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Characterization of Electrostatically
Coupled Microcantilevers

Mariateresa Napoli, Wenhua Zhang, Student Member, IEEE, Student Member, ASME,
Kimberly Turner, Member, IEEE, Member, ASME, and Bassam Bamieh, Senior Member, IEEE

Abstract—The use of tightly packed arrays of probes can
achieve the much desirable goal of increasing the throughput of
scanning probe devices. However the proximity of the probes in-
duces coupling in their dynamics, which increases the complexity
of the overall device. In this paper we analyze and model the
behavior of a pair of electrostatically and mechanically coupled
microcantilevers. For the common case of periodic driving voltage,
we show that the underlying linearized dynamics are governed
by a pair of coupled Mathieu equations. We provide experimental
evidence that confirms the validity of the mathematical model
proposed, which is verified by finite element simulations as well.
The coefficients of electrostatic and mechanical coupling are
estimated respectively by frequency identification methods and
noise analysis. Finally, we discuss parametric resonance for cou-
pled oscillators and include a mapping of the first order coupled
parametric resonance region. [1253]

Index Terms—Electrostatically actuated microcantilevers,
multiprobe devices, parametric resonance, system identification.

I. INTRODUCTION

OVER the past years, research in the field of scanning probe
technology and electromechanical devices in general, has

been characterized by two main trends, namely miniaturiza-
tion and parallelizing. Indeed, the use of array architectures of
micro probes not only significantly increases the throughput of
the device, it enhances its functionality as well, allowing for
more complex, multipurpose instruments. Examples of such de-
vices can be found in data storage and retrieval applications [1],
biosensors [2], and multiprobe scanning devices [3] to cite but
a few.

Currently, these multiprobe devices are designed with large
spacing between the individual elements [1]–[6]. This essen-
tially decouples the dynamics of the individual probes, that
can be considered to behave as isolated units. The drawback
of this configuration is, of course, a decrease in the potential
throughput of the system.

The device that we consider in this paper consists of a pair of
closely spaced microcantilevers. The extension to the case of an
array of tightly packed cantilevers is not conceptually difficult
and is obtained as a generalization of the analysis we present
here. Cantilever geometries are particularly interesting, due to
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their wide range of applications, including small force detec-
tion [7], [8], AFM, mechanical filters for telecommunication
[9]–[12], and chemical sensor arrays [13]. In our design each
microcantilever constitutes the movable plate of a capacitor and
its displacement is controlled by the voltage applied across the
plates. We have preferred capacitive actuation over other inte-
grated schemes (e.g., piezoelectric [5], [6], [14], piezoresistive
[15], [16], thermal [17]) because it offers both electrostatic ac-
tuation as well as integrated detection, without the need for an
additional position sensing device. As a matter of fact, we are
currently studying the implementation of a detection scheme for
displacement based on the measurement of the current through
the cantilevers [18].

In this paper we present a mathematical model that explic-
itly incorporates the dynamical coupling between the microcan-
tilevers. Using simple parallel plate theory and for the common
case of sinusoidal forcing, we have demonstrated [19] that the
dynamics of each isolated cantilever are governed by a Mathieu
equation. Here we show that the close spacing and the fact that
the cantilevers are connected to a common base introduces a
coupling in their dynamics, which is both electrostatic and me-
chanical. In particular, we show that the system is governed by
a pair of coupled Mathieu equations. We produce experimental
evidence that validates the mathematical model proposed, in-
cluding a mapping of the first instability region of the Mathieu
equation. The natural frequency of each isolated beam and the
electrical and mechanical coupling coefficients are determined
from the identification of the experimental data. These results
are also validated by finite element simulation methods.

The paper is organized as follows. In Section II, we develop
the mathematical model of the electrostatically actuated can-
tilever pair. In Section III, we present the experimental results
that validate the model. In the linear regime of operation, we
identify from experimental data the coefficients of mechanical
and electrostatic coupling. We prove that parametric resonance
can be induced in coupled oscillators and include the mapping
of the first instability region of the coupled Mathieu equation.
In Section IV, finally we present our conclusions.

II. MODEL DESCRIPTION

Fig. 1 shows the geometry of our device. It consists of two
microbeams connected to the same base, each forming a mi-
crocapacitor, with the second plates (rigid) placed underneath
the (movable) cantilevers visible in the picture. The vertical dis-
placement of each cantilever can be independently controlled by
applying a voltage across the plates. Though each cantilever is

1057-7157/$20.00 © 2005 IEEE
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Fig. 1. SEM micrograph of the device. The insets show details of the
mechanical connection to the base and between the cantilevers.

independently actuated, its dynamics are influenced by the pres-
ence of the other cantilever. More precisely, the coupling is both
mechanical, because the microbeams are connected to the same
base, and electrostatic, due to the fringing fields generated by
the capacitor nearby.

The force acting on each microbeam consists of several com-
ponents, and the overall linearized equation of motion for the
vertical displacement , of each cantilever can be
written as

(1)

where and are respectively the normalized damping co-
efficient and the natural resonant frequency of the th cantilever.
Here, expresses the electrostatic force between the capac-
itor plates of the -th cantilever, while and are re-
spectively the mechanical and electrostatic coupling forces. By
using simple parallel plate theory, the linearized expression of

can be shown to be

where is the permittivity in vacuum,
is the gap between the electrodes, is the area of the capacitor
plates, their mass, and is the voltage applied.

The mechanical coupling force , which will turn out to
be relatively large, originates from the fact that the cantilevers
are connected to the base through an overhang as shown in
Fig. 2.

For we have adopted a lumped-parameters description,
and modeled the mechanical coupling force as a spring like
force, proportional to the difference in the vertical displacement
of the cantilevers

(2)

The value of is a function of both the lateral distance between
the probes and the thickness of the overhang. Intuitively, one
expects this value to be higher as the lateral distance decreases
and the thickness increases. However, the derivation of the exact
dependence of from these parameters requires to solve the

Fig. 2. Micrograph showing the overhang between anchor and cantilevers
base, responsible for the mechanical coupling.

Fig. 3. Schematic of the electrostatic coupling model.

complex PDEs derived from a continuum mechanics description
of the problem.

As far as the electrostatic coupling is concerned, we consider
that the voltage applied to each capacitor results in a charge
induced on each cantilever, that can be expressed as [20]

The interaction between these induced charges is described via a
point charge model. The idea is shown schematically in Fig. 3.
Each cantilever is represented as a charged particle and the
mutual interaction is described by Coulomb’s law

We assume that the lateral stiffness of the cantilevers is large
enough to prevent any lateral motion, so that the only compo-
nent of the force that really affects their behavior is the vertical,
whose first order approximation is

where the coefficients have been scaled by the mass, to
be consistent with (1).
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For the special case of , and after few alge-
braic steps, the equation of motion for the pair can be written,
in compact vector form as

where , ,
, ,

, and ; or equiva-
lently, introducing the vector , and
defining the appropriate matrices

(3)

where represents a small perturbation parameter. The results
presented in the next Section will justify this notation.

Equation (3) represents a system of periodic differential equa-
tions, which we refer to as vector Mathieu equation, since its al-
gebraic structure is reminiscent of the famous Mathieu equation.
In the absence of coupling, they reduce to a pair of independent
scalar Mathieu equations, which indeed describe the dynamics
of an isolated beam [19]. In the next section, we provide exper-
imental data to validate the model proposed and demonstrate
how the coupling, often considered a drawback, can instead be
advantageously exploited from an engineering point of view.

III. EXPERIMENTAL VALIDATION OF THE MODEL

The device we have used in our experimental setup consisted
of two highly doped polysilicon can-
tilevers, fabricated using the MUMPS/CRONOS process [21],
with a gap between the electrodes of about 2 and separated
by a distance of 5 (see Fig. 1). The mechanical response of
the cantilevers was tested in vacuum , using laser
vibrometry [22] to measure displacement and velocity near the
free end of each cantilever, when electrostatically driven with
different ac voltage signals.

More precisely, the excitation voltage for driving the de-
vices being tested was generated by a power source (Hewlett
Packard, HP3245A), while the oscillation velocity and position
were measured at the free end of the cantilever using a laser
vibrometer (Polytec, OFV 3001, OFV 511). The laser beam
is focused onto the device using an optical microscope, which
can be positioned over the sample via a computer controlled,
mechanical x-y positioning mechanism. The measurement is
based on interferometry, in which the idea is to split the laser
beam into two (coherent) beams: one that impinges on the
device tested, the other on a reference target. The relation be-
tween the difference in phase and the difference in path length
traversed by the two beams is then translated into displacement
of the beam. Due to the relatively high working frequency
and the small displacement of the cantilevers (
and ), we worked with velocity measurements,
which for high frequencies are more reliable and accurate than
position measurements [23].

The results of these measurements were recorded and ana-
lyzed with a signal analyzer (Hewlett Packard, HP89410A) and

Fig. 4. Schematic of the system transfer functions.

oscilloscope (Tektronics, TDS 420A). The instruments were in-
terfaced to a PC, where data could be stored for further analysis.

A. Linear Regime of Operation

The first set of experiments was performed to characterize the
system in its linear regime of operation, that is for small input
signals . When the amplitude of the voltage applied

in (3) is small, the time-varying coefficients can be neglected
and the device is described by a system of second order ordinary
differential equations

(4)

Because of the coupling, the vibration of each cantilever de-
pends both on its input and on the voltage applied to the other
cantilever. Therefore each cantilever is characterized by two
transfer functions, that describe how each input affects its dy-
namical behavior. Let Gij denote the transfer function from the
voltage input applied to the th cantilever to the velocity output
measured on the th cantilever, when the other voltage input is
set to zero (see Fig. 4 for a schematic representation). The ana-
lytical expression of these transfer functions can be found to be

(5)

where , , ,
,

. Fig. 5 represents the ex-
perimental and fitted data of these frequency responses. Notice
the presence of two peaks in the frequency response of each
single cantilever, a consequence of coupling, predicted by (5)
as well. These frequencies correspond to the so-called normal
modes of the system and their values coincide approximately to

and , respectively. It can be proved that the oscillation
of the microbeams is in phase for and in antiphase for

[24].
By fitting our model to the experimental data, as shown in

Fig. 5, we get that the natural resonant frequencies of the iso-
lated beams are, respectively, and
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Fig. 5. Magnitude of the frequency responses of the coupled cantilevers with different input/output combinations. The circles represent experimental data; the
solid line the fitted data.

, while the quality factors turn out to be
. The difference in the values of and , in spite of the

fact that the beams have the same geometry and material, is to
be attributed to the asymmetry of the anchor in the point where
it connects to the beams, visible in Fig. 1 and also in the Ansys
model of Fig. 8.

1) Identification of Mechanical and Electrostatic Coupling
Coefficients: The coefficient of mechanical coupling has
been estimated using the power spectral density (PSD) of the
vibrations induced by thermal noise. By setting to zero both
inputs, the electrostatic coupling is eliminated and the effect of

can be singled out. More precisely, the location of the peaks
in the frequency responses is in this case solely determined by

. Fig. 6(c) and (d) shows the experimental characterization
of noise, that as expected has a gaussian distribution. From
stochastic filtering theory it is known that the PSD of the
output of a linear system excited by random noise is given
by

(6)

where is the PSD of the input noise. In our case, since the
system has two inputs, and the noise on each of them is mutually
independent, (6) becomes

(7)

where the last equality follows from the fact that and have
the same stochastic description. Since the PSD of thermal

noise is constant, (7) offers a way to extrapolate the value of
from the value of the normal modes. Parts a), b) of Fig. 6 show
the comparison between measured and fitted data after (7). Note
that the region between the two peaks is below the noise level
of our instrumentation, hence a good fit cannot be obtained.

By examining the numerator of and in (5), one can
notice the presence of a resonant zero, visible also in Fig. 5 as a
dip in the magnitude plot of these functions. This zero frequency
is called antiresonance [24], and its value is approximately equal
to . This expression highlights that its ex-
istence is due to the mechanical and electrostatic coupling, and
its location changes with the amplitude of the driving voltage.
This property gave us a way to estimate the values of the elec-
trostatic coefficients and , as shown in Fig. 7(a) and
(b). As a matter of fact, the shift in the zero location depends
linearly on the voltage applied, and the coefficient of propor-
tionality is given by for and for . In a similar
fashion, the coefficient was estimated from the shift in the
poles with the applied ac voltage. Finally, the coefficient
was estimated by applying the same voltage to both inputs. In
this case the system is specified by only two transfer functions,
whose analytical expression can be easily derived from (4). In
particular, the numerator of the transfer function of cantilever 1
turns out to be

therefore also in this case the location of the antiresonance is
related to the changes in amplitude of the ac voltage applied .



NAPOLI et al.: CHARACTERIZATION OF ELECTROSTATICALLY COUPLED MICROCANTILEVERS 299

Fig. 6. (a) and (b) Fit from PSD of thermal noise to determine�. Circles denote experimental data, the solid line is the fit. (c) and (d) Experimental characterization
of noise distribution (10 samples of the noise signal at the vibrometer output).

It is worth noting that the equivalent stiffnesses corresponding
to these electrostatic coupling parameters are quite large, indi-
cating significant coupling in this system, but two orders of mag-
nitude smaller than the mechanical stiffness of the uncoupled
cantilever, justifying the notation of (8), where they are repre-
sented as a perturbation to a time invariant equation.

2) Finite Element Simulations: We have performed some
simulations using finite element methods to verify the exper-
imental findings. The pair of cantilevers has been modeled
according to the actual physical configuration, as shown in
Fig. 1. In particular, both the anchor and the overhang which
connects the two beams have been explicitly incorporated
in the model. The geometry generated in Ansys is shown in
Fig. 8(a). The values of the first two modes, found by modal
analysis using the element Solid92, match well the values of
the two peaks in the frequency response found experimentally.
Fig. 8(b) and (c) shows the Ansys model corresponding to the
isolated cantilevers. These models have been used to determine
the resonant frequency of the uncoupled cantilevers. Table I
presents the value of some significant parameters obtained by
identification and compares it with the value obtained by finite
elements simulation. The agreement is quite satisfactory.

As the amplitude of the driving signal increases, so do the
values of and and this linear time-invariant approximation
of the system is no longer appropriate. In order to predict and
explain the rich dynamics that the system shows, we have to
return to the original (3).

B. Parametric Resonance

Parametric resonance is a form of mechanical amplification
that can be induced in systems having periodically varying pa-
rameters. In this mode of operation, large responses can be gen-
erated even when the excitation frequency is far away from the
system’s natural frequency. The interest from an engineering
point of view for this phenomenon comes from the fact that it
can greatly enhance the sensitivity of microdevices, which as
their size reduces, find themselves operating closer to noise level
[25].

In [19] we showed that a single electrostatically actuated mi-
crocantilever can exhibit parametric resonance, whose existence
in MEMS devices was first demonstrated in [26]. In this section
we demonstrate that this phenomenon persists also in the case
of coupled cantilevers [27], [28].

Ignoring damping and external excitations, (3) can be written
as

(8)

which can be considered the vector extension of a standard
Mathieu equation. Parametric amplification depends on the
stability properties of (8), and more precisely on the stability of
its periodic solutions [29]. It can be shown that the stability of
these trajectories is equivalent to the stability of the equilibrium
points of the discrete time-invariant system having as its state
matrix the state transition matrix of (8) computed at the period,
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Fig. 7. Experimental estimation of the electrostatic coefficients. K are the coefficients of the electrostatic coupling force, F ; K is the coefficient of the
attractive force, F , between the cantilever and its ground plate.

Fig. 8. Ansys model of the cantilever pair (a) and of the single cantilevers (b)
and (c).

TABLE I
COMPARISON BETWEEN THE VALUE OBTAINED BY TESTING AND FINITE

ELEMENT SIMULATIONS OF SOME RELEVANT PARAMETERS OF THE MODEL

Fig. 9. Schematic representation of the conditions corresponding to a possible
loss in stability for two coupled Mathieu equations.

. In the following, we show that for in (8) the
origin is a strongly stable (for a Definition see [29, p. 117])
equilibrium point of . Then, by definition, the ‘perturbed’
solution, obtained for small values of , will be stable as well.

For , (8) is time-invariant and describes a two-dimen-
sional harmonic oscillator

(9)

The eigenvalues of the corresponding to this equation
are given by

(10)

where the ’s are the eigenvalues of a state space representation
of (9) and are purely imaginary pairs, since there is no damping.
As a consequence, the ’s are on the unit circle. By virtue of
Liouville’s theorem, the product of the ’s, for any value of , is
always equal to 1. Together, these two facts imply that the origin
is strongly stable. As a matter of fact, these conditions constrain
the eigenvalues of the perturbed state transition matrix to move
in complex conjugate pairs along the unit circle, and therefore
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Fig. 10. First region of coupled parametric amplification, with the electric signal applied to one cantilever only. The three tongues correspond respectively to
(a) ! = 2w ; (b) ! = 2w ; (c) ! = w + w . Picture (d) shows the exponential growth of the output inside the region of parametric amplification.

describe stable dynamics. The only cases when the perturbed
system can have unstable eigenvalues, is when at least one pair
of ’s overlaps and is equal to 1, or when the two pairs of

’s overlap, as represented schematically in Fig. 9. In fact, in
these cases the ’s can leave the unit circle, still satisfying the
condition on their product.

This loss of stability corresponds to the cases ,
and , . It is not difficult to prove
that

where the ’s are the eigenvalues of , and correspond
roughly to the resonant frequencies and , defined in
Section III-A.

Hence, in terms of frequency of excitation, parametric reso-
nance can occur when

(11)

It follows that, similarly to the case of a scalar Mathieu equa-
tion, the – parameter space can be divided into tongue-shaped
parametric/nonparametric regions. The values in (11) corre-
spond to the tips of these regions. More precisely, according to
(11) each region of parametric amplification (i.e., each ) for
two coupled Mathieu equations is composed of four subtongues.
In fact, in [30], [31] the authors proved that
is never a critical value, i.e. cannot excite a parametric behavior.

Note that the presence of a damping term, whose existence we
have neglected so far, has the effect of shifting the tongues up-
wards, so that there is a critical voltage amplitude above which
parametric resonance can be induced [32], but does not affect
the stability analysis.

Fig. 10 shows the experimental mapping of the first region
for our pair of cantilevers, where in terms of physical

parameters, corresponds to the input voltage amplitude .
During these experiments one of the inputs was set to zero, while
the other was set to . Which input is
selected is in fact inconsequential, given the symmetry of the
device, and the results can be reproduced using either one of
them. Note that when the input is a square-rooted sinusoid, (11)
needs to be modified, to give and

. Fig. 10(a) and (b) shows the cases corresponding to
the driving frequency being varied around a) , (b) ,
and (c) .

During the parametric amplification regime the beams ex-
hibit an oscillation that is bounded by the system nonlineari-
ties [32]. In fact, for large oscillation amplitudes, both the linear
spring model and the electrostatic force previously introduced
need to be corrected by adding cubic terms [33], [34]. Hence,
(3) becomes

where the matrix , diagonal, describes the effective cubic
stiffness of each beam, which includes both electrostatic and
structural contributions. What we observe when driving the can-
tilever in parametric resonance regime is: in case a) and b) a sub-
harmonic 2:1 oscillation at half the frequency of excitation; in
case c) an oscillation having both frequency components. Note
also that during the transition from nonparametric to parametric
region, the response shows, as expected, a characteristic expo-
nential growth (see Fig. 10(d)) [32].

Fig. 11 offers a comparison of the frequency response of a
cantilever around the parametric resonance region and above the
critical driving voltage. Part a) refers to an isolated cantilever
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Fig. 11. Frequency response above critical driving voltage: (a) single
cantilever and (b) coupled cantilevers in region a) of Fig. 10. Both cantilevers
show qualitatively the same behavior, in any one of the three resonant regions.

(data from [19]), part b) to coupled cantilevers and to region a)
of Fig. 10. For part b) the data shown corresponds to only one
region and only one of the two cantilevers, because qualitatively
they show the same behavior, in all three resonant regions. Note
also that the flattening of the oscillation amplitude is due to the
cantilever touching the substrate. In both cases, uncoupled a)
and coupled b), the data was collected by applying a square
rooted sinusoidal input and sweeping its frequency from low to
high (“ ” points) and from high to low (“ ” points), as indicated
by the arrows.

What we notice is that when sweeping the frequency from
low to high, in both cases, the entrance to the parametric region
is marked by a sharp jump in the amplitude of the cantilevers
oscillation. Since this transition occurs always at the same fre-
quency, related to the natural frequency of the system, the phe-
nomenon has potentially many applications, ranging from me-
chanical filters to extremely sensitive mass sensors. In the case
of two cantilevers, moreover, one has the advantage of having
three parametric regions and therefore the option of selecting
the frequency range where to work. Note also that the tongues
can be placed as desired, at the design stage of the device, by
tuning the mechanical coupling coefficient.

Inside the parametric region, as the driving frequency in-
creases, the periodic subharmonic solution is stable and shows
decreasing amplitude in case a), and increasing amplitude in
case b). We point out again that the flattening of the output is
an experimental artifact, due to the fact that the cantilever is
touching the substrate. Upon exiting the region, while in case a)
the oscillation is reduced to zero, in case b) the periodic solution
remains stable and its amplitude virtually keeps increasing,
untill it falls back to zero. The location of this second jump is
not predictable and depends on the amplitude of the frequency
increments. If we invert the process and start decreasing the
frequency, the output amplitude starts to increase and keeps
increasing, in both cases, even after leaving the parametric
region. Again, this large periodic solution eventually collapses
to zero at some unpredictable time.

From a dynamical systems point of view, the different be-
havior in Fig. 11(a) and (b) corresponds to a different phase
portrait. In particular, while the single cantilever has a bistable
region only on the left side of the tongue, where both the peri-
odic and the trivial solutions are stable, the coupled cantilevers
have a bistable region on both sides of the tongue. Interestingly,
a single cantilever exhibits a behavior similar to what depicted
in Fig. 11(b) when subject to both harmonic and parametric ex-
citation [35], for instance, when excited by a sinusoidal input
having a small dc offset. Since the electrostatic force depends
on the square of the voltage, this implies that the cantilever is
excited both at the driving frequency and at , implying the
coexistence of both harmonic and parametric forcing.
For the case of two cantilevers this behavior can be explained in-
tuitively by the following approximate argument. From (8) de-
fine and , and consider the case of a
square rooted sinusoidal input: the equation of motion are given
by

(12)

(13)

where , , , ,
, . Ignoring for the moment their

right-hand sides, (12) and (13) represent a pair of uncoupled,
standard Mathieu equations. Hence, their parametric regions of
the first order are obtained for and respec-
tively, which correspond roughly to the peaks of the frequency
responses in Fig. 5 and to the values obtained by the previous
analysis. From the definition of we can infer that and
oscillate in phase at , when excited at : hence

on the RHS of (12) acts as a harmonic excitation, justifying
the phase portrait observed experimentally. A similar argument
can be repeated for (13), where oscillates with opposite phase
from and provides the harmonic excitation.

IV. CONCLUSION

In this paper, we have presented a mathematical model for
a pair of electrostatically actuated microcantilevers, which ex-
plicitly incorporates their dynamical coupling. In our design the
cantilevers, which are connected to a common base, constitute
the movable plate of microcapacitors and their displacement
is independently controlled by the voltage applied across the
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plates. In the case of sinusoidal excitation, we have proved that
their dynamics are regulated by a pair of coupled Mathieu equa-
tions. We have provided experimental validation of the mathe-
matical model, including a mapping of the first region of para-
metric amplification. From this work, many sensing applications
can be realized, utilizing the sharp transitions from nonresonant
to resonant state, which are present in the parametrically res-
onant state. Filters and sensors using this mechanism are being
explored [11], [12]. In addition, an extension to multi-cantilever
arrays is also being investigated. This result offers designers tan-
gible guidelines needed to implement novel parametric devices.
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