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ABSTRACT OF THE DISSERTATION

Real-World Person Identification

by

Le An

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2014

Dr. Bir Bhanu, Chairperson

Person Identification or recognition has been receiving broad interests and it

is highly desirable in applications such as security monitoring, authentication, etc. In

order to recognize a person, different traits, including fingerprint, face, and gait, can be

used. Among these possible traits, face and body are preferred since they can be ac-

quired without the person’s cooperation. In controlled environment, recognition is less

challenging with well posed subject in high resolution. However, in real-world scenarios,

where the image of a person exhibits variations in pose, illumination, and resolution,

standard pattern recognition methods may fail. Driven by the necessity for person iden-

tification in real-world, we have proposed several identification methods. Specifically, we

have developed a face image super-resolution method as a pre-processing step to improve

the face recognition accuracy. In addition, to recognize person in a surveillance setting

with multiple cameras, we have developed an algorithm that utilizes multiple cameras

for face recognition by encoding the person-specific dynamics with a dynamic Bayesian

network. In case the face of a person cannot be reliably acquired, identifying person by

body appearance is preferred. To this end, we have proposed two methods to identify

person in multiple surveillance cameras, using a novel reference descriptor and a sparse

vi



representation, respectively. To validate the proposed method in this dissertation, we

have conducted extensive results on publicly available datasets. Results show that each

of the aforementioned method achieves state-of-the-art performance in various person

identification tasks.
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Chapter 1

Introduction

Face is frequently used to identify person. Given an image of a face, the im-

age resolution plays an important role when it is to be recognized. In Chapter 3, a

face super-resolution method using two-dimensional canonical correlation analysis (2D

CCA) is presented. A detail compensation step is followed to add high-frequency com-

ponents to the reconstructed high-resolution face. Unlike most of the previous research

on face super-resolution algorithms that first transform the images into vectors, in our

approach the relationship between the high-resolution and the low-resolution face images

are maintained in their original 2D representation. In addition, rather than approximat-

ing the entire face, different parts of a face image are super-resolved separately to better

preserve the local structure. The proposed method is compared with various state-

of-the-art super-resolution algorithms using multiple evaluation criteria including face

recognition performance. Results on publicly available datasets show that the proposed

method super-resolves high quality face images which are very close to the ground-truth

and performance gain is not dataset dependent. The method is very efficient both in

the training and testing phases compared to the other approaches.
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The demand for robust face recognition in real-world surveillance cameras is

increasing due to the needs of practical applications such as security and surveillance.

Although face recognition has been studied extensively in the literature, achieving good

performance in surveillance videos with unconstrained faces is inherently difficult. Dur-

ing the image acquisition process, the non-cooperative subjects appear in arbitrary poses

and resolutions in different lighting conditions, together with noise and blurriness of im-

ages. In addition, multiple cameras are usually distributed in a camera network and

different cameras often capture a subject in different views. In Chapter 4, we aim at

tackling this unconstrained face recognition problem and utilizing multiple cameras to

improve the recognition accuracy using a probabilistic approach. We propose a Dy-

namic Bayesian Network (DBN) to incorporate the information from different cameras

as well as the temporal clues from frames in a video sequence. The proposed method

is tested on a public surveillance video dataset with a three-camera setup. We com-

pare our method to different benchmark classifiers with various feature descriptors. The

results demonstrate that by modeling the face in a dynamic manner the recognition

performance in a multi-camera network is improved over the other classifiers with vari-

ous feature descriptors and the recognition result is better than using any of the single

camera.

Normally a face of a person cannot be acquired easily in real-world surveillance

cameras due to arbitrary human pose, illumination, etc. In this case, we aim at identify-

ing persons across non-overlapping cameras, which is known as person re-identification

that matches people at different time and location. Re-identifying people is of great

importance in crucial applications such as wide-area surveillance and visual tracking.

Due to the appearance variations in pose, illumination, and occlusion in different cam-

era views, person re-identification is inherently difficult. To address these challenges, a
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reference-based method is proposed in Chapter 5 for person re-identification across dif-

ferent cameras. Instead of directly matching people by their appearance, the matching

is conducted in reference space where the descriptor for a person is translated from the

original color or texture descriptors to similarity measures between this person and the

exemplars in the reference set. A subspace is learned in which the correlations of the

reference data from different cameras are maximized using Regularized Canonical Cor-

relation Analysis (RCCA). For re-identification, the gallery data and the probe data are

projected into this RCCA subspace and the reference descriptors (RDs) of the gallery

and probe are generated by computing the similarity between them and the reference

data. The identity of a probe is determined by comparing the RD of the probe and the

RDs of the gallery. A re-ranking step is added to further improve the results using a

saliency-based matching scheme. Experiments on publicly available datasets show that

the proposed method outperforms the state-of-the-art approaches.

In addition, we developed a L2 regularized sparse-representation based person

re-identification framework in Chapter 6. Specifically, to address this multi-view match-

ing problem, we first learn a subspace in which the goal is to maximize the correlation

between data from different cameras but corresponding to the same people. Given a

probe from one camera view, we represent it using a sparse representation from a jointly

learned coupled dictionary in the learned subspace. The L1 induced sparse representa-

tion is regularized by an L2 regularization term. The introduction of L2 regularization

allows learning a sparse representation while maintaining the stability of the sparse coef-

ficients. To compute the matching scores between probe and gallery, their L2 regularized

sparse representations are used with a modified cosine similarity measure. Experimental

results with extensive comparisons on publicly available datasets demonstrate that the

proposed method outperforms the state-of-the-art methods and using L2 regularized
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sparse representation (L1+L2) more accurate matching is achieved compared to using

the L1 regularization or L2 regularization only.

Each chapter in this dissertation stands alone as a complete description of each

aforementioned method. Before we dive into details of individual methods, related work

is presented in Chapter 2.
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Chapter 2

Related Work

In this chapter, we present related work in face super-resolution, face recog-

nition, and person re-identification in order to overview relevant literatures before we

discuss details of our own methods in these topics.

2.1 Face Super-Resolution

Face is commonly used to recognize humans. In real-world applications such as

video surveillance, detected faces are often of low-resolution, which makes the recognition

task difficult. Face image super-resolution, also referred as face hallucination, is a natural

solution to solve this problem. Although in some work super-resolution and recognition

are handled simultaneously without generating high-resolution images [63], it is still

desirable to obtain a super-resolved face image from low-resolution feed in case where

examination or validation by human is required.

In the past several decades, various super-resolution methods have been pro-

posed. Based on the input, those methods can be categorized into two classes. The

methods in the first class take advantage of multiple images of the same scene and
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reconstruct HR images by aggregating information from all the LR images via mo-

tion estimation or registration [42, 136, 194]. However, these methods strongly rely

on accurate motion information. The methods for super-resolution in the second class

are based on a single image. This class of methods has received a lot of attention re-

cently [33, 144, 49]. Some learning based methods try to model the relationship between

the LR face images and HR face images [45, 175]. An example of a learning-based ap-

proach is [147]. Recently, a joint learning approach is proposed by Gao et al. [48] in

which two projection matrices are trained simultaneously and the original LR and HR

feature spaces are mapped onto a unified feature subspace. This produces improved re-

sults compared to the neighbor-embedding based methods. A sparse neighbor selection

scheme is proposed in [47] for image SR and achieves state-of-the-art results.

Beyond the generic super-resolution algorithms, specific approaches for cer-

tain kind of images such as face images have been proposed [71, 100, 106, 193]. Due

to the highly structured shape of a human face, more accurate face super-resolution

can be achieved by learning this structural information from an appropriate training

dataset. In [155], a semi-coupled dictionary learning model is proposed with application

to super-resolution and face synthesis. In [100], a two-step face hallucination approach

is developed by first globally modeling the face with a Gaussian assumption and then

locally refining the face using path-based nonparametric Markov random field (MRF).

Inspired by this work, a number of two-step face hallucination approaches have been

proposed [71, 106, 193].

As indicated in [25], the downsampling process maintains the structure in the

image manifolds. Furthermore, previous research has shown that face images reside on a

non-linear manifold which is linear and smooth locally and it is commonly assumed that

the manifolds of LR face images and HR face images have similar local structure [62].

6



As a consequence, in recent years, manifold learning has been explored by researchers to

hallucinate face images under the assumption that the manifolds of LR and HR images

have similar local neighborhood structures [82, 159, 193]. These methods directly work

in the subspaces of LR and HR images using standard subspace techniques such as

the Principal Component Analysis (PCA). Compared to performing reconstruction in

the original input feature space, the reconstruction is more meaningful and reliable

in the subspaces. In a different manner, Ma et al. [113] bypassed the necessity for

subspace learning by reconstructing each small patch of a face image separately. A

fast face super-resolution method was proposed recently by substituting the nonlinear

mapping with multiple local linear transformations [73]. Instead of super-resolving in

the image domain, a feature-domain super-resolution framework is proposed in [124] for

face recognition.

Among the manifold learning approaches, canonical correlation analysis has

been widely adopted in recent years. Canonical correlation analysis (denoted as 1D CCA

in this chapter ) was first introduced in [67]. It is a multivariate statistical model to

analyze the correlation between two sets of variables. 1D CCA finds linear combinations

of the variables in each set that have maximum correlations. The model that 1D CCA

delivers is a high dimensional relationship between two sets of variables with a few

pairs of canonical variables. There are different generalizations of 1D CCA such as

kernel CCA [60], locality preserving CCA (LPCCA) [143], and neural network based

CCA [51].

There have been many applications utilizing 1D CCA and its variants. In [178]

a 2D-3D face matching method is proposed using 1D CCA to capture the relationship

between 2D face images and 3D face data for recognition. Recently kernelized CCA has

been applied in facial expression recognition [191]. Xu et al. [169] proposed a multimodal
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recognition scheme with ear and profile face using kernel CCA. Beyond the face domain,

1D CCA is also broadly applied. In [30] data fusion and group analysis of biomedical

data is performed using 1D CCA. In [125] 1D CCA is used to analyze remotely sensed

data in a geographic information system. The handwritten character recognition is also

formulated in a framework with 1D CCA [142]. Recently, Li et al. [89] used 1D CCA to

maximize the intra-individual correlations for face recognition at different poses.

In terms of super-resolution, Huang et al. [71] proposed a face hallucination

method based on 1D CCA to determine a coherent subspace in which the correlation

between the LR and HR images is maximized. The face images are first vectorized and

projected to PCA subspace, then 1D CCA is applied to enhance the correlation of the

HR and LR image projections. This approach tries to find the consistency between the

LR and HR face images and is able to generate more realistic face images compared to

the previous work in [100, 193]. Recently a vehicle logo super-resolution method using

1D CCA is reported in [7] to improve the vehicle recognition accuracy.

2.2 Face Recognition

With more face images becoming available from various sources, many face re-

lated processing tools are demanded, such as face clustering [183, 181], face retrieval [79]

and face recognition [5]. For real-world face recognition, the following factors are usually

considered: pose variation, illumination change, facial expression change, and misalign-

ment.

To tackle the pose variations, Arashloo et al. [15] proposed a Markov random

field based image matching for pose-invariant face recognition. Prabhu et al. [132]

constructed a 3D model for each subject in the database using a single 2D image,
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then the synthesized face images at different poses were generated from the 3D model

for matching. Li et al. [91] evaluated the probability that two faces have the same

underlying identity cause for matching faces instead using a distance-based method,

achieving better results than current methods for face recognition with varying poses.

Li et al. [90] proposed a probabilistic elastic matching method to handle pose variation.

In this model, a Gaussian mixture model (GMM) was used to capture the spacial-

appearance distribution of the faces in the training set and an SVM classifier is used for

face verification.

To mitigate the illumination change, Hussain et al. [74] proposed a new face

representation called Local Quantized Patterns (LQP), which is robust to illumination

variations and using this feature representation improved performance on the challenging

Labeled Faces in the Wild (LFW) [70] dataset was achieved. Li et al. [93] used near

infrared images for face recognition such that visible illumination changes were bypassed.

Tan et al. [145] proposed an efficient illumination normalization technique using Gamma

correction, difference of Gaussian filtering, masking and contrast equalization. This

normalization step boosted the recognition performance on several benchmark datasets.

For face recognition with expressions, a popular solution is to reproduce the

neutral faces from the faces with expressions for matching. This is opposite to the goal of

facial expression analysis in which facial expressions are supposed to be retained [14, 177,

176]. Nagesh et al. [121] proposed that the images of the same subject with different

expressions can be viewed as an ensemble of inter-correlated signals and the sparsity

accounts for the variation in expressions. In light of this observation, the holistic face

image and the facial expression image were generated for face recognition. Hsieh et

al. [68] removed the expression from a given face by using optical flow computed from

the input face with respect to a neutral face.
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When a face is mis-aligned and sent to a recognition system, the recognition

performance may degrade significantly [138]. In real-world scenarios, aligning faces may

be difficult, if not impossible. To handel this problem, Liao et al. [99] proposed to use an

arbitrary patch of a face image for recognition with an alignment-free face representation.

Wang et al. [171] proposed a misalignment-robust face recognition method by inferring

the spatial misalignment parameters in a trained subspace. Cui et al. [31] tackled

misalignment by extracting sparse codes of position-free patches within each spatial

block in the image. A pairwise-constrained multiple metric learning was proposed to

integrate the face descriptors from all blocks.

Recently there have been approaches that try to take care of these aforemen-

tioned factors simultaneously. Wolf et al. [163] combined multiple face representations

and background statistics to improve face recognition in unconstrained environment.

Berg et al. [22] utilized an external set of faces for identity-preserving alignment and

identity classifier learning. A collection of the classifiers is able to discriminate the sub-

jects whose faces are captured in the wild. Müller et al. [120] separated the learning

of the invariance from learning new instances of individuals. A set of examples called

model was used to learn the invariance and new instances were compared by rank list

similarity. When a face needs to be compared with a large database, linear search is

no longer an affordable approach. Kafai et al. [79] proposed a hashing method using

discrete cosine transform (DCT) for face retrieval and close to linear search performance

were reported. Chen et al. [26] utilized multi-level features for large-scale face image

retrieval and it was shown that multi-level features outperformed single-level features.

To recognize faces from videos, in general there are two principles: using 2D

images from video sequences directly, or generating a 3D face model to cope with pose

variation.
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Within the 2D-based methods, normally the faces are first extracted from the

video frames manually or using an automated face detector [152]. Subsequently, either

all the face images or only the exemplar face images are used for the recognition task. An

appearance manifold was built in [86] to represent each pose by an affine plane to cope

with the pose variations in video sequences. In [107] a Hidden Markov Model (HMM)

was used for video-based face recognition. In this model the temporal characteristics

were analyzed over time. Stallkamp et al. [141] presented a real-time video based face

identification system using a local appearance-based model and multiple frame weight-

ing schemes. In [105] the face recognition in video was tackled by exploiting the spatial

and temporal information based on Bayesian keyframe learning and nonparametric dis-

criminant embedding. Recently, Biswas et al. [23] proposed a learning-based likelihood

measurement to match high-resolution frontal view gallery images with probe images

from surveillance videos. Wong et al. [164] proposed a patch-based image quality as-

sessment method to select a subset of the “best” face images from the video sequences

to improve the recognition performance. In [32], the video-based face recognition was

converted to the problem of matching two image sets from different video sequences

and it needs an independent reference set to align the images sets to be matched. An

et al. [8, 5, 10] proposed to align faces with pose variations from different frames to a

frontal face template. These aligned faces were then averaged to generate a single face

representation for the video data with rectified pose.

In an effort to recognize faces using more than one camera, some prior work has

been done. Xie et al. [167] trained a reliability measure and it was used to select the most

reliable camera for recognition. In [61] a cylinder head model was built to track and fuse

face recognition results from different cameras. These approaches were tested on videos

taken in controlled environment with higher resolution than typical surveillance video
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data. For application in surveillance cameras, a person re-identification method was

proposed in [19] which depends on the robustness of the face tracker. A face recognition

framework for mass transport security surveillance was proposed in [108].

In 3D-based approaches, the 3D face models are either computed or captured

directly with a 3D scanner. Xu et al. [170] developed a framework using 3D face models

for pose and illumination invariant face recognition from video sequences by integrating

the effects of motion and lighting changes. In [129], the system used the images in the

video as probe to compare with the 2D projection of the gallery 3D model. Liao et

al. [98] used a single image for each individual in the gallery set to construct a 3D model

to synthesize various face views. The 3D based methods are in general computationally

expensive. Furthermore, a 3D model is difficult to be constructed from low-resolution

videos, thus, the application of 3D models in surveillance cameras is limited. A recent

survey of video based face recognition can be found in [137].

2.3 Person Re-Identification

Two major directions to tackle person re-identification are to extract invariant

feature representations and to learn specialized distance metrics across different camera

views. In feature-driven approaches, robust features which are invariant to change in

pose and illumination conditions are studied. Cheng et al. [28] adopted pictorial struc-

tures to localize the human parts and search part-to-part correspondences to match

subjects. Farenzena et al. [44] extracted features accounting for the overall chromatic

content, the spatial arrangement and the presence of recurrent local motifs to match

individuals with appearance variation. Baket al. [16] learned a model in a covariance

metric space to select features based on the idea that different regions for each subject
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should be matched specifically. Gray et al. [53] used AdaBoost to select the most dis-

criminative features instead of handcrafted features. Prosser et al. [133] formulated the

re-identification as a relative ranking problem instead of an absolute scoring problem.

Hirzer et al. [65] proposed a two-step method by first using a descriptive model to obtain

an initial ranking, which was refined in the second step by a discriminative model with

human feedback. Kviatkovsky et al. [84] discovered the color intra-distribution struc-

ture and showed that this structure was invariant under certain illumination changes

and could be combined with the covariance descriptor for person re-identification. Yang

et al. [179] proposed a salient color names based color descriptor which can guarantee

that a higher probability will be assigned to the color name which is nearer to the color.

This color descriptor can be computed efficiently in advance. Ma et al. [112] used both

biologically inspired features and covariance descriptors to handle background and illu-

mination variations. Martinel et al. [115] presented an appearance-based approach by

computing a novel discriminative signature from multiple local features.

Beyond low-level features, semantic features have been explored for improved

re-identification results. Mining semantic attributes or concepts from image or video has

been studied extensively in multimedia domain [117, 118]. For person re-identification,

Kuo et al. [83] applied semantic color names to describe an image of a person instead of

using color histograms for better stability. Layne et al. [85] proposed mid-level semantic

attributes to describe person for the purpose of re-identification. An et al. [11] used

biometric attributes such as gender from images to re-rank the initial re-identification

results from low-level features. Zhao et al. [187, 186] proposed to use salient features for

person re-identification. The saliency was estimated using unsupervised learning and

was combined with existing methods (e.g., [44]) to improve the recognition performance.

Liu et al. [104] proposed a post-rank optimization method which allowed a human-in-
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the-loop to select negative samples. This improved the performance gain over 30% and

as compared to the exhaustive search, the time efficiency significantly improved. Liu

et al. [102] provided extensive study of feature importance for person re-identification

and proposed a method for on-the-fly mining of feature. For person re-identification on

mobile devices, Vernier [150] et al. introduced a client-server system which improved the

re-identification performance over time with reduced computation time. Zhao et al. [188]

learned discriminative mid-level filters from automatically discovered patch clusters and

those filters were able to identify specific visual patterns in order to distinguish different

persons. Zhang et al. [182] proposed a framework which can leverage heterogeneous

contextual information such as gait together with facial features to identify person from

low-quality video surveillance data.

On the other hand, researchers are also investigating in robust matching meth-

ods. Hirzer et al. [66] proposed a relaxed pairwise learned metric (RPLM) based on

Mahalanobis distance learning which took advantages of the structure of the data with

reduced computational cost. It achieved state-of-the-art results with simple feature de-

scriptors. Köstinger et al. [81] proposed a simple yet effective method to learn the dis-

tance metric called KISS metric from a statistical inference perspective. Tao et al. [146]

extended the KISS metric by introducing regularization to robustly estimate covariance

matrices against the instability in calculating the inverse of a covariance matrix from

a small size training set. Zheng et al. [190] formulated re-identification as a relative

distance comparison problem. It maximized the likelihood such that the distance be-

tween a pair of images of the same person is smaller than a pair of images of different

people. Liu et al. [103] incorporated attribute information into the framework of [190]

to further improve the re-identification results by feature weighting. Li et al. [94] jointly

partitioned the image spaces of two camera views into different configurations based
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on the similarity of cross-view transforms. Image pairs with similar transforms were

projected to a common feature space for matching. Li et al. [96] proposed a filter pair-

ing neural network in which misalignment, pose difference, occlusions and background

clutter were jointed handled with the help of abundant data. Xiong et al. [168] applied

multiple kernel-based metrics in conjunction with histogram-based features and showed

improvement over state-of-the-art on several datasets.

Standard metric learning techniques such as Large Margin Nearest Neighbor

(LMNN) [162], Information Theoretic Metric Learning (ITML) [35], and Logistic Dis-

criminant Metric Learning (LDML) [55] were also applied to person re-identification.

Dikmen et al. [37] developed a variant of LMNN by introducing a reject option to the

unfamiliar matches (LMNN-R) and achieved improved results. Martinel et al. [116]

extracted multiple features from image pairs and obtained a so-called distance feature

vector. The re-identification was achieved by classifying this distance feature vector

using a trained binary classifier. Pedagadi et al. [130] used local Fisher discriminant

analysis (LFDA) to reduce feature dimensionality for person re-identification. It out-

performed other metric learning-based methods. Mignon et al. [119] proposed pairwise

constrained component analysis (PCCA) to learn a low-dimensional mapping in which

distances between data points complied with a set of sparse training pairwise constraints.

Loy et al. [109] reported a manifold ranking approach in which the probe information

was propagated along the data manifold in an unsupervised manner. It showed that the

performance of existing metric learning based methods could be significantly improved

by integrating the manifold ranking. Comprehensive survey on person re-identification

can be found in [151, 39, 20, 50].
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Chapter 3

Face Image Super-Resolution

using 2D CCA

3.1 Introduction

In real-world scenarios, faces of high resolution is what is desired but difficult

to acquire. For instance, the faces captured by surveillance cameras or image sensors on

mobile devices are often with low resolution. Using these face images in face recognition

algorithms may yield poor recognition accuracy. Thus, it is beneficial to first enhance

face image quality through image super-resolution techniques.

The low-resolution (LR) images can be considered as being generated by the

imaging process where the original high-resolution (HR) images undergo blurring and

downsampling [128]. Usually noise is introduced to further degrade the image quality.

The purpose of super-resolution is to reverse this imaging process in order to recover

the high-resolution images from the low-resolution observations.

However, the 1D CCA was not designed specifically for the image data. To

fit the image data into 1D CCA formulation, the image has to be first converted into a
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1D vector. On the other hand, an image is inherently represented in a 2D matrix. The

appearance of an image becomes obsolete when reshaped into a vector. To tackle this

problem, 2-dimensional CCA has been proposed and it is specifically suitable for image

analysis [87]. 2D CCA is formulated in such a manner that it takes two sets of images

and explores their relations directly without the necessity to first vectorize each image.

For face image super-resolution (SR), as a common routine for the data repre-

sentation in manifold based SR methods, the face images are first reshaped into vectors

and then super-resolution is performed. The reshaped vectors have large dimensions.

For computational feasibility, PCA is applied [71, 193]. However, in this reshaping

process the intrinsic 2D spatial structure information of face is erased. In this chapter,

inspired by the 2D CCA techniques [87], a two-step 2D CCA based face super-resolution

approach is developed that can preserve the intrinsic 2D spatial structure of face images

in the super-resolution process. In the first step the HR face is reconstructed. Since the

reconstructed face is not rich in facial details, we apply a high-frequency detail mask to

the reconstructed faces in the second step. Figure 3.1 shows the system diagram of the

proposed approach.

More specifically, during the training in the first step, the learned projection

matrices by 2D CCA are able to project the HR face images and LR face images into

a subspace where their correlation is maximized. When a testing LR face image is pro-

vided, the optimal combination of its K nearest neighbors in the LR training set is found

in this subspace. Due to the structural similarity between the HR and LR face images,

we are then able to reconstruct a HR face image using the same K nearest neighbors in

the HR training set. In the second step, a high-frequency detail mask is generated using

the neighborhood derived in the first step and added to the reconstructed face image
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to yield the final output HR image. Inspired by the locality based method [153], we

process different parts of a face independently instead of a holistic approach to further

improve the output quality.

3.1.1 Contributions of This Chapter

Compared to the previous work for face image SR including the 1D CCA based

method in [71], the contributions of this chapter are as follows:

1. This is the first chapter that explores 2D CCA for face image super-resolution. To

the authors’ best knowledge this has not been done before using 2D CCA. The

proposed method demonstrates superior performance compared to the state-of-

the-art super-resolution methods [175, 71, 113, 49] (see Figure 3.7).

2. The proposed 2D CCA super-resolution algorithm works directly on the original

2D face image representation. The method is computationally efficient and it

achieves the best performance compared to the other methods [175, 71, 113, 49]

(see Table 3.3).

3. Thorough experiments are conducted to validate the approach, both quantitatively

and qualitatively, using comprehensive metrics including reference based metrics

(PSNR, SSIM, SVD [140]) and non-reference based metric (DM [34]). Cross-

dataset validation is also performed (see Figure 3.8). Results from the experiments

show that the approach is not datasets or image dependent, which is crucial from

practical considerations (see Figure 3.7). In addition, a recognition task using

the super-resolved images by the proposed method lead to the highest recognition

accuracy compared to the other methods (see Table 3.2).
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In the rest of this chapter, Section 3.2 provides mathematics for 1D CCA

and 2D CCA. Section 3.3 presents the proposed face super-resolution algorithm. The

experimental results and comparisons are given in Section 3.4. Finally, Section 3.5

concludes this chapter.

3.2 1D and 2D CCA

3.2.1 1D CCA Formulation

1D CCA was first introduced in [67]. 1D CCA finds basis for two sets of random

variables such that the correlation between the projections of these two sets of random

variables is maximized. Given two centered (zero mean) datasets, X = {xi ∈ Rm, i =

1, 2, ..., N} and Y = {yi ∈ Rn, i = 1, 2, ..., N}, 1D CCA aims at obtaining two basis

vectors WX ∈ Rm and WY ∈ Rn such that the correlation coefficient ρ of W T
XX and

W T
Y Y is maximized. The objective function to be maximized is given by

ρ =
Cov(W T

XX,W
T
Y Y )√

V ar(W T
XX)

√
V ar(W T

Y Y )

=
W T
XCXYWY√

W T
XCXXWXW T

Y CY YWY

(3.1)

where CXX and CY Y is the autocovariance matrix of X and Y . CXY denotes the

covariance matrix of X and Y .

Equivalently, the 1D CCA can be formulated as a constrained optimization

problem by

argmax
WX ,WY

W T
XCXYWY (3.2)

subject to W T
XCXXWX = 1 and W T

Y CY YWY = 1.
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3.2.2 2D CCA Formulation

For some data types such as image, the data representation is inherently two-

dimensional. Thus, it is desirable to analyze data in the original 2D space without

reshaping the data into 1D vectors. Motivated by 2D Principal Component Analysis (2D

PCA) [173], 2D CCA was recently developed in [87]. Given two centered datasets, X =

{xi ∈ Rmx×nx , i = 1, 2, ..., N} and Y = {yi ∈ Rmy×ny , i = 1, 2, ..., N}, 2D CCA seeks

two left projection matrices LX ∈ Rmx×d1 and LY ∈ Rmy×d1 and two right projection

matrices RX ∈ Rnx×d2 and RY ∈ Rny×d2 such that the correlation coefficient ρ between

the two projected datasets LTXXRX and LTY Y RY is maximized. ρ is given by

ρ =
Cov(LTXXRX , L

T
Y Y RY )√

V ar(LTXXRX)
√
V ar(LTY Y RY )

(3.3)

ρ can be written in two parts as

ρL =
LTXC

R
XY LY√

LTXC
R
XXLXL

T
Y C

R
Y Y LY

(3.4)

ρR =
RTXC

L
XYRY√

RTXC
L
XXRXR

T
Y C

L
Y YRY

(3.5)

where CRXX is the autocovariance matrix of XRX , CRY Y is the autocovariance matrix

of Y RY , and CRXY is the covariance matrix of XRX and Y RY . Similarly, CLXX is the

covariance matrix of LTXX, CLY Y is the covariance matrix of LTY Y , and CLXY is the

covariance matrix of LTXX and LTY Y . The equivalent constrained problem for 2D CCA

is

argmax
LX ,LY ,RX ,RY

Cov(LTXXRX , L
T
Y Y RY ) (3.6)

subject to V ar(LTXXRX) = 1 and V ar(LTY Y RY ) = 1.
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3.2.3 Difference in Solving 1D CCA and 2D CCA

Note that the optimization required for 1D CCA in (3.2) and 2D CCA in (3.6)

are different. Using Lagrange multiplier, the solution of the optimization problem for

1D CCA is equivalent to the solution of the following generalized eigenvalue problems

CXYWY = λCXXWX

CY XWX = λCY YWY

(3.7)

where CY X = CTXY . However, the generalized eigenvalue problem for 2D CCA is differ-

ent, it involves the following two sets of equations

CRXY LY = λCRXXLX

CRYXLX = λCRY Y LY

(3.8)

CLXYRY = λCLXXRX

CLY XRX = λCLY YRY

(3.9)

The projection matrices LX , LY and RX , RY are solved in an iterative manner.

At each iteration, to obtain the updated LX and LY , RX and RY are fixed, and LX and

LY are obtained by computing the d1 largest generalized eigenvectors in (3.8). Similarly,

to obtain the updated RX and RY , LX and LY are fixed, and RX and RY are obtained by

computing the d2 largest generalized eigenvectors in (3.9). This process continues until

convergence when the updates from the last iteration to the current iteration become

very small. In our experiments, LX , LY and RX , RY converge in a few iterations.
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3.3 2D CCA for Face Super-resolution

The proposed face super-resolution approach consists of two steps: the first

step is face reconstruction and the second step is detail compensation which further

refines a face reconstructed in the first step since a reconstructed face through manifold

learning often does not contain sufficient details.

3.3.1 Face Reconstruction

There are two key parts for face reconstruction using 2D CCA: training and

reconstruction. During the training, a 2D CCA model is learned. For reconstruction,

the learned model is used to construct HR faces from the LR input. It is to be noted

that there exists no publication for 2D CCA for face super-resolution and face is an

important structure with enormous number of applications. Further, we will see in

Section 3.4 that 2D CCA based approach provides the best performance compared to

almost all the recently published papers on super-resolution.

3.3.1.1 Training

In the training, 2D CCA is applied to find the left and right projection matrices

that project the HR and LR images into a subspace in which the correlation between the

projections is maximized. Given the HR training set X = {xi ∈ Rmx×nx , i = 1, 2, ..., N}

and the corresponding LR training set Y = {yi ∈ Rmy×ny , i = 1, 2, ..., N}, the mean

faces µX and µY are subtracted to obtain the centered datasets X̂ and Ŷ , respectively.

The left transforms LX̂ and LŶ and the right transforms RX̂ and RŶ are

obtained by maximizing
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ρ =
Cov(LT

X̂
X̂RX̂ , L

T
Ŷ
Ŷ RŶ )√

V ar(LT
X̂
X̂RX̂)

√
V ar(LT

Ŷ
Ŷ RŶ )

(3.10)

The image datasets X̂ and Ŷ are now transformed to PX = LT
X̂
X̂RX̂ and PY = LT

Ŷ
Ŷ RŶ .

3.3.1.2 Reconstruction

In order to perform super-resolution, a LR image iLR is provided. The LR

image is projected to the subspace by

PLRi = LT
Ŷ

(iLR − µY )RŶ (3.11)

We assume that PLRi can be reconstructed by a linear combination of its K nearest

neighbors in PY and the coefficients wj ’s are obtained by minimizing the reconstruction

error given by

argmin
{wj}Kj=1

∥∥∥∥∥∥PLRi −
K∑
j=1

wjPYj

∥∥∥∥∥∥
F

(3.12)

subject to the constraint
∑K

j=1wj = 1. PYj denotes a sample in the LR dataset, and

‖·‖F calculates the Frobenius norm. The details on solving this constrained least square

problem can be found in [134].

After obtaining the reconstruction weights {wj}Kj=1, the projection of the de-

sired HR image iHR in the 2D CCA space is reconstructed by

PHRi =

K∑
j=1

wjPXj (3.13)

where PXj is the HR version corresponding to PYj .

Similar to (3.11), PHRi is related to iHR by
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PHRi = LT
X̂

(iHR − µX)RX̂ (3.14)

so iHR is derived as

iHR = LT
X̂

†
PHRi R†

X̂
+ µX (3.15)

where † denotes the Moore-Penrose pseudoinverse operation since LT
X̂

and RX̂ are not

directly invertible.

The super-resolution approach for the whole face mentioned above is based

on the rationale that the same neighborhoods are preserved in both HR dataset and

LR dataset. Instead of generating a model for the whole face, we divide a face into

three parts from top to bottom: eyes part, nose part, and mouth part (for the aligned

face images, each part is taken within a predefined region). The same super-resolution

procedure is applied directly with the only difference being that the training LR and HR

image pairs and the input LR image are now certain parts of the face. The partitioning

improves the global reconstruction precision by refining local reconstruction separately.

The final result is obtained by stitching the three independently reconstructed parts

together as shown in Figure 3.2. We average the pixels on the boundaries from different

parts to generate a smooth output.

3.3.2 Detail Compensation

During face reconstruction, the projection of the face data into a subspace

inevitably loses some information and this is often observed as the lack of high-frequency

details. Furthermore, the neighborhood reconstruction itself is essentially an averaging

process which further smooths the reconstruction results. To alleviate this problem, we
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Figure 3.2: A Face is divided into three parts corresponding to eyes region, nose re-
gion, and mouth region. Super-resolution is performed separately for each part and the
outputs are merged together to form the high-resolution output.

add a detail compensation step in order to generate faces with high-frequency details.

For a HR image xj in the training set X, a Gaussian filter is applied, effectively

as a low-pass filter. The output x̃j is a blurred version of the original image that mainly

contains the low-frequency components (LF). By subtracting the low-passed image x̃j

from the original image xj , an image hj that contains mainly high-frequency (HF)

components is generated.

The reconstruction weights are computed during the training as in (3.12) to

generate a HF compensation mask icomp by

icomp =
K∑
j=1

wjhj (3.16)

where {hj}Kj=1 corresponds to the same neighborhood as that of {PXj}Kj=1 and {PYj}Kj=1,

and K is the number of chosen nearest neighbors. The final output is given by

iout = iHR + icomp (3.17)

Similar as it was done in face reconstruction, each HF image is divided into

three parts and the three sets of calculated weights are applied to generate the three

reconstructed HF masks. The HF masks are then combined together to form a detail

compensation mask for the whole face.
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3.4 Experiments

3.4.1 Experimental Protocols

3.4.1.1 Face Datasets

We evaluate our method on the CAS-PEAL-R1 dataset [46] which contains face

images of 1040 individuals. We use frontal face images of these individuals with normal

lighting and neutral expression. All images are cropped and geometrically normalized

with the locations of the eyes and mouths fixed to form the the HR images of size

120 × 120 and the LR images of size 30 × 30. Thus, the magnification factor is 4 in

our experiments. We selected images of 940 individuals for training and the rest of

the images are used for testing. As studied and pointed out in [71] as well as found

out empirically in our experiments, the larger the neighborhood size K is, the better

the results of neighborhood reconstruction are. Therefore, in our experiments all the

training images are used in the K nearest neighbor reconstruction. To generate the LF

images, a Gaussian filter with σ = 0.8 is applied with a 5×5 mask. This low-pass filtering

of the image simulates the formation of the LR image from HR image. The selection of

the parameters for the Gaussian filter is similar to the settings in the previous work for

image SR [38, 172, 4].

In addition, we also use CUHK student dataset [160] which contains 188 sub-

jects with frontal faces to test our algorithm. The images in this dataset are cropped and

aligned in the same manner. Figure 3.3 shows some sample images from both datasets.

For training, the HR images are divided into three parts of size 40 × 120,

48 × 120, and 40 × 120. The middle part has 4 rows of pixels at top and at bottom

overlapping with the upper part and the lower part. The corresponding LR images are
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Figure 3.3: Sample images from two datasets: CAS-PEAL-R1 dataset [46] (top) and
CUHK student dataset [160] (bottom).

divided to 10× 30, 12× 30, and 10× 30. For testing, we concatenate the super-resolved

parts and average the overlapping pixels. By averaging the overlapping regions the final

output is smooth and consistent (see Figure 3.7). We choose d1 = d2 = 30 in projection

matrices empirically to maintain the reconstruction accuracy in an efficient manner.

The projection matrices converge in about 10 iterations during optimization.

3.4.1.2 Methods Compared

We compare our results to four state-of-the-art methods: artifact free super-

resolution method using iterative curve based interpolation (ICBI) [49], sparse represen-

tation based super-resolution (SPR) [175], the position-patch based method (PP) [113],

and the 1D CCA based face reconstruction method (1D CCA) [71]. Among these meth-

ods, 1D CCA and PP are specially designed to super-resolve face images while ICBI

and SPR are the super-resolution algorithms for generic images. For ICBI, SPR and

PP we used the default settings provided by the authors of these papers [49, 175, 113].

28



We use the same training set in 1D CCA as in our method [71]. For face reconstruction

in PP, the input HR-LR pairs come from our training set. Note that we do not com-

pare with [124] since it is not directly related to image super-resolution and we do not

compare with [155] since it is primarily designed for face image-sketch synthesis.

3.4.1.3 Metrics for Quantitative Evaluation

We calculate the peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) [161] scores for the super-resolved face images. In addition, we calculate the

distortion measure (DM) [34] that evaluates the distortion from the original image in

the frequency domain, in which other image quality measures usually do not work. The

DM is calculated by

DM =

∫ fmax

0

[
1−DTF (

fr
fN

)

]
CSF (fr)dfr (3.18)

where fr is the radial frequency, fN is the Nyquist frequency and fmax is a predefined

value. DTF is a distortion transfer function and CSF is contrast sensitivity function

which approximates the human visual system (HVS).

Furthermore, we also apply a recently introduced SVD-based quality mea-

sure [140] in our experiments. The SVD-based image quality measure tries to mimic a

human viewer by measuring different distortion types at different levels. In this metric

first a graphical measure is calculated for each image block of size n× n by

Di =

√√√√ n∑
i=1

(si − ŝi)2 (3.19)

where si is the singular value of the original block and ŝi is the singular value of the

distorted block. The global measure is obtained by
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MSV D =

∑ k
n
× k
n

i=1 |Di −Dmid|
k
n ×

k
n

(3.20)

where Dmid is the median of the sorted Di and k × k is the size of the image.

3.4.2 Experimental Results

3.4.2.1 Effect of Part-Based SR

As aforementioned, instead of performing SR on the whole face, we divide the

face into three parts and reconstruct each part individually. The final output merges the

three parts together. Figure 3.4 shows the difference by subtracting the reconstructed

faces from the original HR images for some sample images using the holistic method

and the part-based method.

Examining the difference between the original images and the proposed part

based SR results, we find that reconstructing the entire face using one trained model

brings more error especially in the regions of eyes, nose and mouth. By specializing the

trained model for a specific part of a face, the output is closer to the ground-truth with

less distortions.

3.4.2.2 Effect of Detail Compensation

In Figure 3.5 we examine the Fourier transform on the face images after face

reconstruction and detail compensation. The magnitude of the Fourier transform is

drawn as the heat map where the magnitude decreases from red to blue. After face

reconstruction, the low-frequency components are dominating, as can be seen in the

center of the heat map. The magnitude decreases from the center towards the corners

of the heat map. This agrees with our visual impression that the reconstructed faces
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Figure 3.4: Original HR images (top), residue between the original images and whole
face based SR results (middle), residue between the original images and part based SR
results (bottom).
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Figure 3.5: Effects of detail compensation. (Top) Reconstructed faces by 2D CCA.
(Bottom) Results after detail compensation. The heat map to the right of the image
shows the magnitude of its Fourier transform.

are not sufficiently sharp. After detail compensation, the magnitude is increased in the

high-frequency components. Thus, the face images look sharper with less blurriness and

more details.

Table 3.1 shows the effect of part-based SR and detail compensation. The per-

formance gain occurs from holistic face SR to part-based SR for all the three evaluation

metrics (PSNR, SSIM, and DM). Further improvement is achieved by detail compensa-

tion. The scores of SVD [140] are similar in the comparisons. The quantitative results

indicate that both the part-based SR and detail compensation help to improve the out-

put image quality. These quantitative results correspond to the visual observations from

Figure 3.4 and Figure 3.5.
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Table 3.1: Evaluation of the effects of part-based SR and detail compensation. The
evaluation metrics include PSNR, SSIM [161], DM [34] and SVD [140]. For all the
metrics, the higher score is better.

Holistic Face Part-Based Detail Comp.

PSNR(dB) 32.45 34.46 34.89

SSIM 0.843 0.884 0.885

DM(dB) 35.38 35.87 38.25

SVD 0.667 0.672 0.668

3.4.2.3 Effect of Projection Dimension

The effect of the dimension d1 and d2 in the projection matrices is examined.

As shown in Figure 3.6, when d1 and d2 are small, the reconstruction is not accurate.

The choice of d1 = d2 = 30 generates good results. As d1 and d2 become much

larger, the differences in the outputs are not easily noticeable while the computation

and memory expenses increase. As a result, we choose d1 = d2 = 30 in our experiments

as the dimension of the left and right projection matrices.

3.4.2.4 Comparison with 1D CCA Based Method

In the 1D CCA based method [71] the images are first converted into vectors.

From Figure 3.7(e) we can see that although 1D CCA is able to super-resolve the faces,

the output images suffer from distortions. This inaccurate reconstruction visually causes

the super-resolved image deviate from the ground-truth image. In other words, the

output face images look different from the actual subjects (see the distortions on the

subjects’ noses, eyes, mouths, and chins). This may degrade the performance of latter
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Figure 3.6: Effects of dimension of the projection matrices. (a) d = 10. (b) d = 20. (c)
d = 30. (d) d = 40.

processing steps such as face recognition (see Table 3.2). The reason for the distortions

is that the images are first reshaped into 1D vectors and then the relationships in the

1D CCA subspace are explored. However, since the data are intrinsically 2D structured,

this reshaping process would inevitably discard the 2D spatial information in the original

data representation.

In the proposed 2D CCA based methods, those distortions are significantly

reduced (see Figure 3.7(f)) with respect to the ground-truth (see Figure 3.7(g)). It is

evident that by bypassing the image vectorization, the output image is better recon-

structed in term of its underlying structure.

Figure 3.8 shows the box plots for the quality measures by PSNR, SSIM, DM,

and SVD. Box plot is a non-parametric display of differences between groups of numerical

data. The proposed method outperforms the 1D CCA based method in all of the

reference based and non-reference based metrics. Especially, 1D CCA yields poor scores
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Figure 3.7: The super-resolution Results. Top three rows are from CAS-PEAL-R1
dataset [46] and bottom three rows are from CUHK dataset [160]. (a) Low-resolution im-
ages (enlarged by pixel replication). (b) Results by ICBI [49]. (c) Results by SPR [175].
(d) Results by PP [113]. (e) Results by 1D CCA [71]. (f) Results by the proposed
method. (g) Original high-resolution images.
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for SSIM as a similarity measure, since its results are distorted from the ground-truth.

Compared with 1D CCA based method, both the reconstruction error and artifacts are

reduced by our method, thus leading to better quantitative scores. In [71] the 1D CCA

based method outperforms some of the representative face super-resolution methods

including [100], a common baseline method for face super-resolution. On the other

hand, the proposed method outperforms the method in [71] (see Figure 3.8). Therefore,

the proposed method is better than [100].

3.4.2.5 Comparison with Other Methods

We compare the proposed approach with some state-of-the-art methods. Fig-

ure 3.7 shows sample results with different methods. We summarize the findings as

follows:

• The results by ICBI [49] (see Figure 3.7(b)) do not contain sufficient details and

the blurriness in the output is not removed. The interpolation based method is

not able to reconstruct facial details.

• SPR based method [175] tackles the SR problem from the perspective of com-

pressed sensing. It is based on the assumption that the sparse representation can

be recovered correctly from the downsampled signal. As shown in Figure 3.7(c),

the results contain more detail and the faces are reconstructed properly. However

the staircase noise is noticeable along the curved edges.

• PP based method [113] divides the face image into many small connected patches

and then uses neighbor embedding to super-resolve each patch separately. The

final results are constructed by stitching the small patches together. As can be

seen from the results (see Figure 3.7(d)), the general structure of the faces is well
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maintained. The blockness artifacts are explicitly visible due to the reconstruction

in a local manner without the global refinement.

• The 2D spatial structure of the LR faces is well maintained in the 2D CCA subspace

since the image data are fed directly in the optimization process without being

converted into vectors. Figure 3.7(f) shows the final results by our method. In

this case, there is more resemblance between the output and the original images.

The detail compensation further improves the results by adding more details to

the faces, i.e. the contours of the eyes and mouths. Compared to the original

HR face images, the final outputs of the proposed algorithm are realistic without

explicit artifacts, confirming that the 2D structural information is well maintained

by using 2D CCA method.

The training images are from the CAS dataset only. When applied the trained

model to the CUHK dataset, which is taken under different illumination conditions (see

Figure 3.3), the outputs are still satisfactory. Thus, it is evident that the trained model

is not dataset dependent and this merit makes our method generalizable.

The proposed method outperforms PP [113], and ICBI [49] in PSNR and SSIM.

For PSNR the results by SPR [175] are higher than the proposed method. However, this

contradicts with our visual examination. In fact, as indicated in [161], PSNR itself does

not translate the visual quality to scores faithfully. For SSIM, our method is comparable

to SPR [175]. For DM and SVD our method yields the best results, which means in these

aspects the proposed method is able to generate highest quality outputs with minimum

artifacts and distortion. The results by DM and SVD are more coherent with the visual

quality on the super-resolved images from Figure 3.7.
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Table 3.2: Recognition accuracy using super-resolved images.

Method ICBI [49] SPR [175] PP [113] 1D CCA [71] Step 1 Proposed

Accuracy 75% 97.22% 87.5% 64.58% 98.96% 99.31%

3.4.2.6 Results on Real World Data

We test the proposed method on a real world image with LR faces. We man-

ually extracted the faces from the picture and aligned them as in the previous experi-

ments. Some samples of the super-resolved face images are shown in Figure 3.9. These

subjects are not present in the database we used for training and testing above. Note

that the quality of the input image is significantly worse than the quality of the images

from CAS-PEAL-R1 or CUHK datasets due to noise, blurriness and artifacts caused by

compression. Still our algorithm is able to generate reasonably good results.

3.4.3 Effect of Super-Resolution on Recognition

In order to evaluate the effects of super-resolution to face recognition, we

conduct a recognition experiment with LBP-based face recognition [1] as the baseline

method. The 100 subjects from CAS-PEAL-R1 dataset [46] and 188 subjects from

CUHK dataset [160] used for testing in the above experiments are now combined to

form a dataset of 288 subjects. The gallery set contains HR image for those subjects

and the query data are the super-resolved images using different methods. Table 3.2

shows the recognition accuracy.

From the recognition rates we can see that the images generated by the pro-

posed methods lead to better recognition result compared to the other methods. The
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Figure 3.9: Results on a real world image. (Top) Original image. (Bottom) Some
extracted LR faces (small images) and the super-resolved faces (large images).
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result by 1D CCA [71] is less competitive since the generated faces are distorted from

the ground-truth, which adversely affects the recognition performance. The recogni-

tion rate using 2D CCA only (step 1) without detail compensation is 98.96%, which is

better compared to other methods. By further compensating the details, the highest

recognition rate of 99.31% is achieved.

We would expect that by using more sophisticated features and classifiers the

recognition rates using images by different super-resolution methods would also increase.

However, given parameter settings in the baseline face recognition method, the 2D CCA

super-resolved faces result the best recognition rate. This is in agreement with the visual

quality assessment in Figure 3.7 in which the faces are faithfully reconstructed using 2D

CCA .

3.4.4 Computational Complexity

One of the advantages of our method is the simplicity of computation. The

computational complexity depends on the solution to solve the generalized eigenvalue

problem to solve ((3.8) and (3.9)). Many eigenvalue solvers can be used. For instance,

the Arnoldi iteration [148] is an efficient and popular algorithm. Given a generalized

eigenvalue problem Ax = λBX, suppose the matrix size of A and B be N by N , then

the computational complexity using Arnoldi iteration is O(dN2 + d2N), where d is the

number of significant eigenvalues. In (3.8) and (3.9) for the solution of 2D CCA, the

sizes of covariance matrices corresponding to A and B are small (i.e., they are of the

order of image width or height). This implies smaller N in O(dN2 + d2N), thus 2D

CCA is computationally efficient. On the other hand, in 1D CCA, since images are

first reshaped to vectors, the corresponding covariance matrices in (3.7) are much larger

(i.e., they are of the order of total number of pixels in an image), which lead to more
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Table 3.3: Comparison of training time (in seconds) and average time to super-resolve
a face image.

Method ICBI [49] SPR [175] PP [113] 1D CCA [71] Proposed

Training − 351.86s − 103.36s 64.30s

Testing 0.087s 39.23s 112.81s 0.48s 1.38s

expensive 1D CCA as compared to the 2D CCA.

Among the methods compared in this chapter, SPR [175], 1D CCA [71], and

the proposed 2D CCA based method require a training process. Note that in PP [113]

the HR-LR pairs are used to reconstruct the testing image and no explicit model or

subspace is formed via training, thus, we do not consider it here as a learning based

approach that requires training. All the programs are implemented in MATLAB and

were executed on a desktop with a 2.4 GHz CPU and 3 GB of RAM. The implementation

of our method is not optimized. Table 3.3 shows the training time and the average time

to super-resolve a face image on CAS-PEAL-R1 and CUHK datasets.

Compare to the other methods involving a training process, our method took

significantly less time for training. It is due to the small size of matrices involved in

the 2D CCA computation. To super-resolve a LR face image, although ICBI [49] and

1D CCA [71] spent less time, our method is able to generate better results while also

keeping the computation time to a small value. When comparing to SPR [175] and

PP [113], our method requires much less time to super-resolve an image.

3.4.5 Discussion

The high quality of the super-resolved image demands accurate alignment in

the preprocessing step. The images for training and testing need to be aligned in the
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same manner (with the positions of eyes and the center of the mouth fixed). Without

proper alignment, the quality of the output would degrade. However, this constraint

also holds for CCA based method [71] and position-patch based method [113].

3.5 Conclusions

In this chapter, a two-step approach for face super-resolution based on 2D

canonical correlation analysis is proposed. One major merit of the proposed method

is that our method works directly on the original 2D representation of the image data

without converting the images into vectors as it is commonly done in the previous

work. This important methodology maintains the intrinsic 2D structure of the face

images. Experimental results show that compared to the state-of-the-art methods, the

super-resolved faces by the proposed approach are visually realistic and very close to

the ground-truth. Various image quality metrics also support that the results by our

method are superior to the other methods. The super-resolved images are tested in the

recognition task and the results suggest that the super-resolved images by the proposed

method achieve the highest accuracy. Due to the small matrices involved in our method,

the computation in both training and testing processes is very efficient.
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Chapter 4

Dynamic Bayesian Network for

Unconstrained Face Recognition

in Surveillance Camera Networks

4.1 Introduction

With the broad establishment of surveillance video camera systems in recent

years in both public and private venues, the recognition/verification of the subjects is

often of interest and importance for purposes such as security monitoring, access control,

etc. Some biometric traits such as gait can be used to recognize different subjects [58],

however, it is preferred to use more distinct biometric clues such as face to identify a

subject. Although face recognition has been studied extensively, face recognition in an

unconstrained environment such as in surveillance camera videos remains very challeng-

ing and the recognition rate could drop dramatically to less than 10% using standard

technologies [54]. The challenges to unconstrained face recognition in surveillance cam-
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eras are mainly due to the following reasons:

• Low resolution. In the video captured by surveillance cameras, the pixels that

account for the faces are very limited. However, previous studies have shown

that faces of size 64× 64 are required for the existing algorithms to achieve good

recognition accuracy [110].

• Arbitrary poses. Usually the subjects are moving freely. Consequently, it is not

uncommon that the captured faces have different poses in different cameras.

• Varying lighting conditions. As the lighting is usually not uniform in the coverage

area of the surveillance cameras, the illumination on the subject’s face could vary

significantly as he/she moves (e.g., the subjects walks into the shade from direct

sunshine).

• Noise and blurriness. The captured images are often corrupted by noise during

transmission and the motion of the subjects usually introduces blurriness.

Figure 4.1 shows an example of a subject’s face captured by three surveillance

cameras. The cameras are placed above a portal. The cameras have different viewing

angles and none of the cameras captures the full frontal face of the subject. The face im-

ages exhibit variations in resolution, lighting condition and poses. In addition, noise and

blurriness are also observed. Under such circumstance, the standard face recognition

algorithms such as Eigenfaces [149] would fail to work effectively. Despite the afore-

mentioned difficulty, a multi-camera system provides different views of subjects which

are complementary to each other. This enables the potential to improve the recognition

performance with low quality input faces from multiple cameras.
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Figure 4.1: The subject’s face is captured by 3 cameras from different views in a typical
surveillance camera system setup [164]. The pose and resolution of the captured faces
vary across different views.

In this chapter, we propose a dynamic Bayesian network (DBN) based approach

to tackle the problem of face recognition in multi-camera systems.

4.1.1 Contributions of This Chapter

Previously Bayesian network has been applied to face recognition. Heusch

et al. [64] combined intensity and color information for face recognition in a Bayesian

network where the observation nodes represented different parts of the face and the

hidden nodes described the types of the observations. In [123] an embedded Bayesian

network was proposed for efficient face recognition. Beyond the image-based recognition,

there has been a growing interest to study the temporal dynamics in video sequences to

improve the recognition performance in recent years [43, 105]. A head pose estimation

framework using Bayesian network was proposed in [78].
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We propose a probabilistic approach for video-to-video face recognition using

a DBN, utilizing different frames from multiple cameras [6]. DBN has previously been

applied to tasks such as speech recognition [122], vehicle classification [77], visual track-

ing [156] and facial expression recognition [185]. Variant of DBN such as topological

DBN has also been proposed to identify human faces across age [24]. In this chapter,

the DBN is constructed by repeating a Bayesian network over a certain number of time

slices with time-dependent variables. In each time slice the observed nodes are from dif-

ferent cameras. During the training, the temporal information is well encoded and the

person-specific dynamics are learned. The identity of the testing subject can be inferred

using previously trained network structure and parameters. By using DBN we are able

to factor the joint probability distribution considering the temporal relationship of the

feature evolution process between consecutive frames. Moreover, the DBN is defined

and structured in a way that adding more cameras is easy. In addition, if features from

one camera were not extracted due to image capture failure, this information can still

be inferred by DBN and, therefore, recognition may not fail.

Compared to the previous work [13] in which the DBN structure is manually

defined and only two cameras are used for recognition, in this chapter, the topological

structure in each time slice of DBN is learned automatically in an optimal manner with

three cameras involved. In addition, the experimental results are examined thoroughly

using multiple performance evaluation criteria using much more data with improved

evaluation protocol.

In summary, the contributions of this chapter are:

• We propose a probabilistic framework for unconstrained face recognition in a multi-

camera surveillance scenario. To the authors’ best knowledge, this is the first work
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using DBN for video-based face recognition in surveillance cameras with more

than two cameras. The framework is flexible and can be easily extended to more

complicated multi-camera settings. Besides, any feature descriptor is compatible

in this framework.

• We test the proposed method on a publicly available multi-camera surveillance

video dataset “ChokePoint” with unconstrained face acquisition [164], in contrast

to the other commonly used datasets which were collected in controlled environ-

ment. We compare the proposed method with popular benchmark classifiers using

different feature descriptors. The superior performance of the proposed DBN ap-

proach is verified in different aspects with various evaluation criteria.

• We compare the face recognition performance using all of the three cameras in

the ChokePoint dataset against using single camera. Experimental results demon-

strate that using multiple cameras improves the recognition performance over any

single camera.

The rest of this chapter is organized as follows. Section 4.2 describes the

details of the proposed method. In Section 4.3 the experimental results are reported.

We conclude this chapter in Section 4.4. Before the detailed algorithms is presented,

Table 4.1 gives a summary of the symbols used in the following sections for a better

understanding.

s = argmax
S

p(S|CAM1, CAM2, CAM3)

= argmax
S

p(CAM1, CAM2, CAM3|S)p(S)∑
S p(CAM1, CAM2, CAM3|S)p(S)

= argmax
S

p(CAM1|S)p(CAM2|CAM1, S)p(CAM3|CAM2, S)p(S)∑
S p(CAM1, CAM2, CAM3|S)p(S)

(4.1)
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4.2 Technical Details

In the following subsections, we first explain the Bayesian network structure

for face recognition from multiple cameras with a single time slice and then the DBN

structure with multiple time slices is presented.

4.2.1 Bayesian Network

A Bayesian network (BN) is a graphical model, which is defined using a di-

rected acyclic graph. The nodes in the model represent the random variables and the

edges define the dependencies between the random variables. Given the value of its

parents, each variable is conditionally independent of its non-descendants. A BN can

effectively represent and factor the joint probability distributions and it is suitable for

the classification tasks. Mathematically, given a set of ordered random variables X1,

X2,. . . ,Xn, the full joint distribution is given by:

p(x1, x2, . . . , xn) = p(x1)× p(x2|x1)× . . .

×p(xn|x1, x2, . . . , xn−1) =
n∏
i=1

p(xi|x1, . . . , xi−1). (4.2)

In the scope of multi-camera face recognition, when several face images of the

same subject are captured by different cameras, we construct the corresponding BN

using two different kinds of nodes:

• Root node: This is a discrete node on the top of the BN. The node is represented

by a random variable S. S is the probability distribution over all the subjects in

the gallery and does not represent the identity of a single subject. The size of the

root node indicates the number of the subjects (classes).
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• Camera node: This continuous node contains the feature descriptors of the ex-

tracted face image from one camera. The number of the camera nodes depends on

the number of cameras involved in the surveillance. Different feature descriptors

such as local binary patterns (LBP) [3] or local phase quantization (LPQ) [2] can

be adopted. The notation CAM is used to represent this random variable.

When a test sequence is provided, the subject’s identity s is determined using

the maximum a posterior (MAP) rule:

s = argmax
S

p(S|CAM1, . . . , CAMK)

= argmax
S

p(CAM1, . . . , CAMK |S)p(S)∑
S p(CAM1, . . . , CAMK |S)p(S)

(4.3)

where CAMk is the random variable representing the feature vector from the face image

in camera k. p(S) is the prior probability of the presence of each subject and is usually

modeled by a uniform distribution. Since the different cameras are capturing the same

subject, the camera nodes are not independent. We explain how the BN structure is

learned in the next part.

4.2.2 Structure Learning

The structure of the BN would greatly impact the accuracy of the model.

However, the number of possible structures is super-exponential in the total number

of nodes. Therefore, it is desirable to avoid performing exhaustive search for structure

learning. In this chapter, we use the K2 structure learning algorithm [29] to determine

the BN’s structure. K2 uses a greedy approach to incrementally add parents to a node

according to a chosen scoring function. The search space of K2 algorithm is much smaller

than the entire space due to the ordering of the nodes and it guarantees no cycle in the

generated structure. We use the Completed Likelihood Akaike Information Criterion
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Figure 4.2: K2 learned Bayesian network structure [29]. The training data is from the
ChokePoint dataset [164].

(CL-AIC) scoring function for this purpose [166]. Figure 4.2 shows the K2 learned BN

structure. In this case, the subject’s identity s is determined by Equation 4.1.

4.2.3 Dynamic Bayesian Network for Face Recognition

Compared to the traditional face recognition methods which are typically image

based, the video based face recognition is advantageous since the dynamics in different

frames for the specific person can be learned to help the recognition of the subject. As

suggested in [131], multiple face samples from a video sequence have the potential to

boost the performance of the recognition system.

We propose our graphical model as a DBN. DBN differs from HMM in the

following aspects: a DBN represents the problem utilizing a set of random variables

whereas an HMM uses a single discrete random variable; in a standard first-order HMM

modeled as a DBN, the random variables at time slice t depend only on the variables

in time slices t and t− 1 for all t > 1; in an HMM all the hidden random variables are

combined in a single multi-dimensional node, whereas in a DBN multiple hidden nodes

can be present.
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Figure 4.3: The DBN structure for 3 time slices with a 3-camera setup.
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In terms of complexity, an HMM would require O(T (NK)2) for inference,

O(N2K) parameters to specify P (St|St−1), and O(TNK) space, where T is the se-

quence length, N is the number of classes, and K is the number of camera observations.

For a DBN, O(TKNK+1) is required for inference, and O(KN2) parameters to specify

P (St|St−1). The DBN has exponentially less parameters and inference is much faster.

Operating a graphic model requires three main steps: defining the structure,

learning the parameters, and inference. The structure of the DBN consists of the inter-

slice topology and the intra-slice topology. The inter-slice topology is defined as follows.

Each time slice t = 1 . . . T has K + 1 nodes; one root node S, and K camera nodes

CAMk=1...K . This structure is the same as shown in Figure 4.2 for the 3-camera setting

(K = 3). The intra-slice topology is illustrated in Figure 4.3 with 3 time slices.

After defining the structure, it is required to learn the parameters of the DBN

before recognition is performed. Therefore, the probability distribution for each node

given its parents should be determined. In the 3-camera setting, for the first time slice

this includes:

p(CAM1
1 |S1), p(CAM1

2 |S1, CAM1
1 ),

p(CAM1
3 |S1, CAM1

2 ), p(S1) (4.5)

For time slices t = 2 . . . T it includes:

p(CAM t
1|St, CAM t−1

1 ),

p(CAM t
2|St, CAM t−1

1 , CAM t−1
2 , CAM t

1),

p(CAM t
3|St, CAM t−1

2 , CAM t−1
3 , CAM t

2), p(S
t|St−1) (4.6)

With new unseen data (evidence), an inference algorithm is applied to com-

pute the marginal probability from the evidence. Specifically, inference determines the

55



subject’s identity by p(ST |CAM (1:T )
k=1,2,3), where CAM

(1:T )
k=1,2,3 refers to features from all

of the three cameras for time slices 1 to T . In other words, a probability distribution

over the set of all the subjects is defined. The goal is to find the marginal probability

of each hidden variable. Equation 4.4 shows how p(St|CAM (1:T )
k=1,2,3) is computed for any

t = 2 . . . T .

4.3 Experiments

4.3.1 Experimental Settings

4.3.1.1 Dataset

We use the ChokePoint dataset [164] which is designed for evaluating face

recognition algorithms under real-world surveillance conditions. This dataset is chal-

lenging for face recognition task as the captured faces are unconstrained in terms of

pose, lighting, and image quality. Although many face datasets exist, to the authors’

best knowledge, the ChokePoint dataset is the only available open surveillance video

dataset with multiple cameras. Figure 4.4 shows some sample images from this dataset.

The setting for the network involves three cameras mounted above two portals (P1 and

P2) that captured the video sequences of the moving subjects while the subjects were

either entering (E) or leaving (L) the portals in a natural manner. In total four data

subsets are available (P1E, P1L, P2E, and P2L). In each subset, four sequences are pro-

vided (S1, S2, S3, and S4) and each sequence contains the recorded videos from three

cameras (C1, C2, and C3). In P1 25 subjects were involved and in P2 there were 29

participants. The resolution of the captured frames are 800× 600 at a frame rate of 30
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Figure 4.4: Sample images from the ChokePoint [164] dataset.

fps and the cropped faces with size 96× 96 from the original video frames are provided.

4.3.1.2 DBN Structure

The DBN is constructed with five time slices. The size of the DBN is de-

termined empirically to offset the complexity of the network and to ensure sufficient

dynamics to be encoded as a temporal clue. In each time slice we use the learned struc-

ture in Figure 4.2. For parameter learning, the EM algorithm is used and the junction

tree algorithm is chosen for inference. With non-optimized Matlab implementation, the

training takes about 42 seconds on a PC with 3GHz CPU and 8GB RAM. For testing,

the inference takes about 60 seconds.

In our experiments, we use faces from all of the four subsets (P1E, P1L, P2E,
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and P2L). S1, S2, S3, and S4 are all used except for P2E in which we use only S3 and

S4 due to incomplete data in P2E S1 and P2E S2. In each sequence 40 instances are

used for training or testing. Each instance consists of 15 face images (3 cameras in each

time slice, 5 time slices in total). In each run, we perform cross-validation on the same

subset (i.e., train on sequence P1E S1 and test on P1E S2, P1E S3, and P1E S4). The

averaged results are reported for each subset separately.

4.3.1.3 Feature Descriptors

For face recognition, various feature descriptors have been proposed and ap-

plied. Local binary pattern (LBP) and its derivatives are among the most popular

choices [3, 184]. To tackle with blurred face recognition, local phase quantization (LPQ)

has been adopted [2]. Recently, inspired by the success in object recognition tasks, his-

togram of oriented gradients (HOG) has been applied to face recognition [36]. In our

experiments, we choose to use these three popular feature descriptors: LPQ, LBP and

HOG. For LBP and LPQ operation, the image is divided into the blocks of size 16× 16.

In LBP, LBP u28,2 is used as suggested in [3]. The parameters for LPQ are set to M = 7,

α = 1/7 and ρ = 0.9. For HOG, the image is divided into 9 blocks and the number of

orientation bins is set to 15. Note that any feature descriptors can be applied in the

proposed framework. The dimensionality of the extracted feature vectors is reduced to

50 using PCA to enforce the efficiency during computation.

4.3.1.4 Classifiers Compared

The DBN is compared with three benchmark classifiers: nearest neighbor (NN),

linear discriminant analysis (LDA) and support vector machine (SVM). These classifiers

are commonly used in recognition tasks. In the SVM classifier, its linear version is used.
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For these classifiers, the same training and testing data are used as for DBN. After

multiple testing samples are classified, we adopt the majority voting scheme to decide

the final class label (identity) of each subject.

4.3.2 Experimental Results

4.3.2.1 Comparison with Different Classifiers

To compare with other classifiers, the rank-1 recognition rates for the four

groups of sequences P1E, P1L, P2E, and P2L are reported in Table 4.2. In most cases,

NN and LDA are less able to discriminate the faces from the unconstrained video se-

quences due to the challenging dataset used. SVM improves the results by seeking for the

maximum separation between the features of distinct subjects. Regardless of the choice

of the feature descriptor, the proposed DBN classifier, compared to NN, LDA, and SVM,

performs best in different sequences as a result of the encoding of the person-specific

dynamics in the video and the fusion of multi-camera inputs.

To carefully investigate the performance of the classifiers, for each sequence four

evaluation plots are presented: Cumulative Match Characteristic (CMC) curve, Receiver

Operating Characteristic (ROC) plot, Expected Performance Curve (EPC) [21], and

Detection Error Tradeoff (DET) plot. Figure 4.5 shows the results for the P1E sequence.

In Figure 4.5, Figure 4.5(a), Figure 4.5(e), and Figure 4.5(i) present the CMC curves

for LBP, LPQ, and HOG, respectively. The recognition rates for the top 25 ranks are

reported as the gallery includes 25 subjects in P1. Compared to the other classifiers, the

recognition results are more accurate using the proposed DBN at different ranks. The

comparison of the results among different feature descriptors confirms the superiority of

the proposed method over the other classifiers.
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Figure 4.5(b), Figure 4.5(f), and Figure 4.5(j) present the ROC plots using the

three different feature descriptors. The recognition using LPQ is better than LBP and

HOG in terms of ROC performance. The reason is that LPQ is inherently designed as

a blur invariant feature descriptor while the captured faces by the surveillance cameras

show explicit blurriness due to subject’s motion. Note that with different feature de-

scriptors, the performance of the DBN is constantly better than the other classifiers in

most cases. This indicates that the performance gain of the proposed method is not

entirely feature dependent.

The EPCs in Figure 4.5(c), Figure 4.5(g), and Figure 4.5(k) compare DBN

with the other classifiers from the viewpoint of the tradeoff between false alarm and

false reject probabilities. The x-axis represents α ∈ R where α ∈ [0, 1] and the y-axis

corresponds to the error rate β defined as

β = α× FAR + (1− α× FRR), (4.7)

where FAR is the false alarm ratio and FRR represents the false rejection ratio. For

all of the three feature descriptors, DBN reports lower error rate compared to the other

classifiers. More importantly, the error rate is almost constant for all values of α.

Figure 4.5(d), Figure 4.5(h), and Figure 4.5(l) present the DET plots comparing

the decision error rate of DBN vs. the other classifiers. The performance is characterized

by the miss and false alarm probabilities. Both x and y axes are scaled non-linearly by

their standard normal deviates such that a normal Gaussian distribution will plot as a

straight line. The results show that the DBN reports less miss probability with equal

false alarm probability compared to NN, LDA, and SVM. It’s important to point out that

not only the DBN outperforms the other classifiers as shown in the DET plots, but even
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in cases where DBN and SVM seem to have similar performance (e.g., Figure 4.7(e)), the

DET plot shows that DBN achieves significantly less miss probability (Figure 4.7(h)).

Figures 4.6 to 4.8 show results for sequences P1E, P1L, P2E, and P2L, respec-

tively. The observations of Figures 4.6 to 4.8 are similar to that of Figure 4.5. Overall,

compared to NN, LDA and SVM, DBN is more robust in recognition and less prone to

error.

4.3.2.2 Multiple Camera vs. Single Camera

We compare the recognition performance using three cameras against using

only one camera in the proposed DBN framework. The DBN structure for a single

camera is derived from Figure 4.3 by removing the other two camera nodes. Table 4.3

show the rank-1 recognition rates comparisons using three cameras together (ALL)

against using only a single camera on sequences from P1E, P1L, P2E and P2L. As can

be seen, regardless of the specific choice of the feature descriptor, the recognition rates

with three cameras are higher than using any of a single camera. The reason is that

DBN takes into account the relationship of the three cameras through the dependencies,

thus the complementary information from each camera is utilized to help improve the

recognition performance. Also note that in most cases CAM2 (C2) provides higher

recognition rates compared to CAM1 (C1) and CAM3 (C3) due to the near frontal

faces it captured with relatively higher video quality. Although the performance using

HOG is, in general, inferior to LBP and LPQ, for different camera, HOG gives similar

recognition rates. This is due to the tolerance of the HOG descriptor for small pose

variations.
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4.4 Conclusions

We proposed a multi-camera face recognition system using DBN and this frame-

work is suitable for applications such as surveillance monitoring in camera networks. In

the proposed method, videos from multiple cameras are effectively utilized to provide

the complementary information for robust recognition results. In addition, the temporal

information among different frames are encoded by DBN to establish the person-specific

dynamics to help improve the recognition performance. Experiments on a surveillance

video dataset with a three-camera setup show that the proposed method performs better

than the other benchmark classifiers using different feature descriptors by different eval-

uation criteria. Regarding the generality of our method, the feature nodes in the DBN

can be replaced with any choice of informative feature descriptors and the proposed

framework can be extended to the camera systems with different number of cameras.
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Chapter 5

Person Re-Identification with

Reference Descriptor

5.1 Introduction

Imaging sensors are being deployed widely for many real-world applications

such as video surveillance, access control, etc. Particularly in camera networks, there

has been an increasing interest and considerable progress has been made for person

re-identification recently [151, 50, 39, 20, 182]. Person re-identification is a recogni-

tion task that aims to match individuals across non-overlapping cameras at different

time and location. Accurate person re-identification enables locating a target subject’s

whereabouts in video-monitored surroundings. For people tracking in a multi-camera

system [69], re-identification results can be used for tracklet association.

Matching people in different cameras is intrinsically difficult due to the imaging

disparity among different cameras. The following problems contribute to the complica-

tions of person re-identification in a camera network:
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• Low resolution. Most of the surveillance cameras are not able to capture high-

resolution images due to the low resolution of inexpensive cameras and large dis-

tance between camera and human subjects.

• Arbitrary poses. Since a subject is captured by surveillance cameras with non-

overlapping field-of-views, the poses of a subject in different camera are usually

quite different.

• Changing illumination. The images are captured at different time and/or location.

As a consequence, the appearance of a person may change dramatically due to

illumination changes.

• Occlusion. A subject may carry accessories such as a backpack, briefcase, etc.,

which may occlude distinctive features of the subject in a certain view.

Figure 5.1 shows some image pairs of the same and different people in two

cameras. Due to large variations in pose, illumination and background, the appearance

of the same subject may look very different in different cameras while different people

may highly resemble in appearance. The significant view and appearance changes across

non-overlapping cameras make person re-identification inherently difficult.

The gallery for re-identification usually contains images of known subjects in

one camera view and the probes are subjects from another camera view. In order to

recognize a given probe from a large gallery, the basic idea is to first extract a robust

feature representation for both probe and gallery images, and then perform matching

using this representation. This kind of approach is called appearance-based and it makes

use of visual cues only.

Appearance-based methods can be categorized into two groups. The goal of the
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Figure 5.1: In non-overlapping camera views, different people may look very similar
(left) while same people’s appearance may change dramatically due to variations in
pose, illumination (right). Samples are from two cameras (Cam A and Cam B) in the
VIPeR dataset [52].

methods in the first group is to extract feature representations that have low intra-class

variation for the same subject and high inter-class variation among different subjects

(e.g., [52, 44, 157]). However, due to the significant appearance change across different

cameras, the intra-class variation is often larger than the inter-class variation. As a

result, accurate matching is very difficult.

For the second group of methods, the goal is to learn the optimal distance

metric for the image pairs from two different cameras (e.g., [66, 190, 81]). These metric

learning approaches learn a transformation for the original feature representation such

that the intra-class distances are minimized while the inter-class distances are maxi-

mized. The drawback of the metric learning based methods is that the learned model

tends to overfit the training data. Also, some popular approaches (e.g., [162, 55, 35])

are computationally expensive due to complex optimization involved.

In this chapter, instead of designing a complex feature representation or learn-

ing a specialized distance metric as it has been done in the previous methods, we present
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a new framework for single-shot person re-identification in which the matching is per-

formed using reference descriptors (RDs). Figure 5.2 illustrates the framework of the

proposed reference-based method. To match a probe and a gallery instance, appearance

features are first extracted. Using learned projection matrices, the probe and gallery

features are projected into a lower dimensional subspace. We use Regularized Canonical

Correlation Analysis (RCCA) to learn the projection matrices since RCCA is able to

maximize the correlation between the data from different views. After feature projec-

tion, the RDs of the probe and gallery are generated using a reference set. The reference

set is a set of images of the subjects from different camera views and the identities in the

reference set do not overlap with probe or gallery subjects. A RD of a probe or a gallery

instance is formed by concatenating the similarity scores between this probe or gallery to

the reference set in the RCCA feature space. Thus, the dimension of a RD is determined

by the size of the reference set and is irrelevant to the size of the image features. The

matching between probe and gallery is performed by computing the similarity between

their RDs. In this way, probe and gallery from different views are indirectly compared

using a reference set, instead of being matched directly. To improve the initial matching

results, a saliency-based re-ranking stage is added to obtain the final re-identification

results.

Pattern matching by using a reference set has been explored in different fields.

Gyaourova et al. [57] generated fixed-length codes for indexing biometric databases. The

index codes were constructed by computing match scores between a biometric image and

a fixed set of images. Duin et al. [40] discussed the dissimilarity space to convert the

structural representation of data to a dissimilarity representation using a representation

set and some suggestions for prototype selection were provided. Guo et al. [56] proposed

a prototype embedding of visual appearance by using a representation set of model
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prototypes for vehicle matching. Recently, Chen et al. [27] developed a reference-based

approach for tracking people across non-overlapping cameras using a reference-based

appearance model. Li et al. [92] proposed a reference-based scheme for scene image

classification.

5.1.1 Contributions of This Chapter

As compared to the previous work, the major contributions of this chapter are

two-fold. First, we tackle the re-identification problem using a reference-based scheme

in conjunction with subspace learning. Our framework avoids direct matching of image

pairs with significant appearance variation and achieves superior performance compared

to the state-of-the-art methods as validated by the experiments. Second, we use different

methods to pursue optimality for reference set selection and the experiments show that

the size of reference set can be reduced without a significant loss of accuracy. Further,

the proposed reference-based re-identification framework is compatible with any feature

descriptor and can be extended to other applications.

The rest of this chapter is organized as follows. Details of the proposed method

for person re-identification are presented in Section 5.2. Section 5.3 provides the experi-

mental results and finally Section 5.4 concludes this chapter and states the future work.

5.2 Person Re-Identification in Reference Space

The proposed method involves an offline process and an on-line re-identification

process. In the offline process, the RCCA projection matrices are learned and the RDs

of the gallery are generated. During online re-identification process, the RD of a probe

is generated and is compared with the RDs of the gallery to obtain the initial matching
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result. Re-ranking is then performed to improve the initial results based on image

saliency. The details are explained as follows.

5.2.1 Offline Process

5.2.1.1 CCA Subspace Learning

Canonical Correlation Analysis (CCA) is a multivariate statistical analysis

technique which was first introduced in [67]. It aims to explore the relationship be-

tween two sets of random variables from the different observations on the same data

(e.g., images of subjects from different views). CCA finds projections such that the

correlation between these two sets of random variables is maximized after projection.

Mathematically, given two sets of data observations, DA = {dAi ∈ Rm, i =

1, 2, ..., N} and DB = {dBi ∈ Rn, i = 1, 2, ..., N}, CCA aims at obtaining two sets of

basis vectors WA ∈ Rm and WB ∈ Rn such that the correlation coefficient ρ of W T
AD

A

and W T
BD

B is maximized. The objective function to be maximized is

ρ =
Cov(W T

AD
A,W T

BD
B)√

V ar(W T
AD

A)
√
V ar(W T

BD
B)

=
W T
ACABWB√

W T
ACAAWAW T

BCBBWB

(5.1)

where CAA is the covariance matrix of DA, CBB is the covariance matrix of DB, and

CAB is the cross-covariance matrix between DA and DB.

Equivalently, the CCA can be formulated as a constrained optimization prob-

lem by

argmax
WA,WB

W T
ACABWB (5.2)
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subject to W T
ACAAWA = 1 and W T

BCBBWB = 1.

Using Lagrange multiplier, the solution of (5.2) is equivalent to solving the

following generalized eigenvalue problems

CABWB = λCAAWA

CBAWA = λCBBWB

(5.3)

where CBA = CTAB. CCA is performed in an unsupervised manner and both correlation

maximization and dimensionality reduction can be achieved simultaneously by choosing

the number of basis vectors to use.

Often in practice, the feature dimension of the data is significantly larger than

the number of data samples. In this case the covariance matrices CAA and CBB may

be singular and their inverse would be ill-conditioned. Regularized CCA (RCCA) has

been proposed to solve this problem and it prevents overfitting [88]. In the solution of

RCCA, the generalized eigenvalue problem becomes

CABWB = λ(CAA + λ1IA)WA

CBAWA = λ(CBB + λ2IB)WB

(5.4)

where λ1 and λ2 are the two non-negative regularization parameters. IA and IB are two

identity matrices. Usually λ1 and λ2 are determined by cross-validation.

5.2.1.2 Gallery Data in Reference Space

The reference set contains images {IAi , i = 1, 2, ..., N} and {IBi , i = 1, 2, ..., N}

of N subjects from two different cameras A and B. The features such as color his-

tograms and texture descriptors from each image are extracted and two feature sets

{FAi , i = 1, 2, ..., N} and {FBi , i = 1, 2, ..., N} are obtained. Since the features are from
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images in different views, we first learn a RCCA subspace in which the correlations

between the projected feature sets {W T
AF

A
i , i = 1, 2, ..., N} and {W T

BF
B
i , i = 1, 2, ..., N}

are maximized. The RCCA projection matrices WA and WB are learned as in (5.4).

By projecting the original features into the RCCA subspace, we obtain the projected

features of the reference set denoted as {fAi , i = 1, 2, ..., N} and {fBi , i = 1, 2, ..., N}

with reduced dimensionality and enhanced correlation.

Suppose we have a gallery of M subjects from camera A, the features of the

gallery subjects are first extracted and then projected into the RCCA subspace using

the learned projection matrix WA. The RCCA feature for the jth subject in the gallery

set is denoted by fgj . From fgj , its RD Rgj , as a new representation, is generated by

Rgj = [s(fgj , f
A
1 ), s(fgj , f

A
2 ), . . . , s(fgj , f

A
N )]T (5.5)

where s(a, b) denotes the similarity between the features a and b. We use the cosine

similarity to compute s(a, b). In this process, the representation of the gallery subject

is transformed to a descriptor of length N regardless of the original feature dimension

and each element in Rgj indicates the similarity between this gallery subject and a

reference subject. The projected features of the reference set from camera A {fAi , i =

1, 2, ..., N} are similar to basis functions and in the reference space they jointly describe

the appearance of a gallery subject in terms of its similarity to individuals in the reference

set. Figure 5.2 shows the basic idea of how the RDs are generated.

The rationale for first projecting the features into the RCCA subspace is to

better couple the features {fAi , i = 1, 2, ..., N} and {fBi , i = 1, 2, ..., N}. In the re-

identification, a probe image is described using {fBi , i = 1, 2, ..., N}. Since {fAi , i =

1, 2, ..., N} and {fBi , i = 1, 2, ..., N} are maximally correlated after RCCA projection,
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the matching between the probe and the gallery becomes meaningful and reliable.

5.2.2 Online Re-Identification

5.2.2.1 Initial Matching

Suppose the probe is from camera B and the detection of a subject (Ip) is

given, the appearance features F p are first extracted. The projected feature fp of the

probe in the RCCA subspace is given by

fp = W T
BF

p (5.6)

The RD of the probe, Rp, is computed in a similar manner as in (5.5) using

the projected features of the reference set from camera B {fBi , i = 1, 2, ..., N} by

Rp = [s(fp, fB1 ), s(fp, fB2 ), . . . , s(fp, fBN )]T (5.7)

where fBi is the projected features in the RCCA subspace of the reference subject i in

camera B.

The identity of the subject is determined by the similarity sim(Rp, Rgi ) between

the probe Rp and each gallery Rgi and then the top match Rgk is found in the gallery

such that

k = argmax
i

sim(Rp, Rgi ) (5.8)

To compute similarity, we use the modified cosine similarity [101] defined as

sim(Rp, Rgi ) =

∣∣(Rp)T ·Rgi ∣∣
‖Rp‖ ‖Rgi ‖ (‖Rp −Rgi ‖p + ε)

(5.9)
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Figure 5.3: Samples of saliency detection in two camera views. To estimate the saliency
of a patch Im,np (in yellow bounding box) in image Ip in one camera view, a constraint
space (in green bounding box) is searched in each image Ii in the reference set in the
other camera view. The patch Iu,vi (in red bounding box) is found out as the most
similar patch to Im,np , which will be used to calculate the patch saliency as in (5.10).
Best viewed in color.

where ‖·‖p is the lp norm and ε is a small positive number to prevent division by zero.

The reason to apply the modified cosine similarity is that the standard cosine similarity

does not take into consideration the actual distance between two vectors, while the

modified cosine similarity is able to address both the distance measure and angular

measure and has improved performance in recognition tasks [101].

5.2.2.2 Saliency Detection

To improve the re-identification accuracy, we opt to high-level image informa-

tion to re-rank the initially returned results. Specifically, we use image saliency [187, 186]

to improve the rank of the correct match. Image saliency, such as carrying item, is a

discriminative visual feature to match subjects across different views. Figure 5.3 shows

two examples of saliency correspondence across different cameras.

Given the reference set I = {Ii, i = 1, 2, ..., N} in one camera view, to compute
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the saliency of an image Ip in another view, image patches are first densely sampled.

For each patch Im,np in Ip where m and n denote the row and column location of this

patch, a constrained search for similar patches in each image in I is performed in the

search space D(Im,np , Ii) = {Ix,yi |x = m − l, ...,m + l}, where l is a small integer that

defines the half width of the search space. In other words, the search space for the patch

Im,np is a strip in Ii located between row m − l and m + l. This search space tolerates

saliency shift in horizontal direction due to change in camera views and misalignment

in vertical direction.

For each image Ii in I, the most similar patch Iu,vi is found from the search space

D(Im,np , Ii). The distance di(I
m,n
p , Iu,vi ) is calculated by Euclidean distance between

feature vectors from the two patches Im,np and Iu,vi . The distances {di(Im,np , Iu,vi )|i =

1, 2, ...N} are then sorted and the saliency score for patch Im,np is defined as

sal(Im,np ) = 1− e
(−

dik
(I
m,n
p ,I

u,v
i

)

σ21
)

(5.10)

where dik(Im,np , Iu,vik ) is the Euclidean distance of the k-th nearest neighbor (kNN) of

Im,np from the search space of Iik and σ1 controls the bandwidth of Gaussian function.

k is set to N
2 in the experiments and only the k-th nearest neighbor is involved in

saliency computation. In this way, the saliency scores for each patch in the probe and

gallery images are calculated. The saliency of a patch Im,np is computed from this kNN

perspective such that the uniqueness of a patch is approximated by its distance to the

samples in the reference set. The interpretation is that the more distinct a patch Im,np

is, the larger is its distance to the patches in the search space of images in I, thus, the

saliency score sal(Im,np ) will be high. In this way, the saliency is calculated without

supervision.
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Figure 5.4: Illustration of the re-ranking process. The initial returned ranked list is re-
ranked based on saliency similarity of probe and gallery. In this example a local sliding
window of size α = 4 with a step size of β = 2 is shown.

5.2.2.3 Re-ranking

Once the saliency of the probe and gallery is detected, the re-ranking of the

initial re-identification results is based on the saliency similarity between the probe Ip

from camera B and a returned gallery match It at rank t from camera A, which is defined

as

simsal(Ip, It) =
∑
m,n

sal(Im,np )× sal(Iu,vt )× e
− d(I

m,n
p ,I

u,v
t )

σ22 (5.11)

where Iu,vt is the nearest neighbor of Im,np found in the search space and σ2 is a Gaussian

parameter. d(Im,np , Iu,vt ) is the Euclidean distance between the features of Im,np and Iu,vt .

Given a probe image, the reference-based method returns the matching re-

sults in descending order based on the similarity between the probe RD and gallery

RDs. Based on the saliency similarity simsal between the probe image and the returned

matching candidate, the initial ranked list is re-ranked using a local sliding windows of

size α and a step size of β, and the candidate with a higher saliency similarity to the
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probe is moved forward in the local window. The re-ranking process is illustrated in

Figure 5.4.

5.3 Experimental Results

5.3.1 Datasets

• VIPeR Dataset. The VIPeR dataset is one of the most popular benchmark datasets

for person re-identification [52]. It contains image pairs of 632 pedestrians. The images

are taken by two non-overlapping cameras with a significant view change. For most of

the subjects, the view change is more than 90 degrees. In addition, the illumination may

also change dramatically. Other aspects such as cluttered background and occlusions

further make this dataset more challenging. It is considered as the most challenging

dataset currently available for pedestrian re-identification. For each person, a single

image is available from each camera view. All of the images in the VIPeR dataset are

normalized to 128× 48. Some sample images are shown in Figure 5.5(a).

• CUHK Campus Dataset. The CUHK Campus dataset contains images of 971

subjects from two non-overlapping camera views [160]. One camera captures the frontal

or back view of the subjects and the other camera captures profile views. Each person

in each view has two images. The image quality of CUHK Campus dataset is higher

compared to the VIPeR dataset. All of the images in the CUHK campus dataset are

resized to 128×48 in our experiments. Some sample images are shown in Figure 5.5(b).

5.3.2 Feature Extraction and Parameters

Both color and texture features are extracted as in [66]. Specifically, the HSV

and Lab color features are used to describe the color appearance of a subject. For
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Figure 5.5: Sample images from (a) VIPeR dataset [52] and (b) CUHK Campus
dataset [160].

the texture feature we use Local Binary Patterns (LBP) [126]. The image is divided

into blocks of size 8 × 16. The blocks are overlapped by 50% in both horizontal and

vertical directions. Thus, the total number of blocks for one image of size 128 × 48 is

31 × 5 = 155. For each block, the quantized mean values of the HSV and Lab color

channels are computed and the 8-bit LBP histogram is extracted. The final feature

representation for one block is the concatenation of the means of the color channels and

the LBP histogram with dimension 3 + 3 + 256 = 262.

In the RCCA projection the first 50 eigenvectors in the projection matrices

WA and WB are used (i.e., the RCCA reduces the dimensions of the original features

to 50). λ1 and λ2 are set to 10−1.6. For re-ranking a local sliding window of size α = 4

is used with a step size of β = 2. The parameters in our experiments are chosen by

cross-validation. For the discovery of saliency, we use the same feature and parameter

settings as in [186].
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5.3.3 Evaluation Protocol

In our experiments we follow the experimental protocols in the previous work

(e.g., [44, 81, 186]). We randomly partition each dataset into two sets of equal size.

Half of the data are used for training and constructing the reference set and the other

half are used for testing. In the testing, the images from one camera are used as gallery

and images from the other camera are used as probes. The recognition rates at major

top ranks and the Cumulative Matching Characteristic (CMC) curves are reported.

The CMC curve represents the expectation of finding the correct match in the top r

matches. In other words, a rank-r recognition rate shows the percentage of the probes

that are correctly recognized from the top r matches in the gallery. The experiments

are performed 10 times and the average results are reported.

5.3.4 Re-Identification Performance

• VIPeR Dataset. The recognition performance on the VIPeR dataset is shown in

CMC plots in Figure 5.6 from rank 1 to 10. The results from intermediate steps in the

proposed method are also shown. When RCCA is used followed by direct matching only,

the rank-1 recognition rate is 24.68%. When the matching is performed in the reference

space, the rank-1 recognition rate rises to 31.14%, with an improvement of 26%. The

re-ranking step further improves the rank-1 recognition rate to 33.29%. The gain by

re-ranking is 7% compared to the results before re-ranking. At each rank in Figure 5.6,

the reference-based matching with re-ranking achieves the highest recognition rate.

• CUHK Campus Dataset. Figure 5.7 shows the recognition performance as CMC

plots for the CUHK Campus dataset. Compared to the rank-1 recognition rates of

23.52% using RCCA only and 29.98% in reference space after RCCA projection, the
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Figure 5.6: CMC curves for the VIPeR dataset. Results using the proposed method,
the method using RCCA only, and the method using RCCA and RD without re-ranking
are shown.

Figure 5.7: CMC curves for the CUHK Campus dataset. Results using the proposed
method, the method using RCCA only, and the method using RCCA and RD without
re-ranking are shown.

85



reference-based matching with saliency-based re-ranking as proposed, achieves a rank-1

recognition rate of 31.10%. Figures 5.6 and 5.7 indicate that each step in the proposed

method contribute to the recognition performance.

5.3.5 Comparison to Current Methods

• VIPeR Dataset. The VIPeR dataset is the most popular benchmark dataset for

person re-identification, hence a lot of recent progress in re-identification reports re-

sults on this dataset. We compare our approach with recent methods including saliency

matching (SalMatch) [186], relaxed pairwise learned metric (RPLM) [66], regularized

smoothing KISS metric learning (RS-KISS) [146], custom pictorial structures (CPS) [28],

biologically inspired features and covariance descriptors (BiCov) [112], KISS metric

(KISSME) [81], large margin nearest neighbor with rejection (LMNN-R) [37], symmetry-

driven accumulation of local features (SDALF) [44], manifold ranking (MRank) [109],

pairwise constrained component analysis (PCCA) [119], descriptive and discriminative

classification (DDC) [65], large margin nearest neighbor (LMNN) [162], attributed-based

relative distance comparison (aPRDC) [103], relative distance comparison (PRDC) [190],

information-theoretic metric learning (ITML) [35], support vector ranking (RankSVM) [133],

and ensemble of localized features (ELF) [53].

The recognition results of the proposed method at rank 1, 10, 20, 50 and 100

are compared to other methods in Table 5.1. As compared to the second best results

(SalMatch [186]) with a rank 1 recognition rate of 30.16%, our method achieves a rank

1 recognition rate of 33.29% ,which shows an improvement of over 10%. At other ranks,

our method outperforms all of the other listed approaches. Figure 5.8 shows the CMC

curves at top 10 ranks for our method and the other six top performers in Table 5.1.
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Table 5.1: The comparison of the top ranked recognition rates (in %) on the VIPeR
dataset.

Rank→ r = 1 10 20 50 100

Proposed 33.29 78.35 88.48 97.53 99.36

SalMatch [186] 30.16 65.54 79.15 91.49 98.10

RPLM [66] 27.34 69.02 82.69 94.56 98.54

RS-KISS [146] 24.50 66.60 81.70 93.50 98.00

CPS [28] 21.84 57.21 71.00 87.00 91.77

BiCov [112] 20.66 56.18 68.00 81.56 88.66

KISSME [81] 20.03 62.39 77.46 92.81 98.19

LMNN-R [37] 20.00 66.00 79.00 92.50 95.18

SDALF [44] 19.87 49.37 65.73 84.84 90.43

MRank [109] 19.34 55.51 70.44 87.69 96.90

PCCA [119] 19.27 64.91 80.28 95.00 97.01

DDC [65] 19.00 52.00 65.00 80.00 91.00

LMNN [162] 17.41 53.86 67.88 88.13 96.23

aPRDC [103] 16.14 50.98 65.95 88.00 93.00

PRDC [190] 15.66 53.86 70.09 87.79 92.84

ITML [35] 15.54 53.13 69.05 88.54 96.93

RankSVM [133] 14.00 51.00 67.00 85.00 94.00

ELF [53] 12.00 43.00 60.00 81.00 93.00
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Figure 5.8: The comparison of the CMC curves on the VIPeR dataset for the proposed
method and the other methods.

As compared to the improvement by our method at rank 1, at latter ranks our method

outperforms the others by a wider margin.

In Table 5.2 we evaluate the performance of our method with reduced train-

ing/reference set size. All the data from the VIPeR dataset are used. As the size of

the reference set decreases, the number of subjects in the gallery and probe data in-

Table 5.2: The comparison of the recognition rates (in %) with different training (refer-
ence) set sizes.

Training size→ N=200 N=100

Rank→ r = 1 10 20 r = 1 10 20

PRDC [190] 12.64 44.28 59.95 9.12 34.4 48.55

RPLM [66] 19.51 56.44 71.09 10.88 37.69 51.64

Proposed 25.93 62.73 77.31 17.86 49.44 64.29
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Table 5.3: The comparison of the top ranked recognition rates (in %) on the CUHK
Campus dataset.

Rank→ r = 1 10 20 50 100

Proposed 31.10 68.55 79.18 90.38 95.86

SalMatch [186] 28.45 55.68 67.95 83.53 92.10

ITML [35] 15.98 45.60 59.81 76.61 88.32

LMNN [162] 13.45 42.25 54.11 73.29 86.65

SDALF [44] 9.90 30.33 41.03 55.99 67.39

L2-norm [186] 9.84 26.42 33.13 46.98 63.48

L1-norm [186] 10.33 26.34 33.52 45.62 61.95

creases, which makes the re-identification more difficult. We compare our results with

the reported results by RPLM [66] and PRDC [190]. From the comparison in Table 5.2,

it can be observed that with a smaller reference set, the proposed method performs

significantly better, with rank 1 recognition rates of 25.93% and 17.86%, when reduced

reference sets of size 200 and 100 are used, respectively.

• CUHK Campus Dataset. For the CUHK Campus dataset, we compare the pro-

posed approach with the following methods: SalMatch [186], SDALF [44], LMNN [162],

ITML [35] as well as baseline methods using L1 norm and L2 norm as reported in [186].

Table 5.3 reports the recognition rates at different ranks. As compared to the most

recent method SalMatch [186], our method has over 9% improvement, achieving a rank

1 recognition rate of 31.10%. Figure 5.9 displays the CMC curves of our method and

the six competing methods. Similar to the observation in Figure 5.8, at higher ranks

our method has a larger improvement in recognition rate over the other methods.
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Figure 5.9: The comparison of the CMC curves on the CUHK Campus dataset for the
proposed method and other methods.

5.3.6 Selection of Reference Set

The reference set can be optimized by selecting the most discriminative ref-

erence subjects and removing any redundant data. The goal is to select the “basis”

reference subjects that will span the reference space. In other words, dissimilar sub-

jects are preferred to form a more definitive reference set. Different reference selection

rules are suggested in [57] and [40]. We use three different methods in order to select n

reference subjects out of a total of N available ones.

1. Random selection. We randomly sample n reference subjects out of the refer-

ence pool of size N .

2. Max-variation rule. In this rule, for each image Ii in the reference set {Ii, i =

1, 2, ..., N}, the similarity s(fi, fj) between Ii and Ij,j 6=i is computed for all j. The

variation score vi is V ar{s(fi, fj)}Nj=1,j 6=i. By ranking vi values in a descending

order, top n images are chosen.
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Figure 5.10: Rank-1 re-identification accuracy using reference set with different sizes of
the VIPeR dataset.

3. Min-correlation rule. This rule is a backward selection process. Starting with

the entire reference set {Ii, i = 1, 2, ..., N}, the sample Ii is removed whose average

correlation with other samples Ij,j 6=i is the highest. This process is repeated until

n samples are left.

• VIPeR Dataset. Figure 5.10 shows the rank-1 recognition accuracy on the VIPeR

dataset with varying reference set size using the aforementioned selection strategies. For

the random selection, as the size of the reference set increases, the recognition rate keeps

improving. For the max-variation rule, when the number of selected reference subjects

is small, the recognition performance is higher than the results by random selection. As

the reference set size reaches above 250, both rules result in a similar performance, with

only marginal improvement by adding more reference samples. As compared to random

selection and max-variation selection, the min-correlation rule does not select better
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reference samples when the size of the reference set is not sufficiently large. Note that

the size of the reference set can be reduced without a significant loss in performance. By

using the max-variation rule, the size of the reference set is reduced by over 40% from

316 to 180 with a performance drop of less than 10%. While keeping sufficient accuracy

with less than 4% degradation, the size of the reference set can be reduced by over 20%

from 316 to 250. With constraint such as computational efficiency on reference set, the

size of the reference set may be chosen where the improvement in recognition rate starts

changing slowly.

• CUHK Campus Dataset. Figure 5.11 shows the results with varying reference set

size on the CUHK Campus dataset. A trend similar to Figure 5.10 is observed. The max-

variation rule is able to select a better subset of the reference samples. As suggested by

the experimental results, max-variation is an effective strategy for reference set selection.

For the CUHK Campus dataset, by using max-variation rule for selection, the size of

the reference set can be reduced by over 40% from 486 to 286 with a performance drop

of ∼5%.

5.3.7 Computational Cost

The computational cost mainly consists of the following parts: feature extrac-

tion, RCCA subspace learning, RD generation, initial matching, re-ranking. The exper-

iments are performed using Matlab implementation without optimization on a laptop

with Intel i7 2.4GHz CPU and 8GB RAM. For each image, the feature extraction takes

about 0.37 second. On the VIPeR dataset, learning RCCA projection matrices takes

about 4.2 seconds. For the CUHK Campus dataset, this procedure takes slightly longer

of about 4.4 seconds, due to more data involved. However, the projection learning is
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Figure 5.11: Rank-1 re-identification accuracy using reference set with different sizes of
the CUHK Campus dataset.

done during the offline process and need to be performed only once. The generation

of a RD is very efficient and it takes less than 2 × 10−6 second. Initial matching on

the VIPeR dataset for one query takes about 0.8 × 10−4 second, and this goes up to

1.1 × 10−4 second for the CUHK Campus dataset. Saliency-based re-ranking for one

probe takes about 0.81 second on the VIPeR dataset and about 0.96 second on the

CUHK Campus dataset. The efficiency of re-ranking can be improved using fast patch

match technique [18].

5.4 Conclusions

In this chapter, the use of a reference set for person re-identification is proposed.

As compared to the previous methods in which either invariant features are extracted or

a distance metric is explored, in our approach a reference set is utilized to transfer the

matching problem from an appearance space to a reference space. The re-identification
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is achieved by matching the reference descriptors (RDs) generated with the reference

set and the matching results are improved by a re-ranking step using image saliency

information. The experiments on different datasets showed that the proposed method

using RCCA in conjunction with reference set outperformed 17 current approaches on

VIPeR dataset and six recently published techniques on CUHK Campus dataset.

The proposed method avoided a direct comparison between the gallery and

probe using appearance features. Reference-based matching with re-ranking significantly

improved upon RCCA-based matching as a baseline method (∼35% improvement on

VIPeR Dataset and ∼32% improvement on CUHK Campus Dataset). The proposed

method can be combined with any advanced feature representation to further improve

the re-identification accuracy and the dimension of RDs is determined only by the size

of the reference set which can be optimized based on the analysis presented in this

chapter. Future work includes study of feature selection and extension of the proposed

reference-based framework to multi-shot person re-identification.
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Chapter 6

Person Re-Identification Using L2

Regularized Sparse

Representation

6.1 Introduction

The vast deployment of video surveillance cameras in public venues drives

the need for automated surveillance applications such as people tracking [69], anomaly

detection in crowd [97], etc. Many of these applications require the ability to determine

the ID of the subject in different camera views, which is a problem referred as person

re-identification that is gaining more attentions in the literature recently [52, 44, 157, 94,

66, 190, 146, 182, 12]. Specifically, the goal of person re-identification is to accurately

match individuals across non-overlapping cameras at different time and locations. The

results of person re-identification can be readily used in further processing tasks such as

tracklet association for multi-camera people tracking [27].
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(a) (b) (c) (d)

Figure 6.1: Samples of image pairs of the same person in different camera views, showing
(a) pose variation, (b) illumination change, (c) occlusion, and (d) low image quality,
which make re-identification of people in different cameras a challenging problem.

Despite of the plethora of advanced pattern recognition techniques developed in

the past few years, the performance of person re-identification is still not robust enough

to warrant high accuracy in practice. The difficulties for person re-identification involve

the following aspects: 1) Pose variation. In different camera views, a subject may

have arbitrary poses (see Fig. 6.1(a)); 2) Illumination change. The lighting condition

is usually not constant in different camera views. As a result, the appearance of the

same subject may vary significantly due to changing illumination (see Fig. 6.1(b)); 3)

Occlusion. A subject in one camera view may be fully or partially occluded by other

subject or carrying items such as a backpack (see Fig. 6.1(c)); 4) Low image quality.

The captured image of a subject may suffer from low resolution, noise, or blur due to

limited imaging quality of surveillance cameras (see Fig. 6.1(d)).

In a person re-identification system usually two steps are involved: 1) ex-

tracting feature representations from person detections, and 2) establishing the corre-

spondence between feature representations of probe and gallery. A gallery is a dataset

composed of images of people with known ID. A probe is the detection of a person from

a different camera. Although other forms of biometrics such as face and gait [59, 192]
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can be used to recognize people, however, acquiring such biometrics is difficult in uncon-

trolled low-resolution video. For person re-identification, most of the existing approaches

are appearance-based.

With the availability of tools for person detections, most of the previous work

on person re-identification can be categorized into two groups:

1. Extracting feature representations which are robust against pose or illumination

change [12, 52, 44, 157].

2. Developing new matching methods using metric learning or ranking classifiers [66,

190, 81, 133].

For the first group, discriminative appearance features are desired. Normally

color and texture based features are widely used [84, 66]. However, color or texture

feature representations are sensitive to pose and illumination change, which may result

in larger intra-person variation (difference between features of same person) than inter-

person variation (difference between features of different persons). Besides low level

image features, attribute or shape information has been applied in conjunction with

color or texture features to improve the recognition accuracy [11, 158].

To pursue more reliable matching, feature transformations or distance metrics

are learned such that the distance between feature representations of the same person

from different cameras is reduced while the distance between feature representations

from different persons is increased [162, 55, 35, 81]. SVM with ranking [133] and transfer

learning [189] have also been proposed to obtain better matching correspondence.

In this chapter, we propose a novel feature representation for person re-identification

based on sparse coding. Inspired by coherent subspace learning to handle cross-type im-
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age synthesis [154] and face image super-resolution [9], we first learn a transformation

to project the original image features into a subspace using canonical correlation anal-

ysis (CCA). In this learned subspace, the correlation between the features of the same

people from different camera views is maximized. Then, two dictionaries for two camera

views are jointly learned using training data in the coherent subspace. Given an image

in the gallery, its image features are first projected into the CCA subspace and the

sparse coefficients of this gallery subject are obtained using the learned dictionary with

an L2 regularization term. These coefficients become the new feature representation for

this gallery instance. During re-identification, given a probe, its sparse representation

is obtained in the same way using the corresponding dictionary. Fig. 6.2 illustrates the

outline of the proposed method for generating the sparse representation. The matching

is then performed by computing the similarity between the sparse representations of the

probe and gallery. A related work for person re-identification was introduced in which

a sparse representation was directly learned using a dictionary [80]. The dictionary was

composed of existing data without any learning and the identity of the probe was de-

termined through the non-zero coefficients with a majority voting rule. In contrast to

our approach, the sparse representations in [80] were used for determining the identity

of the probe, while in our method the sparse representations are used as new feature

representations for matching.

6.1.1 Contributions of This Chapter

The main contributions of the method proposed in this chapter are:

1. To mitigate the disparity between image data from different views, we learn a

coherent subspace using CCA and project the multiview data (images of the same

person in different camera views) into this coherent subspace such that the correla-
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tion between two views of the same data are maximized. This subspace projection

provides a foundation for robust matching across cameras.

2. We propose a novel framework for generating sparse representations of probe and

gallery data in the coherent subspace. The generated sparse representations are

used for person re-identification. Compared with matching using features ex-

tracted directly from images, using the learned sparse representation achieves the

state-of-the-art results on different publicly available datasets.

3. We learn the sparse representation with a coupled dictionary sets. The dictionar-

ies are jointly learned using training data from different camera views. In addi-

tion, the sparse representation is regularized with an additional L2 regularization

term to ensure the stability of the learned coefficients while preserving sparsity.

Experimental results show that L2 regularized sparse representation outperforms

standard sparse representation.

The rest of this chapter is organized as follows. Details of the proposed L2

regularized sparse representation based method for person re-identification are presented

in Section 6.2. Section 6.3 provides the experimental results and finally Section 6.4

concludes this chapter.

6.2 Sparse Representation for Person Re-Identification

The goal is to re-identify people in non-overlapping cameras. To mitigate

significant disparity in appearance feature space for the same subject in different views,

the proposed algorithm first finds projection matrices for features from each view such

that after projection features of the same person are maximally correlated. To learn this

100



subspace projection, labeled training image pairs are used in CCA. After the projection

matrices are obtained, training data are projected into this coherent subspace. The

projected training data are then used to jointly learn coupled dictionaries for each camera

view. In the re-identification process given probe and gallery, appearance features are

first extracted. These features are then projected into the learned coherent subspace, in

which their sparse representations with L2 regularization are obtained using the coupled

dictionaries. The calculated sparse coefficients are used as a new feature representation

for probe and gallery in the matching process which is based on a modified cosine

similarity measure. The pipeline for generating sparse representations is illustrated in

Fig. 6.2.

6.2.1 Coherent Subspace Learning

Canonical Correlation Analysis (CCA) was first introduced in [67] and it is a

multivariate statistical analysis technique. CCA finds projection matrices for two sets

of random variables such that the correlation between the projected random variables is

maximized in the correlated or coherent subspace. CCA has been applied to problems

involving multi-view or multi-modality data such as image super-resolution [9, 72] and

face recognition under pose variation [139].

For person re-identification, given N image pairs from two cameras A and

B, appearance features with dimension m are first extracted from the images. These

feature vectors are organized into two data matrices XA = {xiA ∈ Rm, i = 1, 2, ..., N}

and XB = {xiB ∈ Rm, i = 1, 2, ..., N}, in which xiA and xiB correspond to the same person

in different views. The goal of CCA is to find a pair of projection vectors wA ∈ Rm

and wB ∈ Rm such that the correlation coefficient ρ of wTAXA and wTBXB is maximized.

Mathematically, the objective function to be maximized is given by
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ρ =
cov(wTAXA, w

T
BXB)√

var(wTAXA)var(wTBXB)

=
wTACABwB√

wTACAAwAw
T
BCBBwB

(6.1)

where cov is short for covariance and var computes data variance. CAA = E[XAX
T
A ]

and CBB = E[XBX
T
B ] are the covariance matrices of XA and XB. CAB = E[XAX

T
B ] is

the covariance matrix of XA and XB.

Eqn. 6.1 can be reformulated as a constrained optimization problem as follows

maximize wTACABwB

subject to wTACAAwA = 1

wTBCBBwB = 1

(6.2)

Equivalently, wA and wB can be solved through the following generalized eigenvalue

problem

 0 CAB

CBA 0


 wA

wB

 = λ

CAA 0

0 CBB


 wA

wB

 (6.3)

where CBA = E[XBX
T
A ] = CTAB.

The projection matrices WA ∈ Rm×d and WB ∈ Rm×d are composed of d pairs

of projection vectors wA and wB corresponding to d largest eigenvalues. In this way, WA

and WB project the original features from Rm to a subspace of Rd, where the correlation

between the projected features of XA and XB is maximized.

Fig. 6.3 demonstrates the CCA principle that projects the data from different

views into a coherent subspace in which the data pair of the same person are maximally

correlated. To validate the ability of CCA to find a coherent subspace, we use half of the

102



Figure 6.3: Illustration of CCA projection. A pair of symbols with the same color but
different shapes indicates features of the same person. The projection matrices WA and
WB transform the data from the original feature space to a coherent subspace in which
the data correlation is maximized.
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data from the VIPeR dataset [52] to learn the PCA and CCA projections, respectively

and project the other half of the data into the PCA and CCA subspaces with learned

projection matrices. As shown in Fig. 6.4, the CCA projected data from two cameras

exhibit more similarity in terms of their manifold structures compared to the structures

of the same data in the PCA subspace. This indicates that CCA is able to correlate

data from different views through subspace projection.

6.2.2 Coupled Dictionary Learning

Given N training data pairs xiA ∈ Rm and xiB ∈ Rm consisting of image pairs

from cameras A and B, the projected image features in the CCA subspace are denoted by

piA ∈ Rd and piB ∈ Rd, respectively. The goal is to learn the dictionaries DA ∈ Rd×k and

DB ∈ Rd×k of size k jointly, such that the sparse representations for piA and piB should

be the same. In other words, the idea is that the sparse representations corresponding to

the same person but in different camera views should be the same. The energy function

to be optimized is

min
DA,DB

1

N
(
N∑
i=1

∥∥piA −DAαi
∥∥2
2

+
∥∥piB −DBαi

∥∥2
2

+ γ1 ‖αi‖1 + γ2 ‖αi‖22) (6.4)

where γ1 and γ2 are regularization parameters for L1 and L2 regularization terms re-

spectively.

The L1 regularization term ensures that the coefficients αi are sparse. Pre-

vious study suggested that most images (e.g., faces) can be approximated as a linear

combination of the base elements in a dictionary and this representation is naturally

sparse [165]. The sparsity resembles human perception system in which the activation

of neurons to an image is typically sparse [127]. The L2 regularization term has the
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properties as in the Ridge Regression to stabilize the coefficients. Sparse representation

with L2 regularization is also referred as Elastic Net in statistics [195].

Similar to the formulation in [174], Eqn. 6.4 can be converted to

min
D

1

N
(

N∑
i=1

∥∥pi −Dαi∥∥22 + γ1 ‖αi‖1 + γ2 ‖αi‖22) (6.5)

where pi and D are constructed by

pi =

 piA

piB

 , D =

 DA

DB

 (6.6)

To obtain the dictionary in Eqn. 6.5, an online optimization algorithm based

on stochastic approximations is used [114].

6.2.3 Sparse Representation with L2 Regularization

With the learned coupled dictionaries DA and DB, the sparse representations

for probe or gallery data can be generated. Assuming images from camera A serve as

the gallery, for each image j in the gallery, the appearance features are first extracted

and then projected into the CCA subspace with the projected features denoted as gj .

Its sparse representation αgj is obtained by

argmin
α
gj

∥∥gj −DAαgj
∥∥2
2

+ γ1
∥∥αgj∥∥1 + γ2

∥∥αgj∥∥22 (6.7)

The L2 regularized sparse coefficients αgj are used as a new representation for

gallery image j. Similarly, given a probe with its appearance feature projected into CCA

subspace as p, the sparse representation αp is learned by solving

argmin
αp

‖p−DBαp‖22 + γ1 ‖αp‖1 + γ2 ‖αp‖22 (6.8)
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Eqn. 6.7 and Eqn. 6.8 can be solved efficiently with stability using least angle

regression (LARS) algorithm [41].

6.2.4 Identity Matching

With the sparse representations of probe and gallery ready, the matching is

based on the similarity between the sparse coefficients αp of a probe and the sparse

coefficients αjg of a gallery. We adopt a modified cosine similarity measure [101] defined

by

sim(αp, αgj ) =

∣∣(αp)T · αgj ∣∣
‖αp‖

∥∥αgj∥∥ (
∥∥αp − αgj∥∥P + ε)

(6.9)

where ‖·‖P is the LP norm and ε is a small positive number to prevent division by zero.

The reason to apply the modified cosine similarity is that the standard cosine similarity

does not take into account the actual distance between two vectors, while the modified

cosine similarity is able to address both the distance measure and angular measure and

has shown improved performance in recognition tasks [101].

6.2.5 Summary of the Algorithm

The proposed algorithm for person re-identification consists of training and

testing phases. In the training phase, CCA projection matrices are learned as well as

the coupled dictionaries for different camera views. Given probe and gallery in the test-

ing phase, the appearance features are extracted and projected into the CCA subspace.

Then the L2 regularized sparse representations for probe and gallery are obtained us-

ing jointly learned dictionaries. The similarity scores between probe and gallery are

computed using their sparse representations. The algorithms for training and testing
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Algorithm 1 CCA Subspace and Coupled Dictionary Learning

Input:

Training image pairs from cameras A and B

d: dimension of the CCA subspace

k: size of the dictionaries

1: Extract appearance features from images and obtain data matrices XA and XB.

2: Solve the generalized eigenvalue problem in Eqn. 6.3.

3: Project XA and XB into the learned CCA subspace.

4: Solve the optimization problem in Eqn. 6.5.

Output:

CCA subspace projection matrices WA and WB

Coupled dictionaries DA and DB

algorithms are summarized in Algorithm 1 and Algorithm 2, respectively.

6.3 Experiments

6.3.1 Datasets

We evaluate our method on three different publicly available datasets for two

typical re-identification scenarios, namely image-based case (single-shot) and video-

based case (multi-shot). For single-shot scenario, the VIPeR dataset and the CUHK

Campus dataset are used. The VIPeR dataset enrolled 632 persons and is one of the most

challenging and widely evaluated benchmark datasets for person re-identification [52].

Some sample image pairs from this dataset are shown in Fig. 6.5. For each person, one

detection is available in each of the two non-overlapping cameras with varying illumina-
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Algorithm 2 Re-identification with Sparse Representation

Input:

Probe and gallery from cameras A and B

WA and WB: CCA projection matrices

DA and DB: coupled dictionaries

1: Extract appearance features from probe and gallery.

2: Project appearance features of probe and gallery into the learned CCA subspace

using WA and WB.

3: Obtain L2 regularized sparse representations for probe and gallery using Eqn. 6.7

and Eqn. 6.8 with DA and DB.

4: Calculate similarity scores between probe and gallery using Eqn. 6.9.

5: Rank the similarity scores from high to low.

Output:

Re-identification results

tion and cluttered background. For most of the subjects the view change is more than

90 degrees. In addition, partial occlusion is frequent due to the subjects carrying items

such as backpack or handbag.

The CUHK Campus dataset is a recently released dataset which contains im-

ages of 971 subjects from two non-overlapping camera views [95]. One camera captures

the frontal or rear view of a person and the other camera captures the profile view of a

person. Each person has two detections in each camera view. Some sample image pairs

from this dataset are shown in Fig. 6.6.

For multi-shot video-based re-identification, we use the Person Re-ID 2011
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Figure 6.5: Sample image pairs from the VIPeR dataset [52].

Figure 6.6: Sample image pairs from the CUHK Campus dataset [95].
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(a)

(b)

Figure 6.7: Sample image pairs from the PRID dataset [65]. (a) Trajectory of a person
in camera A. (b) Corresponding trajectory in camera B.

(PRID) dataset. The PRID dataset consists of multiple person trajectories recorded

from two surveillance cameras. Camera A contains 385 persons and camera B shows

749 persons. The first 200 persons appear in both camera views. Each trajectory

contains approximately 100 to 150 images depending on the walking speed of a person.

Two segments of trajectories of the same person in two cameras are shown in Fig. 6.7.

6.3.2 Feature Extractions

All of the images in these three datasets are normalized to 128 × 48 in the

experiments. Each image is divided into blocks of size 8×16. The blocks are overlapped
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Figure 6.8: Sample segmentation results using the method in [111] to separate the
foreground subject from the background. The appearance features are extracted from
the foreground to mitigate the impact by the cluttered background.

by 50% in both horizontal and vertical directions. The appearance features extracted

from the images include both color and texture features as in [66]. For each block, the

color features consist of the quantized mean values of the HSV and Lab color channels.

In addition, we include semantic color names [83] as an additional color representation.

The texture features are represented by the 8-bit Local Binary Patterns (LBP) [126].

The final appearance features are the concatenation of both color and texture features.

To minimize the impact of the cluttered background, we use a deep decompositional

network based pedestrian parsing method [111] to segment the foreground subject from

the background before the appearance features are extracted. Fig. 6.8 shows some

segmentation results.

The dimension of the CCA subspace projection matrices WA and WB are set to

d = 50. The L1 and L2 regularization parameters to learn the coupled dictionaries and

sparse representations are set to 0.01 and 0.02 respectively. The size of the dictionary

is set to k = 100. These parameters are determined by cross-validation.
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6.3.3 Evaluation Method

For the experiments on the VIPeR and the CUHK Campus datasets, we follow

the experimental protocols in the previous work (e.g., [44, 81, 66, 186]) for fair compar-

ison. We randomly partition each dataset into two subsets of equal size. Half of the

data are used for training and the other half are used for testing. Gallery consists of

images from one camera and images from the other camera are used as probes. For

the PRID dataset, the data of the common 200 subjects in two camera views are used.

The gallery set is constructed by extracting five evenly sampled images per trajectory

as done in [65]. A probe of one subject consists of all the detections in the trajectory

and a majority voting rule is applied to determine the identity of each probe.

To evaluate the re-identification performance, recognition rates at selected

ranks and the Cumulative Match Characteristic (CMC) curves are reported for compar-

ison. The CMC curve represents the expectation of finding the correct match in the top

r matches. In other words, a rank-r recognition rate shows the percentage of the probes

that are correctly recognized from the top r matches in the gallery. The experiments

are conducted 10 times and the average results are listed.

6.3.4 Experimental Results

6.3.4.1 The VIPeR Dataset

We first conduct experiments on the VIPeR dataset, the results on which have

been reported in most of the recent work on person re-identification. We compare our

approach with the following 18 state-of-the-art alternatives, which are reference-based

approach (RD) [12], saliency matching (SalMatch) [186], relaxed pairwise learned met-
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Table 6.1: Person Re-identification recognition rates (in %) on the VIPeR dataset at
different ranks.

Rank→ r = 1 10 20 50 100

Proposed 32.91 75.93 89.24 96.84 99.73

RD [12] 30.25 74.68 86.82 95.70 99.24

SalMatch [186] 30.16 65.54 79.15 91.49 98.10

RPLM [66] 27.34 69.02 82.69 94.56 98.54

RS-KISS [146] 24.50 66.60 81.70 93.50 98.00

CPS [28] 21.84 57.21 71.00 87.00 91.77

BiCov [112] 20.66 56.18 68.00 81.56 88.66

KISSME [81] 20.03 62.39 77.46 92.81 98.19

LMNN-R [37] 20.00 66.00 79.00 92.50 95.18

SDALF [44] 19.87 49.37 65.73 84.84 90.43

MRank [109] 19.34 55.51 70.44 87.69 96.90

PCCA [119] 19.27 64.91 80.28 95.00 97.01

DDC [65] 19.00 52.00 65.00 80.00 91.00

LMNN [162] 17.41 53.86 67.88 88.13 96.23

aPRDC [103] 16.14 50.98 65.95 88.00 93.00

PRDC [190] 15.66 53.86 70.09 87.79 92.84

ITML [35] 15.54 53.13 69.05 88.54 96.93

RankSVM [133] 14.00 51.00 67.00 85.00 94.00

ELF [53] 12.00 43.00 60.00 81.00 93.00
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Figure 6.9: CMC curves on the VIPeR dataset for the proposed method and the other
methods. The rank-1 rates are shown above the figure caption. Best viewed in color.

ric (RPLM) [66], regularized smoothing KISS metric learning (RS-KISS) [146], custom

pictorial structures (CPS) [28], biologically inspired features and covariance descriptors

(BiCov) [112], KISS metric (KISSME) [81], large margin nearest neighbor with rejection

(LMNN-R) [37], symmetry-driven accumulation of local features (SDALF) [44], man-

ifold ranking (MRank) [109], pairwise constrained component analysis (PCCA) [119],

descriptive and discriminative classification (DDC) [65], large margin nearest neighbor

(LMNN) [162], attributed-based relative distance comparison (aPRDC) [103], relative

distance comparison (PRDC) [190], information-theoretic metric learning (ITML) [35],

support vector ranking (RankSVM) [133], and ensemble of localized features (ELF) [53].

The re-identification accuracy of different methods at rank 1, 10, 20, 50 and

100 are reported in Table 6.1. The proposed method achieves a recognition rate of

32.91% at rank 1, which is about 9% improvement over the second best result of 30.25%

by RD [12]. Furthermore, at all of the other ranks, the proposed method consistently
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Table 6.2: Person Re-identification recognition rates (in %) on the VIPeR dataset at
different ranks with reduced training data size.

Training size→ N=200 N=100

Rank→ r = 1 10 20 r = 1 10 20

Proposed 23.34 60.07 75.26 16.82 49.14 62.97

RD [12] 21.94 59.26 74.58 15.11 47.14 60.30

RPLM [66] 19.51 56.44 71.09 10.88 37.69 51.64

PRDC [190] 12.64 44.28 59.95 9.12 34.4 48.55

outperforms the competing methods. At rank 100, almost 100% recognition rate is

reached. The CMC curves are compared in Fig. 6.9 between our method and the other

top performers in Table 6.1. Similar to the observations from Table 6.1, the proposed

method achieves higher recognition rates compared to the other methods at different

ranks.

To study the impact of reduced training data size and to make comparison with

other methods, we report in Table 6.2 the re-identification results with different training

data sizes. In this case, all the data from the VIPeR dataset are used. As the size of the

training set decreases, the number of subjects in the gallery and probe data increases,

which makes the re-identification more difficult. The same experiment protocol was used

in RD [12], RPLM [66], and PRDC [190], the results of which are included in Table 6.2

for comparison. The results shown in Table 6.2 suggest that with a smaller training

set the proposed method is still able to perform better than the competing methods at

different ranks.
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Table 6.3: Person Re-identification recognition rates (in %) on the CUHK Campus
dataset at different ranks.

Rank→ r = 1 10 20 50 100

Proposed 31.34 68.39 78.14 87.63 95.26

RD [12] 29.97 67.78 77.04 87.24 94.21

SalMatch [186] 28.45 55.68 67.95 83.53 92.10

ITML [35] 15.98 45.60 59.81 76.61 88.32

LMNN [162] 13.45 42.25 54.11 73.29 86.65

SDALF [44] 9.90 30.33 41.03 55.99 67.39

6.3.4.2 The CUHK Campus Dataset

For the CUHK Campus dataset, we compare the proposed approach with the

following five methods: RD [12], SalMatch [186], SDALF [44], LMNN [162], ITML [35].

Table 6.3 reports the recognition rates at rank 1, 10, 20, 50, and 100. As compared to the

other methods with all the recognition rates below 30%, the proposed method achieves

a rank-1 recognition rate of 31.34%. Fig. 6.10 shows the CMC curves of our method and

the other methods. The proposed method achieves a higher rate at each rank compared

to the second best method (RD), and outperforms the rest of the methods by a large

margin.

6.3.4.3 The PRID Dataset

For the PRID dataset, we compare the proposed approach with the following

methods: RD [12], KISSME [81], as well as two baseline methods using L1 distance

and L2 distance. Table 6.4 reports the recognition rates at rank 1, 5, 10, 20, and

117



10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

R
ec

og
ni

tio
n 

R
at

e 
(%

)

Rank
31.34% Proposed 29.97% RD 28.45% SalMatch
15.98% ITML 13.45% LMNN 9.90% SDALF

Figure 6.10: CMC curves on the CUHK Campus dataset for the proposed method and
the other methods. The rank-1 rates are shown above the figure caption. Best viewed
in color.

Table 6.4: Person Re-identification recognition rates (in %) on the PRID dataset at
different ranks.

Rank→ r = 1 5 10 20 50

Proposed 27 45 56 69 93

RD [12] 24 41 53 67 92

KISSME [81] 16 38 49 60 92

L1 distance 13 35 47 58 89

L2 distance 11 33 42 57 87
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Figure 6.11: CMC curves on the PRID dataset for the proposed method and the other
methods. The rank-1 rates are shown above the figure caption. Best viewed in color.

50. Fig. 6.11 compares the CMC curve of our method and the other methods. The

performance comparison from Table 6.4 and Fig. 6.11 suggest that compared to the

other methods, our method has over 10% improvement in terms of matching accuracy

at different ranks. Compared to the baseline methods using L1-norm distance, L2-norm-

distance, and KISSME metric [81], in which the low-level appearance features are used

for matching, the performance of the proposed method and RD [12] shows significant

advantage due to the adoption of new feature representation instead of using low-level

appearance features directly for matching.

6.3.4.4 Effects of L2 Regularization

To evaluate the effectiveness of the proposed sparse representation with L2

regularization. Fig. 6.12 shows the re-identification performance in terms of rank-1

recognition rates with different regularization terms. On the VIPeR datraset, when
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sparse representation is used with L1 term (γ2 = 0 in Eqn. 6.7 and Eqn. 6.8), the rank-1

recognition rate is 25.95%. When the L1 regularization term is dropped while keeping

the L2 regularization term (γ1 = 0 in Eqn. 6.7 and Eqn. 6.8), a recognition rate of

29.11% is achieved. The combination of L1 and L2, referred as the L2 regularized sparse

representation, improves over the results using a single regularization term and brings up

the rank-1 recognition rate to 32.91%. This indicates that joint L1 and L2 regularization

is effective for the proposed person re-identification approach. On the CUHK Campus

dataset, the rank-1 recognition rate is the highest (31.34%) by using both L1 and L2

terms together. The use of a single regularization term (L1 or L2) leads to less accurate

recognition rates of 26.39% and 28.87%, respectively. Similar observations hold for the

PRID dataset for which L1 + L2 produces a better performance (27%) compared with

using each of the regularization terms alone.
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Figure 6.12: Comparisons of the rank-1 recognition rates on different datasets using
the proposed method (L1 + L2), sparse representation only (L1), and L2 regularization
only. Best viewed in color.
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6.4 Conclusions

In this chapter, we proposed a person re-identification method using a sparse

representation with L2 regularization. The L2 regularized sparse representations learned

in a coherent subspace was used as a new feature representation instead of the appear-

ance features for identity matching. Experiments were conducted on three publicly avail-

able datasets to evaluate the performance in single-shot and multi-shot re-identification

settings. Compared to the state-of-the-art approaches, the proposed method achieved

the highest recognition rates in different scenarios. In addition, the experimental results

suggested that sparse representation with L2 regularization has superior performance

compared to the baseline methods with a single L1 or L2 regularization term.
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Chapter 7

Summary and Future Work

In this dissertation, we proposed several methods for face super-resolution, face

recognition, and person re-identification, respectively.

In Chapter 3, we proposed a face super-resolution technique based on 2D canon-

ical correlation analysis. This methods does not need to first convert the face images

into vectors and the super-resolution works directly on image. Through thorough ex-

periments with comparisons to the state-of-the-art methods, we demonstrated that the

super-resolved faces using our method are visually realistic and very close to the ground-

truth. Furthermore, we tested our super-resolved face images in recognition tasks and

the results suggested that the super-resolved images by the proposed method achieve

the highest accuracy with very low computational cost. Currently our method for super-

resolution requires the face images to be aligned. In future work, we are interested in

developing alignment-free super-resolution techniques as a pre-processing technique to

improve the face recognition accuracy in real-world cases.

In Chapter 4, a multi-camera face recognition system using dynamic Bayesian

network was proposed. This application is particulary practical in surveillance applica-
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tions where multiple cameras are available that can help identify a person in a collabora-

tive manner. In our video-based approach, information from multiple cameras are fused

using a graphical model with temporal links. Specifically, the dynamic Bayesian network

encodes the person-specific dynamics to help improve the recognition performance. We

performed experiments on a real-world surveillance video dataset with three cameras

and experimental results show that the proposed method outperformed standard face

recognition modules and the recognition performance using multiple cameras is better

than using any single camera. Future work involves study of feature description and

selection to further improve the recognition accuracy. In addition, building up an evolv-

ing graphical model that improves on itself as more temporal information is acquired is

worthwhile to investigate.

In Chapter 5, as compared to the previous methods in which either invariant

features are extracted or a distance metric is explored, we used a reference set is utilized

to transfer the matching problem from an appearance space to a reference space. The

re-identification is achieved by matching the reference descriptors (RDs) generated with

the reference set and the matching results are improved by a re-ranking step using

image saliency information. Experiments on real-world dataset showed that our method

achieves state-of-the-art performance with a simple processing flow. Since the current

approach is single image based, we would like to extend it to multi-image video based re-

identification. In addition, we would like to perform theoretical analysis on the selection

of the reference set.

In Chapter 6, we aimed at solving person re-identification in a different way. In

this method, we developed a feature representation based on sparse representation with

L2 regularization. Extensive experiments on both image based and video based datasets

showed that using this novel representation we achieved state-of-the-art performance.
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The choice of L2 regularization term was justified by the experimental results in which we

showed that sparse representation with L2 regularization achieved superior performance

compared to the baseline methods with a single L1 or L2 regularization term. Future

work will extend the current framework to a larger number of cameras. Furthermore,

we would like to combine the visual features together with other traits such as gait to

improve the re-identification accuracy.

124



Bibliography

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary
patterns: Application to face recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(12):2037 –2041, dec. 2006.

[2] T. Ahonen, E. Rahtu, V. Ojansivu, and J. Heikkila. Recognition of blurred faces
using Local Phase Quantization. In 19th International Conference on Pattern
Recognition (ICPR), pages 1 –4, Dec. 2008.

[3] Timo Ahonen, Abdenour Hadid, and Matti Pietikäinen. Face recognition with
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