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Abstract

A gyroscope-free inertial navigation system uses only accelerometers to com-

pute navigation trajectories. It is a low-cost navigation system, but its output error

diverges at a rate that is an order faster than that of a conventional gyroscope-

based system. So integration with an external reference system, such as the Global

Positioning System, is necessary for long-term navigation applications. In this pa-

per, an integrated GPS and gyroscope-free INS system is designed to achieve stable

long-term navigation. The linear and nonlinear error models of a gyroscope-free

INS are derived and are used as Kalman filter equations to estimate the errors in

the gyroscope-free INS data. The effects of gyroscope-free inertial measurement

unit errors are also analyzed. By using computer simulations, the performance of

the integrated GPS and gyroscope-free INS system is verified.
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1



Nomenclature

{i}: inertial frame.

{e}: earth centered earth fixed frame.

{b}: body frame.

{n}: navigation frame.

{c}: computer frame.

ua: vector ~u coordinatized in frame {a}.
u̇a: time derivative of vector ~u in frame {a}, coordinatized in frame {a}.
[u×]: skew symmetric matrix corresponding vector u.

ωc
ab: angular rate of frame {b} with respect to frame {a}, coordinatized in frame {c}.

Ca
b : direction cosine matrix from frame {a} to frame {b}.

qa
b = [q0 q1 q2 q3]

T : attitude quaternion from frame {a} to frame {b}.
(qa

b )
∗: quaternion conjugate of qa

b .

⊗: quaternion multiplication.

ua
q = [0 (ua)T ]T

[qa
b ] =




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




, Q(qa
b ) =




−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0




[qa
b ]

S =




q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0




, S(qa
b ) =




−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0




1 Introduction

Recent advances in micro-machining technology have made the design and fabrication

of MEMS (Micro-Electro-Mechanical-Systems) inertial sensors more affordable. Because

MEMS inertial sensors are several orders of magnitude smaller than the conventional

ones and can be fabricated in large quantities by batch process, they have great po-

tential of applications in the area of low-cost, medium-performance inertial navigation

systems (INS) such as those for car navigation [1]. Commercial products of low-cost,

medium-level MEMS acceleometers are available on the market, but functional low-cost

MEMS gyroscopes may not be commercialized soon because gyroscopes have more in-

herent physical complexities than accelerometers. Therefore, there is great motivation
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for developing a gyroscope-free INS for low-cost, medium performance application areas.

Moreover, a gyroscope-free inertial measurement unit (GF-IMU) also has its own appli-

cation areas. For example, a GF-IMU can be used as a structural vibration detector,

and an additional measurement sensor for a normal INS since it functions as an angular

acceleration sensor.

Historically, development efforts for GF-IMU have been continued for over 20 years

[2]. Although it was known in theory that a minimum of six accelerometers are required

for a complete description of a rigid body motion, six-accelerometer schemes were not

realized until J. Chen[3] proposed a cube type GF-IMU which has one accelerometer at

the center of each surface of a cube and its sensing direction is along the respective surface

diagonal. They showed their scheme is workable as a short-term inertial navigation

system. In fact, except for a “measure zero” set of six-accelerometer schemes, any other

configurations of six accelerometers will work. They all have the same computational

simplicity as the cube type GF-IMU. This work is reported in [4].

The position and velocity estimates of the cube type IMU are obtained by some simple

computations ([3],[4]) that involve integration of the accelerometer data. Since the data

have errors, the integration processes lead to errors that grow with time. Therefore, it is

necessary to estimate and correct the errors in the INS data by using external reference

data, such as those from the Global Positioning System (GPS). K. Mostov[5] developed a

calibration method for compensating configuration errors in Chen’s scheme, and showed

that it may be used as a car navigation system by incorporating GPS signals in the way

of simply resetting GF-INS generated navigation parameters to GPS generated data.

However, since the error growth rate of un-reset parameters remains same as the GF-

INS alone system, the error may diverge quickly. Therefore, an integrated GPS/GF-INS

system needs to include the error dynamics of the INS data so that the errors can be

estimated, compensated and bounded.

In this paper, we develop a loosely-coupled GPS/GF-INS integration system by de-

riving linear and nonlinear error dynamic equations of GF-INS for Kalman filters. This

paper is organized as follows. Section II presents basic theory of GF-IMU and derives the

GF-INS equations. In section III, an identification method for accelerometer errors and

its configuration errors is proposed. In section IV, linear and nonlinear error dynamics

of GF-INS are derived and the effects of various errors are analyzed. Section V presents

the idea of reducing unknown variables which must be estimated by Kalman filter, and

discusses Kalman filter implementation. Section VI gives simulation results and section

VII concludes this paper.
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2 Gyroscope-Free INS

2.1 Gyroscope-Free Inertial Measurement Theory

Consider the earth-centered inertial frame {i} and body frame {b} shown in Fig.1. ~R

is a position vector from earth center to the body frame center, ~Rj is a position vector

from earth center to a location j which is fixed in the body frame, and ~rj is a position

vector from body frame center to the location j. Then, the acceleration of the location

j is given by

R̈i
j = R̈i + Ci

b[ω
b
ib×]2rb

j + C i
b[ω̇

b
ib×]rb

j

R̈i
j = f i

j + gi
(2.1)

where f i
j is a specific force applied at location j and gi is gravitational force, with

both forces represented in the inertial frame. Assuming that single-axis accelerometer

is rigidly mounted at location j with the sensing direction ηb
j , then the accelometer

produces output Aj such that

Aj(r
b
j , η

b
j) = f b

j · ηb
j

= (Ci
b)

T (R̈i
j − gi) · ηb

j

=
[
(rb

j × ηb
j)

T (ηb
j)

T
] [

ω̇b
ib

f b

]
+ (ηb

j)
T [ωb

ib×]2rb
j

(2.2)

where f b is a specific force observed at the center of body frame. Now, suppose that

m accelerometers are distributed in the body frame and if we lump the accelerometer

outputs in a vector form, we obtain

A =




A1

...

Am


 = J

[
ω̇b

ib

f b

]
+




(η1)
T [ωb

ib×]2r1

...

(ηm)T [ωb
ib×]2rm


 (2.3)

where J =
[
JT

1 JT
2

]
is called a configuration matrix and is given by

J1 =
[
(r1 × η1) ... (rm × ηm)

]
, J2 =

[
η1 ... ηm

]

Note that we omit the superscript b in rb
j and ηb

j for notation simplicity. If the config-

uration matrix J has a left inverse matrix, then it is possible to completely describe a
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rigid body motion as follows.

[
ω̇b

ib

f b

]
= J+A− J+




(η1)
T [ωb

ib×]2r1

...

(ηm)T [ωb
ib×]2rm


 (2.4)

where J+ is left inverse matrix of J . In theory, a minimum of six accelerometers is

necessary for J+ to exist [4].

For a configuration of six accelerometers, the left inverse J+ is the inverse of J .

The existence of J+ is thus “almost surely” guaranteed since the set of singular 6 ×
6 matrices form a “measure zero” set in R6×6. For those invertible J matrices, it is

nonetheless computationally inefficient to use (2.4) to compute the angular and linear

motions. A simple, computationally efficient, INS algorithm was developed in [4] for all

those invertible 6× 6 configuration matrices J . Among the invertible J matrices, there

is a special cube configuration for which the angular acceleration is a linear combination

of the accelerometer outputs ([3], [4]). This will be considered next.

{i}

{b}

R
Rj

r

j
j

Figure 1: Inertial and body frames

2.2 Cube Type GF-IMU

J. Chen[3] proposed a GF-IMU with six accelerometers. One accelerometer is placed

at the center of each of the six cube faces, and its sensing direction is along the re-

spective cube face diagonal in such a way that the six sensing directions form a regular

tetrahedron, as shown in Fig.2. With this configuration, equation (2.4) becomes

ω̇b
ib =

1

2`2
J1A (2.5)
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f b =
1

2`2
J2A + `




ωb
ib2ω

b
ib3

ωb
ib1ω

b
ib3

ωb
ib1ω

b
ib1


 (2.6)

where 2l is a cube length. Note that, as it is formulated in [4], equation (2.5)-(2.6) is

an input-output dynamical system where A is the input, (2.5) is the state equation and

(2.6) is the output equation. Nominal location, sensing direction, and the configuration

matrix J1 and J2 are given by

ro =
[
ro1 · · · ro6

]
= `




0 0 −1 1 0 0

0 −1 0 0 1 0

−1 0 0 0 0 1




ηo =
[
ηo1 · · · ηo6

]
=

1√
2




1 1 0 0 −1 −1

1 0 1 −1 0 1

0 1 1 1 1 0




J1 =
`√
2




1 −1 0 0 1 −1

−1 0 1 −1 0 −1

0 1 −1 −1 1 0




J2 = ηo

From equation (2.5), we see that the angular acceleration of the body frame with

respect to the inertial frame is decoupled from the equation of the specific force at

the center of body frame, and ω̇b
ib can be computed from the linear combination of

six accelerometer measurements. The angular rate ωb
ib can be obtained by the direct

integration of the angular acceleration with a given initial condition. The specific force

f b at the center of body frame is computed from the six accelerometer measurements and

the knowledge of an angular rate. Therefore, GF-IMU can perform the same function as a

conventional gyroscope-based inertial measurement unit, except for the extra integration

of the angular acceleration to obtain the angular rate which is directly measured by the

gyroscopes in a conventional gyroscope-based IMU.

2.3 Resolution of Cube-Type GF-IMU

Measurement noises of the accelerometers of GF-IMU limit the minimum detectable

signal of angular acceleration and specific force, and thus limit the resolution of angular

rate which is calculated by the integration of angular acceleration. Accelerometer noise

can be modeled as an uncorrelated zero-mean band-limited white noise, and its power
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Figure 2: Cube type GF-IMU

spectral density is usually provided by the manufacturer. The standard deviations, or

resolution, of the angular acceleration, angular rate and specific force are obtained from

covariance calculations. They are given by

σωdot =
572.9σA√

2`
deg/sec2/

√
Hz

σω =
572.9σA√

2`

√
t deg/sec

σf ≈ 9.8σA√
2

m/sec2/
√

Hz

(2.7)

where σωdot, σω and σf are the standard deviations of angular acceleration, angular rate,

and specific force, respectively. Here σA is the standard deviation of the noise of a single

accelerometer, and its unit is expressed in g/
√

Hz. Note that the resolution of angular

rate grows with time because of integration of the angular acceleration.

2.4 GF-INS Equations

Strapdown inertial navigation system motion equations consist of attitude and velocity

differential equations expressed in a navigation frame. Usually, a local level frame is used

as a navigation frame. In this work, we use a quaternion as attitude dynamics because

of its computational simplicity and easy normalization procedure [6]. The quaternion

differential equation between the body frame and the navigation frame is given by

q̇n
b =

1

2
[ωb

ib]
Sqn

b −
1

2
[ωn

in]qn
b (2.8)
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where qn
b is an attitude quaternion that transforms the quaternion vector from its body

frame components to its navigation frame components. (The notations in (2.8) are

explained in the Nomenclature.)

The velocity differential equation in a navigation frame is given by

v̇n = −([ωn
en×] + 2[ωn

ie×])vn + Cn
b f b + gn

ER (2.9)

where vn and gn
ER are the velocity and gravity in a navigation frame, and Cn

b is a

rotation matrix from the navigation frame to the body frame. Cn
b can be computed

using a quaternion as follows.

Cn
b =




2(q2
0 + q2

1)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 2(q2
0 + q2

2)− 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q2
0 + q2

3)− 1


 (2.10)

Equations (2.5), (2.6), (2.8) and (2.9) constitute the gyroscope-free strapdown INS equa-

tions. The difference of the GF-INS from the gyroscope-based INS lies in the fact that

the output from the GF-IMU is angular acceleration instead of angular rate. With the

additional integration step of the angular acceleration, normal gyroscope-based INS algo-

rithms can also be used for the GF-INS. However, incorporation of angular acceleration

information into the INS algorithm could achieve faster reaction to a rapid rotational

motion.

The position differential equation can be given in different ways depending on the

local level frame status. Usually, geodetic positions such as longitude, lateral and height

are used for a wide geographical coverage. But for a limited geographical area, the direct

integration of vn along the navigation frame may be used as a position for simplicity with

a fixed local level frame. In this case, the position differential equation is given by

ṗn = vn (2.11)

Note that in the case when a fixed local level frame is used as a navigation frame, ωn
en = 0

and ωn
in = ωn

ie, where

ωn
ie ≈

[
ωie cos λ0 0 −ωie sin λ0

]T

and λ0 is the latitude of the origin of a fixed local frame.
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3 Identification of GF-IMU Parameters

The configuration (or misalignment) errors of an accelerometer and the accelerometer

errors embedded in the device itself cause detrimental effects on the performance of a

GF-INS, so they must be identified and calibrated either off-line or on-line as accurately

as possible. We propose an identification procedure of these GF-IMU errors in this

section.

The configuration errors of an accelerometer are the location and orientation (or

sensing direction) errors of the accelerometer. The error sources of a MEMS accelerom-

eter can be divided into three parts: scale factor error, bias and noise. The resultant

erroneous output equation of an accelerometer attached on the j cube surface, Ãj, can

be written by

Ãj = (1 + sj)Aj + bj + waj, j = 1, ..., 6 (3.1)

where sj is a scale factor error, bj is a bias, and waj is a noise. A bias is composed of

several components that come from various sources, and is separated into deterministic

and stochastic components. A deterministic bias is an offset in a steady state, and

a stochastic bias is a remaining random offset after accomplishing deterministic bias

compensation. A scale factor error is a sensitivity error. The spectral densities of waj is

given by the manufacturer or can be determined by analyzing the accelerometer output.

For the estimation of the scale factor, bias and sensing direction of the accelerometer

on a cube surface, we consider 6 cases of stationary alignment of the GF-IMU cube with

respect to a navigation frame: (1) x-axis of a body frame is aligned with the opposite

direction of gravity, (2) x-axis of a body frame is aligned with the gravity direction, (3)

y-axis of a body frame is aligned with the opposite direction of gravity, (4) y-axis of a

body frame is aligned with the gravity direction, (5) z-axis of a body frame is aligned

with the opposite direction of gravity, and (6) z-axis of a body frame is aligned with

the gravity direction. Then from equations (2.2) and (3.1), the output equations of the
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accelerometer in the steady-state are given by

Ã
(1)
j = go(1 + sj)η

T
j




1

0

0


 + bj, Ã

(2)
j = go(1 + sj)η

T
j



−1

0

0


 + bj

Ã
(3)
j = go(1 + sj)η

T
j




0

1

0


 + bj, Ã

(4)
j = go(1 + sj)η

T
j




0

−1

0


 + bj

Ã
(5)
j = go(1 + sj)η

T
j




0

0

1


 + bj, Ã

(6)
j = go(1 + sj)η

T
j




0

0

−1


 + bj

(3.2)

where go is the gravity constant. From equation (3.2), a bias is simply estimated by

b̂j =
1

6

∑
Ã

(n)
j (3.3)

We can also use (3.2) to obtain an estimate of the sensing direction. Define the following

differences of the measured accelerations:

Ã
(1−2)
j = Ã

(1)
j − Ã

(2)
j , Ã

(3−4)
j = Ã

(3)
j − Ã

(4)
j ,

Ã
(5−6)
j =Ã

(5)
j − Ã

(6)
j , [Ãj] =

[
Ã

(1−2)
j Ã

(3−4)
j Ã

(5−6)
j

]T

These differences cancel the bias term and the following relationship is satisfied.

ηj =
1

2go(1 + sj)
[Ãj] (3.4)

Since the sensing direction ηj is a unit vector, the denominator in equation (3.4) can be

neglected for estimating the sensing direction. Estimation of the sensing direction (in

unit vector) for the accelerometer attached to the j cube surface is thus given by:

η̂j =
[Ãj]√

[Ãj]T [Ãj]
(3.5)

The orientation error is ηej and the estimate of this error is η̂ej = η̂j−ηoj, where ηoj is the

nominal (i.e. without error) sensing direction. The orientation error can be determined

by two angles, αj
1 and αj

2, where αj
1 is out-of-plane and αj

2 is in-plane deviation angles

of the accelerometer attached to the j cube surface from their nominal sensing direction

ηoj. The plane referred to here is the j cube surface. (In general, it is the tangent plane
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at the location where the accelerometer is attached to.) This plane has a local coordinate

system in which the x-axis is aligned with the nominal accelerometer axial direction (i.e.

the direction ηoj in the body frame) and the z-axis is outward normal direction of the j

cube surface. Let Cb
sj be a direct cosine matrix that transforms the body frame to the

local coordinate frame of the j cube surface. It is then easy to check that ηej is expressed

as:

ηej = Cb
sj




cos αj
2 cos αj

1 − 1

sin αj
2 cos αj

1

− sin αj
1


 (3.6)

The estimates of the out-of-plane and in-plane deviation angles are thus given by:

α̂j
1 = − sin−1(cj3)

α̂j
2 = tan−1(

cj2

cj1 + 1
)

(3.7)

where cj = [cj1 cj2 cj3]
T = (Cb

sj)
T η̂ej.

To estimate a scale factor error, we sum each element of [Ãj] with the different

weighting Wj as follows.

W T
j [Ãj] = 2go(1 + sj)W

T
j ηj (3.8)

where the weighting vector Wj is chosen to prevent W T
j ηj from becoming zero. One such

choice is:

[
W1 · · · W6

]
=




1 1 1 1 −1 −1

1 1 1 −1 1 1

1 1 1 1 1 1




The scale factor error is estimated from equation (3.8) as

ŝj =
1

2goW T
j η̂j

W T
j [Ãj]− 1 (3.9)

The location of an accelerometer in the GF-IMU cannot be identified unless the

body rotates. So to estimate the location errors, we consider 3 cases of constant speed

rotational motion with different alignments of the cube with respect to a navigation

frame. In all three cases, the rotation axis is parallel to the gravity direction. The

alignment of the cube for each case is such that the rotation axis is in: (1) x − z plane

of the body frame, (2) y − z plane of the body frame, and (3) x − y plane of the body

frame. The first case is shown in Fig. 3. As shown in the figure, the cube is placed on

a wedge of angle β. The combined cube-wedge body is then placed on a rate table for

performing the rotations. Assume that the scale factor errors and bias are compensated
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through the previous identification procedure. Then from equations (2.2) and (3.1), the

accelerometer output equations in a steady-state are as follows:

Ã
(n)
j = ηT

j f b(n) + ηT
j [ω

b(n)
ib ×][ω

b(n)
ib ×]rj, n = 1, ..., 3 (3.10)

where

ω
b(1)
ib = ω0

[
cos β 0 sin β

]T

, f b(1) = go

[
cos β 0 sin β

]T

ω
b(2)
ib = ω0

[
0 cos β sin β

]T

, f b(2) = go

[
0 cos β sin β

]T

ω
b(3)
ib = ω0

[
cos β sin β 0

]T

, f b(3) = go

[
cos β sin β 0

]T

where ω0 is an arbitrary nonzero constant angular rate and ωb
ib is the axis of rotation in

the body frame. Then the location is estimated by:

r̂j =




ηT
j [ω

b(1)
ib ×][ω

b(1)
ib ×]

ηT
j [ω

b(2)
ib ×][ω

b(2)
ib ×]

ηT
j [ω

b(3)
ib ×][ω

b(3)
ib ×]




−1 


Ã
(1)
j − ηT

j f b(1)

Ã
(2)
j − ηT

j f b(2)

Ã
(3)
j − ηT

j f b(3)


 (3.11)

The existence of the matrix inverse in (3.11) is guaranteed if the rotation axis is not

 
 
 
 
 
 
 
 

0ω
x

z

β

Figure 3: Alignment of Cube

parallel nor orthogonal to the sensing direction of accelerometer j, which corresponds

to β = 0◦, 45◦, 90◦ for the case of nominal accelerometer orientation. The estimation of

location error is r̂ej = r̂j − roj, where roj is nominal accelerometer location.
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4 GF-INS Error Dynamics

4.1 Linearized Error Equations

Strapdown INS error models play an important role in implementing a Kalman filter

for an aided navigation system. In this section, we derive a gyro-free strapdown INS

error model based on a computer frame approach. If we select the computer frame as a

reference frame, the navigation errors are defined as the perturbations in the computer

frame. If we perturb equation (2.8), the linearized (first order) additive quaternion errors

satisfy the following differential equations.

δq̇c
b =

1

2
([ωb

ib]
S − [ωc

ic])δq
c
b +

1

2
Q(qc

b)δω
b
ib (4.1)

Under small tilt angle assumption, the following relationship between quaternion errors

and the equivalent tilt angles δΨ can be obtained [6].

δqc
b =

1

2
S(qc

b)δΨ (4.2)

Now, equation (4.1) can be converted to the equivalent tilt angle dynamics as follows.

δΨ̇ = −[ωc
ic×]δΨ + Cc

bδω
b
ib (4.3)

For velocity error equations, we perturb equation (2.9) in the computer frame and obtain

δv̇c = −([ωc
ec×] + 2[ωc

ie×])δvc + δCc
bf

b + Cc
bδf

b + δgc
ER (4.4)

In equation (4.4), the attitude error forcing term δCc
bf

b is expressed in terms of a tilt

angle as follows:

δCc
bf

b = −[f c×]δΨ (4.5)

For conventional gyroscope-based INS, the angular rate error δωb
ib in (4.3) and the specific

force error δf b in (4.4) are independent each other. The errors depend on the accuracy

characteristics of the gyroscope and accelerometer. In case of a GF-INS, δωb
ib and δf b

are correlated with each other and come indirectly from the same error sources, i.e.

accelerometer device errors and the configuration errors in the GF-IMU.

If the scale factor error and bias of each accelerometer are identified with the esti-

mation procedures described in the of previous section, we can apply a compensator to

13



each accelerometer channel. The compensated accelerometer output Ãj is given by

Ãj =
1

1 + ŝj

((1 + sj)(Aj + Aej) + bj − b̂j + waj)

≈ (1− δsj)(Aj + Aej)− δbj + waj, j = 1, ..., 6

(4.6)

where δsj and δbj are residual uncompensated errors of the scale factor and bias, and

waj is a random noise. The term Aej is an acceleration error caused by configuration

errors and is given by:

Aej = (ω̇b
ib)

T (rj × ηej + rej × ηoj) + (f b)T ηej

+ (ηoj)
T [ωb

ib×]2rej + ηT
ej[ω

b
ib×]2rj

(4.7)

where rej is a location error and ηej is a orientation error of the accelerometer attached

on the j cube surface. The effect of uncompensated scale factor error can be included

as one source of the stochastic bias. Typically, δbj is modeled as a random walk, i.e.

δḃj = wbj. The spectral densities of wbj are determined by analyzing of the compensated

accelerometer output at calibration stage. The acceleration error Aej caused by the

configuration errors plays a role as a faulty forcing term of the INS algorithms, and

needs to be subtracted from accelerometer output before using it as an input data for

INS algorithms ([4, 5]). Assume that Âej is subtracted from each acceleration channel

as follows,

Âj = Aj + Aej − Âej − δbj + waj

where Âej is computed with the estimated location and orientation obtained by the

identification schemes developed in Section III. The angular acceleration and specific

force equations (2.5)-(2.6) will then need to be modified as:

˙̂ωb
ib =

1

2`2
J1(A + Ae − Âe − δb + wa)

f̂ b =
1

2
J2(A + Ae − Âe − δb + wa) + `




ω̂b
ib2ω̂

b
ib3

ω̂b
ib1ω̂

b
ib3

ω̂b
ib1ω̂

b
ib1




(4.8)

With equations (4.8) and (2.5)-(2.6), the angular rate error differential and specific error

equations can be obtained as follows.

δω̇b
ib =

1

2l2
J1(wa − δb− δA)

δf b =
1

2
J2(wa − δb− δA) + lΩδωb

ib

(4.9)
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where δA = Âe − Ae is the acceleration error caused from small configuration residual

errors after the calibration, and

Ω =




0 ωb
ib3 ωb

ib2

ωb
ib3 0 ωb

ib1

ωb
ib2 ωb

ib1 0




Note that Âe is an estimate of the actual error Ae. We can use (3.6) and (4.7) to relate

δA to the location and orientation residual errors δr, δα1 and δα2. We get:

δA = Dδc (4.10)

where

δc =




δr

δα1

δα2


 , δr =




r̂e1 − re1

...

r̂e6 − re6




δα1 =




δα1
1

...

δα6
1


 , δα2 =




δα1
2

...

δα6
2




D =
[
D1 D2 D3

]

D1 = diag{d11, ..., d16}, D2 = diag{d21, ..., d26},
D3 = diag{d31, ..., d36}
d1j = ηT

j [ωb
ib×]2 − (ω̇b

ib)
T [ηj×]

d2j = ((f b)T + rT
j [ωb

ib×]2 + (ω̇b
ib)

T [rj×])Cb
sjK

j
2

d3j = ((f b)T + rT
j [ωb

ib×]2 + (ω̇b
ib)

T [rj×])Cb
sjK

j
3

Kj
2 =



− cos αj

2 sin αj
1

sin αj
2 sin αj

1

− cos αj
1


 , Kj

3 =



− sin αj

2 cos αj
1

cos αj
2 cos αj

1

0




If we substitute (4.10) into (4.9), the angular rate error differential and specific force

error equations become

δω̇b
ib =

1

2`2
J1(wa − δb−Dδc)

δf b =
1

2
J2(wa − δb−Dδc) + `Ωδωb

ib

(4.11)
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Combining equations (4.3), (4.4), (4.5) and (4.11), we have following GF-INS error dy-

namics.

δv̇c = −([ωc
ec×] + 2[ωc

ie×])δvc − [f c×]δΨ

+
1

2
Cc

bJ2(wa − δb−Dδc) + `Cc
bΩδωb

ib + δgc
ER

δΨ̇ = −[ωc
ic×]δΨ + Cc

bδω
b
ib

δω̇b
ib =

1

2`2
J1(wa − δb−Dδc)

(4.12)

4.2 Error Analysis

From the angular rate error differential equation in (4.12), it is desirable to use a larger

cube to achieve higher angular acceleration accuracy. But larger cubes may introduce

structural flexibility as an error source, and may induce significant high maintenance

and operation costs. One apparent problem of small cube is that it is more sensitive

to the noise in the accelerometers. For example, if the noise level of acceleometer is on

the order of 500 µg resolution, its effect may be negligible for larger cubes. However,

for small cube length, for example ` = 0.1 m, that error can translate to an angular

acceleration error of 2.03 deg/sec2. Thus, as a smaller cube IMU is used, it becomes

more important to use high resolution accelerometers.

The effects of configuration errors can be understood by deriving the linearized sen-

sitivity of the accelerometer output with respect to the configuration errors as follows.

∂Aj

∂rj

= ηT
oj[ω

b
ib×]2 − (ω̇b

ib)
T [ηoj×]

∂Aj

∂αj
1

= −1

`
((f b)T + rT

oj[ω
b
ib×]2)roj

∂Aj

∂αj
2

=
1

`
((f b)T + rT

oj[ω
b
ib×]2 + (ω̇b

ib)
T [roj×])[roj×]ηoj

(4.13)

From equation (4.13), we see that the effects of configuration errors depend on the

dynamic motion of the GF-IMU. Generally speaking, as the maneuverability of the

motion is higher, the effect of configuration errors gets larger. However, according to the

particular dynamics, the configuration errors in each cube surface contribute to the error

of accelerometer output at different levels. For example, when translational motion takes

place, the location errors in all cube surfaces are totally insensitive. In case of local level

plane motion, the orientation errors of the accelerometers on the cube surfaces which are

normal to local level plane are hardly detectable. Although some configuration errors

have effects on individual accelerometer error, these errors may be inseparable because
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each accelerometer error has an effect on INS variables by through the configuration

matrix J1 and J2. From the point of view of estimation, these inseparable and insensitive

errors cause unobservable modes and cannot be estimated correctly. However, for some

specific vehicle maneuvers with sufficient knowledge of the motion, configuration errors

could be estimated as time progresses.

Equation (4.13) suggests the extent of efforts that might be required in estimating

configuration errors for specific motions. For example, in car navigation, where the

motion is mostly planar and translational, the effect of location errors is very small and

we may put less efforts on estimating them. On the other hand, significant efforts should

be made on estimating the orientation error for those accelerometers which lie on the

cube surfaces that are perpendicular to the motion plane. Equation (4.13) also shows

that the effect of a location error is insensitive to cube size in terms of proportional error,

whereas that of orientation errors is sensitive to cube size mostly because of specific forces

experienced by the GF-IMU.

The error growth rate of GF-INS variables is very rapid compared to that of the

gyroscope-based INS. From equation (4.12), the error growth rates of angular rate and

specific force, attitude angles, velocity and position are respectively ∼ t, ∼ t2, ∼ t3 and

∼ t4. Because GF-INS is a rapid diverging system whose divergence rate is an order

greater than that of gyroscope-based INS, it is only applicable to short-term navigation

unless a reference location system is available to bound the growth of its errors. The

Global Positioning System (GPS) is one such system. We will discuss in Section V how

a GF-INS can be integrated with the GPS to provide accurate and stable navigation

estimates.

4.3 Nonlinear Error Equations

The linearized error dynamics discussed in section IV.A are only valid when errors are

small. The small error assumption is well satisfied in very short-term navigation or

with fast enough error correction by timely reception of an external signal such as GPS.

Since GF-INS is a rapid diverging system, blockage of GPS signal for a few GPS update

periods may result in INS errors so large that the linearized error dynamics is no longer

valid. In this section, we derive the nonlinear error dynamics by the similar method to

X. Kong’s[7]. In deriving nonlinear attitude error dynamics, it is more convenient to use

multiplicative quaternion and direction cosine matrix errors. The relationship between
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multiplicative and additive attitude errors is

q̂c
b ≡ qp

b = qp
c ⊗ qc

b = qc
b + δqc

b

Ĉc
b ≡ Cp

b = Cp
c C

c
b = Cc

b + δCc
b

qp
c ↔ Cp

c

(4.14)

where p denotes virtual platform frame. Actual attitude quaternion is computed by the

following equation in a navigation computer.

˙̂qc
b = q̂c

b ⊗ ω̂b
cbq

(4.15)

If we substitute equation (4.14) to (4.15), we get following multiplicative quaternion

error dynamics.

q̇p
c = qp

c ⊗ δωc
cbq

(4.16)

Since q̇p
c = qp

c ⊗ ωc
pcq

, equation (4.16) is converted to

ωc
pc = δωc

cb (4.17)

where δωc
cbq

can be calculated by following coordinate transformation:

δωc
cbq

= qc
b ⊗ δωb

cbq
⊗ (qc

b)
∗ (4.18)

From the following relation:

ωb
cbq

= ωb
ibq
− (qc

b)
∗ ⊗ ωc

icq
⊗ qc

b

we can get δωb
cb as follows.

δωb
cbq

= δωb
ibq
− (qc

b)
∗ ⊗ ((qp

c )
∗ ⊗ ωc

icq
⊗ qp

c − ωc
icq

)⊗ qc
b (4.19)

Substituting equation (4.19) to (4.18) gives

δωc
cbq

= (ωc
icq
− (qp

c )
∗ ⊗ ωc

icq
⊗ qp

c ) + qc
b ⊗ δωb

ibq
⊗ (qc

b)
∗ (4.20)

Equation (4.20) is equivalent to

δωc
cb = (I3 − (Cp

c )T )ωc
ic + Cc

bδω
b
ib (4.21)
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Since ωc
pc = δΨ̇, we get the nonlinear tilt error dynamics as follows.

δΨ̇ = (I3 − (Cp
c )T )ωc

ic + Cc
bδω

b
ib (4.22)

where Cp
c is a direction cosine matrix composed of 3-2-1 euler angles of δΨ. Note that

(4.3) is a special case of (4.22) when the tilt angle is small and the linear model becomes

valid. From equations (2.9) and (4.14), we have the following nonlinear velocity error

equations.

δv̇c = −([ωc
ec×] + 2[ωc

ie×])δvc + (Cp
c − I3)f

c + Cp
c C

c
bδf

b + δgc
ER (4.23)

The position, angular rate and specific force error differential equations remain the same

as in the linear case. Therefore, we have following nonlinear GF-INS error dynamics.

δv̇c = −([ωc
ec×] + 2[ωc

ie×])δvc + (Cp
c − I3)f

c

+
1

2
Cp

c C
c
bJ2(wa − δb−Dδc) + `Cp

c C
c
bΩδωb

ib + δgc
ER

δΨ̇ = (I3 − (Cp
c )T )ωc

ic + Cc
bδω

b
ib

δω̇b
ib =

1

2`2
J1(wa − δb−Dδc)

(4.24)

5 Integration of GPS and GF-INS

The Global Positioning System (GPS) provides position and velocity information with no

long-term accumulating errors, therefore it has been widely used for an aided sensor for

other location systems. A loosely-coupled GPS/INS integration system can be realized in

two ways depending on the form of input data to a Kalman filter, that is, either pseudo

range/rate differences or three-dimensional position/velocity differences [8]. Since the

second type has the advantage of having a simple structure and easier implementation,

we consider the second type integration method in this paper, where the difference of

INS-generated and GPS-generated positions/velocities is generated as the input to a

Kalman filter to form an integrated GPS/INS.

The Kalman filter equation is based on the error dynamics equations, either the

linear model (4.12) or the nonlinear model (4.24). In either case, the number of filter

states will be 48, which is very large for practical implementation of the filter. We need

a reasonable strategy to reduce the number of unknowns because too many unknowns

may result in inefficient computations in the filter, especially if the observation yields no

significant improvement in the variance of the estimate. Even worse, the type of input

errors, such as configuration errors and sensor biases, are poorly estimated under usual
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circumstances [9].

From equation (4.10), the j-th element of Dδc is given by

(Dδc)j = d1jδrj + d2jδα
j
1 + d3jδα

j
2 (5.1)

With the assumption that the range of angular acceleration/rate and specific force in the

expected maneuvering regimes are estimated a-priori, the effect of configuration errors

can be lumped into one common type of error with bias error δbj, allowing us to reduce

the number of unknowns, that is,

−δbj − (Dδc)j ≡ δb̄j

δ ˙̄bj = νj

(5.2)

where νj is a fictitious noise whose intensity is determined by considering the magnitude

of bias noise and the expected translational and rotational dynamics for each maneu-

vering regime experienced by the GF-IMU. For the special case of almost plane and

translational motion which is usual case of a car navigation, equation (5.1) is approxi-

mated by

(Dδc)j ≈ 1

`
(f b)T ([roj×]ηoj − roj)δαj ≈ djδαj

where dj is a number whose nominal value may be known beforehand. Now, the number

of filter states is reduced to 18, and is given by

x = [δpN δpE δpD δvN δvE δvD δΨN δΨE δΨD

δωb
ib1 δωb

ib2 δωb
ib3 δb̄1 ... δb̄6]

T

The gravity error in equation (4.12) and (4.24) is approximately given in a local fixed

frame by

δgc
ER ≈

2go

Re

δpD

where Re is the equatorial radius of Earth [10]. Measurement equations are constructed

by the differences between the INS-generated positions/velocities and GPS-generated
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positions/velocities, and are given by

z =

[
I3 0 0 0 0

0 I3 0 0 0

]



δpc

δvc

δΨ

δωb
ib

δb̄




+ ξ

= Hx + ξ

(5.3)

where ξ is a measurement noise whose intensity is determined by the GPS performance.

The discrete-time form of filter equation is

x(tk+1) = f(x(tk)) + G(tk)w(tk)

z(tk) = Hx(tk) + ξ(tk)
(5.4)

where subscript k denotes the time update sequence of Kalman filter, and w(tk) and

ξ(tk) are uncorrelated white noises with covariances Q(tk) and R(tk), respectively. Time

updates of the state and covariance matrix are

x̂−(tk) = f(x̂(tk−1))

P−(tk) = Jf (tk−1)P (tk−1)J
T
f (tk−1) + G(tk−1)Q(tk−1)G

T (tk−1)
(5.5)

where Jf (tk−1) is the Jacobian matrix of f(tk−1). Until GPS signals are available, only

the time update routine is repeated. The Kalman filter gain, state and covariance mea-

surement are updated whenever GPS signals are available as followings.

K(tl) = P−(tk)H
T (HP−(tk)H

T + R(tl))
−1

P (tl) = (I −K(tl)H)P−(tk)

x̂(tl) = x̂−(tk) + K(tl)(z(tl)−Hx̂−(tk))

(5.6)

where tl denotes the time instance when GPS signals are available, and x−(tk) and P−(tk)

are the last time updates of the state and covariance before GPS signals are available.

The state x̂(tl) is used to correct the INS variables.

If the GPS signal reception is expected to be quite regular, linear error dynamics can

be used as the Kalman filter equation. Otherwise, nonlinear error dynamics is preferable,

but with a higher computational cost. Both linear and nonlinear dynamics may be used

at the same time as Kalman filter equation. By monitoring innovations of Kalman filter,

the Kalman filter equation can switch from nonlinear to linear error equation or vice
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versa. Multi-model filtering method such as the well-known IMM (interacting multiple

model) filter [11] may also be used to cover a wide range of maneuvering regimes by

adaptively adjusting the intensity of the lumped fictitious noise in an on-line fashion.

6 Simulation Results

To evaluate the performance of the GPS/GF-INS system, computer simulations are

performed. Differential GPS with the accuracy of 10 cm and 0.05 m/sec, latency of

0.1 sec, and accelerometers with a resolution of 200 µg are assumed. IMU-cube length `

is 10 cm. The location and orientation errors are assumed to be arbitrarily distributed

within the values of ±1 mm and ±0.02 deg respectively. The time updates of the INS

algorithm, Kalman filter and GPS are 100Hz, 10Hz and 1Hz, respectively. A vehicle

trajectory is used for the simulations. This is shown in Fig. 4, which is a circular

motion going up a hill. The GF-IMU experiences a translational maneuvering with the

range of f b = [(5.1 ∼ 5.2) (−1.5 ∼ 0.1) (−10.5 ∼ −8.4)]T m/sec2, and a rotational

maneuvering with the range of ωb
ib = [(−20 ∼ 0) (0 ∼ 6) (0 ∼ 30)]T deg/sec and

ω̇b
ib = ±0.5 deg/sec2. We assume that GPS signal blockage hardly happens, so the linear

error dynamics (4.12) with the common lumped error model (5.2) are used as the Kalman

filter equations. The simulation results are presented in Fig. 5. In this figure, position

errors in all three dimensions are plotted with their two-sigma bounds, which are about

±0.15 m for each of north, east and height. The results show that the position errors

agree well within the estimated error bounds. For the comparison purposes, the results

of those for GF-INS alone and INS-reset-by-GPS systems are also presented in Fig. 6 and

Fig. 7. It is clear that the GF-INS alone system loses its navigation capability quickly

since the INS errors diverge rapidly. The INS-reset-by-GPS system also has performs

poorly compared to the GPS/GF-INS system.

7 Conclusions

We designed an integrated GPS/GF-INS to bound the growing errors of GF-INS which

diverge at a rate an order greater than that of gyroscope-based INS. Identification meth-

ods for accelerometer device errors and the configuration errors are developed. The

linear and nonlinear error dynamics of GF-INS are derived and used for the Kalman

filter equation. For the case when the navigation maneuvers are estimated apriori, such

as the case for vehicle navigation, the effects of configuration errors and biases can be

lumped into one common type of error with fictitious noise whose intensity is determined
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Figure 4: Trajectory

by the magnitude of the expected dynamics experienced by GF-IMU, and thus the order

of Kalman filter can be greatly reduced. Since GF-INS is a rapid diverging system, non-

linear error model is required when blockage of GPS signals is likely. A decision-based

switching scheme or an IMM scheme might need to be implemented to deal with GPS

signal blockage or rapidly changing rotational motion. The performance of our integrated

system was evaluated using computer simulations. The simulation results show that the

performance of the integrated GPS/GF-INS is much superior to that of the previously

proposed INS-reset-by GPS system.
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Figure 5: Position errors of GPS/GF-INS
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Figure 6: Position errors of GF-INS alone
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Figure 7: Position errors of GFINS-reset-by-GPS system
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