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Electronic Stfuct'ure 'va Hgl_'xCdXTeﬁAlloys' and Ch_a,r.g'e .De_,n-sitiy
Calculations Uéing Representative k- ]f-'>c‘)ir1tsT
: . b.oo Chadi and M_a[r_vm' L. Cohen
- Department of Physics, U ni\)ersity of California, Berkeley, California 94720
o | and - | |
Inorganic ‘M‘ate‘r’ials Research 'Division,.VLawrence"B‘erke-ley Labdratory |

Berkeley, California 94720 '_

Abstract
-~ We have ca_lculated t‘he_’e'lectronic’ band structures an&
charge densities near. I for the Hgl_xCdee alloj systerh using
the 'empirical pseudop_otential method. We find thai the energy.
- gap varies linearly w‘ith‘:v).c, with thé vsemimetalv- semiconductor
ti'ahsi_t'ion occurring at x = 0. 165.. ‘We have calculated the total
el:ec‘tronic_' charge densities of HgfI‘é and CdTe by usvi'ngva weighted
sum of the charge densities at a few 's'ynimetry points in the |
. Brillouin zorie a_nd. for the,non-'symrfietfj pbint ﬁse_d by Baldereschi.
We show fhat fof a iarw clas_s of 'semi‘conduCting compbunds the
total electronic chargé density can be 6bta'1fned‘ to a vefy high degree

ofvaccuracy using the'sevvrepresenta,tivek-points. ,

D

L 'Introduc:tion.
’I‘hé two z_inc'blende.c‘or_ripounds H’gTe and CdTe form a cOntinuous series

1,2,3

of alloys ’ S denoted by Hg']'_XCdee where x is the mole fract.ion of CdTe

- in the alloy; This alloy system has been of great interest in récent years



2.
necause of the wide range of its physical properties. T'hese alloys are a
mixture of a semimetal (HgTe) with a semiconductor (CdTe); the energy gap

4,5

E . in the alloys varies continuously between the -0. 30 eV6 "negative"

G
gap found in HgTe to the 1.60 eV7’ 8 gap found in CdTe. Narrow gap semi-
conducting alloys in this system have proved useful as infrared detectors. 9

Interest m Fhe band structures of the Hg]_XCdXTe’alloys has been‘
concentrated méiniy m the region of the Brillouin zone near I'. It is in this
region wh.ere fhg‘: band structures éha.nge most with alloying. The band struc-
tures for HgTe and Cdl'e were previously obtainecllo by ‘uss'mg the émpiri—

cal pseudopotential method. ]].

In this paper we present detailed results of
our calculations of the band structures of the Hgl_}%Cd};Te alloys alorig sym-
metry directions near I'. The calculation is described briefly in Sec, II and
the band structures are discussed in Sec. II. The charge denSities for the
Ty and Iy levels as well as the total valence band charge density near T are
discussed in Sec . IV. The way in which the position of the I‘6 level a,ffects
the total charge density a.._t T is also discussed in Sec. IV. InSec. Vwe
show ﬁow the charge density at a few symmetry points can be used to calcu-
late the total electronic chargé density for each band in a crystal. The
accuracy of the chargé’ density obtained usiﬁg representative k-points in
this way is discussed in Sec. VI. In _this section we also present the results
of our calculation for the total electronic charge densities of CdTe and HgTe
ébtamed by the approximation method described in Sec. V. The results for

CdTe are compared with a previous calculation12 using a large number of

points in the Rrillouin zone.
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~ perturbation scheme.

II. Rand Structure:Calculéttion

Our calculation of the band structur'es of the Hgl-‘xCde-e alloys are

11

'based o'n-the empirical pseudopotential methcd and the virtua.'l crjrsta.l

: approximatién The ps eudopotentlal form factors for ‘HgTe and CdT'e were

previouslylo obtained by fitting the theoret1cal optical reflect1v1ty spectra to
the experirnental data. Inthe present ca.lculatlon we have used the same form
factors for Hg‘I‘e as in our previcus work. 1© The form factors for CdTe have
been modified slightly because we have increased the number of plane waves
used in the expansion of the wavefunctlons ThlS_ was done in order to have
the same number of plane Waves for CdTe as'for .HgTe. The new form fa.c-v
tors for CdTe were const_ra.ined to (jive nearly the same energy differences at
I, X, LandX as in our previous wcrk. The symmetric and antisymmetric
form factor_s (in .Ry) for CdTe used in the present calculations are:

V([G|2 - 9) = -0.254, Vg(8) = -0.042, Vg(11) =0.041, V,(3) =0.151, -
VA(4) = O 068, VA(l'l) = O 005 and VA(1'2) = 0. Spin-orbit interactions were

included in the _cal'culation'u_sing the Weisz scheme! as modified by Bloom

- and Bergstresser. 14 The two spin-orbit parameters were constra.ined to have

the same ratio as the splitt-incjs in the free atoms, leaving only one spin-orbit
parameter. The spm—orblt patratmeter10 15 was set equal to 0.0011 (Ry) for
CdTe. This gives AO = F(] 8) - B(L, ) = 1. 02 eV and Al = E(L4,5 - E(L6) =
0.6 eV, The 'bsnd struc-tures were calculated by taking 59 plane waves into
account ‘exact’ly while treating a.n extra 54 plane waves through the wwdin
11,16 The size of the matrix was 118 x 118 (i.e. 59

plane waves for each spin).
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The pséudopotentia.l for the alloys were taken to be the average of the
HgTe and CdTe pseudopotentials. The averaging included the spin-orbit com-
ponent of the Hamiltonian. The pseudop’oteqtial’form factors were scaled for
thé small changes in the Jattice constant.'; The lattice constants adj'usted to
0°K are 6.45 K for HgTe and 6.48 Zi for CdTe. The lattice constant changes
almost linearly with x. 17 |

I11. Eand Structure Results

The célculatod variatipn of the energy gap Jdefined as EG s E(FG).‘
h‘-(r8) was found to be linear with x at 0°K. The enérgy gap changes sign
when x increases from 0.16 to 0.17. The energy gap is -0.01 eV at
x =0.16 and‘ is +0.01 eV at x =0.17. Tle exact vaiue of x at the semimetal-
semiconductor transition poir_it is temperature dependent_. For both HgTe and

CdTe IEG' decreases with temperature5’ 18

thereby lowering the value of x
at which the transition occurs at higher tvemperatures. The calculated value |
of x at the transition point is x ='IO. 165 a.t‘OoK». This value is in excellent
agreement with indirect measurements of the venergvy gap at low temperatures
using magnetoreflection-experiments,_]9 and with the value obtained from the
temperature dependence of the Hall constant. 20 For a highly homogeneous
sample with x = 0.161 + 0.003, _Groves and Harma.n19 report EG = -0.01 at
T = 25°K and EG ~0.01 eVat T ~ 90°K. Vérie?® estimates X = 0.160 «
0.005 for the transition point at low temperatures.

The calculated variation of the energy gap EG and the spin-orbit

splittings AO and A] are shown in Fig. 1, where it is seen .that all these

energies vary linearly with x. In Fig. 2 we show the band structures for the

.
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top two valence bands and the first conduction band for HgTe, CdTe and two
avlloys}near the transition point. The band structures extend from I to |f<.|
0.18 (%;—r) in the A and A directions, Near the transition pomt the variation
of énergy' with 'wravevéctor is al'mostvlvinear in the region near T for the Iy
level and for ﬁhe Iy light mass band. This is in agreement with the band struc-

ture obtained from the Kane secular equation21 for the case when E(* = Q0.
. v |

IV. Charge Densities near I’

» - .
The alloys Hgl_XCdXTe have an inverted band structure similar to

that of grey tin for x <0.165 (Fig. 2). I is interesting to see how the posi-

tion of the I‘6 level with respect to the degenerate 1‘8 levels affects the elec-

tronic charge density near I'. Figs. 3 and 4 show the chafg_e densities of the

Iy and Iy levels for HgTe and CdTe. The charge density has been evaluated

at about 1600 points in a (1 ,'—1,0)bplvane which contains both the Hg - Cd and Te

sites i‘n the .primitive,,cell._ The charge density has been normalized to —2@@

where § is the volume of the primitive cell. The charge densities of the 1‘6

and I, levels in HgTeare nearly the same as the corresponding charge den-

sities in CdTe, i.e. the g and Iy levels have retained their identity regard-

less of whether they are part of the valence or conduction bands.

In Fig. 5 we show the charge densities for the sum of the valence
bands near I’ for HgTe, CdTe and the alloy Hgo. ]67Cd0. 833Te' near the tran-
sition point. The charge densities for HgTe and CdTe have different charac-

teristics. For HgTe, the maximum of the charge distribution occurs exactly
: ’ maximum is shifted toward ('d.

at the Te site wvhi.le for ("dT'c the / . The difference in charge densities is

directly related to the position of the 1‘6 level in these compounds. In CdTe
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only the lowest valence band has largely an s-like character, but in HgTe the
s-like character of the Iy valence band has been added to the s-like charac-

ter of the lowest 'va.lence band and one of thé p-like I‘8 bands haé become the
first conduction band. This difference in charge densifies persists in the
alloys Hgl_XCdXTe;_ th-elcha"rge density being nearly identical to the HgTe or
CdTe charge dénsities depending on the position of the I‘6 level. Also shown
in Fig. 5 is the charge density for an alloy with a very small positive energy
gap. Because of the large mixing of wavefuﬁctions at T for thig alioy a charge
density whose characteristics are intermediate between those of lHg'l'e and
CdTe has been obtained. | |
Tlre.charg.'e densities of the sum of valence bands for HgT e and CdTe
are shown in Fig. 6. T"hes"e‘ charge densities were calculated usihg an
apprbximation scheme described in Sec. V. The total valence band charge
densities of HgTe and CdT'e show a greater éimilarity to each othef than the
correspohding charge densities calculated near I (Fig; 5). Although for HgTe
the maximum m the charge density is still at Te, the difference between CdTe
and HgTe = is less than is implied ‘from the charge distributions
near I (Fig. 5), where the 1“6'level‘ has greatly in.flue_nced the HgTe charge
distribution. |

V. Calculation of Charge Densities Frdm a Few

Representative Points in the Brillouin Zone
We can ask the question whether it is possible to obtain a good approxi-
mation to the charge dénsity by using the charge densities of a small number

of points in the Brillouin zone. Baldereschi22 has recently proposed using .



only one ?—pomt td calculate the average charge density. For fcc crystals
the coordina.teszl'of this point are %T-T (0.622, 0.295, 0). We will show a
g;‘:nerau method of obtaining 'thve. charge density of semiconducting crystals by
using the charge dens:it.y calculated for a few points. We also obtain the rep-
resentatwe point chosen by Paldereschl (referred to here as the Baldereschl
pomt) for fcc crystals when only one point in the Bmlloum zone is used for the-
charge density calculatlon The accuracy of this method in obtaining »the _
charge den31ty is dlellSSCd in Sec. VL

The procedure is to express the wavefunctlons and charge den51t1es in
terms of the Wannier functions. For a given band we can express the Bloch

functions in a ‘given band in terms‘ovf the Wannier functions for that band:

KR
I‘DE(;)WE e ma(r-Rm)
m o ‘

where the band index has been suppressed, —ﬁm is a lattice vector, and

-

a(r - _lim) is_'a Wannier function"centered on -f?m. The charge density asso-

v ciated with this wave functiori is
- *
p@ = @ @) -
mo.n - R (1)
The total charge density for thégiveri band is "

2

o) = Zep(® = 2 |alr-Ry)
k& m



The expression for pfg(r) in (1) can be written in the following way:

1kR -
> e a(r-R)a(+R.-R),
jmo :

-

©
.
i
2
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N

where the prime in the sum over j means that the term with ﬁj = 0 is not

included in the sum. The first sum in (3) is proportional to the total charge
for the given band

density/and is actually the average charge den31ty of an electron in that

band. Our purpose. is therefore to try to minimize the second sura in (3).

To do this, consider the set of wavevectors obtained from a general wave-

vector X = (k k3) by performing all all p0331b1e permutations and sign

1 2
changes on the components We can generate up to 48 different K vectors
from a g1ven one usmg these operations, wmch will be specﬁled by T. The
charge densities pE(r) assoc1ated w1th each one.of these wavevectors can be
calculated easinly once the charge densﬂy for one of them is known by using

the symmetry operations of the Hamiltonian. The sum of charge densities

obtained in this way from the charge density pﬁ(?). is given by

. - 1 . N 2
Zepgl) =y n oz late - R )|
m
1 ' i(TE)-—ﬁj — —_ X - — .
ﬁ;Z,Ze , a(r-Rm)a(r+Rj-Rm). (4)
j m T :

The first term in (4) is independent of any sign changes and perrnutations of
K so the sum over T just multiplies this term by 48. Let F(?) be the second

sum in (4), then _F(;) ¢an be expressed in the following way:

[
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.F(r) = ?'e o2 alr Rm)a (r +,TRj Rm)' . (5)

-

For any given ‘—ﬁj, TRJ. is a lattice vector of the same magnitude as ﬁj’
therefore the sum:

S(}’)-_rra(r-R)a(uTR-R) - C(8)
m T ’

in (5), for a given ﬁj’ remains constant under all permutations and sign
changes of -ﬁJ The condition that F(?) be zero can be fulfilled if we requirc

the wavevector kK to satisfy the following set of equations:

/ kR, . | - .
e J=0 . m=123... (7)
IR, =¢ - |
j m
where Ch = mtl'l nearest neighbor distance. In the case where two lattice

veetors, such as R (2 1 —) a .and R2 g g 0 )a in the fcc structure,

have the eanle magnitude but the coordinates are not related by any permu-

| tations or sign changes, Eq. (7) must be satisfied for each set of lattice vec-
- tors separately. |

For the fcc crystal sti'ncture, letting -IE -2 (k k2 k3), the equatlons

to be satisfied are of the follew'mg form for the first three nearest nelghbors_;

cos k1 cos k, + oS k1 cos k3‘+ cos k, cos k3 =0 (8)

cos 2k, + coe ?kz +cos 2ky = O ' | o (9)

cos 2k1 cos kz cos k3 + COS .kl cos Zk2 cos k3 + COS k1 cos k2 cos 2_k3 =0 .
(10)
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The point %‘-‘ (0. 622,‘0. 295, 0) prqposed by Baldereschi satisfies (8) and (9).
It is possible to show that for the fcc cryst'al strucﬁure there is no K which
will satisfy (8) - (iO) simultaneously. We can, however, use more points in
the Rrillouin zone in order to satisfy a gpeater number vof the conditions of
(7). In fact we can use the weighted sum of the charge density at a few points
in the Rrillouin zone to do this. If the charge density isA go_ing to be approxi-
mated by |

pr) = £ %

G ' (c) (11)

i=1 i
then the conditions, similar to those in (7), to be satisfied are
n . iki-?{. : : v
nox agel 1=0 m=1,2,3,..., (12)
i=1 |R,|=c -
] m

' ' . : th
where n is the number of points being used and as before cm =m nearest

neighbor distance. We must also require

n 1 : . :
Z 9 = 78 - 1
1:1 . B .

in order to have the proper normalization for the charge density. The con-
ditions (12) are onst easily satisfied by symmetry points. For example, the
three symmetry points r, Xand L can be used in this way to calculate the.

. charge 'de'nsity. The charge density is then given by

| p(r) = gpL(r) +_8_pX(r) + 5P (r)

-

r) we mean the symmetrizéd charge densities at
1 _

where by p.(7) and p.(
o X L

these points, (i.e., pX(?) =78 > pT(1 0 O)(;) , T being the set of 48 per- |

v T
mutations and sign changes of the coordinates of a general wavevector; for X

o~
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1}1.
this gives pX(?) = % (p(l,0,0)(;> + p.'(o’ 1’0)(;) + p(0,0, i)'(?) ) ). The
symrrietry po.ints r, X,' and L used in this combination .satisfy the condi-
tions (12) for the first three nearest rle-ighbors and should therefore give a
better charge density thén the Baldereschi point; furthermore, the calcuia—
tion of wevefunctions and charge densities is simpler for symmetry points

than for general points. A much better scheme with three symmetry points

~ that satisfy equatio'nsl (12) for the first seven nearest neighbor distances is

obtained by using a w_eighted sum of the symmetrized charge densities at

K, - (0.5,0,0), K, = (1.0,0.5,0) and ¥ 4 = (0.5,0. 5,0) with the weighting

' 1 1 1. ' .
factors Q=7 QZ =3 and Qg =35 respectively. |

" .VI. Accuracy of the Representativek-Point Sc_h‘eme for .}

Charge Density

The scheme outlined in'Sec.v V for the calculation of charge densities
from a few representative points in the Brillouin zone is clearly valid only
for completely filled bands and therefore is not very useful for metals. It
will give accurate results W_hen,the Wannier funeﬁions representing the bands
are well- locaiized. The magnitude of the error 'm"the charge density is

given by F(r) in (5). This error will decrease rapidly when the conditions -

(7) or (12) are satisfied beybnd the nearest neighbor sh_elis in which the

Wannier functions ere well ioCalized. The Wannier function for aL band is

not unique; it is related to the BRloch functions in the band by

a@) = 3 ¥ () e
k .

where the 3(k) are arbitrary real numbers. The localization of the Wannier
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function a(;) depends on the choice of the 6(k). The localization of the

Wannier functions for the one-dimensional case has b'eeri treated by Kohn23

and the general case has been tr_eated by Blount.:24
We have used the approximation schemes described in Sec. V. to

calculate the electronic charcje densities for HgTe, CdTe and some other
semiconductors. A cqmparison of our _results for the sum-of the valence
" band charge densities of _Cd’.[‘e With br_evious calculatior'ls]z using a large
number of points inv the Trillouin zone, shows excellent agreem ént bhetween
the two. The total churée densities for Cdl'e a.ndﬁ[*lg’l.’c; were caleulated in
two different ways: first by using the Baldereschi point 2&1—] (0. 622,0.295,0)
and then by using a weighted sum of thevcha.rge densities at 23—"(0, 5,0,0),
£1(1.0,0.5,0) and 2%0. 5,0, 5,0), as described in Sec. V. For CdTe the
total charge densities obtained m these two ways wére fouhd to agree with
one another and with the 71 point c_alcula.tionlz té about 4 1%. The sum ‘of
the valence band charge densities for HgTe and CdTe obtained in this Way
are shown in Fig. 6. |

The accuracj of the approximation schemes is less for the indivi-
dual valencé band chargg densities than for the sum of the valénce band
charge densities. The scheme using the weighted sum of charge densities
at(0.5,0,0), (1,0.5,0) and (0.5,0.5,0) (in units of %) gives individual val-
ehce Band chérge densities to an accuracy of + 5% for many crystals. The
accuracy of the Baldereschi point is low'er than the three point scheme as
may be expected. The ‘re‘a._sé)n why the total charge density turns out to be

more accurate than individual band charge densities is that even though the
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Warmier functions for the iridividual_ bands may not be localized, we can
construct a set of composite Wannier functions from these bands such that
they are more localized and such that they will give the total charge density.

For n interacting bands we can construct n composite Wannier functions:

) S ..n : : )
- 1 s s . :

w1th the requlrement that U(k) be é unitary matmx for each k | rI»’hese
Wanmer functlons are constructed from a combmatlon of Bloch functlons
from different_ bands m, and : - satisfy ‘the‘usual prop-
erties of Wanhier fun.ctions. The Bloch wa{}efunctions cah be ekpressed in

terms of these composite Wannier functions:

o0 o
pr (=" = U _®e Jal-R) . (16)
j

The sum of the charge densities of the n bands is then given by

* . ) n
k m(r) zpk Iﬁ(»r) = X X |a

| | (r-R)I (17
o | ,‘, o i=1

n .
>z i
m=1-k

This express‘ion‘is 'simil.ar‘ to. (.2) with the 'except‘ion that in (1’7) , .I(F)’ does
not represent the Wanmer function of any given band There is con51derably
more freedom in constructmg the compos1te Wanmer functlon (15) than the
sunple Wanmer functlons (]4) ThlS extra degree of freedom can be used to
~ make the comp031te functlons very locahzed partlcularly 1f the bands from
whlch they are__con.str_ucted dovnot 1ntera.ct strongly wlt_h_other bande». The

approximation schemes described in Sec. V can be easily extended to these
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new Wannier functions for the calculation of the total charge dehsity. The
feéresentative_ points in the Eriiiouin zone givi.rig the total charge density are
again found to satisfy the conditions (7) or (12). These localized Wannier
functions pfovido.at least some explanation for the fagt_that the calculation of
the va lencevband-'cha’rge densities v.using.only a féw Ar_.'ep_resentative points turn
out to be so accurate. |
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Fig. 1.

Fig. 2.

Fig. 4.
Fig. 5.

Fig. 6.

-Band structures near T for HgTe, CdTe and two alloys near the.

16.

Figure Captions

Variation of the energy gap EG and spin-orbit splittings at " and L

with alloying for Hg 1-xCdee alloys.

semimetal-semiconductor transition region. The band structures
extend from I to |E| =0.18 (%T—T) in the A ar_xd A directions.

HgTe charge densities near T for the Ig conduction and valence

levels (top), and the I'. valence level (bottom).

6

CdTe charge dengsities ﬁea,r I’ for the I‘) conduction level (top) and

6

the I‘8 valence level (bottom).

Sum of valence band charge densities near T for HgTe,
Hg0.16,7Cd0;833Te and CdTe.
Total valence band charge densities for HgTe and CdTe. These

charge densities have been normalized to 8e/8.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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