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Abstract

Instrumental Variable (IV) methods, subject to appropriate identification assumptions,
allow for consistent estimation of causal effects in the presence of unobserved confound-
ing. Near-far matching has been proposed as one analytic method to improve inference by
strengthening the effect of the instrument on the exposure and balancing observable char-
acteristics between groups of subjects with low and high values of the instrument. However,
in settings with hierarchical data (e.g. patients nested within hospitals), or where several
covariate interactions must be balanced, conventional near-far matching algorithms may
fail to achieve the requisite covariate balance. We develop a new matching algorithm, that
combines near-far matching with refined covariate balance, to balance large numbers of
nominal covariates while also strengthening the IV. This extension of near-far matching is
motivated by a case study that aims to identify the causal effect of prompt admission to
the Intensive Care Unit on 7-day and 28-day mortality.
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1 Introduction

Instrumental variable methods can address the problem of unobserved confounding in observa-

tional studies. However, a common concern is that the instrument is weak and liable to provide

biased estimates if there are deviations from random assignment of the instrument (Small and

Rosenbaum 2008). Near-far matching addresses this concern by creating pairs that are similar

in terms of observed covariates but dissimilar on the values of the instrument (Baiocchi et al.

2010). However, the matching algorithms on which near-far matching is based may be unable to

balance many-valued nominal covariates (Pimentel et al. 2015). Such nominal covariates may be

present due to hierarchical data structures, for example pupils nested within schools, or patients

within hospitals. Alternatively, the interaction of several nominal covariates produces nominal

variables of this type. Here, we extend extant near-far matching algorithms based on optimal

nonbipartiate and integer programming (Baiocchi et al. 2010; Zubizarreta et al. 2013), to include

refined covariate balance, which is designed to optimally balance many-valued nominal covariates.

(Pimentel et al. 2015). Our approach is novel in that we develop a single matching algorithm that

combines refined covariate balancing with near-far matching to handle the more complex data

structures found in some observational studies. Specifically the use of refined covariate balance

allows us to match within many blocks and to balance nominal covariates and their higher order

terms.

Our methodological contribution is motivated by an empirical investigation of whether prompt

admission to the intensive care unit (ICU) reduces mortality. Previous studies have reported that

ICU admission is associated with higher mortality, but these studies are likely to have provided

biased estimates, as patients promptly admitted to the ICU tend to have a more severe case-mix,

according to both measured and unmeasured patient characteristics (Chalfin et al. 2007; Gabler

et al. 2013; Renaud et al. 2009). To address this problem, other investigators have used an

instrumental variable to study the effects of critical care (Hu et al. 2018; Kc and Terwiesch 2012;

Shmueli et al. 2004; Valley et al. 2015; Pirracchio et al. 2011). An instrumental variable acts as a

nudge or encouragement for treatment receipt that can only affect the outcome via the treatment.
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Specifically, our study uses the level of bed-occupancy at the time of patient assessment as an

instrumental variable for the effect of prompt ICU admission on mortality (Harris et al. 2018).

We conduct near-far matching to strengthen the instrument, while recognizing that unobserved

confounding may be correlated within hospitals. Our matching algorithm therefore incorporates

refined balance constraints and optimal subsetting of the data to conduct the near-far matching,

while fine-balancing patients within hospitals and the interaction of several nominal covariates.

Thus our key contribution is to account for hospital specific components in the near-far match.

The paper proceeds as follows. In Section 2, we outline the empirical investigation and provide

an overview of the assumptions required for IV identification in the context of this example.

Section 3 provides details on near-far matching including the extension with refined covariate

balance. Section 4 details the implementation, and Sections 5 and 6 report results. Finally, in

Section 7, we conclude.

2 Motivating Example, Notation, and Causal Framework

We assess the effect of prompt ICU admission as part of a prospective cohort study of patients

with deteriorating health referred for assessment for ICU admission in 48 UK National Health

Service (NHS) hospitals between 1 November 2010 and 31 December 2011 (the SPOTlight

study) (Harris et al. 2015). The patients included were those on general hospital wards that were

considered for ICU admission. However, due to logistical and temporal constraints on ICU bed

availability, only a subsample of these patients were transferred promptly to an ICU. The study

uses this variation to define the exposure (treatment) as transfer to the ICU within four hours of

assessment. The non-exposed (control) group is defined as those patients who were not admitted

to ICU or admitted with a delay of more than four hours. The four hour cutoff was chosen a

priori according to published clinical guidelines for the UK (The Intensive Care Society 2013).

The main endpoints of interest were 7- and 28-day mortality.

The level of ICU bed occupancy at the time of assessment for ICU admission was recorded
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for each patient, and we use it as an instrument for prompt ICU admission. Other covariates

recorded at assessment include age, sepsis (0/1), peri-arrest (0/1), physiological measures such

as the Intensive Care National Audit & Research Centre (ICNARC) physiology score, the NHS

National Early Warning Score (NEWS), and the Sequential Organ Failure Assessment (SOFA)

score. The level of care at assessment, and recommended level of care after assessment were

defined using the UK Critical Care Minimum Dataset (CCMDS) levels of care (0 and 1 for

normal ward care, 2 for care within a high dependency unit, 3 for ICU care). The study also

collected measures thought to influence ICU bed occupancy including whether or not it was: at

the weekend, out of hours (7 PM to 7 AM), and winter (between November and February).

We expect that ICU bed availability will be correlated with these covariates, but also with their

interactions. For example, the fewest beds might be available for patients assessed at night,

during weekdays in the winter. We refer to the interaction of these three measures as the “timing

index.”

The study sample contains 13011 patients, and 10478 patients were not promptly admitted

to the ICU. Of these, 2432 were later transferred to the ICU, with a mean (median) time to ICU

of 22 (10) hours, with 245 patients (2.3%) transferred within 5 and 198 (1.9%) transferred within

6 hours respectively. Thus a small portion of patients, designated as controls, received ICU care

just beyond the four hour window. The ICU was full at the time of 1198 (8%) assessments, but

admission to the ICU can be discouraged or delayed since open beds in the ICU are often reserved

for patients in surgery or not filled due to inadequate levels of ICU staffing. Next, we outline our

notation based on the potential outcomes framework.

2.1 Notation

Since we use matching methods, our notation is based on a paired randomized encouragement

design. After matching, there are I matched pairs for i = 1, . . . , I, for 2I total units, and the

units within matched pairs are denoted with j ∈ {1, 2}. Let Yij denote the outcome, an indicator

of mortality at 7 (or 28) days, Dij denotes the treatment actually received – prompt admission
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to the ICU or not, and Zij denotes the multivalued instrument of ICU bed availability such that

we observe the triplet (Yij, Dij, Zij). For each individual j in pair i, let Yij(z, d) be the potential

outcome given the treatment assignment value z ∈ {0, 19} and treatment actually received value

d ∈ {0, 1} and let Dij(z) be the potential outcome of Dij given the treatment assignment

value z ∈ {0, 19}. Observed outcomes are related to potential outcomes in the following way:

Dij = Dij(Zij) = ZijDij(1) + (1 − Zij)Dij(0) and Yij = Yij(Zij, Dij) = Yij(Zij, Dij(Zij)) =

ZijYij(1, Dij(1)) + (1− Zij)Yij(0, Dij(0)).

We denote observed covariates as xij. We form matched pairs using xij, but we may fail

to control for uij an unobserved covariate. That is, paired subjects may not be equally likely to

experience a high or low value of the instrument when xi1 = xi2, but possibly ui1 6= ui2. Let

F = {(Yij(z, d), Dij(z),xij, uij), i = 1, . . . , I, j = 1, 2}. Next, we write Wij = 1 to denote

max{Zi1, Zi2} for the matched pair patient with a higher number of ICU beds available, but

write Wij = 0 for the patient in the matched pair with fewer beds available. Within a matched

pair, we denote the probability that a subject has the higher instrument value in the pair as

πij = Pr(Wij = 1|F). For two subjects in the same pair i, matching ensures that observed

covariates are similar (xi1 ≈ xi2) and we therefore assume that πi1 = πi2. In our notation, the

only random quantity is Zij, and we assume potential outcomes are fixed. This is consistent with

the randomization inference framework applied to observational studies (Rosenbaum 2002, ch.

4). With a continuous instrument, such as excess beds, the ideal matched pair of subjects ik and

il would have xik = xil but the difference, Zik − Zil, will be large. That is, these units should

have identical observed covariates, but one patient is strongly encouraged to receive prompt ICU

care, while the other is not.

2.2 Instrumental Variable Assumptions

Identification of the causal effect of prompt ICU admission under an IV design requires a series

of assumptions outlined by Angrist et al. (1996). Here, we review these assumptions and discuss

their plausibility in the context of our application. First, our notation here implicitly assumes that
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SUTVA holds (Rubin 1980). For SUTVA to hold, subjects outcomes must be unaffected by other

patients’ ICU admittance status, and the indicator Dij must adequately represent all versions of

the exposure. First, it seems unlikely that admitting one patient to the ICU will affect a patient

on the general ward, since there are very few patients that had concurrent admissions within the

same hospital. Second, we assume that while there is some variation in how patients receive care

in the ICU, this variation in exposure corresponds to the same potential outcomes.

Next, we must assume that the exclusion restriction holds. Under the exclusion restriction,

the outcome is only affected by the actual uptake of the treatment. Stated formally, for ev-

ery individual, conditional on the exposure, the instrument has no effect on the outcome, i.e.

Yij(d, 1) = Yij(d, 0) = Yij(d) for all values of d = 0, 1. We judged that levels of bed occupancy

meet the exclusion restriction for the following reason. The instrument is ICU bed occupancy

at the time of assessment not ICU admission. ICU occupancy varies over time and according to

stochastic processes, hence, even for the ICU admitted patients it is unlikely that occupancy at

assessment is directly related to mortality (Gabler et al. 2013; Kahn et al. 2009). Finally, ICU

staffing levels vary with the number of beds occupied such that when the ICU is full staffing levels

are higher. As such, staff to patient ratios are fixed regardless of the level of ICU occupancy.

Therefore, the quality of ICU care due to staffing levels should not vary with ICU occupancy.

Next, we must assume that instrument assignment is unconfounded once we condition on

baseline covariates: Yij(d), Dij(z) ⊥⊥ Zij|xij. In our application, it must be the case that

for similar patients in the same hospital that ICU bed availability at the time of critical care

assessment varies as-if randomly. While this assumption is untestable, many authors recommend

the use of a falsification test where investigators examine whether baseline covariates are balanced

by instrument status (Baiocchi et al. 2014; Swanson and Hernán 2013; Davies et al. 2013; Ertefaie

et al. 2017). That is, while balance in measured confounders does not provide any information

about imbalances in unmeasured confounders, high levels of imbalance by instrument status casts

doubt on an instrument as form of natural experiment (Rosenbaum 2010).

We calculated covariate balance for groups defined according to whether ICU bed occupancy
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was above or below the median (4 beds). Table 1 reports the corresponding means and stan-

dardized differences for baseline covariates, prior to any matching. For many covariates, the

imbalances are small, with just one standardized difference exceeding 0.10. In the appendix, we

include plots of scaled and unscaled bias estimates with confidence intervals (Davies 2015; Jack-

son and Swanson 2015). These measures of imbalance do not require us to use a binary version

of the instrument. Again, we find covariates tend to be balanced by the instrument. However,

these results do not indicate whether there are differences in either the distribution of patients

within each of the 48 hospitals or whether there are differences across the timing index.

We summarize the distribution of patients within hospital and on the timing index by reporting

the total variation distance (TVD). The TVD is a distributional balance metric designed to

summarize balance across many discrete categories in a single measure. A nominal covariate k

with Lk levels yields an Lk× 2 contingency table, and we denote the difference in counts for row

` of the table for covariate k as βkl. As discussed in Pimentel et al. (2015) the quantity ∑Lk
l=1 |βkl|

is proportional to the TVD between the two empirical probability distributions arising from the

control and treated groups respectively. The TVD as expressed by ∑Lk
l=1 |βkl| may take on values

ranging from 0, when the empirical distributions coincide exactly, to N which represents the total

sample size when the empirical distributions share no common support. We then standardize

the TVD to allow for comparisons of the TVD when sample sizes differ. Specifically, we divided

by N , the total sample size, and report a scaled TVD on the interval [0, 1]. We calculated the

TVD for the timing index and hospital. The total variation distance is 0.82, and the TVD due

to differences in the distributions within hospitals is 0.55. We seek to remove this imbalance via

the matching procedure we develop.

Next, we assume that the monotonicity assumption holds: for all individuals, Di(z′) ≥ Di(z)

for z′ > z. The monotonicity assumption would be violated if some patients were defiers, which

seems unlikely as it implies those assessing ICU admission, encouraged (discouraged) prompt

transfer when there were few (many) beds available.

Finally, there must be a non-zero causal effect of Zij onDij. However, if this assumption holds,
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Table 1: Balance Results For Units Above and Below the Median ICU Bed Availability
at Time of Assessment.

Less Than Greater Than
Median Beds Median Beds
Availablea Availablea

(N = 6114) (N=6897) Std. Diff. p-value
Age (years) 64.95 65.40 -0.03 0.15
Male 0.52 0.53 -0.00 0.95
Sepsis 0/1 0.61 0.61 -0.01 0.67
Level of Care - Level 0 0.16 0.11 0.13 0.00
Level of Care - Level 1 0.65 0.71 -0.13 0.00
Level of Care - Level 2 0.19 0.16 0.07 0.00
Level of Care - Level 3 0.01 0.01 -0.02 0.26
Rec’d Level of Care - Level 0 0.10 0.05 0.19 0.00
Rec’d Level of Care - Level 1 0.53 0.55 -0.05 0.01
Rec’d Level of Care - Level 2 0.28 0.30 -0.04 0.02
Rec’d Level of Care - Level 3 0.09 0.09 -0.00 0.91
Peri-arrest 0/1 0.05 0.05 -0.03 0.12
Weekend 0/1 0.24 0.26 -0.05 0.01
Winter 0/1 0.32 0.20 0.28 0.00
Out of Hours 0/1 0.38 0.33 0.09 0.00
Icnarc Score 15.15 15.01 0.02 0.26
News Score 6.28 6.15 0.04 0.02
Sofa Score 3.18 3.12 0.03 0.14
Level of Care Missing 0/1 0.00 0.01 -0.08 0.00
Rec’d Level of Care Missing 0/1 0.00 0.01 -0.07 0.00

Note: aavailable at time of assessment for admittance to ICU. The measure of ICU bed
availability had minimum value of zero and a maximum of 19, with a mean value of 4.3 and
a median value of 4. Std. Diff. – standardized difference in means.

but the effect of Zij on Dij is close to zero, we may face the weak instrument problem (Bound

et al. 1995). When the instrument has a weak effect on the treatment, this can result in incorrect

coverage of confidence intervals (Imbens and Rosenbaum 2005; Bound et al. 1995). To assess

the strength our instrument, we conducted a weak instrument test: the F-value from the weak

instrument test was 30.28, which exceeds the critical value of 16.38. Thus our instrument satisfies

standard tests for a weak instrument. However, Small and Rosenbaum (2008) prove that stronger

instruments are more robust to bias due to departures from ignorable instrument status. Other
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work has shown that stronger instruments are more resistant to bias from unobserved confounders

(Baiocchi et al. 2010; Keele and Morgan 2016). Thus, we seek to both balance covariates and

produce a stronger instrument. Next, we develop a matching algorithm that is tailored specifically

to ensure that our design has a strong instrument and well-balanced comparison groups.

3 Near-far Matching with Refined Covariate Balance

In our application, we seek to form pairs with one patient that was assessed when there were many

beds available, and the other with few, but the two individuals have similar baseline covariates.

Thus we aim to create matched pairs with similar covariate values (near), but dissimilar instrument

values (far). The near-far matching algorithm in Baiocchi et al. (2010) creates matched pairs

that follows this template.

However, we extend standard near-far matching to account for two design features in our

application. First, we want to account for variation in the selection of patients for prompt ICU

admission across the 48 hospitals. In particular, assessment for ICU admission is undertaken in

some hospitals by specialist critical care outreach teams, and in others by a single ICU physician.

This variation in ICU admission processes implies that unmeasured covariates may be more similar

within versus across hospitals. Ideally, we would compare a patient that was assessed for ICU

admission at a time when the ICU had few beds available to another patient that was assessed

with many beds available within the same hospital. To capture this feature, we wish to balance

patients within hospitals to account for the hospital-specific ICU admission process. Second, we

wish to balance the timing index to control for any correlation between the interaction of these

contextual variables and demand for ICU beds. We address these requirements by introducing

a new matching algorithm that adapts near-far matching to allow the specification of balance

constraints. Next, we review relevant concepts.
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3.1 Near-far Matching: A Review

Baiocchi et al. (2010) demonstrate how to use nonbipartite matching combined with penalties

to implement the ideal IV match. In matching, penalties are used to enforce compliance with a

constraint where possible, and otherwise to minimize deviation from that constraint. A near-far

matching algorithm attempts to minimize distances on observables within matched pairs, subject

to a penalty on instrument distance. More specifically a penalty is applied to any matched pairs

that differ by more than Λ on the instrument distance as measured by |Zi1 − Zi2|, where Λ is

a threshold defined by the analyst. Typically a “penalty function” is applied to the within pair

instrument distance. A penalty function is a continuous function that is 0 if the constraint is

respected, and increases rapidly as the magnitude with which the condition is violated increases.

See Rosenbaum (2010, Sec. 8.4) for a discussion of penalties in matching. Matched distances

on the instrument less than Λ receive larger penalties, and are less likely to be matched. Hence,

matched pairs tend to be alike on observables but different on the instrument.

In most applications increasing instrument distance leads to larger imbalances for baseline

covariates. That is, as the algorithm forces pairs apart on the instrument, the matching problem

becomes more restricted and some pairs formed may be insufficiently close on covariates. Baiocchi

et al. (2010) remedy this problem by using “sinks” (Lu et al. 2001) to discard those observations

that cannot be matched well. To eliminate e units that create suboptimal matches, e sinks are

added to the data before matching, and each sink has a zero distance between each unit and an

infinite distance to all other sinks. This creates a distance matrix of size (2I + e) × (2I + e).

The optimal nonbipartite matching algorithm pairs e units to the e sinks to minimize the total

distance between the remaining I−e/2 pairs. That is, by pairing a unit with a sink, the algorithm

removes the e units that would form the e set of worst matches. As such, the analysts seeks a

match where the penalty sufficiently strengthens the instrument, and the appropriate number of

sinks yield acceptable balance. Keele and Morgan (2016) show how to use weak instrument tests

to guide the choice of the penalty and sinks.
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3.2 Refined Covariate Balance: A Review

We begin with a brief discussion of fine balance, which is the key component of refined covariate

balance matching. For a nominal covariate k with Lk levels, with nLk
≥ 0 treated subjects at

each level, a match with κ controls is finely balanced if there are κnLk
controls with level Lk of

the nominal variable (Rosenbaum et al. 2007). For example, a match with fine balance on the

nominal measure for hospital would produce patients paired on the IV with identical marginal

distributions for hospital. The term “fine balanced” is used since a nominal covariate has been

balanced at every level, but units are not exactly matched on the variable. A near-fine balance

constraint returns a finely balanced match when one is feasible, and otherwise minimizes the

deviation from fine balance (Yang et al. 2012). Thus with near-fine and fine balance, we place

no restriction on individual matched pairs–any one treated subject can be matched to any one

control, but the marginal distribution of a categorical covariate is exactly or nearly exactly the

same across treated and control groups. However, even with large sample sizes, we may encounter

difficulty fine balancing both hospitals and the timing index. Specifically, with 48 hospitals, 6

binary covariates and 2 nominal covariates with 4 levels, the full interaction (or joint distribution)

of these variables is a nominal variable with 49,152 possible levels. Even if we balance this

full interaction optimally well, many categories will likely remain imbalanced and the marginal

variables may be imbalanced.

Refined covariate balance is an extension of fine or near-fine balance designed to fine balance

the joint distribution of many nominal covariates (Pimentel et al. 2015). Under refined covariate

balance, we define a sequence ofK nested nominal covariates, which the investigator must arrange

in descending order of balance prioritization. We then nest the covariates via an interaction of

joint categories, such that the categories of the second covariate are all subcategories of the first

covariate, and categories of the third covariate are subcategories of the previous two covariates,

and so on. The algorithm then seeks to apply near fine balance to this ordering of covariate

categories for each covariate in order of priority. Thus for this sequence of nested nominal

variables, v1, . . . , vK , the refined covariate balance algorithm comes as close as possible to fine

11



balance for v1, and amongst all the matches that do that, it comes as close as possible to fine

balance for v2, and so on.

In our application, variable v1 is the interaction of the 48 hospitals included in the data with the

recommended level of care (i.e. v1 includes a separate category for each distinct recommended

level of care within each distinct hospital). Variable v2 contains subcategories of variable v1,

defining whether or not patients are admitted out-of-hours, admitted on the weekend, or both.

Finally, v3 subdivides the patient groups of v2 by current level of care. In a match with refined

covariate balance, we would attempt to balance these covariates in the order outlined above.

Among all matched samples that meet the refined covariate balance constraints, the algorithm

minimizes the total covariate distance within pairs.

3.3 A Near-Far IV Match with Refined Covariate Balance

We develop a new matching algorithm that combines near-far matching with refined covariate bal-

ance. To do this, we depart from the original formulation of near-far matching for IV applications

in two ways. First, we apply a bipartite rather than a nonbipartite match to the data. To apply a

bipartite match, we applied the matching algorithm to groups defined by a binary indicator that

is 1 if there are fewer than the median number of beds available in the ICU, and 0 if there are

more than the median number of beds available. Next, we implemented penalties using a reverse

caliper. Typically caliper matching is used to avoid poor matches by imposing a tolerance on the

maximum distance between matched pairs (Cochran and Rubin 1973). For two subjects i and j,

let Pi and Pj be a score on a distance metric such as the propensity score. Under a caliper, a

match for subject i is selected only if ||Pi − Pj|| < Λ, where Λ is a pre-specified tolerance. We

reverse the concept of a caliper and only select a match for subject i if ||Pi − Pj|| > Λ, where

Λ remains a pre-specified tolerance. We apply the reverse caliper to the original multi-valued

measure of the instrument. Applying a reverse caliper in conjunction with bipartite matching pairs

units that are similar on observables, but we penalize the match unless the within pair distance

on the instrument satifies the reverse caliper. Thus we build a distance matrix applying a reverse
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caliper to the standard deviation of the instrument, and penalizing matches that are too close on

the instrument. We then match with the refined covariate balance algorithm.

The shift to a bipartite matching enables us to use the fast, scalable balance constraint

framework of Pimentel et al. (2015) rather than the much more computationally restrictive

approach of Zubizarreta et al. (2013). Using bipartite matching produces matched data with the

same structure as produced by nonbipartite matching: matched pairs that tend to be dissimilar

on the instrument. Using a bipartite match also does not affect how we estimate the IV effect.

Just as if we had applied nonbipartite matching, we calculate the average discrepancy in ICU

admission status across matched pairs. See Yang et al. (2014) for a similar use of a bipartite

algorithm for a near-far match.

The use of refined covariate balance does not change the basic tension between balance and

instrument strength. As we strengthen the instrument, balance will tend to be worse. To increase

instrument strength and balance covariates, we have to remove observations. We do so using

optimal subset matching (Rosenbaum 2012), which aims to find the largest set of matched pairs

such that the average matched distance within pair does not exceed a certain threshold δ̃. The

parameter δ̃ can also be viewed as a penalty, describing the cost of excluding a treated individual

from the match. As the value for δ̃ is decreased, more units will be excluded so that only the

closest pairs will be retained in the match. While Rosenbaum (2012) considered matching without

balance constraints, for a given value of δ̃ and set of refined balance constraints, our algorithm

guarantees that the match produced has optimal refined balance among matches with the same

number of units excluded (Pimentel and Kelz 2017). The δ̃ parameter serves a similar role to

the number of sinks in the original near-far matching algorithm in that it can be used to improve

balance at the cost of excluding patients from the match. Under refined covariate balance smaller

values of δ̃ will also produce smaller deviations from perfectly fine balanced marginal distributions.
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3.4 A General Procedure

We now give a formal specification of the algorithm. For any given set of match parameters,

(Λ, δ̃), the match reduces to a special case of a canonical problem in mathematical optimization

known as a minimum-cost network flow. In this framework, the match is represented as a graph

of connected nodes. Each unit is represented as a node and distances between treated and

control nodes are represented with graph edges. Each edge represents a possible match and

has an associated decision variable, usually binary, referred to as a “flow.” A distance metric

such as the Mahalanobis distance is used to represent the distance or flow between treated and

control nodes. Each edge has an associated cost per unit of flow (represented by the distance

metric), and the goal of the problem is to send a certain amount of flow, or equivalently to

select a certain number of matches between the treated nodes and control nodes while paying

a minimal total cost. Computationally efficient algorithms exist for solving these problems in

general (Bertsekas 1998). We formulate a near-far match with refined covariate balance in this

framework by creating an augmented graph for the match which includes additional nodes and

edges that enforce balance constraints and allow units to be excluded. We then use existing

optimization methods for solving network flow problems.

We first provide an informal overview of the algorithm, and then we present the algorithm in

detail.To summarize the algorithm:

1. Split the study population into two groups, using the median of the instrument as a thresh-

old.

2. Impose calipers and exact matching constraints to form an allowable set of pairs.

3. Refine the allowable set of pairs using a reverse caliper on the instrument.

4. Construct a network flow optimization problem to solve the match, based around a bipartite

graph connecting our two comparison groups and incorporating refined balance constraints

and an exclusion penalty.
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5. Compute the optimal flow solution and form the matched data.

We first describe the construction of this network for fixed values of Λ and δ̃, then we briefly

discuss a strategy for iterating over values of these tuning parameters. Note that the notation in

this section, which generally follows the notation of Pimentel et al. (2015), differs slightly from

the notation given earlier in order to focus on construction of the matched sample from the raw

data, rather than description of the resulting matched sample. Take the following quantities as

given:

• A study population or sample of n individuals S = {α1, . . . , αn}

• An instrumental variable Z : S −→ R.

• A list of discrete variables νk : S −→ Z with k = 1, . . . , K in decreasing order of priority

for balance, whose categories grow progressively finer with increasing k, so that νk+1(x) =

νk+1(y) implies νk(x) = ν(y) but the converse may not hold.

• Parameters δ̃ and Λ.

Define an indicator

Wi =


1 if Z(αi) < median(Z(α1), . . . , Z(αn))

0 otherwise

We use this binary version of the instrument used to structure the match as bipartite – consisting

of two defined groups. We relabel the observations withWi = 1 by τ1, . . . , τT and the observations

with Wi = 0 by κ1, . . . , κC (so that T +C = n). Next, we write this bipartite match as a graph.

Individuals τi form one of the groups in the bipartite graph, the high-IV group T , while individuals

κj form the low-IV group C. Let A ⊂ T × C represent the set of allowable pairings (τi, κj). Set

A may be the full outer product T × C but more generally it may be a strict subset forbidding

pairings that violate some condition; for instance, in exact matching on a nominal covariate A

would contain only pairs with identical values of the nominal covariate, and in caliper matching
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pairs would only be allowed between individuals whose values on a particular continuous covariate

differ by no more than a fixed amount. In contrast to previous approaches, we refine set A as

follows:

A∗ = A ∩ {(τi, κj) : |Z(τi)− Z(κj)| > Λ}

This ensures our match obeys a reverse caliper of size Λ on the instrument. For every (τi, κj) ∈

A∗, label the covariate distance between τi and κj by cij.

Now consider the list of discrete variables ν1, . . . , νK . Label the categories of each variable

νk by λk1, . . . , λkLk
. Since the variables are nested and grow increasingly fine, each category λk`

with k > 1 has a “parent" category in the previous variable νk−1; formally, for any k > 1

and ` ∈ {1, . . . , Lk}, there is a single value `′ ∈ {1, . . . , Lk−1} such that for any s ∈ S

with νk(s) = λk`, νk−1(s) = λ(k−1)`′ also. We will use the notation par(λk`) to represent

this parent category λ(k−1)` in the next-most-coarse discrete variable; the parent is well-defined

for k = 2, . . . , K and j = 1, . . . , Lk due to the nested structure of the covariates ν1, . . . , νK .

We can now write the match as a minimum-cost network flow problem. To do so, we define a

set of nodes N — one for each high-IV unit and each low-IV unit in our study, plus three nodes

for each category λk` of our discrete variables, and one sink — and a set of directed edges E

connecting them to one another. The treated and control units connect to one another via the

bipartite graph implied by the set A∗; the control units then connect to nodes associated with

their respective categories in variable νK , which in turn connect to sets of nodes for their parent

category in variable νK−1, and so on until nodes associated with categories of ν1 connect to the

sink node ω. In addition, we add an edge from each treated unit direct to the sink (to allow this

treated unit to be discard if necessary). Formally, the graph structure is described as follows.
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N = {τ1, . . . , τT , κ1, . . . , κC , ω} ∪
K⋃

k=1
{λk1, λ

′
k1, λ

′′
k1, λk2, λ

′
k2, λ

′′
k2, . . . , λkLk

, λ′kLk
, λ′′kLk

}

E = A∗ ∪
K⋃

k=1

Lk⋃
j=1
{(λkj, λ

′
kj), λkj, λ

′′
kj), (λ′kj, λ

′′
kj)} ∪

K⋃
k=2

Lk⋃
j=1
{(λ′′kj, par(λkj))}∪

C⋃
i=1
{(κi, νK(τi))} ∪

L1⋃
j=1
{(λ′′1j, ω)} ∪

T⋃
i=1
{(τi, ω)}

To complete the formulation of the network flow problem, costs and capacities must be set for

the flow across each edge that connects two nodes, and an amount of flow must be supplied to

each node (positive amounts meaning that flow is produced there and negative amounts meaning

flow is received). Assign supplies of 1 to nodes τi, a demand of T (or supply of −T ) to the sink

node ω, and supply of zero to all other nodes. Assign capacities of 1 to edges of form (τi, κj),

(κj, νK(κj)), and (τi, ω), capacities of |{τi : νk(τi) = λkj}| to edges (λkj, λ
′′
kj), and infinite

capacity to all other edges. Additionally, assign costs cij to edges (τi, κj), cost δ̃ to edges (τi, ω),

costs ΥK−k+1 to edges (λkj, λ
′
kj) where Υ >> max cij, and cost 0 to all other edges. Note

that this network is identical to the one in Pimentel et al. (2015) except for the inclusion of the

bypass edges (τi, ω) – although these are described in the context of the original algorithm in

the appendix to Pimentel and Kelz (2017) – and the inclusion of the reverse caliper. When the

minimum-cost network flow problem defined by this network is solved using a standard generalized

solver, the pairings (τi, κj) with nonzero flow in the optimal solution form the optimal match.

Notice that the above algorithm assumes that Λ and δ̃ are fixed in advance. In practice, we

recommend that researchers consider several solutions using a grid search over values of these

parameters and select a single configuration that balances the tradeoff between sample size and

instrument strength well. Larger values of Λ and smaller values of δ̃ respectively tend to reduce

the sample size and improve the instrument strength. Finally, we note that balancing marginal

distributions may come at some cost in terms of pairwise distances, since we are no longer focusing

on the full distribution of the covariates using the pairwise distance alone. This implies that while
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a match of this type is the optimal solution for this representation of the match, it is not optimal

in terms of the pairwise distances. However, researchers can check for any associated increase in

the pairwise distances using post-match balance checks.

4 The Match

4.1 How the matching was done

Prior to matching, we calculated the pairwise distances between the patients included in the

sample. We used a rank-based Mahalanobis distance metric, which unlike the usual Mahalanobis

distance, is robust to low-incidence binary variables and variables with highly skewed distributions

(Rosenbaum 2010). For two covariates, the current level of care, and the recommended level of

care, a small fraction of data were missing. Instead of imputing these missing values based on a

model, we use a method recommended by Rosenbaum (2010). Specifically, we imputed missing

values using the mean for that covariate. We then created a separate indicator for whether the

value was missing and included these indicators within the matching algorithm to ensure the

pattern of missingness for each variable was balanced across comparison groups.

The first match we implemented strengthened the instrument but did not include any refined

covariate balance constraints. We conducted matches with several values for Λ and δ̃. We used

weak instrument tests to select values of Λ = 1.5 and δ̃ = 1000. This implies that the minimum

discrepancy between paired individuals was 1.5 standard deviations of the instrument. We later

examine whether the study conclusions are sensitive to these choices. We implemented a second

match which retained the same parameters for Λ and δ̃, but also included refined covariate balance

constraints. We added refined covariate balance constraints for the hospital, the timing index,

and the nominal measures for existing level of care at assessment, and recommended level of care

after assessment. In both matches, we exactly matched on winter, since it displayed the largest

imbalance in the data.
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4.2 Balance Results

Table 2 contains means and standardized differences for both matches. The standardized differ-

ence on the instrument for both matches is approximately three. As such, both matches were

similar in the extent to which they strengthened the instrument. The balance on the univariate

patient-level covariates is slightly better in the second match that includes refined covariate bal-

ance. Here, none of the standardized differences exceed 0.05, whereas following the first match,

three of the standardized difference are 0.10 or larger.

Table 2: Covariate balance and degree of encouragement in two matched comparisons: one without
refined covariate balance and one with.

Stronger Instrument Stronger Instrument
W/o Refined Covariate Balance With Refined Covariate Balance

4596 Pairs of Patients 2048 Pairs of Patients

Few Beds More Beds Few Beds More Beds
Availablea Availablea Availablea Availablea

Mean Mean Std. Diff. Mean Mean Std. Diff.

Available ICU Beds 1.68 7.64 2.91 1.56 7.05 3.07
Age (years) 65.00 65.23 0.01 64.80 65.94 0.06
Male 0.53 0.53 0.01 0.54 0.54 0.00
Sepsis 0/1 0.63 0.62 0.00 0.62 0.62 0.00
Level of Care - Level 0 0.13 0.11 0.07 0.10 0.10 0.01
Level of Care - Level 1 0.69 0.71 0.04 0.70 0.70 0.01
Level of Care - Level 2 0.17 0.16 0.02 0.18 0.18 0.01
Level of Care - Level 3 0.01 0.01 0.05 0.01 0.01 0.00
Rec’d Level of Care - Level 0 0.08 0.04 0.17 0.04 0.04 0.01
Rec’d Level of Care - Level 1 0.55 0.55 0.00 0.53 0.52 0.02
Rec’d Level of Care - Level 2 0.28 0.30 0.05 0.32 0.32 0.01
Rec’d Level of Care - Level 3 0.08 0.09 0.04 0.11 0.11 0.02
Peri-arrest 0/1 0.04 0.05 0.07 0.05 0.05 0.02
Weekend 0/1 0.23 0.26 0.06 0.24 0.25 0.02
Winter 0/1 0.21 0.21 0.00 0.27 0.27 0.00
Out of Hours 0/1 0.36 0.34 0.05 0.36 0.34 0.05
Icnarc Score 15.23 15.07 0.02 15.59 15.57 0.00
News Score 6.28 6.18 0.03 6.42 6.28 0.05
Sofa Score 3.16 3.14 0.01 3.31 3.27 0.02
Level of Care Missing 0/1 0.00 0.01 0.10 0.00 0.00 0.04
Rec’d Level of Care Missing 0/1 0.00 0.01 0.11 0.00 0.00 0.01

Total Variation Distance 0.71 0.09
Total Variation Distance Hospital Only 0.66 0.05

Note: aat time of assessment for admittance to ICU. The measure of ICU bed availability had minimum
value of zero and a maximum of 19, with a mean value of 4.3 and a median value of 4. Std. Diff. – absolute
standardized difference in means.
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We summarize the effect of applying the refined covariate balance constraints on the distribu-

tion of patients within hospital by reporting the TVD. After matching, we standardize the TVD

using 2I the total number of patients in the match. We calculated the TVD for each variable

separately and then summed these values. These statistics are reported in the bottom panel of

Table 2. The matching with refined covariate balance led to much smaller TVD (0.09 vs 0.71) in

particular across hospitals (0.05 versus 0.66). Thus the use of refined covariate balance reduces

the total variation distance far more than just using near-far matching. This comes at the cost

of having to discard a large number of patients. The appendix contains a comparison between

patients in each matched sample and the patients discarded by the match.

For the two matches in Table 2, we see that we can maintain a stronger IV and produce

better fine balance by adding refined covariate balancing constraints. However, the relative roles

of the refined covariate balance constraints and the sample trimming are unclear. We therefore

undertook two further matches. For the first match, we targeted the sample size of the match in

Table 2 without refined covariate balance, but then added refined covariate balance constraints.

For the second match, we targeted the sample size of the match with refined covariate balance

in Table 2, but removed the refined balance constraints. These additional matches allow us to

isolate the role of refined covariate balance from the use of δ̃. We also report for each match

the average distance between matched pairs using the Mahalanobis distance. The results are in

Table 3.

Table 3: Total variation distance and average pair distances in the matches without and with
refined covariate balance constraints for fixed sample sizes.

Without Refined Covariate Balance With Refined Covariate Balance
4596 Pairs of Patients 4596 Pairs of Patients

Total Variation Distance 0.71 0.60
Total Variation Distance Hospital Only 0.66 0.55
Average Pair Distance 22.45 22.53

Without Refined Covariate Balance With Refined Covariate Balance
2040 Pairs of Patients 2048 Pairs of Patients

Total Variation Distance 0.68 0.09
Total Variation Distance Hospital Only 0.68 0.05
Average Pair Distance 20.33 22.59
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First, we observe that, even without trimming the sample, the addition of refined covariate

balance does improve balance as the TVD declines from 0.71 to 0.60 when the sample size is

fixed at 4,596 matched pairs. Moreover, trimming the sample size alone does little to improve

balance on the marginal distributions. In a match that trims the data but does not add refined

covariate balance, the TVD declines little from 0.71 to 0.68. The combination of trimming and

refined covariate balance clearly produces the lowest value for the TVD (0.09). Second, matches

that do not involve refined balance constraints have lower average pair distances than those that

incorporate them. This is expected; prioritizing marginal balance over close pairing results in

sub-optimal pair distances. However, the relative increase in average pair distance associated

with the addition of a marginal balance constraint is small compared to the relative decrease

in marginal imbalance. Even with the smaller sample sizes, where the increase in average pair

distance arising from the inclusion of balance constraints is over 10% (from 20.33 to 22.59),

the percentage reduction in balance exceeds 90%. The change in closeness of individual pairs

is even less consequential when measured on any one of the many variables that are used to

create the summary Mahalanobis distance. Thus although marginal balance comes at the cost

of increased pair distances, the magnitude of that increase is negligible; especially in light of the

balance statistics reported in Table 2. However, the gains in terms of the TVD are substantial.

5 Analyzing the Matched IV Design

Under an IV design, the causal estimand can be charactized using the generalized effect ratio

from Baiocchi et al. (2010). Formally, the generalized effect ratio is:

λ =
∑I

i=1
∑2

j=1[Yij(1, Dij(1))− Yij(0, Dij(0))]∑I
i=1

∑2
j=1[Dij(1)−Dij(0)]

(1)

The effect ratio measures the relative magnitude of two treatment effects. The first treatment in

the numerator is the effect of ICU bed availability on mortality. The second treatment effect, in
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the denominator, is the effect of ICU bed availability on prompt ICU admission. In a randomized

trial, these two treatment effects are estimable, however, further assumptions are needed to link

these two effects. Under the exclusion restriction and monotonicity, we can interpret λ as the

average decrease in mortality caused by prompt ICU care, amongst those patients who only

received prompt ICU care because there were beds available at the time of assessment on the

general ward (Angrist et al. 1996).

To estimate λ, we use the following estimator

λ̂ =
∑I

i=1
∑2

j=1 E(Yij|Wij = 1)− E(Yij|Wij = 0)∑I
i=1

∑2
j=1 E(Dij|Wij = 1)− E(Dij|Wij = 0))

(2)

whereWij = 1 for the matched pair unit with a higher value of the instrument and is 0 otherwise.

Equation 2 is often referred to as the “Wald” estimator (Wald 1940; Hernán and Robins 2006;

Baiocchi et al. 2014) and is equivalent to estimation via two-stage least squares (Baiocchi et al.

2014). We test Fisher’s sharp null hypothesis of no treatment effect, where randomization forms

the “reasoned basis for inference” (Fisher 1935). The sharp null asserts thatH0 : Yij(1, Dij(1)) =

Yij(0, Dij(0)) for all i and j, which implies that changes in the number of excess ICU beds has

no impact on mortality. If the exclusion restriction holds, this sharp null hypothesis also implies

that prompt ICU care has no impact on mortality. We can test λ = 0 using McNemar’s test.

Alternatively, finite sample approximations to the exact test are available. Given the relatively

large sample sizes in our application, we use the finite sample approximation. We test this null

hypothesis using a test statistic derived in Baiocchi et al. (2010). This test statistic is comprised

of two terms, the first being:

T (λ0) = 1
I

I∑
i=1


2∑

j=1
Zij(Yij − λ0Dij)−

2∑
j=1

(1− Zij)(Yij − λ0Dij)

 = 1
I

I∑
i=1

Vi(λ0)

The second term has the following form:

S2(λ0) = 1
I(I − 1)

I∑
i=1
{Vi(λ0)− T (λ0)}2
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We can test H0 : λ = 0 by comparing T (λ0)/S(λ0) to a standard Normal cumulative distribution.

See Kang et al. (2018) for a review of exact inferential methods for for IV methods.

6 IV Estimates of Prompt ICU Care

In Table 4, we report the estimated effect of prompt ICU care on 7- and 28-day mortality for

the first two matches with and without refined covariate balance. For the first match, the

point estimate for 7-day mortality is -0.03 [95% confidence interval -0.210, 0.144], and for the

match with refined covariate balance constraints, the point estimate is -0.25 [-0.642, 0.078].

For the 28-day mortality endpoint, the corresponding point estimates [95% confidence interval]

are -0.12 [-0.342, 0.088] for the match without, and -0.19 [-0.638, 0.216], for the match with,

refined covariate balance constraints. While our estimates our imprecise as indicated by the

wide confidence intervals, they agree with estimates from other IV studies of ICU care (Kc and

Terwiesch 2012; Shmueli et al. 2004; Valley et al. 2015).

What might account for the differences in the outcome estimates by match type? The

primary difference between the two matches was that refined covariate balancing allowed us to

nearly exactly balance patients within hospitals. As we outlined above, hospitals have specific

ICU admission procedures and balancing the marginal distribution of hospitals better allows us to

control for hospital specific aspects of the instrument assignment mechanism. Thus if we assume

that balancing patients within hospitals is a critical component of the outcome model, we would

favor the estimates under refined covariate balancing.

We consider whether these estimates are sensitive to the choice of reverse caliper for instru-

ment distance within matched pairs. We re-estimated the treatment effects for matches with

the IV caliper set to 1.0 and 2.0, which implies a somewhat weaker, or stronger instrument,

compared to the estimates in Table 4where the caliper was set to 1.5. When the match with the

refined balance constraint is repeated with a caliper of 2.0, the estimated effects of prompt ICU

admission are -0.02 (7-day mortality) and -0.21 (28-day mortality), whereas with a caliper of 1.0,
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Table 4: Estimated Effect of Prompt ICU Admission on 7 and 28 Day Mortality.

Strong IV Without Refined Covariate Balance
Point Estimate 95% CI p-value

7 Day Mortality -0.031 [-0.210, 0.144] 0.73
28 Day Mortality -0.122 [-0.342, 0.088] 0.256

Strong IV With Refined Covariate Balance
Point Estimate 95% CI p-value

7 Day Mortality -0.252 [-0.642, 0.078] 0.132
28 Day Mortality -0.189 [-0.638, 0.216] 0.351

the corresponding estimates are 0.03, and 0.13. For the match which did not include the refined

covariate balance constraints, the corresponding estimates are -0.04 (7-day mortality) and -0.09

28-day mortality, with the caliper set to 2.0, and -0.09, and -0.14 with the caliper set to 1.0. In

all cases, the 95% confidence intervals include zero.

7 Discussion

This paper develops a new near-far matching algorithm that can improve IV strength while

balancing many nominal categories. Our extension is motivated by the fact that the treatment

selection process may differ on unobserved characteristics at the hospital-level. We addressed this

problem by combining near-far matching with refined covariate balance constraints, to ensure that

patients were near finely balanced on the hospital of admission and other key covariates. Our

contribution is part of a wider literature that focuses on the design of IV methods in clinical

settings where unobserved confounding is present, but randomized trials are infeasible (Baiocchi

et al. 2012). One advantage of this design-based approach to IV methods is that once the

matching is complete, treatment effects can be estimated with simple, transparent methods.

This study also contributes to the literature on the effectiveness of ICU admission. Critical care

is one of many settings where randomization is not possible due to ethical guidelines. Moreover,

confounding by indication likely threatens studies that rely on the assumption that all potential

confounders have been observed (Simchen et al. 2007). While our estimates are not precisely
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estimated, the results show that prompt ICU care leads to an average reduction in 7- and 28-

day mortality. Thus are results are consistent with work that has used IV designs to estimate the

effect of ICU care (Hu et al. 2018; Shmueli et al. 2004; Harris et al. 2018; Valley et al. 2015).
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Appendices
A.1 Bias Plots
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Figure 1: Bias Plots for Covariates
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A.2 Summary Statistics for Patients Excluded from the
Matches

Table 5: Balance Results for Observations Excluded from the Strong IV match without RC
Balance

Included in Match Excluded From Match
Few Beds More Beds Few Beds More Beds
Available Available Available Available
Mean Mean Std. Diff. Mean Mean Std. Diff.

Available ICU Beds 1.68 7.64 -2.91 1.94 4.25 -3.40
Age 65.00 65.23 -0.01 64.81 65.76 -0.05
Male 0.53 0.53 0.01 0.50 0.52 -0.04
Sepsis 0/1 0.63 0.62 0.00 0.56 0.59 -0.06
Level of Care 1.05 1.08 -0.05 1.03 1.05 -0.03
Rec’d Level of Care 1.37 1.45 -0.12 1.38 1.42 -0.05
Peri-arrest 0/1 0.04 0.05 -0.07 0.08 0.06 0.09
Weekend 0.23 0.26 -0.06 0.26 0.26 -0.01
Winter 0.21 0.21 0.00 0.67 0.19 1.10
Out of Hours 0.36 0.34 0.05 0.43 0.32 0.22
Icnarc Score 15.23 15.07 0.02 14.94 14.88 0.01
News Score 6.28 6.18 0.03 6.28 6.09 0.06
Sofa Score 3.16 3.14 0.01 3.23 3.09 0.06
Level of Care Missing 0.00 0.01 -0.10 0.01 0.01 -0.03
Rec’d Level of Care Missing 0/1 0.00 0.01 -0.10 0.01 0.01 0.02
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Table 6: Balance Results for Observations Excluded from the Strong IV match with RC Balance

Included in Match Excluded From Match
Few Beds More Beds Few Beds More Beds
Available Available Available Available
Mean Mean Std. Diff. Mean Mean Std. Diff.

Available ICU Beds 1.56 7.05 -3.07 1.84 6.28 -2.07
Age 64.80 65.94 -0.06 65.03 65.18 -0.01
Male 0.54 0.54 -0.00 0.52 0.52 -0.00
Sepsis 0/1 0.62 0.62 -0.00 0.60 0.61 -0.01
Level of Care 1.10 1.11 -0.00 1.02 1.05 -0.06
Rec’d Level of Care 1.49 1.51 -0.03 1.31 1.41 -0.14
Peri-arrest 0/1 0.05 0.05 -0.02 0.05 0.05 -0.03
Weekend 0.24 0.25 -0.02 0.23 0.26 -0.06
Winter 0.27 0.27 0.00 0.35 0.17 0.41
Out of Hours 0.36 0.34 0.05 0.38 0.33 0.11
Icnarc Score 15.59 15.57 0.00 14.93 14.77 0.02
News Score 6.42 6.28 0.05 6.20 6.10 0.03
Sofa Score 3.31 3.27 0.02 3.11 3.06 0.02
Level of Care Missing 0.00 0.00 -0.04 0.00 0.01 -0.09
Rec’d Level of Care Missing 0/1 0.00 0.00 -0.04 0.01 0.01 -0.08
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