
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Analogies Emerge from Learning Dyamics in Neural Networks

Permalink
https://escholarship.org/uc/item/5s8259wx

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Lampinen, Andrew
Hsu, Shaw
McClelland, James L.

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5s8259wx
https://escholarship.org
http://www.cdlib.org/


Analogies Emerge from Learning Dyamics in Neural Networks
Andrew Lampinen (lampinen@stanford.edu)

Department of Psychology, Jordan Hall, 450 Serra Mall, Stanford CA 94305

Shaw Hsu (cshawhsu@stanford.edu)
Department of Biophysics, James H. Clark Center, 318 Campus Dr., Stanford CA 94305

James L. McClelland (mcclelland@stanford.edu)
Department of Psychology, Jordan Hall, 450 Serra Mall, Stanford CA 94305

Abstract

When a neural network is trained on multiple analogous tasks,
previous research has shown that it will often generate rep-
resentations that reflect the analogy. This may explain the
value of multi-task training, and also may underlie the power
of human analogical reasoning – awareness of analogies may
emerge naturally from gradient-based learning in neural net-
works. We explore this issue by generalizing linear analysis
techniques to explore two sets of analogous tasks, show that
analogical structure is commonly extracted, and address some
potential implications.

Keywords: neural networks; structure learning; representa-
tion; analogy; transfer;

Introduction
Analogical transfer is often considered an essential compo-
nent of “what makes us smart” (Gentner, 2003). However,
there is a tension in the literature – Detterman (1993) has de-
clared that “significnt transfer is probably rare and accounts
for very little human behavior.” Yet other authors have found
that in some cases analogical transfer between superficially
dissimilar systems can be so natural that it may not even re-
quire explicit awareness of the analogy (Day & Goldstone,
2011). How can we reconcile these viewpoints?

One feature that often separates the researchers with these
opposing viewpoints is the type of tasks and transfer they con-
sider. When Detterman (1993) says that the manipulations
necessary to show transfer have “the subtlety of [a] baseball
bat”, he cites work like that of Gick & Holyoak (1980) which
shows the difficulty of rapidly making an explicit mapping
between two superficially disparate domains to explicitly
solve a problem. By contrast, the Day & Goldstone (2011)
experiments show transfer when participants learn about a
system by interacting with it over a longer period of time,
and then transfer is measured implicitly on an analogous sys-
tem. We believe that this distinction between fast-explicit
analogical transfer and slower-potentially-implicit analogical
transfer may explain much of the disagreement in the litera-
ture. (See also Bransford & Schwartz (1999).)

Previous work has shown that neural networks can provide
a good model for “slow” analogical transfer in domains as
broad as artificial grammar learning (Dienes et al., 1999) and
verbal analogies Kollias & McClelland (2013). In particu-
lar, one line of work shows that neural networks are capable
of extracting analogous structure from knowledge domains

that are completely non-overlapping in their inputs and out-
puts (Hinton, 1986; Rogers & McClelland, 2008). In other
words, if you train a neural network to solve two identical
tasks, using separate sets of inputs and outputs but sharing
the hidden units, in some cases it will generate representa-
tions that reflect the analogy (i.e. analogous items will gener-
ate more similar patterns of activity in the hidden units than
non-analogous items) (Rogers & McClelland, 2008). This
can lead to the ability to correctly make analogical inferences
about items not explicitly taught (Hinton, 1986). This ex-
traction of shared structure sets neural networks apart from
simple forms of statistical pattern recognition (Rogers & Mc-
Clelland, 2008) such as linear data analysis techniques like
PCA.

Furthermore, recent work has shown that neural networks
can show benefits of training on multiple tasks (Dong et
al., 2015; Rusu et al., 2015, e.g.). Even a small amount of
learning on distinct but related tasks has been shown to im-
prove performance. For example, training a natural language
translation system on image captioning and autoencoding im-
proves translation performance (Luong et al., 2016). Learn-
ing on numerous language translation pairs can even give
generalization without further training to unseen language
pairs (Johnson et al., 2016). We suggest that these bene-
fits may be due to neural networks ability to extract shared
structure. Because human experience is filled with distinct
tasks that share common elements (language, various percep-
tual modalities, etc.) understanding the way that structure is
learned across tasks may be essential to understanding human
intelligence and building better artificial intelligence systems.

However, we have little understanding of how, why, or
when neural networks are able to extract structural analogies
from their training data. Here, we describe a preliminary
investigation into this question, and in the process describe
a new approach to analyzing neural network representations
that may yield more general insights. We begin with a very
simple instantiation of a task with analogous structure.

A Simple Task
In the original work of Hinton (1986), a neural network was
taught to answer queries about the structure of two perfectly
analogous family trees (one English and one Italian, see fig.
5), and was shown to generate representations that extract
the analogy, in the sense that analogous people from differ-

2512



ent families are represented similarly. Here, we pare this
task down to its barest essentials: two perfectly analogous
domains with separate inputs and ouputs. For our task, the
inputs can be thought of as the set of letters {R,L,ρ,λ}, and
the outputs as {P,D,S,π,δ,σ}. The task can be seen as map-
ping an input letter onto the letters that it can follow (e.g. “R”
can follow “D” as in “draw,” but cannot follow “S”), where
there is an analogy between the Latin and Greek letters. See
below for the input-output (I/O) mapping:

P D S π δ σ

R 1 1 0 0 0 0
L 1 0 1 0 0 0
ρ 0 0 0 1 1 0
λ 0 0 0 1 0 1

When and how does a neural network extract the analogous
structure across the domains in this simple task?

Methods: Linear Networks?
There have been recent developments in the theory of linear
neural networks which show that the process of learning is
entirely driven by the Singular Value Decomposition (SVD)
of the input-output correlation matrix (Saxe et al., 2013). The
SVD can be seen as breaking the structure of the task into
individual “modes” – linear structures in the dataset, some-
what like components in PCA. Specifically, a mode consists
of an input pattern (which can be interpreted in this case as the
input letters the mode responds to), a singular value (which
roughly corresponds to the amount of variance explained by
this mode), and an output mode (the output letters produced
by the given pattern on the inputs). For example, see Fig. 1
for the SVD of the I/O mapping for the letter task above.

This decomposition tells us more about the task structure
the network is using. There are three modes in the SVD. The
first (left output mode/top input mode) represents the differ-
ence between the Latin and Greek letters, so it is positive for
the Greek inputs and negative for the Latin outputs, and is
positive for the Greek outputs and negative for the Latin out-
puts. The next two components represent the distinctions be-
tween the letters R and L, and the letters ρ and λ, respectively.
Saxe et al. (2013) showed these results have implications for
the learning of non-linear networks as well, so linear neural
networks can be a more tractable place to analyzee learning
dynamics. In addition, using the I/O SVD allows the dis-
covery of representational components which are distributed
across units, so it is more general than simply examining what
aspects of the task individual hidden units represent, or ex-
amining the weight matrices directly. Thus one might hope
to answer our questions in a linear framework.

However, linear networks cannot represent analogous
structure from non-overlapping inputs and outputs at conver-
gence. With non-overlapping inputs and outputs, the I/O cor-
relation matrix is block diagonal, and the SVD modes will
thus occur within blocks (this is why in Fig. 1 the modes
showing separation between the letters in each domain have

no input or output weights to the other domain).1 Thus, since
the final representational components that a linear network
learns are precisely the components of the SVD (Saxe et al.,
2013), there will be no sharing of structure across domains.

Furthermore, the optimal rank k approximation to a matrix
is to take the top k components from the SVD (Mirsky, 1960).
If a linear network’s hidden layers are restricted to rank lower
than that of the I/O correlation matrix, detail within the do-
mains will be lost. Thus a linear neural network cannot solve
the task perfectly if any of its hidden layers has a number
of units smaller than the rank of the I/O correlation matrix.
By contrast, a non-linear network can exploit the analogy be-
tween the domains to find more parsimonious solutions. Is
there a way to leverage linear insights in the non-linear case?

Methods: A Linearized Approach
As we shall see, while a linear network cannot extract the
analogous structure from the task, inserting a single non-
linearity after the output layer can allow it to do so. In the
case that the non-linearity is a sigmoid, this essentially re-
duces the problem to logistic regression; here we will use rec-
tified linear units in our analysis because their structure makes
the output patterns more intuitively interpretable. Once this
almost-linear network has solved the problem, consider its
outputs immediately prior to the non-linearity. These are pro-
duced by the linear part of the network, and together with the
non-linearity suffice to produce the desired outputs. We can
use these to turn the problem into a linearly analyzable one
– simply treat these pre-nonlinearity outputs as outputs of a
linear network. Then the problem becomes susceptible to the
types of linear analyses discussed above.

Thus we trained a neural network with a single hidden layer
(4 units) and a single non-linearity (a rectifier at the output
layer) to solve this task. See fig. 3 for a diagram of the
network. No biases were used, weights were initialized uni-
formly between 0 and 0.1, all training was done by Stochastic
Gradient Descent (i.e. in each epoch the data are presented
one at a time in a random order, and the weights are updated
after each data point) with η = 0.01 for 500 epochs.

Results
The solution that the nonlinear network discovers the major-
ity of the time (about 75%) is to output the same pattern on
both sets of output units, but offset the “incorrect” domain
sufficiently negative so that it is hidden by the rectified, thus
the task that the linear portion of the network is effectively
performing at convergence is:

P D S π δ σ

R 1 1 0 0 0 −1
L 1 0 1 0 −1 0
ρ 0 0 −1 1 1 0
λ 0 −1 0 1 0 1

1Where there are duplicated singular values, the SVD is not
unique, so more precisely we mean there exists a basis which makes
the SVD is block diagonal.

2513



(Note that the network can actually map the first element
of one domain onto either element of the other. We discuss
the solution shown here one for clarity, the other just shuffles
some rows and columns.)

The SVD of this linearized mapping shows a rank 2 solu-
tion (see fig. 2). The first component is similar to the first
component of the regular SVD, in that it reflects the separa-
tion of the domains, but the second component collapses the
other two components of the linear SVD. In other words, the
analogy has been learned – the network is using the parallels
between the two tasks to reach a more parsimonious solution.
It is able to incorporate the analogy into its computations by
allowing both the sets of outputs to vary, and simply suppress-
ing the outputs from the “wrong” domain for its current task.

Because this solution is rank 2, a non-linear network with
two hidden units should be able to solve the task, whereas a
linear network will require three. We have verified these re-
sults empirically for this task. Thus the ability of a non-linear
neural network to extract common structure from multiple
tasks can allow it to find more parsimonious (i.e. lower-rank)
solutions. We would like to highlight this point: the represen-
tation of the analogy in the SVD is not purely epiphenomenal
– it makes a more parsimonious solution possible.

Evolution of the I/O Mappings

When a non-linear network has only two hidden units, it must
extract the analogy to be able to solve the task, but with more
hidden units there are a variety of solutions that could poten-
tially emerge (such as just learning the mapping of each input
to its output pattern independently). However, our network
extracted shared structure on about 75% of the runs we con-
ducted (as measured by more than 20% score on the cross-
projection metric described below). What drives this fairly
consistent extraction of analogy? In this section we consider
the evolution of the outputs over the course of learning.

The output structure of the network goes through a fairly
consistent progression, which we will describe qualitatively
at various key stages (the exact values depend on the ini-
tialization, so the matrices here are approximations to within
about ±0.1). The outputs begin as small positive numbers,
approximately 0 (because the weights are initialized uni-
formly between 0 and 0.1). Next, the network captures the
base rate activations of each output unit, around epoch 75.
(Note that this is already accounted for in the SVD, because
the output variables are centered before computing the SVD).

base rates =

0.5 0.25 0.25 0.5 0.25 0.25
...

...
...

...
...

...
0.5 0.25 0.25 0.5 0.25 0.25


Then the network captures the existence of the two domains

but not the structure within them (around epoch 140). This
corresponds to the first component of either SVD. Up to this
point, a linear network follows a similar learning trajectory.

base rates by domain =


1 0.5 0.5 0 0 0
1 0.5 0.5 0 0 0
0 0 0 1 0.5 0.5
0 0 0 1 0.5 0.5


Finally it learns the internal structure of the domains (they

are not learned at exactly the same time, which is learned first
depends on the initilization). Around epoch 400 it has solved
the task completely, with some sort of offset structure in the
non-linear case, or without in the linear case:

solution with offsets =


1 1 0 0 0 −1
1 0 1 0 −1 0
0 0 −1 1 1 0
0 −1 0 1 0 1


For most of the learning process, the networks are extract-

ing similar structure, so one might expect that even the linear
network would show some representation of the analogy at in-
termediate stages of learning. Indeed, once the base rates by
domain are learned, both the linear and non-linear networks
begin to extract the analogy between the domains. See fig. 4
for a plot of how much each domain’s input mode projects to
the other domain’s output mode, i.e. “cross-talk” between
the domains. This is a simple measure of the extent to which
the network is extracting shared structure. However, while
both networks develop some representation of the analogy
initially, this activity extinguishes rapidly in the linear net-
work, while it persists in the non-linear network.

Why do both networks show some representation of the
analogy initially? We will analyze this in the linear case. At
the stage when the base rates by domain have been learned,
adding a little bit of shared structure actually reduces mean-
squared error (MSE). If the network moves from the base
rates by domain pattern to the pattern shown below, the small
increase in MSE from the ±0.1 values is more than offset by
the decrease from splitting the 0.5 values into 0.4 and 0.6.

1 0.6 0.4 0 0.1 −0.1
1 0.4 0.6 0 −0.1 0.1
0 0.1 −0.1 1 0.6 0.4
0 −0.1 0.1 1 0.4 0.6


Indeed, suppose there is a hidden unit which responds dif-

ferentially within the domains (as they all will to some extent
because of the random initialization). The updates of the out-
put weights for this unit will point in the direction of analogy
extraction once the base rates by domain have been learned.
See below for the output error, hidden unit activity, and cor-
responding weight updates in the case that the hidden unit
responds positively to the first element of each domain, and
negatively to the other.2 (Note that the output weight updates
for a hidden unit are proportional to the product of the output
error and the hidden unit’s activation.)

2In the general case representations will be distributed across the
hidden units, and so there will not be a unit which responds to the
analogy and nothing else, but this is simply a rotation of the repre-
sentation space, and because of the linearity of derivatives the same
general pattern will emerge.

2514



(a) Input-output mapping
(transposed from text)

=

(b) Output modes Unl

×

(c) Singular values Snl

×

(d) Input modes Vnl

Figure 1: SVD of I/O correlation matrix (colors are scaled to show qualitative features, red = +, white = 0, blue = -)

(a) Input-output mapping

=

(b) Output modes Ulz

×

(c) Singular values Slz

×

(d) Input modes Vlz

Figure 2: SVD of linearized I/O correlation matrix (colors are scaled to show qualitative features, red = +, white = 0, blue = -).
Note how Fig. 2a becomes Fig. 1a if the negative values are hidden by a nonlinearity.

Figure 3: Simple task network, showing a sample propagation
of an input through the network with the single non-linearity
at the output. (Circles represent inputs or fully connected
units, squares represent non-linearities.)

Figure 4: I/O SVD component cross-projection (dot product
between output mode of an SVD component and the response
of the network to the other domain’s input mode)

Figure 5: Family trees from Hinton (1986), (reproduced with
permission).

Figure 6: Family tree task network (Circles represent inputs
or fully connected units, squares represent non-linearities. El-
lipses denote units omitted from the diagram – the hidden
layer and all input and output groups had 12 units apiece.)

2515



output error unit unit output weight updates
0 + − 0 0 0 + 0 + − 0 0 0
0 − + 0 0 0 − 0 + − 0 0 0
0 0 0 0 + − + 0 0 0 0 + −
0 0 0 0 − + − 0 0 0 0 + −

net output weight update: 0 + − 0 + −

Summing these updates captures the analogy between the
domains. The network will exploit this analogy to reduce
error, even if it must eventually discard it in the linear case.

Reanalyzing Hinton’s Family Tree Example
Next, we briefly turn our attention to the example of Hinton
(1986). Hinton’s task involves learning two isomorphic fam-
ily trees, one English and one Italian (see fig. 5). This struc-
ture is taught implicitly by presenting a person (e.g. “Jen-
nifer”) and a relationship (e.g. “Father”), and training the
network to produce the correct target person (“Andrew” in
this case). There are 52 such relationships per family.

Methods
Hinton used the same inputs for type of relationship for both
families. To highlight the extraction of analogous structure
we separated these into distinct input banks (these could be
thought of as the English and Italian words for different rela-
tions, e.g. “uncle” vs. “zio” ). We also reduced his network
down from 3 hidden layers to a single hidden layer with 12
units. Unlike the simple problem above, this problem is not
linearly separable, so we included a non-linearity at the hid-
den layer as well as the output (see fig. 6). We trained this
network by SGD with η = 0.005 for 1000 epochs.

In a task which requires multiple non-linearities, we cannot
perform as simple an analysis as in the earlier task. However,
by definition each layer of the network has only a single non-
linearity, and so we can perform an analysis like the above on
each layer. In this way we can understand something about
the computations that layer is performing. However, the in-
terpretation will not be as simple as above.

This difficulty is compounded by the complexity of the
structure being learned in each family. In the simple problem
above it was possible to “eyeball” the structure extraction, but
here the structure is too rich. There are a variety of possible
ways the families can be mapped onto one another (e.g. flip-
ping the tree left to right and swapping all genders), and it’s
possible that the networks are extracting overlapping struc-
ture from several of these analogies. In this setting, how can
we examine whether the network is learning the analogy?

As a first test of this, we looked for representation of the
analogy in the input modes of the first layer SVD. To do
this, we computed the dot product of each mode’s weights
for one family with that mode’s weights for the other family,
and then tested how significant this similarity was by com-
paring it to the null distribution generated nonparametrically
by randomly permuting the columns of the input mode matrix
1000 times and computing the same dot product for each one.

We denoted a mode as showing significant extraction of the
analogy if it showed a stronger similarity between the weights
for the two families’ inputs than 95% of its permutations did.
We repeated this analysis across 100 network initilizations.

Results
We found a great deal of analogous structure was extracted.
The runs had a median of 4 modes showing significant analo-
gous structure extraction, and all the runs had at least one sig-
nificant mode (for comparison, if 5% of the modes showed
significant results by chance, we would still expect 54% of
the runs to yield no significant results). To account for the
symmetry of the tree under flipping, we repeated the same
analysis after permuting the second family’s input columns
appropriately. Since the network has no way to distinguish
the “regular” mapping from this “flipped” mapping during
learning, we would expect to see a similar frequency of sig-
nificant modes for each, and indeed the distributions are sim-
ilar. Furthermore, the runs had a median of 6 modes showing
significant extraction of either the regular or flipped mapping,
and in all of the runs it had extracted 3 or more components
that significantly represent one analogy or the other (if we as-
sume 5% false positives, we would expect results this extreme
in only 0.01% and 3% of the runs, respectively). See fig. 7.
The frequency of analogy extraction suggests this may be a
central feature of how neural networks solve tasks.

Although we have focused on broad analogies between the
families here, we would like to note that analyzing the SVDs
can give more detail. In some cases modes reflect an analogy
only in the “person” inputs, or only in the “relationship” in-
puts. Within a family, analyzing the SVD modes can outline
the structure the network is extracting, e.g. modes often ap-
pear which represent the gender of the target of a relationship
like “mother”. We have omitted these analyses due to length
constraints.

Disussion
We have outlined a new technique for analyzing neural net-
work representations and their learning dynamics: analyz-
ing the SVD of the “linearized” mapping at each layer (i.e.
the mapping from the inputs to the pre-nonlinearity activity).
This allows us to bring the power of linear analyses to bear on
the rich phenomena that occur only in non-linear networks.

Using this technique, we have explored how a simple neu-
ral network can extract the analogy between simple tasks with
non-overlapping inputs and outputs. We showed that, while
a linear network cannot represent analogies, a single non-
linearity at the output layer can allow the network to represent
the analogy, and that this structure emerges naturally (even in
a linear network) from gradient descent once the base rates
by domain have been learned. A linear network must discard
this analogy to reach its optimal solution, but a non-linear
network is able to retain it by simply offsetting the outputs
to a sufficiently negative value, and does so the majority of
the time in our results. Here we used rectifiers, but the same
general solution is achievable with other nonlinearities.

2516



Figure 7: How many of the input modes from the SVD
showed significant projection onto the regular or flipped
analogies (with null distribution for comparison)

We then broadened our approach to explore the family tree
task originally proposed in Hinton (1986). Because this task
is not linearly separable, we created a general network with
two nonlinear layers, and applied our analysis to each layer.
We found evidence of a great deal of extraction of two pos-
sible analogies between the families in the network (either
the intended isomorphism between the family trees, or one
in which one family tree was flipped left-to-right and gender-
reversed), and that networks seemed generally to be discov-
ering elements of both analogies. Indeed, representation of
the analogies seemed even more common than on the simpler
task. On the simple task 25% of the networks showed no evi-
dence of common structure extraction, but on the family tree
task every network extracted at least three input modes that
projected significantly onto one of the analogies.

These results suggest that sensitivity to analogy may be a
natural feature of gradient based learning in nonlinear neural
networks. This may underlie many of the “slow” analogical
transfer effects we highlighted in the introduction. Further-
more, this may be a part of why learning multiple tasks facil-
itates more rapid learning and better performance in machine
learning systems, and it may have important implications for
cognition. The power and generality of human cognition may
result from extracting common structure from the diverse but
deeply related tasks we engage in throughout our lives.

Future Directions

1. In our analysis we analyzed the input modes of the first
layer and the output modes of the second layer. In the fu-
ture it will be important to explore modes that map into and
out of the hidden layer, and what they imply about the rep-
resentations at the hidden layer. This would also allow us
to apply this analysis to deep networks.

2. Learning representations that reflect analogies may provide
amortized inference about potential analogical structure in
the world. Can this support explicit analogical reasoning?

Acknowledgments
This material is based upon work supported by the NSF GRF
under Grant No. DGE-114747.

References
Bransford, J. D., & Schwartz, D. L. (1999). Rethinking

Transfer : A Simple Proposal With Multiple Implications.
Review of Research in Education, 24(1), 61–100.

Day, S. B., & Goldstone, R. L. (2011). Analogical Transfer
From a Simulated Physical System. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 37(3),
551–567. doi: 10.1037/a0022333

Detterman, D. K. (1993). The Case for the Prosecution:
Transfer as an Epiphenomenon. In Transfer on trial: In-
telligence, cognition, and instruction (pp. 1–24).

Dienes, Z., Altmann, G. T. M., & Gao, S.-J. (1999). Map-
ping across Domains Without Feedback: A Neural Net-
work Model of Transfer of Implicit Knowledge. Cognitive
Science, 23(1), 53–82. doi: 10.1207/s15516709cog2301

Dong, D., Wu, H., He, W., Yu, D., & Wang, H. (2015). Multi-
Task Learning for Multiple Language Translation. Acl,
1723–1732.

Gentner, D. (2003). Why We’re So Smart. In Language in
mind: Advances in the study of language and thought. (pp.
195–235).

Gick, M. L., & Holyoak, K. J. (1980). Analogical Problem
Solving. Cognitive P, 12, 306–355.

Hinton, G. (1986). Learning distributed representations of
concepts. doi: 10.1109/69.917563

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y.,
Chen, Z., . . . Dean, J. (2016). Google’s Multilingual
Neural Machine Translation System: Enabling Zero-Shot
Translation. arXiv, 1–16.

Kollias, P., & McClelland, J. L. (2013). Context, cortex, and
associations: A connectionist developmental approach to
verbal analogies. Frontiers in Psychology, 4(NOV), 1–14.

Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O., & Kaiser,
L. (2016). Multi-task Sequence to Sequence Learning.
Iclr, 1–9.

Mirsky, L. (1960). Symmetric gauge functions and unitarily
invariant norms. The Quarterly Journal of Mathematics,
11(1), 50–59. doi: 10.1093/qmath/11.1.50

Rogers, T. T., & McClelland, J. L. (2008). A simple model
from a powerful framework that spans levels of analysis.
Behavioral and Brain Sciences, 31, 729–750.

Rusu, A. A., Gomez Colmenarejo, S., Gulcehre, C., Des-
jardins, G., Kirkpatrick, J., Pascanu, R., . . . Hadsell, R.
(2015). Policy Distillation. arXiv, 1–12. doi: 10.1038/na-
ture14236

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Ex-
act solutions to the nonlinear dynamics of learning in deep
linear neural networks. Advances in Neural Information
Processing Systems, 1–9.

2517




