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Abstract

Wearable sensors hold great potential in empowering personalized health monitoring, predictive
analytics,  and  timely  intervention  toward  personalized  healthcare.  Advances  in  flexible
electronics, material sciences, and electrochemistry have spurred the development of wearable
sweat sensors that enable the continuous and noninvasive screening of analytes indicative of
health  status.  Existing  major  challenges  in  wearable  sensors  include:  improving  the  sweat
extraction and sweat sensing capabilities, improving the form factor of the wearable device for
minimal discomfort and reliable measurements when worn, and understanding the clinical value
of sweat analytes toward biomarker discovery. This review provides a comprehensive review of
wearable  sweat  sensors  and  outlines  state-of-the-art  technologies  and  research  that  strive  to
bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and
approaches for sweat induction and sampling are introduced. Additionally, design considerations
for the system-level development of wearable sweat sensing devices, spanning from strategies
for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore,
the applications, data analytics, commercialization efforts, challenges, and prospects of wearable
sweat sensors for precision medicine are discussed.
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1. Introduction

Wearable sensors hold the promise of providing noninvasive and continuous insight into the
biochemical landscape of our body.1–7 From their simple origin as pedometers, wearable sensors
have  evolved  tremendously  into  the  more  complex  field  of  health  monitoring.  Fueled  by
increasing urbanization, improved lifestyle, and increasing awareness toward health and safety,
the  wearable  sensor  industry  has  witnessed  an  exponential  growth  in  the  demand  for
technologies that offer continuous health monitoring in the past decade.8 Current state-of-the-art
commercialized  wearable  devices  primarily  focus  on  monitoring  biophysical  signals
(temperature, heartrate) that indicate the physical manifestations of an underlying health state or
condition which constrain the application of these devices within well-being services. Owing to
the complexity and multidimensional nature of various diseases, deeper, multiplexed information
acquired at the molecular level is needed before wearable sensors can be adopted for disease
monitoring. From smart watches to e-skins, innovations in wearable sweat sensors promise to
address this technological gap by expanding the biometrics accessible non-invasively through the
skin.

Sweat  contains  a  wealth  of  biochemical  information  that  can  be  noninvasively  and  readily
accessed on-demand or even continuously.3,9–11 Compared with the complexities and discomforts
associated in the sampling of other biofluids like blood, interstitial fluid, tear, saliva, and urine,
sweat sampling can be conveniently and unobtrusively achieved by placing a sensor patch on
accessible  locations  of  the  skin.  Molecular  biomarkers  unveiled  by  wearable  sweat  sensors
through continuous and non-invasive monitoring can provide a more detailed understanding of
the  biochemical  processes  that  govern  our  health,  enabling  precision  medicine  through
personalized  monitoring  of  an  individual’s  fitness  and  health  conditions,  as  well  as  disease
diagnosis and prognosis. Furthermore, the large amounts of biochemical profiles collected by
sweat sensors from patients and healthy populations during the daily activities can be processed
through predictive algorithms to realize personalized therapeutics and preventative care. At the
same time, large datasets collected at the population-level can improve real-time epidemiological
surveillance and enhance the precision of public health responses. 

Advances in sensor technologies, materials sciences, and electronics lead to the advent of the
first  fully  integrated  multiplexed  wearable  sweat  sensor  in  2016.12 Since  then,  numerous
wearable sweat sensing systems have been developed, typically consisting of a flexible sweat
sensor array for conformal contact, a flexible printed circuit board (FPCB) with rigid electronic
components for signal processing and wireless communication, and a power source such as a
lithium-ion battery to power the electronics. However, for the widespread commercial adoption
of wearable sweat sensors, several challenges need to be addressed.

Rigid or thick elements  in  sweat-sensing systems often impede the device from achieving a
stable, conformal, and breathable interface with the skin, potentially leading to motion-induced



artifacts, discomfort, and skin irritations. Furthermore, effective sweat sampling often requires
airtight contact with the skin which can be achieved by straps on wristwatches and headbands, or
by  novel  deformable  adhesives.  Breakthroughs  in  elastic  wearable  materials  can  gradually
replace rigid and bulky parts of wearable sweat sensing systems with lightweight and deformable
counterparts to seamlessly interface the skin, evolving from semi-rigid wristband sensors to e-
textile sensors or e-skin sensors.

Next,  the  continuity  and  reliability  of  sweat  sensor  data  are  fundamental  for  achieving
continuous  health  monitoring.  Effective  sweat  sampling  is  the  first  step  toward  achieving
continuous  and  accurate  biomarker  analysis.  Early  sweat  sampling  methods  for  analyzing
biomarkers in sweat were often confounded by discrepancies due to skin contamination, sweat
evaporation,  sweat stimulation methods, and sweat rate effects. In addition, sweat stimulation
was primarily achieved physically through exercise or thermal stress, leading to large variations
in sweat rate and limiting sweat collection to very specific scenarios. Chemical sweat stimulation
methods, as well as efficient sweat collection materials and microfluidic designs can minimize
fouling  of  sweat  samples  and  extend  the  use  of  sweat  sensors  to  sedentary  and  everyday
scenarios.  Ultimately,  highly precise,  specific,  and stable sweat  sensors  for detecting  a wide
range of  biomarkers  need to  be developed or  improved upon.  These sensors should also be
supported  by  calibration  sensors  that  simultaneously  analyze  variables  that  can  potentially
influence sensor readings or sweat content, such as skin temperature, sweat electrolyte balance,
and sweat rate. Lastly, the vast amount of continuous data collected by sweat sensors can be
aggregated through big-data and cloud computing techniques to better comprehend the meaning
of the biomarker levels in terms of personal health status.

 

Figure  1.  Overview  of  skin-interfaced  wearable  sweat  sensors  for  personalized  and
precision healthcare. Created with BioRender.com.



This review provides a comprehensive overview on the field of wearable sweat sensors from
various perspectives including sweat physiology, materials science, sensing mechanism, power
sources,  system integration,  and data  analytics  (Fig.  1).  In  addition  to  introducing the  latest
wearable sweat sensor devices reported in literature,  we provide an in-depth summary of the
various  engineering  aspects  that  are  considered  when  designing  a  device.  Starting  off  by
overviewing sweat physiology in terms of sweat gland structure, sweat secretion mechanisms,
and sweat composition, we then highlight the essential material properties needed for wearable
sweat sensors. We then go on to discuss various sweat biomarker detection mechanisms (not
limited to electrochemical) and methods for sweat extraction and sampling. Next, we describe
energy harvesting and energy storage methods for powering these wearables, as well as system-
level integration strategies for integrating sensors, electronic circuitry, and power sources into a
complete wearable device. Furthermore, we outline the various applications of wearable sweat
sensors in terms of fitness monitoring, disease diagnostics, and precision medicine. Finally, we
discuss data post-processing for wearable sweat sensors and their path to commercialization.

2. Physiology of Sweat

Sweat is produced from glands located deep within the skin, the body’s largest organ by surface
area. The skin has a stratified structure including the stratum corneum, epidermis, dermis, and
hypodermis.  The dermis  is  the major component of the skin containing blood vessels, nerve
endings, and the base of sweat glands, sebaceous glands, and hair follicles (Fig. 2a). The average
eccrine sweat gland density is 200/cm2, but this varies between individuals and across the body
with the highest density among the palms and soles (~400/cm2).13,14 The total number of eccrine
sweat glands is on the order of 1.6–5 million.13

Sweat plays a very important role in maintaining the body’s core temperature, providing a means
of thermoregulation. Should body core temperatures rise above 40 C without modulation, there ̊
is  a  risk of  protein denaturation,  cell  death,  and subsequent  organ failure.13 Beyond thermal
regulation, sweat also participates in skin homeostasis. Moisturizing factors in sweat, such as
lactate and urea, maintain the plasticity and barrier integrity of the stratum corneum. Secretion of
antimicrobial  compounds  such  as  dermcidin,  lactoferrin,  lysozymes,  and  immunoglobulin  E
(IgE) antibodies contributes to the skin’s first line of defense against infection.15 The loss of
sweat glands after  severe damage as in the case of burn victims  presents  new challenges  in
regenerative wound healing and demands further research into sweat gland physiology.

Eccrine  sweat  glands  secrete  a  highly  filtered,  aqueous  fluid  composed  of  electrolytes,
metabolites, and additional molecules. Apocrine sweat glands secrete a viscous fluid containing
lipids, proteins, steroids, and ions, by exocytosis in the apocrine gland coil.16 Volatile organic
compounds from apocrine secretions act as pheromones.13 Apocrine and eccrine sweat glands are
differentially stimulated. The apocrine sweat gland responds strongly to emotional stimuli and



sympathomimetic  drugs  via  adrenergic  innervation,  but  does  not  respond  to  cholinergic  or
thermal  stimulation  like  the  eccrine  sweat  gland.15,17 The  apoeccrine  sweat  gland  shares
properties  of both eccrine and apocrine glands; it  may develop during puberty in the axillae
region from existing eccrine sweat glands. The gland retains an eccrine-like sweat duct but has
an apocrine-like secretory tubule. Apoeccrine sweat ultimately resembles aqueous eccrine sweat
and arises from an intermediate type of stimulation.18 This review focuses on eccrine sweat as
eccrine sweat glands are the most abundant and active source of sweat.

In this section, we present the physiology of eccrine sweat from stimulated innervation to sweat
secretion.  We  describe  sweat  gland  development  and  structure.  Additionally,  we  discuss
molecule partitioning into sweat and give an overview of accessible biomarkers in sweat.

Figure 2. Physiology of sweat glands and eccrine sweat secretion. a,  Structure of the skin,
including apocrine and eccrine sweat glands.  b, The eccrine sweat gland can be broken down
into two primary components: the secretory coil and the sweat duct where isotonic secretion and
reabsorption occur, respectively, to produce a hypotonic aqueous fluid.  c, Sweat is stimulated
primarily  through  β-adrenergic  and  muscarinic  innervation.  β-adrenergic  and  muscarinic
signaling pathways use cAMP and Ca2+ as second messengers, respectively, to activate chloride
channels.  Activation  of  nicotinic  receptors  may  amplify  the  sweating  response  beyond  the
localized region via the sudomotor axon reflex.  d, Several membrane channels are involved in



the  secretion  of  electrolytes  and  the  subsequent  osmotic  flow into  the  lumen.  Created  with
BioRender.com.

2.1 Structure and Mechanisms

The eccrine sweat tubule is a conduit for sweat and electrolyte exchange 4–8 mm in length. At
the base, the secretory coil is 500–700 μm in size with a lumen inner diameter of 30–40 μm and
a  coil  outer  diameter  of  60–120 μm.13 The  secretory  coil  is  interwoven with  capillaries  for
vascular  exchange  and  sudomotor  nerve  fibers  for  autonomic  modulation.14,19 The  secretory
tubule straightens into the dermal duct with an inner diameter of 10–20 μm and outer diameter of
50–80 μm composed of two to three layers of epithelial cells.13 The sweat duct is straight from
the dermis  to  the epidermis,  and then transitions  to  a  helical  structure in  the epidermis  that
terminates in the stratum corneum. The number of turns of the helical duct varies from 4–6 and
varies  proportionally  to  the stratum corneum thickness,  yet  the pitch angle remains  constant
across  sweat  glands.20 The  helical  structure  makes  the  sweat  duct  act  as  a  helical  antenna
resulting in resonance behavior. Sweat duct dimensions, density, distribution, and the dielectric
properties of the stratum corneum all determine the resonant frequency and subsequent skin-THz
wave interactions.  The duct length varies from 150–600 μm and varies proportionally to the
stratum corneum thickness.20 The sweat duct widens into the acrosyringium, a pore on the outer
surface. The acrosyringium is composed of epithelial cells with no clear distinction or border to
the epidermis. The lumen has a diameter of 20–60 μm and may also contain cornified cells.13

Humans are born with almost all their sweat glands, with gland development occurring mostly
during the first two trimesters.  This is  one explanation for higher  observed duct densities  in
children than adults.20 The sweat gland develops from a group of multipotent K14+ progenitors,
descendants of epidermal stem cells.  It grows downward as a straight duct,  stratifying in the
lower  half  to  proliferative  K14low/K18+ suprabasal  progenitors.  The  K14low/K18+ suprabasal
progenitors  develop  into  luminal  cells,  while  the  remaining  K14+ progenitors  give  way  to
myoepithelial cells.21 Although sweat glands have limited turnover and proliferation capabilities,
there  is  some  promise  of  regeneration.  Stem  cells  associated  with  secretory  luminal  and
myoepithelial  cells  were  found  to  promote  epidermis  and  sweat  gland  regeneration  when
amplified  and  seeded  in  the  wound  bed.22 Additionally,  the  use  of  three-dimensional  (3D)
bioprinting  matrices  has  been  studied  for  sweat  gland  morphogenesis  with  tissue-level  self-
organization.23

The secretory coil and duct define the two major steps of sweat generation: isotonic secretion and
salt reabsorption (Fig. 2b). Ductal cells facilitate transcellular reabsorption with mitochondria-
rich basal cells contributing to uptake. The secretory coil is made up of basal myoepithelial cells
and  luminal  clear  and  dark  cells,  named  for  their  appearance  in  eosin,  toluidine  blue,  and
methylene blue stains.13 Myoepithelial  cells  strengthen the structure of the secretory coil  and



create  a  microenvironment  for  gland  stem  cell  differentiation.24 Clear  cells  contain  many
mitochondria  suggesting  that  they  facilitate  most  of  the  active  sweat  secretion  and osmotic
flow.13 Dark cells are granular, containing many vesicles. Dark cells are more involved in the
secretion  of  proteins,  including  periodic  acid-Schiff  (PAS)-positive  diastase-resistant
glycoproteins, dermicidin, and sialomucin.24 The interdependent relationship between clear and
dark cells requires further investigation.

Sweat secretion is stimulated by adrenergic and cholinergic innervation (Fig. 2c). The sudomotor
response involves several adenosine triphosphate (ATP)-dependent steps, and is suppressed by
ouabain and metabolic inhibitors.14 When the secretory cell is stimulated, a signaling cascade
occurs  involving Ca2+ or  cyclic  adenosine monophosphate  (cAMP) as  second messengers  to
trigger the efflux of Cl- into the lumen of the secretory coil. Na+ is pumped out at the basolateral
membrane  and  diffuses  down  its  electrochemical  gradient  into  the  lumen.  The  buildup  of
electrolytes in the lumen renders it hypertonic with respect to the cytosol; this osmotic gradient
drives  the  primary  sweat  solution  out  of  the  cell  and  into  the  secretory  lumen  (Fig.  2d).
Advective mass transport drives fluid up the eccrine sweat duct. Along the sweat duct, luminal
cells reabsorb ions to produce a hypotonic sweat solution. We describe this process in further
detail below.

2.2 Sweat Stimulation

Thermoregulatory sweating is  an autonomic  response to  signals  from thermoreceptors  in the
preoptic-anterior  hypothalamus  area.  Upon  an  increase  in  core  temperature,  thermoreceptors
send  through  efferent  pathways  to  postganglionic  sympathetic  neurons  in  the  dermis.14

Cholinergic  nerve  fibers  around  the  secretory  coil  release  acetylcholine,  thus  activating
muscarinic receptors on the membrane of the eccrine secretory cell. Activation of muscarinic G-
protein-coupled receptors (GPCRs) increases intracellular inositol trisphosphate (IP3). IP3 binds
to receptors on the endoplasmic reticulum (ER) membrane to release Ca2+ into the cytosol.25

Stromal interaction molecule protein, stromal interaction molecule 1 (STIM1), monitors the ER
Ca2+ levels,  and when Ca2+ stores  are  depleted  STIM1 induces  store-operated  Ca2+ entry  by
binding to and activating Orai, a Ca2+ channel on the plasma membrane.25 This influx of Ca2+

mediates the exchange of electrolytes resulting in sweat secretion.

Sweating is  also adrenergically  stimulated  under  the  “fight  or  flight”  response.  The physical
reaction to stress, anxiety, fear, and pain occurs mostly in the palms, soles, and axillary region
and  may  have  the  selective  advantage  of  increasing  palmoplantar  friction  for  fleeing.13

“Emotional”  sweating  is  controlled  by  the  limbic  system  and  efferent  signals  are  sent  to
adrenergic nerve fibers in the sweat secretory coil. Release of epinephrine and norepinephrine in
signaling  stimulates  α-  and  β-adrenoreceptors  in  sweat  secretory  cells.  A  synthetic
sympathomimetic  drug,  isoproterenol,  selectively  stimulates  β-adrenoreceptors  and  has  been



used to further differentiate the two pathways. β-adrenergic stimulation is the dominant pathway
in emotional sweating. The magnitude of stimulated sweat secretion (measured by secretory rate)
is 4:2:1 for cholinergic,  β-adrenergic,  and α-adrenergic pathways, respectively.26 α-adrenergic
stimulation results in Ca2+ influx similar to cholinergic pathways. β-adrenergic GPCRs activate
adenylyl cyclase and increase the intracellular concentration of cAMP. cAMP activates protein
kinase  A  (PKA),  which  in  turn  mediates  Cl- secretion  by  opening  the  cystic  fibrosis
transmembrane  conductance  regulator  (CFTR).27,28 In  the  case  of  cystic  fibrosis,  CFTR  is
defective or absent, resulting in blocked CFTR Cl- secretion during β-adrenergic stimulation and
inhibited Cl- reabsorption. A “ratiometric” sweat rate test comparing adrenergic and cholinergic
sweat rates may be used to assess CFTR functional activity.29

Sweat may be generated at the periphery of a stimulated region via the sudomotor axon reflex
(Fig. 2c). Nicotinic agonists interact with receptors on postganglionic sudomotor terminals at the
base of the sweat gland, causing antidromic axonal conduction towards a branch point followed
by orthograde conduction down the branching fibers. Acetylcholine is then released at the nerve
terminals  and  binds  to  muscarinic  receptors  on  the  eccrine  sweat  gland,  resulting  in  sweat
secretion similar to the direct iontophoretic response.14,30 The spatial extension of this sweating
could be millimeters beyond the periphery of the stimulation region.31 The sudomotor axon reflex
may be used to assess autonomic nervous system disorders, such as diabetic neuropathy.14,32 The
sudomotor axon reflex may also be used to separate drug-induced sweat stimulation and sweat
sampling regions to prevent cross-contamination.30 The sudomotor axon response has a longer
latency than the direct cholinergic response by about 5 s, which accounts for axonal conduction
and neuroglandular  transmission.  The sudomotor  axon response and direct  response produce
similar sweat volumes in the presence of nicotinic agonists. In contrast to the direct stimulated
sweat response, which continues over an hour after cessation of the stimulus, the sudomotor axon
response returns to baseline 3–5 minutes after stimulus cessation.33

The sweat rate is modulated in part by non-uniform, localized activation. Under mental stress,
sweat production of adjacent sweat glands varied strongly.34 The cumulative sweating response
controlled by the sympathetic nerve is discretized into active and inactive sweat glands.34 The
sweat rate in healthy individuals ranges from 0.2–1 μL/cm2/min.35,36 At an average sweat gland
density  of  200/cm2,  this  equals  1–5  nL/gland/min.  Sweat  rate  is  affected  by  local  skin
temperature.13 Sweat stimulated pharmacologically may also further increase the sweat rate to
approximately  10  nL/gland/min.37 Sweat  rate  decay  and  cessation  occur  in  part  due  to  the
subcutaneous elimination of the sweat stimulant  (e.g. acetylcholinesterase).14,38 Interindividual
variations in sweat rate are likely due to differences in the function and responsiveness of the
sweat gland.39 Many factors may influence the sweat response including gender, physical fitness,
menstrual cycle, and circadian rhythm.13 Intraindividual regional variations in observed sweat
rate may be associated with variations in sweat gland density and distribution.20,39 For example,



the forehead has a high density of sweat glands and has the highest tested sweat rate region
during both active and passive thermal sweating.39,40

2.3 Sweat Secretion and Electrolyte Reabsorption

Upon stimulation,  Ca2+ and  cAMP act  as  intracellular  messengers  for  sweat  secretion.  Ca2+

activates transmembrane K+ and Cl- channels. TMEM16A and bestrophin 2 are Ca2+-activated
chloride channels (CaCCs) located on the apical membrane of secretory gland cells. Bestrophin 2
is expressed only in dark cells, yet it is necessary for sweat generation.41 CFTR is the active Cl-

channel in cAMP-mediated β-adrenergic sweat secretion. PKA-independent CFTR activation via
calmodulin-mediated Ca2+ signaling results in cross-talk between cAMP and Ca2+ signaling for
CFTR regulation.42 It is possible CFTR may be involved in both sweat secretion pathways.

As Cl- diffuses into the lumen at the apical membrane, Cl- enters the cell via basolateral Na-K-Cl
cotransporter 1 (NKCC1), a Na+-K+-2Cl- electroneutral co-transporter. Excess accumulated Na+

is  then  actively  pumped  out  via  Na+/H+ exchanger  1  (NHE1)  and Na+-K+ ATPase.25 Na+ is
passively transported paracellularly down the electrochemical gradient established in the lumen.
A buildup of electrolytes in the lumen of the secretory coil results in an osmotic gradient driving
transcellular fluid flow via aquaporin 5 (AQP5) and paracellular flow from the interstitial fluid
(ISF).19,24 As a result, the aqueous fluid in the secretory coil becomes isotonic with respect to ISF,
blood, and cytosol.

Continued sweat  secretion  drives  flow up the sweat  duct,  where reabsorption of electrolytes
results in a hypotonic final sweat secretion. CFTR is necessary for Cl - reabsorption. Unlike in the
secretory  coil,  CFTR in  the  sweat  duct  is  constitutively  active.  CFTR activity  is  complexly
regulated by intracellular cAMP, ATP, and K+ levels. CFTR conduction of Cl- is transcellular,
but CFTR is present at a greater surface density on the apical membrane.27 In contrast to the
secretory coil, Na+ transport in the duct is transcellular rather than paracellular. Na+ is reabsorbed
passively by the epithelial sodium channel (ENaC) at the apical membrane and actively pumped
at the basolateral membrane by Na+/K+ ATPase.13 ENaC and CFTR interact with each other in
complex ways.27,43 Na+ reabsorption is reduced by increases in luminal Ca2+.44 ENaC is regulated
by Ca2+ in other reabsorption cells,45 suggesting that inhibition of ENaC by increases in Ca2+

reduces the membrane permeability and passive Na+ flux at the apical luminal cell membrane. As
sweat rate increases, Na+ reabsorption increases; but the Na+ secretion rate increases relatively
more, resulting in higher salt concentrations at higher sweat rates.46

Bicarbonate (HCO3
-) is involved in both sweat secretion and reabsorption yet the mechanisms

remain  unclear.  HCO3
- exchange  is  mediated  by  both  CFTR and  Bestrophin  2  channels.24,27

Various  carbonic  anhydrase  isoforms  also  regulate  HCO3
- by  reversibly  converting  CO2 to

HCO3
-.  Carbonic anhydrase II  (CA2) operates intracellularly in secretory coil  clear  cells  and

ductal  cells.13,25 Carbonic  anhydrase  XII  (CA12)  is  a  transmembrane  protein  also  broadly



expressed in the sweat gland. Defective CA12 results in excessive Na secretion in sweat.24 HCO3
-

plays  an  important  role  in  regulating  the  acid-base  chemistry  of  sweat  secretion  both
intracellularly and extracellularly. Cytosolic pH affects ion channel activity. For example, ENaC
becomes inhibited at acidic cytosolic pH in ductal cells.24 pH-sensitive phosphatases occur in the
intercellular canaliculi of secretory cells. HCO3

- may also be secreted in coordination with acidic
proteins, such as sialomucin, to neutralize the pH in the lumen.24 Final sweat pH can range from
roughly 5 to 7 and is positively correlated with sweat rate. Sweat pH in the secretory coil has a
neutral pH, like ISF; but pH decreases as it moves through the sweat duct. This suggests that
ductal  HCO3

- reabsorption  at  low  sweat  rates  contributes  to  the  acidification  of  sweat.47

Fluctuations in sweat pH represent a challenge in sweat sensing, both because pH may affect
partitioning  of  detected  molecules  and  also  because  pH  may  directly  affect  biosensor
performance.

Acclimatization to thermal (and physical) stimuli markedly affects sweat generation. Physically
fit  individuals  have higher  glandular  functions  and sweat  rates  per  gland after  methacholine
stimulation.48 Over a multi-week exercise series, acclimatization due to increased fitness resulted
in a reduced lactic acid concentration in sweat.49 Additionally, thermal acclimatization increases
the Na+ reabsorption capacity of the human eccrine sweat gland.35

2.4 Biomarkers in Sweat

Sweat is an information-rich biofluid containing many molecules that can serve as biomarkers.
Sweat is composed of various electrolytes, metabolites, hormones, proteins, and peptides (Table
1). Sweat samples may be analyzed using metrics such as biomarker concentrations, biomarker
flux, sweat rate, sweat pH, and ionic strength to provide important information as they correlate
to  health.  In  some cases,  biomarker  flux  may  represent  a  better  metric  of  analysis  since  it
accounts for the dynamic water flux, which may affect concentration measurements. Biomarker
flux may be calculated using the product of sweat rate and biomarker concentration.50 Recent
reports have shown promising correlations between the levels of a number of sweat and blood
analytes,19 indicating the great potential of using sweat as an alternative source for personalized
healthcare.  Since  sweat  is  readily  available  for  noninvasive  sampling,  sweat  is  an attractive
biofluid for point-of-care (POC), at-home, and continuous diagnostics. Moreover, new biomarker
discovery for precision medicine can be greatly facilitated by the continuous, large sets of data
collected through non-invasive sweat analysis in daily activities.51

2.4.1 Analyte Transport and Partitioning

Prior  to  electrolyte  reabsorption  in  the  sweat  duct,  initial  sweat  secretion  is  isotonic  and
resembles filtered ISF. Passive sweat secretion may result in reduced concentrations 10- to 1000-
fold lower than in ISF and blood plasma. However, blood-to-sweat correlations vary based on
the analyte and its subsequent partitioning. Analyte partitioning occurs primarily via transcellular



and  paracellular  transport.  Small,  uncharged  analytes  readily  enter  sweat  transcellularly  via
diffusion  through  the  plasma  membrane  of  capillary  endothelial  cells.19 Large,  hydrophilic
molecules  enter  sweat  paracellularly  via  diffusion  and  advective  transport  through  the
intercellular canaliculi between adjacent cells.

Transcellular transport of small, lipophilic molecules results in strong blood-sweat correlations
as these molecules freely diffuse across the selectively permeable cell membrane. This is likely
the dominant transport mechanism for several classes of analytes, including steroid hormones
(i.e.  cortisol52),  ethanol,53 and  many  therapeutic  and  abused  drugs  (e.g.,  nicotine,  fentanyl).
Partitioning is limited by the least permeable state. This results in plasma correlations that hold
only  for  the  unbound  fractions  of  the  analyte  as  is  the  case  with  cortisol.19 For  instance,
ionization may impede the molecule from transcellular transport. The pH of sweat may become
an important consideration for weak acids and weak bases due to the possibility of ion trapping.
In the case of ammonia (NH3), which has a pKa of 9.3, NH3 diffuses readily into the secretory
lumen but under acidic sweat conditions (as in the case of exercise), NH3 protonates to become
ammonium  (NH4

+).  In  the  protonated  form,  transcellular  exchange  is  impeded  and  NH4
+

accumulates  in  the  lumen  of  the  sweat  gland.  This  phenomenon  results  in  amplified  sweat
concentrations.52 Since primary sweat pH is 7.2 to 7.3 in the secretory coil,47 this phenomenon is
likely to mostly impact reabsorption in the sweat duct. While ion trapping is a common topic of
research in subcellular pharmacokinetics, the role of ion trapping in sweat partitioning warrants
further consideration.

The intercellular canaliculi forms a >10 nm gap for paracellular molecular transport, but tight
junctions adjoining secretory cells act as a roadblock.19 Tight junctions are formed by over 40
different proteins, with the claudin family of transmembrane proteins defining the structure and
selective permeability of the tight junction.19 Paracellular sweat partitioning is likely to occur
during tight-junction remodeling allowing for ISF molecules in the canaliculi to make their way
into the lumen. Tight junctions may be modulated using calcium chelators. For example, citrate
addition leads to a >10x increased flux of glucose to sweat from ISF.50 Although paracellular
sweat  partitioning  may  result  in  significant  dilution  from blood  plasma  protein  levels,  this
nonspecific channel for proteins from the ISF may still result in correlated blood plasma ratios
for trend analysis.

The observed lag time between blood and sweat measurements is on the order of ones to tens of
minutes.  The  secretory  coil  is  highly  vascularized,  minimizing  the  lag  in  circulating  blood
changes.19 In the simplified case of transcellular transport, the rate of diffusion determines the
time to enter the lumen of the sweat duct. Once in the lumen, advective transport by osmotic
fluid flow (i.e. sweat rate) determines the time from analyte secretion to analyte elution. When
the correlation of blood alcohol and sweat alcohol content was measured continuously, the lag
time for signal onset ranged 2.3–11.4 min and 19.32–34.44 min for the overall  curve.53 The
relative contributions  of sweat flow rates and analyte partitioning mechanisms on the sensor



response remains obscure. For sweat generation or refreshing to be the rate-limiting step, the
sweat collection designs should be further optimized. Further work is required to better define
the variation in lag of different analyte partitioning. However, real-time sensing is contextual; the
measurement of an analyte whose concentration changes slowly relative to the lag in transport
and sensing is effectively a real-time measurement.

2.4.2 Sweat Composition Analysis

Sweat  has  been surveyed broadly  using  liquid  chromatography (LC) or  gas  chromatography
(GC),  mass  spectrometry  (MS),  and  nuclear  magnetic  resonance  (NMR)  techniques.  NMR
requires minimal sample preparation but achieves a lower sensitivity. MS is often preceded by
chromatographic techniques to enhance detection quality.16 A high coverage LC-MS technique
based on chemical isotope labeling was used to identify over 2707 unique metabolites across 54
sweat samples.54 Subsequently, 83 metabolites were identified with high confidence. With such a
diverse  dataset,  LC-MS  may  be  used  to  characterize  the  sweat  submetabolome  and  draw
statistically significant observations based on gender and activity duration.54 LC-MS and GC-MS
represent  the  gold  standard  of  trace  concentration  sweat  biomarker  identification  and
quantification. The disadvantage of these techniques is that they require expensive equipment
along with complex protocols that require thorough validation for use in metabolite identification
and quantification.

Regional variations in sweat composition have been studied using a variety of assays, recently
including NMR and multiplexed immunoassays.55,56 In general, there are minimal variations in
sweat composition when sampling from different body locations. No significant difference was
observed for sweat cytokine composition at different arm locations, and metabolic profiles are
generally  conserved across the body.55,56 Sweat  from the upper chest,  upper back,  arms,  and
forehead exhibited similar NMR spectra.55 Sweat from the lower back, axillary,  and inguinal
regions contained a higher fat content, but this may be due to sweat mixing with sebum since
these areas also contain a high density of sebaceous glands. Forehead sweat exhibited high levels
of lactate, pyruvate, glycerol, and serine relative to the arm sweat. Serine content was also high
on the hands and feet.55 Since serine is active in skin regeneration, this is indicative that these
regions may undergo more epithelial  turnover. The hands appear to have a lower content of
natural  moisturizing  factors,  such as  glycerol  and urea.55,57 For  electrolytes,  regional  sodium
chloride  concentrations  are  well-correlated  with  whole-body  sweat  concentrations,  with  the
exception of forehead sweat possibly due to the effects of a significantly higher sweat rate. The
forearm, thigh, and calf were all highly correlated and are potential single-site sweat collection
areas. HCO3

- concentration was high at the forearm despite the average sweat rate. K+ and lactate
concentrations were higher at the extremities (foot, hand, and forearm).40 

Electrolytes



Na+ and Cl-, the most copious electrolytes found in sweat, are partitioned into sweat via active
mechanisms that are tied to the osmotic secretion of water. Therefore Na+ and Cl- serve as potent
biomarkers of electrolyte balance and hydration status for cystic fibrosis diagnostics and fitness
monitoring applications. According to the Na+-K+-2Cl- cotransport model as outlined previously,
a  series  of  cascading  effects  instigated  by  the  stimulation  of  cholinergic  nerve  endings
surrounding the sweat gland induce the influx of NaCl into the secretory coil lumen, which then
causes the osmotic influx of water.47,58,59 In this primary sweat, Na+ levels are isotonic and Cl-

levels are slightly hypertonic to plasma. However, as this fluid gets pumped through the duct,
Na+ and Cl-  ions  are reabsorbed through ENaC and CFTR to prevent  rapid electrolyte  loss.
Despite wide ranging concentrations, resulting sweat Na+ and Cl-  levels are often hypotonic to
plasma levels. Additionally, as reabsorption of these ions occurs at steady rates, increased sweat
rates correlate with increased Na+ and Cl- levels in final sweat.

K+ is another electrolyte secreted via the Na+-K+-2Cl-  cotransport model that is relevant to the
function of nerve and muscle cells.47 While understanding of the exact partitioning mechanism of
K+ requires  further  investigation,  studies have shown that  K+  levels  of primary  sweat  in  the
secretory coil are isotonic to plasma levels but increase to hypertonic levels in final sweat exiting
the duct.60,61 Furthermore, K+ concentrations seem to not have a strong correlation with sweat
rate.40,62

NH4
+, an electrolyte found in sweat with metabolic origins, is of interest for tracking liver and

kidney function,  as well  as exercise intensity.63 As described previously,  NH3 is a small and
uncharged polar molecule with a pKa of 9.3 (weakly basic), allowing for passive diffusion into
the  sweat  gland  lumen  where  weakly  acidic  conditions  result  in  increased  protonation  to
ammonium. Due to its charge,  the ammonium ion gets entrapped in the lumen of the sweat
gland, yielding sweat ammonium levels to be 20 ~ 50 times higher than plasma ammonium
levels.64 Furthermore,  sweat ammonium levels have been reported to decrease with increased
sweat pH and sweat rates.52 

Metabolites

Blood glucose monitoring is critical for managing diabetes, and sweat glucose has the potential
to serve as a non-invasive surrogate.  Some studies have shown positive correlations between
sweat and blood glucose levels, and while the exact partitioning mechanism is still being studied,
the  primary  source  of  sweat  glucose  is  likely  to  be  from  blood  through  paracellular
transport.50,65,66 The rather large size and polarity of glucose likely limit its passage through the
tight junctions of the sweat gland, resulting in sweat glucose levels being ~ 100 times lower than
blood glucose levels.

Lactate is a metabolite found in sweat that has been extensively studied as a potential biomarker
for muscle exertion and fatigue. While the transport mechanism of lactate from plasma to sweat
is obscure and the correlation between lactate levels in sweat and plasma is weak, sweat lactate is



also produced from sweat gland metabolism and can still be reflective of whole-body exertion.
Sweat lactate levels are typically higher than blood lactate levels and decrease with increased
sweat rates, potentially due to dilution. 

Along with ammonia, urea, uric acid, and creatinine are nitrogenous compounds produced from
protein metabolism that indicate renal function. As a small polar molecule that can passively
diffuse through the sweat gland through paracellular transport, sweat urea has been speculated to
primarily originate from the blood.47,67 However, reported sweat urea concentrations are often
significantly higher than blood urea concentrations (up to 50 times), potentially  indicative of
additional sources of urea in sweat. A popular hypothesis is that there is a finite pool of urea in
the epidermis  that  gets  depleted  during profuse sweating,  supported by studies showing that
sweat urea levels trend towards blood urea levels with increased sweating.68 Additionally, studies
indicate the potential for active mechanisms of urea excretion through sweat as an alternative
method for excreting excess metabolic wastes.69–71 Uric acid and creatinine are slightly larger
molecules that are found in sweat at micromolar levels and around 5 times lower than in blood.72–

76 While the partitioning mechanism of these metabolites has not been studied in detail, a positive
correlation between sweat and serum uric acid levels has been reported.75

Minerals

Trace minerals  such as Ca2+, Mg2+,  Fe2+,  and Zn2+ are often found in sweat at concentrations
similar  to  or  slightly  lower  than  blood  concentrations77–80.  Due  to  their  small  size  and
hydrophilicity,  these  trace  minerals  have  the  potential  to  be  secreted  through  sweat  via
paracellular mechanisms in their free and ionized states. However, approximately 30 ~ 45% of
plasma Mg2+, 50% of plasma Ca2+, 70% of plasma Zn2+, and above 95% of plasma Fe2+ are bound
to proteins or complexed with anions, likely impeding passive diffusion into the sweat glands.81,82

Nutrients

Water-soluble vitamins such as ascorbic acid and thiamine, which are large and polar molecules,
have been reported in sweat at concentrations significantly lower than in blood83,84. On the other
hand, amino acids, which are the building blocks of protein in our body, are often found in sweat
at concentrations similar to or sometimes even higher than in blood.57,85–87 The levels of amino
acids in sweat are likely attributed to partitioning from plasma, as well as production of natural
moisturizing  factors  (NMF) and hydrolysis  of  the  epidermal  protein  filaggrin  in  the  stratum
corneum.88 As  such,  studies  have  shown that  sweat  amino  acid  concentrations  decline  with
increased  sweat  rates.89 Positive  correlations  between  sweat  and  serum  levels,  as  well  as
increases in sweat concentrations after supplement intake have been reported for nutrients such
as ascorbic acid and branch-chain amino acids (BCAAs).83,87

Hormones



Hormones are  chemicals  that  carry  signals  throughout  our  body for  regulating  physiological
processes and behavior. Cortisol is a primary glucocorticoid hormone produced by the adrenal
glands to regulate the body’s stress response. As a large lipid-soluble molecule that can diffuse
through lipid bilayer membranes via intracellular passive transport, unbound cortisol is found in
various body fluids.90 However, over 90% of endogenous cortisol in blood is bound to carrier
proteins that hinder intracellular passive transport.91–93 While significantly lower in concentration
than serum cortisol levels, cortisol levels in sweat and saliva have been reported to correlate with
unbound cortisol in serum.93,94

Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system and
acts as a hormone that has close ties with stress, appetite, and depression.95 When the levels of
various cytokines and neuropeptides were compared between women with and without major
depressive disorder (MDD), elevated sweat NPY levels were observed in patient subjects.96 In
addition. a good correlation was found between NPY levels in sweat and blood.96

Proteins

Proteins are macro molecules (> 5 kDa) constructed by numerous amino acids. In sweat, proteins
with  protective  functions  for  maintaining  the  epidermal  barrier  integrity  (dermicidin,
apolipoprotein D, clusterin, prolactin-includible protein, and serum albumin) make up 91% of
the secreted proteins.97–99 Trace-level proteins such as c-reactive protein (CRP) and cytokines are
of particular interest as they modulate the body’s inflammation and immune response. While
CRP levels in sweat have been reported to be significantly lower than in blood, many cytokines
have been reported to be in sweat at concentrations similar to or higher than in blood.96,100,101

While  the  exact  partitioning  mechanism  of  cytokines  into  sweat  is  uncertain,  promising
correlations  between  sweat  and  blood  cytokine  levels  have  been  widely  reported.96,100

Considering their large size, it is likely that most of the cytokines found in sweat are produced
locally  by the eccrine  gland.  However,  their  production is  often due to  a  systemic  response
throughout the body, and therefore sweat cytokine levels can still be reflective of systemic levels.

Substances

Exogenous  substances  including  toxins  and  drugs  are  often  metabolized  by  enzymes  and
excreted via urine and sweat. When alcohol is ingested,  90% of the ethanol is broken down
sequentially  into  acetaldehyde,  acetate,  and acetyl  coenzyme A (CoA);  and a portion  of  the
remaining ethanol is excreted through sweat. As ethanol is both soluble in water and lipids, it can
passively diffuse through most membranes in the body, leading to strong correlations between
sweat and blood ethanol levels. 

2.5 Sweat Physiology Outlook



There  is  much  yet  to  learn  about  sweat  gland  physiology.  Human  sweat  duct  density  and
distribution  have  been  investigated  using  ductal  pore  counting,  colorimetry,  and  plastic
impression  techniques.20 The  advent  of  optical  coherence  tomography  has  allowed  for  non-
invasive morphological visualization.20,34 3D sweat gland tissue models are being developed to
better understand sweat physiology for pathology and tissue regeneration.15 These models will
contextualize  sweat  measurements  and  correlated  analyte  concentrations  by  revealing
interdependent pathways. Improved sweat gland models may help in developing algorithms for
calibration.

The  development  of  continuous,  compact,  on-body  collection-to-analysis  sweat  sensing
platforms will further improve the quality and quantity of data for sweat characterization. Real-
time  multiplexed  sweat  measurements  will  also  contribute  to  our  understanding  of  the
physiological  sweat  response.  Tissue  level  sweat  pH  regulation  remains  a  hurdle  for  pH-
dependent sensing platforms. Understanding the acid-base controls in the sweat gland may aid in
designing on-body stimulation and collection platforms at predictable sweat pH. Elucidating the
factors that contribute to dynamic sweat concentrations and analyte partitioning is necessary to
relate noninvasive sweat measurements to system-level changes both in time and concentration.
Increasing our understanding of the physiology of the sweat gland and surrounding skin tissue
may also better explain variations in localized sweat measurements from systemic trends. Data
from biological models and wearable sweat sensors will complement each other for growth in
both fields.

3. Essential Material Properties for Wearable Sensors

On-body applications  and unique operating conditions  in complex biofluids require wearable
sweat sensors to have certain essential  material  properties.  Functional  materials  in wearables
typically include four classes4: natural materials such as textiles and papers, inorganic conducting
materials as well as nanomaterials including metallic and carbon-based composites, stretchable
polymers,  and  stretchable  hydrogels  (Table  2).  In  this  section,  we  summarize  and  review
essential material properties requisite for wearable sweat sensing applications.

Biocompatibility.  Biocompatibility  is  defined as the ability  of  a  material  to  perform with an
appropriate  host  response  in  a  specific  application.102 Biocompatibility  is  one  of  the  key
considerations for wearable sensors, as non-toxic materials as well as resistance to biofouling
and corrosion are prerequisite before on-body human experiments. A number of biomaterials
have  been  studied,  including  metals  (titanium,  gold,  stainless  steel  and  alloys),  ceramics,
polymers  and  composite  materials.103 For  wearables,  natural  materials  such  as  cellulose  and
fabrics are optimal for long-term wearing,104–106 while a number of synthesized inert materials
have  demonstrated  similar  properties.7,107 Depending  on  their  applications,  transient
bioresorbable materials have also been developed to meet disposable use.108,109



Permeability.  Permeability  of a material  is an advantage for long-term wear as it  allows the
exchange of heat, air, and moisture, which affects thermal comfort and wetness discomfort.110

Most early pioneering examples of wearables were focused on transitioning rigid wafer-based
materials  into  flexible  ones,  which  usually  applied  polyimide  (PI)  or  polydimethylsiloxane
(PDMS) as  the substrate,  and thus  were not gas or sweat  permeable.111 Subsequent  research
introduced  a  number  of  gas  and sweat  permeable  material  substrates,  including  textiles  and
fabrics,105,106 as well as tattoo-like electrodes without substrates112; but, the permeability to sweat
also causes measuring inaccuracies of sweat biomarkers. To meet the recent demands of sweat
monitoring, materials that are comfortable, gas permeable, and sweat impermeable have been
further  developed,  often  using  structurally  engineered  nanomeshes  with  tiny  pores  for  gas
exchange.113,114

Conductivity. Conductive materials are the foundation for wearable sensors and devices. An ideal
conductive  material  aims  to  retain  stable  electrical  performance  against  strain  and  sweat
interference. One example is to use liquid metals and ionic liquids,115–118 as they can best offer
conductivity and stretchability in their intrinsic fluidic nature. However, liquid metals need to be
encapsulated  in  channels  and  typically  require  complex  designs  for  integrated  electronics.
Therefore, a number of conductive polymers and hydrogels have been introduced that balance
cost and stretchability.119,120 In order to improve the conductivity, nanomaterials including both
nanoparticles and nanowires are often adopted.121,122

Transparency. Considering the wearing comfort and daily user compliance, transparent materials
have  gained  rising  interest.  One  design  strategy  is  to  use  ultrathin  materials,  and build  the
wearable sensors into tattoo-like patches for both physiological and biochemical monitoring.123,124

Another  approach  is  to  apply  intrinsically  transparent  nanomaterials  such  as  nanomesh  and
nanowire networks125–127, and transparent polymers and hydrogels such as PDMS.128

Adhesion property. A strong adhesion to skin can improve signal reliability. However, excessive
adhesion may also make removing the wearable patch difficult after use and may even cause skin
irritation. For ultrathin and ultralight electrode tattoo patches, they can be applied onto human
skin by surface tension.112,129 For more complicated wearable devices with electronics, external
adhesives are usually introduced, such as using bandages or medical ahsesives.130,131 But these
adhesive methods usually require additional cleaning as adhesive residue is often leftover on the
skin  after  the  patch  is  removed.  Several  recent  studies  have  focused  on  adhesive  dry
electrodes132,133, which aim to achieve a robust and reversible adhesion on sweaty skin.

Scalability. Fabrication cost and scalability is one of the key considerations when it comes to
practical  use.  To  decrease  the  cost  of  conventional  cleanroom  lithography,123 a  number  of
fabrication methods have been carried out, including transfer printing,134 electrospinning,112 roll-
to-roll  gravure  printing,135 laser  engraving,75 3D  printing,136 inkjet  printing,137 and  screen
printing.138



Overall,  the  application  of  on-body  wearable  sensors  requires  building  materials  to  be
biocompatible,  conductive  for  electrical  interconnects,  comfortable  for  daily  wearing,  and
scalable  for  mass fabrication.  In  addition  to these requirements  that  are general  to  wearable
sensing, wearable sweat sensors demand special attention to materials that can achieve strong
adhesion with sweaty skin, high stability in the sweat matrix, and selective permeability of gas
and sweat.

4. Biosensor Mechanisms

Novel  sweat  sensing  platforms  based  on  various  detection  methods  have  raised  enormous
attention for non-invasive and real-time biomarker detection in situ for personalized healthcare.1–

3,9 These sensors are required to be miniaturized for on-body wearing and label-free for direct
measurements.4,5 Not only are they required to have robust performance in complex and dynamic
chemical environments, but also have a sufficient detection limit and a wide linear range to detect
biomarkers  at  physiologically  relevant  ranges.  Most  wearable  sweat  sensors  are  based  on
electrochemical,  optical  and bioaffinity  detection  mechanisms.  In  the  following  sections,  we
describe in detail the major categories and their sensing mechanisms.

4.1 Electrochemical Potentiometric Sensors

Wearable potentiometric sensors measure the passive open circuit potential between the working
electrode and reference electrode (Fig. 3a). Such electrochemical sensors consist of a sensing
electrode  that  is  modified  with  a  target-sensitive  component  and  a  reference  electrode  that
maintains a stable potential in different solutions such as sweat. Most wearable potentiometric
sensors are based on ion-selective electrodes (ISEs), which use a non-destructive measurement
that converts ionic signals to electric potentials. The measured potential signal follows the well-
known Nernst equation139

E=E0+
RT
nF ln  aI

where E is cell potential, E0 is standard potential when aI = 1, R is the universal gas constant, T is
absolute temperature, n is the number of electrons involved, F is the Faraday constant, aI is ionic
activity  quotient  in  aqueous  and  solid  membrane  phases.  From  the  Nernst  equation,  the
theoretical potential response limit of ISEs is around 59.2 mV at 25  per decade change of℃
target analyte concentration. Due to its low-cost, simple operations, and reliable and continuous
measurement, ISEs have been widely applied in detection of trace-level metals,140,141 drugs,142,143

and organics.144 Conventional  ISEs are composed of liquid contact,  which is unfavorable for
miniaturized designs and wearable usage. Solid-contact ISEs, on the other hand, have enabled



the  continuous  detection  of  ions  such as  Na+,  K+,  H+,  Ca2+,  using  potentiometric  sensors  in
biofluids,12,145–148 as well as heavy metal pollutants.149

The  typical  structure  of  an  ISE  consists  of  a  sandwiched  structure  including  an  electron-
conductive  electrode  substrate,  an  ion-to-electron  transduction  layer,  and  an  ion-selective
membrane (ISM) layer. A variety of solid-contact ISE materials have been studied as ion-to-
electron  transducers,  mainly  into  two  categories:150 redox  capacitance  using  electroactive
materials, and double-layer capacitance using nanomaterials (Fig. 3b,c). ISMs typically contain
an ionophore, lipophilic anionic sites, and a polymer matrix with its plasticizer. The polymer
matrix is ion-permeable and enables strong mechanical stability to protect the ionophore and
anionic sites from leaching and damage during operation. While primary ions could migrate into
and out of the ISM, the ionophore binds to specific target ions across the solution/membrane
interface. Due to such permselectivity, only the target ions can be transduced to the electrode
substrate. Lipophilic anionic sites, also known as ion-exchangers, facilitate a charge neutral state
of the ISM in order to attract ion movement. Meanwhile, the reference electrode is usually based
on Ag/AgCl with saturated Cl– ions in a polymer matrix to keep a stable reference potential.151

Figure  3.  Electrochemical  potentiometric  sweat  sensors.  a,  Schematic  of  potentiometry
operating mechanism and sensor configurations.  b, Schematic showing the redox capacitance-
based ISEs using electroactive materials as ion-to-electron transducers. c, Schematic showing the
double-layer capacitance-based ISEs using nanomaterials as ion-to-electron transducers.  d, An
epidermal potentiometric sodium sensor on a subject performing exercise activities.  e, Sensor
response  to  varying  sodium  concentrations  over  0.1–100  mM  range.  d,e,  Reproduced  with
permission from ref  152. Copyright 2014 Elsevier. f, An epidermal potentiometric ammonium



sensor  with  a  PVB-based  reference  electrode.  g,  Sensor  response  to  varying  sodium
concentrations  over  0.1–100  mM  range.  f,g,  Reproduced  with  permission  from  ref  153.
Copyright 2013 Royal Society of Chemistry. h, A wearable sweat sensor platform based on gold
nanodendrite array. i, Real-time on-body sodium data using the sweatband sensor over a period
of  repetitive  indoor cycling.  h,i,  Reproduced with permission from ref  154. Copyright  2017
American Chemical Society. j, A fully-integrated wearable wristband that could detect Ca2+ and
pH at the same time.  k, A representative sensitivity and repeatability performance test of Ca2+

sensors. j,k,  Reproduced with permission from  ref  147. Copyright  2016 American Chemical
Society.

Conducting polymers are the most studied candidates for the ion-to-electron transduction layer
due to their high redox capacitance and their electrical and ionic conductivity. As shown in Fig.
3b,  conducting  polymers,  including  polyaniline  (PANI),  polypyrrole  (PPY),  poly(3,4-
ethylenedioxythiophene)  (PEDOT)  and  poly(3-octylthiophene)  (POT)  can  serve  as  the
transducer  by reversible  doping-dedoping cycles  of Ox + e– ⇋ Red,  where PANI, PPY and
PEDOT are stable in fully oxidized forms and POT is stable in the non-oxidized form.155 In
wearable  applications,  however,  only PEDOT and PANI have been widely  used,  as  PPY is
sensitive to side reactions in complex media at  different potentials,155 and POT is vulnerable
owing to  its  gradual  dissolution  and severe  drift.156 PANI and PEDOT can be  conveniently
deposited onto the conductive substrate with controlled thickness through electropolymerization
using electrochemical scans. PANI can serve as a standalone pH sensor as it also demonstrates
protonation–deprotonation  capability  to  H+ in  solutions157.  PEDOT  is  known  to  have  low
sensitivity to O2 and pH,158 which is highly suitable for wearable sweat sensors. In addition to
conducting polymers, some other electroactive materials have also been reported, including self-
assembled monolayers (SAMs),159–162 ion exchange resins,163,164 and metallic redox couples.165–167

Nanomaterials with a large surface area, on the other hand, can directly convert ion charges to
electronic signals through double-layer capacitance mechanism (Fig. 3c). Nanomaterials pose a
high contact  area with ISM, and therefore,  a large double-layer capacitance is formed at the
interface where electrons at the nanomaterials side and ions at the ISM side attract each other
through Coulomb interaction. In order to enhance the ion-to-electron transduction efficiency, a
lot  of  nanomaterials  of  different  dimensions  have  been  proposed  in  order  to  maximize  the
interface contact area, including spherical carbon fullerene,168,169 carbon nanotubes (CNTs),170–172

graphene,173–175 metallic nanoparticles,176–178 metal-organic frameworks (MOFs) and so on.179

With  recent  development  in  personalized  healthcare  and  digital  medicine,  monitoring  the
electrolyte balance in biofluids such as sweat has attracted growing interest. Na+ detection is one
of the most distinguished wearable applications, as sodium plays a key role in electrolyte balance
and dehydration prevention.  Fig. 3d shows an example of an epidermal potentiometric sodium
sensor, which was fabricated with screen-printed carbon electrodes followed by tattoo transfer.152

A  near-Nernstian  response  to  varying  sodium  concentrations  over  0.1–100  mM  range  was
observed (Fig. 3e), with a rapid response to dynamics within 10 s. On-body testing of the sensor



during  exercise  was  performed  with  the  capability  to  monitor  sweat  sodium  dynamics
continuously.  Similarly,  an  ammonium  sensor  was  developed  by  applying  an  ammonium-
selective  ISM  based  on  the  nonactin  ionophore,153 with  a  polyvinyl  butyral  (PVB)-based
reference electrode (Fig. 3f). The obtained potentiometric sensor showed a wide range between
0.1–100 mM, which is within the physiological levels of ammonium in sweat, as shown in Fig.
3g.

To  increase  the  ion-to-electron  transduction  efficiency  and  facilitate  miniaturized  wearable
design, gold nanodendrite arrays were introduced as an alternative solid-contact that achieved
high  performance  through  double-layer  capacitance.  As  shown in  Fig.  3h,  a  wearable  gold
nanodendrite array based sensor platform was carried out, with a much larger surface area of
around 7.23  cm2 compared with  1.85  cm2 of  unmodified bare  electrodes.154 The sensor  was
fabricated on a micro-well patterned chip and exhibited a three-dimensional branched structure
to increase interface contact and hydrophobicity. The highly enhanced surface area guaranteed
fast response to exercise and rest dynamics (Fig. 3i).

With individual sensors detecting one specific analyte at a time, multiplexed screening of several
target electrolytes in an integrated platform could enable a more complete health profile to meet
the needs of clinical applications. One such multiplexed system shown in Fig. 3j exhibits a fully-
integrated wearable wristband that could detect Ca2+ and pH at the same time.147 Measurement of
ionized  calcium was challenging due to  its  dependence on pH, with  an increase  in  calcium
concentration  when pH decreases  (Fig.  3k).  With  dual-channel,  simultaneous  measurements,
real-time  quantitative  sweat  analysis  was  enabled  and  provided  insight  about  Ca2+ and  pH
homeostasis in human body.

The sensitivity of the potentiometric sensors is guided by Nernst equation where the potential
changes  logarithmically  with  target  concentration.  Despite  significant  progress  in  wearable
potentiometric  sensors,  many  limitations  remain  unaddressed  to  meet  the  practical  clinical
wearable  applications.  The  stability  of  ISE  potential  depends  on  the  chemical  stability  and
reversible transitions. One failure mechanism is due to chemical leaching of the ionophore and
ion-exchangers in the ISM over long-term operation, which may cause the readings to drift over
time.180,181 This is mainly determined by the polymeric ISM diffusion properties. Another failure
mechanism is due to water formation at the ISM/conductive substrate interface. The uptake and
diffusion of water in the polymeric ISM is the main reason for the water layer formation,173–175, in
which  water  acts  as  a  reservoir  with  changing compositions  and forms a  dynamic  interface
potential affecting the accuracy of readings. Research has found that a thin water layer as small
as  100  Å  could  harm  sensor  readings,  selectivity  and  drift  rate.182,183 With  further  water
formation, the adhesion between the ISM and substrate is weakened and may cause the ISM to
delaminate.184 Therefore,  it  is  crucial  that  a  highly  hydrophobic  and  low  water  absorptive
material is selected for the ISM matrix, and that an efficient mechanical adhesion between the
substrate and ISM can be obtained, so that a well-protected ion-to-electron transduction layer is



formed against water for robust and long-term operations. Another challenge for wearable ISE
commercialization is the unpredictable E0 deviation between electrodes, which requires ISEs to
be calibrated every time before use. Conducting polymers exist in wide-ranging redox states with
different  doping  levels  during  deposition.185.  Nanomaterial  thickness  and  local  microscopic
morphology  could  also  cause  enormous  variations  between  sensor  batches,  especially  with
differences  in  experimental  protocols.  A  universal  approach  to  preparing  reproducible  and
consistent ISEs with minimal calibration is needed to achieve the ultimate goal of calibration-
free and maintenance-free sensors for user-friendly applications.

4.2 Electrochemical Amperometric Sensors

Wearable  amperometric  sensors  measure current  signals of  redox reactions  during the target
substrate  to  product  process  at  a  constant  applied  potential.  Such  electrochemical  sensors
typically consist of a 3-electrode configuration, in which a working electrode is immobilized
with  a  target-sensitive  component,  a  counter  electrode  that  forms  a  closed  circuitry,  and  a
reference electrode with a stable potential (Fig. 4a). The most common amperometric sensors are
enzymatic sensors, in which the highly target selective and sensitive enzymes are immobilized
onto the electrode surface in a hydrophilic porous matrix. For an ideal amperometric sensor, the
current  density  is  linearly  proportional  to  the  target  concentration,  allowing  for  immediate
quantification for analytes.

Enzymatic sensors consist of three generations depending on the direct/indirect detection and
electron  transfer  mechanism  (Fig.  4b).  A  1st generation  enzymatic  sensor  is  developed  by
monitoring hydrogen peroxide (H2O2) in the enzymatic reaction at the electrode surface. Most
enzymatic  sensors  utilize  oxidases,  for  instance,  glucose  oxidase  (GOx)  complexed  with
coenzyme flavin adenine dinucleotide (FAD), or glucose dehydrogenase (GDH), in conjunction
with cofactors (e.g. flavin adenine dinucleotide (FAD) and pyrroloquinoline quinone (PQQ)) are
widely adopted for enzymatic glucose sensors.186 GOx oxidizes glucose into gluconic acid in the
presence of water and oxygen, and H2O2 is further oxidized, during which electron transfer is
accomplished through cofactor FAD. As shown in  Fig. 4c., enzymatic sensors, composed of a
coupled platinum nanoparticle/multiwall carbon nanotube layer and a permselective membrane
layer, can be used to detect glucose, lactate, and choline could be detected with high sensitivity
and selectivity.187 1st generation  enzymatic  sensing is  an indirect  monitoring  method and the
oxidase  reaction  relies  on  the  use  of  oxygen  as  an  electron  acceptor.  Once  the  oxygen
concentration fluctuates in the solution, error readings can occur. 

To  eliminate  oxygen  dependence,  2nd generation  enzymatic  sensors  replace  oxygen  with  a
synthesized mediator as the electron acceptor, shuttling electrons from glucose oxidase to the
electrode. A representative mediator is Prussian blue (PB), which is widely adopted due to its
high electrocatalyst of H2O2 reduction in the presence of O2 relative to conventional electrodes



(e.g. platinum) and its low redox potential at around 0 V.194 An example 2nd generation wearable
glucose sensor was based on all-printed temporary tattoo with a reverse iontophoretic module
integrated for extraction of interstitial glucose.124 As a proof of concept, the patch could monitor
variations in glycemic levels before and after food consumption. However, PB-based enzymatic
sensors have poor operation stability,187,188 making sensor readings unreliable and unverifiable
over time. One follow-up study improved the stability by introducing a porous membrane with
effective enzyme immobilization (Fig. 4d).188 The porous membrane exhibited a robust adhesion
to  nanodendritic  solid  contacts,  which  facilitated  PB  maintenance  and  prevented  enzyme
outflow.  Together  with  synthesized  nanostructured  electrodes,  the  wearable  glucose  sensor
demonstrated long-term glucose monitoring for up to 20 h. The 3rd generation enzymatic sensors
are  mediator-free  and enable  direct  electron  transfer  between enzyme and electrodes,  which
reduces the influence of mediator deterioration. This is usually realized by using nanomaterials
such as carbon nanotubes (CNTs)195,196 and MOFs.197 



Figure  4.  Electrochemical  amperometric  sweat  sensors.  a,  Schematic  of  amperometry
operating  mechanism and sensor  configurations.  b,  Schematic  showing the  3  generations  of
amperometric enzymatic sensors.  c, A 1st generation wearable mediator-free enzymatic sensor
with capability to detect glucose, lactate, and choline. Reproduced with permission from ref 187.
Copyright 2019 Wiley. d, A 2nd generation wearable glucose sensor with porous membrane that
enables long-term glucose monitoring for up to 20 h. Reproduced with permission from ref 188.
Copyright 2019 Wiley. e, A wearable lactate tattoo sensor was built for lactate sensing in human
perspiration  during  exercise.  Reproduced  with  permission  from  ref  189.  Copyright  2013
American Chemical Society. f, A wearable alcohol sensor for noninvasive alcohol monitoring in
iontophoresis-induced  sweat.  Reproduced  with  permission  from  ref  190.  Copyright  2016
American Chemical Society.  g, A flexible tattoo patch for vitamin C detection to keep track of
nutrients level in the body and guide dietary interventions. Reproduced with permission from ref



191. Copyright 2020 American Chemical Society.  h, A wearable sweat band for noninvasive
levodopa drug monitoring for Parkinson’s disease. Reproduced with permission from ref  192.
Copyright 2019 American Chemical Society. i, A wearable sweat band using nicotine-oxidizing
enzyme, cytochrome P450 2B6 for noninvasive nicotine detection. Reproduced with permission
from  ref  193.  Copyright  2020  American  Chemical  Society. j,  A  fully-integrated  wearable
wristband  that  could  detect  metabolites  and electrolytes  at  the  same time.  Reproduced  with
permission from ref 12. Copyright 2016 Springer Nature.

A number of wearable enzymatic sensors have been built for different wearable applications. For
example,  a wearable lactate tattoo sensor was built for lactate sensing in human perspiration
during exercise (Fig. 4e).189 The sensor was applied to human subjects for real-time continuous
monitoring  of  sweat  lactate  dynamics  during  cycling  exercise,  during  which  the  sensors
demonstrated flexibility against mechanical deformation.

Wearable amperometric sensors can be used not only for natural metabolites within sweat, but
also for food and drug intake by tuning the corresponding enzyme. For example, a wearable
alcohol sensor was developed for noninvasive alcohol monitoring in iontophoresis-induced sweat
(Fig. 4f).190 On-body human studies demonstrated the capability of differentiating ethanol level
increase before and after alcohol consumption, which could be used to prevent drunk driving.
Similarly, nutrient intake monitoring such as vitamin C could be enabled to keep track of nutrient
levels in the body and guide dietary interventions.191,83 As shown in  Fig. 4g, a flexible tattoo
patch was modified with ascorbate oxidase and applied onto several human subjects’ wrists.191

Dynamic rise and fall  of  sweat  vitamin C concentrations  were observed consistently  among
different subjects taking varying amounts of both commercial vitamin C pills and vitamin C-rich
fruit juices, indicating the potential for personalized nutrition solutions. Besides nutrient intake,
wearable  enzymatic  sensors  could  be  used  for  drug  intake  as  well.  Fig.  4h demonstrates
noninvasive  levodopa monitoring,  which  is  the  standard  medication  clinically  prescribed for
Parkinson’s  disease  treatment.192 Optimization  of  levodopa  dosage  plays  a  key  role  in
Parkinson’s symptom management and mitigating side effects,  yet the drug dosage is highly
dependent on patient conditions. To monitor the low-concentration of levodopa, a nanodendritic
platform was fabricated to increase sensitivity to as low as 1.25 μM.192 On-body studies exhibited
an  increase  of  levodopa levels  after  the  subjects  consumed  levodopa-containing  fava  beans,
which  suggests  the  potential  for  routinely  monitoring  levodopa  dosage  and  drug  misuse
prevention.

Wearable amperometric sensors can also be adopted to monitor potential environmental hazards.
As demonstrated in Fig. 4i, nicotine detection can be achieved using a wearable sweat band.193 A
nicotine-oxidizing  enzyme,  cytochrome  P450  2B6,  was  immobilized  onto  a  nanodendritic
surface using a self-assembled monolayer of 11-mercaptoundecanoic acid.  Both smokers and
non-smoker  subjects  were  tested,  showing  elevated  sweat  nicotine  levels  for  subjects  with



cigarette  smoke  inhaling.  Such a  platform can  be  used  for  smoke exposure  assessment  and
modified for other potential hazards.

It is worth noting that wearable amperometric sensors can be combined with the aforementioned
wearable potentiometric sensors to monitor metabolites and electrolytes at the same time. As
shown in  Fig. 4j, a fully integrated wearable sensor arrays that monitors glucose, lactate, Na+,
and K+ could be assembled for multiplexed in situ perspiration analysis on a single platform.12 A
customized FPCB was developed for signal transduction, processing and wireless transmission.
Temporal  metabolite  and  electrolyte  profiles  can  be  obtained  simultaneously  with  human
subjects  engaged  in  physical  activities,  which  represents  a  milestone  in  the  development  of
personalized health monitoring.

Amperometric sensors can measure analytes in a wide range of concentrations (ranging from μM
to tens of mM), and their sensitivities usually depend on electrode size and sensor structure.
When analyzing targets below μM levels, amperometric sensors typically suffer from low signal-
to-background noise ratios. In addition, the sensitivity of the enzymatic sensors can be influenced
by the matrix pH and operation temperature. To date, several approaches have been carried out
to increase sensitivity and stability of wearable amperometric sensors. To increase sensitivity,
nanomaterials including gold nanodentrites,192,193 gold nanomesh,198 gold fibers,199 Pt nanospheres
modified carbon textile,200 MXenes,201 and so on were carried out to increase sensor surface area.
Another research focus is to improve the stability and long-term operations in sweat. Wearable
enzymatic sensors may fail  due to the poor stability  of mediators,  including PB, in complex
solutions.187,188 As a side reaction, PB can react to the hydroxide ions and therefore is soluble in
neutral  sweat,  which  causes  the  sensor  to  malfunction  over  time.202 It  is  also  known  that
biofouling  and  electrode  surface  inactivation  may  limit  the  practical  use  of  affinity-based
wearable amperometric sensors in complex biofluids. Some recent studies have been carried out
to  introduce  antifouling  coatings  for  working  electrodes,203,204,  which  prevents  non-specific
interactions and preserves original mediators. However, introducing additional coatings may also
sacrifice sensitivity, which is unfavorable for low-concentration analytes. There is a high demand
for more research on stabilizing mediators and antifouling functional materials.

4.3 Electrochemical Direct Oxidation

In  addition  to  chronopotentiometry  and  chronoamperometry,  a  number  of  electrochemical
techniques,  including  square  wave  voltammetry  (SWV),205 differential  pulse  voltammetry
(DPV),206 fast-scan cyclic voltammetry (FSCV),207 and linear sweep voltammetry (LSV),87 have
been  developed  to  realize  direct  target  detection  and  bypass  the  need  of  target-sensitive
components  such as ionophores and enzymes.  SWV and DPV are among the most common
approaches  for  detecting  electroactive  materials.  Similar  to  amperometric  configurations,
DPV/SWV based sensing involves a 3-electrode system, including a working electrode with high



material stability and high surface area, a counter electrode that forms a closed circuitry, and a
reference  electrode  with  a  stable  potential  (Fig.  5a).  A  time-dependent  staircase  excitation
waveform of pulsed step voltammetry was applied between the working and counter electrodes
to increase the ratio between the faradaic and nonfaradaic currents, and the current response is
recorded before and at the end of the pulsed voltage. Reduction occurs at the working electrode
surface when the potential is lower than the redox potential,  and at potentials higher than the
redox potential, oxidation occurs.208 During redox reactions, electroactive materials lose or gain
electrons  accordingly,  resulting  in  current  response  with  a  limit  of  detection  down  to
nanomols.209

Figure 5. Electrochemical sweat sensors using direct oxidation. a,  Schematic of differential
pulse voltammetry (DPV)/square wave voltammetry (SWV) operating mechanism and sensor
configurations. b, Detection of uric acid and tyrosine in sweat based on a laser-engraved sensor.
c, Quantitative analysis of uric acid and tyrosine is based on oxidation peak height in DPV curve.
b,c, Reproduced with permission from ref 75. Copyright 2019 Springer Nature. d, Detection of
sweat  caffeine  levels  using  a  wearable  sweatband  after  drug  intake.  Scale  bar,  5  mm.  e,
Characterization of a caffeine sensor with a linear response between peak height and caffeine
concentrations with a high sensitivity. d,e, Reproduced with permission from ref 206. Copyright
2018 Wiley. f, Monitoring of circulating drugs’ pharmacokinetics using an aptamer immobilized
sweat sensor. g, Detection of antibiotics dynamics such as tobramycin and vancomycin that do
not have natural recognition elements. f,g, Reproduced with permission from ref 205. Copyright
2022  The  American  Association  for  the  Advancement  of  Science.  h,  Electrokinetic
preconcentration  of  the  neuropeptide  Y using  negative  dielectrophoretic  (nDEP)  trapping.  i,
Electrochemical detection of neuropeptide Y and Orexin A at picomolar levels from subnanoliter



solution samples with dielectrophoresis preconcentration. h,i, Reproduced with permission from
ref  210. Copyright 2014 American Chemical Society.  j, Detection of heavy metals from body
fluids  such  as  sweat  using  electrochemical  square  wave  anodic  stripping  voltammetry.  k,
Simultaneous detection of Pb, Au, and Hg on a Au working microelectrode.  j,k, Reproduced
with permission from ref 211. Copyright 2016 American Chemical Society.

DPV  and  SWV  methods  have  been  widely  applied  to  monitor  electroactive  molecules  in
sweat.75,87,205,206 For example, low concentrations of uric acid and tyrosine in sweat, which are risk
factors  for  cardiovascular  disease  and  metabolic  disorders,212,213 can  be  detected  on  a  laser-
engraved sensor  with DPV (Fig.  5b).75 Quantitative  analysis  is  based on the oxidation  peak
height in the DPV curve, as shown in Fig. 5c. Detection of uric acid and tyrosine was evaluated
on physically trained and untrained subjects under exercise and after a protein-rich diet, as well
as  gout  patients,  which  provides  a  paradigm  for  noninvasive  electroactive  metabolites
monitoring.  Additionally,  when  the  electrode  is  functionalized  with  molecularly  imprinted
polymers  and  redox-active  nanoparticles,  trace-levels  of  multiple  metabolites  and  nutrients,
including all essential amino acids and vitamins could be analyzed.87

Apart from metabolite monitoring, DPV and SWV measurements can be used for drug intake
detection as well. For example, sweat caffeine levels can be monitored using roll-to-roll printed
CNTs/Nafion  modified  carbon  electrodes  as  shown  in  Fig.  5d.206 The  caffeine  sensor
demonstrated  a linear  response between peak height  and caffeine concentrations  with a high
sensitivity  (Fig.  5e).  Elevated  caffeine  concentration  in  sweat  was  observed  after  caffeine
consumption.  Similarly,  when  the  electrode  was  further  immobilized  with  drug-specific
aptamers, real-time measurements of the circulating drugs’ pharmacokinetics could be realized,
as shown in  Fig. 5f.205 Efficient transduction of the target-aptamer binding was converted into
current readouts using SWV, which could then be used to predict the drug’s pharmacokinetic
characteristics. Therapeutic monitoring of antibiotic dynamics (e.g., tobramycin, vancomycin),
which do not have natural recognition elements, was enabled (Fig. 5g), which could improve
antibiotics-based treatments.

To  increase  the  limit  of  detection  of  direct  oxidation  techniques,  electrochemical
preconcentration  techniques  have  been  implemented  to  detect  neurotransmitters  and
neuromodulators. For example,  Fig. 5h demonstrates an electrokinetic preconcentration of the
NPY and Orexin A within small volume samples.210 Both NPY and Orexin A have extremely
low concentrations at picomolar levels within sweat.96 By integrating negative dielectrophoretic
enrichment  or  by electrochemical  adsorptive  accumulation,  million-fold  enrichment  of  target
biomarkers  was  first  accumulated  onto  patterned  graphene-modified  electrodes,  followed  by
electrochemical detection of NPY and Orexin A at picomolar levels from sub-nanoliter solution
samples  (Fig.  5i).  Under  the  precisely  controlled  trapping  force  of  dielectrophoresis,  such
methods  successfully  avoided  interferences  from high levels  of  dopamine  and ascorbic  acid
within biological matrices, allowing for comparable detection sensitivities to immunoassays.210



In addition to detecting electroactive molecules, electrochemical direct oxidation methods can be
applied to detect heavy metals. Heavy metals are known to harm different body organs and cause
both  acute  and  chronic  toxic  effects.214 Although  major  ions  such  as  Na+,  K+,  Ca2+ can  be
monitored using potentiometric ISEs as aforementioned, trace-levels of heavy ions on the order
of μg/L are below the detection limit and do not have an universal ionophore for simultaneous
measurement. Therefore, a preconcentration technique was developed to detect heavy metals in
sweat. As shown in Fig. 5j, using an electrochemical square wave anodic stripping voltammetry
(SWASV), simultaneous measurement of Zn, Cd, Pb, Cu, and Hg ions can be achieved on Au
and Bi microelectrodes.211 Heavy metal ions in solution were first reduced and accumulated onto
the  electrode  surface,  followed  by anodic  stripping  analysis,  during  which  distinct  peaks  at
different oxidation potentials were observed (Fig. 5k).

For direct oxidation methods, these electrochemical sensors could detect ultralow concentrations
of analytes (down to nM) as DPV and SWV minimize the background charging current and
realize  highly  sensitive  electrochemical  target  analysis.  Note  that  when  coupled  with
electrochemical preconcentration techniques, they can achieve even lower detection limits down
to sub-nM or pM levels. Despite the significant development in detecting low concentrations of
electroactive  analytes  in  sweat,  several  challenges  exist  for  continuous  wearable  monitoring
practice. One limitation is that DPV and many direct oxidation methods require a rather long
time for scanning cycles to obtain reliable, quantitative results. Therefore, such methods are not
as  efficient  and  continuous  compared  with  potentiometric  and  amperometric  ones.  Another
limitation is that DPV electrodes may experience analyte absorption and biofouling after several
scanning cycles,215–217 making them not suitable for long-term wearable monitoring. The other
problem for wearable sweat sensor applications is the co-existence of many interfering analytes
in complex biofluids.  Many analytes,  such as tryptophan and tyrosine exist  at  similar  redox
potentials with overlapping peaks.87 Thus, the selectivity of such voltammetric biosensors could
be limited for specific applications and it is crucial to develop peak-separation algorithms or
novel electrochemical techniques when dealing with sweat analysis.

4.4 Wearable Sweat Sensors based on Transistors

The  emergence  of  flexible  field-effect  transistors  (FETs)  has  sparked  recent  platform
development for wearable sensors due to their signal amplification function and multiple material
choices for different applications.218 A typical transistor consists of a source, drain, gate, and
semiconducting  channel  with  a  dielectric  layer.  Generally,  the  source-drain  current  of  the
transistor  is  controlled  by  the  applied  gate  voltage,  and  when  the  electrode  surface  is
functionalized  with  target-sensitive  components,  the  channel  conductance  will  change  and
generate  current  signals.  In  order  to  amplify  the  sensitivity  and  increase  detection  limit  of



conventional potentiometric and amperometric sensors, transistors with active sensing electrodes
have been implemented.

Fig. 6a exhibits a FET-based inorganic pH chemical sensor with ultrahigh sensitivity by using a
flexible  charge-coupled  device  based  on  accumulation  cycles  of  electron  charge  transfer.219

While conventional charge-coupled devices are based on rigid silicon chips, such pH sensors use
InGaZnO  for  the  channel  and  flexible  PI  as  the  substrate  to  make  it  flexible  for  wearable
applications (Fig. 6b). The FET operates by an electron transfer sequence controlled first by the
input  control  gate  voltage  and  then  by  the  transfer  gate  voltage.  With  100  cycles  of
accumulation,  the pH sensor achieved a sensitivity  of around 240 mV per pH unit,  which is
around four times larger than the Nernst limit of conventional potentiometric pH ones (Fig. 6c).

Figure 6. Wearable sweat sensors based on transistors. a,  A transistor-based inorganic pH
chemical  sensor  with  ultrahigh  sensitivity  beyond Nernst  limit.  b,  Optical  image  of  the  pH
transistor using flexible polimide as substrate. c, pH monitoring with a sensitivity of around 240 
millivolts per pH unit. a–c, Reproduced with permission from ref 219. Copyright 2018 Springer
Nature. d, A lab-on-skin system with microfluidics on top of an ISE-functionalized FET chip. e,
Optical image of the microfluidics system, which aligned on the top gate of the FET array.  f,
Real-time measurement of Na+ and K+ ions with steep variations of the drain current using ion-



selective FET. Scale bar, 3 cm. d–f, Reproduced with permission from ref 220. Copyright 2018
American Chemical Society.  g, A wearable In2O3 nanoribbon transistor with a fully integrated
on-chip  gate  for  glucose  detection  in  sweat.  h,  The sensor  source  and drain  electrode  were
immobilized with GOx, using sweat as the liquid gate dielectric. i, A wide detection range from
nM level to mM level and a detection limit down to 10 nM was obtained using nanoribbon FET.
g–i, Reproduced with permission from ref 221. Copyright 2018 American Chemical Society. j,
Schematic of the organic electrochemical transistor to detect glucose and power generation from
biofluids. Scale bar, 200 μm.  k, Schematic of enzymatic reaction transferring electrons to the
channel  when  gate  voltage  is  smaller  than  source-drain  bias.  l,  Real-time  response  of  the
mediator-free  enzyme-coupled  organic  FET to  successively  added  glucose  in  biofluids.  j–l,
Reproduced with permission from ref 222. Copyright 2019 Springer Nature.

Since FETs can be conveniently fabricated in arrays owing to their  uniform structures using
microfabrication, detecting multiple analytes is possible with flexible FETs. As shown in  Fig.
6d,  a  3D-integrated  complementary  metal-oxide  semiconductor  (CMOS)-compatible
microfluidic platform functionalized with ion-selective FET arrays was built.220 With the top gate
functionalized with selective polymer ISM, the platform was able to track pH, Na+ and K+ at the
surface of the skin in real-time. Sweat from human skin was collected passively by capillary
action in the microfluidic channel (Fig. 6e). Upon switching flow with varying salt dilutions,
real-time measurement of Na+ and K+ ions could be obtained with steep variations of the drain
current, as demonstrated in Fig. 6f.

To date, a number of enzyme-based FETs have proven effective in the continuous monitoring of
metabolites  including  glucose,  lactate,  uric  acid  and  cholesterol.223–225 For  example,  Fig.  6g
demonstrated a wearable In2O3 nanoribbon transistor with a fully integrated on-chip gate for
glucose detection in sweat.221 Using aqueous electrolyte as the liquid gate dielectric, both source
and drain electrode were immobilized with GOx, chitosan and single-walled CNTs using inkjet
printing,  as  shown  in  Fig.  6h.  Conductance  increased  when  electrode  surface  detected  H+

generation during glucose oxidation, and the sensor achieved a wide detection range from nM
level to mM level and a detection limit down to 10 nM (Fig. 6i).

Organic FETs, in particular, mark a milestone in the development of wearable sweat sensor field
owing to their low-cost, lightweight and intrinsic soft nature.226 Organic electrochemical FETs
are usually thin-film transistors, in which a thin layer of organic semiconductors was deposited
on flexible substrate instead of rigid inorganic ones such as silicon. These organic materials can
be  simply  deposited  using  spin-coating,227,228 bottom-up growth,229 vacuum deposition,230 and
with diverse material choices, achieving specific detection functionalities has been the aim of
recent research.218 As shown in  Fig. 6j, a hydrophilic n-type organic FET was built to detect
glucose and power generation from biofluids.222 Electron-transporting material named NDI-T2
copolymer P-90 was used, which operated in the accumulation mode with a positive voltage at
the gate electrode, increasing the channel current to switch on the transistor. When glucose is
enzymatically oxidized and the gate voltage is smaller than the source-drain bias, the enzymatic



reaction will transfer electrons to the channel (Fig. 6k). The real-time response in biofluids of the
mediator-free enzyme-coupled organic FET to successively added glucose was observed with a
detection range of six orders of magnitude (Fig. 6l). When paired with a polymeric cathode, the
n-type  polymer  could  be  further  used  as  a  self-biopowered  sensor  to  power  the  transistor.
Similarly, an organic FET-based lactate sensor was built by incorporating an ionogel as a solid-
state  electrolyte.231 Based  on  the  aforementioned  conducting  polymer  poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate)  (PEDOT:PSS),  lactate  oxidase  (LOx)  and
ferrocene mediator were immobilized in the ionogel on top of the channel. During enzymatic
reaction, the ferrocene mediator carries electrons to the gate voltage and causes a decrease in
gate potential, which increases the gate current concomitantly.

With significant improvements in versatility of wearable FET-based sensors, there are still some
challenges  to  address,  including improving the sensor’s mechanical  stability  against  bending
effects  to  reduce signal  distortion,  and improving the  electrical  protection  against  the  liquid
operating environment. An intrinsic tradeoff between sensitivity, stability, operating range, and
operating voltage also occurs to detect trace-levels of analytes.232

Despite raising interest in organic chemical materials for organic FETs, moreover, they suffer
from  low  electron  mobility  and  therefore  inferior  electrical  performance  because  of  their
semicrystalline characteristics and chain disorder.233 Fabrication of these organic polymers is also
less  consistent  compared  with  conventional  semiconductor  fabrication,  which  makes  organic
FETs more vulnerable to experimental setup and material defects. More fundamental research on
developing novel organic materials and fabrication techniques is needed to increase the yield of
organic FETs for scalable and reproducible sensor performance.

4.5 Wearable Optical Sweat Sensor

Apart  from  electrochemical  sensors,  wearable  optical  sensors  have  been  widely  used  for
metabolite and electrolyte monitoring. Optical sensors typically detect biomarkers by monitoring
absorbance  (colorimetric),  emission  (fluorescence  or  luminescence),  or  scattering
(plasmonics).234 These optical sensors are usually coupled with microfluidics for constant sweat
refreshment, and often utilize colorimetric assays to make sensing patches free of electronics that
are low-cost and can be easily disposed of after use.

In wearable colorimetric  sensors, chromogenic reagents change color through biochemical  or
hydrolytic reactions upon exposure to target analytes. Depending on the stimulus mechanism, the
color-changing  process  of  chromogenic  reagents  can  be  classified  as  electrochromism  (for
electron  transduction  in  an  enzymatic  reaction),  ionochromism (for  target  ion  detection),  or
halochromism (for pH sensing).234 The rise of wearable colorimetric sensors has made it possible
for  continuous  human  health  monitoring  under  long-distance  outdoor  conditions.235–238 For
example, Fig. 7a demonstrates an integrated platform that contains colorimetric assay arrays and



sweat  microfluidics.239 Embedded colorimetric  assays  including glucose,  lactate,  H+
, and Na+

were placed in a set of reservoirs, and these colorimetric reagents changed color upon target
interaction,  with  color  change  correlated  to  analyte  concentration.  To  meet  the  need  of
quantitative analysis applications, an NFC electronics module was integrated, with a smart phone
app  for  image  capture  and RGB color  analysis  to  read  the  marker  concentration  (Fig.  7b).
Similarly, a series of five microfluidic channels each assembled with colorimetric glucose agents
was developed, using a check valve to avoid reagent backflow (Fig. 7c).240 Such glucose sensors
could perform five measurements in parallel to minimize colorimetric reading errors, and could
achieve a linear detection range of 0.1–0.5 mM for sweat glucose with a limit of detection of
0.03 mM (Fig. 7d).

Inspired by natural enzymes, nanozymes, defined as various functional nanomaterials that mimic
the enzymatic  function,  have been introduced.241 These enzyme-mimicking nanomaterials  are
typically  low-cost,  high  stability,  and  can  be  tuned  for  versatile  applications.  Due  to  the
inexpensive  materials  and  simple  mass-fabrication  methods,  nanozymes  are  particularly
attractive to wearable and disposable colorimetric sensors. To overcome their key problem of
low catalytic activity and poor specificity, many nanomaterials were intentionally designed with
similar  structures  of  natural  enzyme;242 for  instance,  mimicking  glucose  oxidase  to  catalyze
glucose oxidation process.243,244 Fig. 7e shows chemically modified carbon nitride-chitin-acetic
acid hybrid that displayed intrinsic peroxidase-like activity.243 The chemically modified graphitic
carbon nitride could oxidize glucose and generate hydrogen peroxide, while chitin and acetic
acid could further decompose hydrogen peroxide.  The sensitive colorimetric nanozyme could
detect hydrogen peroxide with a limit of detection to 0.052 μM, as well as detect glucose with a
limit of detection to 0.055 μM for semi-quantitative analysis, as shown in Fig. 7f.



Figure 7. Wearable optical sweat sensors. a, An integrated platform that contains colorimetric
assay arrays and sweat microfluidics that detects glucose, lactate, H+ and Na+. b, A smart phone
app  for  image  capture  and  RGB  analysis  to  read  the  concentration  quantitatively.  a,b,
Reproduced with permission from ref  239. Copyright 2016 The American Association for the
Advancement of Science. c, A microfluidics design of a colorimetric sensor array that consists of
a check valve to prevent backflow. d, Chromogenic reaction of colorimetric glucose sensor and
colorimetric response various glucose concentrations from 0.1 to 0.5 mM. c,d, Reproduced with
permission from ref  240. Copyright 2019 American Chemical Society.  e, Chemically modified
carbon  nitride-chitin-acetic  acid  hybrid  that  displayed  glucose  oxidase-like  activity.  f,
Ultraviolet–visible  (UV-Vis)  absorption  of  chromogenic  indicator  3,30,5,50-
tetramethylbenzidine in chemically modified nanozyme with varying glucose concentration (0–
1000 μM).  e,f, Reproduced with permission from ref  243. Copyright 2020 Elsevier. g, A soft
microfluidic  system  pre-filled  with  fluorescent  probes  for  sweat  chloride,  sodium  and  zinc
detection. h, Fluorescent probe response to analyte concentration under visible light illumination.
g,h, Reproduced with permission from ref 245. Copyright 2018 Royal Society of Chemistry. i, A
wearable plasmonic paper-based microfluidic system for sweat rate and metabolite detection.  j,
Quantitative measurement of uric acid based on surface-enhanced Raman spectroscopy (SERS)
spectrum.  i,j,  Reproduced  with  permission  from  ref  246.  Copyright  2022  The  American
Association for the Advancement of Science. k, SERS sensing of plasmonic metafilm based on
ordered silver nanocube superlattice as the sensing component.  l, Detection of a wide range of
drugs within the human sweat sample using SERS.  k,l, Reproduced with permission from ref
247. Copyright 2021 The American Association for the Advancement of Science.  



A  complementary  approach  for  wearable  optical  sensors  is  fluorometric  imaging.245,248 In
wearable fluorescent sensors, a light source is required for analyte detection. When fluorophores
are  excited  at  certain  wavelengths,  they  will  re-emit  light  with  an  increase  in  wavelength.
Fluorophores are typically combined with a target-sensitive biomolecule, which change structure
upon binding with an analyte, causing a shift in the fluorescent signal.  Fig. 7g exhibits a soft
microfluidic system pre-filled with fluorescent probes for sweat Cl-, Na+, and Zn2+ detection.245

Chemical  probes  were embedded in a  series of  chambers  under  light  excitation  light,  and a
smartphone imaging module was paired for quantitative measurement of fluorescence intensity,
which is nearly linear to analyte concentration under visible light illumination (Fig. 7h). Human
subjects wearing fluorometric sensors demonstrated measurement of sweat Cl-,  Na+, and Zn2+

along with estimated sweat loss.

Several  other  wearable  optical  sensors  have  adopted  plasmonic  detection  using  external
equipment such as surface-enhanced Raman spectroscopy (SERS).247,249,246 In SERS, a nanoscale
roughened metallic surface and a laser source is required. Laser excitation of the nanosurface
will excite highly localized surface plasmons. When a target molecule is absorbed on the metal
surface,  an  enhancement  in  Raman  signal  can  be  observed.  As  demonstrated  in  Fig.  7i,  a
wearable plasmonic paper-based microfluidic  system was built  for sweat  rate  and metabolite
detection.246 The  label-free  paper  patch  was  then  analyzed  using  SERS to  identify  multiple
analytes.  Owing to the powerful SERS spectrum, quantitative measurement of uric acid was
enabled as shown in Fig. 7j. Similarly, trace amounts of drugs can be detected using a wearable
plasmonic-metasurface sensor.247 A thin hydrogel layer loaded with sweat stimulation drugs was
mounted on one of the two spiral fractal mesh electrodes, while a plasmonic metafilm composed
of an ordered silver nanocube superlattice as the sensing component was mounted in a through-
hole cut in the hydrogel layer (Fig. 7k). SERS spectra could detect a wide range of drugs within
the human sweat sample as demonstrated in Fig. 7l, with a detection range from 10–5 M to 10–1

M.

One critical drawback for wearable colorimetric sensors is that the color changes associated with
certain  assays  are  irreversible7,  which  makes  it  difficult  to  distinguish  dynamics  of  sweat
analytes.  A  potential  solution  is  to  use  passive  capillary  bursting  valves,  which  separate
measurements in time and spatially into a series of reaction chambers for successive colorimetric
analysis.250,251 Another challenge is the quantitative accuracy, as taking images for concentration
calibration  can  be  easily  distorted  by  environmental  lights  and settings.  On the  other  hand,
wearable fluorescent sensors require an additional light source as well as optical accessories to
acquire fluorescence, posing a high power demand during long-term wear. Fluorescence-based
sensors can also suffer from influences from ambient light such as sunlight, and require light-
tight  enclosures  to  retrieve  accurate  fluorescence  signals.  For  wearable  plasmonic  sensors,
detection of the analytes depends on external SERS equipment, which is not suitable for daily
wearing under casual activity and subsequent continuous long-term monitoring.



4.6 Wearable Sweat Rate Sensor

With  the  rapid  development  of  wearable  sweat  sensors  with  real-time  health  assessment
capabilities,  quantifying  sweat  flux  has  become  an  important  research  focus  to  meet  the
calibration needs for personalized medicine. For instance, metabolite concentrations can decrease
with increased sweat rate due to dilution. Wearable sweat rate sensors have thus been integrated
with biochemical sensors to form a more complete health profile.

A common approach for monitoring sweat rate is impedance-based measurement.252,253 Fig. 8a
features an example of an impedance sensor embedded in sweat microfluidics to monitor resting
thermoregulatory sweat.253 Sweat enters the sensing microfluidics through hydrophilic fillers for
rapid sweat uptake, and then goes through the spiral channel. An admittance pulse is spiked and
measured each time the sweat contacts one of the radial electrodes, and by counting spikes and
adjacent time intervals, the sweat volume and sweat rate can be estimated. The impedance and
sweat  rate  calculation  also  depends  on  salt  concentrations  in  sweat;  at  higher  NaCl
concentrations,  a  smaller  impedance occurs  (Fig.  8b).  Recent  research  monitored  sweat  rate
based on a digitized microbubble detection mechanism.254 As shown in Fig. 8c, microliter-scale
bubbles  were generated by electrolysis  intermittently,  and their  velocity  was measured using
impedimetric sensing by measuring the passage time across two impedance sensing electrode
pairs.

In another method, a thermal flow sensing module was built  using a short and straight fluid
channel with a flow sensor (Fig. 8d).255 The simple fluid channel was built without the need for
complex microfluidic networks, and also avoiding electronic contact with sweat. The flow sensor
consisted of a thermal actuator and precision thermistors, of which temperature upstream and
downstream relative to the flow direction was recorded. Upon activation of the thermal actuator,
the generated heat was transported with the flow of sweat, creating a temperature difference at
upstream and downstream sites, which could then be calculated and converted to flow rate. As
shown in Fig. 8e, with varying flow rate under different heater power, the temperature difference
could be detected proportionally.

Several  other  sweat  rate  sensors are based on capacitance,  which consist  of  two conducting
parallel  plates,  plastic  insulating  layers,  and  a  central  microfluidic  channel  formed  by  laser
cutting a plastic film (Fig. 8f).256 The capacitance difference of the microfluidic area between
regions filled with sweat versus air can be converted to sweat flow, as demonstrated in Fig. 8g.
During an on-body trial, the capacitance sensor was measured using an LCR meter continuously,
and the measured sweat rate coincided with values from a conventional sweat collection device
(Fig. 8h).



Figure  8.  Wearable  sweat  rate  sensor.  a, An  impedance  sensor  embedded  in  sweat
microfluidics  to  monitor  resting  thermoregulatory  sweat.  b,  Dependance  of  impedance  on
varying salt concentrations.  a,b, Reproduced with permission from ref  253 under CC BY 4.0.
Copyright 2021 Nyein et al. c, Sweat rate monitoring based on digitized microbubble detection
mechanism by calculating microliter-scale bubbles generated by electrolysis. Reproduced with
permission from ref 254. Copyright 2022 Royal Society of Chemistry. d, A thermal sweat flow
sensing module based on a short and straight fluid channel with a flow sensor.  e, Detection of
sweat rate by temperature difference with varying flow rate under different heater power.  d,e,
Reproduced with permission from ref  255.  Copyright  2021 Springer  Nature. f,  Capacitance-
based  sweat  rate  sensors.  g,  Measurement  mechanism  by  capacitance  difference  of  the
microfluidic area between those filled with sweat from that of air.  h,  On-body trial  with the
capacitance sensor being measured using an LCR meter continuously.  f–h,  Reproduced with
permission from ref  256. Copyright  2020 American Chemical  Society. i,  A resettable  visual
sweat  rate  sensor  with  functionalities  of  collecting  sweat,  purging  collected  sweat,  and
chemesthetic ejection.  Scale bar, 1 cm.  j,  Optical image showing the sweat collection system
being reset by the user after rehydration. i,j, Reproduced with permission from ref 257 under CC
BY 4.0. Copyright 2019 Reeder et al.



Sweat rate monitoring can also be done visually without the need of active components or power
sources. As shown in Fig. 8i, a system of pinch valves and suction pumps can be used to reset
the sweat rate sensing patch.257 The epifluidic sweat system was fabricated using soft lithography,
with capabilities to visualize sweat flow in the channel and to manually purge collected sweat, as
exhibited in Fig. 8j. Once sweat loss reaches the critical value of 25 μL, an effervescent chemical
pump is activated, releasing chemesthetic agents to create a sensory alert feedback.

4.7 Wearable Sweat Sensors based on Piezoelectrics and Other Methods

Several other techniques have been developed as alternative methods for the detection of sweat
analytes. One example used piezoelectric materials for sweat pH monitoring by transducing the
physicochemical changes of pH responsive hydrogels with piezoelectric aluminum nitride (AlN)
membranes (Fig. 9a).258 The hydrogel is made of poly(ethylene glycol)-diacrylate macromer with
2-carboxyethyl  acrylate,  and  its  carboxylic  group  is  protonated  in  acidic  conditions  and
deprotonated  in  a  basic  environment,  resulting  in  the  polymeric  chains  to  shrink  or  swell
accordingly  (Fig.  9b).  Upon  deformation  of  the  hydrogel,  the  resonant  frequency  shift  is
recorded in the piezoelectric AlN membranes, which has a responsivity of about 12 kHz per pH
unit change in artificial sweat (Fig. 9c).



Figure  9.  Wearable  sweat  sensor  based  on  piezoelectric  and  other  methods.  a,  A
piezoelectric  sweat  pH sensor based on pH sensitive  hydrogels.  b,  Optical  images  of  a  pH-
sensitive  hydrogel  in  acidic,  neutral  and  basic  solutions.  c,  Resonant  frequency  shift  of
piezoelectric membrane in response to pH. a–c, Reproduced with permission from ref 258 under
CC  BY  4.0.  Copyright  2020  Scarpa  et  al. d,  Optical  image  of  a  piezoelectric  patch  for
multimodal  metabolites  monitoring.  e,  Mechanism  of  coupling  effect  between  the  surface
enzymatic  reaction  and  piezoelectric  characteristic  of  ZnO  nanowire.  f,  Multimodal  signals
including glucose, lactate, uric acid and urea could be obtained using the piezoelectric sensor. d–
f, Reproduced with permission from ref 259. Copyright 2017 American Chemical Society. g, A
chip-less wireless sensor system using surface acoustic wave sensors for sweat ion sensing. Scale
bar, 200 μm.  h, Sensing mechanism of ISM-coated surface acoustic wave sensors.  i, Dynamic
response of surface acoustic wave sensors to different sweat ion concentrations. g–i, Reproduced
with permission from ref 260. Copyright 2022 The American Association for the Advancement
of Science. 

Fig. 9d gives another example of adopting piezoelectric  materials  for multimodal  metabolite
detection.259 The  wearable  e-skin  is  comprised  of  piezo-biosensing  units  of  enzyme/ZnO
nanoarrays, and piezoelectric impulse of the piezo-biosensing units serves as both power supply
and biosensor at the same time. As shown in Fig. 9e, sensing capability arises from the coupling
effect between the surface enzymatic reaction and piezoelectric characteristic of ZnO nanowire.
Multimodal signals for glucose, lactate, uric acid, and urea could be obtained (Fig. 9f).

Another  significant  development  is  sensing  ion  concentrations  using  surface  acoustic  wave
sensors.260 As  shown  in  Fig.  9g,  a  chip-less  wireless  sensor  system  was  built  based  on
freestanding  ultrathin  single  crystalline  piezoelectric  gallium  nitride  (GaN)  membranes.  The
GaN membrane was coated with ISM to sense viscosity and mass changes of the ISM upon
target ions binding to ionophores (Fig. 9h). The resonant peak shifts in the surface acoustic wave
sensor can be used to wirelessly detect sweat ionic concentration dynamics (Fig. 9i).

4.8 The Emerging Sweat Sensors based on Bioaffinity Recognition

Although numerous wearable sweat sensors based on various signal transduction mechanisms
have been reported as discussed in Sections 4.1–4.7, existing wearable sweat biosensors that can
perform continuous biosensing are primarily based on a few target recognition mechanisms such
as  enzymatic  reactions,  ion-selective  recognition,  or  direct  oxidation.  Given  the  low
concentrations of disease relevant biomarkers in sweat (nM or lower), the performance of ion-
selective and enzymatic sensors may be limited in interrogating trace-level targets like hormones
and proteins. In this regard, the design of ultra-sensitive bioaffinity sensors which are specific to
various disease biomarkers is a cornerstone of the development of wearable sweat biosensors for
non-invasive health and disease monitoring.261 It should be noted that most reported bioaffinity
sweat sensors are currently limited to point-of-care one-time use and cannot perform continuous
in-situ monitoring. 



Bioaffinity sensors typically consist of a bioreceptor layer for specific molecule recognition, and
a signal transducer which converts the recognition event between a target and a receptor into a
measurable  signal  (Fig.  10).  General  classes  of  bioreceptors  employed  for  wearable  sweat
biosensor  construction  include  antibodies,  receptor  proteins,  nucleic  acids,  and  biomimetic
materials  like  molecularly  imprinted  polymers  (MIP).262 The  intrinsic  properties  of  the
bioreceptors, in essence, determine several operational characteristics of a biosensor, including
selectivity, sensitivity, stability, and reversibility. 

Figure 10. Major components of a bioaffinity sensor.  Bioaffinity detects analytes including
proteins,  nucleic  acids  and  small  molecules.  A  bioaffinity  sensor  recognizes  an  analyte  via
affinity interactions with a receptor (aptamer, antibody or molecularly imprinted polymer) and
converts  the interactions  into measurable signals via  a transducer.  Transducers employed for
epidermal sweat sensing are either electrochemical or optical. SWV, square wave voltammetry;
DPV, differential pulse voltammetry; LSV, linear sweep voltammetry; I, current; V, potential;
RCT,  charge  transfer  resistance;  Cdl,  double  layer  capacitance;  Rs,  solution  resistance;  Zw,
Warburg  element;  Z’,  real  impedance;  Z’’,  imaginary  impedance;  nf-EIS,  non-faradaic
electrochemical impedance spectroscopy. f-EIS, faradaic impedance spectroscopy; S, substrate;
P, product; I-T, chronoamperometry; D, drain; S, source; Vds, drain-source voltage; Vgs, gate-
source voltage; FET, field effect transistor; Abs, absorbance; Em, emission; I (a.u.), intensity; λ,
wavelength; LFA, lateral flow assay; Δν, Raman shift. Created with BioRender.com.

The architecture and design of transduction interfaces govern the physical characteristics (size,
portability,  type of instrumentation),  costs, as well as the limit of detection for the target.  In
recent years, affinity-based formats have been coupled with various types of transducer interfaces
such as electrochemical263,  optical264,  and piezoelectric265 sensors. Electrochemical  sensors are
versatile tools that can be easily integrated with epidermal systems with high innate sensitivity,
scalability, and low instrumentation costs. Electrochemical impedance spectroscopy (EIS) probes
the impedance of an electrode-solution interface by applying a small amplitude (typically 5-10



mV peak-to-peak) sinusoidal perturbation while registering the current response. In non-faradaic
EIS,  the  binding  event  between  biomarkers  and  receptors  immobilized  on  the  transducer
interface  leads  to  a  change  in  the  double  layer  capacitance  (Cdl)  in  the  Randles  circuit  and
consequently the impedance (Z) of the system due to the dielectric properties of the biomarkers
based on the Gouy-Chapman-Stern model.266 In contrast, faradaic EIS requires the presence of
redox active species. The association of biomarkers presents an electrostatic and/or steric barrier
to the redox probes at the interface and modulates the charge transfer resistance (Rct) and the
impedance of the system. Other techniques that monitor the faradaic response of targets with
direct  electrochemical  properties  or  the  faradaic  response  of  electrochemical  tracers  include
amperometry and voltammetry (square wave voltammetry, differential  pulse voltammetry and
cyclic voltammetry). Bioreceptors, especially aptamers, have also been integrated with various
FETs on the skin.218 The modulation of charge distribution at the semiconducting interface (gate
electrodes)  upon target binding translates  into a measurable change in the current that  flows
between the source and drain electrodes.  Surface charged species distribution and electrolyte
concentration in the detection media play an important role in the transduction mechanisms of
most  electrochemical  sensors.  Unlike  conventional  biofluids  like  serum  and  saliva,  sweat
electrolyte and pH content varies hugely with different subjects and different collection methods.
Therefore,  the  influence  of  such  variations  should  be  carefully  addressed  in  the  design  and
implementation of electrochemical sensors for in situ sweat analysis.

Optical  transduction  mechanisms  can  be  further  categorized  into  colorimetry,  fluorescence,
chemiluminescence,  and plasmonic.267 The simplest  format  of  colorimetric  bioaffinity  sensor
used for wearable sweat analysis is the lateral flow assay (LFA).268 The association of biomarkers
with bioreceptor-immobilized metal nanoparticles leads to a visible change in the absorbance
wavelength and/or intensity due to the aggregation or accumulation of nanoparticles within the
test-zone. Plasmonic affinity sensors require the excitation of noble metal films or nanoparticles
with  incident  laser  and  measure  the  change  of  surface  plasmon  resonance  (SPR)  or  the
modulation  of SERS from the interface in  response to  target  binding.269 Smartphone-enabled
optical wearable sensing and signal processing technologies are less influenced by electrolyte
content  of  sweat  samples  as  compared  with  electrochemical  biosensors;  however,  these
technologies need to account for variation in ambient lighting as mentioned previously.270 

Often, many targets of interest do not possess optical or electrochemical properties that can be
directly  detected  by  a  transducer.  As  a  result,  the  addition  of  a  signaling  tracer  that  either
competes with the analyte (competitive format) or binds to a secondary binding site on the target
where a target is ‘sandwiched’ between a surface immobilized receptor and receptor-based tracer
(sandwich  format)  is  necessary  to  produce  a  measurable  signal.271 Enzymatic  tracers  are
sometimes incorporated in a sensing format to amplify the signals of a system and achieve a
lower detection  limit.272 As some formats  are complex and multistep,  epidermal  microfluidic
modules  that  can  be  programmed  to  manipulate  reagents  may  be  necessary  to  achieve



miniaturization and automation.273 Together, the features of bioreceptors, transducers and sensing
formats determine the operational characteristics of a wearable sweat biosensor. 

4.8.1 Antibody-based Sensors

Antibodies are the most widely used bioreceptors in bioaffinity sensors due to their  superior
affinity and specificity to targets, versatility, and commercial availability. Depending on whether
an electrochemical or optical tracer is used, antibody-based sensors are classified into labeled
(with tracers) and label-free immunosensors. In label-free immunosensors, the association of an
antigen with an antibody is directly transduced into electrical or optical signals.274 Non-faradaic
EIS is the most commonly used technique in constructing label-free sweat immunosensors. A
non-faradaic EIS sensor was developed for ethyl glucuronide (EtG), a metabolite of ethanol, in
spiked human sweat.275 Impedance across two co-planar gold or zinc oxide (ZnO) electrodes
functionalized with monoclonal anti-EtG antibodies was measured. The paper reports a working
range of 0.001-100 μg/L on both glass and PI substrates and demonstrates that ZnO electrodes
have better detection sensitivity than gold electrodes. Based on a similar concept, the same group
reported a non-Faradaic EIS sensor using room temperature ionic liquid (RTIL) with nanoporous
ZnO  electrodes  on  flexible  polymer  membranes  to  enhance  the  stability  of  the  bioreceptor
(antibodies) for the detection of interleukin 6 (IL-6) and cortisol in spiked human sweat (Fig.
11a).276 The IL-6 sensors demonstrated distinguishable signals above the specific signal threshold
after 168 hours of storage and a 10-hour continuous detection from 0.2 to 200 pg/mL IL-6 in
spiked human sweat. A printed two-electrode system functionalized with anti-CRP antibodies or
anti-IL-1β was fabricated for non-faradaic EIS detection.277 In addition to cortisol, CRP, and IL-
1β, the same device was modified with other antibodies for the detection of IL-6, IL-8, IL-10,
tumor necrosis factor α (TNF-α), IL-31, interferon γ (IFN-γ), dehydroepiandrosterone (DHEA),
and NPY in collected eccrine sweat.278–283

Although the need for redox species in faradaic EIS immunosensors complicates their execution
on the skin as compared with non-faradaic EIS sensors, this bottleneck has been addressed with a
stretchable microfluidic module that delivers a pre-deposited redox mediator solution, potassium
ferricyanide,  to  the  antibody  immobilized  3D  nanostructured  gold  working  electrode  while
washing away the unbound cortisol and sweat (Fig. 11b).284  Charge transfer resistance (Ret) in
the presence of redox mediator increases with increasing concentration of cortisol from 1 pg/mL
to 1 µg/mL. An ATi3C2Tx MXene-loaded laser-induced graphene (LIG) sensor was reported for
noninvasive POC detection of cortisol. The introduction of MXene improves the sensitivity of
the LIG electrode after transfer onto PDMS. Rct of the sensor increases by approximately 1000 Ω
from  10  pM  to  100  nM  cortisol.285 On  a  similar  basis,  a  thread-based  immunosensor  was
developed  by  immobilizing  anti-cortisol  on  a  L-cysteine-gold  nanoparticle-MXene  modified
electrode via EDC/NHS coupling.286 The change in charge transfer resistance caused by cortisol
binding was monitored by amperometry in the presence of potassium ferricyanide and the sensor
reported a linearity of 5–180 ng/mL for sweat cortisol detection. In addition to increasing the



charge  transfer  resistance  of  redox  species  in  solution,  antigen  association  to  immobilized
antibodies may also hinder the kinetics of electron transfer between redox species immobilized
below  the  antibody  layer  and  electrolytes  in  the  solution.  Conductive  carbon  yarn  (CCY)
deposited with redox active Fe2O3 nanostructure was functionalized with anti-cortisol antibodies
for cortisol detection.287 Using cyclic voltammetry (CV), the magnitude of the redox peak current
decreases with increasing cortisol due to the insulating behavior of cortisol binding. The sensor
exhibited a working range of 1 fg/mL to 1 μg/mL. The same group reported a ZnO nanorod
integrated CCY for cortisol detection.288 The charge transfer resistance of potassium ferricyanide
was monitored using CV and DPV. Changes in oxidation peak current as a function of cortisol
concentration were found to be linear between 1 fg/mL to 1 μg/mL. A screen-printed carbon
electrode  with  electrodeposited  gold  nanoparticles  (AuNPs)  was  functionalized  using  thiol-
poly(ethylene glycol) (PEG)-carboxylic acid for subsequent anti-cortisol immobilization.289 DPV
in the presence of ferrocenyl methanol was applied to the electrode after cortisol binding and the
change in charge transfer resistance was recorded. 



Figure 11. Wearable immunosensors. a, Non-faradaic impedance sensor mediated with room
temperature ionic liquid (RTIL) to enhance the stability of sweat cortisol detection. Reproduced
with permission from ref  276 under CC BY 4.0. Copyright 2017 Munje  et al.  b, Microfluidic
faradaic impedance sensor whose detection is initiated by manually pushing redox molecules in
the  reagent  chamber  to  the  detection  chamber.  Reproduced  with  permission  from  ref  284.
Copyright 2020 Elsevier.  c, Amperometric cortisol sensor on flexible laser-engraved graphene
substrate. Reproduced with permission from  ref  93. Copyright 2020 Elsevier.  d, Colorimetric
detection  of  cortisol  based  on  a  lateral  flow  strip  embedded  in  a  soft,  microfluidic  patch.
Reproduced with permission from ref 292 under CC BY 4.0. Copyright 2020 Proceedings of the
National Academy of Sciences.

Immunosensors are also frequently coupled with direct signals for labeled detection of antigens.
The addition of signal labels is believed to amplify analytical signals290. Common labels used for



immunosensors  include  enzymes  (peroxidase,  alkaline  phosphatase,  luciferase),  fluorescent
labels (fluorescein, rhodamine, Cy5), and redox molecules (methylene blue, ferrocene, thionine).
However, the requirement of label addition and washing steps impedes labeled immunosensors’
practical  implementation  on  the  skin.  For  example,  a  flexible,  wireless  sweat  cortisol
immunosensor was constructed on laser-engraved graphene electrodes by electropolymerization
of  carboxyl-rich  pyrrole  derivative  and  antibody  immobilization  with  ethyl  (dimethylamino
propyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry (Fig. 11c).93 Sweat cortisol
competes with horseradish peroxidase (HRP) labeled cortisol for binding with the immobilized
antibody. The concentration of cortisol has an inverse relation to the cathodic current generated
by the enzymatic reduction of hydrogen peroxide in the presence of the mediator, hydroquinone.
The sensor was only designed as a POC system as it requires an additional washing and substrate
adding step off-body at the bench. HRP-labeled antigen has also been used as an optical tag for
sweat  biomarker  detection.  Labeled  competitive  immunosensors  on  capillary  arrays  were
modified  with  various  drug  antibodies  and  drug-HRP  (methadone,  methamphetamine,
amphetamine,  and tetrahydrocannabinol).291 Drugs in artificial sweat were detected by adding
chemiluminescent  substrate  to  the  array  and recording  the  chemiluminescence  image  with  a
CMOS camera. However, the form factors of this technology (rigid capillary array, bulky CMOS
camera) make it difficult to integrate with epidermal systems. A skin-interfaced soft microfluidic
system was combined with a lateral flow immunoassay for sweat collection and cortisol analysis
(Fig. 11d).292 Colorimetric measurements of sweat cortisol were carried out by capturing the
images with a smartphone and correcting for ambient lighting conditions after 5 min incubation
on the skin. 

Despite the cost of production, stability issues, and potential batch-to-batch variation, antibodies
are still a staple component of current biosensing technologies due to their exceptional sensitivity
and  selectivity  for  biomarkers.  Future  research  into  the  production  of  nanobodies,  a  more
compact and heat-stable alternative, could potentially resolve issues associated with the storage
and  implementation  of  the  current  generation  of  immunosensors.293 The  production  of  non-
animal derived antibodies may also provide greater versatility and reproducibility,  while also
reducing  relevant  ethical  concerns.294,295 Although  such  opportunities  exist  for  antibody
manufacturers  and  researchers,  significant  effort  is  needed  to  produce  and  investigate  the
performance of these alternatives before their eventual integration in epidermal sweat sensing
systems.

4.8.2 Nucleic Acid-based Sensors

Aptamers  are  a  new class  of  bioreceptors  produced  by  in  vitro  selection  of  single-stranded
nucleotides with desired binding affinities.  To date,  various aptamers are produced to bind a
broad spectrum of targets like metal ions, small molecules, proteins and whole cells via their 3D
stem and/or loop structures.296  Compared with antibodies, advantages of aptamers include facile
and  low-cost  preparation,  low  batch-to-batch  variability,  non-immunogenic  properties,  easy



modification with functional groups, and stability.297,298 The unique properties of aptamers make
them compatible with many sensing modalities for POC applications. 

For  example,  cortisol  aptamers  were  immobilized  with  a  5’-terminal  thiol  group  to  ZnO
nanoporous electrodes that had been previously reported for a cortisol immunosensor using non-
faradaic EIS.299 Instead of measuring impedance, the authors performed chronoamperometry by
applying a step potential input of 0.35 V (0.35 to -0.35) for 60 s.  The steady-state current change
revealed  the  change  in  the  non-faradaic  capacitive  double  layer  with  increasing  cortisol
concentration. The same group also reported a platform for simultaneous detection of cortisol
and NPY using aptasensors on porous gold electrodes.300 Non-faradaic EIS was used to monitor
the dose response of both targets and the platform reported detection ranges of 1 ng/mL - 256 ng/
mL  of  cortisol  and  1  pg/mL  -256  pg/mL  of  NPY.  Based  on  the  concept  of  non-faradaic
impedance,  a  tuning  circuit–inspired  wireless  serotonin  aptasensor  was  developed  on  gold
electrodes (Fig. 12a).301 Binding of serotonin to the aptamer induces a conformational change
which modulates the surface potential within the electrical double layer. The sensing interface is
coupled with a pair of varactor diodes and a coil to form an inductor-capacitor (LC) resonance
circuit. Therefore, the change in surface potential of the aptasensor serves as a reverse bias that
drives  the  varactors  for  battery-free  wireless  signal  transduction.  Further  validation  of  this
sensing system with other relevant trace-level sweat biomarkers is necessary to demonstrate its
feasibility in wearable sweat sensing. 

The  ease  of  aptamer  chemical  modification  has  also  inspired  various  tracer  labeled  sensing
formats. For instance, cortisol aptamers modified with a thiol end and a methylene-blue redox
molecule on the opposite side were immobilized on gold electrodes for cortisol sensing (Fig.
12b).302 Upon binding, the aptamers undergo conformation changes by folding. Therefore, the
distance between the redox molecule and the electrode surface decreases, leading to an increase
in the electron transfer rate and redox peak current measured by SWV. A similar concept was
implemented to construct an integrated aptasensor array for drugs.302 Two aptamer sequences
(Apt1 and Apt2) which demonstrate different binding affinities to bioamine drugs were modified
with a methylene blue signal reporter. Gold electrode sensor arrays were either modified with
one or both aptamers (Apt1 or Apt2; Apt1 + Apt2). After variable feature extraction from the
electrochemical signals of the aptasensor array, sixteen drug analytes present distinct fingerprints
that can be identified in both artificial and human sweat samples.

FET is  another  popular  transducer  system that  has  been interfaced  with  aptamers  for  sweat
biomolecule  sensing.  A  newly  identified  cortisol  aptamer  sequence  was  immobilized  on  a
flexible thin In2O3 FET (Fig. 12c).91 The conformational change of the aptamer strand after target
association  leads  to  the  rearrangement  of  the  negatively  charged  aptamer  backbone  that
modulates  the  surface charge  of  the  FET,  which translates  into quantitative  changes  in  gate
voltage (VGS) and source drain current (IDS). An integrated system with an on-board multichannel
source measurement unit was developed for on-body applications. Similarly, cortisol aptamers



were immobilized on electrospun conducting polyacrylonitrile (PAN) nanofibers deposited with
carboxylated PEDOT in a liquid-ion gated FET system on PET.303 The aptasensor showed high
selectivity and sensitivity (LOD = 10 pM) for cortisol detection in human sweat. Although FETs
boast high sensitivity and label-free detection mechanisms, their application in real body fluids is
limited by the high ionic strength of biofluids, which lowers the signals and deteriorates FET
biosensors’ sensitivity. The compact structure of aptamers enables target capturing and aptamer
folding within the electrical double layer, allowing electrical signal generation. 

Figure 12. Wearable aptasensors. a, A wearable tuning circuit–inspired wireless aptasensor on
gold electrode for serotonin detection in biofluids. Reproduced with permission from  ref  301.
Copyright  2022 The American Association  for  the Advancement  of  Science.  b,  Multiplexed
aptamer array based on two different  methylene labeled aptamer array for common drugs of
abuse detection in artificial sweat. Reproduced with permission from  ref  302. Copyright 2022
American  Chemical  Society.  c,  Field  effect  transistor-based  aptasensor  thin  In2O3 for  the
detection  of  sweat  cortisol.  Reproduced  with  permission  from  ref  91.  Copyright  2022  The
American Association for the Advancement of Science.

Aptamers  can  also  be  coupled  with  optical  transducers  for  the  POC  detection  of  sweat
biomarkers.  For  instance,  an  aptamer  based  LFA  strip  was  designed  for  sweat  cortisol
detection.304 Cortisol aptamers were physically adsorbed to AuNPs. Upon cortisol binding, the



aptamers  dissociate  from the AuNP, allowing free AuNPs to be captured by the cysteamine
immobilized test zone resulting in visual detection of cortisol higher than 1 ng/mL. 

Although many believe that aptamers are stable and cheaper alternatives to antibodies, it should
be noted that nucleic acids are still susceptible to endogenous nucleases in in vivo applications.305

In addition, mass production of nucleic acids is still costly. The enzymatic stability issue could
potentially be addressed by replacing deoxyribonucleic acids (DNAs)/ribonucleic acids (RNAs)
with peptide nucleic acid (PNA) and xeno nucleic acids (XNA).306,307 Despite increasing research
on the design and selection of sensitive and selective aptamers against various targets, only a
limited number of targets have been extensively investigated (e.g. thrombin, cortisol, serotonin)
with  few aptamer  sequences  demonstrating  reversible  target  binding  suitable  for  continuous
monitoring applications. 

4.8.3 MIP-based Sensors

MIPs are synthetic biomimetic bioreceptors whose affinities are generated by self-assembling
monomers  with  templates  through  covalent  or  non-covalent  interactions  and  subsequent
polymerization to form a cast-like shell.308 The removal of templates from the polymer generates
binding sites  for  selective  recognition  of  targets.  MIPs are  a  cheap,  mass-producible,  robust
alternative  to  conventional  bioreceptors  like  antibodies,  enzymes,  and  aptamers.  As  MIPs
generally do not possess signaling or catalytic properties, the design of signaling mechanisms
which respond to the interaction between MIPs and templates are essential for the construction of
MIP-based sensors.

In electrochemical MIP sensors, recognition events typically trigger a change in the dielectric
properties of the electrode interface and signals are registered in the presence of electroactive
species.  For  example  a  flexible  electrochemical  platform  was  constructed  for  sweat  urea
detection using potassium ferricyanide as redox mediators309. Binding of urea with recognition
sites on urea-imprinted PEDOT on a CNT network and a gold nanotube (AuNT) network hinders
the electron transfer of the potassium ferricyanide probe, translating into a measurable change in
DPV  signal.  The  MIP  sensor  demonstrates  good  linear  response  and  selectivity  toward
physiologically  relevant  urea  levels.  The  same  group  reported  a  flexible
electrochemiluminescence  (ECL)  sensor  by  imprinting  urea  and  lactate  on  Ru(ii)–
polyethylenimine  (PEI)@SiO2 immobilized  AuNTs  networks.310 The  porous  MIP  membrane
provides electron transfer paths for the electrochemical oxidation of Ru(ii)–PEI@SiO2 and its
ECL emission. As the pores, which are also the binding sites, are occupied by target molecules,
the electron transfer channels are gradually blocked, leading to reduced ECL signals. The ECL
platform demonstrated  on-body sampling  and detection  of  sweat  urea  and lactate  with  high
stability. Similarly, a lactate sensor based on MIP-coated Ag nanowires (AgNWs) on a screen-
printed electrode was demonstrated in sweat. The oxidation current of Ag decreased as lactate
molecules  occupied  the  imprinted  cavities  on  the  MIP.311 PB  was  embedded  with  cortisol-



imprinted electropolymerized PPY MIP as a redox reporter on screen-printed carbon electrodes
(Fig. 13a). The electrodes are coated with a porous polyvinyl alcohol (PVA) hydrogel to allow
diffusion of cortisol from the accumulated finger sweat to the MIP electrode upon touch. Binding
to  the  cortisol  template  impedes  the  electron  transfer  process  of  the  embedded  PB.  Using
amperometry,  the  oxidation  current  of  PB  decreases  as  a  function  of  increasing  cortisol
concentration.311 To allow for continuous sensing, in situ regeneration of the electropolymerized
MIP is typically performed with amperometry (Fig. 13b).87 A generic strategy for electroactive
species  involves  electropolymerizing  the template on laser-engraved graphene electrodes  and
conducting  detection  with  DPV.  To  detect  non-electroactive  targets,  the  MIP  membrane  is
prepared on top of an electrodeposited PB layer and binding events are monitored by LSV. A
broad range of small molecule targets can be sensed using these techniques, including amino
acids, metabolites, and nutrients. 

Figure  13.  Wearable  MIP-based  sensors. a,  Touch-based  amperometric  MIP  sensor  for
cortisol.  Reproduced  with  permission  from  ref  311.  Copyright  2021  Wiley.  b,  wearable



electrochemical MIP sensor for the detection of electroactive (tyrosine) and non-electroactive
(leucine) targets. Reproduced with permission from ref 87. Copyright 2022 Springer Nature.  c,
Organic electrochemical transistor integrated with a molecularly selective membrane for sweat
cortisol  detection.  Reproduced with permission from  ref  312. Copyright 2018 The American
Association for the Advancement of Science. d, MIP based self-powered triboelectric sensor for
the label-free detection of lactate. Reproduced with permission from  ref  313. Copyright 2022
Elsevier.

A  MIP-based,  wearable  PEDOT:PSS-based  organic  electrochemical  transistor  (OECT)  was
developed for non-invasive cortisol sensing (Fig. 13c).312 MIP particles were entrapped in an
inert plasticized poly(vinyl chloride) matrix to form the molecularly selective membrane (MSM).
Binding of cortisol to the MSM modulates the ion transport to the PEDOT:PSS channel, which
modulates  the  drain  current.  Hence,  the  OECT  transducer  allows  the  detection  of  non-
electroactive  targets  without  the  need  for  a  redox  reporter.  A  MIP-based  self-powered
trioboelectric sensor also demonstrated label-free detection of a non-electroactive target, lactate
(Fig.  13d).313 Lactate  binding  to  the  lactate-imprinted  MIP  on  polyvinylidene  fluoride
(PVDF)/graphene electrode lowers the energy barrier and electric potential of the triboelectric
nanogenerator (TENG).

MIP  sensors  have  demonstrated  immense  potential  in  the  development  of  wearable  and
continuous  epidermal  biosensing  technologies.  However,  several  challenges  will  need  to  be
addressed before the broad adoption and integration of MIPs as artificial bioreceptors for on-
body biomarker detection. Current research into MIPs primarily focuses on the detection of small
molecules and the sensitive recognition of larger molecules like proteins are rarely explored.
Non-specific  binding  of  targets  with  similar  structures  and  functional  groups  is  a  common
challenge faced by all MIPs.262 This is even harder to address for large molecules due to the
heterogeneous nature of interactions at the binding sites.314

4.8.4 Biosensor Design Considerations

There  are  countless  biosensor  configurations  with the  selection  and combination  of  different
bioreceptors and signal transducers. Understanding the unique advantages and disadvantages of
different bioreceptors and transducers and thoughtful selection is a critical step to the successful
implementation of bioaffinity sensing technologies for wearable sweat analysis. It is challenging
to  simultaneously  achieve  the  best  sensitivity,  selectivity,  reproducibility,  reusability,  and
stability: antibody- and nucleic acid-based sensors can achieve high sensitivity and selectivity,
but their in-situ regeneration is extremely challenging; certain aptamer- and MIP-based sensors
may have limited  sensitivity  but can operate  in  situ  continuously.  Therefore,  it  is  crucial  to
identify  and  achieve  certain  critical  biosensor  characteristics  and  inevitably  compromise  on



others based on different application scenarios. For instance, if molecules with similar structural
and functional groups exist at similar concentrations as a target analyte, it is important to select
receptors  with  better  selectivity  such  as  antibodies  and aptamers.  On the  other  hand,  if  the
reusability  of a sensor is  critical  for more frequent  or continuous sampling,  MIPs or certain
aptamers that have limited sensitivity but can be regenerated could be a better candidate. Hence,
understanding  the  nature  of  the  specific  target  and  its  analogs  in  sweat  and  the  intended
application scenario such as sampling frequency is important for designing sweat biosensors. 

5. Sweat Extraction and Sampling

The accessibility  of sweat as a biofluid has shown great  potential  for non-invasive wearable
health monitoring. Various methods of sweat stimulation were introduced over the past decades
in different settings,  and sampling of the induced sweat was heavily investigated with novel
prototypes. In this section, we will summarize the common sweat induction methods and recent
innovations in sweat sampling.

5.1 Sweat Induction

5.1.1 Thermally-Induced, Exercise-Induced, and Natural Sweat

Sweat  can  be  induced  in  various  manners,  such  as  thermal  stimulation,  exercise,  natural
secretion,  and  iontophoresis.  For  thermal  stimulation,  subjects  are  placed  in  a  heating
environment (e.g. sauna bathing) to induce a thermal sweating session at a skin temperature of
40-41  °C,  with  a  full-body  sweat  production  of  0.6-1  kg/h.315–317 Exercise-induced  sweat  is
prevalent  in  many  studies;  however,  the  sweat  rate  could  fluctuate  with  respect  to  different
exercises  and  exercise  intensities.  Some  common  exercises  include  treadmill  running  and
stationary biking, in which the exercise intensity could be controlled and recorded. As thermal
and exercise  induction could impose constraints  on subjects’  physical  conditions  and testing
environment,  there is  an increasing trend in using naturally  occurring sweat for downstream
sensing.318–323 The  naturally  secreted  sweat,  also  called  “background  sweat”,  occurs  during
regular routines and entails relatively low sweat rates around 10 times lower than exercise sweat
rate.321

5.1.2 Iontophoresis-Induced Sweat

Iontophoresis is a procedure where a small current delivers a cholinergic drug loaded in hydrogel
into the skin. Two pieces of hydrogels are attached to the skin; the anode hydrogel contains a
cholinergic agent while the cathode hydrogel contains electrolytes to facilitate current flow (Fig.
14).  As the cholinergic agent stimulates  the muscarinic  3 (M3) receptors on sweat glands,  a
direct sweat response is elicited. Depending on nicotinic receptor specificity, the iontophoretic
drug may induce peripheral sudomotor axon reflex sweating.30 



Figure  14.  Scheme  of  iontophoresis-based  sweat  induction. AXR:  Axon-reflex  mediated
sweating. DIR: direct stimulated sweating.

Sweating response by different cholinergic agents. Different cholinergic agonists could be used
to induce sweating and the sweating response varies in duration and area, determined by the
receptor activity and susceptibility to acetylcholinesterase (AChE) hydrolysis. Acetylcholine and
methacholine are hydrolyzed by AChE and thus have a shorter sweating duration. On the other
hand, the nicotinic activity of the cholinergic agents affects the indirect axon-reflex sweating and
thus the area of the sweat response. For example, the β-methyl group of bethanechol limited the
nicotinic activity and thus the sweating response is highly localized and mostly direct sweating
underneath  the  placement  of  the  iontophoresis  gel.  Detailed  studies  and  summaries  of  the
receptor activities and sweating response can be found in previous literature.33,37,324,325



 

Figure 15. Iontophoresis-based sweat induction. a–c, An iontophoresis patch (a) and sweating
responses  to  different  cholinergic  agents  (b,c).  Reproduced  with  permission  from  ref  326.
Copyright 2017 Proceedings of the National Academy of Sciences.  d–f, A microneedle-based
iontophoresis  device  (d)  and  in  vivo  sweat  responses  of  the  device  (e,f).  Reproduced  with
permission  from  ref  327 under  CC  BY  4.0.  Copyright  2021  Wiley.  g,  A  carbachol-based
iontophoresis sensing device. Reproduced with permission from ref  53. Copyright 2018 Royal
Society of Chemistry. h,i, High sweat rate (h) and low sweat rate (i) duration of carbachol and
pilocarpine  iontophoresis  stimulation,  respectively.  Reproduced with permission from ref  37.
Copyright 2018 Elsevier.  j, A flexible laser-engraved iontophoresis sensing patch. Scale bar, 5 
mm. k,l, Localized sweat rates measured from the stimulated (k) and surrounding (l) skin areas
after  a 5-min  iontophoresis  with pilocarpine  and carbachol. j–l, Reproduced with permission
from ref 87. Copyright 2022 Springer Nature.



Wearable platforms for sweat iontophoresis. Over the past decade, various iontophoresis devices
have  been  developed  for  wearable  sweat  induction.  The  commercially  available  Macroduct
system  is  Food  and  Drug  Administration  (FDA)-approved  for  iontophoresis-based  sweat
induction  for  cystic  fibrosis  diagnosis  and uses  pilocarpine  as  the  cholinergic  agonist.  After
initial current ramping, a constant current is administered to pilocarpine gel discs strapped onto
the arm. The device automatically ramps down the current and shuts down after 5 min. Although
the device provides customizable options with the straps for stimulation at different locations on
extremities  and across different age groups (babies to adults),  the system remains bulky and
unsuitable for regular wear. Similar systems could be achieved for initial prototype testing with
an  iontophoresis  device  and  custom  lab-made  hydrogels  loaded  with  selected  cholinergic
agonists.37 To improve wearability, a flexible wristband containing iontophoresis electrodes and
housing an FPCB was developed (Fig.  15a).326 The sweating  response to  iontophoresis  gels
loaded with different  cholinergic  agonists  (acetylcholine,  methacholine,  and pilocarpine)  was
characterized in terms of response latency, sweating duration, peak sweat rate, time to peak and
time at peak rate (Fig. 15b). Moreover, periodic iontophoresis of different acetylcholine loads
was performed and higher  sweat  rate  with longer  sweat  duration was observed for  the 10%
acetylcholine gel compared to the 1% acetylcholine gel (Fig. 15c). In addition to the gel-based
wearable systems190,254,328–331, pilocarpine-loaded microneedle patch was recently developed for
sweat testing.327 With an array of 100 microneedles at a length of 600 μm, the iontophoresis
patch is much smaller and thinner than a regular commercial iontophoresis gel (Fig. 15d). In an
equine model, the microneedle patch produces a much higher sweating volume per unit area and
unit dose compared to the pilocarpine hydrogel (Fig. 15e,f). While the previous studies focused
on local sweating, the first use of carbachol for sweat extraction was integrated into a band-aid-
shaped system with an external iontophoresis device (Fig. 15g).53,332,333 With the custom-made
carbachol gels compared with pilocarpine gels, the group also studied the sweating duration at
high sweat rates (Fig. 15h) and at low sweat rates (Fig. 15i) over a long time frame (over 10
hours). More recently, a flexible laser-engraved iontophoresis patch with a much smaller form
factor was developed with small carbachol gels cast onto laser-engraved graphene electrodes,
and on-demand sweat induction was achieved by integrated FPCB (Fig. 15j).87 The sweat rates at
the stimulated area and the surrounding skin areas were characterized after a 5-min iontophoresis
with pilocarpine and carbachol (Fig. 15k,l). In addition to novel form factors, variation in the
current profile for enhanced sweat volume was studied and a sinusoidal pulsed current profile
was suggested for use in patients with sweat problems.334 

5.1.3 Sweat Composition by Different Induction Methods

The composition of sweat may vary across sweat induction methods. Firstly, the pH of sweat
tends to be higher in iontophoresis-induced sweat compared to thermogenic sweat.335 High sweat
rates and low ductal HCO3

- reabsorption may contribute to this higher pH. Ca2+ and Mg2+ levels
were  observed to  be  higher  in  sweat  obtained  from the  sauna  than  in  sweat  obtained  from



exercise.336 Recent  metabolomic  studies  also  revealed  variations  in  lipid  profiles337 and
metabolites319 among  iontophoresis-induced,  exercise-induced,  and  natural  sweat,  including
notable variations in L-alanine, pyruvate, L-aspartate, BCAAs, asparagine, lysine, and  fumarate
concentrations.319 The stability of metabolites in sweat also plays a critical role in the quantitation
process;  sweat  metabolite  stability  was  shown  to  last  for  90  min  at  simulated  body
temperature.338 For natural sweat at a much slower sweat rate, it is suggested that quantitation
results may be compromised due to metabolic quenching of enzymatic reactions and metabolite
stability,  an  issue  especially  relevant  for  untargeted  metabolomics  analysis.339 For  targeted
metabolomics analysis, such as drug tests, controlled stability studies should be done to achieve
repeatable  quantitation  within  the  applicable  detection  range.340 Moreover,  tissue-dependent
factors (e.g. keratin amount and thickness of stratum corneum) affect the iontophoresis response
between  individuals  and  at  different  body  locations,  potentially  also  impacting  the  sweat
composition.339

5.2 Sweat Sampling

5.2.1 Absorbent-based Sweat Sampling

Upon sweat  induction,  proper  sweat  collection  is  required  such  that  low volumes  of  sweat
produced are  efficiently  harvested  for  analysis341.  Historically,  sweat  was sampled  without  a
transporting mechanism (i.e. microfluidic system). Several materials have been used for sweat
collection with no microfluidic system, which can wick (e.g. rayon,12,326,342–344 paper,345 textile,199

absorbent pad or sponge,346–349 hydrogel311,322,323,350,351) or capture (e.g.. glove321 and sweatband154)
the sweat directly on the sensing system. A 1.5 cm×2 cm×50 μm sized rayon pad was used to
collect up to 10 μL of sweat for sweat sensing (Fig. 16a):12 the rayon efficiently captures small
sample volumes by confining fluid transport to the wicking nano-grooves of the rayon fiber.343,352

To obtain consistent real-time on-body results, newly secreted sweat was absorbed onto the pad,
refilling and replacing old sweat that is transported along the rayon fiber by capillary motion. In
addition to rayon, hydrophilic, functional, soft and porous substrates could serve as useful for
sweat collection on the skin (Fig. 16b).346 Suitable materials for selection include cellulose paper,
cellulose  sponge,  polyvinyl  alcohol  sponge,  hydrophilic  polyurethane  foam  dressing,  and
silicone  foam  dressing.  In  addition  to  the  porous  sponge  format,  a  silicone-based  and
commercially  available sweatband was incorporated into a sweat sampling platform to guide
sweat  sampling  during  active  movement  (i.e.  exercise)  by  means  of  gravity-driven  sweat
collection channels that load the sensor and pool sweat in a reservoir  (Fig.  16c).154 A nitrile
glove-based sweat sampler was used to passively collect hundreds of microliters of sweat within
30 minutes  (Fig. 16e).321 Additionally, elastic textiles can be utilized to collect sweat and soak
the interwoven sensing fibers (Fig. 16f).199



Figure 16. Sweat sampling without microfluidic systems.  a,  Rayon pad to  direct  exercise
sweat  to  sensors  in  a  fully-integrated  sweat  band.  Reproduced with permission from  ref  12.
Copyright 2016 Springer Nature. b, Absorbent sponge for sweat wicking from the skin to sweat
sensing by the gold electrodes patterned facing outward. Reproduced with permission from ref
346. Copyright 2014 Wiley.  c, Silicone headband with a channel for gravity-facilitated sweat
flow through the chip.  Reproduced with permission from  ref  154. Copyright 2017 American
Chemical Society.  d, Touched-based hydrogel for sweat capture from a fingertip. Reproduced
with permission from  ref  323. Copyright  2021 American Chemical  Society.  e, Nitrile  glove-
based and cot-based system for natural sweat  analysis. Reproduced with permission from  ref
321. Copyright 2020 The American Association for the Advancement of Science. f, Fiber-based
platform for sweat capture from the skin. Reproduced with permission from ref 199. Copyright
2019 American Chemical Society.

Hydrogels are biocompatible and do not require active sweat stimulation, enabling their use in
various touch sensor pads.311,322,323,350,351 Hydrogels decrease the resistance of sweat secretion at



the skin since the hydrophilicity of hydrogels reduces the Laplace pressure barrier: the hydrogel
acts as a reservoir for sweat, transports sweat away from the skin surface and thus prevents local
accumulation that builds the pressure barrier.322 With a finger touch, the sensor directly extracts
and collects the sweat and monitors the targeted biomarker without any additional stimulation.322

Hydrogel  pads,  however,  do  not  reflect  the  actual  biomarker  concentration  but  rather  the
concentration within the hydrogel, which is limited by diffusion during contact.350,351 A porous
PVA  hydrogel membrane-based cortisol and glucose biosensor was introduced to resolve the
previous issues (Fig. 16d).323 Created with water-soluble sucrose template, the porous hydrogel
structure  offers  higher  permeability  and  lower  impedance  relative  to  non-porous  systems,
shortening sweat sampling time and thus reducing sensing lag. Under natural perspiration, the
sweat-absorbing PVA porous hydrogel membrane pulls the sweat droplets from the fingertip in
contact by capillary pressure.323

5.2.2 Pressure Driven Microfluidics

Although direct sweat sampling using absorbent materials is simple and easy to implement, there
are limitations to be resolved.353 Direct sweat sampling limits the capability of biosensor due to
mixing  and  carry-over  between  new sweat  and  old  sweat,  resulting  in  contaminating  sweat
samples.  For instance,  with the bulk rayon material  (e.g. regenerated cellulose),  it  is hard to
rapidly capture a change in the analyte concentration.352,354,355 Without a system for continuous
sweat  flow  to  refresh  sensing  sample  and  control  of  sample  evaporation  and  volume,  the
biosensor may yield less reliable continuous reading and should serve as single-use only device.
Microfluidics enables a continuous sweat flow through microfluidic channels and encapsulated
sensing  chambers  or  reservoirs  and  therefore  resolves  the  limits.75,353 With  the  use  of
microfluidics, microliter sampling volumes can be collected at the sensor surface to generate the
same quality of response compared to bulk solution analysis.75,87 

Conventional microfluidics uses PDMS as the building-block material and directs the flow of
secreted sweat  via  capillary action.239,252 The combination  of soft  microfluidics  (PDMS) with
flexible  plastic  substrates  (polyethylene  terephthalate  (PET))  has  been  introduced  to  ensure
continuous and long-term sensing with a well-sealed detection chamber, which harvests sweat to
decrease  evaporation  and  contamination  of  sweat  samples.252 A  soft-epidermal  microfluidic
system using PDMS was invented to capture and transport sweat to microchannels and reservoirs
(Fig. 17a).239 In this design, the geometry of the channel was tailored to reach high structural
stability, low vapor permeability, and minimal backpressure to prevent backflow.239 To facilitate
faster sweat sampling, patterned hydrophilic filler (SU8) with thin hydrogel film was applied in
the sweat collecting reservoir to enhance rapid uptake at low secretion rates and reduce filling lag
before the sweat flows through the PDMS channels to arrive at the sensing area  (Fig. 17b).253

Flexible microfluidic nanoplasmonic sensors were developed with PDMS and non-permeable
SERS substrate for the microfluidic system (Fig. 17c).249 



In addition to PDMS-based systems, other materials have been used to develop pressure-drive
microfluidics.75,352,356,357 Layers of thin-film polymers were integrated into a microfluidic chip by
roll-to-roll processing and the chip featured hydrophobic polymeric materials  to transport the
sweat sample under natural gland pressure.358 In addition to roll-to-roll processing, laser ablation
and engraving were applied on adhesives and polymeric films (e.g., poly(methyl methacrylate)
(PMMA), PET) to create microfluidics that achieves rapid sweat sampling.75,87 With proper layer
designs, the laser-engraved microfluidics could be flexible, and complex in 3D structure with
minimal dead volume (Fig. 17d).357 In addition to flexible and complex structure, laser-engraved
microfluidics offers good sweat refreshing and could potentially provide an estimate of the sweat
rate  (Fig.  17e).75 For  low  volume  sampling,  a  hexagonal  network  of  gold-coated  open
microchannels  were  developed  to  achieve  rapid  wicking  transport  and  reduce  dead  volume
against the skin surface and analyte exchange (Fig. 17f).352 In another design, hydrophilic plastic
films and adhesives were processed by cutting plotter and subsequent lamination to achieve fast
elimination of sweat from the skin and wicking of sweat into channels.356 

Figure  17.  Sweat  sampling  with  pressure  driven  microfluidics.  a, PDMS-based  sweat
harvesting system. Reproduced with permission from  ref  239. Copyright 2016 The American
Association for the Advancement of Science.  b, PDMS microfluidic with hydrophilic fillers for
natural sweat collection and transport. Reproduced with permission from ref 253 under CC BY
4.0.  Copyright  2021  Nyein  et  al. c, PDMS-based  wearable  SERS  microfluidic  platform.
Reproduced with permission from  249 under CC BY 4.0. Copyright 2022 He  et al.  d, Laser-
patterned 3D microfluidic system. Reproduced with permission from  ref  357. Copyright 2019
Royal  Society  of  Chemistry.  e, Laser-engraved  microfluidic  patch  with  fast  sweat  refreshing.
Reproduced with permission from ref 75. Copyright 2019 Springer Nature.  f, Hex-wick for fast
and low-volume sweat  sampling.  Reproduced with permission  from  ref  352.  Copyright  2018
Royal Society of Chemistry.



While pressure-driven microfluidics resolve problems in sweating mixing and contamination, the
conventional PDMS material  is susceptible to the adsorption of small hydrophobic molecules
over time and the systems have limited control of sweat flow rate and sweat flow direction. 359,360

In this section, various fluid activation methods for sweat sensing are discussed.

Passive fluid actuation.  A classic example of passive fluid actuation is the capillary bursting
valves (CBV). CBVs passively control the direction of sweat flow by creating valves of different
bursting pressures determined by the channel geometry (Fig. 18a).251 The varied CBVs provide
paths of different pressure resistance,  and sweat travels through the less resistance.  As sweat
enters  the  sampling  device  from the  skin,  it  goes  through  channels  and  a  series  of  micro-
reservoirs and fills sequentially.237,251,361–363 The CBV can also be used for direction control in
multi-regent  reaction  scenarios  (e.g.  immunoassay),  where   storage  of  the  sweat  inside  the
reservoir is required for the incubation process.284 

Figure  18.  Sweat  sampling  with  fluid  actuation.  a, Passive  actuation  based  on capillary
bursting valves. Reproduced with permission from ref 251. Copyright 2017 Wiley. b–d, Active
actuation based on super absorbent polymer (SAP) (b), thermal-responsive hydrogel (PNIPAM)
(c), and electrowetting valves (d). b, Reproduced with permission from ref 364. Copyright 2018
Wiley. c, Reproduced with permission from ref 365 under CC BY 4.0. Copyright 2020 Lin et al.
d, Reproduced with permission from ref 366. Copyright 2021 Springer Nature.

In  addition  to  channel  geometry,  the  surface  hydrophilicity  could  also  be  tuned  to  achieve
passive fluid control, as shown in the hydrophobic valves at the junction of fluid chamber and



channel. In one study, the innate hydrophobicity of PDMS was preserved at the hydrophobic
valve while hydrophilic treatment was performed on the channel surface. When sweat enters the
device,  the  advancing  front  of  sweat  in  the  hydrophilic  channel  becomes  blocked  by  the
hydrophobic valve and forced to flow into the chamber. As the chamber becomes fully filled, the
sweat  flow overcomes  the  bursting  pressure of  the hydrophobic  valve  and goes  through the
channel.  Upon  judicious  design  and  placement  of  the  hydrophobic  valves,  channels  and
chambers, sequential filling of the chambers could be achieved with little mixing effects.367 

Besides the one-time use valving system demonstrated above, a reusable Tesla valve system was
developed with optimized geometry from conventional designs.368 The Tesla valves improve the
diodicity  (one-direction  flow  characteristic),accelerating  forward  flow  while  limiting  reverse
flow. For sweat sampling at low Reynolds number, an adapted geometry of the Tesla valve was
constructed minimize reflux at the inlet and evaporation at the outlet of sweat sampling.369

Active fluid actuation.  While passive fluid valves work by posing a pressure barrier which is
overcome by sweat flow, active valve systems could stop the flow in response to certain stimuli.
In one embodiement, super-absorbent polymer (SAP) was implemented as an active valve for
sweat sampling and isolation (Fig. 18b).364 Once the sweat flows through the SAP and fills the
reservoir, the SAP swells and block the sweat flow into/out of the reservoir. once the reservoirs
are full, close the sweat flow by swelling. Coupled with hydrophobic valves, the system allows
for sequential filling of multiple reservoirs over time364. Another example is a resettable strain-
actuated elastomeric pinch valves (EPV) and elastomeric suction pumps (ESP) that open the
valve for fluid flow into a negative pressure volume upon user-activated pull on the device.257

The EPV is a narrow pinch valve that stays close as default due to van der Waals forces between
the parallel PDMS surface; upon the manual pull of the device, a strain-induced deformation of
the EPV occurs and the valve becomes open for fluid flow. The ESP relies  on a serpentine
microchannel with a variable volume upon lateral extension of the serpentine. While the manual
pull opens the EPV, the strain also deforms the serpentine channel and created an increase in the
volume, thus creating a negative pressure for fluid suction through the EPV into the serpentine
channels and then to the exit. When the pull is released, the EPV returns to the default close state
and the serpentine channels shrink to the initial state volume.

Another example of active fluid actuation is microheater-controlled thermos-responsive hydrogel
valves.  Poly(N-isopropylacrylamide)  (PNIPAM)  hydrogel  was  selected  as  it  deforms
significantly  when  the  local  temperature  crosses  past  its  lower  critical  solution  temperature
(LCST) (Fig.  18c).365 When the local  temperature  rises from below to above the LCST, the
hydrogel shrinks to open the valve for fluid flow; when the local temperature drops to below the
LCST,  the  hydrogel  expands  and  the  valve  is  closed.370 A  circuit-controlled  micropatterned
heater was employed in this design to control the local temperature and thus the valve. 



In addition to thermal activation, electrowetting has been employed to construct valves for sweat
sampling.  An  electrowetting  valve  consists  of  two  parallel  conductive  electrodes  across  a
microfluidic  channel.  The  surface  of  the  electrode  downstream  is  coated  with  a  film  of
hydrophobic insulator material; as the electrolyte solution (i.e. sweat) flows through, the fluid
front is blocked by the downstream hydrophobic electrode.371,372 When a low voltage is applied to
the electrode pair, the interfacial surface energy of the hydrophobic surface is reduced, and the
electrowetting-on-a-dielectric  actuation  occurs  to  open  the  valve  for  fluid  flow.   For  sweat
sampling  application,  the  conventional  electrowetting  valve  design373 was  adapted  with  a
hydrophilic  electrode  upstream  to  wick  the  fluid  (Fig.  18d).366 Moreover,  the  optimized
electrowetting valve was designed with the optimal spacing and hydrophobic coating to enable
fast actuation and at a low potential to prevent hydrolysis. With multiple electrowetting valves,
sequential filling of the designated reservoirs is achieved. 

5.2.3 Sweat Sampling with Material- and Structure- Enhanced Fluid Transport

While conventional plastic films or silicones (e.g. PDMS) provide excellent designs for fluid
sampling, these materials usually monolithically attach to skin and lacks breathability for long-
term  wear.  When  positioned  with  channel  direction  vertical  to  sea  level,  there  could  be
gravitational force that affects the sweat fluid flow inside the channel. To address the limitations,
various alternative materials have been introduced. 

Paper/hydrogel-based  fluid  transports.  Paper-based  microfluidics246,374–381 provides  superior
breathability thanks to the fibrous network. Without the need of external pumping, paper-based
microfluidics  enables  fluid  flow with  capillary  force  and eliminates  air  bubbles  with its  air-
permeability.  With  judicious  placement  of  filter  paper  inside  the  channels  and  chambers,
sequential filling of chambers was achieved with excellent wicking performance and minimum
backflow.381 In  another  embodiment,  the  paper  was  placed along the  serpentine  microfluidic
channel  to  route the  sweat  flow for  flow rate  quantitation  and biomarker  analysis;  the  clear
contrast between wet and dry paper provides a visible estimate of the sweat loss, which could be
further modeled based on the Lucas-Washburn equation (Fig. 19a).246,382 The paper can also be
integrated  with hydrogels  to combine osmotic  pumping and capillary  wicking into the same
sampling  scheme.374–376 A  hydrogel  with  highly  concentrated  osmolyte  solution  creates  a
chemical  gradient  that  drives osmosis and helps direct sweat  into the system and sweat  gets
wicked along the paper strip to the pie-shaped evaporation pad (Fig. 19b).374 The capillary action
continues  to drive fluid flow for long-term use as the sweat evaporates  from the paper  pad.
However,  the  fluid  flow  degrades  gradually  when  the  hydrogel  osmolarity  changes  over
time.383,384 Many paper-based microfluidics have direct contact with skin and could be susceptible
to contamination during sweat sampling. 

Materials to improve hydrophilicity-based fluid transport.  PDMS are inherently hydrophobic,
but  its  surface hydrophilicity  may be tuned by either  plasma treatment,  surface coating388,389,



mixing of hydrophilic polymer390,391 or surface microstructure392–394. However, phase separation of
PDMS and the hydrophilic polymer395 results in poor long-term stability396, and cost issues397 are
remaining  for  those  treated  PDMS.  A  super-hydrophilic  zwitterionic  polymer  surface  was
designed to increase the duration of hydrophilicity and wettability of PDMS and address those
problems (Fig. 19c).385 Zwitterionic polymers (poly (2-methacryloyloxyethyl phosphorylcholine)
and  poly(sulfobetaine  methacrylate))  contain  both  positive  and  negative  charge  in  the  same
functional  monomer   and  become  significantly  hydrated  in  aqueous  solution.398 With  the
zwitterionic polymer grafted onto hydrophobic PDMS substrate, the wettability was significantly
improved and the sweat transport can overcome gravity.385 Similarly, surface modification was
performed to tune the hydrophilicity and hydrophobicity for efficient sweat sampling.236,399 With
superhydrophobic silica on top of PET film with masked O2 plasma treatment for hydrophilicity
modification, a superhydrophobic sweat band with superhydrophilic microwells was developed;
with  the  high  contrast  of  hydrophobic-hydrophilic  property  around the  microwell,  the  sweat
collected  forms  as  droplets  for  colorimetric  detection  (Fig.  19d).236 Similarly,  hydrophobic
PDMS-coated cotton with hydrophilic Modal thread as micro-reservoir and micro-channel was
implemented for sweat sampling and sensing.400 In another work inspired by cactus spines, the
superhydrophilic coating is patterned as a wedge inside a rectangular superhydrophobic bound: a
laplace  pressure  gradient  is  therefore  created  to  enable  directional  sweat  transport  while
accelerating the circulation rate of sweat and reducing sensing lag time (Fig. 19e).386

Figure  19.  Sweat sampling with  material-enhanced fluid transport.  a–c, Sweat  transport
improved with paper (a), hydrogel (b) and Zwitterionic polymer grafting (c). a, Reproduced with
permission from ref 246. Copyright 2022 The American Association for the Advancement of
Science.  b,  Reproduced  with  permission  from ref  374.  Copyright  2021 American  Chemical
Society. c, Reproduced with permission from ref 385. Copyright 2021 Wiley. d, Sweat collection
by patterned  superhydrophobic-superhydrophilic  band.  Reproduced with  permission  from ref
236.  Copyright  2019 American  Chemical  Society.  e, Cactus-spine-inspired  directional  sweat



sampling. Reproduced with permission from ref 386. Copyright 2021 Wiley. f, Janus textile for
directional sweat transport across layers. Reproduced with permission from ref 387. Copyright
2019 Wiley.

Besides factors affect water contact angle, there are scenarios when low water permeability is
desired for proper function in sweat sensing. For aquatic athletes, poly(styrene-isoprene-styrene)
(SIS) was selected  for sweat  collection  underwater.235 SIS possesses low water  permeability,
resistance to water transport, flexibility and high elasticity.

Janus textile-based fluid transports. While some capillary-based sweat sampling could enable
fast sweat wicking against gravity, a Janus layer could achieve similar directional transport from
one side to the other and against gravity. A Janus material refers to a material with asymmetric
properties on each side235; in our discussion, it refers to an interface with asymmetric wettability
(one side superhydrophobic while the other hydrophilic). With proper thickness and pore size of
both hydrophobic and hydrophilic layers, the water can penetrate from the hydrophobic to the
hydrophilic side but cannot penetrate in the opposite direction. A modified commercial Janus
system for sweat sensing was developed with polyester (PE) for hydrophobic and nitrocellulose
(NC)  membrane  for  superhydrophilic  layer  with  conical  micropores  that  guide  sweat  flow
unidirectionally (Fig. 19f).387 With a conical shape, the micropore prevents undesirable stickiness
and cold sensations from sweat. Various Janus systems were also employed in sweat sampling as
fiber network401 and treated silk402; Janus membranes are also useful for eliminating sweat from
sensing area.403

5.3 Integrated Platforms for Sweat Induction and Sampling

As iontophoresis provides a feasible means for wearable sweat sensing in sedentary individuals,
various platforms integrating iontophoresis with sweat sampling were developed in recent years.
An iontophoresis-integrated wearable sensor was developed to ensure a sweat flow rate with long
sensing time while using water-absorbent thin rayon pad to wick sweat (Fig. 20a).326 Tattoo-
based biosensors integrated with pilocarpine-iontophoresis were also proposed (Fig. 20b).190,331,404

A porous cryogel instead of hydrogel was selected for drug-loaded anode material to provide
better permeability for drug release.  Recently, a multi-compartment iontophoresis device was
developed to allow for on-demand pilocarpine iontophoresis at different time points of the day
with laser-patterned microfluidics for fluid sampling (Fig. 20c).331,405 

Sample contamination from skin and cholinergic agonist (e.g. pilocarpine) occurs in the previous
designs. To address the challenges, sweat sensors with integrated carbachol-iontophoresis and
microfluidics for sweat sampling were developed to enable sampling outside the stimulation area
to reduce mixing of agonist with sweat.37,53 Hex-wick structures allow for fast collection of low
volume sample and fast transport to sensing area and further downstream to the waste pump.53 A
hydrophilic thin film of fumed-silica was implemented as fluid coupling between the hex-wick



and  sensor  surface  to  promote  rapid  rewetting.53 Recently,  a  laser-engraved  sensor  with
integrated carbachol-iontophoresis was reported (Fig. 20d).87 The inlets of the laser-engraved
microfluidic system are placed away from the stimulation area to sample sudomotor axon reflex
sweat,  which is  less contaminated  with the carbachol  agonist.  Moreover,  with the optimized
inlet-outlet geometry, the sweat refreshing is fast upon a short iontophoresis session at a low
iontophoresis current. 

Figure 20. Sweat sampling with induction. a, Iontophoresis with Rayon-based sweat sampling.
Reproduced  with  permission  from  ref  326.  Copyright  2017  Proceedings  of  the  National
Academy  of  Sciences. b,c, Pilocarpine-iontophoresis  induction  with  tattoo-based  sensing
platform (b)  and multi-compartment  laser-patterned  microfluidic  systems (c).  b,  Reproduced
with permission from ref 331 under CC BY 4.0. Copyright 2018 Wiley.  c, Reproduced with
permission  from  ref  405.  Copyright  2020  Royal  Society  of  Chemistry.  d, Carbachol-
iontophoresis  with  laser-engraved  microfluidics.  Reproduced  with  permission  from  ref  87.
Copyright 2022 Springer Nature.

5.4. Discussion

The access to sweat has attracted intense research interest. Different sweat induction methods
have  been  studied  and  varied  sweat  rates  have  been  observed.  Heat  and  exercise-induced
sweating could yield high sweat rates but impose constraints on individuals’ fitness and sampling
environment; natural sweat, on the other hand, offers convenient sampling but limits continuous
monitoring  due  to  low  volumes.  To  achieve  sweat  induction  in  sedentary  individuals,
iontophoresis has been used as a non-strenuous means to induce sweat with cholinergic agonists.
Desired sweating response can be achieved with a careful selection and dosing of the agonist and
can be induced on-demand and on-body with recently invented devices.



As sweat arrives to the surface of the skin, harvesting and sampling of the sweat is critical to
achieve reliable sensing downstream. Wicking materials are utilized to collect sweat directly and
route sweat to sensors with great convenience and adaptability to different devices, but mixing of
sweat and contaminants could become an issue. Microfluidic systems address these issues, using
reservoirs that sweat can be stored in and continuously transferred to via microfluidic channels.
Although  microfluidics  system  under  natural  gland  pressure  and  capillary  force  enables
continuous monitoring and reduces contamination issues, it does not allow to control sweat flow
rate nor the direction of sweat flow. Furthermore, lag time issue occurs due to large amount of
sweat required to be stored before transferring. Passive and active fluid actuation methods (i.e.
valve systems) allow to control the flow of sweat. Superhydrophobic-superhydrophilic materials
resolve lag time issues with faster and directional sweat transport. Yet, there are limitations such
as valve controls require complicated construction or external control to actuate. 

To achieve  efficient  sweat  sensing,  evaluation  of  the  suitable  sweat  induction  and sampling
schemes should be considered. As an optimal sweat induction method is selected, feasible sweat
sampling  materials  and  methods  could  be  narrowed  down  depending  on  the  desired  sweat
refreshing rate, the sensor response time and detection time frame (one-time detection vs hours).
With  continued  advances  in  micro-/nano-  technology  and  increased  understanding  of  sweat
physiology, it can be expected that improvements in sweat induction and sampling device could
be achieved in future. 

6. Powering Wearable Sweat Sensors

Current wearable devices in the market are primarily powered by bulky rechargeable lithium-ion
batteries that need to be charged by a universal serial  bus (USB) cable or through inductive
coupling every couple of days. In the short run, companies are looking for innovations to extend
the battery life of wearable devices and minimize the inconveniences of frequent charging. While
the increase of battery power density is slow, rapid improvements in low-power electronics and
wireless communication  protocols have contributed significantly  to extend the battery  life  of
wearables, and the convenience of wireless charging options has also appealed to customers. On
the other hand, charging of wearable devices can be eliminated by developing wearable energy
harvesting  systems  that  can  harvest  energy  from  human  sweat,  human  motion,  or  the
environment.  In  the  long  term,  it  is  also  critical  to  devise  powering  systems  that  are
biocompatible  and  sustainable.  Currently  lithium  batteries  are  rigid  and  bulky,  limiting
wearability  to  applications  such  as  wrist  watches  that  people  are  already  accustomed  to.
Furthermore, lithium batteries often contain toxic heavy metals and flammable electrolytes that
can  cause  potential  safety  hazards  and  disposal  burdens.406 Wearable  powering  systems
composed  of  energy  harvesting  modules  and  energy  storage  modules  that  are  flexible,
stretchable, washable, and sustainable are highly sought after. These innovations will not only



serve as a convenience to everyday users of wearable sensors, but also can be life changing in
emergency or military scenarios where traditional device charging is not possible.

6.1 Wearable Energy Harvesting

An abundance of energy is present within our bodies and environment. Biochemical energy from
sweat biofuels, kinetic energy from our body heat or motions, as well as solar energy from the
sun  or  artificial  light  can  be  scavenged  and  converted  into  electrical  energy  to  power
wearables.407–409 For  wearable  sensing  applications,  it  is  essential  to  develop  compact  and
conformal energy harvesting modules that can be comfortably worn while scavenging power
sufficient  for  electronic  data  acquisition  and wireless  communication.  Recently,  a  variety  of
energy harvesting modules such as biofuel cells (BFCs), photovoltaic (PV) cells, TENGs, and
magnetoelastic  nanogenerators  (MEGs)  have  been  reported  for  powering  wearable  sweat
sensors. 

6.1.1 Harvesting Biochemical Energy from Sweat

Biofuel  cells  utilize  catalysts  such as  enzymes  and microbes  to  generate  bioelectricity  from
redox-active fuels in biofluids such as lactate and glucose. For powering sweat sensors, biofuel
cells  harvesting  energy  from sweat  metabolites  is  a  natural  match,  and  lactate  is  the  most
popularly used fuel due to its high concentration in sweat. Lactate biofuel cells consist of an
anode  immobilized  with  LOx  enzyme  and  redox  mediator  such  as  ferrocene  or  quinone
derivatives to facilitate  the oxidation of lactate  into pyruvate,  with a complementary cathode
consisting  of  a  platinum  (Pt)  alloy  or  bilirubin  oxidase  (BOx)  for  facilitating  the  oxygen-
reduction reaction. While lactate biofuel cells have reported the highest power density generating
up to 3.5 mW cm-2 from natural sweat410, biofuel cells utilizing alternate fuels such as glucose,
fructose, and ethanol have also been reported with promising applications.411–414 

The first reported wearable sweat lactate BFC was based on a temporary transfer tattoo (Fig.
21a).415 The screen-printed  carbon anode was  modified with  a  tetrathiafulvalene  (TTF)/CNT
composite  layer  to  mediate  electron  transfer  at  a  low  oxidation  potential,  followed  by  an
LOx/albumin layer to catalyze the selective oxidation of lactate, and a chitosan/glutaraldehyde
layer to secure the electrode materials. The screen-printed carbon cathode was modified with a Pt
black layer to facilitate the oxygen reduction reaction (ORR), and a Nafion protection film. The
tattoo-based BFC could output up to 44 μW cm-2 in a buffer containing 20 mM lactate, and up to
70 μW cm-2 from sweat during an on-body cycling study. 

Such screen-printing methods have also been applied for fabricating textile-based lactate biofuel
cells.416,417 Lactate biofuel cells printed on a detachable care label were integrated into various
garments  including  headbands  and  wristbands,  outputting  up  to  100  μW cm-2  with  15  mM
lactate.416 While the care label could not be stretched, it could go through repeated deformations



without losing significant power. To achieve stretchable textile-based BFCs, stretchable CNT
inks and Ag2O/Ag inks were developed respectively for the BFC anode and cathode.417 Such inks
were screen  printed  as  serpentine  structures  on a  polyurethane (PU) and Ecoflex® modified
stretchable textile such as a sock. The stretchable textile BFC could output up to 250 μW cm-2

with 20 mM lactate and maintain a stable power output after 100 cycles of 100% stretching. In
addition,  a self-contained laser-induced graphene-based wearable BFC-in-a-tube was recently
reported for energy generation from untreated human sweat to power a wearable digital watch.418

BFCs capable of outputting milliwatt  levels of power are highly desired for Bluetooth-based
wireless sensing applications. Island-bridge configuration epidermal BFCs have been reported
with high power output, stretchability,  and durability.419,420 An electronic-skin biofuel cell  (E-
BFC) with lithographically patterned serpentine interconnects and screen-printed 3D CNT island
electrodes was designed to output nearly 1.2 mW cm-2 with 20 mM lactate, while maintaining a
higher power output after 100 cycles of 50% stretching (Fig. 21b).419 The high power output is
attributed  to  the  high  active  surface  area  of  the  LOx  modified  3D  carbon  nanotube-
naphthoquinone  (CNT-NQ)  pellets  and  3D  Ag2O-CNT  pellets  fixed  on  the  Au  islands  as
bioanodes  and  biocathodes  respectively.  Furthermore,  the  serpentine  interconnects  enable
repeated stretching of the device while imposing negligible strain on the active island electrodes.
The E-BFC generated up to 1 mW cm-2 during active exercise on a human subject and was able
to power a BLE radio.  



Figure 21. Biofuel cells for harvesting chemical energy from sweat. a, Epidermal tattoo-based
biofuel cell for harvesting energy from sweat lactate. Reproduced with permission from ref 415.
Copyright  2013 Wiley.  b,  Island-bridge-based lactate  biofuel  cell  for  enhanced performance
under strain. Scale bar, 5 mm. Reproduced with permission from ref 419. Copyright 2017 Royal
Society of Chemistry. c, A fully perspiration-powered electronic skin (PPES) for battery-free and
wireless multiplexed sweat sensing. Reproduced with permission from ref 410. Copyright 2020
The  American  Association  for  the  Advancement  of  Science.  d,  Ethanol  biofuel  cell  for
harvesting energy from sweat after alcohol consumption. Reproduced with permission from ref
413. Copyright 2021 Elsevier.  e, Microbial fuel cell-based skin-interfaced microfluidic system
for  harvesting  energy  from  bacteria  in  sweat.  Reproduced  with  permission  from  ref  421.
Copyright 2020 Elsevier.



In addition to high power output, long term stability and system integration are key aspects of
designing BFC-powered wearable sweat sensors. A fully perspiration-powered electronic skin
(PPES) was designed by integrating a high-performance lactate BFC and a wireless multiplexed
metabolic  sensor system onto an ultrathin PI substrate  (Fig. 21c).410 The BFC bioanode was
prepared  by  modifying  an  Au  electrode  array  with  hierarchical  Ni  (h-Ni)  microstructures,
reduced  graphene  oxide  (rGO)  films,  Meldola’s  blue–tetrathiafulvalene–modified  carbon
nanotubes (MDB-TTF-CNT), and LOx, whereas the BFC biocathode was prepared by modifying
an Au electrode array with MDB-modified CNTs and cobalt-doped Pt nanoparticles. The lactate
BFC could output up to 2 mW cm-2 with 20 mM lactate, and up to 3.5 mW cm-2 in real human
sweat, which is the highest reported power density so far in literature. Furthermore, the BFC
displayed a very stable performance over 60 hours of continuous operation. Such an impressive
power density and stability is attributed to the monolithic integration of 0D to 3D nanomaterials,
which enables a dramatic increase in surface area and promotes facile electron transfer as well as
low overpotential  lactate  oxidation.  The battery-free  PPES was  able  to  harvest  energy from
exercise-induced  sweat  to  power  the  continuous  monitoring  of  sweat  biomarkers  (such  as
glucose,  pH,  urea,  ammonium,  and  skin  temperature)  and  transmission  of  data  via  BLE
advertisements.

Alternate enzymatic biofuel cells harvesting energy from metabolites such as glucose, fructose,
and ethanol have also shown promise.411,413,414,422 As an example, an ethanol BFC was developed
to harvest energy from sweat following the consumption of alcohol (Fig. 21d).413 The three-
dimensional  coralloid  nitrogen  doped  hierarchical-micro-mesoporous  carbons  aerogels  (3D-
NHCAs), alcohol oxidase (AOx) and terephthalaldehyde (TPA) modified bioanode catalyzes the
oxidation  of  ethanol  into  acetaldehyde,  while  the  3D-NHCAs,  BOx,  and  TPA  modified
biocathode reduces oxygen into water. Due to the low concentration of ethanol present in sweat,
the ethanol BFC generates a peak power density of 1.01 μW cm−2. However, as the peak power
generated  is  correlated  to  the  ethanol  levels  in  sweat,  the  epidermal  ethanol  BFC  could
potentially  serve  as  a  self-powered  sensor  as  demonstrated  in  devices  utilizing  glucose  and
lactate BFCs as self-powered sweat sensors. 

Microbes can also be utilized to harvest energy from sweat in several ways.421,423–426 One method
is to develop microbial fuel cells that harvest energy by garnering the electrons produced during
cellular respiration. A major advantage of using microbes as opposed to enzymes as catalysts for
generating  electricity  is  that  bacteria  offer  significantly  longer  shelf  life  and  operation.  For
wearable on-skin application, several sweat-eating bacteria that exist on the skin were assessed
for their bioelectrogenesis capability, then integrated into a skin-interfaced microfluidic system
(Fig.  21e).421 Devices  utilizing  lyophilized  S.  epidermidis were  able  to  produce  an  average
maximum power density of 41.74 μW cm−2. For extended long-term operational capabilities,  B.
Subtilis,  a  skin-habitant  microbe that  can enter and revive from dormancy depending on the
availability  of  sweat  was  utilized  in  developing  long-functioning  wearable  microbial  fuel



cells.423,425 The device could maintain a power density of 24 μW cm−2 even after 48 hours of
operation. Aside from fuel cell-based energy harvesting, 40 μm thick microbial biofilm sheets
were also engineered to harvest hydroelectricity from sweat evaporating on the skin surface.426

The device could continuously output ~1 μW cm−2 while not relying on cell viability. 

As such, biofuel cells can be fabricated from biocompatible and sustainable materials to harvest
biochemical  energy directly  from the  surface  of  the  skin.  Enzymatic  biofuel  cells  based  on
lactate can generate milliwatt levels of power from natural sweat, which is sufficient to power
multiplexed wireless wearable sensor systems. On the other hand, sweat energy harvesters based
on microbes have the potential to improve durability and shelf life. 

6.1.2 Harvesting Kinetic Energy from the Body 

Figure  22.  Nanogenerators  for  harvesting  physical  energy  from  the  body.  a–d,  Skin-
interfaced  wearable  devices  for  harvesting  energy  via  the  thermoelectric  effect  (a),  the
piezoelectric  effect  (b),  the  magnetoelastic  effect  (c),  and  the  triboelectric  effect  (d).  a,



Reproduced  with  permission  from  ref  427.  Copyright  2020  Elsevier.  b,  Reproduced  with
permission  from  ref  428.  Copyright  2018 Wiley.  c,  Reproduced  with  permission  from  429.
Copyright 2021 Springer Nature. d, Reproduced with permission from ref 430. Copyright 2020
The American Association for the Advancement of Science.

Our body converts chemical potential energy into thermal and mechanical energy to maintain
body temperature and achieve locomotion.  The kinetic  energy produced by our body can be
readily harvested by wearable generators.  Thermoelectric  generators (TEGs) and pyroelectric
nanogenerators  (PYNGs)  have  been  developed  to  convert  body  heat  into  electrical  energy,
whereas  piezoelectric  nanogenerators  (PENGs),  MEGs  and  TENGs  have  been  reported  to
convert body motion into electrical energy.

The first commercial energy harvesting wearable electronic device was powered by body heat. In
1998, Taking advantage of the Seebeck effect, Seiko developed an electronic wristwatch that
used thermoelectric generators to harvest energy from the temperature differential between the
skin  and  the  environment.  This  device  could  produce  ~25  μW  over  a  1.5  °C  temperature
differential. Since then, various wearable TEGs have been developed to increase power output
and improve wearability.427,431–437 Bismuth telluride-based alloys are popular candidates for TEGs
owing  to  their  high  Seebeck  coefficients  and  low  thermal  conductivities.  For  increased
biocompatibility, bismuth telluride-based legs have been fabricated on flexible and stretchable
substrates.427,431,432,434,436,437 Flexible  heat  sinks  have  also  been  incorporated  for  increasing
temperature differential and power.427,434,436 A super absorbent polymer-based flexible heat sink
was paired with a flexible TEG module to generate up to 38 μW cm−2 for the first 10 min during
sedentary wearable use, capable of powering a wearable electrocardiogram (ECG) sensor.434 For
enhanced skin conformability, a thin-film TEG was constructed with a heat-absorbing insulation
film and a flexible hydrogel heat sink to maximize the temperature gradient between the skin and
the environment (Fig. 22a).427 Despite its 2D structure, the thin-film TEG could be applied on the
skin to supply sufficient power in the μW range for self-powered pulse monitoring. On the other
hand,  bismuth  telluride-based  alloys  can  be  rigid  and  brittle.  For  improved  robustness  and
deformability, alternate materials have also been explored for developing fiber-based TEGs438,439,
thin-film TEGs427,435, and organic TEGs440.

Back in 1880, Pierre and Jacques Curie discovered that an external mechanical force applied on a
semiconductor crystal can break central symmetry and cause charge separation that leads to a
piezoelectric  potential.  For  piezoelectric  energy  harvesting  in  wearable  applications,  it  is
important to identify natural human movements that can exert the most mechanical force on the
piezoelectric  nanogenerator.  The  first  account  of  a  wearable  piezoelectric  energy  harvesting
device in 2001 took advantage of two mechanic forces exerted on the shoe during walking: the
heel-strike force was absorbed by a prestressed semiflexible piezoelectric lead zirconate titanate
(PZT)  harvester  and  the  sole  bending  force  was  harnessed  by  flexible  multilaminar  PVDF
harvester.441 Mounted under the insole of the shoe, the rather bulky PZT and PVDF harvesters



could output 8.4 mW at a 1.1 Hz walking pace and 1.3 mW at a 0.8 Hz walking pace. Further
inspired by the development of a ZnO nanowire array based PENG in 2006442, various wearable
PENGs  scavenging  energy  mostly  from  the  heel  strike  force  or  joint  bending  force  were
developed to improve performance and wearability.443,444 As heel strike based PENGs do not
require extreme flexibility,  inorganic piezoelectric  materials  like PZT with high piezoelectric
coefficients are ideal. However, bulk inorganic piezoelectric materials can be stiff and brittle. As
harvesters  relying  on  muscle  contraction-based  joint  bending  require  high  deformability,
inorganic  piezoelectric  materials  can  be discretized  into  nanostructures  such as  nano rods445,
nanowires446,  or  thin  films447.  Another  popular  approach  to  achieve  high  flexibility  or
stretchability  is  to  use  organic  piezoelectric  materials.  While  piezopolymers  are  highly
deformable, their electrical properties are an area for improvement. To achieve highly efficient
and  flexible  piezopolymer  based  PENGs,  lead-free  perovskite  BaTiO3 nanowires  were
incorporated into a poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) piezoelectric
nanocomposite (Fig. 22b).428 The nanocomposite nanogenerator could harvest up to 14 V and 4
μA during simulated bending, and up to 8 V and 900 nA during repeated grabbing and releasing
hand motions when placed under a glove. BaTiO3 nanowires and PVC polymer were also aligned
into  piezoelectric  fibers  that  were  to  be  woven  into  a  fabric  with  cotton  threads.448 This
stretchable textile PENG could be worn as an elbow pad to generate up to 1.9 V and 24 nA
during arm bending. 

Mechanical force can also change the magnetic property of a material as characterized by the
magnetoelastic effect or Villari effect. However, this effect is generally observed in rigid alloys
that are too stiff to comply on the skin for wearable devices. In 2021, a soft wearable MEG that
can generate 2.02 mW cm−2 with continuous hand tapping was developed on the discovery of a
giant magnetoelastic effect observed in a soft composite containing dispersed micromagnets in a
porous silicone rubber matrix (Fig. 22c).429 Mechanical stress on this soft system would change
the spacing and dipole alignment of the micromagnets, leading to local variations in the magnetic
field. This giant magnetomechanical coupling (GMMC) layer was paired with a coil-patterned
liquid-metal magnetic induction (MI) layer that converts the magnetic field variation caused by
mechanical stress to electrical power via electromagnetic induction. In another account, a textile
MEG with a power density of 667 μW cm−2  under continuous hand tapping was fabricated by
weaving soft magnetic fibers composed of nanomagnets in a silicone polymer with conductive
yarns. An advantage of MEG-based energy harvesters is that they are waterproof, as magnetic
fields experience minimal attenuation through water. 

Triboelectric nanogenerators that harvest energy from static charges induced during the contact
of two dissimilar objects via friction electrification were first introduced in 2012.449 The TENG
operated in a contact-separation mode wherein repeated contact and separation of the TENG
electrodes, like the repeated mechanical pressures applied to the wearable PENGs and MEGs,
would generate an AC voltage.  Thus, wearable TENGs have also been developed to harvest



energy  from  the  heel  strike  action  during  walking  and  from  joint  bending  during  muscle
contractions.  However,  TENGs can operate  in  three  other  modes  such as  the  lateral-sliding
mode, free-standing mode, and the single-electrode mode.450,451 The lateral-sliding mode and the
free-standing  mode  enable  the  harvesting  of  triboelectric  energy  generated  during  a  sliding
motion between two objects, realizing the capture of energy from another dimension of motion.
A wearable freestanding-mode flexible triboelectric nanogenerator (FTENG) was developed to
capture triboelectric energy from repeated sliding of the arm against the torso, and fully power a
judiciously designed wearable wireless sensor system by human motion for the first time (Fig.
22d).430 Seamlessly  integrated  with  the  wireless  electronic  circuit  via  commercial  FPCB
technology, the FTENG was able to generate 41.6 μW cm−2 with a sliding frequency of 1.5 Hz,
and charge a 242 μF capacitor from 2.2 V to 3.5 V 18 times during a 60 minute running session.
Each time the capacitor was charged to 3.5 V, it would power the electronic system to start up,
acquire, and transmit one set of multiplexed sweat sensor data over BLE advertisements. The
battery-free system was used to  continuously monitor  sweat  pH and sodium levels  during a
running session.

As such it  is  demonstrated  that  energy from body motion can provide sufficient  power to  a
wireless  wearable  sweat  sensor.  While  not  discussed  in  this  review,  other  types  of  energy
harvesters such as PYNGs452 and electromagnetic generators (EMG)453 have been developed to
harvest energy from body heat and motion. As elevated levels of motion are correlated with
exercise and high power output, these energy harvesters are a great fit for exercise sweat-based
fitness  monitoring  applications.  On the  other  hand,  generators  based  on body heat  have the
capacity to harvest energy in sedentary scenarios. However, a higher power density is desired for
iontophoretic sweat stimulation, high frequency electrochemical measurement techniques, and
low latency wireless communications.

6.1.3 Harvesting Solar Energy from the Environment

Harvesting energy from the biochemical or kinetic energy from our body often requires exercise
or lacks power density. Harvesting ubiquitous energy such as light power from our environment
can  provide  large  amounts  of  power  under  various  scenarios  and  activities  including  rest.
Currently,  crystalline  silicon PV cell  technologies  are highly  mature  and are dominating  the
market  due to  their  high conversion efficiencies  and reliability.  While  silicon PV cells  have
reached  26.7%  power  conversion  efficiency  (PCE)  under  air  mass  1.5  global  (AM  1.5G)
illumination454, they are not ideal candidates for powering wearable devices as they are rigid and
have a low PCE under indoor illumination. On the other hand, solution processable organic or
inorganic-organic hybrid photoactive materials that can be processed at low temperatures have
been used to fabricate flexible or stretchable solar cells on soft polymeric substrates.455,456

Compared  to  their  inorganic  counterparts,  organic  solar  cells  can  be  low-cost,  lightweight,
flexible,  and  biocompatible.457 A  wearable  3-μm-thick  ultra-flexible  nano-grating-patterned



organic photovoltaics (OPV) with a PCE of 10.49% under AM 1.5G illumination was developed
and integrated with an organic electrochemical transistor-based sensor to achieve self-powered
cardiac signal recording (Fig. 23a).458 The grating patterns on the OPV contributed to a surface
plasmonic effect and anti-reflection effect that enhanced the PCE of the device across different
illumination angles to enable an output power of over 10 mW cm−2  in a sunny day, which is
sufficient  to  power  most  wearable  electronic  functionalities.  Furthermore,  the  device  could
deform to achieve highly conformal contact on the skin while maintaining a high power output.
Despite various advantages, one downside of organic solar cells is their PCE.

Since  their  first  emergence  in  2009459,  solar  cells  based  on  mixed  organic-inorganic  halide
perovskites  have been heavily researched due to their  solution processability  and unmatched
photoelectric performance. Flexible perovskite solar have achieved efficiencies well over 20%
under  AM  1.5G  illumination460,461,  and  there  are  reports  of  perovskite  solar  cells  achieving
efficiencies over 40% under low light LED (2700 K) illumination.461 The capability of harvesting
high amounts of power in various lighting conditions is very attractive for powering wearable
devices. Flexible perovskite solar cells with an efficiency of 14.01% have been integrated with a
flexible lithium-ion capacitor to achieve a photo-rechargeable power source (Fig. 23b).462 As an
application,  this  photo-rechargeable  power  source  was  used  to  self-power  wearable  strain
sensors. While the high power output of flexible perovskite solar cells is attractive, perovskite
materials are generally toxic, requiring special attention to the encapsulation of the device to
prevent  leaking.  Non-toxic  perovskite  nanocrystals  are  also  being  explored  as  alternative
photoactive materials.463 

Figure 23. Photovoltaic cells for harvesting energy from the environment. a,  An ultrathin
organic photovoltaic cell integrated with an organic electrochemical transistor for wearable self-
powered cardiac signal recording. Reproduced with permission from  ref 458. Copyright 2018
Springer Nature. b, A flexible perovskite solar cell paired with a flexible lithium ion capacitor to



self-power wearable strain sensors. Reproduced with permission from ref 462. Copyright 2019
Elsevier.  c, A fully integrated smartwatch powered by a commercial flexible solar cell and a
flexible battery for the continuous monitoring of sweat glucose.  Reproduced with permission
from ref 328. Copyright 2019 American Chemical Society.

Another class of solar cells based on organic-inorganic hybrid materials are dye-sensitized solar
cells.  While  lacking  in  terms  of  power  conversion  efficiency,  dye  sensitized  solar  cells  are
characterized by their low cost and ease of fabrication, as well as their robustness, long-term
stability, and relative non-toxicity.464,465 In addition, these solar cells work well under low light
intensity or indoor light. Due to their sustainability, pliability, and light weight, dye sensitized
solar cells based on elastic conducting fibers are ideal candidates for textile based photovoltaic
devices.

Solar cells have also been employed for powering wearable sweat sensors. A fully integrated
solar cell powered smartwatch was designed for the non-invasive and continuous monitoring of
sweat glucose (Fig. 23c).328 For the power supply, a commercial flexible amorphous silicon solar
cell and a custom developed flexible Zn-MnO2 battery were integrated as the watch strap. The
commercial flexible solar cells have a PCE of 3.2% under AM 1.5G, and a PCE of 9.04% under
low intensity room light (7.5 W m-2). The electrochemical glucose sensor, PCB and E-ink display
were  integrated  into  a  dial  platform  to  assess  and  classify  the  real  time  sweat  glucose
concentrations for displaying on the E-ink screen as high, medium, or low. The versatile system
was assessed to monitor sweat glucose in various scenarios such as during iontophoretic sweat
extraction, indoor biking, and outdoor running. 

Solar cells that harvest energy from the environment can provide high power densities during
various activities as long as there is sufficient light, both indoors and outdoors. For developing
wearable solar cells, organic and perovskite materials have advantages over traditional inorganic
materials as they can be solution processable, cost efficient, and highly flexible. Furthermore,
organic solar cells have an advantage that they are biocompatible and safe, whereas perovskite
solar cells display excellent power densities. 

6.1.4 Hybrid Energy Harvesting

By combining different energy harvesting technologies, it is possible to extend the boundaries of
potential operation scenarios and increase power conversion efficiencies of the energy harvesting
module. Power can be complementarily harvested from multiple energy sources such as light and
motion  or  sweat  and  motion  to  increase  power  output  when  multiple  energy  sources  are
available, and to sustain power output when one of the energy sources is absent. Additionally,
power can also be synergistically extracted from a single energy source such as light or motion
by  integrating  multiple  energy  harvesting  mechanisms  to  increase  the  power  conversion
efficiency of the system. 



In  the  context  of  sweat  sensing,  hybrid  energy harvesting  from sweat  and motion  is  highly
attractive. While sedentary sweat rate in most body parts is too low for sweat extraction, the
fingertip has a high passive perspiration rate that can be leveraged for touch-based natural sweat
collection. A flexible and durable porous carbon-foam-based BFC and porous PVA gel was used
to  extract  an  average  power  of  10.8  μW  during  10  hours  of  sleep  from  natural  fingertip
perspiration  (Fig.  24a).466 A complementary  PENG was  vertically  stacked  with  the  BFC to
additionally scavenge mechanical  energy from finger pressing motions that can occur during
daily activities such as typing and mouse clicking. At a pressing frequency and pressure of 6
beats per minute and 50 kPa, the BFC and PENG were individually able to charge a 100 μF
capacitor in 8 and 20 minutes respectively. When combined, the hybrid system could charge the
capacitor in 4 min. In another account, a BFC module and a TENG module were combined as an
e-textile  bioenergy microgrid  system that  could harvest  both biochemical  and biomechanical
energy during  exercise  to  charge  a  flexible  supercapacitor  array  and power  a  sweat  sodium
sensor  with  an  electrochromic  display  (Fig.  24b).467 During  a  10-minute  exercise  session
followed  by  20  min  of  rest,  the  arm  swing-based  triboelectric  generator  alone  could  start
charging a 150 μF supercapacitor as soon as the exercise started, but stopped charging as soon as
the  exercise  ended.  On the  other  hand,  the  sweat-based  BFC could  only  start  charging  the
supercapacitor 6 min after exercise, but could continue to charge the supercapacitor after the
exercise ended. The integrated system could rapidly fully charge the supercapacitor in 7 min and
maintain the maximum voltage for over 30 min. 



Figure  24.  Hybrid  energy  harvesting from multiple  energy sources. a,  A hybrid  energy
harvester  integrating  a  lactate  biofuel  cell  and  a  piezoelectric  nanogenerator  for  harvesting
energy from natural fingertip sweat and finger tapping. Reproduced with permission from  ref
466. Copyright 2021 Elsevier.  b, A textile bioenergy microgrid integrating a biofuel cell and a
triboelectric nanogenerator for harvesting energy from exercise induced sweat lactate and arm
swinging motions. Reproduced with permission from ref 467 under CC BY 4.0. Copyright 2021
Yin  et al.  c, A spring-mass coupled hybrid generator integrating a triboelectric nanogenerator
and electromagnetic nanogenerator for harvesting energy from exercise induced low-frequency
vibrations. Reproduced with permission from ref 468. Copyright 2022 Wiley.

Solar cells and TENGs have also been combined to simultaneously scavenge energy from light
and  body  motions.469–471 Low-cost  polymer  fibers  were  used  to  assemble  a  dye-sensitized
photovoltaic textile and a fabric TENG that were weaved into a 320 μm thick single-layered
interlaced  hybrid  power  textile  via  an  industrialized  shuttle-flying  process.469 The  highly
deformable and breathable hybrid power textile with a size of 4 cm x 5 cm could stably deliver
an output power of 0.5 mW from a human walking under sunlight (80 mW cm−2). In another
work,  a  double-layer  structure  self-powered  textile  was  developed  with  a  fiber-based  dye
sensitized solar cell (5.64% PCE under AM 1.5G) top layer and a fiber-based super capacitor
(1.9 mF cm-1) bottom layer that are coupled as electrodes to construct a contact-separation mode
TENG (0.91 μA during walking).470 



Meanwhile,  solar  cells  have  also  been  integrated  with  TEGs  to  synergistically  harvest  the
photoelectric  and  thermoelectric  energy  from  light  sources  and  the  heat  they  generate.  To
develop a photovoltaic-thermoelectric hybrid generator with maximal power output, the cathode
of the TEG was hybridized to the anode of the OPV module through vertical stacking.472 The
TEG could absorb and harvest  energy from the long wavelength phonons that  could not  be
exploited  by  the  OPV,  and  the  vertical  stacking  lead  the  TEG  to  reversely  bias  and  inject
electrons to the OPV. Through this hybridization,  the open-circuit voltage losses of the OPV
module were minimized, and the hybrid generator was able to harvest 46.3% more energy than
the OPV module alone throughout the day at △T = 10 K. When worn on the forearm for 30 min,
the hybrid generator could harvest up to 34 mWh during the day, and up to 5.9 mWh at night.

Next, a spring-mass coupled hybrid generator integrating a TENG and EMG was designed to
harvest energy from low-frequency vibrations generated by human motion (Fig. 24c).468 Within a
3D-printed barrel structure embedded with electromagnetic winding coils and nylon film coated
triboelectric interdigitated electrodes, a PTFE wrapped cylindrical magnet connected to a spring
would  slide  up  and  down the  barrel  in  response  to  mechanical  vibrations  to  generate  both
electromagnetically  and  triboelectrically  induced  currents.  Furthermore,  the  hybrid
nanogenerator module was integrated with a battery-free wireless sweat sensor module that could
perform the selective monitoring and BLE advertisement of sweat Na+ and K+. When running,
the hybrid nanogenerator module could charge the storage capacitors (242 μF) from 2.2 V to 3.3
V  within  33  to  60  s  to  perform  a  single  cycle  of  sweat  analyte  measurements  and  data
transmission. The integrated system was used to continuously monitor the sweat Na+ and K+ of a
subject during 35 min of running.

6.1.5 Wireless Energy Harvesting

Another popular method for designing battery-free wireless wearable sweat sensors is to use
radio-frequency  identification  (RFID)  technology  commonly  used  for  contactless  payments.
Through wireless inductive coupling between two conducting coils, an RFID tag (a wearable
electronic sensor) can acquire power from an RFID reader (a mobile phone) for wireless data
communication over the 13.56 MHz RF band. In 2015, an Adhesive RFID sensor patch for the
potentiometric monitoring of sweat electrolytes was developed to operate on the standard ISO-
15693 as a vicinity device (Fig. 25a).473 Since then, near-field communications (NFC), a subset
of RFID technology was popularized for higher levels of security and larger amounts of data
exchange.  A  soft  hybrid  microfluidic  system  was  developed  for  the  visual  colorimetric
quantification of sweat chloride,  pH, and sweat rate/loss,  as well  as the NFC based wireless
readout of the biofuel cell-based glucose and lactate sensors (Fig. 25b).237 Another NFC based
wearable sweat sensor system could perform the simultaneous monitoring of sweat glucose, Na+,
K+,  and  pH  using  a  stretchable  electrode  array  (Fig.  25c).474 While  both  BLE  and  NFC
communication  can  enable  wireless  sensor  data  readout  through  a  mobile  app,  NFC based
devices typically require close contact (< 4 cm) for power and data exchange which can be a



limiting factor in certain applications. To extend the range of NFC communication, a long-range
NFC reader can be used rather than a mobile phone.

To this end, various methods have been discussed for harvesting the energy necessary to power
wearable electronics. To power wearable sweat sensors, biofuel cells have been used to harvest
biochemical energy from sweat, nanogenerators have been used to harvest mechanical energy
from body motions, photovoltaic cells have been used to harvest solar energy from ambient light,
and NFC tags have been used to harvest electromagnetic energy from an RF field generated by a
mobile phone. With sufficiently generated power, these energy harvesting modules can eliminate
the need for bulky and potentially hazardous lithium-ion batteries, or at least reduce USB-based
or wireless charging demands. 

Figure  25.  Wireless  energy  harvesting  from the  mobile  phone.  a,  A bandage-like  RFID
sensor patch for the monitoring sweat Na+. Reproduced with permission from ref 473. Copyright
2015  IEEE.  b,  A  soft  epidermal  microfluidic  device  integrating  an  NFC-based  wireless
monitoring of sweat glucose and lactate. Reproduced with permission from ref 237. Copyright
2019 The American Association for the Advancement of Science.  c, An NFC-based wireless
sweat sensor system with a stretchable electrode array for the multiplexed monitoring of sweat
Na+, K+, pH, and glucose. Reproduced with permission from ref 474. Copyright 2019 Wiley.

6.2 Wearable Energy Storage

Another  way to  eliminate  rigid  and bulky lithium-ion batteries  from wearable  devices  is  to
replace  them  with  thin  and  deformable  wearable  batteries  or  supercapacitors.  To  achieve
deformable  batteries,  novel  battery  architectures  incorporating  ‘island-bridge’,  origami,  and
textile  structures,  as  well  as  novel  battery  materials  incorporating  intrinsically  flexible  and
stretchable  polymers  have  been  developed.  Furthermore,  to  address  the  safety  concerns  of
lithium-ion batteries, alternate energy storage chemistries and biocompatible electrolytes such as
sweat have been explored.

6.2.1 Wearable Batteries

Currently, most commercial wearable electronic devices are powered by rechargeable lithium-
ion coin cell  batteries  as they boast  the highest  energy density.  For  transitioning from rigid
wearables such as smartwatches to soft and conformal wearables such as e-textiles or e-skins,



flexible  and  stretchable  lithium-ion  batteries  have  been  extensively  developed  using  novel
electrode architectures, including thin-film475, island-bridge476, origami477, and textile478 structures.

Fiber lithium-ion batteries that can be woven into textiles are highly desirable for powering e-
textile based wearable sweat sensor systems. Through a novel, optimized, and scalable industrial
process, meters of high-performance fiber lithium-ion batteries were mass-produced to have a
high energy density of 85.69 watt hour per kilogram (Fig. 26a).478 The capacity and energy of the
fiber batteries increased linearly with fiber length, and the battery maintained over 80% of its
capacity after 100,000 bending cycles. Furthermore, the batteries were woven into a jacket to
power a fiber-based wearable sweat sensor system and display for the continuous and wireless
monitoring of sweat Na+ and Ca2+ during exercise.

To address both the safety and flexibility concerns of lithium-ion batteries, alternate materials
and  battery  chemistries  have  also  been  explored.  Unlike  lithium-ion  batteries  which  can  be
flammable,  silver-zinc batteries operate based on aqueous chemistries that are not flammable.
Fully  layer-by-layer  screen-printed  via  polymer-based  composite  inks,  a  flexible  and
rechargeable AgO-Zn battery with an areal capacity of up to 54 mAh cm-2 was developed to have
customizable sizes and capacities.479 In addition to the high capacity, the AgO-Zn battery had
superior battery performance under pulsed high current discharge conditions when compared to a
lithium battery.  Furthermore, the batteries maintained their capacity and coulombic efficiency
after numerous bending cycles. A similar AgO-Zn battery was integrated into a screen-printed
epidermal sweat sensor patch capable of displaying the concentration of various electrolytes or
metabolites on an electrochromic display (Fig. 26b).480 The stretchable energy storage device
reached an areal battery capacity of up to 11.5 mAh cm-2 with four layers of cathode loading and
could power the microcontroller and electrochromic display to perform 10,000 sensing events
over five days. Furthermore, the robust patch could be stretched at 20% strain for up to 1,500
cycles without deterioration in performance.  Paired with a potentiometric glucose sensor, the
sensor patch was used to monitor glucose levels in exercise sweat with the intake of sugary
drinks.

However, batteries also require toxic electrolytes that are often acidic, alkaline, or ionic. Safe and
biocompatible electrolytes such as sweat are suitable for activating batteries that are used for
powering  wearable  sensor  systems.  Composed  of  a  flexible  Mg  anode,  a  printed  Ag/AgCl
cathode,  and  a  NaCl  preloaded  cellulose  separator  membrane,  a  flexible  and  biocompatible
sweat-activated cell with an optimized area of 0.46 cm2 and capacity of ~3 mAh was developed
to  power  a  multimodal  wearable  sensor  system for  up  to  5  hours  (Fig.  26c).481 The sweat-
activated cell has a specific capacity of ~67 Ah kg-1 which is comparable to that of a commercial
coin cell battery with a specific capacity of ~73 Ah kg-1). In addition, due to the preloading of the
separator  with  NaCl,  the  battery  capacity  is  independent  of  sweat  electrolyte  concentration.
During  on-body  cycling  studies,  the  sweat  activated  battery-powered  continuous  heart  rate
monitoring and data storage for NFC-based wireless data transmission. 



Figure 26. Energy storage: next generation batteries for powering wearable sweat sensors.
a, A fiber-based e-textile lithium-ion battery for powering a wearable sweat sensor system that
monitors and displays sweat Na+ and Ca2+ levels. Scale bar, 2 cm. Reproduced with permission
from  ref 478. Copyright 2021 Springer Nature.  b, Screen-printed stretchable AgO-Zn battery
powered epidermal sweat sensor patch for monitoring and displaying various sweat metabolite
and  electrolyte  levels.  Reproduced  with  permission  from  ref  480.  Copyright  2022  Springer
Nature.  c,d,  Epidermal  sweat  activated  batteries  for  monitoring  heartrate  (c)  and  sweat
biomarkers (pH, glucose, and Na+) (d). c, Reproduced with permission from ref 481. Copyright



2020 Springer Nature. d, Reproduced with permission from ref 482 under CC BY 4.0. Copyright
2022 Liu et al. e,f, Textile-based sweat activated batteries prepared on fabric (e) and on a cotton
yarn (f).  Scale bar, 3 cm.  e,  Reproduced with permission from  ref 483. Copyright 2021 The
American Association for the Advancement of Science. f, Reproduced with permission from ref
484 under CC BY 4.0. Copyright 2022 Xiao et al.

High capacity sweat-activated batteries, incorporating a biocompatible reaction between Zn and
CuSO4,  have  also  been developed  for  powering  the  real-time  electrochemical  monitoring  of
sweat biomarkers (pH, Na+, and glucose) and BLE data transmission (Fig. 26d).482 Encapsulated
in a soft silicone shell, a Zn anode and a Cu cathode were sandwiched between nylon fabric bags
containing electrolytes (KCl and CuSO4), and a hydrophilic cotton salt-bridge containing KCl to
produce a high capacity of 42.5 mAh and a power density of 7.46 mW cm-2. The sweat-activated
battery could operate for up to 6 hours and was used to power a BLE-based wearable sweat
sensor system to monitor sweat pH, Na+, and glucose during exercise.

Scalable  textile-based  sweat-activated  batteries  have  also  been  developed.483,484 Upon  the
discovery of printable and stretchable Ag flakes-poly(urethane-acrylate) (HPUA) electrodes that
experience improved conductivity in the presence of sweat, a textile-based stretchable Zn-Ag2O
battery with an Ag-HPUA current collector was developed (Fig. 26e).483 The textile, which was
the substrate for printing the electrodes,  also served as the sweat absorbent and separator. In
addition, the textile substrate could also be loaded with electrolyte inks, as the power density of
the battery increased with electrolyte concentrations, reaching a density of 3.47 mW cm-2 with a
NaCl  concentration  of  147  mM.  The  battery,  displaying  a  capacity  of  4  mAh  cm -2 at  a
discharging current of 0.2 mA cm-2, was used to power a commercial wireless temperature sensor
on  a  subject’s  arm.  In  a  different  work,  a  cotton  yarn-based  sweat-activated  battery  was
developed by modifying segments of a yarn (salt bridge) with carbon-black (cathode) and Zn foil
(anode) (Fig. 26f).484 The yarn-based sweat-activated battery, which can be woven into fabrics,
exhibited a peak power density of 33.1 µW cm−2 with 320 mM NaCl, and could light up a light-
emitting diode (LED) when worn as a headband while biking.

Various  alternatives  have  been  developed  to  replace  lithium coin  cell  batteries  in  wearable
devices.  Novel  structures  and  novel  organic  materials  have  been  explored  to  improve  the
flexibility  of  batteries,  and  alternate  battery  chemistries  incorporating  novel  electrodes  and
electrolytes have been proposed to develop environmentally friendly and skin-safe batteries. In
addition to their high biocompatibility, sweat-activated batteries are dry in the absence of sweat,
reducing common battery issues such as electrolyte leakage, self-discharge, and poor shelf-life.

6.2.2 Wearable Supercapacitors

Supercapacitors,  or  electrochemical  capacitors,  are  another  type  of  energy  storage  device
characterized  by  their  fast  charging/discharging  speeds  and  high  current  discharge  abilities.
Supercapacitors store charge through two main mechanisms: through physical capacitive storage



in the electrochemical double layer formed near the electrode/electrolyte interface; and through
pseudocapacitive chemical storage via charge transfer based on redox reactions occurring on the
electrode surface.485 Common strategies for increasing electrical double layer capacitance include
maximizing the electrode surface area using carbon-based materials, whereas various transition
metal-based  materials  and  conducting  polymers  have  been  explored  for  increasing
pseudocapacitance.  Yarn-like,  planar,  and  stacked  structures  have  been  used  to  develop
conformable and wearable supercapacitors utilizing flexible substrates such as cotton, cellulose,
and polymers.486 This section will focus on discussing supercapacitors that utilize sweat as the
electrolyte, or supercapacitors that are charged by sweat.487–491

A  sweat-activated  2D-stacked  textile  supercapacitor  was  developed  by  coating  a
cellulose/polyester cloth with dimethyl sulfoxide doped PEDOT:PSS as the active electrode (Fig.
27a).487 When activated with artificial  sweat,  the high conductivity  and redox activity  of the
PEDOT:PSS  electrode  enabled  both  double  layer  capacitance  and  pseudocapacitance  to
contribute in achieving a high overall specific capacitance of 8.94 F g-1 (10 mF cm-2)  at 1 mV s-1.
The energy density and power density of the device scaled linearly with the potential window,
which reached a maximum of 1.31 V with sweat equivalent electrolyte contents, where a specific
capacitance of 5.65 F g-1, as well as energy and power densities of 1.36 W h kg-1 and 329.7 W kg-

1 were attained. As an application, the sweat-activated supercapacitor was used to self-power a
textile-based saline sensor for sweat monitoring. 

A sweat-activated yarn-based supercapacitor was developed by electrospinning cellulose acetate
fibers  around  a  polypyrrole  (Ppy)-functionalized  carbon  thread,  then  twisting  another  Ppy-
functionalized  carbon  thread  symmetrically  around  it  (Fig.  27b).489 When  activated  with  a
simulated sweat solution, the wire/yarn-based supercapacitor displayed a specific capacitance of
2.3 F g-1,  as  well  as energy and power densities  of 386.5 mWh kg−1 and 46.4 kW kg−1.  By
combining two supercapacitors in series with two supercapacitors in parallel, the sweat-activated
supercapacitors could turn on a green LED with a minimum operating voltage of 1.8 V.

In  comparison  to  sweat-activated  batteries  that  can  directly  deliver  stored  energy  when
stimulated by sweat, sweat-activated supercapacitors need to be charged. To overcome this issue,
wearable supercapacitors can also be conveniently integrated with sweat-activated biofuel cells
for the simultaneous scavenging and storage of biochemical energy.490,491 A textile-based hybrid
supercapacitor-biofuel  system  was  fabricated  by  screen-printing  a  MnO2/carbon  nanotube
composites-based  in-plane  supercapacitor  on  the  outside  of  the  fabric  sweat  band,  and  an
enzymatic lactate  biofuel cell  on the inside (Fig. 27c).490 The BFC, which achieved a power
density of 252 μW cm−2 with 10 mM lactate, directly charged the supercapacitor which achieved
maximum energy and power densities of 17.5 μW h cm−2 and 0.4 mW cm−2. When worn on a
subject’s arm during exercise, the hybrid system could charge the supercapacitor up to 0.4 V.



Figure 27. Energy storage: next generation sweat activated supercapacitors for powering
wearable sweat sensors. a, A textile-based wearable supercapacitor based on a PEDOT:PSS-
coated cloth using sweat as the electrolyte. Reproduced with permission from ref 487 under CC
BY 4.0. Copyright 2020 Manjakkal et al. b, A twisted carbon threads-based supercapacitor using
sweat as the electrolyte. Reproduced with permission from ref 489 under CC BY 4.0. Copyright
2020 Lima et al. c, Hybrid textile-based supercapacitor-biofuel system with a supercapacitor and
biofuel cell on each side of a sweatband. Reproduced with permission from ref 490. Copyright
2018 Royal Society of Chemistry.  d, An all-printed biosupercapacitor integrating a biofuel cell
and a supercapacitor in a single footprint for harvesting and storing energy from sweat. Scale
bar, 2 cm. Reproduced with permission from ref 491. Copyright 2021 Wiley.

Through  further  integration,  a  biofuel  cell  and  supercapacitor  were  combined  on  the  same
footprint  into  a  single  stretchable  epidermal  biosupercapacitor  (Fig.  27d).491 The
biosupercapacitor, consisting of an LOx/NQ/PPy-based bioanode and a porous Pt-based cathode,
was coated with a sweat-permeable PBS electrolyte hydrogel to interface with skin and serve as



an electrolyte for the supercapacitor. The screen-printed CNT-based composite ink and porous Pt
are responsible for the large surface area and double layer capacitance, and the redox active PPy
is  responsible  for  the  pseudocapacitive  behavior  of  the  biosupercapacitor.  As  an  energy
harvesting device, the biosupercapacitor could stably harvest around 100 μW cm−2 in a solution
containing  10  mM  lactate.  Meanwhile,  as  a  supercapacitor,  it  achieved  maximum  areal
capacitance and power densities of 27.2 mF cm−2 and 0.22 mW cm−2 (≈2.4 F g−1 and ≈20 mW
g−1). In the presence of 10 mM lactate, the biosupercapacitor could deliver and instantaneously
recover  from high  power  pulses  with  a  current  density  of  up  to  10  mA  cm−2,  reaching  a
maximum power density of 1.7 mW cm−2 with a pulsed discharge of 7.5 mA cm−2. Utilizing
island-bridge patterns and strain-enduring inks, the device was also highly resistant to repeated
stretching  cycles. During  an  on-body  exercise  trial  with  repeated  pulsed  discharges,  the
biosupercapacitor  reached a maximum power output  of 343 µW cm−2 and could continue to
deliver the pulsed discharges up to 4 hours after the exercise stopped. 

To summarize,  various options have been explored for powering wearable sweat sensors. As
with wearable systems in general, powering solutions for wearables desire high deformability,
low footprint, safety, and sustainability. Instead of conventionally used bulk inorganic materials,
nanostructured  and  organic  materials  have  been  explored  for  developing  a  variety  of
biocompatible and flexible energy harvesting and energy storage devices. While sweat-activated
batteries  can  achieve  high energy densities  and stably  power wearable  electronics  for  hours
without any initial charging, they are difficult to recharge. On the other hand, sweat-activated
supercapacitors can achieve high power densities and cyclic charging/discharging stabilities, but
need to be charged with an external power supply such as an energy harvester before discharge.
Next generation high power density energy harvesting devices coupled with high energy density
rechargeable  energy  storage  devices  can  endlessly  power  wearable  electronic  sweat  sensors
without the need for an external charger. 

7. System-Level Integration

Iontophoresis electrodes, sensor arrays, and power sources are integrated into a wearable system
through electronic circuitry that extracts and manages energy from a power source to supply a
current  through  the  iontophoresis  electrodes  for  sweat  stimulation,  to  acquire  multiplexed
electrical signals from sensors, and to process the sensor data for wireless transmission or display
(Fig. 28). When designing the electronic system for a wearable sweat sensor, it is critical to
outline the requirements or constraints of the final design in terms of data precision, form factor,
power consumption,  and wireless  communication  range.  With these guidelines  in mind,  it  is
possible to decide which type of electronic components or PCBs to utilize for circuit design. 



Figure 28. Electronic system block diagram of wearable sweat sensors.  Control amplifier
(CA),  digital  to  analog  converter  (DAC),  transimpedance  amplifier  (TIA),  analog  to  digital
converter (ADC), instrumentation amplifier (InAmp), serial peripheral interface (SPI), universal
asynchronous receiver-transmitter (UART), general-purpose input/output (GPIO), direct current
(DC).

7.1 Analog Interface

7.1.1 Iontophoretic Sweat Stimulation

The  analog  interface  for  wearable  sweat  sensors  can  be  divided  into  two  main  categories:
iontophoretic sweat stimulation control and electrochemical sweat analysis. For the controlled
transdermal delivery of sweat inducing drugs (pilocarpine, carbachol), a high compliance voltage
constant current source circuit is required. For reliable and safe sweat stimulation, a constant
current  density  of around 1.5 mA cm-2 is  often used,  which  typically  requires  a  compliance
voltage between 10 V and 40 V due to the high, dynamic, and variable impedance of the skin. As
the  remainder  of  the  circuit  generally  operates  below 5 V,  a  boost  converter  is  required  to
generate the power supply for the current source. A variety of current source circuits have been
used for wearable iontophoretic sweat stimulation: a voltage controlled current source using a
differential amplifier and transistor was used for generating a variety of current waveforms326,
and a commercial three terminal current source (LM334, Texas Instruments) was used to deliver
a  constant  current.190 Simple  constant  current  sources  based  on  active  transistors  or  linear
regulators could also be explored for generating constant currents independent of the load. While
skin impedance is initially high, delivery of an iontophoretic current increases skin permeability
and rapidly decreases skin impedance until it levels off to a value dependent upon applied current
density.492 With a limited compliance voltage, it often takes some time for the skin impedance to
decrease and applied current to reach a desired level. With poor electrode contact, the current
may never reach the desired value. Therefore, it is important to monitor the applied current using



a  current  shunt  monitor  or  a  transimpedance  amplifier  (TIA).  Finally,  a  protection  circuit
including a current limiter  and switch should be employed for user safety and to isolate  the
iontophoresis circuit from the measurement circuit during sweat analysis. 

7.1.2 Sweat Analysis

Various electrochemical measurement techniques have been utilized for quantifying biomarker
levels  in  sweat.  A  potentiostatic  circuit  is  required  for  amperometric  and  voltammetric
measurements,  where the current across the reference and working electrodes is measured in
response to the application of a controlled potential across the reference and working electrodes
of a three-electrode electrochemical system. Amperometric measurements are often paired with
enzymatic electrodes for the detection of sweat metabolites such as glucose and lactate, whereas
voltammetric measurements are often used for the direct detection of redox active biomarkers
such as uric acid and tyrosine. Generally, two low input bias operational amplifiers (op-amps) are
used to construct a potentiostat  circuit  to minimize undesired current flow into the reference
electrode, including a control amplifier and a TIA. The control amplifier utilizes digital to analog
converter (DAC) generated voltages to bias the reference electrode with respect to the working
electrode, and the TIA converts the resultant current flowing through the counter and working
electrodes into a potential that is acquired by an analog to digital converter (ADC). A constant
potential is applied across the reference and working electrodes for amperometric measurements,
whereas  dynamic  potential  waveforms  of  various  frequencies  are  applied  for  voltammetric
measurements. Typically, the voltage sweep rate for voltammetric techniques is up to 50 mV/s
for DPV, up to 500 mV/s for CV, up to 5 V/s for SWV, and up to 500 V/s for FSCV. Thus, while
amperometric  measurements can operate  with low bandwidth operational amplifiers and long
ADC measurement intervals to achieve a low power consumption, voltammetric measurements
with higher frequency signals require higher bandwidth operational amplifiers and shorter ADC
measurement intervals, which correlates to an increased power consumption.

Impedance measurements have been commonly used for sweat rate  and sweat ionic strength
sensors. Like potentiostatic circuits, impedance measurement circuits apply an alternating current
(AC)  voltage  signal  across  the  sensor  electrodes,  and  then  measure  the  resulting  current
waveform to compute the magnitude and phase angle of the impedance. However, impedance
measurements can require the handling of AC signals with frequencies as high as 200 kHz, and
therefore require a circuit with significantly higher bandwidth and complexity, as well as quick
and frequent ADC conversions. In addition, due to the difficulty of transmitting large amounts of
resulting  ADC  data,  impedance  measurement  circuits  often  incorporate  a  discrete  Fourier
transform (DFT) engine for the hardware-based processing of impedance data.

Open  circuit  potentiometry  (OCPT)  is  one  of  the  most  commonly  used  electrochemical
techniques  for  wearable  sweat  sensors  due  to  its  simplicity  and  low  power  consumption.
Typically used for the selective detection of sweat electrolytes, OCPT requires a high-impedance



voltmeter for measuring the potential between the reference electrode and a working electrode
(ISE). As the source impedance of potentiometric sensors can be high, they must be interfaced
with a high input impedance voltage buffer to minimize current flow through the electrodes.
Typically,  a  buffered  reference  voltage  sets  the  potential  of  the  reference  electrode,  and an
instrumentation  amplifier  is  used  to  buffer  and amplify  the  potential  difference  between the
reference and working electrodes,  and that  potential  is  then acquired by an ADC. For sweat
electrolyte measurements, the sensor response is generally stable and therefore a low bandwidth
instrumentation amplifier and a long ADC measurement interval can suffice the requirements for
continuous monitoring, enabling low power and small footprint instrumentation. For multiplexed
sensors  requiring  simultaneous  potentiometric  and  amperometric  measurements,  the  control
amplifier from the potentiostat circuit can be shared for biasing the shared reference and counter
electrodes.493

7.2 Signal Processing and Wireless Communications

Wearable devices typically contain a microcontroller  and a BLE or NFC wireless system for
signal  processing.  The  microcontroller  consists  of  a  microprocessor  that  runs  algorithms  to
control the rest of the electronic system through its peripherals (timers, ADC, etc.) and acquire
and  transmit  accurate  sweat  sensor  data  while  consuming  the  least  power.  For  wireless
communications, BLE and NFC are the most popular wireless communication protocols due to
their low power and ease of integration into systems as mobile phones are often embedded with
BLE and NFC capabilities. BLE devices operating at 2.4 GHz can transmit data up to ~100 m
with a tiny antenna but requires a power supply to be on the device. On the other hand, NFC
devices operating at 13.56 MHz can only transmit data up to ~10 cm with a larger antenna but do
not require a power supply as the power is wirelessly transferred from the NFC reader. BLE
system-on-chips  (SoCs)  that  integrate  a  microcontroller  and  BLE  radio  such  as  nRF52832
(Nordic Semiconductor),  CC2540 (Texas Instruments),  PSoC 4 BLE (Infineon Technologies)
have  been  popularly  used  for  developing  wearable  sweat  sensor  devices.  These  devices  are
typically in deep sleep mode (< 2 µA) and wake up intermittently to perform quick tasks or to
transfer BLE data (5 ~ 20 mA) at connection intervals of up to 4 s, consuming an average current
as low as 10 µA. BLE SoCs are also sometimes integrated with antennas into system-on-modules
(SOMs)  or  system-in-packages  (SiPs)  to  save  costs  on  antenna  design  and  Federal
Communications  Commission  (FCC)  certification  fees.  However,  for  mass  production  or
customized circuit geometries,  designing a custom antenna matching circuit with a BLE SoC
may be more attractive. SoCs such as RF430FRL154H (Texas Instruments) integrating an NFC
transponder with a microcontroller have also been used for the battery-free wireless transmission
of wearable sweat sensor data.



7.3 Power Management

For battery-powered wearables, a power management circuit can be as simple as a single voltage
regulator, or a  direct current (DC)-DC converter followed by a voltage regulator depending on
the battery voltage with respect to the operation voltage of the system. However, for prolonged
device  use  and  extended  battery  life,  it  is  often  beneficial  to  include  charging  and  battery
management circuits that make sure the battery safely charges and discharges within a desired
temperature current,  and voltage  range.  Energy harvesting wearables  often require additional
circuitry to best utilize the scavenged electricity for either charging a battery or supercapacitor,
or directly powering the electronics through capacitors. Energy harvesters such as biofuel cells or
solar cells that generally output low DC voltages require DC-DC boost converters with dynamic
maximum power point tracking to extract maximal energy while boosting the supply voltage
above the system operation voltage for charging an energy storage device. Energy harvesters that
output a DC voltage significantly higher than the system operation voltage, such as solar cells
connected in series, can directly charge the energy storage device. On the other hand, energy
harvesters such as TENGs and PENGs that output an AC voltage require a bridge rectifier for
converting the AC voltage into a DC voltage that can charge the energy storage device either
directly or through a boost converter depending on the magnitude of the voltage. Furthermore,
energy harvesting wearables require a threshold control unit and protection circuit to regulate the
charging and discharging of energy storage devices for safe and energy efficient powering of
wearables. For example, the threshold control unit can allow an energy harvesting device to fully
charge an energy storage device to an upper threshold voltage; then, the energy storage device
can  simultaneously  be  charged  and  discharged  to  power  the  electronics  through  a  voltage
regulator  until  the energy storage device reaches a lower threshold voltage;  then,  the energy
storage device can stop discharging and get charged back to the upper threshold voltage. Power
management integrated circuits  (PMICs) that integrate these functionalities into a single chip
greatly reduce system footprints and energy losses494. 

7.4 Electronic Design Considerations

Depending  on  the  application  and  types  of  sweat  sensors  needed,  wearable  devices  can  be
integrated  into  various  form factors  and  can  be  worn  as  accessories,  textiles,  or  e-skins  on
various parts of the body. The overall form factor and scale of production of the device puts
design constraints  on the size,  power, conformability,  and cost of the electronic system. For
example,  when experimentally  embedding a sweat sensor in the next generation of a  fitness
monitoring smartwatch, it may be desirable to have a circuit that is small, cheap, and adaptable,
without concerns regarding the stretchability of the circuit. On the other hand, when developing
an  FDA-approved  e-skin  based  sweat  sensor  for  disease  diagnostic  applications,  it  may  be



preferable  to  design  a  circuit  that  has  better  IP  protection  and  high  stretchability  with  less
concerns regarding the cost and adaptability of the circuit.

7.4.1 Degree of Integration

Choosing the right electronic components is a crucial step in designing the electronic system for
a wearable sweat sensor (Fig 29). A sweat sensor circuit can be quickly developed and tested by
routing multiple general-purpose integrated circuits  (GPICs) as building blocks for achieving
sweat sensor instrumentation, signal processing and wireless communication, as well as power
management (Fig. 29a). In addition to low costs, such an approach is very adaptable as minor
changes or additions can easily be made by swapping or adding a few GPICs. On the other hand,
more resources can be devoted to developing application-specific integrated circuits (ASICs) that
can integrate many or even all functionalities of a sweat sensor circuit (Fig. 29c). Despite higher
initial costs and difficulties in making modifications post-fabrication, such an approach can yield
smaller footprints, lower power consumption, and better IP protection. To bridge the gap, it is
possible to utilize application specific standard products (ASSPs) that are commercial-off-the-
shelf (COTS) like GPICs, but often integrate more functionalities and are geared toward a more
specific application (Fig. 29b).

Figure 29. Strategies for choosing which types of integrated circuits to use for designing a
wearable electronic device. a–c, Electronic components can be categorized based on degree of
integration  as  general  purpose  integrated  circuits  (GPICs)  (a),  application  specific  standard
products (ASSPs) (b), and application specific integrated circuits (ASICs) (c). 

An electrochemical instrumentation circuit, for example, could be designed by using individual
general-purpose  op-amps,  in-amps,  voltage  references,  DACs,  ADCs  and  analog  switches.
Addition of an amperometric channel can be achieved by adding an extra TIA, and addition of a
potentiometric channel can be achieved by adding an extra in-amp. However, several ASSPs for
electrochemical  instrumentation  are  commercially  available  for  reducing  size,  power
consumption, and even costs (Table 3). The AD5940 (Analog Devices Inc.) is a powerful analog
frontend IC that can perform most standard electrochemical techniques (OCPT, amperometry
(AMP), CV, DPV, SWV, EIS) independently  as it  contains  an ADC and memory block for
sequencing and data storage. It communicates with an external microcontroller (MCU) via serial
peripheral interface (SPI) or there is a variation model ADuCM355 (Analog Devices Inc.) that



integrates  an  MCU.  LMP91000  (Texas  Instruments)  is  another  simpler  option  capable  of
potentiostatic techniques (AMP, CV), that relies on an external ADC and communicates with an
external MCU via inter-integrated circuit (I2C). SIC4341 (Silicon Craft Technology) is an NFC
tag that directly communicates with an NFC reader to perform potentiostatic techniques (AMP,
CV) with an on-chip ADC. Lastly, MS02 (Refresh AI Biosensor Co.) can perform OCPT and
AMP through an external ADC and is controlled by an external MCU via I2C. For lower power
and more specific applications, ASICs have also been designed for wearable sweat sensors495.

7.4.2. Degree of Conformability

After  choosing the electronic components  and designing the circuit  schematic,  the electronic
components need to be routed via traces/interconnects and vias on a substrate. Most reports of
fully integrated wearable sweat sensor arrays contain an electronic system based on commercial
FPCB technology (Fig. 30a).87 The FPCB-based system could bend around the wrist or forehead
to be worn as a wristband or a headband. Commercial FPCB technologies based on PI substrates
and copper traces enable low cost and rapid development. Typically, manufacturers can fabricate
FPCBs to be thinner than 100 μm and can stack up to 8 electrical layers. For improved flexibility
and conformability,  a biofuel-powered soft electronic skin for multiplexed sweat sensing was
developed  with  an  integrated  9  μm  thick  FPCB,  consisting  of  spin-coated  PI  and  E-beam
evaporated Cu traces (Fig. 30b).410 The battery-free ultrathin e-skin could conformally laminate
onto the arm and maintain tight contact with the skin via medical tape.

Figure 30. Approaches for designing a printed circuit board that can conform to skin. a–d,
Printed circuit boards (PCBs) can be classified based on degree of deformability as commercial
FPCBs  (a),  ultrathin  FPCBs  (b),  rigid  islands  stretchable  PCBs  (SPCBs)  (c),  and  chip-less
SPCBs (d). Scale bars in a,b, 1 cm; scale bar in d, 500 μm. a, Reproduced with permission from
ref 87. Copyright 2022 Springer Nature. b, Reproduced with permission from ref 410. Copyright
2020  The  American  Association  for  the  Advancement  of  Science.  c,  Reproduced  with



permission from ref  496 under CC BY 4.0. Copyright 2019 The American Association for the
Advancement of Science.  d,  Reproduced with permission from ref  260. Copyright 2022 The
American Association for the Advancement of Science.

However,  some parts  of the body can undergo large deformations,  requiring e-skins to both
conform and deform on the skin. Stretchable printed circuit boards (SPCBs) can be developed
via  rigid  island  structures,  consisting  of  rigid  electronic  components  and  stretchable
interconnects  on  elastomeric  substrates.  A  battery-free  and  stretchable  epidermal  electronic
system (EES) was developed to monitor vital-signs (ECG or photoplethysmography (PPG)) in
infants (Fig. 30c).496 Serpentine-patterned copper foils were embedded in a PDMS substrate to
serve as stretchable electrical interconnects as well as a stretchable magnetic loop antenna for
NFC-based wireless power delivery and data transmission. The ECG EES could be stretched
uniaxially  up  to  16%  without  plastic  deformation,  and  up  to  20%  without  significant
deterioration in antenna performance. A fully stretchable chip-less wireless e-skin was developed
by patterning  single-crystalline  gallium nitride  (GaN)  piezoelectric  films  as  surface  acoustic
wave (SAW) sensors and a near-field antenna on a perforated PDMS (20 μm) substrate (Fig.
30d).260 The GaN SAW sensor paired with an ISM could wirelessly monitor sweat Na+ levels as
changes in Na+ ion concentrations would lead to changes in the resonant frequency of the SAW
sensor, detected wirelessly by the antenna. The deformable GaN interconnects could withstand
repeated bending and stretching (10.3% strain) cycles, and the total absence of rigid electronic
components  greatly  improves  the  conformability  and  breathability  of  the  e-skin  device.  In
addition to patterning metallic thin films on stretchable substrates, stretchable interconnects can
also be fabricated using intrinsically stretchable conductors such as liquid metals, or by blending
conductive fillers with stretchable polymers.497

An  intrinsically  stretchable  transistor  array  was  fabricated  by  utilizing  crosslinked  styrene-
ethylene-butylene-styrene  (SEBS)  as  the  dielectric,  a  ‘conjugated  polymer/elastomer  phase
separation inducted elasticity’ (CONPHINE) film as the semiconductor, and carbon nanotubes as
the  electrodes.498 The  stretchable  polymer  transistor  array  achieved  a  device  density  of  347
transistors per square centimeter and could be configured as pseudo-CMOS circuits and logic
gates.  The transistor array was also applied on-skin to amplify arterial  pulse signals. Further
advances  in  stretchable  transistors  could  eventually  enable  the  development  of  stretchable
integrated  circuits  and  fully  stretchable  electronic  systems  capable  of  complex  power
management, sweat sensor instrumentation, signal processing, and wireless communication.

8. Applications of Wearable Sweat Sensors

The combination of materials innovations and various sensing modalities has enabled the rapid,
sensitive, and selective detection of a broad range of targets in sweat. Recent advances in the
development  of  superhydrophobic/superhydrophilic  surface  and epidermal  microfluidics  have



also  enabled  the  efficient  sampling  of  minute  amounts  of  sweat  on  the  skin.  The  judicious
combination  of  these  state-of-the-art  technologies  with  miniaturized  circuits  for  signal  pre-
processing  and  wireless  data  transmission  as  well  as  data  processing  techniques  for  pattern
recognition  and  prediction  will  revolutionize  the  current  wearable  sweat  sensing  landscape
toward more practical application scenarios. To date, wearable sweat sensors have demonstrated
immense potential  in seven major areas, namely, fitness monitoring, cystic fibrosis diagnosis,
dietary and nutrition monitoring, stress monitoring, therapeutic drug monitoring, substance abuse
monitoring, chronic disease monitoring and management.

8.1 Fitness Monitoring

Fitness  and  sports  biometric  tracking  represents  one  of  the  first  applications  of  wearable
monitoring systems. The continuous, real-time physiological data acquired by wearable sensors
non-intrusively are crucial to the design of accurate treatment plans and personalized training
programs  to  improve  performance  and  alleviate  injuries.499,500 Various  well-explored
physiological  biomarkers  include  heart  rate  (HR)  and  core  temperature  for  physiological
adaptation,  exercise  intensity,  and  physical  exertion501,502 and  muscle  oxygen  saturation  for
performance optimization503–505. The emergence of wearable sweat biosensors that are capable of
tracking  various  biochemical  analytes  beyond  physical  parameters  provides  an  exciting
alternative to human performance assessment. 

Hydration  status  is  a  key  application  of  on-field  biochemical  profile  monitoring.  While
insufficient  consumption  of  water  causes  dehydration,  overconsumption  may  lead  to
hyponatremia.506 Sweat sodium (Na+) and potassium (K+) are abundant electrolytes that are easily
accessible  for  hydration  status  monitoring507,508 and  muscle  activity  prediction509.  Sweat  Na+

concentrations are closely related to whole-body sweat rate and total Na+ loss from sweat. Using
a proper  model,  regional  sweat  Na+ concentration  (measured  from absorbent  patches  on  the
forearm) can be used to calculate whole-body sweat Na+ concentration, and subsequently total
whole body sweat Na+ loss can be estimated.510 In 2016, a flexible and fully integrated sensor
array (FISA) for monitoring sweat metabolites (glucose and lactate), electrolytes (Na+ and K+),
and  skin  temperature  was  developed  and  evaluated  with  various  physical  activities  such  as
cycling and running (Fig. 31a).12 Real-time, continuous sweat Na+ and K+ were monitored on a
group of subjects during prolonged outdoor running. Sweat Na+ and K+ were stable for subjects
with water intake after initial  changes at  the beginning of perspiration whereas a substantial
increase in Na+ and slight increase in sweat K+ were observed in subjects without water intake
after 80 min, demonstrating the importance of sweat Na+ for dehydration monitoring. 

Sweat chloride (Cl-)  concentration is  an alternative approach to measure an athlete’s sodium
imbalance and dehydration status.511 A few studies reported soft, flexible epidermal platforms for
the colorimetric detection of regional sweat chloride concentrations.235,239 In one systematic study



(n =312 athletes), the correlation between regional sweat rate and sweat Cl- during competitive
sports  was assessed using a  skin-interfaced  wearable  microfluidic  device  with a  smartphone
image processing platform.358 Sweat rate measured with a microfluidic patch versus whole-body
sweat rate (calculated from the difference in pre- to post-exercise body mass corrected for fluid
intake and losses) showed similar correlation regardless of body surface area normalization. The
study also showed a strong relation between whole-body sweat Cl- and Na+ (r2=0.98). Predicted
whole-body sweat Cl- concentrations based on regional Cl- concentrations using a simple linear
regression model showed good correlation with measured whole-body sweat Cl- concentrations
(r2=086) (Fig. 31b). Therefore, regional sweat Cl- concentration could be used as an important
metric for sweat Na+ loss and electrolyte replacement recommendation. To continuously quantify
sweat loss, the same group also reported an approach based on the combination of a thermal
actuator and precision thermistors-based flow sensor that transmits data wirelessly via Bluetooth
(Fig. 31c).255  Wireless readings of sweat rate (∆T) are comparable with manual readings of flow
rate (f) within a dye deposited serpentine microfluidic channel during cycling and at rest. The
wireless flow rate increases during cycling and reaches a constant value, then decreases to a
close-to-zero value at rest, demonstrating a good correlation between physical activity and sweat
rate.

 

Figure  31.  Wearable  sensors  for  fitness  and  human  performance  monitoring.  a,  FISA
enables multiplexed sweat analysis for dehydration identification during exercise.  Reproduced
with permission from ref 12. Copyright 2016 Springer Nature. b, Whole-body sweat rate versus
regional  sweat rate measured with microfluidic patches (left)  and whole-body sweat chloride
concentration versus regional sweat chloride measured with microfluidic patches.  Reproduced



with permission from ref 358. Copyright 2020 The American Association for the Advancement
of Science.  c, Thermistors-based flow sensor for wireless sweat rate monitoring validated with
visual quantitation of sweat flow.  Reproduced with permission from  ref  255. Copyright 2021
Springer Nature. d, Sweat lactate concentration was found to be inversely related to sweat rate.
Reproduced with permission from ref 512 under CC BY 4.0. Copyright 2010 Springer Nature. e,
Wearable  lactate  sensor  that  tracked  sweat  lactate  threshold  in  conjunction  with  ventilatory
threshold. Reproduced with permission from ref 513 under CC BY 4.0. Copyright 2021 Seki et
al.  f, Correlations in variation rates of lactate concentrations between sweat from thigh (open
circles), working muscle area or arm (closed circles), latent muscle area and blood. Reproduced
with permission from ref 514. Copyright 2020 Wiley.

Serum metabolites like lactate and ammonia that are produced during anaerobic activity reveal
important  information  on  body  exertion  and  exercise  intensity.515 Although  many  studies
investigated the relationship between sweat lactate and exercise intensities, their results seem
contradictory.516 Some  studies  report  proportional  or  inverse  relations  between  lactate
concentration and exercise intensity512,517, whereas some report that the relation is insignificant518.
Such  discrepancies  could  be  a  result  of  different  sweat  stimulation,  collection  and  analysis
methods.516 Results  from conventional  sweat  collection  methods  tend  to  be  confounded  by
evaporation and skin surface contamination issues.519 Sweat rate is also found to influence lactate
level as higher sweat rate results in a dilution of lactate in sweat. In one study, the relationships
between exercise intensity (exercise at 60, 70 and 80% of age-predicted maximum heart rate)
and  sweat  lactate  concentration  or  lactate  excretion  rate  (LER,  sweat  lactate  concentration
multiplied by sweat rate) during a 90-min treadmill walking session were investigated.512 It was
found that  sweat  lactate  concentration  decreased  at  higher  exercise  intensities  whereas  LER
increased. Sweat lactate concentration was found to be inversely related to sweat rate (r=-0.48)
while LER has a positive correlation with sweat rate (r=0.94) (Fig. 31d). The results imply that
higher exercise intensities do elicit an increase in sweat lactate production, but the dilution effect
caused by higher sweat rate at higher exercise intensities confounds results from the uncorrected
sweat lactate concentration readings. 

Interestingly,  all studies that normalize lactate concentration with sweat rate report a positive
lactate-exercise intensity  relationship.520 The sweat  lactate  threshold (LT1,  first  rise in  lactate
concentration  during  incremental  exercise)  and ventilatory  threshold  (VT1)513 (Fig.  31e)  was
investigated with a wearable lactate sensor. The sweat LT1 correlated well with the LT1 in blood
and  VT1,  with  a  sharp  continuous  increase  in  sweat  lactate  concentration  up  till  volitional
exhaustion and decrease during recovery. The anatomical locations at which sweat is collected
also influence the sweat lactate levels. It was found that sweat lactate concentration increases
concurrently with blood lactate in body regions near working muscles but not near latent muscles
(Fig. 31f).514 

In practice, the high levels of lactate in sweat during intense exercise may sometimes exceed the
upper  detection  limit  of  common electrochemical  enzymatic  lactate  sensors.  Crespo and co-



workers expand the detection range (1–50 mM) by restricting the lactate accessible to LOx with
a  plasticized  polymeric  layer  containing  ETH500.204  At  the same time,  the  polymeric  layer
significantly reduces influences by pH and temperature, alleviating sources of error during on-
body operation. 

Stress  monitoring  is  another  major  approach  in  managing  an  athlete’s  performance.521

Optimizing  training  intensity  and  recovery  duration  allows  athletes  to  maximize  their
performance.  Overtraining may disturb normative physiological  and immunological  functions
and also impair  psychological  processing.522,523 The development  and evaluation  of  wearable
sweat sensors for stress monitoring will be discussed in detail in Section 8.4. 

8.2 Cystic Fibrosis Diagnosis

In addition to sports physiology, sweat rate and sweat electrolyte levels are also routinely used
for cystic fibrosis diagnosis. Cystic fibrosis (CF) is a fatal genetic disease caused by functional
abnormalities  in  the  CFTR membrane  channel.524 Disturbance  in  electrolyte  transport  in  the
reabsorptive duct of the sweat gland leads to a high salt loss in sweat.525  Since the identification
of Cl- impermeability in the sweat duct of CF patients, quantitation of Cl- in iontophoresis sweat
has become a gold standard in the clinical diagnosis of CF, especially in newborn screening.526,527

The Wesco Macroduct Sweat Test System is a popular commercial system in use at many CF
testing  centers  (Fig.  32a).528 Compared  with  the  original  laborious  quantitative  pilocarpine
iontophoresis  test  (QPIT),  Macroduct  eliminates  the  need  for  weighing  and  reduces  sweat
evaporation. It also shows no clinically significant difference in the Cl- concentration obtained
compared with the QPIT method while demonstrating good discrimination of CF from non-CF
groups based on sweat Cl- concentrations (Fig. 32b).528 However, collecting sufficient volumes
(>15 µL within 30 min) of sweat can be challenging in practice due to poor mechanical sealing
of the collector and cumbersome protocols.529–531 Advances in flexible electronics enable new
wearable technologies that can circumvent the insufficient sweat volume problem by improving
the form factor to provide conformal skin contact and allowing in situ sweat Cl - analysis with
minimal sweat volume. 



  

Figure 32. Wearable sensors for cystic fibrosis diagnostics. a, A commercial sweat test device
for cystic fibrosis diagnosis.  b,  Correlation between chloride concentration obtained in sweat
from CF (closed circles) and non-CF (open circles) subjects using Macroduct® and from the
QPIT  method.  Reproduced  with  permission  from  ref  528.  Copyright  1994  Elsevier.  c,
Correlation between sweat chloride levels in CF (red circles) and non-CF (blue circles) subjects
measured with a wearable sensor and with laboratory measurement. Reproduced with permission
from ref  532. Copyright 2018 Elsevier.  d, A soft epidermal microfluidic device for the in situ
colorimetric quantitation of chloride in sweat. Scale bars, 5 mm. Reproduced with permission
from ref 533. Copyright 2021 The American Association for the Advancement of Science. e, An
integrated  single battery-powered wearable  device  for  localized  sweat  stimulation  and sweat
chloride analysis in situ. Reproduced with permission from ref 326. Copyright 2017 Proceedings
of the National Academy of Sciences.

A wearable  sensor  with an  integrated  salt  bridge  for  real-time  sweat  Cl - measurements  was
evaluated against laboratory testing.532 The study observed stable sweat Cl- readings (standard
deviation < 1 mEq/L for 5 mins) within 15 min after sweat induction with the Macroduct. The
sweat volumes at detection time (13.1 ± 11.4 μL) were often lower than the minimum sweat
volume required for laboratory testing, and the sensor demonstrated remarkable agreement (r =
0.97) with laboratory measurements (Fig. 32c). To resolve issues plaguing sweat collection in
infants with fragile skin, the form factor and sweat collection efficiency was improved with a
soft, epidermal microfluidic device capable of in situ colorimetric quantitation of chloride (Fig.



32d).533 The device significantly reduces sweat leakage and demonstrates comparable accuracy to
existing  technologies  when  validated  with  CF  and  non-CF  subjects  across  age  groups.
Macroduct’s cumbersome sweat stimulation and collection protocol can also be replaced with an
integrated  single  battery-powered wearable  device  providing localized  sweat  stimulation  and
sweat Cl- analysis in situ.326 The device consists of an electrode array with sweat induction and
sensing electrodes as well as a flexible printed circuit board enabling wireless data transmission
(Fig. 32e). The induction electrodes are coated with a thin layer of cholinergic agonist hydrogel
for sweat stimulation. The microcontroller on the FPCB switches on/off respective circuits and
electrical paths to switch between induction and sensing modes. The potentiometric Na+ and Cl-

stabilizes 20 min after iontophoresis for accurate electrolyte assessment. Average Na+ and Cl-

levels in healthy subjects measured by this platform were observed to be lower than those in CF
subject group in agreement with literature values.  

8.3 Dietary and Nutrition Monitoring

Nutrition intake and monitoring are essential for the management of several health conditions
including  metabolic  syndrome,  diabetes,  and  cardiovascular  diseases.534–536 Although  the
management of chronic disease involves multidimensional  factors, nutritional monitoring and
dietary intervention remains a crucial approach since diet is a readily addressable risk factor in
many chronic conditions.537 The digitization of diaries and food frequency questionnaires into
online surveys and apps has simplified the process for daily food intake monitoring. However,
these methods suffer from biases in portion estimation and misreporting.538,539 Wearable sweat
sensors’ capability to monitor nutritional information non-intrusively and continuously offers the
possibility  for  nutrient  intake  monitoring  and  guidance,  and  consequently  chronic  condition
management. 

The application of wearable sweat sensors for nutrient sensing has been demonstrated in several
types of nutrients including metabolites, vitamins, minerals, and amino acids. Among all, sweat
glucose  is  one  of  the  most  well  explored  nutrients  owing  to  its  significance  in  diabetes
management.  The  awareness  and  implementation  of  blood  glucose  monitoring  has  led  to
significant  progress  in  diabetes  management.  Current  glucose  monitoring  is  implemented  by
testing blood glucose levels from finger-pricked blood at fixed intervals using a portable glucose
meter. The measurement of sweat glucose allows non-invasive detection and tracking of serum
glucose continuously. The in vitro confirmation of the correlation between sweat glucose and
blood  glucose,  and  the  need  for  a  continuous,  non-invasive  glucose  sampling  approach  has
spurred recent growth in research on wearable sweat glucose sensors.540 Earlier demonstrations
of wearable devices  for sweat glucose monitoring focused on the mapping of sweat glucose
variation  in  correlation  to  serum  glucose  levels.12,349 A  wearable  diabetes  monitoring  and
feedback therapy patch consisting of a multimodal sensor patch for sweat glucose detection and a



polymeric microneedle array for thermally-activated drug delivery was developed.198 The patch
demonstrated that fluctuations of glucose levels in exercise-induced sweat monitored over a day
matched well with blood glucose levels measured with both a commercial glucose assay kit and
a glucose meter (Fig. 33a). A roll-to-roll fabricated microfluidic patch with a regional sweat rate
sensor and sweat glucose sensor was used to monitor sweat glucose and sweat rate continuously
in iontophoretic sweat for 30 min. It was found that an individual’s sweat glucose changes did
not consistently reflect the actual blood glucose changes especially for fasting glucose levels.541

Although the large variation in glucose levels could be potentially attributed to the dilution effect
of different sweat rates50, the glucose secretion rate demonstrated a poorer correlation (r=0.2)
(Fig. 33b). Another study looked at the rates of glucose concentration increase in capillary blood
and  in  iontophoretic  sweat  after  glucose  intake  for  90  min  and reported  a  good correlation
between the variation rates (r=0.75) (Fig. 33c).542 Although the confounding sweat/blood glucose
correlations reported in literature could be potentially  attributed to skin contamination,  sweat
evaporation,  variation  in  collection  methods,  and  sweat  dilution  effects,  it  seems  there  is
currently no simple correlation  or model  to describe the sweat/blood glucose relation across
healthy and diabetic subgroups. 

In addition to glucose, amino acids (AAs) are closely related to dietary intakes and lifestyles.
Elevated BCAAs, namely leucine, isoleucine, and valine, are closely related with obesity, insulin
resistance  and  important  risk  factors  for  type  2  diabetes  mellitus  (T2DM),  cardiovascular
diseases,  and pancreatic  cancer.543–545 A wearable  MIP-based  biosensor  was  reported  for  the
metabolic  profiling of various AA and nutrients.87 The good correlations between serum and
sweat leucine (r=0.66) and BCAAs (r=0.69) across 3 subgroups (normal weight, n=10; obesity,
n=7;  and obesity  with T2DM, n=3) obtained with the sensor  indicate  the potential  of sweat
BCAA for metabolic syndrome monitoring. Sweat Leucine/BCAAs increased in the 30–60 min
after  BCAA supplement  or  dietary intake  and then decreased.  Interestingly,  healthy  subjects
showed higher increase in leucine after intake than subjects with obesity/T2DM, reflecting the
difference in BCAA metabolism between these subgroups (Fig. 33d). 

The presence  and wearable  detection  of  various  vitamins  have been demonstrated  by a  few
groups546. A wearable sensor explored the vitamin C profile in iontophoretic sweat and urine after
vitamin C consumption.  Correlations  between sweat/urine  vitamin C with blood levels  were
investigated  for  two  consecutive  days  (Fig.  34a).83 In  another  study,  an  epidermal  tattoo
biosensor was used to monitor the temporal increase and decrease of iontophoretic sweat vitamin
C after intake of vitamin C pills and fruit juices. In both studies, sweat vitamin C levels increased
with vitamin C dosage and correlated well with blood vitamin C levels. Therefore, sweat vitamin
C may allow routine on-site assessment of nutritional health.191 The temporal profile of vitamin C
in natural thermoregulatory sweat after vitamin C intake was monitored over 10 hours using a
glove-based sensor for natural sweat accumulation and in situ analysis.321 The peaking trend of
sweat  vitamin  C  over  a  5-day intake  study reflected  the  typical  absorption  and metabolism



timeline  of xenobiotics  in  the human body (Fig.  34b).  To expand the potential  of  wearable
electronics beyond nutrient monitoring, a miniaturized system that integrated the colorimetric
assessment of vitamin C, calcium, zinc, and iron, and a transdermal nutrient delivery patch was
developed.547 Human  trials  with  the  nutrient  sensors  demonstrated  a  temporal  correlation
between the sweat and blood concentrations. Comparisons of sweat nutrients after transdermal
and  oral  nutrient  delivery  demonstrated  the  system’s  capabilities  in  nutritional  balance
monitoring and management (Fig. 34c). In another study, the monitoring of sweat uric acid and
tyrosine  was  investigated  for  metabolic  and  nutritional  management  with  a  laser-engraved
wearable patch.75 A controlled purine-diet study in subjects  including participants  with gout,
hyperuricemia,  or  healthy  uric  acid  levels  demonstrated  elevated  sweat  and serum uric  acid
levels  in  patients,  suggesting  the  potential  use  of  sweat  uric  acid  as  a  biomarker  for  gout
management (Fig. 34d).

Figure 33. Wearable sensors for metabolic syndrome diagnostics. a,  A wearable diabetes
monitoring  and  feedback  therapy  patch  consisting  of  a  multimodal  sensor  patch  for  sweat
glucose  detection  and a  polymeric  microneedles  array  for  thermally-activated  drug delivery.
Reproduced with permission from  ref  198. Copyright 2016 Springer Nature.  b,  A roll-to-roll
fabricated  microfluidic  patch  with  a  regional  sweat  rate  sensor  and  sweat  glucose  sensor
demonstrate inconsistent correlation between sweat glucose or glucose secretion rate and blood
glucose in healthy and diabetic subjects. Reproduced with permission from ref  541. Copyright
2019  The  American  Association  for  the  Advancement  of  Science.  c,  The  rates  of  glucose
concentration increase in capillary blood and in iontophoretic sweat after glucose intake for 90
minutes  demonstrate  good  correlation  (r=0.75).  Reproduced  with  permission  from  ref  542.



Copyright  2019  American  Chemical  Society.  d,  A  wearable  MIP-based  biosensor  for  the
metabolic profiling of various amino acids and nutrients. Sweat Leucine/BCAAs demonstrate
good correlation with blood with elevations observed in obese and diabetic subjects. Scale bars,
1 cm  (top)  and  5 cm  (bottom).  Reproduced  with  permission  from  ref  87.  Copyright  2022
Springer Nature.

Figure 34. Wearable sensors for nutrition tracking. a, Vitamin C profiles in iontophoretic
sweat and urine after vitamin C consumption for two consecutive days obtained with a wearable
sensor. Reproduced with permission from ref 83. Copyright 2020 Wiley. b, Temporal profile of
vitamin C and alcohol in natural thermoregulatory sweat after intake using a glove-based sensor
for natural sweat accumulation and in situ analysis. Reproduced with permission from ref 321.
Copyright 2020 The American Association for the Advancement of Science.  c, A miniaturized
for the colorimetric assessment of vitamin C, calcium, zinc, and iron, and transdermal nutrients
delivery. Reproduced with permission from ref 547 under CC BY 4.0. Copyright 2021 Kim et al.
d, A controlled purine-diet study of uric acid levels in subjects with gout, hyperuricemia, and
healthy subjects using a wearable laser-engraved platform. Scale bar, 1 cm. Reproduced with
permission from ref 75. Copyright 2019 Springer Nature.

8.4 Stress and Mental Health Monitoring

Stress is a 21st century epidemic affecting more than one-third of the global population, with a
25% increase in anxiety and depression prevalence during the COVID-19 pandemic.548,549 At a



personal level,  persistent mental  health issues increase the risk of cardiovascular disease and
other diseases550,551; macroscopically speaking, mental health problems affect social stability and
impose heavy medical and socioeconomic burdens on the society552,553. Real-time assessment and
continuous monitoring of stress tackles the problem with a preventive approach by allowing
early diagnosis and timely treatment initiation. Fitness trackers and smart watches with PPG or
ECG features promise to transform healthcare  towards consumer-centric  models.554,555 These
consumer health devices monitor stress in real time by recording physiological parameters like
heart rate and heart rate variability. However, they cannot quantify stress levels accurately due to
the  lack  of  specificity  and  sensitivity.556 The  development  of  wearable  sensors  that  retrieve
biochemical  information in sweat non-invasively has enabled more accurate quantification of
stress continuously in real-time.

Figure 35. Wearable sensors for stress monitoring.  a, A fully integrated, flexible, and wireless
mHealth device, for stress response monitoring in sweat cortisol. Reproduced with permission
from  ref  93.  Copyright  2020  Elsevier.  b,  A  wearable  aptamer-field-effect  transistor-based
smartwatch  with  signal  correction  algorithm  for  sweat  cortisol  detection.  Reproduced  with
permission from  ref  91.  Copyright 2022 The American Association  for the Advancement of
Science.



Current wearable biosensors for stress quantitation primarily focus on the detection of cortisol in
sweat. Cortisol is a glucocorticoid regulated by the hypothalamic-pituitary-adrenal (HPA) axis
(Fig. 35a).93,557 Blood cortisol fluctuates in a diurnal manner with a peak concentration in the
morning shortly after awakening and gradually decreases.558 This circadian pattern is altered in
patients with mental disorders such as major depressive disorder.559 At the same time, cortisol is
also secreted in response to both physical and psychological stress stimuli. A fully integrated,
flexible,  and wireless  mHealth  device,  based  on  laser-engraved  graphene  and a  competitive
immunosensing strategy was developed to investigate the correlation between sweat and serum
cortisol and sweat cortisol’s stress response profile.93 Iontophoretically induced sweat cortisol
was found to correlate well with serum cortisol (r=0.87). An exploratory study that looked at
sweat cortisol’s circadian variation presented a reproducible pattern for up to six days (Fig. 35a).
The authors also investigated the dynamic response of sweat cortisol to stress stimuli.  Sweat
cortisol was observed to increase progressively and peak after 40 min of continuous biking, a
form of physical stress. In the case of cold pressor test (CPT), an acute stressor, sweat cortisol
increased after CPT and peaked between 8 to 16 min after CPT, following the trend of serum
cortisol.  Wearable  sweat  cortisol  sensing devices  have been evaluated  by various  groups by
monitoring circadian  patterns, performing constant workload biking, and CPT.284,311,312 

A wearable aptamer-field-effect transistor-based smartwatch was developed to investigate sweat
cortisol’s response to both physical and psychological stress.91 The FET substrate was embedded
in a sweat sampling, routing, and analysis microfluidic module made from medical tapes. The
performance of the FET sensors was validated by tracking salivary cortisol changes in a Trier
Social Stress Test (TSST) and diurnal variations in both sweat and saliva samples (Fig. 35b). 

Although many devices have been developed for cortisol detection, majority of the sensors were
validated in vitro. For studies that ventured further into human studies, the number of subjects
involved in stress response studies are typically limited. Furthermore, the potential lag of sweat
cortisol  to  actual  acute  stressors  is  barely  explored.  By far,  the  clinical  relevance  of  sweat
cortisol  has  only  been  inferred  from serum trends.  More  direct  evidence  from longitudinal
studies  on  patients  with  mental  disorders  is  needed  before  sweat  cortisol’s  practical
implementation for preventative stress monitoring and management.

8.5 Therapeutic Drug Monitoring

Therapeutic drug monitoring (TDM) is a practice that measures the concentration of a drug or a
related biomarker in biofluids to adjust dosing and maintain drugs in the bloodstream within a
certain therapeutic window based on personalized treatment plans.560  The emergence of clinical
pharmacokinetics (PD) and pharmacodynamics (PD) has enabled the construction of therapeutic
ranges for dosing determination  to reduce drug toxicity  while  optimizing drug efficacy (Fig.
36a). While the pharmacological effectiveness of certain drugs is predictable or can be easily



determined  by  other  more  accessible  approaches  such  as  antihypertensive  drugs  and  blood
pressure,  some  drugs  may  have  steep  dose  response  curves  (e.g.  theophylline561),  narrow
therapeutic  windows  (e.g.  lithium562),  and/or  unpredictable  dose-blood  concentration
relationships (e.g. phenytoin563) such that close monitoring and dynamic dosing could improve
pharmacological effectiveness. Traditional methods employed for measuring drug concentrations
in blood include chromatographic approaches (HPLC564, LC-MS/MS565) and immunonassays566.
Although there has been increasing efforts towards improving the throughput of these methods
and  cost  reduction192,  these  approaches  still  require  invasive  blood  sampling  and  testing  at
centralized laboratories. Recent development of wearable sweat biosensors that monitor drugs
metabolized in sweat has created a wealth of opportunities for on-site continuous TDM at low
cost. 

Figure 36. Wearable sensors for therapeutic drug monitoring. a, Therapeutic window based
on pharmacokinetics  and pharmacodynamics  of  drug concentrations  in  blood and alternative
biofluids like sweat. Reproduced with permission from ref 567. Copyright 2020 Proceedings of
the National Academy of Sciences. b, Catabolic products of caffeine found in fingertip sweat and
metabolic  networks  facilitated  discovery  of  dynamic  metabolic  patterns.  Reproduced  with
permission from ref 568 under CC BY 4.0. Copyright 2021 Brunmair et al. c, A wearable sensor
for the detection of electroactive methylxanthine drug, caffeine.  Reproduced with permission
from ref 206. Copyright 2018 Wiley. d, Chronological profile of levodopa in natural sweat after
intake using a wearable microfluidic fingertip patch. Reproduced with permission from ref 320.
Copyright  2021  Wiley.  e,  Absorption  and  elimination  kinetics  of  acetaminophen  in  sweat
obtained with a wearable smart watch. Reproduced with permission from  ref  567. Copyright
2020 Proceedings of the National Academy of Sciences.



Although sweat is an unconventional source for drug metabolic monitoring as compared with
blood or urine, it resolves the compliance issues surrounding traditional blood or urine sampling
and  enables  facile  time-course  studies.  A  recent  metabolic  profiling  of  fingertip  sweat
demonstrated that sweat is a non-invasive, and reliable sample that can be easily collected by
untrained personnel at short intervals for metabolic phenotyping.568 The study identified various
catabolic products of caffeine from fingertip sweat samples using LC-MS (Fig. 36b). Moreover,
dynamic metabolic network modelling was used to offset effects of sweat volume on the time-
course study of caffeine catabolism. The model enabled the estimation of sweat rate and the
visualization  of  the  dynamic  metabolic  patterns  of  three  major  caffeine  metabolic  products,
namely paraxanthine, theobromine, and theophylline of each subject.

Earlier  examples  of drug metabolic  profiles in sweat identified with wearable biosensors are
focused on electroactive drugs. In one study, a wearable platform with an electrochemical DPV
sensing  module  was  developed  for  the  detection  of  an  electroactive  methylxanthine  drug,
caffeine (Fig. 36c).206 Variation of caffeine levels under different dosages and timepoints after
intake was investigated. The work showed both the increase of sweat caffeine (peak at 60 min
after intake) due to its absorption into the human circulatory system and the decline attributed to
catabolism. The same group reported a wearable electrochemical enzymatic sweat band based on
tyrosinase for levodopa (L-Dopa) detection toward Parkinson disease management.192 Adverse
effects  of  long-term  L-Dopa  intake  involve  motor  fluctuations,  dyskinesia  and  dystonia.569

Monitoring the  pharmacokinetic  profiles  of  L-Dopa allows dosage optimization  according to
disease progression and reduction  of  side effects.  Real-time metabolic  profiles of L-Dopa in
sweat samples from both iontophoretic induction and physical exercise were investigated after
Fava  bean  intake.  In  another  study,  personalized  pharmacokinetic  tracking  of  drug
concentrations after intake of L-Dopa oral pill was conducted using a touch-based detection of L-
Dopa in fingertip  sweat  and capillary  blood samples  (Fig.  36d).320 L-Dopa concentrations  in
fingertip sweat were recorded in 10-minute intervals and found to be closely related to blood
profiles with ≈10 min of lag time, demonstrating the potential application of sweat TDM toward
personalized pharmacotherapies. Another study observed a similar chronological profile of L-
Dopa in natural  sweat  after  100 and 200 g broad bean intake using a wearable microfluidic
fingertip  patch  with  an  enzymatic  amperometric  L-Dopa sensor  (Fig.  36d).253 The levodopa
concentration in sweat was also found to increase with increasing dosage. 

Although voltammetry-based techniques enable the label-free detection of electroactive drugs in
biofluids, the redox signatures of an electroactive target can be confounded by biofouling and
distorted  by endogenous  interfering  electroactive  species  in  a  complex biofluid.  To mitigate
biofouling  and  create  an  “undistorted  potential  window”  within  acetaminophen’s  dominant
voltammetric response range, the surface of a boron-doped diamond working electrode (BDDE)
was  engineered  to  be  hydrogen-terminated  to  decouple  the  influence  from  tryptophan  and
tyrosine,  and  concurrently  coated  with  a  negatively  charged  Nafion  membrane  to  eliminate



signals from negatively charged uric acid via charge repulsion.567 The BDDE working electrode
was integrated  within  a  custom-developed  smartwatch  and a  data  processing  framework for
redox peak extraction that rendered drug readouts with minute-level temporal resolution (Fig.
36e).  Acetaminophen’s  pharmacokinetic  profiles  in  both  sweat  and  saliva  captured  by  the
smartwatch showed similar concentrations and absorption/elimination kinetics, motivating larger
scale clinical studies towards sweat as a TDM matrix. Employing a similar engineering concept,
the  same  group  demonstrated  the  detection  of  three  electroactive  drugs,  dipyridamole,
acetaminophen, and caffeine in artificial sweat on anodic-treated BDDE.570 

8.6 Substance Abuse Monitoring

Although the discovery of sweat as a matrix for drug screening can be traced back to as early as
1911, its utility for forensic toxicology was not exploited until  the 1990s due to difficulty in
sweat collection and other analytical problems.571 Since then, the commercialization of several
sweat collection products like PharmChek has enabled the successful sweat testing of various
substances of abuse including opiates, cocaine, lysergic acid diethylamide (LSD), and ethanol for
criminal  justice,  employment,  and  outpatient  clinical  settings.572–575 However,  accurate  drug
screening from the collected sweat samples requires tedious extraction protocols and sensitive
chromatographic methods with mass spectrometry or immunoassays.576–578 These conventional
analytical methods typically have long turnaround times and are expensive. The interpersonal
variation in sweat rate and long duration required for sufficient sweat collection precludes the
wide  adoption  of  sweat  testing  due  to  operational  difficulties,  irritation,  and  low  subject
acceptability.340,579  The emergence of wearable flexible electronics with better form factors and
POC  sensing  techniques  that  enable  rapid  target  detection  may  address  the  technological
bottleneck  faced  by  conventional  sweat  testing  and  expand  the  application  of  sweat-based
substance  abuse  detection  to  more  scenarios  like  workplace  drug  testing  and  monitoring
compliance which require on-site and/or continuous detection. 

Sweat  alcohol  (ethanol)  is  one of the most  well  explored substances  of abuse with a strong
correlation to blood alcohol concentration (BAC).580 Several commercial ankle-worn devices that
monitor  transdermal  alcohol  content  by  sampling  natural  sweat  were  developed  for  the
identification of alcohol intoxication and monitoring court-ordered sobriety.581 These devices are
also  used  in  clinical  studies  to  track  consumption  and  guide  interventions  for  relapse
prevention.582 The Secure Continuous Remote Alcohol Monitor (SCRAM) is a widely adopted
wearable device in justice systems and clinical trials (Fig. 37a). It measures the sweat alcohol
content  using  a  platinum-based  electrochemical  fuel-cell  through  catalytic  alcohol  oxidation
every 30 min. Data collected is uploaded via wired or wireless connection onto a secure web-
based server for remote monitoring purposes. The SCRAM reports a correlation of 0.85 and 0.84
between transdermal alcohol concentration (TAC) and breath alcohol concentration (BrAC) for



both  peak  and  area  under  the  curve  (AUC)  measurements.583 Comparison  between
pharmacokinetics of TAC and BrAC showed that TAC peaks were lower and occurred 2–3 hours
after BrAC (Fig. 37b). In another study, the SCRAM was used to track TAC in a 21-day study
on  the  contingency  management  of  alcohol  disorder  in  2010  (Fig.  37c).584 The  study
demonstrated the feasibility of TAC monitoring for clinical purposes. Still,  about 8% of self-
reported alcohol use was not detected by SCRAM because the TAC was lower than 0.02 g/dL. 

However, current wearable devices for TAC monitoring are rigid and bulky with low sensitivity.
Their operation also depends heavily on the accumulation of natural sweat on the skin which
potentially  contributed  to  the  lag  in  TAC as  compared with  BAC.  A study that  combined
iontophoresis and in situ amperometric alcohol detection in chemically induced sweat revealed
that  peak  TAC occurred  at  a  similar  time  as  BAC.585  A flexible  tattoo  device  with  sweat
induction electrodes and an alcohol sensor for in situ epidermal sweat stimulation and sensing
measured different levels of alcohol in sweat with no time lag (Fig. 37d).190 Another wearable
sweat sensing device that combined an iontophoresis module with commercial screen-printed
carbon electrodes  for  alcohol  detection  stimulated  and measured  sweat  ethanol  continuously
during a >3 hour study with baseline (no ethanol consumption) and ethanol consumption and
metabolism (Fig. 37e).53 Sweat ethanol was observed as fast as 2.3 min after blood ethanol was
raised and the overall pharmacokinetic curve lag time was found to be between 19.32 to 34.44
min. 

Sweat alcohol content can also be indirectly monitored via the detection of ethanol metabolite,
EtG, using non-faradaic EIS.275 A wearable system reported the continuous measurement of EtG
for 9 hours. These recent works on continuous sweat induction and analysis validated that sweat
could provide prompt blood-correlated data for alcohol consumption monitoring. 



Figure 37. Wearable sensors for substance monitoring. a, Photo of a commercial continuous
remote alcohol monitor. Reproduced with permission from ref 586. Copyright 2020 Elsevier. b,
Pharmacokinetics of TAC and BrAC after intake.  Reproduced with permission from ref 583.
Copyright 2006 Wiley. c, Tracking of TAC for the contingency management of alcohol disorder.
Reproduced with permission from ref 584. Copyright 2011 Elsevier. d, A flexible tattoo device
with sweat  induction  electrodes  for  in  situ  epidermal  sweat  stimulation  and alcohol  sensing.
Reproduced with permission from ref 190. Copyright 2016 American Chemical Society.  e, A
wearable sweat sensing device that combined an iontophoresis module with commercial screen-
printed carbon electrodes for alcohol detection and comparison with blood alcohol metabolism.
Reproduced with permission from ref 53. Copyright 2018 Royal Society of Chemistry.

Nicotine  is  another  common substance  of  abuse.  Tobacco  consumption  affects  not  only  the
smokers but also others exposed to secondhand smoke.587,588  Monitoring sweat nicotine non-
invasively  allows  proper  evaluation  of  the  exposure  and  scope  of  health  risks  among
nonsmokers.  A  wearable  enzymatic  amperometric  sweat  nicotine  sensor  was  developed  to
monitor sweat nicotine levels during exercise.193 The sweat band was capable of distinguishing
smokers from non-smokers (Fig. 38a). 



Figure 38. Wearable sensors for drug abuse detection.  a,  A wearable nicotine  sensor for
sweat nicotine  levels  monitoring during exercise.  Reproduced with permission from ref  193.
Copyright  2020 American  Chemical  Society.  b,  Detection  of  methadone,  methamphetamine,
amphetamine,  and  tetrahydrocannabinol  spiked  in  artificial  sweat  with  a  rapid  quantitative
competitive  immunoassay-based  capillary  array.  Reproduced  with  permission  from ref  291.
Copyright  2020 Royal  Society  of  Chemistry.  c,  Latent  fingerprints  containing  narcotic  drug
metabolites fluorescently labeled with antibodies. Scale bars, 2 mm. Reproduced with permission
from refs 590,591. Copyright 2007 Wiley. Copyright 2010 American Chemical Society.  d, A
wearable electrochemical for the detection of psychoactive drugs in artificial sweat. Reproduced
with permission from ref 302. Copyright 2022 American Chemical Society.

Although non-electroactive substances of abuse are harder to detect with miniaturized systems
and integrated with epidermal devices, several POC detection mechanisms have been proposed
for  the  survey  of  illicit  drugs  in  sweat.   Four  common  drugs  of  abuse,  methadone,
methamphetamine,  amphetamine,  and  tetrahydrocannabinol  spiked  in  artificial  sweat  were
detected with a rapid quantitative competitive immunoassay-based capillary arrays (Fig. 38b).291

The capillary array enabled rapid detection (~16 min) of four drugs at low concentration with
low sweat volume (∼4 μL per analyte). In another study, methamphetamine in artificial sweat
was  detected  using  a  wearable  SERS  sensor.589 The  feasibility  of  the  SERS  sensor  was



demonstrated by performing detection of sweat containing 2-fluoro-methamphetamine (2-FMA)
on the human cadaver skin. Drug metabolites excreted in fingerprint sweat can also be labeled
with fluorescent  markers  for  direct  imaging and on-site  detection.590 For example,  antibody–
nanoparticle  conjugates  were  used  to  label  latent  fingerprints  containing  narcotic  drug
metabolites  (morphine  (metabolite  of  heroin),  benzoylecgonine  (metabolite  of  cocaine)  or
cotinine (metabolite of nicotine)), followed by fluorescent labeling with a fluorescently tagged
secondary antibody (Fig. 38c).591 This method allows the direct visualization of fingerprints for
biometric  identification  in  conjunction  with multiplexed narcotic  drug screening.  A wearable
electrochemical aptasensor array constructed on flexible gold electrodes was developed for the
detection  of  psychoactive  drugs  such  as  methylenedioxymethamphetamine  and  cathinone  in
artificial sweat.302 The wearable aptasensor array identified sixteen analytes with 100% accuracy
after employing statistical methods for data analysis (Fig. 38d). These portable and wearable
formats  proposed and tested  in  vitro may inspire  future  development  and  in  vivo testing  of
autonomous, cost-effective wearable devices for illicit drug screening. 

8.7 Chronic Diseases Management

Chronic diseases as the leading cause of death and disability account for more than two thirds of
all deaths in the United States.592 The increasing prevalence of chronic diseases worldwide fueled
by a rapidly growing aging population has created a huge demand for health care independence
and  affordability.593,594 Wearable  sweat  sensors  enable  prolonged,  (semi)continuous,  and
nonobtrusive monitoring of physiological information and could potentially play a huge role in
chronic disease management and supporting clinical outcome predictions. 

However, the application of wearable sweat sensors for chronic disease management is rarely
explored. Existing research on chronic disease management, if any, are predominantly centered
around a few types of chronic conditions such as diabetes and metabolic syndromes, which have
been  discussed  in  previous  sections.  A  major  reason  for  the  setback  in  chronic  disease
monitoring  is  the  low abundance  of  disease-relevant  biomarkers.  Unlike  the  biomarkers  for
diabetes and metabolic syndrome (glucose and uric acid), the levels of inflammatory or cardiac
biomarkers like cytokines and CRP are below the nanomolar range in blood and expected to be
even lower in sweat. Information on the quantitative analysis of cytokines and proteins in sweat
is  also  very  limited  as  compared  to  their  small  molecule  counterparts.98,99 The  lack  of  a
standardized and efficient sweat collection method also confounds results obtained from different
studies.  Recently,  a  soft,  skin-interfaced  microfluidic  patch  was used to  rapidly  capture  and
efficiently  extract  sweat  from passive  heating  for  cytokine  analysis.56 Results  obtained  from
sweat  collected  from  10  subjects  revealed  that  these  cytokine  concentrations  are  relatively
independent  of  sweat  rate.  Therefore,  measurements  of  sweat  cytokine  concentrations  could
potentially  be  directly  correlated  to  plasma  cytokine  levels.  This  suggests  that  non-invasive



monitoring of sweat cytokines may reveal information on inflammatory responses. A few recent
examples  of  wearable  non-faradaic  impedance  sensors  demonstrated  the  feasibility  to  detect
several  inflammatory  markers,  hormones,  and  neurotransmitters  including  IL-6,  IL-8,  IL-10,
TNF-α, IFN-γ, CRP in natural sweat.278–283,595–599 However, whether these markers do fluctuate
with disease conditions will need to be tested across different disease subgroups with a larger
sample size.

In summary, current advances in materials innovation, sensing modalities, sweat harvesting, and
system powering and integration have enabled the continuous, non-invasive tracing of various
sweat  biomarkers  for  a  broad  range  of  applications.  From  sports  physiology  to  human
performance monitoring,  and from dietary intake and nutrition monitoring to chronic disease
management, the potential of wearable sweat sensors to revolutionize future consumer health and
future clinical practices is more than apparent. Significant efforts have been devoted to the design
and preliminary testing of prototypes for fitness tracking and nutrition monitoring.  Compared
with past literature reports in the pre-wearable technology era which seem contradictory, results
from studies  conducted with current  wearable sensing technologies  with better  form factors,
more efficient sweat sampling approaches, and in situ analysis capabilities have also started to
converge, especially in the case of lactate and glucose. Still, the majority of the wearable sweat
sensor reports  included very limited human studies and on-body data since the studies  were
mostly oriented  toward device  evaluation.  In  addition  to  addressing technological  challenges
such as device functionalities, and manufacturing approaches, large-scale clinical case studies on
not just the device validity alone but also the relevance, effectiveness, and timeliness of sweat
biomarkers in reflecting physiological information will be the critical step towards the eventual
practical adoption of wearable sweat sensors in various use case scenarios.  

9. Data Processing for Wearable Sweat Sensors

Data processing is  a  critical  aspect  of  wearable  sweat  sensors that  enables  the extraction  of
valuable health information from a wave of raw and unstructured sensor readouts. On the low
level, data processing algorithms such as data smoothing, curve fitting, or peak detection enable
the accurate calibration of biomarker concentrations from raw sensor data. On the higher level,
these  biomarker  concentrations  can  be  processed  through  learning  algorithms  to  establish
personalized baseline and cautionary biomarker levels, enabling personalized and preventative
healthcare.



9.1 Multimodal Sensors

9.1.1 Multiplexed Data Acquisition

Given  the  success  in  the  biosensor  field,  the  natural  next  step  is  to  integrate  sensors  onto
wearable devices. By measuring multiple electrochemical or physical sensor readouts, one can
potentially obtain an array of information ranging from skin temperature, heart rate and blood
pressure  to  more  complex biochemical  measurements  used in  the  diagnosis  of  diseases  like
cancer or COVID.75,87,329,600,601 To achieve this diagnostic power, wearable sweat sensors must be
integrated with multiple sensing modalities. Simultaneous monitoring of ECG signals and sweat
lactate concentrations have been reported for example (Fig. 39a).138 ECG is well known for its
applications  in  cardiovascular  health  while  lactate  can  be  used  as  an  index  of  physical
exhaustion.  Coupling  these  two  pieces  of  information  into  a  single  device  gives  health
professionals both insight into tissue oxygenation from lactate and exertion from measured heart
rates. Similarly, a laser-scribed sensor patch has been reported with the capability of measuring
caffeine, uric acid, and glucose in sweat while accurately measuring heart rate and heart rate
variation (Fig. 39b).602

More  recently,  work  has  been  done  to  push  multimodal  devices  to  not  only  detect  sweat
biomarkers (alcohol) but also interstitial fluid biomarkers (glucose) in hopes of painting a more
complete picture of a user’s health (Fig. 39c).331 In addition to multiplex biomarker detection,
vital  sign  sensing  of   blood  pressure  and  heart  rate,  has  been  successfully  integrated  with
biochemical sensors including lactate, alcohol, glucose, and caffeine.329 The device thoughtfully
utilizes  ultrasonic  transducers  for  vital  monitoring.  Such transducers  not  only  allow for  that
accurate measurement of these vitals, but were shown to exhibit minimal crosstalk with chemical
sensors given an optimal operating distance away from these sensors. Further, the coupling of
these  sensors  paints  a  picture  of  a  user’s  health  status  by  quantifying  alcohol  and  caffeine
consumption while also measuring exertion levels from vital sensors. 

As the field has progressed, multiple sensing modalities have been implemented in devices as to
achieve cheaper and easier device implementation. While the previously mentioned devices have
a high degree of accuracy, they all rely on electrochemical analysis for which compartments like
potentiostats, batteries, or Bluetooth radios are costly. Further, when such bulky components are
inflexible,  they  can  limit  the  potential  to  miniaturize  the  wearable  device.  A  thin,  flexible
colorimetric device has been reported with the capability of measuring pH, sweat rate, chloride,
lactate and glucose (Fig. 39d).237 By utilizing a biofuel cell-based sensor in conjunction with
NFC-based sensor readout and wireless communication,  the need for a battery was removed,
rendering the device battery-free. Multiple sensing modalities have also opened doors for the
classification of more complex biophysical states. Stress states have been predicted with a sweat-
based  wearable  device  by  measuring  multiple  stressed-related  biomarkers  (Fig.  39e).292 By
integrating  a  lateral  flow  immunoassay  with  fluorescence-based  assays,  simultaneous



measurement of sweat cortisol and ascorbic acid levels is achieved. Cortisol, being well known
as the stress biomarker, can reveal an individual’s stress levels while ascorbic acid (i.e., vitamin
C) can correlate to immune response and potentially can be used in the treatment evaluation.

Figure  39.  Multimodal  data  acquisition. a,  Multimodal  ECG and  sweat  lactate  measuring
device.  Reproduced with permission from ref 138 under CC BY 4.0. Copyright 2016 Imani  et
al. b,  Laser  engraved  biosensor  with  multiple  sensing  modalities  and  a  high  degree  of
flexibility. Scale  bar,  1  cm.  Reproduced with  permission  from  ref  602.  Copyright  2022 The
American Association for the Advancement of Science. c, Wearable device with both sweat and
ISF sensing capabilities. Reproduced with permission from ref 331 under CC BY 4.0. Copyright
2018 Wiley. d, Colorimetric wearable device with glucose and lactate sensors. Reproduced with
permission from  ref 237. Copyright 2019 The American Association for the Advancement of
Science. e,  Stress  detecting  wearable  device  integrated  with  lateral  flow  immunoassay.
Reproduced with permission from ref 292 under CC BY 4.0. Copyright 2020 Proceedings of the
National Academy of Sciences. 

9.1.2 Sensor Crosstalk and Calibration

Another essential feature of multimodal sensors is their capability to self-calibrate other sensors
on  a  wearable  device,  rendering  the  entire  wearable  system  more  accurate.  Most  of  the
aforementioned sensors, for example, rely on enzyme-based sensing, which can be influenced by
operating temperatures.9,603–605 On-skin temperature sensors could therefore serve a dual purpose



to both measure skin temperature for diagnostic and calibrating sensor reading (Fig. 40a).12. This
strategy was employed in a wearable sensor array for the continuous measurement of sweat
glucose and lactate.606 With the measured temperature and known temperature’s influence on
enzymatic sensor performance, glucose and lactate measurements can be calibrated. Similarly, a
wearable system for the collection of exercise sweat to avoid hypoglycemic shock in diabetics
has  been  reported.607 Again,  glucose  measurements  are  normalized  via  temperature  readouts
showing the impact this method has on the wearable field. Resistive temperature sensors should,
however, take into consideration the effect of strain-responsive change in resistance as shown in
laser-engraved graphene sensors.75 Serpentine patterns could be adapted into temperature sensor
designs to reduce the strain-induced change in resistance.

Figure 40. Sensor crosstalk and calibration. a, Influence of temperature on glucose and lactate
sensors. Reproduced with permission from ref 12. Copyright 2016 Springer Nature. b, Influence
of electrolyte (Na+) level on tryptophan biosensor response. Reproduced with permission from
ref 87. Copyright 2022 Springer Nature.  c, Influence of ammonium (NH4

+) on urea biosensors.
Reproduced with permission from ref 410. Copyright 2020 The American Association for the
Advancement of Science. d, Influence of pH on glucose biosensors. Reproduced with permission
from ref 198. Copyright 2016 Springer Nature.

Chemical sensors in particular face many challenges with interferences from the complex matrix
in biofluids, including various coexisting biomarkers which may skew the quantitation of the
target biomarker. Reports have shown that the ionic strength of sweat (i.e. Na+ concentrations)
has the potential to influence a sensor's output signal (Fig. 40b).87,608 Moreover, as sweat rate
could  influence certain  biomarker  levels  during exercises,  sweat  Na+ level  (which  showed a
linear  correlation  with  sweat  rate)  may  be  used  to  further  calibrate  sensors  for  continuous
personalized monitoring. In addition, chemical measurements are susceptible to further signal
drift depending on their chemical environment. For example, when NH4

+ level interferes with
urea sensor reading, quantitation of urea would require simultaneous measurement of NH4

+ and
real-time calibration(Fig. 40c).410 In addition to certain ions, pH could pose an influence on sweat



chemical sensing. For example, glucose oxidase was shown to be affected by pH and requires pH
calibration in real time (Fig. 40d).198 

Multimodal  physiochemical  sensing  systems  are  highly  promising  for  realizing  precision
medicine. The collected vital sign or physical parameter data could be used for calibrating the
chemical sensor readings. Moreover, such data could supplement the molecular information and
provide  a  comprehensive  picture  of  an  individual’s  health  state  which  is  a  crucial  step  in
realizing precision medicine.

9.2 Machine Learning-based Data Analysis

Wearable  devices,  in  particular  sweat  sensors,  have  the  potential  to  generate  a  spectrum of
medical data, with each recorded biomarker painting an incomplete picture about the health of
the  patient.  Artificial  intelligence  (AI),  specifically  machine  learning  (ML),  offers  a  way  to
organize this information in an interpretable or useful manner. In literature, ML has been applied
to  synthesize  on-body  biochemical  profiles  to  predict  the  presence  of  diseases609,  mental
disorders610, emotional states611, drug intake, and nutritional levels612,613 only using analytes in the
sweat. By optimizing the expected ML accuracy, one can further determine which chemicals
hold predictive information614,615, how to organize sensors on a patch616, as well as the optimal
placement of sensors on the skin.616 Each of these experiments can be broadly broken up into the
following  sections  (Fig.  41a):  sensor  design,  on-body  experiments,  data  processing,  feature
extraction, ML model selection, and updating experimental parameters.617 So far, this review has
discussed the process of sensor design, on-body experiments, and data processing. The following
section  will  go  into  feature  extraction,  ML  model  selection,  and  updating  experimental
parameters.

To achieve these goals, there are three general subcategories of ML algorithms one can utilize:
supervised  learning,  unsupervised  learning,  and  reinforcement  learning.  Unsupervised  and
reinforcement learning utilize unlabeled data (unmarked samples), requiring a large amount of
data to make predictions.  In a laboratory setting,  this  can be impractical  for many emerging
technologies still in the prototype stage that cannot generate a large quantity of high-quality data.
Furthermore,  these two methods  are  error-prone and can  misinterpret  ground truth  for  early
experiments as the ML model is being refined. Because of these limitations, in this section, we
will  focus  on  supervised  learning,  the  most  common  examples  being  convolutional  neural
networks  (CNN),  support  vector  machines  (SVM),  k-nearest  neighbors  (KNN),  logistical
regression, and artificial neural networks.

9.2.1 Curse of Dimensionality

In  machine  learning,  features  refer  to  measurable  properties  or  characteristics  about  an
experiment.  As  there  is  no  standard  method  to  extract  features,  it  is  rather  important  to



understand how features  can broadly affect ML models.  For supervised learning in wearable
devices,  each sweat analyte (such as uric acid) acts as an independent variable (feature) that
potentially  correlates  with a quantifiable  or observable event  (e.g.  gout).  The more data one
collects about a feature the more defined this association appears. From this point of view, a
feature represents information added to a model. This leads many to believe that adding more
information (features) to a model yields a better prediction. The following section will explore
this idea further, highlighting the benefits and consequences of feature extraction.

 

Figure 41. Data processing and machine learning. a, Broad overview of the machine learning
experimental  pipeline  from  biosensor  fabrication  to  industry  application.  Reproduced  with
permission from ref 617. Copyright 2021 Wiley. b, Principal component analysis (PCA) analysis
that can categorize different cell lines based on gene expression. Reproduced with permission
from ref 618 under CC BY 4.0. Copyright 2016 Lenz  et al.  c,  Shapley additive explanations
(SHAP) analysis of two kinase inhibitors, displaying functional groups that help (red) or hurt
(blue) its potency. Reproduced with permission from ref 615 under CC BY 4.0. Copyright 2020
Rodríguez-Pérez et al. d, Flow chart for extracting features from electrochemical measurements,
training a model, and predicting analyte concentrations. Reproduced with permission from ref
619. Copyright 2022 Elsevier. e, Generic training process for a neural network. Reproduced with
permission from ref 620. Copyright 2020 American Chemical Society.

The main deterrent for extracting features is that each piece of information carries an additional
degree of freedom when solving for the underlying trend. In plain words, when building a model,
each feature is not considered in isolation, but is rather compared against all existing inputs. As
shown in Fig. 42, as the dimensionality (number of features) increases, the feature space grows
exponentially. Practically, with 4 data points evenly sampled across 1 feature, one would require
16 data points to achieve the same level of confidence in a 2-dimentional feature-space. For a
fixed dataset, this leads to a tradeoff: adding more information to the model vs adding more



uncertainty about the connections between this information. Unfortunately, there is no universal
standard limit to the number of features one should use for a given number of points. This is
because in practice most data cannot be controlled and evenly sampled across a feature; rather,
one might see duplicates or clusters inside a feature dimension.

Figure 42. Exponential growth of feature space with input dimension. a–c, An evenly spaced
sampling across a 1-dimensional feature space (4 data points) (a), a 2-dimensional feature space
(16 data points) (b), and a 3-dimensional feature space (64 data points) (c).

In practice, this means that adding more features tends to initially increase the accuracy due to
more information in the model; however, there exists a point when the accuracy will decrease
with each new feature added. This occurs because in a small dataset the model cannot extract
meaningful  trends  from  the  feature-space.  This  phenomenon  is  referred  to  as  the  curse  of
dimensionality, also known as the peaking phenomenon or Hughes phenomenon. In plain terms,
there exists a feature dimension where the average predictive power of any classifier degrades
when increasing the feature space. Unfortunately, collecting data for novel sensors can often be
arduous due to experimental error, time, as well as finding enough distinctive and representative
subjects. Therefore, machine learning problems using wearable devices are often feature-limited
by a small dataset.

If data is not limited, collecting more points will add certainty to the model’s final prediction,
leading to the alternative question: how much data is too much. Luckily, there is no upper limit
to the amount of data one could collect,  as more data creates more certainty in the analysis.
Nonetheless, in practice, one finds that the initial points drastically change the model’s accuracy
until  it  reaches  a steady state.  To determine if  enough data has been collected,  it  is  best  to
withhold some samples from the model as a validation set or test set and check whether their
input has a significant effect on the model’s final performance.

The best way to improve a model’s accuracy, without adding more data, is to improve the feature
extraction procedure, thereby reducing noise in the feature set. In machine learning, gathering
clean, robust features from signals is preferred over utilizing extra, unnecessary information to
make the same prediction.

9.2.2 Feature Selection



To remove features from a model, one must select the combination of features with the most
non-overlapping and relevant information to the prediction. There are a variety of well-known
algorithms  to  accomplish  this  goal.  The  simplest  method  is  to  brute  force  try  each  feature
combination, selecting the set that performs the best. Brute-force feature selection is widely used
in the literature and has been applied to determine biomarkers in brain-machine interfaces621, to
detect  COVID-19 from acoustic  waves622,  and  to  detect  breast  cancer  from images.  This  is
because for a static model brute force feature selection is guaranteed to yield an optimal solution
across multiple training sessions; however, it is computationally and time intensive, making it
unreasonable  for  selecting  information  from a  large  feature  pool,  a  large  data  set,  or  on  a
complex  model  due  to  the  training  time.  Fortunately,  there  are  alternative  feature  selection
algorithms that  can handle these cases,  the most  popular  choices  being principal  component
analysis (PCA), linear discriminant analysis (LDA), and Shapley additive explanations (SHAP).

In contrast to brute-force selection,  LDA and PCA use a mathematical approach to eliminate
features. PCA accomplishes this by transforming potentially correlated features into a basis set of
orthogonal  components  using  an  eigenvalue  decomposition.  The  final  features  are  a  linear
combination of the original set. Like the brute force method, PCA analysis can be used in similar
situations to predict breast cancer,623 categorize gene expression from different cell lines (Fig.
41b)618,  and  analyze  COVID-19624.  Furthermore,  PCA analysis  has  been  used  to  find sweat
metabolite combinations that are indicative of lung cancer.614,625 Meanwhile, LDA reduces the
feature dimension by looking for a subspace of features that maximizes the separation between
two  classifications.  Like  PCA,  LDA  has  also  been  commonly  used  to  detect  breast  cancer
biomarkers.626,627 Given that both methods have been applied  to similar  problems,  one might
wonder when one algorithm is preferred. PCA analysis is an unsupervised algorithm, making it
optimal  when working with  unlabeled  data  or  when looking for  patterns  in  the  features.  In
contrast,  LDA works  well  when classifying  data  into groups.  When both algorithms can be
applied, LDA works better when the feature space is noisy, as PCA analysis will not overlook
noise when creating a basis set in the feature space.

Recently, SHAP has become another popular feature selection tool. The SHAP analysis utilizes a
game theory approach to explain an individual feature’s contribution to the final prediction.628

The SHAP value of feature A is calculated by taking the difference between the model’s output
with feature A and the average output after iterating through the feature-space of A.628 SHAP
values can be applied to discrete features for the detection of drugs in sweat629 as well as in
images to find important structural features for the activity prediction of chemicals615 (Fig. 41c).
Despite providing greater insight into each feature, one drawback to the SHAP analysis is how
computationally expensive the analysis is for many features due to training the model across the
entire feature’s dimension.

There are many other feature selection algorithms not discussed in this section such as local
interpretable model-agnostic explanations (LIME)630, single feature importance (SFI), and mean



decrease accuracy (MDA). Some researchers have found that utilizing an aggregation of feature
extraction  techniques  can  improve  the  search  for  optimal  feature  combinations.  Using  an
ensemble of feature selection methods will correct for any biases in one algorithm. The ensemble
approach has been used in discovering important metabolites in a mouse’s liver.631 More research
into ensemble feature selection methods will mitigate the problem of missing important features
and aid in creating a more robust biomarker discovery tool; however, the biggest limitation of
this technique is the computational time required for large feature pools.

9.2.3 Model Selection

There are a variety of machine learning models presented in the literature,  each with broad,
overlapping applications in the wearable space, which often make it hard to select the optimal
algorithm to use. For quantifying chemicals in sweat, CNNs can measure lactate  with an F1
score of 0.990,612 decision trees can measure glucose with a root mean squared of 0.1 mg/dL,632

KNNs can improve drifting errors in cortisol detection,633 and KNNs can measure tyrosine and
uric  acid  (Fig.  41d).619 On-body  sensors  have  diagnosed  depression  from  a  random  forest
algorithm,610 emotional  states  from  support  vector  machines,611,634 and  stress  from logistical
regression.635 From measuring chemicals in the sweat to psychological states, the use of different
ML algorithms for  similar  problems highlights  an  important  question:  does  the  specific ML
architecture  matter  when most  algorithms  are  interchangeable  while  still  maintaining  a  high
accuracy.

The simple answer is that ML models do not create the final trends in the input variables; rather,
ML is a tool that connects information from the input-space to an observable output, if such a
connection exists. As a tool, models can achieve the same results while taking different paths. In
this  regard,  the  choice  of  model  often  depends  on  situational  parameters  such  as
time/computational  efficiency,  interpretability,  and reproducibility.  In  terms of efficiency,  the
rate  limiting  factor  in  the training  time is  model  complexity.  The benefit of complex neural
architectures is that they have greater flexibility to adapt to any subtleties present in the feature
space.  This  makes  them  extremely  good  at  finding  weak  trends  within  the  data,  such  as
identifying ethnicity and age from sweat lipid profiles using a gradient boosting tree ensemble.636

Unfortunately,  complex models also require more data for training and risk overfitting noisy
sensors. Furthermore, if the model is too complex, it becomes hard to create an interpretable
mathematical  expression  relating  the  feature  space  to  the  final  output.  Using  a  complex  7-
convolution layer CNN, a wearable device was able to monitor Parkinson’s disease.637 In this
complex case, machine learning demonstrates the relevance of input features, but not why they
are relevant. This makes it hard to reproduce and validate the outcome, due to small differences
in  the  input  space  (i.e.  electrodes,  subjects,  and  sensing  technique)  as  well  as  possible
randomness inherent in the algorithm. A common example of poor interpretability, yet widely
applicable, is deep learning networks, which have previously been used to surpass the limit of
detection of six different metal ions in sweat.638



Model selection is a tradeoff between simple architectures and high accuracy; however, it has
underlying dependance on whether the model is meant to be interpretable, easily reproducible,
and efficient.

9.2.4 Machine Learning Inspired Designs

After selecting a model, one can further extend the analysis to update experimental parameters.
This is achieved by monitoring a model’s accuracy change while varying different experimental
attributes.  Through this  technique,  one can find a combination of optimal  antigen sensors to
diagnose Lyme disease,616 find the best placement of electrodes on the skin,616 as well as optimize
the material, structural, and excitation characteristics of gas sensors.639 Upon finding an optimal
configuration, one must recollect new data, extract features, and retrain the model (Fig. 41e).620

This process can be repeated multiple times, performing a gradient-descent search as one refines
the final experimental parameters. When performed on a single subject, this method can aid in
the development of a more personalized device for the patient.

9.2.5 Machine Learning Discussions

Machine learning can be applied to the development of physiochemical sensors, personalized
healthcare, and biomarker discovery51. When developing machine learning models for wearable
devices,  there are a  variety of factors  to  consider  from input  features  to  model  architecture.
Adding robust, non-overlapping information is the best way to increase the accuracy of a model;
however,  selecting  these  features  can  often  be  challenging  as  different  feature  selection
algorithms may favor specific combinations. Feature selection is further limited by the choice of
model. When constructing a machine learning model, simple architectures with a small subset of
features provide greater insight into the underlying mechanisms of how the feature-space maps
the health of the patient. Therefore, while it is attractive to work on complex designs with many
features, limiting the scope of the analysis can afford a deeper understanding of how each feature
pairing affects the final diagnosis and health of the patient.

The application of machine learning in wearable sweat biosensors is still a budding field. It is
well  known  in  the  machine  learning  community  that  features  can  greatly  impact  the  final
accuracy. Further investigations should look into biochemical features that can be extracted from
wearable devices. Especially considering the accuracy improvements that have already been seen
in multimodal wearable devices when one considers the impacts of sweat rate, ionic strength,
pH, and skin temperature. There is great potential for a device which measures these signals to
improve the accuracy, as well as the sensitivity or selectivity, of coexisting chemical sensors.
Another  significant  problem  affecting  the  accuracy  is  noise  in  the  form of  motion  artifact.
Removing  these  artifacts  to  enable  a  system  to  measure  the  underlying  signal  could  be  of
particularly high impact and help push wearable devices to the market.



9.3. Data Privacy

A customer’s  perception  of  their  data  security  plays  a  vital  role  in  their  decision  to  adopt
wearable technologies as determined by a risk-benefit analysis.640 While the medical value of
wearables is straightforward (as discussed in the sections above), the associated risk factors are a
subject of speculation based on public opinion and news in the media. There is inherent danger
in collecting and sharing health information with companies,  between third parties,  and with
medical staff. For example, in 2021, major companies such as Fitbit (Google) and Apple were a
part  of  a  massive  data  breach  where  61  million  customers’  name,  age,  gender,  geographic
location, and health information were all exposed in an online database without any password
protection.641 The  problem is  that  many  of  these  health  trackers  are  not  labeled  as  medical
devices  and  therefore  are  not  required  to  follow  strict  medical  privacy  standards,  allowing
companies to provide minimal security guarantees as well as sell health data for marketing and
advertising purposes.641 Exacerbating  this  issue,  once data is  collected,  there is  no statute  of
limitation for companies to erase health information,  regardless of whether the customer has
terminated their internal profile. As the public’s perceived risk of data privacy grows above the
reported  benefit,  customers  will  discontinue  use of  these  wearable  technologies.640 Customer
perception of their data privacy is therefore integral in their adoption of wearable devices.

9.3.1 Medical Data Security

There are two main entities that regulate the security of health information: the government and
the device manufacturer. The United States government secures the protection of medical data
through the Health Insurance Portability and Accountability Act (HIPAA). In particular, HIPAA
enumerates how to handle medical data through the Privacy Rule642 and the Security Rule643,
which applies to “business associates” dealing with “covered entities”644. In broad terms, covered
entities  are  health  plans,  healthcare  clearinghouses,  and  healthcare  providers  that  transmit
medical information electronically645, while business associates use or disclose protected health
information for a covered entity646. Under HIPAA protection, when sending medical information,
companies must remove 18 key identifiers for security purposes, such as name, social security,
health numbers, and medical records.644 However, companies can share private health data to
third parties if the added entity agrees to protect the users’ data according to HIPAA laws, where
any data breaches are reported to the users.644 Companies that violate these rules can be subjected
to fines and criminal charges. 

Despite these restrictions, not all wearables adhere to HIPAA guidelines as their products are not
considered  medical  devices,  but  rather  classified  as  wellness  tools.  Even  for  FDA-approved
medical  devices such as Fitbit  (FDA approval  in 2020) and Apple watch (FDA approval in
2021),  not  all  wearables  have  to  adhere  to  HIPAA  guidelines  as  their  products  do  not
electronically transfer sensitive information. For example, a wearable device such as a fitness
tracker that monitors a user’s health and displays that information on a smart watch does not



need to be HIPAA compliant as the entity does not share the data with a business associate or a
covered entity, such as a physician.644 This provides an illusion of data security to the customer,
while exposing individuals to a variety of attacks. It should be noted that at the time of this
review, the FDA is in the process of updating its guidelines for handling sensitive data and have
already announced a new Office of Digital Transformation in 2021.

Without government regulation, companies themselves can still adhere to strict data security and
privacy standards. During data storage, companies can secure against common hacks such as
distributed denial of service (DDoS) attacks647, Structured Query Language (SQL) injections, or
back door attacks. Two common methods to secure data include authentication, such as a pin
number  to  validate  the  customer,  and  encryption,  such  as  storing  data  on  a  blockchain.
Blockchain works through decentralized data sharing, where an immutable data table is validated
for authenticity by all users on the chain, preventing hackers from easily altering the records.648 If
a hacker does want to permanently change health information on the chain, they would have to
hack into every user who stores a copy of that particular block. While this protects data storage,
attacks on wearable devices can still occur during data transmission. Data transferred over WiFi,
Bluetooth,  or  any  near-field  communication  can  be  subjected  to  data  leaks  due  to
misconnections. Fortunately, there are a variety of different methods to protect data across the
internet  of  things,  such  as  SecuWear:  an  open-source  platform that  identifies  and  mitigates
potential software attacks against wearable devices.649

9.3.2 Future of Data Privacy

As the innovation in wearable technology scales, so does the collection and storage of private
health  information,  creating  a concern about  the  potential  misuse  of  user  medical  data.  The
consequences of improperly handling sensitive information are that users can be targeted due to
their security information and discriminated against based on their medical history. Due to this
inherent risk, customers can often be skeptical about using wearable technology. The lack of
trust in data protection, lack of control, and gaps in the legislature all contribute to this negative
perception.640 To increase the adoption of valuable medical devices, companies must properly
consider  the  storage,  transmission,  and  use-cases  of  sensitive  medical  information  when
developing their products.

10.  Path to Commercialization

There  is  tremendous  translational  value  in  the  technologies  described  in  this  review.
Translational value is determined by the ability to blend market and design factors in a way that
meets a clinical need.650 Wearable sweat sensors can address the need for non-invasive biomarker
data collection. Applications of wearable sweat sensors include but are not limited to fitness and
recovery,  mental  health,  personalized  healthcare,  and  telemedicine.  High  translational  value
establishes a path to commercialization. In this section, the medical device product life cycle is



detailed along with industry and regulatory challenges. The emerging sweat sensing market is
summarized, and future growth trends are discussed.

10.1 Product Life Cycle

The medical device product life cycle (Fig. 43) begins with conception, design, and prototype
development. During this phase, it is important to file intellectual property and licensing.651 Upon
prototype development, design specifications are tested and verified. Considerations should be
made  for  scaling  feasibility  via  low-cost  mass  manufacturing  techniques.  Next,  regulatory
compliance  strategy must  be considered to  bring the product  to  market  in  a  timely  manner.
Preclinical investigation validates the product performance, identifies failure modes, and refines
risk mitigation strategies. Product compliance with FDA regulations is evaluated based on robust
clinical trials, the extent of which varies based on device classification. After FDA approval and
product launch, post-market risk is mitigated through adverse event reporting, surveillance, and
patient focused registry. Product enhancements are also made based on market feedback from
stakeholders  and  regulatory  approval.  Finally  at  the  end  of  product  life,  it  is  important  to
communicate with stakeholders the timeline for the end of manufacturing, end of support, and
end of availability.651

Figure 43. Wearable device product life cycle. Reproduced with permission from refs 430,652.
Copyright 2020 The American Association for the Advancement of Science. Copyright 2016
Wiley.

The medical  device  product  life  cycle  may also  be  characterized  by the  device  deployment
duration, how long or often the device is in use by the patient.651 Single-use, frequent use, and
continuous use durations are determined by contextual design factors of the wearable device.
How quickly and how often biomarker levels change may determine the required time resolution
of  measurements.  While  a  single-point  daily  or  weekly  measurement  may  be  sufficient  to



monitor or screen for certain abnormalities, one may need to integrate continuous sampling to
perform trend analysis and pattern recognition.  For continuous use, the wearable deployment
duration  is  determined  by  the  limitations  of  the  device  itself  (e.g.  sweat  generation,  sensor
degradation)  or  the  monitoring  context  (e.g.  period  of  exercise,  treatment  course).  Device
duration may inform the scale of deployment.

To make the devices accessible, the design should be scalable at low-cost using high-throughput
manufacturing methods. Screen printing, inkjet printing, roll-to-roll (R2R) manufacturing, and
laser engraving are all methods that achieve high efficiency patterning and good conductivity for
the flexible electronics found in wearable sweat sensing platforms. Screen printing is one of the
most  established  low-cost  mass-manufacturing  methods.  Screen-printed  electrodes  are
commercially  available in a variety of conductive materials  and patterns with highly reliable
offerings  from companies  such  as  DropSens  by  Metrohm.  Screen  printing  uses  a  stencil  to
deposit functional inks onto a flexible substrate, while simultaneously removing excess ink (Fig.
44a).653 Screen printed film thickness is wide ranging (0.02–100 μm).654 Many considerations go
into formulating a conductive ink, including the nanomaterial properties, homogeneity, viscosity,
and substrate compatibility. Laser-induced graphene on PI film may be harvested and made into
an  ink  with  ideal  electrochemical  and  mechanical  properties  for  flexible  electronics.655

Conductive (e.g. PEDOT:PSS) and elastomeric (e.g. polyester-polyurethane) binding agents can
enhance  the  performance  of  conductive  inks.655 Surfactants  and  polymers  prevent  particle
aggregation and are important additives to conductive inks, which require stable dispersion for
low resistivity.656 High viscosity inks are required for screen printing, leading to challenges in
creating fine pattern features and often resulting in resolutions on the order of tens of microns in
commercial use.657

In inkjet printing, designs are digitally controlled and fabricated by droplet addition according to
its  design  dot  matrix  (Fig.  44b).137 On-demand  ink  ejection  generates  droplets  through
piezoelectric, thermal, electrohydrodynamic, and other pulsatile methods.656 Inkjet-printed films
can vary in thickness based on additive droplet control and rheological properties of the ink. Ink
viscosity and surface tension are important parameters for good printing quality and jettability.
Bioinks  have  added  challenges  of  biomolecular  stability  during  printing  and  non-specific
adsorption to the ink tank resulting in protein loss (solved with BSA additive).656 Inkjet printing
is  highly  efficient  with  minimal  materials  wasted,  reducing  the  cost  per  print.  With  high
customizability and precise spatial control inkjet printing is ideal for printing complex patterns
using multiple inks, as in the case of e-skins.137 Biosensors can be fabricated by serial printing
the electrodes and connections, encapsulation, functionalization, and entrapment.

R2R manufacturing is  a technique that  allows for sequential  modifications,  including pattern
transfer, etching, gravure printing,  heating,  UV curing, and others.135,658 R2R gravure printing
uses an engraved cylinder that stamps a substrate feed and continually refreshes with ink as it
rotates.  The  bending  and  rotations  of  the  feed  during  R2R  limit  this  process  to  flexible



substrates.654 In comparison to screen printing, R2R gravure printing mechanics can operate at
faster speeds with high resolution and consistency, but ink deposition is relatively thin, around
10  μm,  increasing  the  resistivity.654,657 Using  a  bilayer  working  electrode  scheme,  thin  R2R
gravure printed carbon electrodes  may be supported by a silver  ink layer  (Fig.  44c).135 This
morphology  enables  high-throughput  R2R  manufacturing  of  flexible  electronics  while
maintaining mechanical and electrochemical robustness. R2R manufacturing may be used for
microfluidic  fabrication  and  full  device  assembly  (Fig.  44d).  R2R  rotary  electrode  screen
printing was combined with R2R laser cutting of microfluidics (bilayer microfluidic adhesive
spacer and flexible PET cover) to assemble a wearable sweat sensor layer-by-layer.541 A camera
module was used to monitor the alignment of the printed layers during R2R rotary assembly. The
R2R system produced 60 devices per minute on a 100-m web length.



Figure  44.  Mass  manufacturing  techniques  for  low-cost  wearable  electronics  and
microfluidic  patches.  a, Screen  printed  electrode  fabrication  and  flexible  graphene  ink
formulation.  Reproduced  with  permission  from  refs  653,655.  Copyright  2022  American
Chemical Society. Copyright 2019 Wiley.  b, Inkjet printing of electrodes and bioink enzyme
functionalization. Scale bar, 1 cm. Reproduced with permission from ref 137. Copyright 2022
The American Association for the Advancement of Science. c, Roll-to-roll electrode fabrication.
Reproduced with permission from ref 135. Copyright 2018 American Chemical Society. d, Roll-
to-roll lab-on-a-chip fabrication. Reproduced with permission from ref 541. Copyright 2019 The
American Association for the Advancement of Science. e, Laser-engraved lab on the skin. Scale
bar, 1 cm. Reproduced with permission from ref 75. Copyright 2019 Springer Nature.

Laser engraving is a bottom-up method for graphene electrode fabrication using a CO2 laser
cutter  to  directly  carbonize  polymeric  substrates  (e.g.,  PI)  (Fig.  44e).75,659 Laser-engraved
graphene (LEG) is low-cost and high-throughput. LEG composition, porosity, impedance, and
morphology may all be tuned using laser parameters.659 Complex patterns can be easily made
digitally  with resolution limited only by the focus and power of the laser.  Due to  a lack of
binding elastomers, the poor mechanical stability of LEG may result in disconnections and an
open circuit, a problem exacerbated by repeated bending of flexible substrates.659 The laser cutter
may also be used to fabricate multi-layered microfluidics rapidly by laser cutting channels, inlets,
outlets, and sensing regions.75 Lastly, individual devices may be cut from mass-printed sheets
using camera-assisted laser cutting.541

FDA oversight  is  present  at  every  step  of  the  medical  device  product  life  cycle.  However,
noninvasive  medical  devices  have  fewer  barriers  to  market  entry.  The  foundation  of  FDA
medical device regulations are based on the reasonable assurance of safety and efficacy (21 CFR
860.7(d,e)).651 As noninvasive wearable devices, sweat sensing platforms exhibit the most risk
when they include iontophoretic sweat induction and when they are used for a serious medical
diagnosis. For reference, the Macroduct sweat iontophoresis system is registered as a Class II
device. However, should the device be of demonstrated substantial equivalence to another legally
U.S. marketed device, then the device is exempt of the 510(k) premarket notification and may be
made immediately commercially available.  The FDA approval process may also be bypassed
under the condition that no medical claims are made for the device and the device is noninvasive
with no biological interactions.

10.2 Emerging Market Landscape

To avoid the FDA regulatory process, many early-stage sweat sensors are starting out in the
consumer  health  and  wellness  space  (Table  4).  Sweat  is  induced  during  activity,  so  sweat
stimulation  is  not  needed  in  the  wearable  patch  design.  Rather  than  providing  medical
information,  the data is  regarded as a performance metric.  Together  these allow noninvasive



wearable  sweat  sensors  to  be  readily  commercialized.  The  Gx  sweat  patch  by  Epicore
Biosystems  in  partnership  with  PepsiCo  and  Gatorade  is  the  first  widespread  commercially
available  wearable  sweat  patch.  The  flexible  microfluidic  adhesive  patch  captures  sweat
throughout  exercise and collects  sweat  rate  and electrolyte  content  data  using a colorimetric
output.660 The  corresponding  app  allows  for  real-time  analysis  using  ML-enabled  image
processing.661 The device has been validated for hydration monitoring across 312 athletes and in
a variety of use conditions.358,661

Competitors  to  Epicore  for  hydration  monitoring  include  Nix  Biosensors,  FlowBio,  and
hDrop.662,663 In  contrast  to  the  Gx  sweat  patch,  these  devices  utilize  integrated  electrical
components. Nix calculates sweat rate, electrolyte loss rate, and sweat composition in the sweat
collection channel and transmits this data wirelessly. The electronic pod is reusable and connects
to a single use sweat patch.664 hDrop is an armband that continuously monitors hydration through
skin impedance sensing.665 Lactic acid is an important indicator of exercise intensity and muscle
fatigue  during  training.  Onalabs  is  developing  a  sweat  lactate  sensor  for  athletes  prior  to
venturing  into  the  clinical  space  (they  plan  to  incorporate  additional  biochemical  sensors,
including glucose detection).666 SM24 is also working towards a wearable sweat-based sensor for
real-time glucose, lactate, and hydration monitoring.667

Epicore as a company has focused heavily on the development of flexible microfluidic sweat
collection  systems,  referred  to  as  “epifluidics”.  This  establishes  a  template  for  mass
customization, a marketing and manufacturing technique that allows for flexible, custom product
features  with low unit  cost at  mass production.668 Custom biochemical  sweat  assays may be
simple to deploy relative to changing the microfluidic structure. A colorimetric pH assay was
used to assess skin health and personalized skincare needs in the My Skin Track pH platform
designed with L’Oréal.669 Customizable sweat assays are the basis for the Epicore Discovery
Patch, which collects sweat, and extracts it into a cryovial for future analysis.660 The Discovery
Patch has been used to assess cytokines in sweat.56 The Discovery Patch is registered as a 510(k)
exempt Class I FDA device.

Expanding into clinical diagnostics requires regulatory approval. The Discovery Patch serves as
a  springboard  to  on-body  diagnostic  assays.  Epicore  has  clinical  studies  in  progress  for
applications including stroke rehabilitation, cystic fibrosis screening, pre-diabetes screening, and
kidney disease screening.668 In addition to Epicore, GraphWear is performing clinical studies in
preparation  for  FDA review of  their  noninvasive  continuous  glucose  monitor.  If  their  trials
further  demonstrate  similar  performance  to  other  continuous  glucose  monitors,  they  may be
eligible for 510(k) clearance.670 Swiss company Xsensio hopes to develop the first commercial
Lab-on-Skin  sensing  platform  for  real-time  biochemical  sensing.  Their  approach  utilizes
miniaturized functionalized field-effect transistors for multiplexed biomarker detection, including
Na+, K+, Ca2+, pH, and cortisol.220,671–673



Form  and  comfort  are  important  criteria  for  product  adoption.  The  Nix  sweat  patch  uses
kinesiology tape for flexible adhesion and comfort, which is a material commonly used by their
targeted athletic demographic.664 Epicore Biosystems has focused heavily on the development of
a flexible microfluidic sweat collection system, which is the foundation of their devices. Form
defines function for Epicore’s infant cystic fibrosis sweat sticker;  the soft,  flexible collection
platform allows for low volume sweat collection and reduces leakage rates.674 Current FDA-
cleared standard sweat collection devices fail approximately 10-20% due to insufficient sweat
collection,  which  the  Epicore  microfluidic  patch  resolves.  Additionally,  fun  graphics  on  the
sweat sticker were attractive to children and improved their perceived experience.675

Similar trends are seen in the wearable heart rate monitoring space. Early adoption in the fitness
tracking space allowed for continued market testing to improve sensing and diagnostic accuracy.
Some  smartwatches  now  have  FDA-cleared  applications  like  the  AppleWatch  and  Apple’s
corresponding ECG app for classifying signs of AFib and irregular rhythms.676 With the rise in
popularity  of smartwatches  and CGM patches,  the U.S. market  is  primed to adopt  wearable
sweat sensing platforms.

Consumer adoption and physician adoption will likely vary, yet physician adoption is required to
see  transformative  change  and  impact  of  sweat  sensing  technology  in  healthcare.  Physician
adoption first requires accurate data collection and FDA approval. Next, integrated data analytics
and efficient  summaries  are required.  High volume biometrics may be overwhelming and be
ignored. It is important to communicate and work closely with physicians to understand what
would be most informative for them. User interface and compatibility with current electronic
medical systems are additional design considerations that may impact clinical adoption. Lastly,
developing  a  clinician-trusted  brand  dedicated  to  quality  and  medical-grade  products  is
important.

Another  market  for  wearable  devices  is  research  and clinical  trials.  Medidata  Sensor  Cloud
(formerly MC10) and VivoSense provide services to collect, integrate, and analyze data from
wearables in clinical trials. Medidata Sensor Cloud utilizes proprietary wearable patches (e.g.
BioStamp  nPoint)  to  collect  medical-grade  quality  biometrics  remotely.677 Incorporating
noninvasive wearable sweat sensors into clinical trials may provide important biochemical data.
Wearable  drug  monitoring  systems  may  determine  pharmaceutical  levels  to  maximize  the
efficacy of treatment while minimizing harmful side effects. Integrating vital sign sensors and
contextual physiological biosensors may help better screen for important side effects.

Although few sweat sensors have been commercialized to date, many are in the pipeline. As of
2022, Epicore Biosystems has over 100 patents issued or pending.678 The wearable device market
was valued at $19.45 billion in 2020 with expected growth to $47.84 billion by 2026.679 The rise
of remote patient monitoring and telemedicine is a driver for market growth, along with the shift
in healthcare from reactive to proactive intervention.680 Medical grade wearables and predictive



diagnostics will aid physicians and patients in better addressing health concerns. The FDA is
actively  responding  with  more  fast-track  approval  paths  for  low-risk  wearable  devices  that
collect medical grade data while still maintaining high quality standards. The “Over-the-Counter
Hearing  Aid  Act”  of  2017  allows  hearing  aids  to  be  sold  direct  to  consumers  without  a
prescription.680 This paves the way for low-risk wearable devices to be made accessible upon
deployment. The rollout of sweat sensors will diversify the wearable device market and the type
of data available for continuous monitoring.

11.  Challenges and Future Outlook

Research in the field of wearable sweat sensors has grown exponentially in the past decade (Fig.
45). This rapid growth is primarily attributed to the vast opportunities in precision medicine and
preventative  healthcare  offered  by  sweat  sensing,  as  well  as  the  technological  advances  in
numerous fields  of engineering  that  have realized  the development  of miniaturized  wearable
sweat sensing devices. With more and more wearable sweat sensing devices being developed
every year, the major bottlenecks hindering the widespread commercial adoption of wearable
sensors have become clearer.

Figure 45. Number of annual publications and citations on ‘sweat sensing’ from 2011 to
2021 according to Web of Science.

On the device side, it is critical to develop a compact and comfortable-to-wear wearable sweat
sensing system that can extract sufficient volumes of sweat consistently throughout the day for
accurate  and  continuous  biomarker  analysis  via  robust  biosensors  and  low-power  wireless
electronic instrumentation. Initial studies on sweat biomarkers relied on sweat induction through
exercise or heat, limiting the accessibility of sweat to very specific scenarios. Development of
iontophoretic  sweat  stimulation  as  well  as  microfluidic  and  osmotic  sweat  collection
technologies  have enabled the collection  of iontophoretic  or even natural  sweat  in sedentary
scenarios. However, current sweat extraction technologies still suffer from large interpersonal



variations or insufficiencies in sweat volume or sweat duration. While enzymatic sensors and
ion-selective electrodes  have been extensively developed for the detection of common sweat
electrolytes  and  metabolites  that  are  relatively  high  in  concentration,  many  trace-level
biomarkers including hormones and lipids are challenging to assess continuously with traditional
sensing  mechanisms.  It  is  important  to  develop  novel  sensor  modalities  for  broadening  the
spectrum of detectable biomarkers, as well as to improve the sensitivity, selectivity, and stability
of existing sensors for facilitating accurate and prolonged measurements. For compact and robust
system-integration, low-power and precise electronic circuitry should be coupled with a compact
power  source.  Furthermore,  materials  innovations  are  required  at  every  end  of  the  system,
including the sensor, electronic circuit, battery, and energy harvester. An integrated sweat sensor
system is as small and flexible as its largest and stiffest component, and therefore each element
of  the  device  can  benefit  from the  integration  of  novel  materials  and structures  that  reduce
footprint and stiffness. Nonetheless, a perfect wearable sweat sensor device on its own is not
sufficient to validate its value for precision medicine. 

Despite decades of research, many aspects of sweat gland physiology are still poorly understood.
While advances in sensing modalities are widening the range of detectable biomarkers as well as
improving  the  accuracy  and  detection  limit  of  biomarker  analysis,  the  exact  partitioning
mechanisms and blood correlations of sweat biomarkers require further study. 3D sweat gland
models for simulating the partitioning pathways of various biomarkers and large-scale clinical
validation  studies  driven  by  continuous  wearable  sweat  sensing  platforms  can  improve  the
contextualization of biomarkers with respect to health conditions. Furthermore, increased use of
wearable sweat sensors will generate overflowing data on sweat biomarkers that can be uploaded
to the cloud and processed via big data and machine learning algorithms. Such algorithms have
the  potential  to  unveil  inconspicuous  correlations  between  sweat  biomarkers  and  health
conditions,  even  if  the  pathological  pathways  aren’t  clear.  Multiplexed  biosensing  using
wearable sweat sensors coupled with machine learning-powered data analysis represent a new
approach  for  modern  biomarker  discovery  without  the  need  of  frequent  hospital  visits  and
toleration of invasive procedures.51 However, with an influx of sensitive health data uploaded to
the  cloud,  data  privacy  issues  can  arise.  Additionally,  considering  that  conventional  von
Neumann computing strategies are inefficient at processing large volumes of unstructured cloud
data,  neuromorphic  edge  computing  technologies  embedded  in  wearable  devices  have  the
potential to process data more securely and efficiently.

The  aforementioned  considerations  present  challenges  but  at  the  same  time  exciting
opportunities in advancing skin-interfaced sweat sensors toward their practical applications in
healthcare. The personalized data collected from wearable sweat sensors will serve as essential
building  blocks  for  personalized  and  precision  medicine.  At  a  personal  level,  the  insights
provided by wearable sweat sensors on an individual’s health status encourage users to take an
active role in health management. At the same time, the synergy between future consumer-facing



wearable products with clinical-grade medical devices is expected to contribute to a connected
network for researchers and clinicians and provide comprehensive insights into an individual
patient. Ultimately, the seamless integration of wearable sweat sensors into a patient’s daily life
and care delivery process is envisioned to enhance precision medicine by allowing the timely
initiation of personalized treatment to maximize health outcomes on an individual basis.    

Acknowledgements

This  project  was  supported  by  the  National  Institutes  of  Health  grants  R01HL155815  and
R21DK13266, National  Science Foundation grant  2145802,  Office of Naval  Research grants
N00014-21-1-2483 and N00014-21-1-2845, American Cancer Society Research Scholar Grant
RSG-21-181-01-CTPS,  High  Impact  Pilot  Research  Award  T31IP1666  from  the  Tobacco-
Related Disease Research Program, Sloan Research Fellowship, and Heritage Medical Research
Institute.

Competing interests

The authors declare no competing interests.

Biographies

Jihong Min

Jihong Min is currently a Medical Engineering Ph.D. Candidate at the California Institute of
Technology.  He  received  his  B.S.  in  Electrical  Engineering  at  the  University  of  Illinois  at
Urbana-Champaign and M.S. in Medical Engineering at the California Institute of Technology.
His  current  research  interests  include  energy harvesting,  wearable  biosensors,  and ingestible
electronics.

Jiaobing Tu

Jiaobing Tu received her B.Eng. degree in Materials Science and Engineering from Imperial
College London. She joined Prof. Wei Gao’s research group in 2018 and is currently pursuing
her Ph.D. degree in Medical Engineering at the California Institute of Technology. Her research
interests include wearable electronics and biosensors.

Changhao Xu

Changhao  Xu is  currently  a  Ph.D.  candidate  in  Professor  Wei  Gao  group  of  Medical
Engineering  at the California Institute  of Technology.  He received his B.S.  degree at  Fudan
University in 2018 and M.S. degree at California Institute of Technology in 2020. His current



research  interests  include  design  and  fabrication  of  wearable  sensors,  medical  devices,  and
machine learning for health.

Heather Lukas 

Heather  Lukas is  a  current  Ph.D.  candidate  in  the  Gao  Research  Group  at  the  California
Institute  of  Technology.  She  received  her  B.S.  in  Biomedical  Engineering  with  a  minor  in
business from Cornell University in 2019. Her current research interests focus on developing
novel techniques for continuous biochemical sensing in sweat with applications in therapeutic
and addictive drug monitoring.

Soyoung Shin

Soyoung Shin is currently a PhD student in Chemical Engineering department at the California
Institute  of  Technology.  She  received  her  B.S.  degree  in  chemical  engineering  from  the
University of California, San Diego, in 2021.  Her current research focuses wearable sweat-based
biosensors.

Yiran Yang

Yiran Yang received her BS degree in Bioengineering from Rice University. She then joined Dr
Wei Gao’s research group and is currently pursuing her PhD degree in Medical Engineering at
Caltech. Her research interests include wearable electronics, biosensors and nanomedicine. She
is also a member of the Tau Beta Pi Engineering Honor Society.

Samuel A. Solomon

Samuel A. Solomon is currently pursuing a doctorate in Medical Engineering at the California
Institute of Technology. He received his bachelor’s degree in Chemistry-Biology and Physics at
the  Massachusetts  Institute  of  Technology  in  2020 with minors  in  Nuclear  Engineering  and
Computer Science. His current research interests include intelligent wearable biosensors.

Daniel Mukasa  

Daniel Mukasa is currently a PhD candidate in Materials Science and Applied Physics at the
California Institute of Technology. He received his Bachelor's degree in Physics from Oberlin
College  in  2019.  His  current  research  interests  include  wearable  biosensors,  computational
materials design, and machine learning.

Wei Gao

Wei Gao is currently an Assistant Professor of Medical Engineering at the California Institute of
Technology.  He received  his  Ph.D.  degree  in  Chemical  Engineering  from the  University  of
California,  San  Diego,  in  2014.  He  then  worked  as  a  postdoctoral  fellow  in  Electrical
Engineering and Computer Sciences at the University of California, Berkeley, until 2017. His
current research interests include flexible electronics, wearable biosensors, digital medicine, and
micro/nanorobotics.



TOC Graphic



Table 1. Composition of sweat
Biomarkers Sweat 

concentration 
(mM)

Blood concentration
(mM)

Molecular 
weight (Da)

References

Electrolytes Sodium 10–100 135–150 23 40,336,681,682

Chloride 10–100 97–107 35 40,348,683

Potassium 1–20 3.5–5 39 40,684,685

Ammonium 0.5–8 0.01–0.4 18 64,686

Metabolites Lactate 5–60 0.5–25 90 40,687–694

Glucose 0.01–0.3 3.3–17.3 180 65,695,696

Urea 2–40 1.8–7.1 60 72–74,693,695

Uric acid 0.02–0.1 0.1–0.5 168 72–76

Creatinine 0.01–0.03 0.065–0.12 113 72,73,362

Minerals Calcium 0.2–2 2.2–2.7 30 77–80

Magnesium 0.02–0.4 0.7–0.95 24 77–80

Iron 0.0001–0.03 0.006–0.027 56 77–80

Zinc 0.0001–0.02 0.01–0.017 65 77–80

Nutrients Amino acids Tyrosine 0.2–0.4 0.055–0.3 181 57,85–87

Tryptophan 0.055–0.08 0.02–0.091 204 57,85–87

BCAAsa 0.2–1 0.2–1.2 117–131 57,85–87

Vitamin C 0.01–50×10-3 2.8–200×10-3 176 83,84

Hormones Cortisol 0.1–20×10-3 0.07–690×10-3 362 91–93

Testosterone 0.8–1.6×10-6 0.5–35×10-6 288 697

Dehydroepiandrosterone 6.9–455×10-6 0.35–11.91×10-3 288 697

Neuropeptide Y 1.9–6.8×10-10 1.4–6.1×10-10 4272 96

Proteins C-reactive protein 4.2–250×10-9 7–29×10-6 120,000
Cytokines Interleukin 6 3.7–6.9×10-10 2.4–5.6×10-10 21,000 96,100

Interleukin 8 1.8–7.2×10-10 1.5–6.5×10-10 8452 100,101

Substances Ethanol 2.5–22.5 2–22.5 46 698

Acetaminophen <50×10-3 66–132×10-3 151 567

Levodopa <2.5×10-3 <5×10-3 197 699

aBCAAs: branched-chain amino acids



Table 2. Materials and properties for wearable sweat sensors 

Materials class Biocompati
bility Permeability Conductivity Transparency Adhesion 

property Fabrication Refs

Natural materials 
(textile, paper) Excellent Excellent Poor Good Poor Weaving

105,106,129,

244,246,700–

702

Inorganic 
materials (liquid 
metals, Au, Ag, 
graphene, CNTsa,
etc.)

Poor Poor Excellent Poor Poor

Deposition, 
lithography, 
inkjet printing, 
3D printing, 
screen printing,
self-assembly

112,117,121,

122,703–706

Polymers 
(PDMSb, SEBSc, 
polyimide, etc.)

Good Poor Good Excellent Excellent

Mold casting, 
laser engraving,
spin coating, 
lithography

707–710,133

Hydrogels 
(alginate, gelatin,
PVAd, etc.)

Excellent Excellent Good Excellent Excellent

Mold casting, 
3D printing, 
spin coating, 
lithography

132,711–716

aCNT, carbon nanotubes. bPDMS, polydimethylsiloxane. cSEBS, styrene-ethylene-butylene-styrene. dPVA, polyvinyl alcohol.



Table 3. Application specific standard products for electrochemical measurements

Component Manufacturer Techniques
Current 
measurement 
range

Current 
measurement 
resolution

Size Interface

AD5940 
(ADuCM355)

Analog 
Devices Inc.

OCPT, AMP, 
CV, DPV, 
SWV, EIS

100 nA–5 mA 
(12 steps)

5.5 pA @ 100 
nA 3.6 mm×4.2 mm SPI

LMP91000 Texas 
Instruments AMP, CV 5–750 µA (7 

steps)
Depends on 
external ADC 4 mm×4  mm

I2C and 
external ADC

SIC4341 Silicon Craft 
Technology AMP, CV 2.5–20.0 μA (2

steps)
10 nA@ 2.5 
μA 1.2 mm×1.2 mm NFC

MS02 Refresh AI 
Biosensor Co. OCPT, AMP 100 μA Depends on 

external ADC 1.2 mm×1.1 mm I2C and 
external ADC



Table 4. Wearable sweat sensor market landscape
Company/Product Market Segment Metrics Transduction FDA 

Clearance

Epicore
Biosystems

Gx Sweat Patch Fitness (hydration) Sweat rate, Cl- Colorimetric --

Connected 
Hydration Safety (hydration)

Sweat rate, electrolyte 
content, temperature, 
motion

Electrochemical --

My Skin Track pH Skincare pH Colorimetric --
Discovery Patch Diagnostics None n/a Yes

Nix Biosensors

Fitness (hydration)

Sweat rate, electrolyte 
content Electrochemical --

FlowBio Sweat rate, electrolyte 
content Electrochemical --

hDrop Sweat rate, temperature Electrochemical --

SM24 Fitness, 
diagnostics

Lactic acid, glucose, 
sweat rate Electrochemical --

Onalabs Fitness, 
diagnostics Lactic acid, glucose Electrochemical --

Graphwear
Diagnostics

Glucose Electrochemical --

Xsensio pH, Na+, K+, Ca2+, 
cortisol Electrochemical --
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