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ABSTRACT OF THE DISSERTATION 

 

Management of Demand Response Programs in the Electricity Industry 

 

by 

 

Paul Pierre Rebeiz 

Doctor of Philosophy in Management 

University of California, Los Angeles, 2016 

Professor Reza H. Ahmadi, Chair 

 

Daily electricity load profile is characterized by peak hours which are periods in which electrical 

power is expected to be provided for a sustained period at a significantly higher than average 

supply level. As a result, satisfying the electricity demand throughout the day will entail utility 

companies to build additional plants that are only used during the highest peak hours of the year 

or to buy high-priced wholesale energy. Further, such costs will increase given the expected 

growth of electricity demand in the next decades. To avoid these additional costs and address the 

resulting supply-demand mismatch, utility companies have designed Demand Response Programs 

(DRP) which are programs that incentivize customers to shift their electricity demand from peak 

hours to off-peak hours. In this work, I study the problem of an electricity utility company that 

offers DRP to its commercial and industrial customers with the objective of reducing its electricity 

costs.                    
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In Chapter 1, I give an overview of the electricity industry in the United States and describe 

the important role that DRP play in improving the electric grid reliability and reducing the costs 

of electricity generation for the utility companies. I then describe and formulate the problem of an 

electricity retailer that offers interruptible demand response programs, which are a type of DRP, 

to their commercial and industrial customers. These programs consist of the Base Interruptible 

Program (BIP) and the Agricultural and Pumping Interruptible Program (API). Using these 

contracts, enrolled customers agree to curtail their consumption by a pre-specified load when 

instructed and obtain in return financial payments from the utility company. The operational 

challenges of these programs are in their implementation and management due to the large number 

of interruption possibilities, the uncertainty in electricity demand and the limited number of 

interruptions the electricity retailer. To address these challenges, I propose and describe the 

solution adopted to solve the dynamic program.  The approach I use consists of a certainty 

equivalence algorithm that had two components: an electric load forecasting model and the 

deterministic model of the dynamic program which I discuss in chapters 2 and 3 respectively. 

In Chapter 2, I present an electric load forecasting model in the context of demand response 

for both the short and long term horizons. The short term model consists of predicting by 

nonparametric regression the hourly electricity demand at the start of a given day using the 

previous day load and same day temperature as the driving variables. The long term forecasting 

model consists of first predicting the peak load through multivariate and semiparametric regression 

taking into account the temperature variable and calendar effects. Then, I approximate the hourly 

load profile by nonparametric regression using the predicted peak load. Further, I construct the 

peak load distribution by temperature simulation and kernel density approximation. The proposed 

methodolgy had been used to forecast the short and lonh term electricty demand as well as the 
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probability distribution of the peak load for the area seved by the Southern California Edison (SCE) 

electric utility company. The performance of the methodology is evaluated by comparing the 

forecasts resuls to the ones of the California Independent System Operator (CAISO) for the area 

served by SCE. 

In Chapter 3, I study the problem of implementing these contracts by determining their 

execution policy using a certainty equivalence approach. A central component of the certainty 

equivalence algorithm is the deterministic problem in which the electricity demand in known. 

Given that this problem is NP-hard, we propose a heuristic that efficiently solves the deterministic 

problem and test its efficiency by determining the optimality gap with a lower bound. Using the 

developed electricity forecasting and demand simulation models we then solve the certainty 

equivalence model in order to devise near optimal strategies for executing such contracts and verify 

its effectiveness. 
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CHAPTER 1 

Introduction 

1.1-Electricity Industry Overview 

The electric grid in the United States consists of a network of transmission lines, substations and 

transformers that deliver electricity from the power plant to end users. Throughout the years the 

electric grid was improved with the advancements of technology through each decade. Today it 

consists of more than 9,000 units generating more than 1 million megawatts that are transmitted 

across 300,000 miles of transmission lines.  Figure-1.1 shows the electricity supply chain. At the 

upstream, power plants produce electricity that is transmitted across distribution lines before 

reaching a substation that reduces the electricity voltage before transmitting it to distribution lines 

that supply end-customers.  In order to move forward, a different kind of electricity grid is needed 

to handle the needs and increasing complexity of our electricity demand. Such a grid will need to 

harness the advances in computerized and digital technology. This digital technology will allow 

the grid to provide a two-way communication between the utility and its customers and to have 

sensing capabilities along the transmission lines. This new grid concept is referred nowadays by 

the Smart Grid. The Smart Grid represents an opportunity for the electricity industry to move into 

a new era of reliability, availability and efficiency that will improve our current economic and 

environmental status. The benefits associated with the Smart Grid will include a more efficient 

transmission of electricity, a quicker restoration of outages, a reduction in operating costs and peak 

demand and a larger integration of renewable energy systems. As mentioned above, the Smart Grid 

will enable an unprecedented level of customer participation and thus will increase customer 

awareness about the role they could play in enhancing the overall reliability and security of the 

grid. Technologies like smart meter and other mechanisms will allow customers to decide how 
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much electricity to use, when to use it and its cost. The main goal of this two-way communication 

is to reduce the electricity demand during periods when it is significantly higher than average 

supply level. The resulting reduction in the supply demand mismatch will mitigate the high costs 

incurred by a utility company and decrease the stress on the distribution lines. Figure-1.2 illustrates 

the supply curve of the Texas wholesale electricity market. We notice that after a certain electricity 

demand threshold, the electricity generation costs increase substantially as Peakers are invoked in 

order to supply the demand. Peakers consist of power plants that are on hold and supply electricity 

when demand exceeds a supplier’s capacity. Since Peakers provide electricity in real time, the 

produced electricity is purchased at the spot price by the electricity provider which is much higher 

than the average electricity price rate. Demand Response Programs provide a mechanism to better 

address the mismatch between supply and demand and enable customers to be active participants 

in the overall electric network reliability by shifting their demand from peak to off peak hours. 

These programs are divided into categories: Time Based Programs and Incentive Based Programs. 

In Time Based Programs, the electricity price changes depending on the period of the day. This 

offers end users the opportunity to shift their consumption from periods with high electricity price 

rates to periods of lower electricity price rates. There is no penalty if an end user does not curtail 

her electricity consumption. The second type of programs are the Incentive-Based programs in 

which end customers agree to curtail or shift their load consumption to periods of lower demand. 

More detailed explanations of demand response programs can be found on the FERC website. In 

this work we focus on one type of Incentive based programs which are the Interruptible Curtailable 

load programs. We particularly focus on the interruptible contracts under which commercial and 

industrial consumers are offered payments to reduce their electricity consumption to a pre-

specified level that they choose. We consider the problem of a producer and provider of electricity 
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that offers interruptible contracts to its industrial and commercial customers. The interruptible 

contracts that we consider are the ones offered by the Southern California Edison utility company. 

These programs consist of the Base Interruptible Program (BIP) and the Agricultural and Pumping 

Interruptible Program (API). Each program has multiple customers that are enrolled in. Customers 

are divided into groups. Each group consists of a set of customers enrolled in the same program 

that are close geographically to each other. Each enrolled customer can be interrupted at most once 

per day for duration of at most six hours. For the customer enrolled in the BIP program, there is a 

limit of 180 hours of total interruption per year while customers enrolled in the API program can 

be interrupted at most 25 times per year. The objective of the utility company is to minimize its 

electricity generation costs by deciding on a given day, in the case of an interruption which group 

to call as well as the timing and duration of the interruption for each of the interrupted groups. In 

the next sections, we formally state the problem, discuss its challenges and solution approach. 

1.2-Problem Formulation and Solution Approach 

We first formulate the corresponding dynamic program. To give a formal illustration of the 

program we define the following sets and indices: 

Indices: 

D: The set of days. 
 
𝐺𝐺: The set of groups. 
 
𝐺𝐺1,𝐺𝐺2: The set of BIP and API groups respectively (subsets of 𝐺𝐺). 
 
T: The set of hours of the day during which the interruptible programs can be called. These are  
 the hours from 9am to 9pm. 
 
T’: The set of hours of the day representing the starting time of an interruption. These are the                     
hours from 8am to 8pm.  

H: The set of the duration of interruptions in hour.  
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d: The subscript for days. 

g: The subscript for groups.  

𝑔𝑔1,𝑔𝑔2: The subscripts for the set of BIP and API groups. 

t: The subscript for the set of time of the day. 

t’: The subscript for the set of starting time for interruption. 

h: The subscript for the set of duration of interruption. 

Parameters: 

𝑢𝑢𝑑𝑑,𝑡𝑡: Demand on day d at time t in Megawatts (MW). 

𝑙𝑙𝑔𝑔: Load impact of group g in Megawatts (MW). 

(𝑎𝑎, 𝑏𝑏): Parameters for the hourly cost function for electricity generation. 

I(t, t’, h): Indicator equal to 1 if a group called at hour t’ for h consecutive hours reduces the    
demand at time t on day d by its corresponding load impact. 
 
𝑆𝑆𝑑𝑑: The information available on day d. 

States: 

𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑: Number of BIP hours of interruption remaining for group 𝑔𝑔1  on day 𝑑𝑑  

𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑: Number of API calls remaining for group 𝑔𝑔2 on day d. 

Control: 

𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ =  �1 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡′𝑓𝑓𝑓𝑓𝑓𝑓 ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

Transition: 

𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑+1 = �
𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑 − ℎ 𝑋𝑋𝑑𝑑,𝑔𝑔1,𝑡𝑡′,ℎ , 𝑖𝑖𝑖𝑖 𝑋𝑋𝑑𝑑,𝑔𝑔1,𝑡𝑡′,ℎ = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑 > ℎ 

𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑+1 = �
𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑 − 𝑋𝑋𝑑𝑑,𝑔𝑔2,𝑡𝑡′,ℎ , 𝑖𝑖𝑖𝑖 𝑋𝑋𝑑𝑑,𝑔𝑔2,𝑡𝑡′,ℎ = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑 > 0

𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

 

In the set of indices above, the set T represents the hours of the day where a reduction in the electric 
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load can occur. These hours are the hours from 9am to 9pm. The set T’ represents the starting time 

of an interruption which can take place from 8am to 8pm. The electric load at time 𝑡𝑡 ∈ 𝑇𝑇 represents 

the total load demand from hours 𝑡𝑡 − 1 to t. The indicator I (t, t’, h) is equal to 1 if an interruption 

at time t’ for h consecutive hours reduces the demand at time t by the aggregate load impact of the 

interrupted groups during that period. For example, if t’=3 and h=2, then I (4, 3, 2) and I (5, 3, 2) 

are equal to 1. The set 𝑆𝑆𝑑𝑑 represents the set of available information on day d  which consists of 

the current and week ahead hourly load electricity demand. These quantities are forecasted by the 

methodology summarized in Chapter 2.  

The state space consists of the remaining number of hours 𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑 ∀𝑔𝑔1 ∈ 𝐺𝐺1  and calls  𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑 ∀𝑔𝑔2 ∈

𝐺𝐺2  for each of the groups enrolled in the BIP and API programs respectively. At each day, the 

utility company has to decide whether an interruption should occur as well as which groups to 

interrupt and the timing and duration of each interruption. The decision to interrupt is represented 

by the integer variable 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ. If an enrolled group in the BIP program is interrupted for h hours 

its state transitions from   𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑 on day d to  𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑 − ℎ the next day. On the other hand, if a group 

from the API program is interrupted its state transitions from  𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑 on day d  to  𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑 − 1 the 

next day. 

 We define by 𝐶𝐶𝑑𝑑 the hourly electricity generation costs on day d. 𝐶𝐶𝑑𝑑 in expressed as follows:  

𝐶𝐶𝑑𝑑 = �𝑎𝑎�𝑢𝑢𝑑𝑑,𝑡𝑡 −� � �𝐼𝐼(𝑡𝑡, 𝑡𝑡′, ℎ)𝑙𝑙𝑔𝑔𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ
ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑔𝑔∈𝐺𝐺

�

2

+ 𝑏𝑏 �𝑢𝑢𝑑𝑑𝑑𝑑 −� � �𝐼𝐼(𝑡𝑡, 𝑡𝑡′, ℎ)𝑙𝑙𝑔𝑔𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ
ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑔𝑔∈𝐺𝐺

� (1)

   𝑡𝑡∈𝑇𝑇

 

 

 

The electricity generation costs are expressed by a quadratic function which is commonly used in 

the literature and captures the fact that the electricity generation cost increases at a higher rate than 
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the electricity demand. The objective function consists of minimizing the total hourly electricity 

generation costs. At each hour the electricity generation cost can be reduced by calling one or more 

groups from the BIP or API programs. Each called group g will reduce the hourly electricity load 

by an amount 𝑙𝑙𝑔𝑔.  

Dynamic Programming Formulation: 

 

Let  𝐹𝐹𝑑𝑑�𝑏𝑏ℎ𝑔𝑔1,𝑑𝑑,𝑎𝑎𝑎𝑎𝑔𝑔2,𝑑𝑑� ∀𝑔𝑔1 ∈ 𝐺𝐺1 ,𝑔𝑔2 ∈ 𝐺𝐺2 be the value function of the expected electricity 

generation costs on day d. The dynamic program is expressed by the following bellman equation. 

 

𝐹𝐹𝑑𝑑(𝑏𝑏ℎ𝑑𝑑 ,𝑎𝑎𝑎𝑎𝑑𝑑) = min
𝑋𝑋𝑑𝑑,𝑡𝑡′,ℎ

{𝐶𝐶𝑑𝑑 + 𝐸𝐸(𝐹𝐹𝑑𝑑+1(𝑏𝑏ℎ𝑑𝑑+1,𝑎𝑎𝑎𝑎𝑑𝑑+1)|𝑆𝑆𝑑𝑑)} (2) 

Where the minimization is done over the following set of constraints: 

 

 ∑ ∑ 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ ≤ 1∀𝑑𝑑 ∈ 𝐷𝐷,𝑔𝑔 ∈ 𝐺𝐺 (3) 

 

𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ ∈ {0,1} ∀𝑑𝑑 ∈ 𝐷𝐷,𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡′ ∈ 𝑇𝑇′, ℎ ∈ 𝐻𝐻 (4) 

 

As seen from the above formulation, the challenges of the above problem stem from both the 

uncertainty in the load electricity demand and the large number of configurations through which 

groups can be interrupted. To address these challenges, we resort to approximate programming 

techniques and more specifically the certainty equivalence approach. To this end, we first develop 

an electricity forecasting model for the both the short and long term horizons. The forecasting 

model details are discussed in Chapter 2. The output of the forecasting model is then used in a 

deterministic model which we refer to as the Deterministic Demand Response Program (DDRP). 

The DDRP is used in the context of our certainty equivalence approach that we describe in Chapter 

3. Figure 1.3 shows the solution approach. The first step consists of forecasting the electricity load 
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demand for both the short and long term horizons. In the short term, we forecast the week ahead 

hourly electricity demand while in the long term we determine number of day types across the 

months of the year. A day type is determined by the range in which the peak load of that day falls 

into and are discussed in Chapter 1. Each day type has a corresponding hourly load profile 

approximation. The output of the forecasting model consists of the hourly load profile for the short 

and long term forecasts. These load profiles are used as input in a Deterministic Demand Response 

Problem (DDRP) which represents the deterministic formulation of the problem’s dynamic 

program. The DDRP solution consists of the interruption schedule of all groups across the horizon. 

We pick from the DDRP solution the interruption schedule of the current day and update the 

number of hours and calls of the groups enrolled in the BIP and API programs respectively. This 

procedure is repeated on a daily basis. In the next chapter we present our forecasting model and 

test its performance.     
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Figure-1.1: Electricity Supply Chain 

 

(Source: http://eex.gov.au/) 

 

Figure-1.2: Electricity Supply Curve of the Texas Wholesale Market 

 

(Source: Solar Energy Association) 
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Figure-1.3: Solution Approach 
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CHAPTER 2 

Load Forecasting Model 

 

2.1-Intoduction 

Load forecasting plays an important role in the operation of power systems. In the short term, the 

hourly load forecasts are typically determined for one day to one week ahead. Load forecasts are 

used by power companies to establish operational plans for power stations and their generation 

units as well as security studies including security analysis and load management. Another 

application of short term load forecasting is in optimizing the operational state of a power system 

in terms of load flow, power management and interchange scheduling. Long term electric load 

forecasting corresponds to a forecast horizon from several months to several years ahead. It is 

critical for scheduling the construction of new generation facilities and in the development of 

transmission and distribution systems. In contrast to short term load forecasting, point forecasts 

are not very useful as they cannot be used to account and hedge for the financial risk due    demand. 

Instead, density forecasts are more helpful for long-term planning. Another difference between 

short-term and long-term demand forecasting is in their use of meteorological variables such as 

temperature and humidity which among the main determinants for demand. In the short term such 

weather information in available up to one week ahead but is unavailable for long-term forecasts. 

Therefore, a method to generate future temperatures is required.                                                                             

In this paper, we present a combined model for short and long term electricity demand forecasting 

and apply them to the Southern California Edison (SCE) electric utility company in Los Angeles. 
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The forecasts are used for managing Demand Response Programs (DRP) adopted by most utility 

companies. DRP are contracts through which utility companies incentivizes customers to shift 

their electric demand load from peak hours to off peak hours. DRP are divided into commercial 

and residential programs. Interruptible programs are the most common commercial DRP. Under 

such programs, customers receive monthly payments and in return the utility company has the 

right to instruct them to reduce their electric load to a pre-specified level that each firm chooses 

when it enrolls. The program is run on a yearly basis and there is a limit on the number and duration 

of interruptions. For the short term, the goal is to determine the hourly load forecast during peak 

demand hours. The peak daily hours consist of the hours of the day between 9:00 am and 9:00 pm. 

The short term load forecast allows a company to determine the load profile during peak hours in 

order to decide whether to dispatch the program on that day or postpone interruption. However, to 

decide whether to postpone or dispatch the interruptible program, a long term load forecast should 

be determined given the limit that exists on the number and duration of the interruptions. 

Therefore, a utility company could decide to interrupt its customer on a different day based on the 

predictions of the long term forecast. To address the above goals, a combined model for short and 

long term predictions has to be developed. For the short-term, we propose a nonparametric 

regression model for the day-ahead forecast of hourly load during peak hours. For the long term, 

we first propose multivariate and nonparametric regressions for determining the expected peak 

load as well as nonparametric regression methods for approximating the load profile in the long 

profile during peak hours for the long run. Further given the absence of temperature data in the 

long term, we simulate year ahead daily peak temperature realizations. Since interruptible DR 

programs are used when its enrolled customers are operating, we develop short and long term load 

forecasting models for weekdays since those are the days when most enrolled customers operate. 
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There has been a significant body of research on load forecasting. Alfares and Nazeeruddin (2001) 

provide a comprehensive review of this area. Short term load forecasting methods can be classified 

into two broad categories: parametric method and artificial intelligence based methods. Parametric 

methods formulate a mathematical or statistical model of load by examining qualitative 

relationships between the load and load affecting factors. Some examples of the models used are: 

polynomial functions, ARMA models, Fourier series and multiple linear regression. The model 

parameters are estimated from historical data and the accuracy of the model is verified by analysis 

of forecast errors. The model developed is often data dependent and hence cannot be applied to 

another utility company. Artificial intelligence based methods use artificial neural networks as 

load models. The main advantage of using neural networks lies in their abilities to learn the 

dependencies from the historical data without selecting an appropriate model. The methodology 

selected for short term load forecasting in this paper is based on nonparametric regression. Our 

short term forecasting model is related to Olinda, Chen and Charytoniuk (1998) who develop a 

short term load forecast using nonparametric regression. In their model, the load forecast is a 

conditional expectation of load given the time, weather conditions and other explanatory variables. 

The forecast is calculated from historical data as a local average of observed past loads with the 

size of the local neighborhood and the specific weights defined by a multivariate product kernel. 

Another related work is in the short term load forecasting model of Vilar, Cao and Aneiros (2012) 

who present a nonparametric a semiparametric model for next day forecasting of electricity 

demand and price for the electricity market in Spain. Also, in the realm of short term load 

forecasting and nonparametric methods, Hyndman and Fan (2012) propose a semiparametric 

additive model for short term load prediction from one to seven days ahead. They further propose 

a forecast interval prediction by a modified bootstrapping method. In this paper we adopt a 
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nonparametric regression for the day-ahead load forecast in which we forecast the electric load 

demand during peak hours. The load affecting variables consist of the previous day hourly load 

and the current day hourly temperature. With respect to short term load forecasting applied to 

California, Weron and Nowicka-Zagrajek (2002) develop a day ahead forecast for the system wide 

load in California. To this end they it an ARMA model after deseasonalizing the data and compare 

their forecasts to the ones obtained by CAISO.           

Despite their importance for system planning, medium and long term load forecast have not 

received as much attention as short term load forecasting. McSharry et al (2005), propose a model 

that provides probabilistic forecast for both the magnitude and timing of peak load for lead times 

of one year for a province of the Netherlands. The daily load forecast is determined by a 

multivariate linear regression. Weather forecasts are determined using a simulation technique 

referred to as the method of surrogates (M.Small, C.K.Tse. 2002) which provides realistic 

realizations of different weather variables such as temperature, wind speed and luminosity by 

replicating both the distribution and autocorrelation of each variable and preserving the cross-

correlation between those variables. Also, Hyndman and Fan (2010) provide a comprehensive 

methodology to forecast the density and weekly peak electricity demand up to ten years. The 

electric load demand is determined by a semi-parametric additive model where the half-hourly 

load is forecasted in function of the temperature, calendar effect as well as demographic and 

economic variables. Temperature simulation is done by a double season block bootstrap 

methodology where different temperature realizations are obtained by randomly selecting each 

block of temperature from a different year. Another notable work in long term load prediction is 

the model proposed by Morita, Kase, Tamur and Iwamoto (1996). In their paper an interval 

prediction model of peak annual electric demand is developed using a grey dynamic model. 
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Relative to these papers, our work is different in the following ways. First, we develop linear and 

semi parametric regressions in which the peak load is determined for a given peak temperature 

taking also into account calendar effects. Further, we approximate for a given peak load the long 

term load profile across the daily peak hours by nonparametric regression. In the long-term, the 

daily peak temperature is the only load affecting that we use for determining the peak load. Since 

temperature data is not available in the long term, we simulate temperature realizations by 

modeling the deterministic component of the temperature by a sine model and its stochastic 

component by modeling the residuals as an AR process. Also, to the best of our knowledge this 

work is the first to propose a combined short and long term forecasting model for the management 

of demand response programs. As previously mentioned, for the management of such contracts 

next day load forecasting is not enough as the utility company had a limited number of 

interruptions. Hence, long term forecast is also needed in order to decide whether it is optimal for 

a utility company to interrupt its customers during the same day or delay interruption.     

The remainder of this chapter is organized as follows. In Section 2 we propose a day-ahead hourly 

load forecast. In Section 3 we determine the long term peak long and provide approximations for 

the hourly load profile. In Section 4 we develop a simulation model for daily peak temperatures 

and use the realizations to determine the probability distribution of peak loads. Finally, we 

summarize the main results in Section 5. 

 

2.2-Short Term Load Forecasting Model 

2.2.1-Hourly Load Forecasting 

In this section, we develop a day-ahead electricity demand forecasting model based on 

nonparametric regression. Our model can be described by regressing the scalar dependent variable 

𝑦𝑦 = 𝐿𝐿𝑑𝑑,ℎ which represents the electric load on day 𝑑𝑑 during peak hour ℎ in Gigawatts (GW) on a 



15 
 

regressor vector 𝑥𝑥 = �𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ�, where 𝐿𝐿𝑑𝑑−1,ℎ represents the electric load on day 𝑑𝑑 − 1 during 

peak hourℎ, and 𝑇𝑇𝑑𝑑,ℎ  the hourly temperature in Fahrenheit during peak hour ℎ on the current day. 

The daily peak hours are from 9am to 9pm. The regression model is: 

𝐿𝐿𝑑𝑑,ℎ = 𝑚𝑚�𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ� + 𝜖𝜖𝑑𝑑,ℎ, 𝑖𝑖 = 1, …𝑁𝑁, ℎ = 1, …𝐻𝐻 (1)                                        

Hence, we develop for each hour ℎ a nonparametric regression equation where the electric demand 

load is determined given the previous day load and current day hourly temperature at hour ℎ. Hours 

9:00 am through 9:00pm are denoted by hours 1 through 13. 

The load model in (1) can be described in terms of a multivariate probability density 

function 𝑓𝑓(𝐿𝐿𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ). A pdf estimator can be obtained from historical load and 

temperature measurements by means of nonparametric density estimation. This is achieved by 

estimating the entire density function directly from the sample. We compute the nonparametric 

expectation of next day’s hourly load using a dataset of daily measurement of hourly loads and 

temperatures. The hourly electricity load measurements represent actual hourly electricity demand 

for the region served by the Southern California Edison (SCE) utility company. The electric load 

measurements are obtained from the California Independent System Operator (CAISO) website. 

On the other hand, the hourly temperatures are collected from the National Climatic Data Center. 

Given that the electricity load demand data is at the aggregate level, the hourly temperature is 

taken as the weighted average of the counties of Los Angeles and the combined counties of Orange 

and Riverside, with weights of 0.65 and 0.35 respectively. The temperature in Riverside is 

considered as the representative temperature of both Riverside and Orange counties. The weights 

correspond to ratio of each county’s population over the total population of the three counties. The 

choice of these three counties was due to the fact that they are the most populated counties in the 

region served by SCE.      
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 Conceptually, if there are n sets observations 𝑜𝑜𝑖𝑖 =  (𝐿𝐿𝑖𝑖,ℎ, 𝐿𝐿′𝑖𝑖,ℎ,𝑇𝑇𝑖𝑖,ℎ). 𝑖𝑖 = 1, …𝑛𝑛, where 𝐿𝐿′𝑖𝑖,ℎ is the 

previous day hourly load for observation 𝑖𝑖 respectively, the estimated density function 

𝑓𝑓(𝐿𝐿𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ) can be calculated as follows: 

𝑓𝑓�𝐿𝐿𝑑𝑑,ℎ ,𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ� 

 

=
∑ �𝑘𝑘 �

𝐿𝐿𝑑𝑑,ℎ − 𝐿𝐿𝑖𝑖,ℎ
𝑏𝑏𝐿𝐿

� 𝑘𝑘 �
𝐿𝐿𝑑𝑑−1,ℎ − 𝐿𝐿′𝑖𝑖,ℎ

𝑏𝑏𝐿𝐿′
� 𝑘𝑘 �

𝑇𝑇𝑑𝑑,ℎ − 𝑇𝑇𝑖𝑖,ℎ
𝑏𝑏𝑇𝑇

��𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿′𝑏𝑏𝑇𝑇
 (2) 

 

Where, 𝑘𝑘(. ) is a Kernel functions and 𝑏𝑏𝐿𝐿 ,  𝑏𝑏𝐿𝐿′  and 𝑏𝑏𝑇𝑇 are the bandwidths which represent 

smoothing parameters corresponding to the current day hourly load, the previous day hourly load 

and the current day hourly temperature respectively. 

A Kernel function 𝑘𝑘(.) is a function that satisfies the following: 𝑘𝑘(𝑢𝑢) = 𝑘𝑘(−𝑢𝑢),∫|𝑘𝑘(𝑢𝑢)|𝑑𝑑𝑑𝑑 <

𝑖𝑖𝑖𝑖𝑖𝑖,∫𝑢𝑢𝑢𝑢(𝑢𝑢)𝑑𝑑𝑑𝑑 = 0,∫𝑘𝑘(𝑢𝑢)𝑑𝑑𝑑𝑑 = 1 and 𝑘𝑘(𝑢𝑢) ≥ 0.  

Using the normal kernel, (2) will have the following form: 

 

𝑓𝑓�𝐿𝐿𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ� =

∑ �𝑒𝑒𝑒𝑒𝑒𝑒 − �
�𝐿𝐿𝑑𝑑,ℎ − 𝐿𝐿𝑖𝑖,ℎ�

2

𝑏𝑏𝐿𝐿2
+
�𝐿𝐿𝑑𝑑−1,ℎ − 𝐿𝐿′𝑖𝑖,ℎ�

2

𝑏𝑏𝐿𝐿′2
+
�𝑇𝑇𝑑𝑑,ℎ − 𝑇𝑇𝑖𝑖,ℎ�

2

𝑏𝑏𝑇𝑇2
��𝑛𝑛

𝑖𝑖=1

(2𝜋𝜋)5/2𝑛𝑛𝑏𝑏𝐿𝐿𝑏𝑏𝐿𝐿′𝑏𝑏𝑇𝑇
 (3) 

 

Given the pdf estimator 𝑓𝑓�𝐿𝐿𝑑𝑑,ℎ,𝒙𝒙�, with 𝒙𝒙 = (𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ), the day-ahead peak load can be 

determined as the conditional expectation of the load 𝐿𝐿𝑑𝑑,ℎ given the regressor vector 𝒙𝒙.   

𝐸𝐸(𝐿𝐿|𝒙𝒙) =
∫𝐿𝐿 𝑓𝑓(𝐿𝐿,𝒙𝒙)𝑑𝑑𝑑𝑑
∫𝑓𝑓(𝐿𝐿,𝒙𝒙)𝑑𝑑𝑑𝑑

(4) 
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Using the estimated pdf, the equation above can be calculated from the original historical data 

using the following equation: 

𝐸𝐸�(𝐿𝐿𝑑𝑑,ℎ|𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ) =
∑ �𝐿𝐿𝑖𝑖,ℎ𝑘𝑘 �

𝐿𝐿𝑑𝑑−1,ℎ − 𝐿𝐿′𝑖𝑖,ℎ
𝑏𝑏𝐿𝐿

� 𝑘𝑘 �
𝑇𝑇𝑑𝑑,ℎ − 𝑇𝑇𝑖𝑖,ℎ

𝑏𝑏𝑇𝑇
��𝑛𝑛

𝑖𝑖=1

∑ 𝑘𝑘 �
𝐿𝐿𝑑𝑑−1,ℎ − 𝐿𝐿′𝑖𝑖,ℎ

𝑏𝑏𝐿𝐿
� 𝑘𝑘 �

𝑇𝑇𝑑𝑑,ℎ − 𝑇𝑇𝑖𝑖,ℎ
𝑏𝑏𝑇𝑇

� 𝑛𝑛
𝑖𝑖=1

(5) 

 

 As seen from the equation (5) above, the hourly load forecast 𝐿𝐿𝑑𝑑,ℎ is a local weighted average of 

observed past loads on the neighborhood of a given vector of observed previous day hourly loads 

and same day hourly temperature and hour of the day. The closer (farther) this vector is from the 

vector our forecast is computed against, the higher (lower) the weight on the observed load. Hence, 

provided the smoothing parameters 𝑏𝑏 = (𝑏𝑏𝐿𝐿 ,𝑏𝑏𝐿𝐿′′𝑏𝑏𝑇𝑇) are available, the forecasted load can be 

directly calculated from past observations. The expected load conditional on a given temperature 

and previous hourly load is referred to as the Kernel Regression Estimator. 

For the normal Kernel, the above equation takes the following form: 

𝐸𝐸�(𝐿𝐿𝑑𝑑,ℎ|𝐿𝐿𝑑𝑑−1,ℎ,𝑇𝑇𝑑𝑑,ℎ) =

∑ �𝐿𝐿𝑖𝑖,ℎ exp�−
�𝐿𝐿𝑑𝑑−1,ℎ − 𝐿𝐿′𝑖𝑖,ℎ�

2

 2𝑏𝑏𝐿𝐿′2
 −

�𝑇𝑇𝑑𝑑,ℎ − 𝑇𝑇𝑖𝑖,ℎ�
2

 2𝑏𝑏𝑇𝑇2
��𝑛𝑛

𝑖𝑖=1

∑ �exp�−
�𝐿𝐿𝑑𝑑−1,ℎ − 𝐿𝐿′𝑖𝑖,ℎ�

2

2𝑏𝑏𝐿𝐿′2
−
�𝑇𝑇𝑑𝑑,ℎ − 𝑇𝑇𝑖𝑖,ℎ�

2

2𝑏𝑏𝑇𝑇2
��𝑛𝑛

𝑖𝑖=1

(6) 

 

The smoothing parameters can be selected by applying the cross validation technique. We denote 

by 𝐿𝐿�−𝑗𝑗(𝑥𝑥) the estimate of the load for day 𝑗𝑗 based on the samples 𝑥𝑥𝑖𝑖 ,(𝑖𝑖 = 1, … , 𝑛𝑛) without 

observation 𝑗𝑗. As a result, the optimal bandwidths (𝑏𝑏∗, 𝜆𝜆∗) are obtained by solving the following: 

𝑏𝑏∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
1
𝑛𝑛
��𝐿𝐿𝑖𝑖 − 𝐿𝐿�−𝑗𝑗(𝑥𝑥𝑖𝑖)�

2
𝑛𝑛

𝑖𝑖=1

� (7) 
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Where, 𝐿𝐿�−𝑗𝑗(𝑥𝑥) = 
∑ 𝐿𝐿𝑖𝑖𝐾𝐾�

𝑥𝑥−𝑥𝑥𝑖𝑖
𝑏𝑏 �𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗

∑ 𝐾𝐾�
𝑥𝑥−𝑥𝑥𝑖𝑖
𝑏𝑏 �𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑗𝑗
  , K (.) is the kernel product which consists of the product of 

kernel functions and x the vector of regressors. The optimal smoothing parameters are summarized 

in Table-1.1. 

To account for seasonality, we separate our dataset into two datasets, one for the summer and one 

for the winter season. The summer season extends from the months of June until September while 

the winter season extends from October until May. For the winter season, the data set was further 

divided into two sets to account for months that fall during the daylight saving period and those 

that do not. The smoothing parameters were computed using the npregbw package using the R 

software. We test the prediction accuracy of our proposed model on two out of sample data sets, 

one for each of the winter and summer seasons for the year 2014. The accuracy of the forecasts 

was measured by computing the Mean Absolute Percentage Error (MAPE), which can be 

expressed as MAPE = 100%
𝑁𝑁

*∑ �𝐿𝐿
�(𝑇𝑇𝑖𝑖)−𝐿𝐿(𝑇𝑇𝑖𝑖)

𝐿𝐿(𝑇𝑇𝑖𝑖)
�𝑁𝑁

𝑖𝑖=1  , where 𝑁𝑁 is the sample size. The MAPE results for 

both tests were measured to be 3.07% for the summer season and 2.56% for the winter season.  

2.2.2-Analysis of the residuals 

An analysis of the errors from the insample data shows evidence of serial correlation. The 

autocorrelation and partial correlation for the day ahead summer forecast are respectively shown 

in Figure-1.1. The autocorrelation plot reveals the evidence of exponenential decay or a damped 

sine wave wheresas the partial correlatio plot has a large spike at lag 1 and can be considered as 

nonsignificant afterwards. The behavior suggest an AR(1) modeling for the errors. The same 

behavior is also detected for the  winter dataset and are shown in Figure-2.2. 
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Given the previous two observations, the residual can be described by a simple autoregeressive 

process of order 1 AR(1). As a result, 

𝑒𝑒𝑑𝑑(ℎ + 1) =  𝜙𝜙𝑒𝑒𝑑𝑑(ℎ)  (8) 

 where 𝑒𝑒𝑑𝑑(ℎ) = 𝐿𝐿𝑑𝑑,ℎ − 𝐿𝐿�𝑑𝑑,ℎ is the forecasting residual on day 𝑑𝑑 during peak hour ℎ and 0 < 𝜙𝜙 <

1 is a parameter estimated from past values of 𝑒𝑒. If there are 𝑛𝑛 past errors available then 𝜙𝜙 is the 

least squares solution to the system of 𝑛𝑛 − 1 linear equations having the form (8). As a result, a 

load forecast made at time 𝑡𝑡 for a time lead 𝑙𝑙 can be calculated as: 

𝐿𝐿�𝑑𝑑,ℎ(𝑒𝑒) =  𝐿𝐿�𝑑𝑑,ℎ + 𝑒𝑒𝑑𝑑(𝑡𝑡)𝜙𝜙𝑙𝑙  (9) 

The resulting coefficients 𝜙𝜙 where equal to 0.88 and 0.87 for the summer and winter seasom 

respectively. The same observation was also found in the nonparametric regession model 

developed by Olinda et. al (1998). The second term in the above equation corrects the forecast for 

small time leads based on the recent error. As a result, we use the forecasting error on the same 

day for the hour between 9:00 am and 9:00 pm and consequently correct the forcasted update for 

the daily peak hours from 9:am to 9:00 pm. The resulting out of sample MAPE was reduced to 

2.56% and 2.18% for the summer and winter seasons respectively. Figures 2.3 and 2.4 show a 

sample of the presidicted days for both the summer  and winter seasons respectively. From the plot 

forecasts we notice the difference in the hourly demand pattern which consistent in for the summer 

and winter seasons. Another difference between the two figures is the timing of the peak load 

occurance. For the summer season, the peak load occurs between the hours of 3 and 5pm whereras 

for the winter season it occurs later in the day between the hours of 6 and 9 pm.           

 In comparison to the CAISO forecats, the day ahead summer season prediction for CAISO had a 

MAPE around 2.56% ,while the winter season dayd ahead forecasts had an MAPE of 1.85%. 



20 
 

Hence our suggesred model performs relatively well in comparison to the day ahead prediction of 

CAISO. In fact, CAISO disposes of more disaggreagated data which consists of inland and coastal 

electricity demand as well industrial electricity consumption. In contrast the data we used consists 

of aggregate electricity demand data. As a result, we expect our forecast to further improve if more 

disaggregated data was at our disposal. 

2.2.3-Asymptotic Distribution 

After determining non-parametrically the expected electric demand load during day 𝑑𝑑, at peak 

hour ℎ, 𝐿𝐿𝑑𝑑,ℎ ,we determine the asymptotic distribution of our estimates in order to obtain a 

confidence interval. It can be shown that for values of hourly temperature 𝑇𝑇𝑑𝑑,ℎ and previous day 

load 𝐿𝐿𝑑𝑑−1,ℎ, we have that   

√𝑁𝑁ℎ�𝑚𝑚��𝑇𝑇𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ� − 𝑚𝑚�𝑇𝑇𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ� − 𝑏𝑏(𝑇𝑇𝑑𝑑,ℎ,𝐿𝐿𝑑𝑑−1,ℎ)�

𝑑𝑑
→ 𝑁𝑁 �0,

𝜎𝜎𝜖𝜖2

𝑓𝑓(𝑇𝑇𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ)
�𝐾𝐾(𝑧𝑧)2𝑑𝑑𝑑𝑑� (10) 

Where 𝑚𝑚��𝑇𝑇𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ� = 𝐸𝐸�(𝐿𝐿𝑑𝑑,ℎ|𝑇𝑇𝑑𝑑,ℎ,𝐿𝐿𝑑𝑑−1,ℎ) . 

If the bias 𝑏𝑏(𝑇𝑇𝑖𝑖) is ignored, the above limiting distribution yields the following 95% confidence 

interval for 𝑚𝑚(𝑇𝑇𝑖𝑖): 

𝑚𝑚��𝑇𝑇𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ� ± 1.96�
1

𝑁𝑁ℎ𝑇𝑇ℎ𝐿𝐿
𝜎𝜎�𝜖𝜖2

𝑓𝑓(𝑇𝑇𝑑𝑑,ℎ, 𝐿𝐿𝑑𝑑−1,ℎ)
�𝐾𝐾(𝑧𝑧)2𝑑𝑑𝑑𝑑  (11) 

Where:  

𝑓𝑓(𝑇𝑇𝑖𝑖, 𝐿𝐿𝑖𝑖) = 1
𝑁𝑁ℎ𝑇𝑇ℎ𝐿𝐿

∑ 𝑘𝑘(𝑇𝑇𝑗𝑗−𝑇𝑇𝑖𝑖
ℎ𝑇𝑇

)𝑁𝑁
𝑗𝑗=1 𝑘𝑘(𝐿𝐿𝑗𝑗−𝐿𝐿𝑖𝑖

ℎ𝐿𝐿
) and 𝜎𝜎�𝜖𝜖2 = 1

𝑁𝑁
∑ �𝐿𝐿𝑗𝑗 − 𝑚𝑚��𝑇𝑇𝑗𝑗, 𝐿𝐿𝑗𝑗��

2
𝑁𝑁
𝑗𝑗=1 ∗

𝐾𝐾(
𝑇𝑇𝑗𝑗−𝑇𝑇𝑖𝑖
ℎ𝑇𝑇

)𝐾𝐾(
𝐿𝐿𝑗𝑗−𝐿𝐿𝑖𝑖
ℎ𝐿𝐿

)

∑ 𝐾𝐾(
𝑇𝑇𝑗𝑗−𝑇𝑇𝑖𝑖
ℎ𝑇𝑇

)𝐾𝐾(
𝐿𝐿𝑗𝑗−𝐿𝐿𝑖𝑖
ℎ𝐿𝐿

)𝑁𝑁
𝑗𝑗=1

 

is the estimated error variance. 
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2.2.4-Benchmarking the model with an Artificial Neural Network 

Next, we benchmark our proposed forecasting model with an artificial neural network (ANN). The 

artificial neural network is among the most used models in machine learning and is a flexible 

nonlinear regression model. An illustration of a single layer neural network is shown in Figure-

2.5. The hidden units are linear combinations of the predictors that have been transformed by a 

sigmoidal function. The output is modeled by a linear combination of the hidden units. To this 

end, we fit for each hour of the day, a model averaged artificial neural network which is an 

aggregation of several neural networks where the day ahead electric load demand at a given hour 

is predicted given the previous day load and same day temperature (i.e. the same vector regressor). 

For each hour, the averaged artificial neural network models were fit using hourly electricity load 

and temperature measurements for the years 2009 through 2013 and were tested on the out of 

sample data of 2014. There are two tuning parameters: the number of layers and the weigh decay. 

The latter is a penalty on the regression coefficients in order to mitigate overfitting. For more 

details, we refer the reader to Khun and Johnson (2013). 

2.3-Long Term Load Forecasting Model 

In this section, we develop long term load forecasting models. The forecast is done in two steps. 

In the first step, we forecast the peak load then we approximate the load profile for each hour of 

the day from 9am to 9pm given the previously estimated load. 

2.3.1- Peak Load Forecast 

To estimate the relationship between peak demand and peak daily temperature we use a dataset of 

electric demand load from March 2009 to December 2013. The data consists of hourly loads for 

all the area covered by SCE. The first part of the long term forecasting analysis is to find a relation 
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between the peak load and peak temperature. Figure-2.6 shows a plot of daily peak load profile 

from January 2009 until December 2013.   

The time series plot reveals a strong seasonality in the peak load were the peak load values in the 

summer and higher and more variable than the peak load values that occur during the winter 

season. Therefore, we divide the data in two sets one for each season and establish a relation 

between peak load and peak temperature. Figures 2.7 and 2.8 show the relation between the peak 

load and peak temperature for the summer and winter seasons. The peak temperature is the 

weighted peak temperature of the Los Angeles county and both counties of Orange and Riverside.  

We notice the peak load and peak temperature exhibits a linear relationship for the summer season 

and a nonlinear relationship for the winter season. 

Motivated by the linear relation between the peak load and peak temperature, the most suitable 

model for peak load prediction is a multivariate regression. The best regression model was found 

as follows: 

𝐿𝐿𝑑𝑑 = 𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑑𝑑 + 𝜇𝜇1𝐽𝐽𝐽𝐽𝐽𝐽1 + 𝜇𝜇2𝐽𝐽𝐽𝐽𝐽𝐽2 + 𝜇𝜇3𝐴𝐴𝐴𝐴𝐴𝐴3 + 𝜖𝜖𝑑𝑑  (12) 

Where, 𝐿𝐿𝑑𝑑 and 𝑇𝑇𝑑𝑑 are the peak load and peak temperature on day 𝑑𝑑, and 𝑀𝑀1, 𝑀𝑀2 and  𝑀𝑀3 binary 

variables representing the months of June, July and August respectively. The 𝑅𝑅2 of the regression 

was equal to 0.87. The regression model was tested on the out of sample data and both generated 

a MAPE of 3.5%. The results of the regression are summarized in Table-2.3.  

Given the nonlinear relation between the peak load and peak temperature for the winter season, 

we develop a semiparametric model for peak load prediction. The proposed model is as follows:  
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𝐿𝐿𝑑𝑑 = 𝑔𝑔(𝑇𝑇𝑑𝑑) + ∑ 𝛼𝛼𝑖𝑖𝑀𝑀𝑖𝑖 + ∑ 𝛽𝛽𝑗𝑗𝐷𝐷𝑗𝑗4
𝑗𝑗=1

7
𝑖𝑖=1 + 𝜖𝜖𝑖𝑖 , (13)              

Where, 𝐿𝐿𝑑𝑑 is the peak load during day 𝑑𝑑,𝑚𝑚(𝑇𝑇𝑑𝑑) an unknown function for the temperature effect 

on the load, 𝑀𝑀𝑖𝑖(𝑖𝑖 = 1, . .7) are dummy variables for the months of January through May and 

October and November respectively with the month of December considered as the reference 

month. Finally, 𝐷𝐷𝑗𝑗(𝑗𝑗 = 1, . . ,4) are dummy variables for the weekdays Monday through Thursday 

respectively with Friday taken as the reference weekday.    

The above semiparametric model is a partially linear model such that the conditional mean is a 

composed of a usual regression function plus an unspecified linear component. Therefore: 

𝐸𝐸(𝐿𝐿𝑑𝑑|𝑇𝑇𝑑𝑑) = 𝑔𝑔(𝑇𝑇𝑑𝑑) + �𝛼𝛼𝑖𝑖𝐸𝐸[𝑀𝑀𝑖𝑖] + �𝛽𝛽𝑗𝑗𝐸𝐸[𝐷𝐷𝑗𝑗]
4

𝑗𝑗=1

7

𝑖𝑖=1

(14) 

Following the methodology proposed by Robinson (1988), we find consistent estimators for 

𝛼𝛼𝑖𝑖(𝑖𝑖 = 1, .7),𝛽𝛽𝑗𝑗(𝑗𝑗 = 1, … 4) and 𝑔𝑔(𝑇𝑇𝑑𝑑). Given that 𝑀𝑀𝑖𝑖and 𝐷𝐷𝑗𝑗  are dummy variable, 𝐸𝐸[𝑀𝑀𝑖𝑖] and  

𝐸𝐸[𝐷𝐷𝑗𝑗] are computed as the proportion of months and days equal to  𝑀𝑀𝑖𝑖 and 𝐷𝐷𝑗𝑗  respectively. 

   Subtracting equations (13) and (14) yields: 

𝐿𝐿𝑑𝑑  −  𝐸𝐸(𝐿𝐿𝑑𝑑|𝑇𝑇𝑑𝑑) = �𝛼𝛼𝑖𝑖(𝑀𝑀𝑖𝑖 − 𝐸𝐸[𝑀𝑀𝑖𝑖]) + �𝛽𝛽𝑗𝑗(𝐷𝐷𝑗𝑗 − 𝐸𝐸�𝐷𝐷𝑗𝑗�)
4

𝑗𝑗=1

7

𝑖𝑖=1

 (15) 

Following the same methodology as is Section 2, we can express the expected peak load for a 

given peak temperature for the normal Kernel as: 

𝐸𝐸(𝐿𝐿𝑑𝑑|𝑇𝑇𝑑𝑑) =
∑ �𝐿𝐿𝑖𝑖 exp�− (𝑇𝑇𝑑𝑑 − 𝑇𝑇𝑖𝑖)2

2ℎ𝑇𝑇
2 ��𝑛𝑛

𝑖𝑖=1

∑ exp �− (𝑇𝑇𝑑𝑑 − 𝑇𝑇𝑖𝑖)2
2ℎ𝑇𝑇

2 �𝑛𝑛
𝑖𝑖=1

(16) 
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Where ℎ𝑇𝑇 is the smoothing parameter for the temperature variable. The optimal smoothing 

parameter is determined by cross validation and was determined to be equal to 0.98. 

Replacing the conditional moment  𝐸𝐸(𝐿𝐿𝑑𝑑|𝑇𝑇𝑑𝑑) by its nonparametric estimators, we can therefore 

estimate the coefficients 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗  by OLS regression provided that 𝐸𝐸(𝜖𝜖𝑡𝑡|ℱ𝑡𝑡−1) = 0, where ℱ𝑡𝑡−1 

has the interpretation of the information available at time 𝑡𝑡 − 1 . The OLS results are summarized 

in Table-2.4 below. From the table below, the signs of the coefficients seem intuitive, the calendar 

effect for each of the winter season months except for the month of May decreases the peak load. 

Further, the calendar effects of the weekdays increase the peak load relatively to Friday with 

Monday’s effect being the smallest one probably due to the fact that Monday is the day the follows 

the weekend.     

Since 𝑔𝑔(𝑇𝑇𝑑𝑑) = 𝐸𝐸(𝐿𝐿𝑑𝑑|𝑇𝑇𝑑𝑑) − ∑ 𝛼𝛼𝑖𝑖𝐸𝐸[𝑀𝑀𝑖𝑖] + ∑ 𝛽𝛽𝑗𝑗𝐸𝐸[𝐷𝐷𝑗𝑗]4
𝑗𝑗=1

7
𝑖𝑖=1  it can consistently be estimated by  

𝑔𝑔�(𝑇𝑇𝑖𝑖) = 𝐸𝐸(𝐿𝐿𝑑𝑑|𝑇𝑇𝑑𝑑) −�𝛼𝛼�𝑖𝑖𝐸𝐸[𝑀𝑀𝑖𝑖] + �𝛽̂𝛽𝑗𝑗𝐸𝐸[𝐷𝐷𝑗𝑗]
4

𝑗𝑗=1

7

𝑖𝑖=1

(17) 

We test our method on an out of sample data set consisting of daily peak temperatures for the 

summer of 2011. The resulting MAPE was equal to 3.3%. 

2.3.2- Long Term Hourly Load Profile Forecast 

To estimate the long term load profile, we determine the expected hourly load for a given peak 

load. The rationale behind our analysis is from the strong correlation between the loads at each 

hour and the peak load. As shown in Table-2.5, this correlation is precisely very strong for the 

summer season while the correlation values for the winter season is still considerable but to a lesser 

extent than the ones for the summer season. Therefore, the peak load is a strong predictor for the 

hourly electric demand load. 

 



25 
 

𝐿𝐿ℎ = 𝑚𝑚�𝐿𝐿𝑝𝑝� + 𝜖𝜖ℎ ,ℎ = 1, …𝐻𝐻 (18)                         

In the above model, we estimate nonparametrically the hourly load 𝐿𝐿ℎ for a given estimated peak 

load 𝐿𝐿𝑝𝑝. Using the same approach as in Section 2, we can express hourly load for as: 

𝐸𝐸(𝐿𝐿ℎ|𝐿𝐿𝑝𝑝) =
∑ �𝐿𝐿𝑖𝑖 exp�−

�𝐿𝐿𝑝𝑝−𝐿𝐿𝑝𝑝,𝑖𝑖�
2

2ℎ2 ��𝑛𝑛
𝑖𝑖=1

∑ exp�−
�𝐿𝐿𝑝𝑝−𝐿𝐿𝑝𝑝.𝑖𝑖�

2

2ℎ2 �𝑛𝑛
𝑖𝑖=1

  (19) 

Where, 𝐿𝐿𝑖𝑖 is the hourly load of observation 𝑖𝑖 and 𝐿𝐿𝑝𝑝,𝑖𝑖 is the peak load corresponding to observation 

𝑖𝑖 with ℎ being the bandwidth estimated by cross validation. Similar to our approach in Section 2 

the bandwidth values are estimated for each hour and across the summer and winter seasons. After 

estimating the peak load for the out of sample data of 2014, we estimate the hourly peak loads 

using equation (19). The MAPE for the winter and summer season where respectively equal to 

4.6% and 3.9% respectively compared to the 3.2% and 6.6% seven days ahead MAPE forecast of 

the CAISO. Therefore, although inferior to the CAISO forecasts during the winter season, our 

forecasts are superior to those of the CAISO for the summer season. The discrepancy for the winter 

season is probably due to the low correlation of the between the hourly loads and peak loads in 

comparison to the summer season. The forecasting results are summarized in Table-2.6. 

2.4-Temperature Modeling and Peak Load Probability Distribution 

2.4.1-Temperature Modeling 

Given values for temperatures, it is possible to forecast for one year ahead the expected peak load. 

However, values for peak daily temperature are unknown in the long run and therefore must be 

simulated using historical records. Therefore, using historical daily peak temperatures for the years 

2011 through 2013, we simulate the daily peak temperatures by modeling it as a sum of a 
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deterministic component and a stochastic component with a seasonal AR model. Figure-2.9 shows 

the time series plot of the daily peak temperature for the time period from January 2011 to 

December 2013 for the counties of Los Angeles and Riverside region. 

Form the observed periodicities in the data, the deterministic or expected temperature component 

for both counties is modeled with a sum of sines model. The sine model has the following form: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐷𝐷) = 𝛼𝛼1 sin(𝛽𝛽1 ∗ 𝐷𝐷 + 𝛿𝛿1) + 𝛼𝛼2 sin(𝛽𝛽2 ∗ 𝐷𝐷 + 𝛿𝛿2) (20) 

Where, 𝐷𝐷 is the day number in the dataset. After computing the mean of the temperature time 

series, we subtract it from each point in the temperature dataset and fit the resulting data to the sine 

model. The estimates of the coefficients are summarized in Table-2.7. 

We visualize the validity of the resulting model we plot the predicted daily peak temperatures with 

their actual observations. The predicted peak temperature on a given day 𝑑𝑑, 𝑇𝑇�(𝑑𝑑) is equal to 

𝑇𝑇�(𝑑𝑑) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑑𝑑) + 𝑚𝑚 (21) 

Where 𝑚𝑚 is the mean peak temperature calculated form the data. The absolute error was computed 

to be equal to 5.3 and 6.8 degrees Fahrenheit for the counties of Los Angeles and Riverside 

respectively. The plots of the actual temperature and deterministic temperature component are 

shown in Figure-2.10. 

To analyze the serial correlation of the residuals, we plot the serial and partial correlation of the 

residuals as shown in Figure-2.11. One of the features apparent in the below plot is that the 

residuals are serially correlated. This is expected as above average temperatures are likely to follow 

above average temperatures. 
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The autocorrelation function is decaying exponentially and the partial autocorrelation function has 

values close to 0 for lags beyond 2 days. This suggests that the residuals can be described as a 

simple autoregressive process of order 1, AR (2): 

𝑒𝑒(𝑑𝑑 + 1) = 𝛼𝛼1𝑒𝑒(𝑑𝑑) + 𝛼𝛼2𝑒𝑒(𝑑𝑑 − 1) + 𝜀𝜀 (22) 

 where  𝑒𝑒(𝑑𝑑) = 𝑇𝑇�(𝑑𝑑) − 𝑇𝑇(𝑑𝑑) , 𝑇𝑇(𝑑𝑑) is the actual load during on day 𝑑𝑑 and 𝑇𝑇�(𝑑𝑑) is the peak 

temperature predicted obtained from equation (15), 0 < 𝛼𝛼𝑖𝑖 < 1, ( 𝑖𝑖 = 1 ,2) are parameters 

estimated from past values of 𝑒𝑒 by least-squares solutions using equation (22) and 𝜀𝜀 are the 

residuals of the regression equation . The estimated value of 𝛼𝛼1 and 𝛼𝛼2 for Los Angeles and 

Riverside are respectively equal to (0.88, -0.26) and (0.94, -0.31). 

As shown from Figure-2.12 the residuals 𝜀𝜀 from the correlation above are serially uncorrelated. 

Since the residuals are mostly uncorrelated, they can be modeled as independent draws from an 

appropriate distribution. A t-location-scale distribution can be shown to provide a good fit. 

2.4.2-Peak Load Probability Distribution 

Using the generated simulations, we can determine the probability distribution of the peak loads. 

To this end, we nonparametrically construct the density of the peak load by simulating 1000 

temperature paths and estimating subsequently the peak loads using the multivariate and 

semiparametric regressions for the summer and winter seasons respectively. The kernel density 

estimator for a peak load 𝐿𝐿   is: 

𝑓𝑓(𝐿𝐿) = 1
𝑁𝑁ℎ
∑ 𝑘𝑘(𝐿𝐿𝑖𝑖−𝐿𝐿

ℎ
𝑁𝑁
𝑖𝑖=1 ) (23) 
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Where 𝑘𝑘(𝐿𝐿𝑖𝑖−𝐿𝐿
ℎ

) is the normal kernel and ℎ is the smoothing parameter. For the normal Kernel, 

Scott’s plug-in estimate is ℎ = 𝑁𝑁−1/(5)𝑠𝑠, where s is the sample standard deviation of the simulated 

peak loads and 𝑁𝑁 the size of the simulated peak loads sample. Using equation (23) we can therefore 

estimate the probability distribution of the peak load.  

Figure-2.14 illustrates the resulting peak load probability distribution. We notice from the figure 

below how narrow the density distribution of the peak load is for load values less than 1.5 GW and 

the wider density for loads above 1.5 GW. This observation corroborates our data values where 

for the winter season most daily peak loads fall within the range of 1.2 and 1.5 GW whereas for 

the summer season they fall within a wider range of 1.5 and 2.2 GW. Given that temperature values 

beyond a week are not accurate, the demand at a time horizon exceeding a week is unknown and 

therefore we replace the hourly electricity load demand by an expected value. The expected value 

for the hourly load is computed for every month by day type. We define 9 day types depending on 

the range in which the peak load of a given day falls into as shown in Table-2.8. Using the 

simulated temperature paths we compute the peak load for each day and construct for each month 

the empirical distribution of the peak load from which we determine the probability distribution of 

day types. The probability distribution of day types is shown in Table-2.9. We then 

nonparametrically estimate the expected load profile per day type for the corresponding day load 

of that day type. The peak load consists of the mean of peak load range in which the day type falls 

into. The load profile approximations are shown in Table-2.10. 

2.5-Conclusion 

In this paper, we proposed a combined load forecasting model for demand response programs. We 

presented forecasting methods for both short and long term load forecasting. In the short term, we 
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first determine the day-ahead hourly electricity demand and then update our forecast at the start of 

a given day. We model the short term load forecasting by a nonparametric regression. In 

comparison to the forecasts of the CAISO, it turned out that our short term forecasting model 

performs quite well despite of the larger amount of information at the disposal of CAISO. For the 

long run, we first estimate the peak load and then estimate the long term hourly demand by 

nonparametric regression with the predicted peak load as regressor. Peak temperature and 

calendars effects are used as regressors to determine the peak load. For the summer season, a 

multivariate regression model was used whereas a semiparametric regression model was used for 

the winter season. Our results showed that for the summer season we outperform CAISO’s long 

term load forecasting results. Finally, we propose a new simulation methodology to generate 

potential future temperature paths from which we determine the peak load density by kernel 

density estimation.  

There exist some areas of possible future improvement. For the short term load regression our 

mode was calibrated using data from the period of 2009 up to 2013. It is reasonable to expect that 

economic conditions will not remain constant. As a result, it would be desirable to take into account 

such changes in both the short and long term load forecasting models. Another area for 

development is to increase the number of temperature sites. For Los Angeles’ geographically 

concentrated population two temperature sites may be enough but for other regions more 

temperature sites might be needed.    
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Figure-2.1: Autocorrelation (top) and Partial Autocorrelation (bottom) of the Residuals of 

the Insample Summer Data 
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Figure-2.2: Autocorrelation (top) and Partial Autocorrelation (bottom) of the Residuals of    

the Insample Winter Data 
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Figure-2.3: Forecasted Load verus Actual Load for Summer Season

 

The above figure represents a sample of the actual versus predicted hourly load profile form your 
out of sample data. The solid line represents the actual hourly load while the dotted lines are the 
forecasted ones. The y axis represents the electricity demand in Gigawatts (GW) and while the x 
axis represents the peak hours from 9:00 am (0) to 9:00 pm (13).  
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Figure-2.4: Forecasted Load verus Actual Load for Winter Season 
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Figure-2.5: Illustration of a Neural Network with a Single Layer 
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Figure-2.6: Peak Load Time Series 
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Figure-2.7: Peak Load versus Peak Temperature for Summer Season 

 

 

 

Figure-2.8: Peak Load versus Peak Temperature for Winter Season 

 

 

 

 

 

 

12500

14500

16500

18500

20500

22500

24500

65 75 85 95 105 115

Pealk Load 
(MW)

Peak Temperature (Fahrenheit)

10000

12000

14000

16000

18000

20000

22000

45 55 65 75 85 95 105

Peak Load (MW)

Peak Temperature (Fahrenheit)



37 
 

 

Figure-2.9: Peak Temperatures from 2011 to 2013 for the Counties of Los Angeles (top) 

and Riverside (bottom) 
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Figure-2.10: Actual and Deterministic Temperature Plots of Los Angeles (top) and 

Riverside (bottom) 
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Figure-2.11: Serial Correlation and Sample Partial Autocorrelation Plots for Los Angeles 

(top) and Riverside (bottom) 
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Figure-2.12: Regression Residuals and their Serial Correlation for Los Angeles (left) and 

Riverside (right) 
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Figure-2.13: Original Temperature Time Series for 2010 and Four Simulations of 
Temperature Realizations 
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Figure-2.14: Peak Load Density  
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Table-2.1: Smoothing Parameters (DL: Day Light Saving)  

Season H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 
T-Summer 1.16 2.10 2.19 2.01 1.65 1.48 1.40 1.10 1.30 1.44 1.21 1.33 1.36 
L-Summer 0.29 0.33 0.41 0.31 0.56 0.63 0.66 0.65 0.70 0.74 0.49 0.50 0.41 

T-WinterDL 3.27 2.37 2.09 2.55 1.53 1.72 2.07 1.87 2.41 0.57 0.79 2.23 2.85 
L-WinterDL 0.15 0.15 0.23 0.31 0.36 0.47 0.58 0.75 0.85 0.59 0.53 0.59 0.48 

T-Winter 2.42 3.54 4.5 1.7 3.07 2.54 2.46 2.15 2.27 2.85 2.35 2.00 2.01 
L-Winter 0.13 0.21 0.1 0.17 0.08 0.16 0.23 0.28 0.24 0.19 0.13 0.14 0.19 

 

 

 

 

 

Table-2.2: Short Term Forecasting Model Comparison 

Model Summer MAPE Winter MAPE 
Static Forecast 3.07% 2.56% 
Neural Network 3.07% 2.64% 
Dynamic Forecast 2.56% 2.18% 
CAISO 2.57% 1.85% 
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Table-2.3: Multivariate Regression Results 

Dependent variable: Peak Load 

----------------------------------------------- 

𝛽𝛽                      309.791*** 

                       (7.380) 

 

𝜇𝜇1                      -241.985* 

                          (135.194) 

 

𝜇𝜇2                     671.734*** 

                        (121.877) 

 

𝜇𝜇3                    729.076*** 

                         (119.694) 

 

𝛼𝛼                    -8,621.753*** 

                       (635.405) 

 

----------------------------------------------- 

Observations             421 

R2                             0.870 

Adjusted R2              0.869 

Residual Std. Error     871.578 (df = 416) 

F Statistic          696.582*** (df = 4; 416) 

=============================================== 

Note:               *p<0.1; **p<0.05; ***p<0.01 
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Table-2.4: OLS Regression Results. 

Dependent variable:   Ld  −  E(Ld|Td) 

------------------------------------------- 

𝛼𝛼1                         -468.566*** 

                                (87.023) 

𝛼𝛼2                        -696.907*** 

                             (92.130) 

𝛼𝛼3                         -959.118*** 

                            (84.073) 

𝛼𝛼4                          -902.082*** 

                              (83.294) 

𝛼𝛼5                         137.623 

                               (84.468) 

𝛼𝛼6                         -239.011*** 

                               (86.601) 

𝛼𝛼7                         -444.735*** 

                             (87.542) 

𝛼𝛼8                         339.386*** 

                            (70.695) 

𝛼𝛼9                        425.731*** 

                           (68.429) 

𝛼𝛼10                      395.351*** 

                               (68.307) 

𝛼𝛼11                      362.436*** 

                             (68.937) 

Observations                    780 

R2                                    0.323 

Adjusted R2                    0.313 

F Statistic                    33.371*** (df = 11; 769) 

Note:               *p<0.1; **p<0.05; ***p<0.01 
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Table-2.5: Covariance of hourly load and peak loads 

 

 

 

Table-2.6: Long Term Forecasting Model Comparison 

Model Summer (MAPE) Winter (MAPE) 
CAISO Peak Load (7DA) 6.1% 3.1% 
Peak Load Prediction Model  3.5% 3.2% 
CAISO Hourly Load (7DA) 6.6% 3.3% 
Hourly Load Prediction Model 3.9% 4.6% 

 

 

 

Table-2.7: Sine Model Parameters Estimates 

Coefficient 𝛼𝛼1 𝛽𝛽1 𝛿𝛿1 𝛼𝛼2 𝛽𝛽2 𝛿𝛿2 

Estimate(Los Angeles) 7.55 0.017 -2.22 2.27 0.033 0.20 

Estimate(Riverside) 13.70 0.017 -2.41 3.16 0.034 -0.065 

 

 

 

Table-2.8: Day Types 

Day Type Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 
Peak Load 

Range(GW) [12-13] [13-14] [14-15] [15-16] [16-17] [17,18] [18,19] [19,20] [20,22] 

Season Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 Hour 7 Hour 8 Hour 9 Hour 10 Hour 11 Hour 12 Hour 13 

Summer 0.861 0.899 0.934 0.962 0.977 0.988 0.995 0.998 0.997 0.990 0.985 0.979 0.975 

Winter 0.620 0.753 0.805 0.820 0.800 0.823 0.832 0.855 0.932 0.921 0.876 0.921 0.878 
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Table-2.9: Monthly Probability Distribution of Day Types 

Month 
Type 1 
[12-13]  

 Type 2 
[13,14] 

Type 3 
[14,15] 

Type 4 
[15,16] 

Type 5 
[16,17] 

Type 6 
[17,18] 

Type 7 
[18,19] 

Type 8 
[19,20] 

Type 9 
[20,22] 

January 0.14 0.84 0.02 0 0 0 0 0 0 
February 0.2 0.8 0 0 0 0 0 0 0 

March 0.74 0.26 0 0 0 0 0 0 0 
April 0.55 0.45 0 0 0 0 0 0 0 
May 0.36 0.61 0.03 0 0 0 0 0 0 
June 0 0.11 0.21 0.26 0.22 0.14 0.06 0 0 
July 0 0 0.04 0.1 0.18 0.24 0.22 0.13 0.08 

August 0 0 0 0.04 0.11 0.2 0.25 0.24 0.16 
September 0 0 0.05 0.11 0.21 0.24 0.21 0.12 0.06 

October 0 0.43 0.48 0.09 0 0 0 0 0 
November 0.1 0.79 0.11 0 0 0 0 0 0 
December 0 0.83 0.17 0 0 0 0 0 0 

 

Table-2.10: Day Type Load Profile Approximation 

 

Day 
Type H1  H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 
Type 

1 11,686 11,961 12,162 12,191 12,140 12,123 12,009 11,841 11,614 11,568 11,732 12,437 12,405 
Type 

2 11,845 12,132 12,340 12,392 12,371 12,375 12,289 12,152 12,031 12,217 12,477 12,793 12,667 
Type 

3 12,511 12,889 13,187 13,328 13,383 13,506 13,537 13,570 13,865 14,098 13,936 13,857 13,702 
Type 

4 12,706 13,337 13,934 14,319 14,604 14,971 15,264 15,437 15,373 15,009 14,544 14,394 14,516 
Type 

5 12,984 13,734 14,433 14,916 15,302 15,809 16,182 16,439 16,395 15,925 15,425 15,184 15,052 
Type 

6 13,358 14,156 14,934 15,506 16,003 16,592 17,077 17,382 17,370 16,885 16,186 15,912 15,746 
Type 

7 13,645 14,523 15,424 16,118 16,727 17,425 17,947 18,345 18,374 17,906 17,197 16,678 16,464 
Type 

8 14,125 15,172 16,186 16,981 17,730 18,508 19,115 19,453 19,393 18,771 17,864 17,357 17,010 
Type 

9 14,911 16,129 17,327 18,355 19,265 20,125 20,720 20,969 20,834 20,218 19,361 18,847 18,561 
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CHAPTER 3 

Certainty Equivalence Algorithm 

3.1-Introduction 

We consider the problem of a producer and provider of electricity that offers interruptible contracts 

to its industrial and commercial customers. The interruptible contracts that we consider are the 

ones offered by the Southern California Edison utility company. These programs consist of the 

Base Interruptible Program (BIP) and the Agricultural and Pumping Interruptible Program (API). 

Each program has multiple customers that are enrolled in. Customers are divided into groups. Each 

group consists of a set of customers enrolled in the same program that are close geographically to 

each other. Each enrolled customer can be interrupted at most once per day for duration of at most 

six hours. For the customer enrolled in the BIP program, there is a limit of 180 hours of total 

interruption per year while customers enrolled in the API program can be interrupted at most 25 

times per year. The objective of the utility company is to minimize its electricity generation costs 

by deciding on a given day, in the case of an interruption which group to call as well as the timing 

and duration of the interruption for each of the interrupted groups. As previously discussed, the 

main difficulties in solving the dynamic program formulation of this problem stem from its 

dimensionality due to the large state space as well as the uncertainty in the electricity load demand. 

To address this problem, we solve the problem using a certainty equivalence approach. Using our 

load forecasting model results we solve on a daily basis a deterministic program which we refer to 

as the Deterministic Demand Response Program (DDRP). In the DDRP we model the problem of 

customer selection and timing of interruption as a nonlinear binary problem. We show that DDRP 

is NP-Hard. In order to solve this problem, we propose a heuristic that consists of first solving a 

nonlinear convex master problem and then a set of subproblems that determines the selection and 
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interruption of each group. To assess the quality of our heuristic we establish a lower bound to the 

DDRP by formulating a nonlinear convex problem. Our results show that our optimality gap is 

around 1%, 2% and 5% for small, midsize and large instances. We then use this heuristic in a 

certainty equivalence context in order to find a near optimal solution for our problem and test our 

certainty equivalence algorithm using data for the year 2014 and compare its performance with the 

lower bound established for the DDRP. There has been a large body of research in the literature 

on interruptible load contracts. The literature is divided into two broad categories: designing and 

pricing interruptible contracts or optimal execution of interruptible contracts. Our work falls in the 

latter category and is related to the work of Baldick et al (2006) and Goyal et at (2013). In their 

work, Baldick et al, consider the problem of a retailer with interruptible electricity contracts. In 

their wok, they solve the problem of valuing these contracts as well as determining the optimal 

interruption strategy to maximize a retailer’s profit by using stochastic dynamic programming and 

implementing a structural model to determine electricity prices, Goyal et at study the problem of 

a retailer with a number of interruptible contracts. The retailer’s objective is to determine the near 

optimal interruption policy to minimize the expected 𝑙𝑙𝛽𝛽 −norm of the observed load deviations 

from given thresholds and the contract execution cost over the planning horizon. Their algorithm 

is based on the Sample Average Approximation (SAA) dynamic program and the author also 

provide a sample complexity bound on the number of demand samples to be generated in order to 

obtain a (1+𝜖𝜖) approximate policy over the planning horizon. Compared to the papers cited above, 

our work is different in the following ways. First, while Baldick et al and Goyal et al solve the 

optimal execution problem using stochastic dynamic programming and SAA, our solution 

methodology is based on certainty equivalence which we implement by using a load forecasting 

model and a heuristic that solves the problem on a daily basis. Further, in their suggested algorithm, 
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Baldick et Al determine the total load to be used from each of the program they consider while 

Goyal el al determine the number of contracts to be used each day. In comparison, our approach 

allows us to determine which groups of customers to call in a given day as well as the timing and 

duration of interruption for each group.  Given that we develop a heuristic for the DDRP, our paper 

also falls in the category of nonlinear binary programming. For a comprehensive review, the reader 

is referred to Cooper (1981). In this work we present a new methodology for solving such a 

problem by first clustering the groups of customers and then solving a master problem that 

determines the number of clusters to be called each day and time. In the second stage, we assign 

the groups to each day at each hour and time. The rest of this work is divided as follows: The 

article is organized as follows: in section 2, we present the deterministic formulation of our 

problem, in section 3 we discuss the corresponding nonlinear program relaxation to obtain a lower 

bound for the DDRP while in section 4 we present the heuristic. In section 5, we present results 

from our numerical study. In section 6 we present the certainty equivalence approach and show its 

performance through a numerical example. Finally, in section 8 we summarize our findings and 

provide future research directions. 

3.2-The DDRP Model   

The problem of group selection, timing as well as the duration of interruption for each group faced 

by the utility company in order to minimize its electricity generation costs can be expressed by the 

following nonlinear binary integer program. 

 

 

min
𝑋𝑋

��𝑎𝑎�𝑢𝑢𝑑𝑑,𝑡𝑡 −� � �𝐼𝐼(𝑡𝑡, 𝑡𝑡′,ℎ)𝑙𝑙𝑔𝑔𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ
ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑔𝑔∈𝐺𝐺

�

2

+ 𝑏𝑏 �𝑢𝑢𝑑𝑑𝑑𝑑 −� � �𝐼𝐼(𝑡𝑡, 𝑡𝑡′, ℎ)𝑙𝑙𝑔𝑔𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ
ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑔𝑔∈𝐺𝐺

� (5)

   𝑡𝑡∈𝑇𝑇𝑑𝑑∈𝐷𝐷
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Subject to: 

   ∑ ∑ 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ ≤ 1 ∀𝑑𝑑 ∈ 𝐷𝐷,𝑔𝑔 ∈ 𝐺𝐺        (6) 

∑ ∑ ∑ ℎ𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 180 ∀𝑔𝑔1 ∈ 𝐺𝐺1   (7) 

∑ ∑ ∑ 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 25 ∀ 𝑔𝑔2 ∈ 𝐺𝐺2       (8) 

𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ ∈ {0,1} ∀𝑑𝑑 ∈ 𝐷𝐷,𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡′ ∈ 𝑇𝑇′, ℎ ∈ 𝐻𝐻 (9) 

 

The objective function consists of minimizing the hourly costs of electricity generations.           

Constraint (6) ensures that each group can be called at most once a day for a maximum of 6 

consecutive hours. The left hand side of Constraint (7) imposes an upper bound on the yearly 

number of hours that a group in the BIP program can be interrupted. Constraint (8) limits the 

number of yearly interruptions of groups in the API program to 25. Finally, Constraint (9) 

represents the binary constraints. 

Observe that the DDRP is a convex binary program since it consists of a convex objective function 

and linear constraints. By noting that the 0-1 Knapsack problem is NPC, it can be shown that 

DDRP is also NPC. Thus it is unlikely that real sized instances can be solved to optimality. We 

verify this in our computational results. Consequently, it is desirable to develop a heuristic to 

address this problem. The quality of the heuristic can be assessed by comparing it to a lower bound 

which we establish in the next section.  

3.3-Aggregation and Lower Bound  

Using the fact that the DDRP is convex, we formulate a lower bound by forming an aggregate 

nonlinear program. Denoting by  𝑌𝑌𝑑𝑑,𝑡𝑡′,ℎ and 𝑍𝑍𝑑𝑑,𝑡𝑡′,ℎ the amount of load reduction to be used on day 

d from time t’ for h consecutive hours and let we define the Aggregate Load Reduction Problem 

(ALRP) problem as follows:  
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ALRP  

  min
𝑊𝑊,𝑌𝑌,𝑍𝑍

∑ ∑ �𝑎𝑎𝑊𝑊𝑑𝑑,𝑡𝑡
2 + 𝑏𝑏 𝑊𝑊𝑑𝑑𝑑𝑑�  (10)  

   𝑡𝑡∈𝑇𝑇𝑑𝑑∈𝐷𝐷        

Subject to: 

∑ ∑ 𝐼𝐼(𝑡𝑡, 𝑡𝑡′,ℎ)(𝑌𝑌𝑑𝑑,𝑡𝑡′,ℎ + 𝑍𝑍𝑑𝑑,𝑡𝑡′,ℎ)ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ + 𝑊𝑊𝑑𝑑,𝑡𝑡 = 𝑢𝑢𝑑𝑑,𝑡𝑡 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (11) 

∑ ∑ 𝑌𝑌𝑑𝑑,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ ≤ ∑ 𝑙𝑙𝑔𝑔1𝑔𝑔1∈𝐺𝐺1 ∀𝑑𝑑 ∈ 𝐷𝐷,𝑔𝑔1 ∈ 𝐺𝐺1  (12) 

  ∑ ∑ 𝑍𝑍𝑑𝑑,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ ≤ ∑ 𝑙𝑙𝑔𝑔2𝑔𝑔2∈𝐺𝐺2  ∀ 𝑑𝑑 ∈ 𝐷𝐷,𝑔𝑔2 ∈ 𝐺𝐺2  (13) 

∑ ∑ ∑ ℎ𝑌𝑌𝑑𝑑,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 180∑ 𝑙𝑙𝑔𝑔1𝑔𝑔1∈𝐺𝐺1 ∀𝑔𝑔1 ∈ 𝐺𝐺1  (14) 

∑ ∑ ∑ 𝑍𝑍𝑑𝑑,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 25∑ 𝑙𝑙𝑔𝑔2𝑔𝑔2∈𝐺𝐺2  ∀𝑔𝑔2 ∈ 𝐺𝐺2  (15) 

𝑌𝑌𝑑𝑑,𝑡𝑡′,ℎ,𝑍𝑍𝑑𝑑,𝑡𝑡′,ℎ,𝑊𝑊𝑑𝑑,𝑡𝑡 ≥ 0 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡′ ∈ 𝑇𝑇′,ℎ ∈ 𝐻𝐻  (16) 

 

Similar to the DDRP, the objective function consists of minimizing the total hourly electricity 

generation costs where the variable 𝑊𝑊𝑑𝑑,𝑡𝑡 is defined in Constraint (11). Constraints (12) and (13) 

ensure that the total daily amount of load reduction from groups in the BIP and API programs 

respectively is no greater than the total load reduction of these groups. Constraint (14) imposes an 

upper bound on the yearly hourly weighted load reduction from the BIP program while Constraint 

(15) imposes an upper bound on the yearly load reduction from the API program. Finally, 

Constraint (16) represents the nonnegativity constraints, 

Proposition 3.3.1: The ALRP is a lower bound of the DDRP. 

Proof: Multiplying both sides of each constraint in the DDRP by the load impact of the 

corresponding group, and summing across the groups for each of the BIP and API programs leads 

to the aggregate daily and yearly constraints of the DDRP. Further, noting that 𝑌𝑌𝑑𝑑,𝑡𝑡′,ℎand 𝑍𝑍𝑑𝑑,𝑡𝑡′,ℎ  

represent the terms ∑ 𝑙𝑙𝑔𝑔1𝑋𝑋𝑑𝑑,𝑔𝑔1,𝑡𝑡′,ℎ𝑔𝑔1∈𝐺𝐺1  and ∑ 𝑙𝑙𝑔𝑔2𝑋𝑋𝑑𝑑,𝑔𝑔2,𝑡𝑡′,ℎ𝑔𝑔2∈𝐺𝐺2  without the integrality constraints 
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respectively, we conclude that the ARLP in an aggregate problem of the DDRP and hence 

constitutes a lower bound for the latter.  

Proposition 3.3.2: The lower bound problem is a convex problem. 

Proof: The above claim follows directly from the fact the objective function of the lower bound    

problem is convex as it consists of the sum of two convex functions and the set of constraints is a 

convex set since it is formed of linear constraints. 

As a result, the ALRP is a convex nonlinear program which can be readily solved by commercial 

solvers. In the next section we develop a heuristic that efficiently solves the DDRP and assess its 

performance.    

3.4-DDRP Heuristic 

3.4.1-Master Problem 

In this section we develop a heuristic to obtain a feasible solution for the DDRP. The heuristic 

works first by solving a master problem whose output will determine the number of groups needed 

for each day at each hour. After determining the number of groups needed, we allocate the groups 

by determining the timing and duration of call of each one of them on a given day.    Before solving 

the master problem, we form clusters by grouping the groups which load impacts are close in 

value. Hence, for a predefined load impact difference 𝛿𝛿, if the absolute value of the difference 

between two load impacts is less than or equal to 𝛿𝛿  then the corresponding groups belong to the 

same cluster. We test the heuristic for a given value of 𝛿𝛿 in the numerical analysis section. After 

assigning the groups across clusters, the load impact of that cluster will be equal to the average of 

the load impact of its groups. The reason behind using the clusters will become clear in the heuristic 

used to solve the DDRP problem as it will provide a mean for decomposing the initial problem by 

cluster. To provide a precise definition of the heuristic, we define: 
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Indices: 

C: Set of clusters. 

c:  The subscript for the set of clusters.  

Parameters: 

𝑏𝑏𝑐𝑐: Number of BIP groups in cluster 𝑐𝑐. 

𝑎𝑎𝑐𝑐: Number of API groups in cluster 𝑐𝑐. 

𝑙𝑙𝑐𝑐:  Load impact of cluster c. 

Decision Variables: 

𝐵𝐵𝑑𝑑,𝑐𝑐,𝑡𝑡: The amount of load reduction from BIP groups of cluster c on day d at time t (Megawatts). 
 
𝐴𝐴𝑑𝑑,𝑐𝑐,𝑡𝑡: The amount of load reduction from API groups of cluster c on day d at time t(Megawatts). 
 
𝑄𝑄𝑑𝑑,𝑐𝑐,𝑖𝑖,𝑡𝑡′ℎ: Number of groups called at time t’ for h consecutive hours on day d for the BIP (i=1) or 
API (i=2) in cluster c. 
 
The problem of determining the hourly number of groups from each cluster each day can be 

expressed by the following master problem which consists of a nonlinear convex program. We 

refer to the master problem as MP   

MP 

  min
𝐿𝐿,𝐵𝐵,𝐴𝐴

∑ ∑ 𝑎𝑎�𝑢𝑢𝑑𝑑𝑑𝑑 − 𝐿𝐿𝑑𝑑,𝑡𝑡�
2

𝑡𝑡∈𝑇𝑇𝑑𝑑∈𝐷𝐷 + 𝑏𝑏(𝑢𝑢𝑑𝑑𝑑𝑑 − 𝐿𝐿𝑑𝑑,𝑡𝑡)  (17) 

𝐵𝐵𝑑𝑑,𝑐𝑐,𝑡𝑡 ≤ 𝑏𝑏𝑐𝑐𝑙𝑙𝑐𝑐 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇  (18)  

  𝐴𝐴𝑑𝑑,𝑐𝑐,𝑡𝑡 ≤ 𝑎𝑎𝑐𝑐𝑙𝑙𝑐𝑐 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇  (19)  

∑ 𝐵𝐵𝑑𝑑,𝑐𝑐,𝑡𝑡𝑡𝑡∈𝑇𝑇 ≤ 6𝑏𝑏𝑐𝑐𝑙𝑙𝑐𝑐 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑐𝑐 ∈ 𝐶𝐶  (20) 

∑ 𝐴𝐴𝑑𝑑,𝑐𝑐,𝑡𝑡𝑡𝑡∈𝑇𝑇 ≤ 6𝑎𝑎𝑐𝑐𝑙𝑙𝑐𝑐 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑐𝑐 ∈ 𝐶𝐶  (21)  

∑ ∑ 𝐵𝐵𝑑𝑑,𝑐𝑐,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑑𝑑∈𝐷𝐷 ≤ 180𝑏𝑏𝑐𝑐𝑙𝑙𝑐𝑐∀𝑐𝑐 ∈ 𝐶𝐶  (22) 

  ∑ ∑ 𝐴𝐴𝑑𝑑,𝑐𝑐,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑑𝑑∈𝐷𝐷 ≤ 150𝑎𝑎𝑐𝑐𝑙𝑙𝑐𝑐  ∀𝑐𝑐 ∈ 𝐶𝐶  (23) 

  𝐿𝐿𝑑𝑑,𝑡𝑡 = ∑ (𝐵𝐵𝑑𝑑,𝑐𝑐,𝑡𝑡 + 𝐴𝐴𝑑𝑑,𝑐𝑐,𝑡𝑡)𝑐𝑐∈𝐶𝐶 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (24) 

𝐿𝐿𝑑𝑑,𝑡𝑡,𝐵𝐵𝑑𝑑,𝑐𝑐,𝑡𝑡,𝐴𝐴𝑑𝑑,𝑐𝑐,𝑡𝑡 ≥ 0 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇  (25) 
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As in the DDRP, the objective function consists of minimizing the total hourly electricity 

generation costs. The maximum load reduction that can be obtained from each cluster per hour is 

the aggregate of the load impacts of all its BIP and API groups. Constraints (18) and (19) impose 

this upper bound on the hourly load reduction from the groups of the BIP and API programs in 

cluster 𝑐𝑐 respectively.  Similarly, given that each group can be interrupted for at most 6 hours per 

day, Constraints (20) and (21) ensure that the daily load reduction from groups of the BIP and API 

programs in cluster 𝑐𝑐  does not exceed  6𝑏𝑏𝑐𝑐𝑙𝑙𝑐𝑐 and 6𝑎𝑎𝑐𝑐𝑙𝑙𝑐𝑐 respectively. Constraints (22) and (23) 

represent the yearly available load reduction amounts for each cluster containing BIP and API 

groups respectively. Each group in the BIP program can be interrupted for a maximum of 180 

hours and each group in the API program for 25 times for a maximum duration of 6 hours per 

interruption which is equivalent to 150 hours. Constraint (24) assigns the total load reduction on a 

given day and for a given hour as the sum of the load reductions across all clusters. Finally, 

Constraint (25) is the nonnegativity constraints. Notice that the master problem is a nonlinear 

convex program. We note that the master problem is neither an upper bound, nor a lower bound to 

DDRP. If we aggregate the above program by clusters and keep the load impact of each group to 

its original value, MP will be a relaxation of DDRP by following the logic outlined in Proposition 

3.3.1. However, since the load impact of each group in cluster 𝑐𝑐 is replaced by 𝑙𝑙𝑐𝑐, we cannot make 

such a conclusion.  

3.4.2-Assignement Problem 

Let  𝑛𝑛𝑑𝑑,𝑐𝑐,𝑡𝑡 = �𝐵𝐵𝑑𝑑,𝑐𝑐,𝑡𝑡+𝐴𝐴𝑑𝑑,𝑐𝑐,𝑡𝑡
𝑙𝑙𝑐𝑐

�  be the number of groups from cluster 𝑐𝑐 on day 𝑑𝑑 at time 𝑡𝑡 determined 

by the master problem. The next step consists of assigning groups from each cluster. Note that 

after solving the master problem the assignment problem can be solved for each cluster and thus 
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each assignment problem can be solved separately. Denoting by 𝐺𝐺(𝑐𝑐) the set of groups in cluster 

𝑐𝑐 and by 𝐺𝐺1(𝑐𝑐) and 𝐺𝐺2(𝑐𝑐) the set of BIP and API groups in cluster 𝑐𝑐 respectively, we formulate 

the following assignment problem. Note that the subscript has been omitted for conciseness. 

Denoting by 𝑉𝑉𝑑𝑑,𝑡𝑡 the deviation from the number of groups 𝑛𝑛𝑑𝑑,𝑡𝑡, the assignment problem ASP is 

formulated and a quadratic binary problem. 

ASP 

  min
𝑋𝑋,𝑉𝑉

∑ ∑ 𝑉𝑉𝑑𝑑,𝑡𝑡
2

𝑡𝑡∈𝑇𝑇𝑑𝑑∈𝐷𝐷  (26) 

Subject to 

∑ ∑ ∑ 𝐼𝐼(𝑡𝑡, 𝑡𝑡′, ℎ)ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑔𝑔∈𝐺𝐺(𝑐𝑐) 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ + 𝑉𝑉𝑑𝑑,𝑡𝑡 = 𝑛𝑛𝑑𝑑,𝑡𝑡 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (27) 

∑ ∑ 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ ≤ 1ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′  ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑔𝑔 ∈ 𝐺𝐺(𝑐𝑐)  (28)  

∑ ∑ ∑ ℎ𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 180 ∀𝑔𝑔 ∈ 𝐺𝐺1(𝑐𝑐)  (29) 

   ∑ ∑ ∑ 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 25 ∀𝑔𝑔 ∈ 𝐺𝐺2(𝑐𝑐)  (30) 

  𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ ∈ {0,1}∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡′ ∈ 𝑇𝑇′,ℎ ∈ 𝐻𝐻  (31)  

 

The above problem consists of allocating groups in each cluster across days and hours. The 

assignment is done by minimizing the squared deviations between the assigned groups and the 

proposed number of hourly groups each day as shown from the objective function and Constraint 

(27). The intuition behind minimizing the square of the deviations is to give higher priority for the 

days that have a higher number of clusters at a given time t. As previously mentioned in the DDRP, 

the assignment of groups in each cluster is done while ensuring that no group is called more than 

once a day as seen from Constraint (28) with a maximum duration of interruption of 180 hours per 

year for the groups in the BIP program and a maximum frequency of 25 interruptions for the ones 

in the API program as highlighted in Constraint (29) and Constraint (30) respectively.                                          



57 
 

Observe that the above problem is NP-Hard and thus it could be inefficient in solving large 

instances. We observe that the assignment problem can be solved more efficiently by first 

converting it to an integer program as this will preclude solving a quadratic binary program and 

then solving the resulting problem in two stages: an aggregate problem and then an allocation 

problem.                          

The conversion of the assignment problem to a mixed integer program is accomplished by noting 

from Constraint (24) that each deviation, 𝑉𝑉𝑑𝑑,𝑡𝑡 can take integer values in the interval 𝑅𝑅𝑑𝑑,𝑡𝑡 =

�𝑛𝑛𝑑𝑑,𝑡𝑡 − 𝑎𝑎𝑐𝑐 − 𝑏𝑏𝑐𝑐, 𝑛𝑛𝑑𝑑,𝑡𝑡�  since the maximum number of assigned groups for a given cluster at each 

hour is at most 𝑎𝑎𝑐𝑐 + 𝑏𝑏𝑐𝑐.  We denote by |𝑅𝑅𝑑𝑑,𝑡𝑡| the cardinality of the set 𝑅𝑅𝑑𝑑,𝑡𝑡 and by 𝑘𝑘𝑑𝑑,𝑗𝑗,𝑡𝑡 ∈ 𝑅𝑅𝑑𝑑,𝑡𝑡 

its possible integer elements for 𝑗𝑗 ∈ 𝐽𝐽 = {1, … , �𝑅𝑅𝑑𝑑,𝑡𝑡�}. Letting 𝛼𝛼𝑑𝑑,𝑗𝑗,𝑡𝑡 be binary variables equal to 

1 if 𝑘𝑘𝑑𝑑,𝑗𝑗,𝑡𝑡 is selected, 0 otherwise, we can reformulate the above problem as a mixed integer 

problem by replacing the objective function by: 

 

     min
𝛼𝛼,𝑋𝑋,𝑉𝑉

∑ ∑ ∑ 𝑘𝑘𝑑𝑑,𝑗𝑗,𝑡𝑡
2 𝛼𝛼𝑑𝑑,𝑗𝑗,𝑡𝑡𝑗𝑗∈𝐽𝐽𝑡𝑡∈𝑇𝑇𝑑𝑑∈𝐷𝐷   (32) 

and adding constraints (33) through (34)  

  ∑ 𝑘𝑘𝑑𝑑,𝑗𝑗,𝑡𝑡𝛼𝛼𝑑𝑑,𝑗𝑗,𝑡𝑡𝑗𝑗∈𝐽𝐽 = 𝑉𝑉𝑑𝑑,𝑡𝑡∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (33) 

  ∑ 𝛼𝛼𝑑𝑑,𝑗𝑗,𝑡𝑡𝑗𝑗∈𝐽𝐽 = 1 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (34) 

As seen from Constraint (33) and Constraint (34), only one value among the possible ones in the 

interval  𝑅𝑅𝑑𝑑,𝑡𝑡 can be chosen while the objective function ensures that the objective function is 

equivalent to the one in ASP. We see from the above the rationale behind replacing the load impact 

of each group by the average load impact of its cluster since otherwise, the conversion of ASP to 

an MIP would not have been possible.  
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The goal behind the aggregate problem is to first obtain the number of groups required from the 

BIP and API programs and then assign groups form these programs in the allocation program. To 

this end, let 𝑄𝑄𝑑𝑑,𝑐𝑐,1,𝑡𝑡′,ℎ  and 𝑄𝑄𝑑𝑑,𝑐𝑐,2,𝑡𝑡′,ℎ be the total number of groups called at time t’ for h consecutive 

hours on day d from the BIP and API programs respectively. The aggregate problem AGP is 

formally states as follows: 

AGP 

  min
𝛼𝛼,𝑋𝑋

∑ ∑ ∑ 𝑘𝑘𝑑𝑑,𝑗𝑗,𝑡𝑡
2 𝛼𝛼𝑑𝑑,𝑗𝑗,𝑡𝑡𝑗𝑗∈𝐽𝐽𝑡𝑡∈𝑇𝑇𝑑𝑑∈𝐷𝐷    (32) 

Subject to: 

∑ 𝑘𝑘𝑑𝑑,𝑗𝑗,𝑡𝑡𝛼𝛼𝑑𝑑,𝑗𝑗,𝑡𝑡𝑗𝑗∈𝐽𝐽 = 𝑉𝑉𝑑𝑑,𝑡𝑡 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (33) 

∑ 𝛼𝛼𝑑𝑑,𝑗𝑗,𝑡𝑡𝑗𝑗∈𝐽𝐽 = 1 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (34) 

∑ ∑ ∑ 𝐼𝐼(𝑡𝑡, 𝑡𝑡′, ℎ)𝑄𝑄𝑑𝑑,𝑐𝑐,𝑖𝑖,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ + 𝑉𝑉𝑑𝑑,𝑡𝑡 =𝑖𝑖=1,2 𝑛𝑛𝑑𝑑,𝑡𝑡 ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇  (35) 

∑ ∑ 𝑄𝑄𝑑𝑑,𝑐𝑐,1,𝑡𝑡′,ℎ ≤ 𝑏𝑏𝑐𝑐ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ ∀𝑑𝑑 ∈ 𝐷𝐷  (36) 

∑ ∑ 𝑄𝑄𝑑𝑑,𝑐𝑐,2,𝑡𝑡′,ℎ ≤ 𝑎𝑎𝑐𝑐ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ ∀𝑑𝑑 ∈ 𝐷𝐷  (37) 

∑ ∑ ∑ ℎ𝑄𝑄𝑑𝑑,𝑐𝑐,1,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 180𝑏𝑏𝑐𝑐  (38) 

∑ ∑ ∑ 𝑄𝑄𝑑𝑑,𝑐𝑐,2,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 25𝑎𝑎𝑐𝑐  (39) 

𝑄𝑄𝑑𝑑,𝑐𝑐,𝑖𝑖,𝑡𝑡′,ℎ ∈ 𝑍𝑍+,𝛼𝛼𝑑𝑑,𝑗𝑗𝑗𝑗 ∈ {0,1}∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡 ∈ 𝑇𝑇, 𝑡𝑡′ ∈ 𝑇𝑇′, ℎ ∈ 𝐻𝐻, 𝑐𝑐 ∈ 𝐶𝐶, 𝑗𝑗 ∈ 𝐽𝐽, 𝑖𝑖 = {1,2}   (40) 

 

As shown in the formulation above, the aggregate problem determines the number of groups from 

each program to be called. Constraint (36) and Constraint (37) limit the number groups to be called 

each day from every program while constraints (38) and (39) impose upper bounds of the duration 

and number of calls for each group. The final step consists of allocating the groups from each 

cluster by solving the following allocation problem which we refer to as ALP. 
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ALP 

min
𝑀𝑀,𝑋𝑋

∑ ∑ ∑ ℎ𝑀𝑀𝑑𝑑,𝑡𝑡′,ℎℎ𝑡𝑡′𝑑𝑑   (41) 

Subject to: 

  ∑ 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ𝑔𝑔∈𝐺𝐺(𝑐𝑐) + 𝑀𝑀𝑑𝑑,𝑡𝑡′,ℎ = 𝑄𝑄𝑑𝑑,𝐺𝐺,1,𝑡𝑡′,ℎ + 𝑄𝑄𝑑𝑑,𝐺𝐺,2,𝑡𝑡′,ℎ  ∀𝑑𝑑 ∈ 𝐷𝐷, 𝑡𝑡′ ∈ 𝑇𝑇′,ℎ ∈ 𝐻𝐻   (42) 

∑ ∑ 𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ ≤ 1ℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′ ,𝑑𝑑 ∈ 𝐷𝐷 ∀𝑔𝑔 ∈ 𝐺𝐺  (43) 

∑ ∑ ∑ ℎ𝑋𝑋𝑑𝑑,𝑔𝑔1,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 180 ∀𝑔𝑔1 ∈ 𝐺𝐺1(𝑐𝑐)  (44)     

∑ ∑ ∑ 𝑋𝑋𝑑𝑑,𝑔𝑔2,𝑡𝑡′,ℎℎ∈𝐻𝐻𝑡𝑡′∈𝑇𝑇′𝑑𝑑∈𝐷𝐷 ≤ 25  ∀𝑔𝑔2 ∈ 𝐺𝐺2(𝑐𝑐)  (45) 

𝑋𝑋𝑑𝑑,𝑔𝑔,𝑡𝑡′,ℎ ∈ {0,1},𝑀𝑀𝑑𝑑,𝑡𝑡′,ℎ ≥ 0 ∀𝑔𝑔 ∈ 𝐺𝐺,∈ 𝐷𝐷, 𝑡𝑡′ ∈ 𝑇𝑇′,ℎ ∈ 𝐻𝐻 (46) 

 

The objective function of the allocation problem consists of minimizing the hourly weighted 

deviation  𝑀𝑀𝑑𝑑,𝑡𝑡′,ℎ defined in Constraint (42).  The remaining constraints (43) through (45) are the 

daily and yearly constraints of each of the groups in the BIP and API programs.  Although solving 

the allocation problem in two stages will lead to a suboptimal solution, our numerical solution 

show that the resulting gap does not affect the quality of the solution. 

The steps of the heuristics are summarized as follows: 

1. Generate the clusters by using a certain cluster size. 

2. Solve the MP and obtain the number of groups 𝑛𝑛𝑑𝑑,𝑐𝑐,𝑡𝑡  from each cluster for each time t on 

day d . 

3. For each cluster c, solve the AGP for an obtain the number of BIP and API groups 

𝑄𝑄𝑑𝑑,𝑐𝑐,1,𝑡𝑡′,ℎ and 𝑄𝑄𝑑𝑑,𝑐𝑐,2,𝑡𝑡′ℎ respectively to be called on day d at time t’ for h consecutive hours. 

4. Using the values of 𝑄𝑄𝑑𝑑,𝑐𝑐,1,𝑡𝑡′,ℎ and 𝑄𝑄𝑑𝑑,𝑐𝑐,2,𝑡𝑡′ℎ, solve the ALP to assign groups from each 

cluster. 

5. Compute the resulting electricity generation costs. 
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In the next section, we test the efficiency of our proposed heuristic by assessing the optimality gap 

between our heuristic’s solution and our established lower bound across different instances.  

3.5-Numerical Analysis 

In this section, we test the efficiency of the heuristic by testing it on several instances. We consider 

a 50, 100 and 200-day horizon and test the problem on 100, 150 and 200 groups equally divided 

between the BIP and API programs. The number of hours and number of interruptions for the 

groups in the BIP and API programs are respectively (180,25) , (90,12) and (45,6) for the 200, 100 

and 50 days horizon respectively. We let a = 1.25 and b = 1 for the electricity generation cost 

objective function. For each group, we consider the following ranges for the groups: 

1. BIP Load Impact Range: [50MW, 300MW], API Load Impact Range: [10MW, 50MW]. 

2. BIP Load Impact Range: [50MW, 400MW], API Load Impact Range: [50MW, 100MW]. 

The first set of ranges was chosen based on what is observed in practice as groups enrolled in the 

API programs have a smaller load impact then the ones enrolled in the BIP program while the 

second range of load impacts was designed in order to test the performance of the heuristic in 

unconventional cases.                                                                                                                        

For each of the above ranges, we randomly generate 50, 75 and 100 load impacts. We consider a 

cluster size of 10 MW. The data was tested for the years of 2012 and 2013. Tables 2.1, 2.2 and 2.3 

below summarize the average optimality gap of the heuristic from 20 simulations for each instance. 

The code was written in Python and the optimization was done using the Gurobi solver. The tests 

were carried on a desktop with an Intel Core i5 processor with a CPU speed of 3.10 GHz. As seen 

from the tables, for instances with load impacts in the first set of ranges, the optimality gap varies 

between 1% and 3% while the optimality gap for the second set of ranges varies between 2% and 

6%. As we notice, the heuristic performs well for real life instances even when the total number 
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of groups is as large as 200. Even for the second set of load ranges, the optimality gap is still 

acceptable given the large magnitude of the load impacts. The computational time of the heuristic 

depends on the number of days and approximately doubles for a given instance as does the number 

of days in the horizon with an average running time between 0.7 to 5min. We should note that a 

problem of 20 days with a total number of 10 groups was solved to optimality using Gurobi in 

around 3 minutes. Hence, based on the optimality gap and running time results of our numerical 

experiment, we can conclude that our heuristic is quite efficient.     

3.6-Certainty Equivalent Approach: 

To assess the performance of the certainty equivalence approach we test our heuristic and 

forecasting procedures using the hourly load electricity demand for the area served by SCE during 

the year 2014. We test our approach on a set of 200 groups equally divided between the BIP and 

API programs. The load impacts for the groups the API program were between 10 to 50 MW while 

the one for the groups in the BIP program were between 50 and 300 MW. 

The dynamic program solution by certainty equivalence is summarized as follows: 

• At the start of a given day , update the day ahead forecast for that day and compute the day 

ahead forecast using the short term forecasting model. 

• Using the week ahead hourly temperature data, forecast the load profile for the 

corresponding days using the long term forecasting model. 

• Update the number of day types for each of the months in the remaining horizon and replace 

the hourly load profile for each day type by its corresponding approximation. 

• Solve the DDRP using the heuristic developed in Section 4 and determine the interruption 

schedule. 

• Pick the interruption schedule of the current day. 
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• Update the remaining number of hours and interruptions of the selected groups in the BIP 

and API programs respectively. 

• Repeat the above procedure for each day until the end of the horizon. 

The optimality gap between the certainty equivalence approach and the lower bound was estimated 

to be equal to 2.6%/ This result shows that our suggested approach could constitute a promising 

mechanism to be adopted in order to tackle such problem. This could be further validated if a 

robustness test can be developed in order to assess the worst and best performances of our certainty 

equivalence algorithm. 

3.7-Conclusion 

In this work, we presented a solution methodology for solving the problem of an electricity 

producer and supplier that offers interruptible contracts to its commercial and industrial customers. 

The challenges of this problem stems from the high number of interruption combinations to the 

enrolled customers as well as the uncertainty in the electricity demand in addition to the limited 

number of interruptions. We solve this problem using a certainty equivalence approach. Our 

approach consists of solving a deterministic program, the DDRP, from which we select the 

interruption schedule for that day, update the number and hours of interruptions of the selected 

customers and repeat the procedure on a daily basis. The input to the deterministic model is the 

electricity hourly load prediction for the short and long term horizon obtained from an electricity 

load forecasting model. Given that the DDRP is NP-Hard, we proposed an efficient heuristic for 

solving the DDRP and tested its efficiency. The certainty equivalence approach was tested for the 

year 2014 for the area served by the Southern California Edison electric utility company.                          

There exists some areas of improvements and future research directions. As a possible 

improvement and as previously mentioned, a procedure could be developed in order to assess the 
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robustness of the certainty equivalence algorithm and assess its performance. Further, this problem 

could be solved by using a different approximate dynamic approach. This approach could consist 

of approximating the value functions in terms of their state space by using basis function as 

developed by Powell. Finally, this model could also be used in the design of interruptible contracts 

by determining the number of hours and interruptions for each enrolled customer.   
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Table 2.1: 50 Days Horizon Results 
 

BIP Group 
Numbers 

API Group 
Number 

BIP Load 
Impact Range 

API Load 
Impact Range 

Optimality 
Gap (%) 

Time (min) 

50 50 [50,300] [10, 50] 1.25 0.74 
75 75 [50,300] [10, 50] 1.89 0.93 

100 100 [50,300] [10, 50] 2.36 1.12 
50 50 [50,400] [50, 100] 2.41 0.81 
75 75 [50,400] [50, 100] 3.90 1.00 

100 100 [50,400] [50, 100] 5.41 1.19 
 
 

Table 2.2: 100 Days Horizon Results 
 

BIP Group 
Numbers 

API Group 
Number 

BIP Load 
Impact Range 

API Load 
Impact Range 

Optimality 
Gap (%) 

Time (min) 

50 50 [50,300] [10, 50] 1.14 1.46 
75 75 [50,300] [10, 50] 1.76 1.84 

100 100 [50,300] [10, 50] 2.27 2.21 
50 50 [50,400] [50, 100] 2.06 1.64 
75 75 [50,400] [50, 100] 3.71 2.06 

100 100 [50,400] [50, 100] 5.29 2.45 
 
 

Table 2.3: 200 Days Horizon Results 
 

BIP Group 
Numbers 

API Group 
Number 

BIP Load 
Impact Range 

API Load 
Impact Range 

Optimality 
Gap (%) 

Time (min) 

50 50 [50,300] [10, 50] 1.25 3.07 
75 75 [50,300] [10, 50] 1.89 4.00 

100 100 [50,300] [10, 50] 2.36 4.70 
50 50 [50,400] [50, 100] 2.41 3.39 
75 75 [50,400] [50, 100] 3.90 4.24 

100 100 [50,400] [50, 100] 5.41 5.12 
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