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Disclaimer 

 

This document was prepared as an account of work sponsored by the United States 

Government. While this document is believed to contain correct information, neither the 

United States Government nor any agency thereof, nor The Regents of the University of 

California, nor any of their employees, makes any warranty, express or implied, or assumes 

any legal responsibility for the accuracy, completeness, or usefulness of any information, 

apparatus, product, or process disclosed, or represents that its use would not infringe privately 

owned rights. Reference herein to any specific commercial product, process, or service by its 

trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply 

its endorsement, recommendation, or favoring by the United States Government or any 

agency thereof, or The Regents of the University of California. The views and opinions of 

authors expressed herein do not necessarily state or reflect those of the United States 

Government or any agency thereof, or The Regents of the University of California. 

 

 

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 

employer. 
 

 

Funding was provided by the U.S. Dept. of Energy Building Technologies Program, Office of 

Energy Efficiency and Renewable Energy under DOE Contract No. DE-AC02-05CH11231; 

by the U.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead 

Hazard Control through Interagency Agreement I-PHI-01070, and by the California Energy 

Commission through Contract 500-08-061.  
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SUMMARY 

 

INTRODUCTION: Reducing PM2.5 exposure in homes could substantially improve health.  
 

METHODS: We have modified the Lawrence Berkeley National Lab Population Impact 

Assessment Modeling Framework to determine indoor PM2.5 concentrations and exposures in 

a set of 50,000 homes representing the US housing stock. A mass-balance model calculated 

time-dependent pollutant concentrations within each home. The model included size- and 

species-dependent removal mechanisms and age-based occupancy patterns. We conducted an 

initial analysis of the impact of increasing central HVAC MERV rating on homes with central 

ducting on indoor concentrations of outdoor PM2.5.  
 

RESULTS: On average, compared to homes with no filter, MERV6 reduced indoor 

concentrations by 6%, MERV11 by 19% and MERV14 by 39%. The impact varied by climate 

zone based on system run time and outdoor conditions that drive infiltration (temperature and 

wind) and outdoor aerosol composition.  
 

CONCLUSIONS: The modeling framework will allow for the identifications of cost 

effective methods to control PM2.5 indoors.  

 

IMPLICATIONS: PM2.5 exposures have a substantial impact on the health of occupants of 

the US housing stock. The impact of filtration on home energy use could have a sizeable net 

impact on the energy use of the housing stock. It is critical to provide guidance for energy 

efficient filtration to maximize the benefits and minimize the energy impacts. The correct 

filtration strategy for a given home will be a function of home location, characteristics, and 

occupant behavior. Costs and benefits of a given strategy may vary widely within a given 

location. LBNL has developed a tool to model the expected variations in costs and  benefits 

associated with filtration across the US housing stock. This tool will aid us in providing 

guidance for filtration in US homes.  
 

 

CITATION: Logue, J.M; Lunden,M.M.; Singer, B.C.; (2014) Development and application 

of a physics-based simulation model to investigate residential PM2.5 composition and size 

distribution across the US. Indoor Air Conference, Hong Kong, China, 7-12 July 2014 
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INTRODUCTION 

Atmospheric PM2.5 varies in particle size distribution and composition both spatially and 

temporally as sources, atmospheric formation and ageing, and removal processes vary. Spatial 

variations occur over large regions, and from the sources that vary from urban to rural areas 

within regions. Temporal variations occur over diurnal, weekly, and seasonal time scales.  
 

Elevated concentrations of PM2.5 in the atmosphere have been associated with increased 

morbidity and mortality in the population.  
 

Although the majority of health studies have correlated outdoor concentrations with health 

problems, most exposure to PM2.5 occurs indoors (VanRyswyk et al. 2013). People spend 

more that 90% of their time indoors and more than 70% in their homes (Klepeis et al. 2001). 

Reducing concentrations in homes could provide an annual health benefit of $50-150 billion 

in the US (Logue et al. 2012). 
 

A significant fraction of the PM2.5 inside homes originated outdoors and is transported into the 

building by ventilation. In addition, there can be significant indoor sources of PM2.5 with 

cooking and smoking the two most important (Wallace et al. 2004). A number of factors 

influence the concentration of PM2.5 indoors. Loss mechanisms include deposition as outdoor 

air infiltrates through the building envelope, deposition to indoor surfaces, and particle 

removal by filtration. Some particles can undergo chemical reactions indoors, which can lead 

to a net gain or loss (Lunden et al. 2003a; Lunden et al. 2008). Lastly, particles can be emitted 

from a variety of indoor sources including combustion and chemical reactions.  
 

The varied approaches to reducing indoor concentrations impact both occupant exposures and 

energy use. Providing guidance to effectively reduce indoor PM2.5 concentrations at low 

energy cost requires an understanding of the variations in PM2.5 sources, composition, and 

other parameters relevant to the US housing stock.  
 

In order to compare the costs and benefits of various PM2.5 control technologies, we modified 

the Population Impact Assessment Modeling (PIAM) framework to model 

PM2.5concentrations and exposures across the US housing stock. The model currently 

includes infiltration of PM2.5 from the outdoors as well as cooking. This initial analysis 

analyzed the impact of adding MERV rated filters to homes that have central duct systems.  
 

METHODOLOGIES  

The PIAM applies physics-based simulation model(s) to calculate one or more environmental 

or energy performance parameters for each home in a sample cohort developed to represent a 

population. Results from the individual homes are compiled to provide the statistics for 

population impacts. The approach can be applied at varying temporal or spatial scales; two 

recent applications examined the impact of air sealing and ventilation on annual energy use 

for homes across the U.S. (Logue et al. 2013)and the gaseous pollutant exposure impacts of 

cooking burners on the occupants of the Southern California housing stock (Logue et al. 

2014). 
 

We have expanded the PIAM Framework to determine indoor PM2.5 concentrations. A single-

zone mass balance model is applied to each home. The model includes factors that affect 
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particle transport and fate in the home including penetration, emissions, dilution, deposition, 

removal by filtration, chemical loss rates, and removal by air exchange. The model simulates 

particle dynamics by size and composition. The indoor air model uses the following 

governing mass-balance equation: 
 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑎𝑠𝑠⏞          
1

= 𝑀𝑎𝑠𝑠 𝑖𝑛⏞    
2

−𝑀𝑎𝑠𝑠 𝑜𝑢𝑡⏞      
3

   (1) 
 

𝑑𝐶𝑖𝑛,𝑖,𝑗
𝑑𝑡

⏞    
1

=
𝐸𝑖,𝑗
𝑉
+ (𝐴𝑤𝑖𝑛𝑃𝑖,𝑤𝑖𝑛 + 𝐴𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑃𝑖,𝑖𝑛𝑓𝑖𝑙𝑡𝑟 +∑𝐴𝑚𝑒𝑐ℎ𝑃𝑖,𝑚𝑒𝑐ℎ)𝐶𝑜𝑢𝑡,𝑖,𝑗

⏞                                        
2

 

−(𝑘𝑙𝑜𝑠𝑠,𝑖 + 𝑘𝑒𝑣𝑎𝑝,𝑖,𝑗 +𝐴𝑤𝑖𝑛 +𝐴𝑖𝑛𝑓𝑖𝑙𝑡𝑟 + ∑𝐴𝑚𝑒𝑐ℎ + 𝐶𝐸𝐻𝑉𝐴𝐶,𝑖𝐴𝐻𝑉𝐴𝐶 +∑𝐶𝐸𝑟𝑒𝑐𝑖𝑟𝑐,𝑖𝐴𝑟𝑒𝑐𝑖𝑟𝑐)𝐶𝑖𝑛,𝑖,𝑗
⏞                                                          

3

           (2) 

       

In Equation 2, the mass balance equation normalized by house volume, i refers to the particle 

size bin and j refers to a specific chemical constituent of PM2.5. kloss is the is a first order loss 

rate for physical loss processes like deposition to indoor surfaces. kevap is the species 

dependent evaporative loss rate. Cin is the indoor concentration. Cout is the outdoor 

concentration. P is the particle penetration loss for the different ventilation processes that 

bring outdoor air indoors. A terms represent the airflow (ACH) through the window (Awin), 

infiltration (Ainfiltr), any mechanically supplied air (Amech), the central HVAC system (AHVAC), 

and recirculation system Arecirc). CErecirc is the fractional removal of particles from air flow 

through any recirculating or in room \air cleaning device. CEHVAC is the size dependent 

removal efficiency of the central HVAC system.  
 

In order to simplify the presentation of the equations, we introduce the two parameters which 

represent the household gain rate of PM2.5 per unit outdoor concentration, Gi, and the loss rate 

of PM2.5 per unit concentration indoors, Li,j. Using these parameters, Equation 2 becomes: 
 

𝑑𝐶𝑖𝑛,𝑖,𝑗

𝑑𝑡

⏞  
1

=
𝐸𝑖,𝑗

𝑉
+ 𝐺𝐶𝑜𝑢𝑡,𝑖,𝑗

⏞        
2

− 𝐿𝐶𝑖𝑛,𝑖,𝑗⏞    
3

  (3) 

 

where Cin_I,ij and Cin_O,ij, can be solved recursively from equation 3 as shown in Equations 4 

and 5.  

𝐶𝑖𝑛_𝐼,𝑖,𝑗(𝑡) = 𝐶𝑖𝑛_𝐼,𝑖,𝑗(𝑡 − 1)exp
−(𝐿𝑖,𝑗𝑖(𝑡))∆t +

𝐸𝑖,𝑗(𝑡)(1−exp
−(𝐿𝑖,𝑗𝑖(𝑡))∆t)

(𝐿𝑖,𝑗(𝑡))V
                 (4) 

 

𝐶𝑖𝑛_𝑂,𝑖,𝑗(𝑡) = 𝐶𝑖𝑛_𝑂,𝑖,𝑗(𝑡 − 1)exp
−(𝐿𝑖(𝑡))∆t +𝐶𝑜𝑢𝑡,𝑖,𝑗(𝑡)

𝐺𝑖(𝑡)(1−exp
−(𝐿𝑖(𝑡))∆t)

(𝐿𝑖(𝑡))
         (5) 

 

The chemical components, denoted by j, are ammonium sulfate, ammonium nitrate, organic 

mass, elemental carbon, and “other”. The size bins, denoted by subscript i, are those measured 

by the MOUDI instrument and are listed in Table 1. The total PM2.5 concentration of indoor 

pollutants can be calculated by summing the contributions from indoors sources, Cin_I,ij, and 

outdoors, Cin_O,ij: 
 

𝐶𝑖𝑛 = ∑ [𝐶𝑖𝑛_𝐼,𝑖,𝑗(𝑡) + 𝐶𝑖𝑛𝑂,𝑖,𝑗(𝑡)]𝑖,𝑗     (6) 
 

Outdoor Pollutant Concentrations (Cout,i,j) 

There are several sources of outdoor PM2.5 data that vary in the detail with which the particles 

are characterized. We aggregated available daily, hourly, and speciation data for 2009-2012 

from the EPA AirData site as well as available speciation data from the NASA NARSTO site. 
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Using the aggregated data from these sites, the PIAM model creates a weeklong, outdoor, 

minutely profile of PM2.5 mass divided into the 30 bins defined by chemical species and 

particle size. Values used are average for the modeled season. 
 

For each home, a representative county is stochastically selected by sampling from the 

counties located in the specified climate zone, state combination for that home weighted by 

county population. For the selected county, the closest monitoring sites with PM2.5 daily data, 

hourly data, speciation data, and size distribution data are selected based on the distance 

between the county center and the location of measurement sites. Briefly the four major steps 

used to develop outdoor concentration profiles from monitoring data are as follows; profiles 

are developed for a typical weekday (Monday through Friday) and a typical weekend day 

(Saturday, Sunday).during each season. 1) The hourly data is first used to develop diurnal 

profiles of the pattern of hourly concentrations relative to daily averages. 2) From the daily 

data we determine average outdoor concentration for weekends and weekdays. The weekend 

and weekday non-dimensional diurnal profiles are multiplied by the weekend and weekday 

daily average concentrations to develop quantitative diurnal concentration profiles. 3) The 

weekend/weekday diurnal profiles are then separated into five diurnal profiles, one for each 

chemical species based on the closest speciation site data. 4) The average weekend/weekday 

fraction of each chemical species mass in each particle size bin is determined from data from 

the closest monitoring site with size distribution data. Organic mass was determine by 

multiplying the organic carbon by 1.4, the mean organic mass to organic carbon ratio found 

by Russell (2003). 
 

Representative Housing Stock Development 

We developed a weighted, representative set of 50,877 US homes for use in modeling 

conditions across the US housing stock based on the Residential Energy Consumption Survey 

(RECS) (US EIA 2009). The model requires several housing parameters that are not available 

in the RECS; these parameters were estimated or assigned based on home characteristics that 

were specified in the RECS. The estimated or assigned parameters include normalized 

leakage of the building envelope, home size, hourly weather conditions, and thermostat 

temperatures for RECS entries that did not have specified values. Full details of this process 

are described in Logue et al (2013).  
 

When applying this model to the existing database of homes, we used an existing, simple 

airflow model to determine the hourly air exchange rate due to natural ventilation based on 

home characteristics and window opening size. Walker and Wilson (1998) developed an 

algorithm to calculate infiltration through the building envelope as a function of a limited 

number of home characteristics, outdoor weather data, and home leakage area. The size of 

window opening in each home is determined as a function of outdoor temperature and 

whether or not the home had cooling based on the algorithm implemented by Baxter (2013).  
 

In the US housing stock, 71% of homes reported having ducted heating systems and 76% 

reported having some level of ducted cooling in the home (US EIA 2009). One option for 

controlling PM2.5 is to increase the MERV filter rating of the duct system and potentially 

increase the run time of the system. To access the impact of these types of systems on 

concentrations, we need to estimate the airflow and runtimes of central HVAC systems. In 

previous work, we conducted simulations for three homes representing new, average, and old 

construction, corresponding to homes built according to the 2008 California Title 24 standard, 

a typical 1980s home and a typical 1940s home. Logue et al (2013) determined the average 

fractional hourly run time of the HVAC system for each home for heating and cooling as a 

function of the indoor-set point and outdoor temperature difference for a set of IECC climate 
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zones. We are using this data to estimate the hourly run time of the heating and cooling 

system, when present, as a function indoor-set point temperatures and outdoor temperatures 

for each of the modeled homes.  
 

Size and species dependent model parameters 

Deposition rates are a function of physical particle size and home characteristics. Thatcher et 

al (2003) and Long et al. (2001b) measured size dependent deposition rates in homes in 

winter and summer. For each size bin, Long and Thatcher reported the median and standard 

deviation of the measured deposition rate. We determined the median and standard deviation 

of the expected deposition rate for each of our defined particle bins by combining the 

weighted values for the bins used in sited studies assuming a normal distribution. For the 

model implementation, for each home, we selected one of the sets of data, sampled from the 

distribution for the size bin with the lowest variability, and then assigned the same percentage 

change in deposition for all of the size bins.  

 

Particle penetration factors depend on particle size, but it is not a very strong dependence 

(Long et al. 2001b; Chen and Zhao 2011) for the particle size bins that are significant 

contributors to PM2.5 mass. We assigned penetration factor as a function of how air enters the 

home. For air that is supplied through the windows, we assume that the penetration factor is 

1.0.. When air infiltrates through the building envelope, we used a similar approach as we did 

for the particle first order deposition loss rate using penetration data from Thatcher et al. 

(2003) and Long et al (2001a).  
 

Previous work by Lunden et al. (2003b) showed that ammonium sulfate could be modeled 

effectively using penetration, deposition loss rate values, and the building air exchange rate. 

Lunden et al. (2003a) found that ammonium nitrate loss rates are higher than those expected 

just from deposition alone. We used the fit derived by Herring et al. (2007) of the Lunden et 

al. data to estimate the evaporative loss rate of ammonium nitrate as a function of home 

temperature and particle size. Lunden et al. (2008) showed that elemental carbon follows a 

similar behavior as ammonium sulfate indoors, but that organic carbon concentrations are 

impacted by chemical transformation indoors. We used the measured data reported by 

Thatcher et al. (2003) and Lunden et al. (2008) to estimate a first order chemical evaporative 

loss rate for organic mass as a function of particle size.  
 

Table 1. Total capture efficiency for ducts and filter for base case (BC) and three analysis 

scenarios (S1,S2 and S3). 

Size Range BC S1 S 2 S3 Size Range BC S1 S2 S 3 

<.1 m Bin 1 5% 9% 35% 51% .56-1.0 m Bin 5 10% 19% 33% 60% 

.1-.18 m Bin 2 5% 6% 24% 42% 1-1.8 m Bin 6 13% 39% 53% 82% 

.18-.32 m Bin 3 5% 6% 22% 40% 1.8-2.5 m Bin 7 13% 47% 64% 91% 

.32-.56 m Bin 4 18% 20% 33% 54% MERV number NA 6 11 14 

 

Analysis Scenarios 

For this initial application, we explored the impact of in-duct systems on PM2.5 concentrations 

in US homes that have central duct systems. The analysis looked at a 37,819 home subset of 

the representative housing stock, which represents the 76% of the US housing stock with 

some level of ducting. We assumed that all homes ran the central duct system to provide 

heating and cooling. We assumed a base case of a duct system solely to provide heating and 

cooling with no filter in place. We compared the base case to filters in the duct systems with 

MERV ratings of 1) MERV6,, 2) MERV11, and 3) MERV14. Our analysis did not consider 
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the impacts of increased MERV filters on filter bypass, duct leakage, or reductions in duct 

flow rate due to increased pressure drop. MERV filter particle capture efficiency values were 

taken from two sources (Hanley et al. 1994; EPA 2008). A MERV14 filter likely has too large 

of a pressure drop for most existing home HVAC systems, however the results can be thought 

of as providing an upper bound on the potential benefits from adding a higher MERV filter to 

existing duct systems. Duct only capture efficiencies were taken for home HVAC system 

efficiencies measured by Stephens and Siegel (2012; 2013). We combined the duct and filter 

capture efficiencies using the formula given by Stephens and Siegel (2012): 

 

𝐶𝐸𝐻𝑉𝐴𝐶 = 𝐶𝐸𝑑𝑢𝑐𝑡𝑠+𝑓𝑖𝑙𝑡𝑒𝑟 = 1 − (1 − 𝐶𝐸𝑑𝑢𝑐𝑡𝑠)(1 − 𝐶𝐸𝑓𝑖𝑙𝑡𝑒𝑟)  (7) 

 

The total calculated duct and filter particle removal efficiency for each particle size bin is 

shown in Table 1. There are no data for the 0.1-0.3 m size range, which encompasses most 

of two of our seven modeled size bins (0.1-0.18 m bin and 0.18-0.32 m bin). For those bins 

we assumed the same duct capture efficiency as for the smallest modeled bin (<0.1 m). 
 

RESULTS AND DISCUSSION 

Table 2 presents summary results for each scenario in each US climate zone and the US 

average. Figures 1 and 2 present the distributional results for the concentrations indoors and 

outdoors of homes for each of the operating conditions. The box in each plot shows the 25-

75th percentiles of the home/occupant data for each modeled condition. The line in the center 

of each box shows the median, and the whiskers extend to the 5th and 95th percentiles.  
 

Table 2. Mean weekly average concentrations (conc.) in the US housing stock 

Climate zone 1 2a 2b 3a 3b 3c 4a 4b 

Num. of Homes (thousands) 1,338 10,783 1,938 13,629 7,072 1,661 18,583 724 

Indoor Conc. (g/m3)         

no filter 3.8 3.3 1.8 3.5 2.7 2.2 3.8 1.7 
MERV 6 filter 3.7 3.2 1.8 3.3 2.6 2.1 3.6 1.6 

MERV 11 filter 3.7 2.8 1.5 2.9 2.2 1.9 3.0 1.4 
MERV 14 filter 3.6 2.3 1.2 2.3 1.8 1.6 2.2 1.0 

Outdoor Conc. (g/m3) 7.1 8.8 8.6 9.9 10.8 8.7 10.2 6.2 
 

Climate zone 4c 5a 5b 6a 6b 7 8 All US  

Num. of Homes (thousands) 1,856 18,510 3,244 5,597 856 790 34 86,614 

Indoor Conc. (g/m3) 

       

 

no filter 2.9 4.2 2.5 3.8 2.8 2.7 8.7 3.5 
MERV 6 filter 2.6 3.9 2.4 3.5 2.5 2.5 7.3 3.3 

MERV 11 filter 2.2 3.3 2.0 2.9 2.2 2.1 6.0 2.8 
MERV 14 filter 1.7 2.4 1.5 2.0 1.5 1.5 4.3 2.2 

Outdoor Conc. (g/m3) 9.1 11.7 9.1 11.7 9.2 7.7 23.6 10.2 
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Figure 1. Week average and maximum 24-h concentrations for modeled week.  

 

 
Figure 2. Week average speciation and size distribution for modeled week.  
 

CONCLUSIONS 

The results indicate that if no other changes are made, adding a higher MERV filter can 

reduce indoor concentrations by up to 39%, but that low MERV (MERV6), and moderately 

high (MERV11) filters had a much smaller impact, 8% and 20% respectively.  
 

This work was intended to demonstrate the capabilities of the PIAM framework for assessing 

indoor PM2.5 concentrations across the US housing stock. Going forward, this tool will allow 
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us to determine cost effective methods of controlling PM2.5 in the residential housing stock 

based on home characteristics and for assessing indoor exposures across the population.  
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