data can be serious, leading to loss of information, biased estimates of

parameters, increased standard errors, and weakened generalizability of findings. Learning from

datasets with imbalanced class distribution is also a difficult task since most learning algorithms

are not designed to cope with a large difference between the number of cases belonging to

different classes [2]. Standard classification algorithms usually perform poorly on imbalanced

datasets because they focus on maximizing the overall classification accuracy, but in the

imbalanced class scenario, high accuracy can simply be achieved by just predicting all instances

as the majority class. Consequently, test samples belonging to the minority class are

misclassified more often than those belonging to the majority class.

The rest of the paper is organized as follows. Following the introduction, Chapter 2 introduces

some machine learning algorithms that are most commonly used for binary classification,

including LASSO logistic regression, random forest, and gradient boosting. Chapter 3 provides a

!2

thorough discussion on the missing value problem and imputation algorithms. Chapter 4 presents

a comprehensive study on the class imbalance problem, including the nature of the problem,

resampling and cost-sensitive learning approaches as solutions to the class imbalance problem,

and proper evaluation measures for classification with class imbalance problem. Chapter 5

analyzes and compares the performance of resampling and cost-sensitive learning methods on

our readmission dataset, and reports our experimental results.

!3

CHAPTER 2. Common Machine Learning Methods For Binary

Classification

2.1 Logistic regression

The logistic regression model is one of the most common methods used to estimate the

probability of a binary response based on input data. The key idea for logistic regression is as

follows: Consider a dataset with n training examples, where ! consists of p

predictors, ! is the outcome or class label. The model parameter is

! . In the logistic regression, we assume ! , i.e.,

! , and we assume

Then we have

where the sigmoid function is the inverse of the logit function. By default, a threshold of 0.5 is

used to decide the predicted label of a new observation. Therefore, the final prediction is !

if and only if ! .

For logistic regression, in order to learn ! from the training examples, we usually maximize the

likelihood function, which is

That is, we want to find ! to maximize the probability of the observed ! given ! . The maximum

likelihood estimate gives the most plausible explanation to the observed data. For ! ,

XT
i = (xi1, ⋯, xip)

yi ∈ {0,1}

β = (β0, β1, β2, ⋯, βp)T yi ∼ Ber noulli(pi)

P(yi = 1 |Xi, β) = pi

̂yi = 1

P(yi = 1 |Xi, β) > 0.5

β

β yi Xi

yi ∈ {0,1}
!4

pi = sigmoid(XT
i β) =

exp(XT
i β)

1 + exp(XT
i β)

=
1

1 + exp(−XT
i β)

logit (pi) = log
pi

1 − pi
= XT

i β

n

∏
i=1

P(yi |Xi, β)

(2.1)

(2.2)

(2.3)

one can find that the log-likelihood is ! .

And the loss function is defined as the negative log-likelihood

Then we just need to find the ! that minimize the loss function, which is the same as maximizing

the log-likelihood.

2.2 Regularized logistic regression

Regularized logistic regression is usually used when we have many parameters to estimate, i.e., !

is a high dimensional vector. In this case, we need to regularize ! by adding a penalty term to the

logistic loss function as the following equation

where ! is a regularization function and ! is a regularization constant to be carefully tuned

using a validation set or cross-validation. Popular choices of ! include (1) ! regularization,

where ! , which is the sum of the absolute values of the components of ! . (2) !

regularization, where ! , which is the sum of squares of the components of ! . A

regression model that uses ! regularization technique is called LASSO (least absolute shrinkage

and selection operator) Regression and model which uses ! regularization is called Ridge

Regression. In the case of ridge regression, the effect of the penalty term is to shrink the

coefficients that contribute most to the error. In contrast, in the case of LASSO regression, the

effect of the penalty term is to set these coefficients exactly to zero.

n

∑
i=1

logP(yi |Xi, β) =
n

∑
i=1

[yiXT
i β − log(1 + exp(XT

i β))]

β

β

β

ρ(β) λ

ρ(β) ℓ1

ρ(β) = ∥β∥ℓ1 β ℓ2

ρ(β) = ∥β∥2
ℓ2 β

ℓ1

ℓ2

!5

n

∑
i=1

L (yi, XT
i β) = −

n

∑
i=1

[yiXT
i β − log(1 + exp(XT

i β))]

ℒ(β) =
n

∑
i=1

L (yi, XT
i β) + λρ(β)

(2.4)

(2.5)

2.3 Random forest

Random forest is an ensemble method for classification and has been shown to reduce the

variance and prevent overfitting. Given a dataset ! , we create a new dataset

by bootstrapping, i.e., randomly sampling the examples with replacement, and then grow a

decision tree on this new dataset. For each split, instead of going over all the features, we use a

random subset and only run through this subset of variables to decide on which variable we split.

We then repeat this procedure B times to grow a large number of trees, i.e., a forest. The number

of variables randomly sampled as candidates at each split is an important hyper-parameter that

need to be tuned carefully during the model training stage. In the case of classification, the final

prediction of random forest is based on the majority vote of classification results in B trees.

2.4 Gradient boosting

Gradient boosting is a machine learning technique for regression and classification problems. It

combines weak prediction models into a single strong learner in an iterative fashion. Typically,

shallow decision trees are used as weak learners in the gradient boosting model.

The gradient boosting algorithm is as follows in pseudocode:

Given ! as training dataset, a differentiable loss function ! , and

number of iterations ! . In the case of binary classification, the loss function is defined as

1. Initialize model with a constant value:

2. For m=1 to M:

{(Xi, yi), i = 1,⋯, n}

{(xi, yi), i = 1,⋯, n} L (y, F(x))

M

!6

L = −
1
n

n

∑
i=1

(yilog(pi) + (1 − yi)log(1 − pi))

F0(x) = arg min
γ

n

∑
i=1

L (yi, λ)

(2.6)

(2.7)

A. Compute so-called pseudo-residuals:

B. Fit a base learner ! to pseudo-residuals, i.e., train it using the training set

! .

C. Compute multiplier ! by solving the following one-dimensional optimization

problem:

D. Update the model:

3. Output !

In addition, for each gradient step, the step magnitude ! can also be multiplied by a factor

between 0 and 1 called learning rate. Although gradient boosting model has many hyper-

parameters that need to be tuned during the training stage, the most important ones are the

maximum tree depth, number of iterations, and learning rate.

hm(x)

{(xi, rim), i = 1,⋯, n}

γm

FM(x)

γm

!7

rim = − [
∂L (yi, F(xi))

∂F(xi)
]F(x)=Fm−1(x) for i = 1,⋯, n

γm = arg min
γ

n

∑
i=1

L (yi, Fm−1(xi) + γhm(xi))

Fm(x) = Fm−1(x) + γmhm(x)

(2.8)

(2.9)

(2.10)

CHAPTER 3. Missing Value Problem And Imputation

Algorithms

3.1 Nature of the problem

In statistics, missing values occur when no data value is stored for a particular variable in

an observation. Missing data are a common problem and can have a significant effect on the

conclusions that can be drawn from the data. By far, the most common means of dealing with

missing data is to only include complete cases in the analysis, i.e, only keep those instances that

have no missing data in any of the variables required for the analysis. However, results of such

analyses can be biased if the observations with missing values differ systematically from the

completely observed cases. Furthermore, the cumulative effect of missing data in several

variables often leads to exclusion of a substantial proportion of the original sample, which in turn

causes a substantial loss of information.

The risk of bias due to missing data depends on the reasons why data are missing. Reasons for

missing data are commonly classified as: missing completely at random (MCAR), missing at

random (MAR), and missing not at random (MNAR) [3].

• Missing completely at random - There are no systematic differences between the missing

values and the observed values. For example, blood pressure measurements may be missing

because of breakdown of an automatic sphygmomanometer.

• Missing at random - Any systematic difference between the missing values and the

observed values can be explained by differences in observed data. For example, missing

!8

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Value_(mathematics)
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Unit_of_observation#Data_point

blood pressure measurements may be lower than measured blood pressures but only

because younger people may be more likely to have missing blood pressure measurements.

• Missing not at random - Even after the observed data are taken into account, systematic

differences remain between the missing values and the observed values. For example,

people with high blood pressure may be more likely to miss clinic appointments because

they have headaches.

3.2 Missing value imputation

If data are missing completely at random, then throwing out examples with missing data will not

bias the results and inferences. However, analyses only based on complete cases may be biased

when the data are missing at random, but not completely at random. Such biases can be

overcome by conducting missing value imputations. Many imputation approaches have been

studied and reported by researchers. These include replacing missing values with the mean of the

observed values for that variable, replacing missing values with the last measured value, and

using information from related observations. However, none of these approaches is statistically

valid in general, and they can lead to serious bias.

Another popular approach is to use indicator variables for missingness of categorical or

continuous data. In particular, for categorical predictors, we can add an extra category for the

variable indicating missingness. And for continuous predictors, the method is to include for each

continuous predictor variable with missing values an extra indicator identifying which

observations on that variable have missing data. Then the missing values in the partially

observed predictor are replaced by mean. This strategy is usually appropriate for categorical data,

but not very useful in the case of continuous data since missing values are still imputed by the

!9

mean, which in turn may cause serious bias on the results. Therefore, we need a more complex

and subtle approach to impute missing values for the continuous data. Below we introduce two

popular and principled methods for missing value imputation. Both of these two approaches can

handle multivariate imputations on mixed-data type.

3.2.1 Multivariate imputation by chained equations

Multivariate imputation by chained equations (MICE) operates under the assumption that

missing data are missing at random. In the MICE procedure a series of models are run whereby

each variable with missing data is modeled conditional upon the other variables in the data.

Specifically, linear regression and predictive mean matching is used to predict continuous

missing values, logistic regression is used for binary variable missing values, bayesian

multinomial logistic regression is used for categorical variables with more than 2 levels, and

proportional odds model is used for ordered categorical variables with more than 2 levels.

The MICE steps are as follows [4]:

1. A simple imputation, such as imputing the mean, is performed for every missing value in

the dataset. These mean imputations can be thought of as “place holders.”

2. The “place holder” mean imputations for one variable (“var”) are set back to missing.

3. The observed values from the variable “var” in step 2 are regressed on the other variables

in the imputation model, which may or may not consist of all of the variables in the

dataset.

4. The missing values for “var” are then replaced with predictions from the regression

model. When “var” is subsequently used as an independent variable in the regression

models for other variables, both the observed and these imputed values will be used.

!10

5. Steps 2 through 4 are then repeated for each variable that has missing data. The cycling

through each of the variables constitutes one iteration or “cycle.” At the end of one cycle

all of the missing values have been replaced with predictions from regressions that reflect

the relationships observed in the data.

6. Steps 2 through 4 are repeated for a number of cycles, with the imputations being updated

at each cycle. By the end of the cycles the distribution of the parameters governing the

imputations (e.g., the coefficients in the regression models) should have converged in the

sense of becoming stable.

The final imputations are retained at the end of these cycles, resulting in one imputed dataset.

3.2.2 MissForest

As the name suggests, MissForest is an implementation of random forest algorithm. It is able to

deal with mixed-type data and as a non-parametric method it allows for interactive and non-

linear effects. This method address the missing data problem using an iterative imputation

scheme by training a random forest on observed values in a first step, followed by predicting the

missing values and then proceeding iteratively [5].

To be more specific, we assume ! is a ! data matrix. Then for an arbitrary

variable ! including missing values at entries ! , we can separate the dataset into

four parts: The missing values of variable ! , denoted by ! ; The observed values of variable

! , denoted by ! ; The variables other than ! with observations ! , denoted by ! ; And the

variables other than ! with observations ! , denoted by ! . The algorithm begins with an

initial guess for all missing values in ! using mean imputation. Then, sort the variables

X = (X1, X2, ⋯, Xp) n × p

Xs i(s)
mis ⊆ {1,⋯, n}

Xs y(s)
mis

Xs y(s)
obs Xs i(s)

mis x(s)
mis

Xs i(s)
obs x(s)

obs

X

!11

https://www.analyticsvidhya.com/blog/2015/09/random-forest-algorithm-multiple-challenges/

! according to the amount of missing values starting with the lowest amount. For

each variable ! , the missing values are imputed by first fitting a random forest with response

! and predictors ! , then predicting the missing values ! by applying the trained random

forest to ! . This imputation procedure is repeated until a stopping criterion is met.

Xs, s = 1,⋯, p

Xs

y(s)
obs x(s)

obs y(s)
mis

x(s)
mis

!12

CHAPTER 4. Class Imbalance Problem

4.1 Nature of the problem

Class imbalance problem typically refers to a classification problem where the classes are not

represented equally. Generally speaking, any dataset can be considered as imbalanced dataset if

the number of observations between classes are not equal. However, the common understanding

of imbalanced dataset is that a dataset exhibits significant, and even extreme imbalanced [6]. As

discussed in Chapter 1, learning from datasets with imbalanced class distribution is a difficult

task since high accuracy can simply be achieved by just predicting all instances as the majority

class in the imbalanced class scenario. The imbalanced nature of the data is typical of many

applications such as medical diagnosis, credit card fraud detection, and text classification.

4.2 Reported research solutions

A number of solutions to the class imbalance problem are reported in the literature. These

include the solutions at data level, algorithmic level, and cost-sensitive approach. The objective

for methods at the data level is to rebalance the class distribution by resampling the data space.

On the other hand, algorithmic-level approaches try to adapt existing classification algorithms,

such as decision tree, to strengthen learning with regard to the minority class. Cost-sensitive

learning is a type of machine learning that takes the misclassification costs into consideration. It

assumes higher misclassification costs with samples in the minority class and the goal of this

type of learning is to minimize the total cost.

!13

4.2.1 Data-level approaches

Methods at data level include different kinds of resampling, such as under-sampling, over-

sampling, and SMOTE (Synthetic Minority Over-sampling Technique). Under-sampling consists

in removing examples in the majority class at random until the dataset is balanced, while over-

sampling randomly replicates examples in the majority class.

SMOTE is another powerful over-sampling approach that was proposed by Nitesh V. Chawla,

Kevin W. Bowyer, Lawrence O. Hall and W. Philip Kegelmeyer in 2002. SMOTE was originally

designed to conquer imbalanced datasets with numerical variables only. Given a dataset with

imbalanced class distribution, the minority class is oversampled by taking each sample in the the

minority class and creating ! synthetic samples along with the ! minority class nearest

neighbors [6]. To be more specific, synthetic data points are generated in the following way:

Take a minority class sample from the imbalanced dataset and compute its ! nearest neighbors,

then take the vector between the current data point and one of those ! neighbors, multiply this

vector by a random number between 0 and 1, and add it to the data point under consideration. As

for generating synthetic samples for categorical variables, one simple and straightforward

method is to randomly pick one neighbor from its ! nearest neighbors and just assign the

categorical feature value of that neighbor to the new synthetic sample. On the other hand,

majority vote is another strategy for that implement more diversity into the algorithm. A couple

of hyper-parameters need to be predefined in the algorithm: the number of synthetic samples we

want to generate per original minority instance, and the number of neighbors we want to consider

during the generation of each synthetic sample.

N K

K

K

K

!14

Although resampling is a widely used method in dealing with the class imbalance problem, there

are known disadvantages associated with this method. The disadvantage with under-sampling is

that it discards potentially useful data. The main disadvantage with over-sampling is that by

making exact copies of existing examples, it makes overfitting likely [7]. Even for SMOTE, the

performance is still extremely dependent on the data nature and distribution. For instance, adding

too many similar synthetic data points will also lead to the increase of the probability of

overfitting.

Another issue regards how to decide the optimal class distribution given a data set. A thorough

experimental study on the effect of a training set’s class distribution on a classifier’s performance

is conducted and the general conclusion is that, with respect to the classification performance on

the small class, a balanced class distribution with approximate 1:1 class size ratio performs

relatively well but is not necessarily optimal [8].

4.2.2 Cost-sensitive learning

Cost-sensitive classification takes the costs of different misclassification errors into consideration

during model building. These costs can be given in a cost matrix, as shown in Table 4.1. In the

table, ! denotes the cost of false positive, ! denotes the cost of false negative, !

and ! are the costs of true negative and true positive respectively. In the case of class

imbalance problem, the minority class is usually regarded as the positive class, and the cost of

false negative is usually more expensive than that of false positive. In addition, the costs of true

negative and true positive are usually regarded as “benefit” and set as 0. That is, making a correct

classification usually presents 0 penalty [8,9].

C(1,0) C(0,1) C(0,0)

C(1,1)

!15

Table 4.1 Cost Matrix For Binary Classification

Generally speaking, cost-sensitive learning techniques fall into two main categories. The first

one is to design a specific cost-sensitive learning algorithm and directly utilize misclassification

costs in the algorithm. Examples of this strategy include the cost-sensitive decision tree

(Drummond and Holte, 2000; Ling et al, 2004). The cost information is used to choose the best

split point and determine whether a subtree should be pruned.

The other category is to design a “wrapper” that converts an existing cost-insensitive

classification algorithm into a cost-sensitive one. This can be easily accomplished by assigning

different weights to positive and negative instances. According to Ref. [10], given the cost matrix

and original threshold ! as 0.5, we keep the weight for negative class as 1, then the weight for

observations in the positive class should be

In addition, since we usually assume there is no penalty for correct classification, the equation

above can be further simplified as

That is, the weight for positive class should be equal to the cost of false negative divided by the

cost of false positive. In this paper, we use the wrapper-based approach (second one) to build

cost-sensitive classification models on the hospital readmission dataset.

t0

!16

Actual negative Actual positive

Predict negative C(0,0) C(0,1)

Predict positive C(1,0) C(1,1)

Wpos =
C(0,1) − C(1,1)
C(1,0) − C(0,0)

Wpos =
C(0,1)
C(1,0)

(4.1)

(4.2)

4.2.3 Neyman-Pearson classification

Neyman-Pearson (NP) classification paradigm is designed to address the need to limit the more

severe type of error so that it remains below a desired threshold. It provides the ability of

probabilistic control on the errors by minimizing the less severe type of error while enforcing an

upper bound, ! , on the more severe type of error. A main advantage of the NP classification is

that it is a general framework that allows users to find classifiers with the more severe type of

error under ! with high probability. However, it can not guarantee that the less severe type of

error is small or the overall classification error is small. To reduce the other two errors, the

modification should be made to the classification method, e.g., replacing the logistic regression

by Neural Network. Although the NP paradigm has a long history in hypothesis testing, it has not

been well recognized and implemented in classification schemes, primarily because of the

challenge on how to implement it with diverse classification algorithms. In Ref. [12], the authors

proposed an umbrella algorithm to implement a broad class of classification methods under the

NP paradigm, along with a visualization tool for NP classification - NP receiver operating

characteristic (NP-ROC) bands. The NP-ROC bands can be used to choose ! in a data-adaptive

way and compare different NP classifiers. It is important to note that the Neyman-Pearson

classification is not a competitor of various classification methods, but an umbrella algorithm

that is compatible with those methods. Therefore, the NP umbrella algorithm and NP-ROC bands

together provide a flexible pipeline to implement binary classification in broad applications

where controlling the prioritized type of error is needed.

α

α

α

!17

4.3 Evaluation metrics for class imbalance problem

Evaluation metric is a crucial measure for both the assessment of classification models and

hyper-parameter tuning during the training stage. Traditionally, accuracy is the most common

measure for classification problem

where TP, FP, FN, TN are defined in the confusion matrix in Table 4.2. However, for class

imbalance problem, accuracy is no longer a proper measure since the minority class has very

little impact on accuracy as compared to the majority class.

Table 4.2 Confusion Matrix

Other traditional evaluation metrics include F1-score, G-mean, and AUC-ROC (Area Under

Receiver Operating Characteristic Curve). F1-score can be interpreted as the harmonic mean

between precision and recall and is a proper measure when only the performance of the positive

class prediction is considered.

!18

Accurac y =
TP + T N

TP + FP + FN + T N

F1 Score =
2 × Recall × Precision

Recall + Precision

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Predicted as positive Predicted as negative

Actually positive True positives (TP) False negatives (FN)

Actually negative False positives (FP) True negatives (TN)

(4.4)

(4.5)

(4.6)

(4.3)

G-mean is a more appropriate evaluation metric when the performance of both classes is

concerned. It is defined as the following

The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate

(FPR) at various threshold settings, where the definitions of TPR and FPR are listed as below.

The area under the ROC curve is a widely used evaluation metric in machine learning

community for the purpose of model comparison, the higher the value is, the better classification

performance the model has.

In the case of cost-sensitive learning where the cost matrix is given as Table 4.1, the best metric

for evaluating classifier performance is total misclassification cost. The formula below shows

how we calculate the total cost, where ! is the number of false negative predictions and ! is

the number of false positive predictions.

Nfn Nfp

!19

G − mean =
TP

TP + FN
×

T N
T N + FP

TPR =
TP

TP + FN

FPR =
FP

FP + T N

Total Cost = Nfn × C(0,1) + Nfp × C(1,0)

(4.7)

(4.9)

(4.8)

(4.10)

CHAPTER 5. Experiment

5.1 Methodology

As mentioned in Chapter 1, the hospital readmission dataset we use in this paper contains

552,816 observations and 116 predictor variables, and there are two issues in the dataset we need

to handle before building classification models: high percentage of missing values and

imbalanced class distribution. Therefore, missing value imputations are first conducted on the

dataset. For categorical variables with missing data, we add an extra category “unknown” in each

variable and use it to replace missing values. For numerical variables with missing data, a second

dummy variable is created per numeric to identify which observations on that variable have

missing data. Then MICE is applied to impute missing values in those numerical variables. The

binary response variable and newly created dummy variables are not included in the data matrix

for MICE imputation.

Next we randomly split the dataset into 3 parts, training set, validation set, and test set. The

training set with 288,681 negative examples and 43,010 positive examples is used for model

fitting. Hyper-parameter tuning and model comparison are conducted by using the validation set

and test set respectively.

The main part in this experiment is to implement resampling method and cost-sensitive learning

separately on our hospital readmission dataset and compare which approach will yield a better

classification performance.

• For the resampling method, we assume the cost matrix is not known in advance. Therefore,

according to our discussions in Section 4.2.1, SMOTE is first applied to create a new

balanced training set (approximate 1:1 class size ratio) by generating synthetic data and
!20

downsizing the majority class simultaneously on the original training set. Then three

different classification models including LASSO logistic regression, random forest, and

gradient boosting machine are fitted on the rebalanced training data. During the training

stage, hyper-parameters are tuned based on the AUC-ROC value as shown in Figures

5.1-5.3. Particularly, for each of the three classification methods, the hyper-parameter

values that yield highest AUC on validation set are selected for the training of the final

model.

• In the scenario of cost-sensitive learning, the misclassification costs are known in advance

so that we can calculate the weights for positive and negative examples separately based on

our discussions in Section 4.2.2. According to Ref. [11], the cost matrix for hospital

readmission is shown in Table 5.1. Assuming a weight of 1 for observations in negative

class, then the weight for examples in positive class is calculated by equation (4.2), which

yields a value of 7.125. Then LASSO logistic regression, random forest, and gradient

boosting machine are fitted on the original training data but with different weights on

positive and negative instances. During the training stage, hyper-parameters are tuned based

on the total misclassification cost as shown in Figures 5.4-5.6. Particularly, for each of the

three classification methods, the hyper-parameter values that yield lowest misclassification

cost on validation set are selected for the training of the final model.

Table 5.1 Cost Matrix For Hospital Readmission

!21

Actual negative Actual positive

Predict negative $0 $5700

Predict positive $800 $0

Figure 5.1 Hyper-parameter Tuning For LASSO Logistic Regression With SMOTE

Figure 5.2 Hyper-parameter Tuning For Random Forest With SMOTE

!22

Figure 5.3 Hyper-parameter Tuning For Gradient Boosting With SMOTE

Figure 5.4 Hyper-parameter Tuning For LASSO Logistic Regression With Cost Sensitive

Learning

!23

Figure 5.5 Hyper-parameter Tuning For Random Forest With Cost Sensitive Learning

Figure 5.6 Hyper-parameter Tuning For Gradient Boosting With Cost Sensitive Learning

!24

5.2 Results

By far, total of six classification models have been trained. These include LASSO logistic

regression, random forest, and gradient boosting machine fitted on the SMOTEd data, and those

three classification models trained by using the cost-sensitive learning approach. The

performance of these six models are compared by using ROC curve and total misclassification

cost on the test dataset. Results are exhibited in Figures 5.7-5.14.

In particular, the ROC curves on training and test sets for LASSO logistic regression, random

forest, and gradient boosting machine fitted on the SMOTEd data are shown in Figures 5.7-5.9.

Figures 5.10-5.12 plot ROC curves on training and test sets for models trained by using the cost-

sensitive learning. The AUC-ROC value and total misclassification cost on test set for each of

the models are plotted in Figure 5.13 and Figure 5.14 respectively.

Figure 5.7 ROC Curve For Lasso Logistic Regression With SMOTE

!25

Figure 5.8 ROC Curve For Random Forest With SMOTE

Figure 5.9 ROC Curve For Gradient Boosting With SMOTE

!26

Figure 5.10 ROC Curve For Lasso Logistic Regression With Cost Sensitive Learning

Figure 5.11 ROC Curve For Random Forest With Cost Sensitive Learning

!27

Figure 5.12 ROC Curve For Gradient Boosting With Cost Sensitive Learning

Figure 5.13 Model Comparison By AUC On Test Set

!28

Figure 5.14 Model Comparison By Total Misclassification Cost On Test Set

!29

CHAPTER 6. Conclusions

In this paper, six misclassification models are fitted on the hospital readmission data after

missing value imputations. These models include LASSO logistic regression, random forest, and

gradient boosting machine fitted on the SMOTEd data, and those three classification models

trained by using the cost-sensitive learning approach. The performance of these six models are

compared and displayed in Section 5.2. According to the results, we can draw conclusions as

listed below.

1. The classification models fitted on the SMOTEd readmission data are overfitted on the

training set. This is clearly shown in Figures 5.7-5.9 where the AUC values on training set

are significantly higher than that on test set. This result supports the idea that over-sampling

methods make overfitting more likely by making exact copies or even synthetic data of

existing examples

2. Although there is no significant difference on the AUC value between models fitted on the

SMOTEd data and models trained by using the cost-sensitive approach, cost-sensitive

learning outperforms SMOTE with regard to total misclassification cost.

3. According to the Figure 5.14, the gradient boosting model with cost-sensitive learning

approach returns the lowest misclassification cost on test set. This model also yields one of

the highest AUC values on the test set.

!30

References

[1] H. Wang, Z. Cui, Y. Chen, M. Avidan, A. B. Abdallah and A. Kronzer (2018). Predicting

Hospital Readmission via Cost-sensitive Deep Learning. IEEE/ACM Transactions on

Computational Biology and Bioinformatics. doi:10.1109/TCBB.2018.2827029

[2] Dal Pozzolo, Andrea & Caelen, Olivier & Waterschoot, Serge & Bontempi, Gianluca (2013).

Racing for Unbalanced Methods Selection. Intelligent Data Engineering and Automated

Learning - IDEAL 2013: 14th International Conference, IDEAL 2013, Hefei, China, October

20-23, 2013. Proceedings. 8206. doi:10.1007/978-3-642-41278-3_4

[3] Sterne JAC, White IR, Carlin JB, et al. (2009). Multiple imputation for missing data in

epidemiological and clinical research: potential and pitfalls. The BMJ. 2009;338:b2393. doi:

10.1136/bmj.b2393.

[4] Azur MJ, Stuart EA, Frangakis C, Leaf PJ. (2011). Multiple Imputation by Chained

Equations: What is it and how does it work? International journal of methods in psychiatric

research. 2011;20(1):40-49. doi:10.1002/mpr.329.

[5] Daniel J. Stekhoven, Peter Bühlmann (2012). MissForest—non-parametric missing value

imputation for mixed-type data, Bioinformatics, Volume 28, Issue 1, 1 January 2012, Pages 112–

118. https://doi.org/10.1093/bioinformatics/btr597

[6] Gao, Tianxiang (2015). Hybrid classification approach for imbalanced datasets. Graduate

Theses and Dissertations. 14331. https://lib.dr.iastate.edu/etd/14331

[7] Weiss, G.M., McCarthy, K., & Zabar, B. (2007). Cost-Sensitive Learning vs. Sampling:

Which is Best for Handling Unbalanced Classes with Unequal Error Costs? DMIN.

!31

https://doi.org/10.1093/bioinformatics/btr597
https://lib.dr.iastate.edu/etd/14331

[8] Yanmin Sun, Mohamed S. Kamel, Andrew K.C. Wong, Yang Wang (2007). Cost-sensitive

boosting for classification of imbalanced data. Pattern Recognition, Volume 40, Issue 12,

December 2007, Pages 3358-3378. https://doi.org/10.1016/j.patcog.2007.04.009

[9] N. Thai-Nghe, Z. Gantner and L. Schmidt-Thieme (2010). Cost-sensitive learning methods

for imbalanced data. The 2010 International Joint Conference on Neural Networks (IJCNN),

Barcelona, 2010, pp. 1-8. doi: 10.1109/IJCNN.2010.5596486

[10] Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,

Giuseppe Casalicchio, Zachary M. Jones (2016). mlr: Machine Learning in R. Journal of

Machine Learning Research. 17(170):1-5, 2016.

[11] The Cost of a Hospital Readmission (2016). Retrieved from https://www.speechmed.com/

cost-hospital-readmission

[12] Xin Tong, Yang Feng, Jingyi Jessica Li (2018). Neyman-Pearson classification algorithms

and NP receiver operating characteristics. Science Advances, Vol. 4, no. 2, February 2018.

https://doi.org/10.1126/sciadv.aao1659

!32

https://doi.org/10.1016/j.patcog.2007.04.009
https://www.speechmed.com/cost-hospital-readmission
https://www.speechmed.com/cost-hospital-readmission
https://doi.org/10.1126/sciadv.aao1659

	CHAPTER 1. Introduction
	CHAPTER 2. Common Machine Learning Methods For Binary Classification
	2.1 Logistic regression
	2.2 Regularized logistic regression
	2.3 Random forest
	2.4 Gradient boosting
	CHAPTER 3. Missing Value Problem And Imputation Algorithms
	3.1 Nature of the problem
	3.2 Missing value imputation
	3.2.1 Multivariate imputation by chained equations
	3.2.2 MissForest
	CHAPTER 4. Class Imbalance Problem
	4.1 Nature of the problem
	4.2 Reported research solutions
	4.2.1 Data-level approaches
	4.2.2 Cost-sensitive learning
	Table 4.1 Cost matrix for binary classification
	4.2.3 Neyman-Pearson classification
	4.3 Evaluation metrics for class imbalance problem
	Table 4.2 Confusion Matrix
	CHAPTER 5. Experiment
	5.1 Methodology
	Table 5.1 Cost Matrix For Hospital Readmission
	Figure 5.1 Hyper-parameter Tuning For LASSO Logistic Regression With SMOTE
	Figure 5.2 Hyper-parameter Tuning For Random Forest With SMOTE
	Figure 5.3 Hyper-parameter Tuning For Gradient Boosting With SMOTE
	Figure 5.4 Hyper-parameter Tuning For LASSO Logistic Regression With Cost Sensitive Learning
	Figure 5.5 Hyper-parameter Tuning For Random Forest With Cost Sensitive Learning
	Figure 5.6 Hyper-parameter Tuning For Gradient Boosting With Cost Sensitive Learning
	5.2 Results
	Figure 5.7 ROC Curve For Lasso Logistic Regression With SMOTE
	Figure 5.8 ROC Curve For Random Forest With SMOTE
	Figure 5.9 ROC Curve For Gradient Boosting With SMOTE
	Figure 5.10 ROC Curve For Lasso Logistic Regression With Cost Sensitive Learning
	Figure 5.11 ROC Curve For Random Forest With Cost Sensitive Learning
	Figure 5.12 ROC Curve For Gradient Boosting With Cost Sensitive Learning
	Figure 5.13 Model Comparison By AUC On Test Set
	Figure 5.14 Model Comparison By Total Misclassification Cost On Test Set
	CHAPTER 6. Conclusions
	References

