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Abstract

Fitting Mixed Effects Models with Big Data

by

Jingyi He

As technology evolves, big data bring us great opportunities to identify patterns

which were infeasible to identify from observations before. At the same time, it also

brings challenges to Statisticians in analyzing massive data and transforming them into

knowledge. Many existing implementations of traditional statistical methods can not

cope with the volume of big data. Our research is motivated by the need to fit Linear

Mixed Effect (LME) models to big data.

Subsampling and divide and conquer (D&C) methods have been proposed to analyze

the big data. In this thesis, we focus on sampling and D&C methods for fitting LME

models with big data. We start with one-way random effect model in Chapter 2 and

consider different subsampling methods such as sampling of subjects, sampling of both

subjects and repeated measurements, and D&C methods to estimate the parameters.

Estimation procedures, statistical properties, and simulation results are presented. After

comparing the estimators from different methods for one-way random effect model, we

consider subsampling of subjects and D&C method for random intercepts model and

general linear mixed effects model in Chapters 3 and 4, respectively. Comparisons for

different methods are provided at the end of each chapter. Overall we find that the D&C

method has better performance. Finally, we apply subsampling and D&C method to

investigate the relationship between ultraviolet radiation and blood pressure in Chapter

5.
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Chapter 1

Introduction

1.1 Introduction

According to Laney [1], big data is associated with 3 Vs: volume, velocity, and variability.

Data sets are growing dramatically during the last two decades, not only in the volume

but also in the variety and velocity. Big data already made unprecedented impacts on

all walks of life and brought unprecedented challenges and opportunities to Statisticians.

One of the main challenges is to understand and analyze big data using traditional

statistical methods. Many existing implementations of traditional statistical methods

can not cope with the volume of big data. For example, fitting complex statistical

models such as linear mixed effects (LME) models to big data requires developments of

new statistical and/or computational procedures. Our research is motivated by the need

to fit LME models to investigate the possible relationship between ultraviolet radiation

and blood pressure.

Wang et al. [2] pointed out that the statistical methodologies for big data can be

divided into three categories:

• subsampling: performs analysis on a subset of the whole data. The question is how
1



Introduction Chapter 1

to select such a subset. See Ma et al. [3] and Kleiner et al. [4];

• divide and conquer (also called divide and recombine): divide the whole dataset

into K subsets, performs statistical analysis for each subset in a parallel fashion,

and then recombines results from each subset. The question is how to divide and

recombine. See Lin and Xi [5], Chang et al. [6], Guha et al. [7] and Cleveland et

al. [8];

• online updating for stream data: simply updates analysis when new observations

come in. The update could happen on every new observation, or in mini-batch

mode. The question is how to choose the online updating rules. See Schifano et al.

[9].

This dissertation is devoted to the development of efficient and valid statistical and

computational methods for fitting the LME models to big data.

The rest of this chapter, we will review some existing methods for big data and the

LME model. We will also provide an introduction to our real data project.

1.2 Existing Methods for Big Data

The key challenge with big data is how to turn these massive data into knowledge and

applicable insights. Sometimes, the big data can not be fully used due to the limitations

of analytical methodologies and/or computational resources. There is a great deal of

research on developing theories and methods for big data analysis.

Much research is about data manipulation. Parallel computation is commonly used

to take advantage of bigger cluster memory and to reduce overall running time. Many

software frameworks such as hadoop and spark are developed for distributed data storage

and processing. Another big chunk of effort is devoted to computational methods such

2
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as subsampling, divide and conquer (D&C) and online learning. We will review these

methods in Sections 1.2.1, 1.2.2 and 1.2.3, respectively.

1.2.1 Subsampling Methods

When facing massive data under the constraint of computation and storage resources, we

may use a subset of the full data. There are many different ways to select a subset, for

example, one may select the most recent subset or a random subset. Subsampling is an

effective approach to derive a representative subset. Different subsampling schemes have

been proposed to achieve different goals such as prediction and implementation efficiency.

We will review two subsampling-based approaches: bags of little bootstrap (BLB) and

leverage-based sampling, and review their impacts on estimators in terms of bias and

variance.

After combining standard bootstrap (Efron [10]), m out of n bootstrap (Bickel et al.

[11]) and subsampling-based methods (Politis et al. [12]), Kleiner et al. [4] introduced the

bags of little bootstrap (BLB) procedure to gain automatic and more accurate estimator

in the context of large datasets. The BLB procedure goes as follows:

1. generate s subsamples without replacement of size m from the full dataset of size

n;

2. generate r bootstrap data sets of size n from each subsample;

3. calculate estimates and their quality measures such as confidence intervals based on

r bootstrapped subsamples of size n for each subsample, and then get the overall

estimates and quality measures from s estimates.

One of the key advantages of this method is that we only need to store the sample data

of size m with an additional weight vector for each subsample. That is, we reduce the

3
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memory requirement by a factor of (1 −m/n) during the computation, which improves

the computation speed significantly. Kleiner et al. [4] proved the consistency and high

order correctness of BLB. The large-scale implementation of BLB showed good properties

including accuracy, convergence and computational efficiency.

The leverage-based sampling method springs from matrix-based data analysis prob-

lems. Due to the poor performance of uniform random sampling on "worst-case" matrix,

many non-uniform data-dependent sampling methods were developed. Algorithmic lever-

aging is one of the commonly used methods and has been applied in many problems, such

as least square approximation (Drineas et al. [13], [14], Mahoney [15]) and low-rank ma-

trix approximation (Mahoney and Drineas [16], Clarkson and Woodruff [17], Mahoney

[15]).

We now describe the application of the leverage-based sampling method to the least

square problem. Consider the following linear model:

y = Xβ + ε, (1.1)

where y is an n × 1 response vector, X is an n × p fixed predictor matrix, β is a p × 1

coefficient vector and ε is the random error vector.

The ordinary least square estimate of β

β̂ols = argminβ‖y −Xβ‖
2 = (XTX)−1XTy. (1.2)

The corresponding predicted values are ŷ = Hy where H = X(XTX)−1XT is the matrix

that converts values from the observed vectors into fitted values. Let hii be the ith

diagonal element of H which is also called leveraging score of the ith observation.

Subsampling is to select a subset of observations with or without replacement. Let πi

4
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be the probability of selecting the ith observation. Drineas et al. [13] and Mahoney [15]

had discussed the uniform subsampling with πi =
1

n
for all i ∈ {1, ..., n} and leverage-

based subsampling with πi = hii/
n∑
j=1

hjj as a function of leveraging scores.

Ma et al. [3] developed a leverage-based sampling for linear models and studied

the performance from the statistical perspective. Given a subsampling scheme, they

introduced sampling matrix STX and rescaling/reweighting matrix D. Specifically, D is a

diagonal matrix with ith diagonal element 1/
√
rπk where r is the subsample size, and the

ith row in STX is the ek where ek is a vector of length n with the kth value being one and

others being zeros. Ma et al. [3] considered three estimators: uniform sampling (UNIF)

estimator, basic leveraging (LEV) estimator and shrinkage leveraging (SLEV) estimator.

UNIF and LEV estimators were derived from either uniform subsampling or leveraging-

based subsampling with weighted least square estimation. SLEV estimator is from a

linear combination of the leverage-based sampling distribution and uniform sampling

distribution: πslev = απunif + (1 − α)πlev, where α is a configurable parameter. These

three estimators are the solutions of weighted least square estimation argminβ||DS
T
X(y−

Xβ)||2 with different sampling distribution. They also considered unweighted leveraging

(LEVUNW) estimator which is derived from leverage-based subsampling and unweighted

least square estimation argminβ||S
T
X(y −Xβ)||2.

To evaluate these estimators, they derived the theoretical results about statistical

properties, such as variance and bias. In addition, they conducted experiments to em-

pirically prove that SLEV and LEVUNW estimators indeed improve the statistical per-

formances in terms of variance and bias.

5
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1.2.2 Divide and Conquer

Divide and conquer (D&C, also called divide and recombine) method has attracted a lot

of attention because it can be easily implemented parallelly. A D&C procedure has the

following three steps: (1) break the data into subsets; (2) perform the analysis for each

subset independently; and (3) combine results from each subset to get the overall results

and conclusions. Therefore, research on D&C mainly focus on these three parts.

Chen and Xie [18] applied the D&C procedure to fit generalized linear model with

penalty, where the number of the observations n and the number of covariates p are large.

They proposed the following procedure:

1. randomly partition the data set n into k subsets,

2. apply penalized regression to each subset,

3. use majority voting and averaging operation to combine results from k subsets.

Chen and Xie [18] proved model selection consistency and asymptotic normality under

certain conditions. Moreover, they proved that the combined estimator is asymptotic

equivalent to the estimator from entire data set under mild conditions and with a suitable

choice of k. D&C method has also been applied to fit other statistical models. For

example, Lee et al [19] applied D&C to LASSO regression, Chang et al.[6] applied D&C

to local average regression, and Zhang et al.[20] applied D&C to kernel ridge regression.

1.2.3 Online Learning

When dealing with big data, in particular, the data coming in a streaming fashion, online

learning is proposed to update model when new data flow in (could also be updated in

mini batch mode, like every 100 records).

6
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Online updating rule is the core of an online learning procedure. Several algorithms,

such as mirror descent [21] and follow the regularized leader [22] were proposed. The

online updating rules generally follow the two principles:

• adjust model based on the performance of current model on the new data, which

is the principle already being used in many boosting algorithms;

• avoid the misleading by the new data, which corresponds to not-overfitting principle

in batch learning.

Online learning algorithms are well adaptive to real time applications including weather

forecasting and stock prediction. These methods try to reflect the most recent data in the

model. This is the reason that online learning cannot generate optimal model, compared

to the batch learning model based on the full data. When updating the model based

on the new records, algorithm generally does not have the whole picture of the data.

Because of this, many applications combine static learning together with daily update.

None of the subsampling, divide and conquer, and online updating method has been

applied to fit the LME models. The goal of our research is to fill this gap and apply

our method to investigate the relationship between ultraviolet radiation (UV) and blood

pressure.

1.3 Linear Mixed Effect Models

Linear mixed effect (LME) models are commonly used to model repeated measurements,

longitudinal data, and spatial data. LME models provide a flexible approach to model

both the mean and correlation structures.

7
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A LME model assumes that [23]

y = Xβ+Zb+ ε, (1.3)

where y is the response vector, X and Z are the design matrices for fixed effects and

random effects respectively, β is a vector of fixed effects, b is a vector of random effects,

and ε is a vector of random errors. Assume that b∼N(0, G), ε∼N(0, R), and b and ε

are independent.

For clustered/grouped data, the observations within the same cluster/group are usu-

ally correlated, and mixed effect model provides a mechanism to model such cluster

dependence. The literature on fitting LME models to big data is scarce [24]. Often the

whole data set is so large that one cannot fit an LME model using the current implemen-

tations in software packages.

1.4 Ultraviolet Radiation and Blood Pressure

Large volumes of data are being collected in public health and medical studies. Big data

are becoming increasingly common with the development and innovation of technologies,

such as Apps on smart phones and blood pressure monitors. In a 2011 McKinsey report

[25], it was pointed out that big data can help the health care industry.

As a major risk factor for cardiovascular morbidity and mortality, high blood pressure

(BP) is prevalent in chronic hemodialysis patients. Treatment of hypertension reduces

morbidity and mortality [26]. There is a remarkable seasonal trend of BP and cardiovas-

cular mortality in temperate countries, which are higher in winter and lower in summer

([27] and [28]), and both daylight length and temperature correlate inversely with BP

[29]. Epidemiological data suggest to consider sunlight as an important factor in low-

8
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ering blood pressure but its mechanism of action remains uncertain [30]. Therefore, we

want to study the possible relationship between BP and ultraviolet radiation (UV) with

adjustment for temperature and other covariates.

We collected and combined large datasets from three resources: blood pressure data

from Fresenius Medical Care North America, UV data from National Center for Atmo-

spheric Research (NCAR) and temperature data from National Oceanic and Atmospheric

Administration (NOAA). The blood pressure data has 342,457 patients who underwent

chronic hemodialysis in 2178 Fresenius Medical Care North America facilities between

January 2011 and December 2013. These 2178 facilities correspond to 1926 zip codes

and 1530 latitude and longitude location pairs. Patients visited facilities 2-4 times per

week, and had their BP and many other variables measured at each visit or at regular

blood tests. We used the monthly averages of pre-dialysis systolic blood pressures (SBP,

mmHg) as the response variable. Other demographical variables such as race, gender, age,

comorbidities of hypertension, catheter use, monthly averages of body mass index (BMI,

kg/m2), interdialytic weight gain (IDWG, kg), albumin (g/dL), EPO dosage, hemoglobin

(g/dL), serum sodium (mEq/L), and serum potassium (mEq/L) were used as covariates.

Since it is infeasible to measure exposures to UV radiation and temperature at

a personal level, we approximated these exposures using UV radiation and tempera-

ture data derived from public websites at matched locations. For each location, we

first computed hourly spectral irradiances (Watts per square meter per nanometer)

at each wavelength from 280 to 400 nm using the tropospheric UV and visible ra-

diation model from the National Center for Atmospheric Atmospheric Research web

site: http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV/. Then we computed

hourly UVA and UVB as the summations of spectral irradiance over wavelength ranges

321 - 400 and 280 - 320nm, respectively. Lastly, we computed summations of hourly

UVA and UVB over each day to approximate the total daily exposure for each location,

9
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and averages of daily UVA and UVB to calculate monthly averages.

We derived daily average temperature (Celsius) for all locations from the NOAA

website: http://www.ncdc.noaa.gov/cdo-web/search. For locations lacking temperature

stations with matching latitude and longitude, we approximated temperatures using data

from the measurement locations with the shortest great circle distance using spherical

law of cosines. We averaged the daily average temperatures as the monthly average

temperature for each location.

Motivated by the need for effective analytical models and short running time, in

particular for fitting LME models with big data, we studied various subsampling methods

and D&C methods. Analysis of the UV data will be presented in Chapter 5.

The rest of this thesis is organized as follows. Chapter 2 presents estimation proce-

dures, statistical properties and simulation results for the one-way random effect model

with big data. Chapter 3 presents estimation procedures, statistical properties and simu-

lation results for the random intercepts model with big data. Chapter 4 presents estima-

tion procedures, statistical properties and simulation results for the linear mixed effect

model with big data. Chapter 5 presents the analysis of the UV data.

10



Chapter 2

One-Way Random Effect Model with

Big Data

2.1 The Model and Estimation Based on Whole Data

In this chapter, we consider the simplest LME model, one-way random effect model.

Computation for estimators of the one-way random effects models are simple and ad-

vanced methods are not needed for big data. We start with this simple model since the

theoretical results provide insights into similar methods for more complicated models.

The one-way random effect model with balanced design assumes that [23]:

yij = µ+αi + εij, i = 1, ..., n; j = 1, ...,m, (2.1)

where yij is the jth observation from the ith subject, µ is the overall mean, αi is the

random effect for the ith subject, and εij is the within subject random error. We assume

that αi
iid∼ N(0, σ2

a), εij
iid∼ N(0, σ2), and αi and εij are mutually independent. Let

yi = (yi1, ..., yim)T ,y = (yT1 , ...,y
T
n )T , α = (α1, ..., αn)T , εi = (εi1, ..., εim)T and ε =

11
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(εT1 , ..., ε
T
n )T . Then

yi ∼ N(µ1m, V ), (2.2)

where 1m is a column vector of length m with all elements being equal to 1, V =

σ2Im + σ2
aJm, Im is the identity matrix of order m, and Jm is an m×m matrix with all

elements being equal to one. Note that observations of the same subject are correlated

due to the same random effect αi. Model (2.1) can be written in a matrix form

y = Xµ+Zα+ ε, (2.3)

where X = 1Tnm, Z = (z1, ..., zn), and zi is the vector of length nm with the elements

from index (i− 1)m+ 1 to im being equal to one and the rest being zero.

The maximum likelihood estimator (MLE) of the overall mean µ based on the full

data [23]:

µ̂mle = ȳ..,

where ȳ.. =

∑n
i=1

∑m
j=1 yij

nm
. The expectation of the µ̂mle

E(µ̂mle) = µ.

12
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Since the variance of the summation of all observations

Var

(
n∑
i=1

m∑
j=1

yij

)
= Var

[
E

(
n∑
i=1

m∑
j=1

yij

∣∣∣∣∣αi
)]

+ E

[
Var

(
n∑
i=1

m∑
j=1

yij

∣∣∣∣∣αi
)]

= Var

[
n∑
i=1

m∑
j=1

(µ+ αi)

]
+ E

(
n∑
i=1

m∑
j=1

σ2

)

= Var

(
m

n∑
i=1

αi

)
+ nmσ2

= nm2σ2
a + nmσ2,

then the variance of µ̂mle

Var(µ̂mle) =
Var(

∑n
i=1

∑m
j=1 yij)

n2m2
=
nm2σ2

a + nmσ2

n2m2
=
σ2 +mσ2

a

nm
,

and the mean squared error (MSE) of the unbiased estimator µ̂mle

MSE(µ̂mle) = Var(µ̂mle) =
σ2 +mσ2

a

nm
.

Interestingly, µ̂mle is equivalent to the weighted least square (WLS) estimator

µ̂wls = argminµ(y −Xµ)TV −1
n (y −Xµ) = µ̂mle, (2.4)

where Vn = diag(V, ..., V︸ ︷︷ ︸
n

) is the nm× nm dimensional variance-covariance matrix of y.

The unconstrained MLEs of σ2
a and σ2 based on the full data [23]

σ̂2
a,mle =

SSA
nm
− RSSE
nm(m− 1)

,

σ̂2
mle = RMSE,

13
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where SSA = m

n∑
i=1

(ȳi·−ȳ..)2 with ȳi· =
∑m

j=1 yij

m
, RSSE =

n∑
i=1

m∑
j=1

(yij−ȳi·)2 representing

the residual sum of squared error, MSA =
SSA
n− 1

, and RMSE =
RSSE

n(m− 1)
representing

the residual mean squared error. For the rest of this thesis, we only consider the uncon-

strained MLEs, and call them as MLEs for short. McCulloch et al. [23] showed that the

expectations and variances of the MLEs of the variance components are

E(σ̂2
a,mle) =

(
1− 1

n

)
σ2
a −

σ2

nm
, (2.5)

E(σ̂2
mle) = σ2, (2.6)

Var(σ̂2
a,mle) =

2(n− 1)(σ2
a + σ2/m)2

n2
+

2σ4

nm2(m− 1)
, (2.7)

Var(σ̂2
mle) =

2σ4

n(m− 1)
. (2.8)

Therefore, σ̂2
a,mle is biased and σ̂2

mle is unbiased. The MSEs of σ̂2
a,mle and σ̂2

mle are

MSE(σ̂2
a,mle) = Var(σ̂2

a) + bias2(σ̂2
a) =

2n− 1

n2

(
σ2
a +

σ2

m

)2

+
2σ4

nm2(m− 1)
,

MSE(σ̂2
mle) =

2σ4

n(m− 1)
.

Intraclass Correlation Coefficient ρ (ICC) is defined as

ρ =
σ2
a

σ2
a + σ2

,

which represents the proportion of the total variation due to the variation between sub-

jects. The ICC is often used to assess the consistency or reproducibility of quantitative

measurements.

The rest of this chapter is organized as follows. We will explore methods of subsam-

pling of subjects in Sections 2.2 and subsampling of both subjects and repeated mea-

14
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surements in Sections 2.3. Section 2.4 introduces the D&C method for one-way random

effect model, discusses the estimators and their properties from the statistical perspective.

Section 2.5 compares the estimators from subsampling and the D&C methods.

2.2 Subsampling of Subjects

In this section, We will consider two subsampling schemes for sampling of subjects only:

with replacement, or without replacement. Suppose that we have a subsample of size r

from all n subjects. Denote ki as the number of times that subject i has been selected

such that
n∑
i=1

ki = r.

We discuss MLE and WLS estimator for a given selected sample in Sections 2.2.1 and

2.2.2, and then discuss sampling schemes in Sections 2.2.3 and 2.2.4.

2.2.1 MLE for a Selected Subset of Subjects

From the vector form (2.2) and McCulloch et al. [23], we have yi ∼ N(µ1m, V ) with

V −1 = 1
σ2 Im − σ2

a

σ2(σ2+mσ2
a)
Jm and |V | = (σ2 + mσ2

a)(σ
2)m−1. We assume that n is very

large relative to r, therefore we will approximate by an independence assumption, even

when sampling with replacement. Define Li(li) as the likelihood (log likelihood) of yi|k,

where k = (k1, . . . , kn)T . Then L =
∏n

i=1 L
ki
i and l =

∑n
i=1 kili, where

Li =(2π)−
m
2 |V |−

1
2 exp

{
−1

2
(yi − µ1m)TV −1(yi − µ1m)

}
,

li =− m

2
log(2π)− 1

2
log(σ2 +mσ2

a)−
m− 1

2
log(σ2)− 1

2σ2

m∑
j=1

(yij − µ)2

+
σ2
am

2(ȳi· − µ)2

2σ2(σ2 +mσ2
a)
.
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Then the log-likelihood function

l = −m
∑n

i=1 ki
2

log(2π)− 1

2
log(σ2 +mσ2

a)
n∑
i=1

ki −
m− 1

2
log(σ2)

n∑
i=1

ki

− 1

2σ2

n∑
i=1

m∑
j=1

ki(yij − µ)2 +
n∑
i=1

kiσ
2
a(yi· −mµ)2

2σ2(σ2 +mσ2
a)
.

By defining

SSAsub =m
n∑
i=1

ki(ȳi· − ȳsub·· )2,

MSAsub =
m
∑n

i=1 ki(ȳi· − ȳsub·· )2

r − 1
,

RSSEsub =
n∑
i=1

m∑
j=1

ki(yij − ȳi·)2,

RMSEsub =
RSSEsub
r(m− 1)

,

λ =σ2 +mσ2
a,

where ȳi· =
∑m

j=1 yij

m
, ȳsub·· =

∑n
i=1

∑m
j=1 kiyij

rm
=

∑n
i=1 kiȳi·
r

, we can re-write log-likelihood

function as the following:

l =− rm

2
log(2π)− r

2
log(σ2 +mσ2

a)−
r(m− 1)

2
log(σ2)− 1

2σ2

n∑
i=1

m∑
j=1

ki(yij − ȳi·)2

− 1

2σ2

n∑
i=1

m∑
j=1

ki(ȳi· − ȳsub·· )2 − 1

2σ2

n∑
i=1

m∑
j=1

ki(ȳ
sub
·· − µ)2 +

n∑
i=1

m2σ2
aki(ȳi· − µ)2

2σ2(σ2 +mσ2
a)

=− rm

2
log(2π)− r

2
log(λ)− r(m− 1)

2
log(σ2)− RSSEsub

2σ2
− m

∑n
i=1 ki(ȳi· − ȳsub·· )2

2σ2

− rm(ȳsub·· − µ)2

2σ2
+
m2σ2

a

∑n
i=1 ki(ȳi· − ȳsub·· )2

2σ2λ
+
rm2σ2

a(ȳ
sub
·· − µ)2

2σ2λ

=− rm

2
log(2π)− r

2
log(λ)− r(m− 1)

2
log(σ2)

− RSSEsub
2σ2

− SSAsub

2λ
− rm(ȳsub·· − µ)2

2λ
.

16
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The first order partial derivatives with respective to the parameters are

∂l

∂µ
=

2rm(ȳsub·· − µ)

2λ
,

∂l

∂σ2
a

= −rm
2λ

+
mSSAsub

2λ2
+
rm2(ȳsub·· − µ)2

2λ2
,

∂l

∂σ2
= − r

2λ
− r(m− 1)

2σ2
+

RSSEsub
2σ4

+
SSAsub

2λ2
+
rm(ȳsub·· − u)2

2λ2
.

Setting above to zero, we get the MLE estimators:

µ̂mle,sub = ȳsub·· =

∑n
i=1

∑m
j=1 kiyij

rm
=

∑n
i=1 kiȳi·
r

, (2.9)

σ̂2
mle,sub = RMSEsub, (2.10)

σ̂2
a,mle,sub =

SSAsub

rm
− RSSEsub
rm(m− 1)

, (2.11)

where SSAsub,RSSEsub,MSAsub, and RMSEsub are denoted as the statistics computed

from the selected subsets.

2.2.2 Weighted Least Square Estimators for a Selected Subset of

Subjects

Compared with the linear model in Ma et al. [3], our within-subject observations are

correlated with the covariance matrix V of yi. Again assume that observations from

selected subjects are mutually independent. Let πi be the probability that the ith subject

is selected. A weighted least square similar to (2.4) is

argminµ[DSTX(y −Xµ)]TV −1
r [DSTX(y −Xµ)], (2.12)

17
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where Vr = diag(V, ..., V︸ ︷︷ ︸
r

) is the rm× rm dimensional covariance matrix, D is a rm× rm

diagonal rescaling matrix with the [(i−1)m+1]th to the (im)th diagonal elements being

1/
√
rπl if the lth subject in the original data was chosen for the ith trial, and STX is an

rm× nm sampling matrix with values either being zero or one, the diagonal elements in

the block of rows from [(i − 1)m + 1] to (im) and columns from [(l − 1)m + 1] to (lm)

being equal to one if the lth subject in the original data was chosen for the ith trial.

The solution to (2.12) is

µ̂wls,sub = (XTWX)−1XTWy,

whereW = SXD
TV −1

r DSTX = diag(W1, ...,Wn) withWi =
ki
rπi

[
1

σ2
Im −

σ2
a

σ2(σ2 +mσ2
a)
Jm

]
.

After straightforward calculation, the WLS estimator for the overall mean is

µ̂wls,sub =

∑n
i=1

∑m
j=1 kiyij/πi

m
∑n

i=1 ki/πi
. (2.13)

2.2.3 Properties of Estimators Under Sampling With Replace-

ment of Subjects

The number of selections k is a random vector depending on subsampling scheme.

In this section we consider sampling with replacement of subjects only, that is k ∼

mult(r, π1, ..., πn) with πi =
1

n
, E(ki) = rπi =

r

n
, Var(ki) = rπi(1 − πi) =

r

n

(
1− 1

n

)
,

and Cov(ki, kj) = −rπiπj = − r

n2
. The estimator (2.13) which assumed independence can

be written as

µ̂wls,wr =

∑n
i=1

∑m
j=1 kiyij

rm
,

which is the same as the MLE in (2.9).
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Theorem 1. The conditional mean and variance of the estimator of the overall mean

from sampling with replacement of subjects only are

E(µ̂wls,wr|y) = µ̂mle, (2.14)

Var(µ̂wls,wr|y) =
(n− 1)

∑n
i=1(ȳi·)

2 −
∑

i1 6=i2 ȳi1·ȳi2·

rn2
. (2.15)

Proof.

E(µ̂wls,wr|y) = E

(∑n
i=1

∑m
j=1 kiyij

rm

∣∣∣∣∣y
)

=

∑n
i=1

∑m
j=1 yijE(ki)

rm
= µ̂mle,

Var(µ̂wls,wr|y) =
1

r2m2
Var

(
n∑
i=1

ki

m∑
j=1

yij

)

=
1

r2m2
Var

(
n∑
i=1

kiyi·

)

=
1

r2m2

n∑
i1,i2=1

yi1·yi2·Cov(ki1 , ki2)

=
1

r2m2

[
n∑
i=1

y2
i·rπi(1− πi) +

∑
i1 6=i2

yi1·yi2·(−rπi1πi2)

]

=
1

r2m2

[
r

n

(
1− 1

n

) n∑
i=1

y2
i· −

r

n2

∑
i1 6=i2

yi1·yi2·

]

=
(n− 1)

∑n
i=1(ȳi·)

2 −
∑

i1 6=i2 ȳi1·ȳi2·

rn2
.

Note that expectations are with respect to ki as random variables.

Theorem 2. The unconditional mean, variance and MSE of the estimator of the overall
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mean from sampling with replacement of subjects only are

E(µ̂wls,wr) = µ, (2.16)

Var(µ̂wls,wr) = MSE(µ̂wls,wr) =

(
n− 1

r
+ 1

)
σ2 +mσ2

a

nm
, (2.17)

Proof. The unconditional expectation of the estimator of the overall mean under sampling

with replacement of subjects only

E(µ̂wls,wr) = E[E(µ̂wls,wr|y)] = E

(∑n
i=1

∑m
j=1 yij

nm

)
=

∑n
i=1

∑m
j=1 E(µ+ αi + εij)

nm
= µ.

Since the unconditional variance for the summation of one subject’s all measurements is

Var

(
m∑
j=1

yij

)
= E

[
Var

(
m∑
j=1

yij

∣∣∣∣∣αi
)]

+ Var

[
E

(
m∑
j=1

yij

∣∣∣∣∣αi
)]

= E(mσ2) + Var

[
m∑
j=1

(µ+ αi)

]

= mσ2 +m2σ2
a,

so the unconditional variance of the overall mean under sampling with replacement of

subjects only is

Var(µ̂wls,wr) = E[Var(µ̂wls,wr|y)] + Var[E(µ̂wls,wr|y)]

=
(n− 1)

∑n
i=1 E(y2

i·)−
∑

i1 6=i2 E(yi1·yi2·)

rn2m2
+ Var(µ̂mle)

=
(n− 1)

∑n
i=1[Var(yi·) + E2(yi·)]−

∑
i1 6=i2 E(yi1·)E(yi2·)

rn2m2
+ Var(µ̂mle)

=
(n− 1)

∑n
i=1(mσ2 +m2σ2

a +m2µ2)− n(n− 1)m2µ2

rn2m2
+ Var(µ̂mle)

=

(
n− 1

r
+ 1

)
σ2 +mσ2

a

nm
.
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Since µ̂wls,wr is unbiased, we have

MSE(µ̂wls,wr) = Var(µ̂wls,wr) =

(
n− 1

r
+ 1

)
σ2 +mσ2

a

nm
.

Remark 1. The estimator for the overall mean under sampling with replacement of

subjects only µ̂wls,wr = µ̂mle =

∑n
i=1

∑m
j=1 yij

nm
is an unbiased estimator. The variance

and MSE of µ̂wls,wr are inflated by a factor of (n− 1)/r + 1 which is larger than 2 when

r is smaller than n− 1.

According to the equations (2.11) and (2.10), the estimators of σ2
a and σ2 under

sampling with replacement are as follows:

σ̂2
a,wr =

SSAsub

rm
− RSSEsub
rm(m− 1)

,

σ̂2
wr = RMSEsub.

Theorem 3. The conditional means of the estimators of σ2
a and σ2 under sampling with

replacement of subjects only are

E(σ̂2
a,wr|y) =

[
(r − 1)(n− 1)

rn2
+

1

n(m− 1)

] n∑
i=1

ȳ2
i· −

(r − 1)
∑

i 6=j ȳi·ȳj·

rn2

−
∑n

i=1

∑m
j=1 y

2
ij

nm(m− 1)
, (2.18)

E(σ̂2
wr|y) =

∑n
i=1

∑m
j=1 y

2
ij −m

∑n
i=1 ȳ

2
i·

n(m− 1)
. (2.19)

The unconditional means of the estimators of σ2
a and σ2 under sampling with replacement
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of subjects only are

E(σ̂2
a,wr) =

(
1− 1

r

)(
1− 1

n

)
σ2
a −

(
1

r
+

1

n
− 1

rn

)
σ2

m
, (2.20)

E(σ̂2
wr) = σ2. (2.21)

Proof. As we have assumed, subsampling process is independent with the observations,

that is, ki’s and y’s are independent, so the expectations of the estimators of the variance

components can be computed as the following:

E(SSAsub|y) = mE

[
n∑
i=1

ki(ȳi· − ȳsub.. )2

∣∣∣∣∣y
]

= m

[
n∑
i=1

ȳ2
i·E(ki)−

1

r

n∑
i=1

ȳ2
i·E(k2

i )−
1

r

∑
i 6=j

ȳi·ȳj·E(kikj)

]

= m

{
r

n

n∑
i=1

ȳ2
i· −

1

r

n∑
i=1

ȳ2
i·

[
r

n

(
1− 1

n

)
+
r2

n2

]
− r2 − r

n3

∑
i 6=j

ȳi·ȳj·

}

=
m(r − 1)

n2

[
(n− 1)

n∑
i=1

ȳ2
i· −

∑
i 6=j

ȳi·ȳj·

]
,

and

E(RSSEsub|y) = E

[
n∑
i=1

m∑
j=1

ki(yij − ȳi·)2

∣∣∣∣∣y
]

=
n∑
i=1

E(ki)
m∑
j=1

(yij − ȳi·)2

=
n∑
i=1

r

n

(
m∑
j=1

y2
ij −mȳ2

i·

)

=
r

n

(
n∑
i=1

m∑
j=1

y2
ij −m

n∑
i=1

ȳ2
i·

)
.
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Then

E(SSAsub) =
m(r − 1)

n2

[
(n− 1)

n∑
i=1

(
σ2 +mσ2

a

m
+ µ2

)
− n(n− 1)µ2

]

=
(r − 1)(n− 1)

n
(σ2 +mσ2

a),

E(RSSEsub) =
r

n

[
n∑
i=1

m∑
j=1

(σ2 + σ2
a + µ2)−m

n∑
i=1

(
σ2 +mσ2

a

m
+ µ2

)]
= r(m− 1)σ2.

Consequently, we have

E(σ̂2
a,wr|y) =E

[
SSAsub

mr
− RSSEsub
rm(m− 1)

∣∣∣∣y]

=
(r − 1)

rn2

[
(n− 1)

n∑
i=1

ȳ2
i· −

∑
i 6=j

ȳi·ȳj·

]
−

(∑n
i=1

∑m
j=1 y

2
ij −m

∑n
i=1 ȳ

2
i·

)
nm(m− 1)

=

[
(r − 1)(n− 1)

rn2
+

1

n(m− 1)

] n∑
i=1

ȳ2
i· −

(r − 1)
∑

i 6=j ȳi·ȳj·

rn2
−
∑n

i=1

∑m
j=1 y

2
ij

nm(m− 1)
,

and

E(σ̂2
wr|y) = E(RMSEsub|y) =

E(RSSEsub|y)

r(m− 1)
=

∑n
i=1

∑m
j=1 y

2
ij −m

∑n
i=1 ȳ

2
i·

n(m− 1)
.

Taking expectation with respect to y, we have

E(σ̂2
a,wr) =

(r − 1)(n− 1)

rn

σ2 +mσ2
a

m
− σ2

m

=

(
1− 1

r

)(
1− 1

n

)
σ2
a −

(
1

r
+

1

n
− 1

rn

)
σ2

m
,

E(σ̂2
wr) =

E(RSSEsub)
r(m− 1)

= σ2.

Remark 2. The bias of the estimator of σ2
a under sampling with replacement of subjects
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only is larger than that based on the full data by
1

r

(
1− 1

n

)(
σ2
a +

σ2

m

)
. The estimator

σ̂2
wr is an unbiased estimator. The calculation of the variances of σ̂2

a,wr and σ̂2
wr are too

complicated, we will use simulations to investigate them later.

The estimator of σ2
a under sampling with replacement of subjects only is biased since

the subsampling is done with replacement. Some subjects may be selected more than

once which lead to smaller estimate of variance. The leading term of bias is −σ
2
a

r
, so the

bias may be reduced by constructing a new estimator using the Jackknife method:

(σ̂∗a,wr)
2 = rσ̂2

a,wr,r − (r − 1)σ̂2
a,wr,r−1, (2.22)

where σ̂2
a,wr,r is from the sampled data with size r, and σ̂2

a,wr,r−1 is the average of the

leave-one-out estimators from the sampled data with size being equal to r − 1.

Theorem 4. The mean of the Jackknife estimator of σ2
a under sampling with replacement

of subjects only is

E[(σ̂∗a,wr)
2] =

(
1− 1

n

)
σ2
a −

σ2

nm
. (2.23)

Proof. The expected value for the Jackknife resampling estimator

E[(σ̂∗a,wr)
2] =r

[(
1− 1

r

)(
1− 1

n

)
σ2
a −

(
1

r
+

1

n
− 1

rn

)
σ2

m

]
− (r − 1)

[(
1− 1

r − 1

)(
1− 1

n

)
σ2
a −

(
1

r − 1
+

1

n
− 1

n(r − 1)

)
σ2

m

]
=

(
1− 1

n

)
σ2
a −

σ2

nm
.

Note this is the same as the expectation based on the whole data (2.5).
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We now conduct a simulation to compare the means of the estimators and their

expectations. We generate 1000 data sets from model (2.1) with µ = 10, σ2
a = 1, σ2 =

0.01, n = 1000 and m = 100. We choose r = 10 + 50k for k = 0, 1, ..., 19. We compute

average of σ̂2
a,wr using formula (2.11) and its expectation using formula (2.20), and the

Jackknife estimate using formula (2.22) and its expectation using formula (2.23). Figure

2.1 shows that the average of σ̂2
a,wr is close to the true expected value as r increases and

the Jackknife estimator has smaller bias.

●

●

●

●

●
●

●

●
●

●

● ●

●
● ● ●

● ● ●

●

●

● ●

●

● ●

●

●
●

●

● ●

●
● ● ●

● ●
●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.88

0.92

0.96

1.00

0 250 500 750 1000

r

E
st

im
at

es
 o

f σ̂
a2  a

nd
 e

xp
ec

ta
tio

ns

Figure 2.1: The blue line is the averages of σ̂2
a,wr, the purple line is the expectations

of σ̂2
a,wr, the red line is the averages of (σ̂∗a,wr)2, and the green line is the expectations

of (σ̂∗a,wr)2.

2.2.4 Properties of Estimators Under SamplingWithout Replace-

ment of Subjects

We now consider sampling without replacement of subjects only. If we select r subjects

from n subjects without replacement, then the number of selections k follows a multi-
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variate hypergeometric distribution with πi =
1

n
, E(ki) =

r

n
, Var(ki) =

r(n− r)
n2

, and

Cov(ki, kj) = − r(n− r)
n2(n− 1)

. The equation (2.13) becomes

µ̂wls,wo =

∑n
i=1

∑m
j=1

nki
r2
yij

m
∑n

i=1
nki
r2

=

∑n
i=1

∑m
j=1 kiyij

rm
= µ̂wls,wr,

which is the same as the MLE (2.9).

Theorem 5. The conditional mean and variance of the estimator of the overall mean

under sampling without replacement of subjects only are

E(µ̂wls,wo|y) = µ̂mle, (2.24)

Var(µ̂wls,wo|y) =
n− r
rn2

(
n∑
i=1

ȳ2
i· −

1

n− 1

∑
i1 6=i2

ȳi1·ȳi2·

)
. (2.25)

The unconditional mean, variance and MSE of the estimator of the overall mean under

sampling without replacement of subjects only are

E(µ̂wls,wo) =µ, (2.26)

Var(µ̂wls,wo) =MSE(µ̂wls,wo) =
σ2 +mσ2

a

rm
, (2.27)

Proof. Since the conditional expected value of the overall mean under sampling without

replacement of subjects only is

E(µ̂wls,wo|y) =

∑n
i=1

∑m
j=1 yijE(ki)

rm
=

∑n
i=1

∑m
j=1 yij

r
n

rm
= µ̂mle,

then

E(µ̂wls,wo) = E[E(µ̂wls,wo|y)] = E(µ̂mle) = µ.
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The estimator of the overall mean under sampling without replacement is also an unbiased

estimator. We have the conditional variance of µ̂wls,wo

Var(µ̂wls,wo|y) = Var

(∑n
i=1

∑m
j=1 kiyij

rm

∣∣∣∣∣y
)

=
1

r2m2

E

(
n∑
i=1

kiyi·

)2

−

[
E

(
n∑
i=1

kiyi·

)]2


=
1

r2m2

{
n∑

i1,i2=1

yi1·yi2·E(ki1ki2)−
n∑

i1,i2=1

yi1·yi2·E(ki1)E(ki2)

}

=
1

r2m2

n∑
i1,i2=1

yi1·yi2·Cov(ki1ki2)

=
1

r2m2

[
n∑
i=1

y2
i·
r(n− r)
n2

−
∑
i1 6=i2

yi1·yi2·
r(n− r)
n2(n− 1)

]

=
n− r
rn2

(
n∑
i=1

ȳ2
i· −

1

n− 1

∑
i1 6=i2

ȳi1·ȳi2·

)
,

then the unconditional variance of µ̂wls,wo

Var(µ̂wls,wo) = E[Var(µ̂wls,wo|y)] + Var[E(µ̂wls,wo|y)]

=
n− r
rn2m2

[
n∑
i=1

E(y2
i.)−

1

n− 1

∑
i1 6=i2

E(yi1.)E(yi2.)

]
+ Var(µ̂mle)

=

(
n− r
r

+ 1

)
σ2 +mσ2

a

nm

=
σ2 +mσ2

a

rm
.

Since µ̂wls,wo is an unbiased estimator, we have

MSE(µ̂wls,wo) = Var(µ̂wls,wo) =
σ2 +mσ2

a

rm
.
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Remark 3. The estimator of the overall mean under sampling without replacement

for subjects only is also an unbiased estimator. The ratio of the variances and MSEs

between the subsample and the full data is
n

r
, which decreases to 1 as r increases to n.

The variance and MSE of µ̂wls,wo are smaller than those under sampling with replacement

by the amount of
(

1− 1

r

)
σ2 +mσ2

a

nm
.

We conduct a simulation to compare the variances of the estimators and their the-

oretical variances. We generate 1000 data sets from model (2.1) with µ = 10, σ2
a = 1,

σ2 = 0.01, n = 1000 and m = 100. We choose r = 60 + 50k for k = 3, ..., 18. We compute

sample variance of µ̂wls,wo, and its expected variance using formula (2.27), and sample

variance of µ̂2
wls,wr, and its expected variance using formula (2.17). Figure 2.2 shows that

µ̂wls,wo has smaller variance than µ̂wls,wr.
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Figure 2.2: The green line is the sample variances of µ̂wls,wr, the purple line is the
expected variances of µ̂wls,wr, the red line is the sample variances of µ̂wls,wo , and the
blue line is the expected variances of µ̂wls,wo.
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To compare the results from the two different sampling schemes, we compute the

efficiency
Var(µ̂wls,wr)
Var(µ̂wls,wo)

=
n+ r − 1

n
= 1 +

r − 1

n
.

Because r is between 1 and n, we can see that the ratio is bigger than 1 and smaller than

2. It increases as r increases and decreases as n increases. When r � n, the efficiency is

close to 1.

Similar to sampling with replacement, the estimators of σ2
a and σ2 under sampling

without replacement are as follows:

σ̂2
a,wo =

SSAsub

rm
− RSSEsub
rm(m− 1)

,

σ̂2
wo = RMSEsub.

Theorem 6. The conditional means of the estimators of σ2
a and σ2 under sampling

without replacement of subjects only are

E(σ̂2
a,wo|y) =

[
r − 1

rn
+

1

n(m− 1)

] n∑
i=1

ȳ2
i· −

(r − 1)
∑

i 6=j ȳi·ȳj·

rn(n− 1)
−
∑n

i=1

∑m
j=1 y

2
ij

nm(m− 1)
, (2.28)

E(σ̂2
wo|y) =

∑n
i=1

∑m
j=1 y

2
ij

n(m− 1)
− m

∑n
i=1 ȳ

2
i·

n(m− 1)
. (2.29)

The unconditional means of the estimators of σ2
a and σ2 under sampling without replace-

ment of subjects only are

E(σ̂2
a,wo) =

(
1− 1

r

)
σ2
a −

1

rm
σ2, (2.30)

E(σ̂2
wo) = σ2. (2.31)

Proof. In order to get the expectation and variance of σ2
a under sampling without re-
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placement, we calculate sum of squares at first:

E(SSAsub|y) = mE

[
n∑
i=1

ki(ȳi· − ȳsub.. )2

∣∣∣∣∣y
]

= m

[
n∑
i=1

ȳ2
i·E(ki)−

1

r

n∑
i=1

ȳ2
i·E(k2

i )−
1

r

∑
i 6=j

ȳi·ȳj·E(kikj)

]

= m

{
r

n

n∑
i=1

ȳ2
i· −

n∑
i=1

ȳ2
i·

(
n− r
n2

+
r

n2

)
−
[
− n− r
n2(n− 1)

+
r

n2

]∑
i 6=j

ȳi·ȳj·

}

=
m(r − 1)

n

(
n∑
i=1

ȳ2
i· −

1

n− 1

∑
i 6=j

ȳi·ȳj·

)
,

and

E(RSSEsub|y) = E

[
n∑
i=1

m∑
j=1

ki(yij − ȳi·)2

∣∣∣∣∣y
]

=
n∑
i=1

E(ki)
m∑
j=1

(yij − ȳi·)2

=
n∑
i=1

r

n

(
m∑
j=1

y2
ij −mȳ2

i·

)

=
r

n

(
n∑
i=1

m∑
j=1

y2
ij −m

n∑
i=1

ȳ2
i·

)
.

Then

E(SSAsub) =
m(r − 1)

n

[
n∑
i=1

(
σ2 +mσ2

a

m
+ µ2

)
− 1

n− 1
n(n− 1)µ2

]

= (r − 1)(σ2 +mσ2
a),

E(RSSEsub) =
r

n

[
n∑
i=1

m∑
j=1

(σ2 + σ2
a + µ2)−m

n∑
i=1

(
σ2 +mσ2

a

m
+ µ2

)]
= r(m− 1)σ2.

We can see that the conditional expected value and unconditional expected value of
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RSSEsub are the same as that under subsampling with replacement.

The conditional expected values of σ̂2
a,wo and σ̂2

wo

E(σ̂2
a,wo|y) = E

[
SSAsub

rm
− RSSEsub
rm(m− 1)

∣∣∣∣y]
=
r − 1

rn

(
n∑
i=1

ȳ2
i· −

1

n− 1

∑
i 6=j

ȳi·ȳj·

)
− 1

nm(m− 1)

(
n∑
i=1

m∑
j=1

y2
ij −m

n∑
i=1

ȳ2
i·

)

=

[
r − 1

rn
+

1

n(m− 1)

] n∑
i=1

ȳ2
i· −

(r − 1)

rn(n− 1)

∑
i 6=j

ȳi·ȳj· −
1

nm(m− 1)

n∑
i=1

m∑
j=1

y2
ij,

E(σ̂2
wo|y) =

E(RSSEsub|y)

r(m− 1)
=

∑n
i=1

∑m
j=1 y

2
ij −m

∑n
i=1 ȳ

2
i·

n(m− 1)
.

Taking expectation with respect to y, we have

E(σ̂2
a,wo) =

r − 1

r

σ2 +mσ2
a

m
− σ2

m
=

(
1− 1

r

)
σ2
a −

1

rm
σ2,

E(σ̂2
wo) = σ2.

Remark 4. The bias of σ̂2
a,wo is larger than that based on the full data by the amount of(

1

r
− 1

n

)(
σ2
a +

σ2

m

)
, and smaller than that of σ̂2

a,wr by the amount of
(

1

n
− 1

rn

)(
σ2
a +

σ2

m

)
.

The estimator σ̂2
wo is unbiased.

We now conduct a simulation to compare the means of the estimators and their

expectations. We generate 1500 data sets from the model (2.1) with µ = 10, σ2
a = 1,

σ2 = 0.01, n = 1000 and m = 100.We choose r = 10 + 50k for k = 1, ..., 19. We compute

average of σ̂2
a,wo, and its expectation using formula (2.30), and average of σ̂2

a,wr, and its

expectation using formula (2.20). Figure 2.3 shows that σ̂2
a,wo has smaller bias than σ̂2

a,wr.
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Figure 2.3: The green line is the average of σ̂2
a,wr, the red line is the expectation of

σ̂2
a,wr, the purple line is the average of σ̂2

a,wo, and the blue line is the expectation of
σ̂2
a,wo.

Same as the estimator σ̂2
a,wr, the estimator σ̂2

a,wo is also biased with the leading term

of bias −σ
2
a

r
. So we also consider the Jackknife estimator to reduce the bias

(σ̂∗a,wo)
2 = rσ̂2

a,wo,r − (r − 1)σ̂2
a,wo,r−1, (2.32)

where σ̂2
a,wo,r is from the sampled data with size r, and σ̂2

a,wo,r−1 is the average of the

leave-one-out estimators from the sampled data with size being equal to r− 1. Then we

have

E[(σ̂∗a,wo)
2] =r

[(
1− 1

r

)
σ2
a −

σ2

rm

]
− (r − 1)

[(
1− 1

r − 1

)
σ2
a −

σ2

m(r − 1)

]
= σ2

a.

(2.33)

The new estimator (σ̂∗a,wo)
2 is unbiased. A simulation is conducted to compare the means
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of the estimators and their expectations. We generate 1000 data sets from the model

(2.1) with µ = 10, σ2
a = 1, σ2 = 0.01, n = 1000 and m = 100. We choose r = 10 + 50k

for k = 0, 1, ..., 19. We compute average of σ̂2
a,wo using formula (2.11), and its expectation

using formula (2.30), and average of (σ̂∗a,wo)
2 using formula (2.32), and its expectation

using formula (2.33). Figure 2.4 shows that the average of σ̂2
a,wo are close to the true

expected value as r increases and the Jackknife estimator has smaller bias.
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Figure 2.4: The blue line is the average of σ̂2
a,wo, the purple line is the expectation of

σ̂2
a,wo, the red line is the average of (σ̂∗a,wo)2, and the green line is the expectation of

(σ̂∗a,wo)
2.

Theorem 7. The unconditional variance and MSE of the estimator of σ2
a under sampling

without replacement of subjects only are

Var(σ̂2
a,wo) =

2(r − 1)(σ2
a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
, (2.34)

MSE(σ̂2
a,wo) =

(2r − 1)(σ2
a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
. (2.35)
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The unconditional variance and MSE of the estimator of σ2 under sampling without

replacement for subjects only are

Var(σ̂2
wo) =MSE(σ̂2

wo) =
2σ4

r(m− 1)
. (2.36)

Proof. Given k, the residual sum of squares and sum of squares

RSSEsub =
n∑
i=1

m∑
j=1

ki[yij − µ− αi − (ȳi· − µ− αi)]2 =
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2,

SSAsub = m
n∑
i=1

ki(ȳi· − ȳsub·· )2 = m
n∑
i=1

ki[αi + ε̄i· − (ᾱ + ε̄sub·· )]2.

According to the Cochran theorem, under sampling without replacement,
n∑
i=1

m∑
j=1

ki(εij−

ε̄i·)
2 is independent of ε̄i· and SSAsub is the function of ε̄i· for i = 1, ..., n. Therefore,

RSSEsub and SSAsub are independent.

Furthermore, we have

RSSEsub
σ2

=

∑n
i=1

∑m
j=1 ki(εij − ε̄i·)2

σ2
∼ χ2

r(m−1),

SSAsub

mσ2
a + σ2

=

∑n
i=1 ki[αi + ε̄i· − (ᾱ + ε̄sub·· )]2

σ2
a + σ2/m

∼ χ2
r−1.

So Var(SSAsub) = Var[m
∑n

i=1 ki(ȳi·−ȳsub.. )2] = 2m2(r−1)(σ2
a+σ

2/m)2 and Var(RSSEsub) =

2r(m− 1)σ4.
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Then the variance of σ̂2
a,wo is

Var(σ̂2
a,wo) =Var

[
SSAsub

mr
− RSSEsub
rm(m− 1)

]
=

1

m2r2
Var(SSAsub) +

1

r2m2(m− 1)2
Var(RSSEsub)

− 2Cov
[
SSAsub

mr
,

RSSEsub
rm(m− 1)

]
=

2(r − 1)(σ2
a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
,

and the variance of σ̂2
wo

Var(σ̂2
wo) =

Var(RSSEsub)
r2(m− 1)2

=
2σ4

r(m− 1)
.

Then

MSE(σ̂2
a,wo) =Var(σ̂2

a,wo) + bias2(σ̂2
a,wo)

=
2(r − 1)(σ2

a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
+

1

r2

(
σ2
a +

σ2

m

)2

=
(2r − 1)(σ2

a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
,

and for the unbiased estimator σ̂2
wo,

MSE(σ̂2
wo) =Var(σ̂2

wo) =
2σ4

r(m− 1)
.

Remark 5. The variance of σ̂2
a,wo is larger than that based on full data by the amount of(

1

r
− 1

n

)
2σ4

a

m2(m− 1)
+2

(
1

r
− 1

n

)(
1− 1

r
− 1

n

)(
σ2
a +

σ2

m

)2

. The MSE of σ̂2
a,wo is larger
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than that based on full data by the amount of
(

1

r
− 1

n

)(
2− 1

r
− 1

n

)(
σ2
a +

σ2

m

)2

+(
1

r
− 1

n

)
2σ4

a

m2(m− 1)
. The variance and MSE of σ̂2

wo are inflated by a factor of
n

r
.

We now conduct a simulation to compare the variances of the estimators and their

theoretical variances. We generate 1000 data sets from the model (2.1) with µ = 10, σ2
a =

1, σ2 = 0.01, n = 1000 and m = 100. We choose r = 10 + 50k for k = 1, ..., 19. We

compute sample variance of σ̂a,wo, and its theoretical variance using formula (2.34), and

sample variance of σ̂2
a,wr. Figure 2.5 shows that the variance of σ̂2

a,wo is smaller that of

σ̂2
a,wr.
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Figure 2.5: The green line is the sample variances of σ̂2
a,wo, the red line is the theo-

retical variances of of σ̂2
a,wo, and the blue line is the sample variances of σ̂2

a,wr.
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2.3 Subsampling of Both Subjects and Repeated Mea-

surements

We now consider subsampling of both subjects and repeated measurements. Suppose

we want to sample r subjects from n subjects and s repeated measurements from the

m repeated measurements of those chosen subjects. We assume that rs = N . Define

Ui =
ui
rπsi

and Cj =
cj
sπrj

, where ui is the number of the times that the ith subject was

chosen, cj is the number of the times that the jth repeated measurements was chosen

such that
n∑
i=1

ui = r and
m∑
j=1

cj = s. For simplicity, we assume that we sample repeated

measurements without replacement, so that cj equals to one or zero. Let {πs1, ..., πsn} and

{πr1, ..., πrm} be subject’s and repeated measurements’ sampling distributions, respectively.

We discuss MLE and WLS estimator for a given selected sample in Sections 2.3.1 and

2.3.2, and then discuss sampling schemes in Sections 2.3.3 and 2.3.4.

2.3.1 MLE for a Selected Subset of Both Subjects and Repeated

Measurements

We extend the MLE approach in Section 2.2.1 and McCulloch et al. [23] to this new

scenario. As before we assume that observations from selected subjects are mutually

independent even though some of the subjects and repeated measurements are selected

more than once when sampling is done with replacement.

Define Li(li) as the likelihood (log likelihood) of yi|(u, c), where the number of sub-

jects’ selections u is a vector with the ith element is the number of times that the subject

i is selected and the number of repeated measurements’ selections c is a vector with the

jth element is the number of times that the jth repeated measurements is selected.
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Given c, we define yi,s to be the vector of the selected repeated measurements of

subject i. So, we have yi,s ∼ N(µ1s, V
s) with (V s)−1 = 1

σ2 Is − σ2
a

σ2(σ2+sσ2
a)
Js and |V s| =

(σ2 + sσ2
a)(σ

2)s−1. Then given u and c, L =
∏n

i=1 L
ui
i and l =

∑n
i=1 uili, where

Li =(2π)−
s
2 |V s|−

1
2 exp

{
−1

2
(yi,s − µ1s)T (V s)−1(yi,s − µ1s)

}
,

li =− s

2
log(2π)− 1

2
log(σ2 +mσ2

a)−
s− 1

2
log(σ2)− 1

2σ2

m∑
j=1

cj(yij − µ)2

+
σ2
a

∑m
j=1 cj(y

rc
i· − sµ)2

2σ2(σ2 + sσ2
a)

,

yrci· =
m∑
j=1

cjyij.

The log-likelihood function can be explicitly computed as

l =− s
∑n

i=1 ui
2

log(2π)− 1

2
log(σ2 + sσ2

a)
n∑
i=1

ui −
s− 1

2
log(σ2)

n∑
i=1

ui

− 1

2σ2

n∑
i=1

m∑
j=1

uicj(yij − µ)2 +
n∑
i=1

uicjσ
2
a(y

rc
i· − sµ)2

2σ2(σ2 + sσ2
a)

.

Defining

SSArc
sub =

n∑
i=1

uicj(ȳ
rc
i· − ȳrc·· )2,

RSSErcsub =
n∑
i=1

m∑
j=1

uicj(yij − ȳrci· )2,

λ = σ2 + sσ2
a,

where ȳrci· =

∑m
j=1 cjyij∑m
j=1 cj

=

∑m
j=1 cjyij

s
and ȳrc·· =

∑n
i=1

∑m
j=1 uicjyij

rs
=

∑n
i=1 uiȳ

rc
i·

r
. We
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re-write log-likelihood function as

l =− rs

2
log(2π)− r

2
log(σ2 + sσ2

a)−
r(s− 1)

2
log(σ2)− 1

2σ2

n∑
i=1

m∑
j=1

uicj(yij − ȳrci· )2

− 1

2σ2

n∑
i=1

m∑
j=1

uicj(ȳ
rc
i· − ȳrc·· )2 − 1

2σ2

n∑
i=1

m∑
j=1

uicj(ȳ
rc
i· − µ)2 +

n∑
i=1

s2σ2
a(ȳ

rc
i· − µ)2

2σ2(σ2 + sσ2
a)

=− rs

2
log(2π)− r

2
log(σ2 + sσ2

a)−
r(s− 1)

2
log(σ2)− RSSErcsub

2σ2
− SSArc

sub

2(σ2 + sσ2
a)

− rs(ȳrc· − µ)2

2(σ2 + sσ2
a)
.

Then the MLEs of the overall mean and the variance components are

µ̂rcmle = ȳrc.. =

∑n
i=1

∑m
j=1 uicjyij∑n

i=1

∑m
j=1 uicj

=

∑n
i=1

∑m
j=1 uicjyij

N
, (2.37)

(σ̂rcmle)
2 =

RSSErcsub
r(s− 1)

= RMSErcsub, (2.38)

(σ̂rca,mle)
2 =

SSArc
sub

rs
− RSSErcsub
rs(s− 1)

, (2.39)

where SSArc
sub,RSSE

rc
sub,MSArc

sub, and RMSErcsub are computed from the selected subset.

2.3.2 Weighted Least Square Estimators for a Selected Subset of

Both Subject and Repeated Measurements

Again assume that observations from selected subjects are mutually independent, πsi be

the probability that the ith subject is selected, and πrj be the probability that the jth

repeated measurement is selected. A weighted least square similar to (2.12):

argminµ[DSTX(y −Xµ)]T (V s
r )−1[DSTX(y −Xµ)], (2.40)
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where V s
r = diag(V s, ..., V s︸ ︷︷ ︸

r

) is the covariance matrix, D is a rs × rs diagonal rescaling

matrix with the kth diagonal element being 1/
√
rsπsiπ

r
j if the ith subject’s jth repeated

measurement in the original data was chosen for the kth trial, STX is a rs× nm sampling

matrix with value either being zero or one, and the kth row of STX is e(i−1)m+j if the ith

subjects’s jth repeated measurement in the original data was chosen for the kth trial.

The solution to (2.40) is

µ̂rcwls,sub = (XTWX)−1XTWy,

whereW = SXD
T (V s

r )−1DSTX andWi(r1, r2) =
uicr2

rsπsi
√
πrr1π

r
r2

[
1

σ2
Im −

σ2
acr1

σ2(σ2 +mσ2
a)
Jm

]
with r1 and r2 are the position indicator numbers.

After straightforward calculation, the WLS estimator of the overall mean can be

written as

µ̂rcwls,sub =

∑n
i=1

∑m
j=1

uicj
rsπsi

(
1

πrjσ
2 −

∑m
l=1

clσ
2
a√

πrjπ
r
l σ

2(σ2+mσ2
a)

)
yij∑n

i=1

∑m
j=1

uicj
rsπsi

(
1

πrjσ
2 −

∑m
l=1

clσ2
a√

πrjπ
r
l σ

2(σ2+mσ2
a)

) . (2.41)

In practice, σ2
a and σ2 are unknown, we plug in estimates into formula (2.41).

2.3.3 Properties of Estimators Under Sampling With Replace-

ment of Both subjects and Repeated Measurements

We randomly sample a subset with replacement of both subjects and repeated measure-

ments and assume that u ∼ multinomial(r, πs1, ..., π
s
n) with πsi =

1

n
, c ∼ multinomial(s, πr1, ..., π

r
m)

with πrj =
1

m
, and u and c are mutually independent. Then the estimator of the overall
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mean under sampling with replacement of both subjects and repeated measurements

µ̂rcwls,wr =

∑n
i=1

∑m
j=1

uicj
rsπsi

[
1

πrjσ
2 −

∑m
l=1

clσ
2
a√

πrjπ
r
l σ

2(σ2+mσ2
a)

]
yij∑n

i=1

∑m
j=1

uicj
rsπsi

[
1

πrjσ
2 −

∑m
l=1

clσ2
a√

πrjπ
r
l σ

2(σ2+mσ2
a)

]

=

∑n
i=1

∑m
j=1 uicj

[
1
σ2 − sσ2

a

σ2(σ2+mσ2
a)

]
yij∑n

i=1

∑m
j=1 uicj

[
1
σ2 − sσ2

a

σ2(σ2+mσ2
a)

]
=

∑n
i=1

∑m
j=1 uicjyij

N
.

We note that the estimator of the overall mean is the same as the MLE in (2.37).

Theorem 8. The conditional mean and variance of the estimator of the overall mean

under sampling with replacement of both subjects and repeated measurements are

E(µ̂rcwls,wr|y) =µ̂mle, (2.42)

Var(µ̂rcwls,wr|y) =
1

N2

[
rs(m− 1)(r + n− 1)

n2m2

n∑
i=1

m∑
j=1

y2
ij −

rs(r + n− 1)

n2m2

n∑
i=1

∑
j1 6=j2

yij1yij2

+
rs2(n− 1)

n2

n∑
i=1

(ȳrci· )
2 +

rs(r − 1)(s+m− 1)

n2m2

∑
i1 6=i2

m∑
j=1

yi1jyi2j

+
rs(r − 1)(s− 1)

n2m2

∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2 −
r2s2

n2

∑
i1 6=i2

ȳrci1·ȳ
rc
i2·

]
. (2.43)

The unconditional mean and variance of the estimator of the overall mean under sampling

with replacement of both subjects and repeated measurements are

E(µ̂rcwls,wr) = µ, (2.44)

Var(µ̂rcwls,wr) = MSE(µ̂rcwls,wr) =

(
1

r
+

1

n
− 1

rn

)[
σ2
a +

(s+m− 1)σ2

sm

]
. (2.45)

Proof. The conditional mean of the overall mean under sampling with replacement of

41



One-Way Random Effect Model with Big Data Chapter 2

both subjects and repeated measurements is

E(µ̂rcwls,wr|y) =E

(∑n
i=1

∑m
j=1 uicjyij

N

∣∣∣∣∣y
)

=

∑n
i=1

∑m
j=1 E(ui)E(cj)yij

N
=

∑n
i=1

∑m
j=1 yij

nm
,

then the unconditional expectation of the estimator of the overall mean

E(µ̂rcwls,wr) = E[E(µ̂rcwls,wr|y)] = E

(∑n
i=1

∑m
j=1 yij

nm

)
=

∑n
i=1

∑m
j=1 E(µ+ αi + εij)

nm
= µ.

According to the distributions of ui and cj, we know that E(ui) = rπsi =
r

n
, Var(ui) =

rπsi (1− πsi ) =
r

n

(
1− 1

n

)
, Cov(ui1 , ui2) = −rπsi1π

s
i2

= − r

n2
, E(cj) = sπrj =

s

m
, Var(cj) =

sπrj (1− πrj ) =
s

m

(
1− 1

m

)
, and Cov(cj1 , cj2) = −sπrj1π

r
j2

= − s

m2
.

In order to get the conditional and unconditional variances of the estimator of the

overall mean under sampling with replacement of both subjects and repeated measure-

ments, we derive the following results first:

E

(
m∑
j=1

cjyij

∣∣∣∣y
)

=
m∑
j=1

E(cj)yij =
s

m

m∑
j=1

yij,

then

E

(
m∑
j=1

cjyij

)
= sµ.

Since

Var

(
m∑
j=1

cjyij

∣∣∣∣∣y
)

=
m∑
j=1

y2
ijVar(cj) +

∑
j1 6=j2

yij1yij2Cov(cj1 , cj2)

=
s(m− 1)

m2

m∑
j=1

y2
ij −

s

m2

∑
j1 6=j2

yij1yij2 ,
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then the unconditional variance

Var

(
m∑
j=1

cjyij

)
= E

[
Var

(
m∑
j=1

cjyij

∣∣∣∣∣y
)]

+ Var

[
E

(
m∑
j=1

cjyij

∣∣∣∣∣y
)]

=
s(m− 1)

m2

m∑
j=1

[Var(yij) + E2(yij)]−
s
∑

j1 6=j2(σ
2
a + µ2)

m2
+ Var

(
s

m

m∑
j=1

yij

)

=
s(m− 1)

m2

m∑
j=1

(σ2
a + σ2 + µ2)− s(m− 1)(σ2

a + µ2)

m
+ s2

(
σ2
a +

σ2

m

)
= s2σ2

a + s(s+m− 1)
σ2

m
.

Let ai =
∑m

j=1 cjyij, we have

E(ai1ai2|y) =E

(
m∑
j=1

cjyi1j

m∑
j=1

cjyi2j

∣∣∣∣∣y
)

=E

(
m∑
j=1

c2
jyi1jyi2j

∣∣∣∣∣y
)

+ E

(∑
j1 6=j2

cj1cj2yi1j1yi2j2

∣∣∣∣∣y
)

=
m∑
j=1

yi1jyi2j[Var(cj) + E2(cj)] +
∑
j1 6=j2

yi1j1yi2j2E(cj1cj2)

=
s2 + sm− s

m2

m∑
j=1

yi1jyi2j +
s2 − s
m2

∑
j1 6=j2

yi1j1yi2j2 .

Based on the previous results, the conditional variance of the estimator of the overall
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mean under sampling with replacement of both subjects and repeated measurements

Var(µ̂rcwls,wr|y) =
Var(

∑n
i=1

∑m
j=1 uicjyij|y)

N2
=

Var(
∑n

i=1 uiai|y)

N2

=
1

N2

E

(
n∑
i=1

uiai

∣∣∣∣∣y
)2

−

[
E

(
n∑
i=1

uiai

∣∣∣∣∣y
)]2


=

1

N2


n∑
i=1

E(u2
i a

2
i |y) +

∑
i1 6=i2

E(ui1ui2ai1ai2)−

(
n∑
i=1

r

n
sȳrci·

)2


=
1

N2

{ n∑
i=1

E(u2
i )

[
s(m− 1)

m2

m∑
j=1

y2
ij −

s

m2

∑
j1 6=j2

yij1yij2 + s2(ȳrci· )
2

]

+
∑
i1 6=i2

E(ui1ui2)

[
s2 + sm− s

m2

m∑
j=1

yi1jyi2j +
s2 − s
m2

∑
j1 6=j2

yi1j1yi2j2

]

− r2s2

n2

[
n∑
i=1

(ȳrci· )
2 +

∑
i1 6=i2

ȳrci1·ȳ
rc
i2·

]}

=
1

N2

{
rs(m− 1)(r + n− 1)

n2m2

n∑
i=1

m∑
j=1

y2
ij −

rs(r + n− 1)

n2m2

n∑
i=1

∑
j1 6=j2

yij1yij2

+
rs2(n− 1)

n2

n∑
i=1

(ȳrci· )
2 +

rs(r − 1)(s+m− 1)

n2m2

∑
i1 6=i2

m∑
j=1

yi1jyi2j

+
rs(r − 1)(s− 1)

n2m2

∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2 −
r2s2

n2

∑
i1 6=i2

ȳrci1·ȳ
rc
i2·

}
,

and the unconditional variance of the estimator of the overall mean under sampling with
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replacement of both subjects and repeated measurements

Var(µ̂rcwls,wr) =E[Var(µ̂rcwr,sub|y)] + Var[E(µ̂rcwr,sub|y)]

=
1

N2

{
rs(m− 1)(r + n− 1)

n2m2

n∑
i=1

m∑
j=1

E(y2
ij)−

rs(r + n− 1)

n2m2

n∑
i=1

∑
j1 6=j2

E(yij1yij2)

+
rs2(n− 1)

n2

n∑
i=1

E(ȳrci· )
2 +

rs(r − 1)(s+m− 1)

n2m2

∑
i1 6=i2

m∑
j=1

E(yi1jyi2j)

+
rs(r − 1)(s− 1)

n2m2

∑
i1 6=i2

∑
j1 6=j2

E(yi1j1yi2j2)−
r2s2

n2

∑
i1 6=i2

E(ȳrci1·ȳ
rc
i2·)

}

+ Var

(∑n
i=1

∑m
j=1 yij

nm

)

=
1

N

{
(m− 1)(r + n− 1)

nm
(σ2

a + σ2 + µ2)− r + n− 1

nm
(m− 1)(σ2

a + µ2)

+
s(n− 1)

n

(
σ2
a +

σ2

m

)}
+

Var(
∑n

i=1 ȳ
rc
i· )

n2

=
1

N

{
(m− 1)(r + n− 1)

nm
σ2 +

s(n− 1)

n

(
σ2
a +

σ2

m

)}
+
σ2
a + σ2/m

n

=

(
1

r
+

1

n
− 1

rn

)[
σ2
a +

(s+m− 1)σ2

sm

]
.

Since µ̂rcwls,wr is unbiased, then

MSE(µ̂rcwls,wr) = Var(µ̂rcwls,wr) =

(
1

r
+

1

n
− 1

rn

)[
σ2
a +

(s+m− 1)σ2

sm

]
.

Remark 6. The estimator of the overall mean under sampling with replacement of

both subjects and repeated measurements µ̂rcwls,wr =

∑n
i=1

∑m
j=1 uicjyij

N
is an unbiased

estimator. The variance and MSE of µ̂rcwls,wr are larger than those based on the full data

by the amount of
1

r

(
1− 1

n

)
(n− 1)σ2

a

rn
+

[
m− 1

s
+
n− 1

r
+

(n− 1)(m− 1)

rs

]
σ2

nm
. With
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the fixed N , the MSE of µ̂rcwls,wr achieves the minimum when r =

√
N(n− 1)(mσ2

a + σ2)

(m− 1)σ2
.

Theorem 9. The conditional means of the estimators of σ2
a and σ2 under sampling with

replacement of both subjects and repeated measurements are

E[(σ̂rca,wr)
2|y] =

(r − 1)(n− 1)(m+ s− 1)− rn(m− 1)

rsn2m2

n∑
i=1

m∑
j=1

y2
ij

+
(r − 1)(n− 1)(s− 1) + rn

rsn2m2

n∑
i=1

∑
j1 6=j2

yij1yij2

− r − 1

rsn2m2

[
(s+m− 1)

∑
i1 6=i2

m∑
j=1

yi1jyi2j + (s− 1)
∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2

]
,

(2.46)

E[(σ̂rcwr)
2|y] =

m− 1

nm2

n∑
i=1

m∑
j=1

y2
ij −

1

nm2

n∑
i=1

∑
j1 6=j2

yij1yij2 . (2.47)

The unconditional means of the estimators of σ2
a and σ2 under sampling with replacement

of both subjects and repeated measurements are

E[(σ̂rca,wr)
2] =

(
1− 1

r

)(
1− 1

n

)
σ2
a +

[
r

Nn

(
1

m
− 1

)
+

1

rm

(
1

n
− 1

)]
σ2

+

[
1

m
− N + 1

nm
+

1

N

(
1

n
+

1

m
− 1

)]
σ2, (2.48)

E[(σ̂rcwr)
2] =

(
1− 1

m

)
σ2. (2.49)

Proof. Because of E(ȳrci· ) = E

(∑m
j=1 cjyij

s

)
=
su

s
= u, Var(ȳrci· ) =

Var(
∑m

j=1 cjyij)

s2
=

σ2
a + (s+m− 1)

σ2

sm
, and the independence among subjects, we have

ȳrci·
iid∼ N

[
µ, σ2

a +

(
1

m
+

1

s
− 1

sm

)
σ2

]
.
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As we also assumed, ui’s, cj’s and y’s are mutually independent, so the expectations and

variances of the conditional and unconditional sum of squares can be derived as follows

E(SSArc
wr,sub|y) =sE

[
n∑
i=1

ui(ȳ
rc
i· − ȳrc.. )2

∣∣∣∣∣y
]

=s

{ n∑
i=1

E[(ȳrci· )
2|y]E(ui)−

1

r

n∑
i=1

E[(ȳrci· )
2|y]E(u2

i )

− 1

r

∑
i1 6=i2

E(ȳrci1.ȳ
rc
i2.
|y)E(ui1ui2)

}

=s

[
rn− r − n+ 1

n2

n∑
i=1

(
m+ s− 1

sm2

m∑
j=1

y2
ij +

s− 1

sm2

∑
j1 6=j2

yij1yij2

)

− r − 1

n2

∑
i1 6=i2

(
s+m− 1

sm2

m∑
j=1

yi1jyi2j +
s− 1

sm2

∑
j1 6=j2

yi1j1yi2j2

)]

=
rn− r − n+ 1

n2m2

[
(m+ s− 1)

n∑
i=1

m∑
j=1

y2
ij + (s− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2

]

− r − 1

n2m2

[
(s+m− 1)

∑
i1 6=i2

m∑
j=1

yi1jyi2j + (s− 1)
∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2

]
,

and

E(RSSErcwr,sub|y) =E

[
n∑
i=1

m∑
j=1

uicj(yij − ȳrci· )2

∣∣∣∣∣y
]

=
n∑
i=1

m∑
j=1

E(ui)E(cj)y
2
ij −

1

s

n∑
i=1

E(ui)E

( m∑
j=1

cjyij

)2
∣∣∣∣∣∣y


=
r(s− 1)(m− 1)

nm2

n∑
i=1

m∑
j=1

y2
ij −

r(s− 1)

nm2

n∑
i=1

∑
j1 6=j2

yij1yij2 .
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Then

E(SSArc
wr,sub) =

(r − 1)(n− 1)(m+ s− 1)

n2m2

n∑
i=1

m∑
j=1

(σ2 + σ2
a + µ2)

+
(r − 1)(n− 1)(s− 1)

n2m2

n∑
i=1

∑
j1 6=j2

(σ2
a + µ2)

− r − 1

n2m2
[(m+ s− 1)

∑
i1 6=i2

m∑
j=1

µ2 + (s− 1)
∑
i1 6=i2

∑
j1 6=j2

µ2]

=
(r − 1)(n− 1)

n

(
sσ2

a +
m+ s− 1

m
σ2

)
,

and

E(RSSErcwr,sub) =
r(s− 1)(m− 1)

nm2

n∑
i=1

m∑
j=1

(σ2 + σ2
a + µ2)− r(s− 1)

nm2

n∑
i=1

∑
j1 6=j2

(σ2
a + µ2)

=
r(s− 1)(m− 1)

m
σ2.

Consequently, we get the conditional expected value of (σ̂rca,wr)
2

E[(σ̂rca,wr)
2|y] =E

[
SSArc

wr,sub

rs
−

RSSErcwr,sub
rs(s− 1)

∣∣∣∣y]
=

(r − 1)(n− 1)(m+ s− 1)− rn(m− 1)

rsn2m2

n∑
i=1

m∑
j=1

y2
ij

+
(r − 1)(n− 1)(s− 1) + rn

rsn2m2

n∑
i=1

∑
j1 6=j2

yij1yij2

− r − 1

rsn2m2

[
(s+m− 1)

∑
i1 6=i2

m∑
j=1

yi1jyi2j + (s− 1)
∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2

]
,

and the conditional mean of (σ̂rcwr)
2

E[(σ̂rcwr)
2|y] =

E(RSSErcwr,sub|y)

r(s− 1)
=
m− 1

nm2

n∑
i=1

m∑
j=1

y2
ij −

1

nm2

n∑
i=1

∑
j1 6=j2

yij1yij2 .
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Taking expectation with respect to y, we have

E[(σ̂rca,wr)
2] =E

[
SSArc

wr,sub

rs
−

RSSErcwr,sub
rs(s− 1)

]
=

(r − 1)(n− 1)

rn
σ2
a +

[
(r − 1)(n− 1)(m+ s− 1)

rn
−m+ 1

]
σ2

sm

=

(
1− 1

r

)(
1− 1

n

)
σ2
a +

[
r

Nn

(
1

m
− 1

)
+

1

rm

(
1

n
− 1

)]
σ2

+

[
1

m
− N + 1

nm
+

1

N

(
1

n
+

1

m
− 1

)]
σ2,

and

E[(σ̂rcwr)
2] = E

{
E[(σ̂rcwr)

2|y]
}

=

(
1− 1

m

)
σ2.

Remark 7. The bias of (σ̂rca,wr)
2 is larger than that of the full data by the amount of

1

r

(
1− 1

n

)
σ2
a −

[(
1− 1

r

)(
1− 1

n

)(
m− 1

s
+ 1

)
− m− 1

s
+

1

n

]
σ2

m
.

As we can see from the formula, the major term of the unconditional expected values of

(σ̂rca,wr)
2 increases as r increases. The expectation of (σ̂rcwr)

2 is smaller than that based on

the full data by the amount of
σ2
a

m
. The calculation of the variances of (σ̂rca,wr)

2 and (σ̂rcwr)
2

are too complicated, we will use simulations to investigate them later.

2.3.4 Properties of Estimators Under SamplingWithout Replace-

ment of Both Subjects and Repeated Measurements

We now consider sampling without replacement of both subjects and repeated measure-

ments. We assume that u and c follow multivariate hypergeometric distributions with
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E(ui) =
r

n
, Var(ui) =

r(n− r)
n2

, Cov(ui1 , ui2) = − r(n− r)
n2(n− 1)

, E(cj) =
s

m
, Var(cj) =

s(m− s)
m2

, and Cov(cj1 , cj2) = − s(m− s)
m2(m− 1)

. Assume ui’s, cj’s and y’s are mutually in-

dependent. Then according to πsi =
1

n
, πrj =

1

m
and equation (2.41), the estimator

of the overall mean under sampling without replacement of both subjects and repeated

measurements is

µ̂rcwls,wo =

∑n
i=1

∑m
j=1

uicj
rsπsi

[
1

πrjσ
2 −

∑m
l=1

clσ
2
a√

πrjπ
r
l σ

2(σ2+mσ2
a)

]
yij∑n

i=1

∑m
j=1

uicj
rsπsi

[
1

πrjσ
2 −

∑m
l=1

clσ2
a√

πrjπ
r
l σ

2(σ2+mσ2
a)

]

=

∑n
i=1

∑m
j=1

uicj
1/n

[
m
sσ2 − mσ2

a

σ2(σ2+mσ2
a)

]
yij∑n

i=1

∑m
j=1

uicj
1/n

[
m
sσ2 − mσ2

a

σ2(σ2+mσ2
a)

]
=

∑n
i=1

∑m
j=1 uicjyij

N
,

which is the same as the MLE in (2.37).

Theorem 10. The conditional mean and variance of the estimator of the overall mean

under sampling without replacement of both subjects and repeated measurements are

E(µ̂rcwls,wo|y) =µ̂mle, (2.50)

Var(µ̂rcwls,wo|y) =
1

N

[
nm− rs
n2m2

n∑
i=1

m∑
j=1

y2
ij +

nm(s− 1)− rs(m− 1)

n2m2(m− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2

]

+
nm(r − 1)− rs(n− 1)

Nn2m2(n− 1)

∑
i1 6=i2

m∑
j=1

yi1jyi2j

+
nm(r − 1)(s− 1)− rs(n− 1)(m− 1)

Nn2m2(n− 1)(m− 1)

∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2 . (2.51)

The unconditional mean and variance of the estimator of the overall mean under sampling
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without replacement of both subjects and repeated measurements are

E(µ̂rcwls,wo) =µ, (2.52)

MSE(µ̂rcwls,wo) =Var(µ̂rcwls,wo) =
1

r
σ2
a +

1

N
σ2. (2.53)

Proof. The conditional expectation of the overall mean under sampling without replace-

ment of both subjects and repeated measurements is as following

E(µ̂rcwls,wo|y) =E

(∑n
i=1

∑m
j=1 uicjyij

N

∣∣∣∣∣y
)

=

∑n
i=1

∑m
j=1 E(ui)E(cj)yij

N
=

∑n
i=1

∑m
j=1 yij

nm
,

and the unconditional expectation of the overall mean under sampling with replacement

of both subjects and repeated measurements is

E(µ̂rcwls,wo) = E

(∑n
i=1

∑m
j=1 yij

nm

)
= µ.

In order to get the conditional and unconditional variances of the estimator of the overall

mean under sampling without replacement of both subjects and repeated measurements,

we get the following results first:

E

(
m∑
j=1

cjyij

∣∣∣∣∣y
)

=
m∑
j=1

E(cj)yij =
s

m

m∑
j=1

yij,

then

E(
m∑
j=1

cjyij) = sµ.
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Since

Var

(
m∑
j=1

cjyij

∣∣∣∣∣y
)

=
m∑
j=1

y2
ijVar(cj) +

∑
j1 6=j2

yij1yij2Cov(cj1 , cj2)

=
s(m− s)
m2

m∑
j=1

y2
ij −

s(m− s)
m2(m− 1)

∑
j1 6=j2

yij1yij2 ,

then

Var

(
m∑
j=1

cjyij

)
=E

[
Var

(
m∑
j=1

cjyij

∣∣∣∣∣y
)]

+ Var

[
E

(
m∑
j=1

cjyij

∣∣∣∣∣y
)]

=
s(m− s)
m2

m∑
j=1

[Var(yij) + E2(yij)]−
s(m− s)
m2(m− 1)

∑
j1 6=j2

(σ2
a + µ2)

+ Var

(
s

m

m∑
j=1

yij

)

=
s(m− s)

m
(σ2

a + σ2 + µ2)− s(m− s)(σ2
a + µ2)

m
+ s2

(
σ2
a +

σ2

m

)
=s2σ2

a + sσ2.

Let ai =
∑m

j=1 cjyij, we have

E(ai1ai2|y) =E

(
m∑
j=1

cjyi1j

m∑
j=1

cjyi2j

∣∣∣∣∣y
)

=E

(
m∑
j=1

c2
jyi1jyi2j

∣∣∣∣∣y
)

+ E

(∑
j1 6=j2

cj1cj2yi1j1yi2j2

∣∣∣∣∣y
)

=
m∑
j=1

yi1jyi2j[Var(cj) + E2(cj)] +
∑
j1 6=j2

yi1j1yi2j2E(cj1cj2)

=
s

m

m∑
j=1

yi1jyi2j +
s(s− 1)

m(m− 1)

∑
j1 6=j2

yi1j1yi2j2 .
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Based on the previous results, the conditional variance of µ̂rcwls,wo is

Var(µ̂rcwls,wo|y) =
Var(

∑n
i=1

∑m
j=1 uicjyij|y)

N2
=

Var(
∑n

i=1 uiai|y)

N2

=
1

N2

E

(
n∑
i=1

uiai

∣∣∣∣∣y
)2

−

[
E

(
n∑
i=1

uiai

∣∣∣∣∣y
)]2


=

1

N2

 n∑
i=1

E(u2
i a

2
i |y) +

∑
i1 6=i2

E(ui1ui2ai1ai2)−

(
n∑
i=1

rs

mn

m∑
j=1

yij

)2


=
1

N2

{ n∑
i=1

E(u2
i )

s(m− s)
m2

m∑
j=1

y2
ij −

s(m− s)
m2(m− 1)

∑
j1 6=j2

yij1yij2 +
s2

m2

(
m∑
j=1

yij

)2


+
∑
i1 6=i2

E(ui1ui2)

[
s

m

m∑
j=1

yi1jyi2j +
s(s− 1)

m(m− 1)

∑
j1 6=j2

yi1j1yi2j2

]

− r2s2

n2m2

(
n∑
i=1

m∑
j=1

yij

)2}

=
1

N

{
nm− rs
n2m2

n∑
i=1

m∑
j=1

y2
ij +

nm(s− 1)− rs(m− 1)

n2m2(m− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2

+
nm(r − 1)− rs(n− 1)

n2m2(n− 1)

∑
i1 6=i2

m∑
j=1

yi1jyi2j

+
nm(r − 1)(s− 1)− rs(n− 1)(m− 1)

n2m2(n− 1)(m− 1)

∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2

}
,

and the unconditional variance of the estimator of the overall mean under sampling
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without replacement of both subjects and repeated measurements is

Var(µ̂rcwls,wo) =E[Var(µ̂rcwls,wo|y)] + Var[E(µ̂rcwls,wo|y)]

=
1

N

[
nm− rs
n2m2

n∑
i=1

m∑
j=1

E(y2
ij) +

nm(s− 1)− rs(m− 1)

n2m2(m− 1)

n∑
i=1

∑
j1 6=j2

E(yij1yij2)

+
nm(r − 1)− rs(n− 1)

n2m2(n− 1)

∑
i1 6=i2

m∑
j=1

E(yi1jyi2j)

+
nm(r − 1)(s− 1)− rs(n− 1)(m− 1)

n2m2(n− 1)(m− 1)

∑
i1 6=i2

∑
j1 6=j2

E(yi1j1yi2j2)

]

+ Var

(∑n
i=1

∑m
j=1 yij

nm

)

=
1

N

[
nm− rs
nm

(σ2
a + σ2 + µ2) +

nm(s− 1)− rs(m− 1)

nm
(σ2

a + µ2)

+
nm(r − 1)− rs(n− 1)

nm
µ2 +

nm(r − 1)(s− 1)− rs(n− 1)(m− 1)

nm
µ2

]
+
mσ2

a + σ2

nm

=
1

r
σ2
a +

1

N
σ2.

Since µ̂rcwls,wo is unbiased, we have

MSE(µ̂rcwls,wo) = Var(µ̂rcwls,wo) =
1

r
σ2
a +

1

N
σ2

Remark 8. The estimator of the overall mean under sampling without replacement of

subjects and repeated measurements µ̂rcwls,wo =

∑n
i=1

∑m
j=1 uicjyij

N
is an unbiased estima-

tor. The variance and MSE of µ̂rcwls,wo are larger than that based on the full data by the

amount of
(

1

r
− 1

n

)
σ2
a +

(
1

N
− 1

nm

)
σ2.

We now conduct a simulation to compare the variances of the estimators and their
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expected variances. We generate 1000 data sets from the model (2.1) with µ = 10, σ2
a = 1,

σ2 = 0.01, n = 1000, m = 500 and N = 4000. We choose r = 10 + 50k for k = 1, ..., 19.

We compute sample variance of µ̂rcwls,wo, and its theoretical variance using formula (2.53),

and sample variance of µ̂2
wls,wr, and its theoretical variance using formula (2.45). Figure

2.6 shows that the variance of µ̂rcwls,wo is smaller that of µ̂rcwls,wr.
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Figure 2.6: The red line is the sample variances of µ̂rcwls,wo, the blue line is the expected
variance of µ̂rcwls,wo, the green line is the sample variances of µ̂rcwls,wr, and the purple
line is the expected variance of µ̂rcwls,wr.

Theorem 11. The conditional means of the estimators of σ2
a and σ2 under sampling

55



One-Way Random Effect Model with Big Data Chapter 2

with replacement of both subjects and repeated measurements are

E[(σ̂rca,wo)
2|y] =− 1

rsnm

n∑
i=1

m∑
j=1

y2
ij +

(r − 1)(s− 1) + r

rsnm(m− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2

−
(r − 1)

∑
i1 6=i2

∑m
j=1 yi1jyi2j

rsnm(n− 1)

−
(r − 1)(s− 1)

∑
i1 6=i2

∑
j1 6=j2 yi1j1yi2j2

rsn(n− 1)m(m− 1)
, (2.54)

E[(σ̂rcwo)
2|y] =

1

nm

n∑
i=1

m∑
j=1

y2
ij −

1

nm(m− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2 . (2.55)

The unconditional means of the estimators of σ2
a and σ2 under sampling with replacement

of both subjects and repeated measurements are

E[(σ̂rca,wo)
2] =

(
1− 1

r

)
σ2
a −

1

N
σ2, (2.56)

E[(σ̂rcwo)
2] =σ2. (2.57)

Proof. As we assumed, ui’s, cj’s and y’s are independent, the expectations and the vari-
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ances of the conditional and unconditional sum of squares can be derived as follows:

E(SSArc
wls,wo|y) =sE

[
n∑
i=1

ui(ȳ
rc
i· − ȳrc.. )2

∣∣∣∣∣y
]

=s

{ n∑
i=1

E[(ȳrci· )
2|y]E(ui)−

1

r

n∑
i=1

E[(ȳrci· )
2|y]E(u2

i )

− 1

r

∑
i1 6=i2

E(ȳrci1.ȳ
rc
i2.
|y)E(ui1ui2)

}

=s

{
r − 1

n

n∑
i=1

[
1

sm

m∑
j=1

y2
ij +

s− 1

sm(m− 1)

∑
j1 6=j2

yij1yij2

]

− r − 1

s2n(n− 1)

∑
i1 6=i2

[
s

m

m∑
j=1

yi1jyi2j +
s(s− 1)

m(m− 1)

∑
j1 6=j2

yi1j1yi2j2

]}

=
r − 1

nm

n∑
i=1

m∑
j=1

y2
ij +

(r − 1)(s− 1)

m(m− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2

− r − 1

mn(n− 1)

∑
i1 6=i2

m∑
j=1

yi1jyi2j −
(r − 1)(s− 1)

n(n− 1)m(m− 1)

∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2 ,

and

E(RSSErcwls,wo|y) =E

[
n∑
i=1

m∑
j=1

uicj(yij − ȳrci· )2

∣∣∣∣∣y
]

=
n∑
i=1

m∑
j=1

E(ui)E(cj)y
2
ij −

1

s

n∑
i=1

E(ui)E

( m∑
j=1

cjyij

)2
∣∣∣∣∣∣y


=
rs

nm

n∑
i=1

m∑
j=1

y2
ij −

r

sn

n∑
i=1

m∑
j=1

y2
ijE(c2

j)−
rs

nm

n∑
i=1

∑
j1 6=j2

yij1yij2E(cj1cj2)

=
r(s− 1)

nm

n∑
i=1

m∑
j=1

y2
ij −

r(s− 1)

nm(m− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2 .
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Then

E(SSArc
wls,wo) =

r − 1

nm

n∑
i=1

m∑
j=1

E(y2
ij) +

(r − 1)(s− 1)

m(m− 1)

n∑
i=1

∑
j1 6=j2

E(yij1yij2)

− r − 1

mn(n− 1)

∑
i1 6=i2

m∑
j=1

E(yi1jyi2j)−
(r − 1)(s− 1)

n(n− 1)m(m− 1)

∑
i1 6=i2

∑
j1 6=j2

E(yi1j1yi2j2)

=
r − 1

nm

n∑
i=1

m∑
j=1

(σ2 + σ2
a + µ2) +

(r − 1)(s− 1)

m(m− 1)

n∑
i=1

∑
j1 6=j2

(σ2
a + µ2)

− r − 1

mn(n− 1)

∑
i1 6=i2

m∑
j

µ2 − (r − 1)(s− 1)

n(n− 1)m(m− 1)

∑
i1 6=i2

∑
j1 6=j2

µ2

=s(r − 1)σ2
a + (r − 1)σ2,

and

E(RSSErcwls,wo) =
r(s− 1)

nm

n∑
i=1

m∑
j=1

E(y2
ij)−

r(s− 1)

nm(m− 1)

n∑
i=1

∑
j1 6=j2

E(yij1yij2)

=
r(s− 1)

nm

n∑
i=1

m∑
j=1

(σ2 + σ2
a + µ2)− r(s− 1)

nm(m− 1)

n∑
i=1

∑
j1 6=j2

(σ2
a + µ2)

=r(s− 1)σ2.

Consequently, we get the conditional expected values of (σ̂rca,wo)
2 and (σ̂rcwo)

2

E[(σ̂rca,wo)
2|y] =E

[
SSArc

wls,wo

rs
−

RSSErcwls,wo
rs(s− 1)

∣∣∣∣y]
=− 1

rsnm

n∑
i=1

m∑
j=1

y2
ij +

(r − 1)(s− 1) + r

rsnm(m− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2

− r − 1

rsnm(n− 1)

∑
i1 6=i2

m∑
j=1

yi1jyi2j −
(r − 1)(s− 1)

rsn(n− 1)m(m− 1)

∑
i1 6=i2

∑
j1 6=j2

yi1j1yi2j2 ,

E[(σ̂rcwo)
2|y] =

E(RSSErcwls,wo|y)

r(s− 1)
=

1

nm

n∑
i=1

m∑
j=1

y2
ij −

1

nm(m− 1)

n∑
i=1

∑
j1 6=j2

yij1yij2 .
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Taking expectation with respect to y, we have

E[(σ̂rca,wo)
2] =E

[
SSArc

wls,wo

rs
−

RSSErcwls,wo
rs(s− 1)

]
=
r − 1

r
σ2
a +

(
r − 1

rs
− 1

s

)
σ2

=

(
1− 1

r

)
σ2
a −

1

N
σ2,

E[(σ̂rcwo)
2] =

E(RSSErcwls,wo)
r(s− 1)

= σ2.

Remark 9. The bias of (σ̂rca,wo)
2 is larger than that based on full data by the amount of(

1

r
− 1

n

)
σ2
a +

(
1

rs
− 1

nm

)
σ2. While (σ̂rcwo)

2 is an unbiased estimator.

We now conduct a simulation to compare the meas of the estimators and their ex-

pectation. We generate 1000 data sets from model (2.1) with µ = 10, σ2
a = 1, σ2 = 0.01,

n = 1000, m = 500 and N = 4000. We choose r = 10 + 50k for k = 0, 1, ..., 19. We

compute average of (σ̂rca,wo)
2, and its expectation using formula (2.56), and average of

(σ̂rca,wr)
2, and its expectation using formula (2.48). Figure 2.7 shows that (σ̂rca,wo)

2 has

smaller bias.
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Figure 2.7: The red line is the averages of (σ̂rca,wo)2, the green line is the expectation of
(σ̂rca,wo)

2, the blue line is the averages of (σ̂rca,wr)2, and the purple line is the expectation
of (σ̂rca,wr)2.

Theorem 12. The variances and MSEs of (σ̂rca,wo)
2 and (σ̂rcwo)

2 are

Var[(σ̂rca,wo)
2] =

2(r − 1)(σ2
a + σ2/s)2

r2
+

2σ4

rs2(s− 1)
, (2.58)

MSE[(σ̂rca,wo)
2] =

(2r − 1)(σ2
a + σ2/s)2

r2
+

2σ4

rs2(s− 1)
, (2.59)

MSE[(σ̂rcwo)
2] =Var[(σ̂rcwo)

2] =
2σ4

r(s− 1)
. (2.60)

Proof. Under sampling without replacement situation, the conditional residual sum of
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squares and sum of squares

RSSErcwls,wo =
n∑
i=1

m∑
j=1

uicj[yij − µ− αi − (ȳrci· − µ− αi)]2 =
n∑
i=1

m∑
j=1

uicj(εij − ε̄rci· )2,

SSArc
wls,wo = s

n∑
i=1

ui(ȳ
rc
i· − ȳrc·· )2 = s

n∑
i=1

ui[αi + ε̄rci· − (ᾱ + ε̄rc·· )]
2.

According to the Cochran theorem, for the sampling without replacement,
n∑
i=1

m∑
j=1

uicj(εij−

ε̄rci· )
2 is independent of ε̄rci· and SSArc

wo,sub is the function of ε̄rci· for i = 1, ..., n, then

RSSErcwo,sub and SSArc
wo,sub are independent. Furthermore, we have

RSSErcwo,sub
σ2

=

∑n
i=1

∑m
j=1 uicj(εij − ε̄rci· )2

σ2
∼ χ2

r(s−1),

SSArc
wo,sub

sσ2
a + σ2

=

∑n
i=1 ui[αi + ε̄i· − (ᾱ + ε̄rc·· )]

2

σ2
a + σ2/s

∼ χ2
r−1.

Therefore, the variance of the conditional sum of squares Var(SSArc
wo,sub) = Var[s

n∑
i=1

ui(ȳ
rc
i· −

ȳrc·· )2] = 2s2(r−1)(σ2
a+σ2/s)2, and the variance of the conditional residual sum of squares

Var(RSSErcwo,sub) = 2r(s− 1)σ4. Then the variances of (σ̂rca,wo)
2 and (σ̂rcwo)

2

Var[(σ̂rca,wo)
2] =Var

[
SSArc

wo,sub

rs
−

RSSErcwo,sub
rs(s− 1)

]
=

1

r2s2
Var(SSArc

wo,sub) +
1

r2s2(s− 1)2
Var(RSSErcwo,sub)

− 2Cov
[
SSArc

wo,sub

rs
,
RSSErcwo,sub
rs(s− 1)

]
=

2(r − 1)(σ2
a + σ2/s)2

r2
+

2σ4

rs2(s− 1)
,

Var[(σ̂rcwo)
2] =

Var(RSSErcwo,sub)
r2(s− 1)2

=
2σ4

r(s− 1)
.
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Then the MSE of (σ̂rca,wo)
2 and (σ̂rcwo)

2

MSE[(σ̂rca,wo)
2] =Var[(σ̂rca,wo)

2] + bias2(σ̂rca,wo)

=
2(r − 1)(σ2

a + σ2/s)2

r2
+

2σ4

rs2(s− 1)
+

1

r2
(σ2

a +
σ2

s
)2

=
(2r − 1)(σ2

a + σ2/s)2

r2
+

2σ4

rs2(s− 1)
,

MSE[(σ̂rcwo)
2] =Var[(σ̂rcwo)

2] =
2σ4

r(s− 1)
.

Remark 10. The variance of (σ̂rca,wo)
2 is larger than that based on full data by the amount

of
2(r − 1)(σ2

a + σ2/s)2

r2
− 2(n− 1)(σ2

a + σ2/m)2

n2
+

2σ4

rs2(s− 1)
− 2σ4

nm2(m− 1)
. The MSE

of (σ̂rca,wo)
2 is larger than that based on full data by the amount of

(2r − 1)(σ2
a + σ2/s)2

r2
− (2n− 1)(σ2

a + σ2/m)2

n2
+

2σ4

rs2(s− 1)
− 2σ4

nm2(m− 1)
.

The variance and MSE of (σ̂rcwo)
2 are inflated by a factor of

n(m− 1)

r(s− 1)
. When we sample

with replacement, it is difficult to get the exact distribution of SSE and SSA.

We now conduct a simulation to compare the variances of the estimators and their the-

oretical variances. We generate 1000 data sets from the model (2.1) with µ = 10, σ2
a = 1,

σ2 = 0.01, n = 1000, m = 500 and N = 4000. We choose r = 10+50k for k = 1, ..., 19.We

compute sample variance of (σ̂rca,wo)
2, and its theoretical variance using formula (2.58),

and sample variance of (σ̂rca,wr)
2. Figure 2.8 shows that the variance of (σ̂rca,wo)

2 is smaller

that of (σ̂rca,wr)
2.
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Figure 2.8: The red line is the sample variances of (σ̂rca,wo)
2, the blue line is the

theoretical variances of (σ̂rca,wo)2, and the green line is the sample variances of (σ̂rca,wr)2.

2.3.5 Confidence Interval of ICC Under Sampling Without Re-

placement of Both Subjects and Repeated Measurements

In this section, we discuss the construction of confidence interval for ICC, which is defined

as ρ =
σ2
a

σ2
a + σ2

. Based on estimates σ̂2
a,full =

MSAfull −MSEfull
m

and σ̂2
full = MSEfull,

we can get the following estimate (Shrout and Fleisis [31])

ρ̂ =
MSAfull −MSEfull

MSAfull + (m− 1)MSEfull
=

F − 1

F +m− 1
,

where F =
MSAfull

MSEfull
. It is known that

MSAfull/(mσ
2
a + σ2)

MSEfull/σ2
follows an F distribution

F [n−1, n(m−1)] with degrees of freedoms (n−1) and n(m−1), and ρ is the monotonous

function of
σ2
a

σ2
by re-writing the ρ as

1

1 + 1
σ2/σ2

a

. Given this fact, we get the (1− α)100%
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confidence interval of ρ

(
F/FU − 1

F/FU +m− 1
,

F/FL − 1

F/FL +m− 1

)
,

where FU = F1−α
2
[(n − 1), n(m − 1)] and FL = Fα

2
[(n − 1), n(m − 1)] are the (1 − α/2)

and α/2 percentiles of the F distribution. According to Giraudeau and Mary [32], the

approximate expected width of ρ’s confidence interval is

2
√

2Z(1−α/2)[1 + (m− 1)ρ](1− ρ)

√
1

nm(m− 1)
.

For sampling without replacement of both subjects and repeated measurements, we know

that
MSArc

sub/(sσ
2
a + σ2)

MSErcsub/σ2
follows an F distribution F [r − 1, r(s − 1)]. By going through

the same steps, we have

ρ̂rc =
MSArc

sub −MSErcsub
MSArc

sub + (s− 1)MSErcsub
=

F rc − 1

F rc + s− 1
,

where F rc =
MSArc

sub

MSErcsub
. The (1− α)100% confidence interval of ρ is

(
F rc/F rc

U − 1

F rc/F rc
U + s− 1

,
F rc/F rc

L − 1

F rc/F rc
L + s− 1

)
,

where F rc
U = F1−α

2
[(r − 1), r(s− 1)] and F rc

L = Fα
2
[(r − 1), r(s− 1)]. Using the same ap-

proximation method as in [32] and [31], the approximate expected width of ρ’s confidence

interval is

2
√

2Z(1−α/2)[1 + (s− 1)ρ](1− ρ)

√
1

rs(s− 1)
. (2.61)

If N = r× s is fixed, then we can find the best combination of r and s by minimizing the

approximate expected width of the confidence interval. To minimize the expected width
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given by the formula (2.61), we only need to minimize [1 + (s− 1)ρ]

√
1

s− 1
.

Let
√
s− 1 = x, then the quantity we need to minimize can be written as (1+x2ρ)

1

x
,

which is minimized when x =
√

1/ρ. Then when s = [1 +
1

ρ
] where [.] is an operation

taking integer part, we will have the minimum approximate expected confidence interval

for ρ. In practice we can get an preliminary estimate of ρ, and consequently an estimate

of s.

2.4 Divide and Conquer

In this section, we discuss the D&C method for the one-way random effect model with

big data. We assume model (2.1) and consider a simple application of D&C method to

this one-way random effect model:

1. divide the n subjects into K subsets;

2. compute the estimates;

3. combine the estimates to get the overall estimates.

Suppose we divide the n subjects into K subsets, and each subset has size nk such

that
∑K

k=1 nk = n. Within the kth subset Sk, the one-way random effect model can be

written as:

yij = µ+αi + εij, i ∈ Sk; j = 1, ...,m, (2.62)

where yij is the jth observation from the ith subject in the kth subset, µ is the overall

mean which is constant over all subsets, αi is the random effect for the ith subject in

the kth subset, and εij is the within subject random error. The distribution of αi and
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εij remain the same, i.e. αi
iid∼ N(0, σ2

a), εij
iid∼ N(0, σ2), and αi and εij are mutually

independent.

For each subset, we have the following estimators:

µ̂k =

∑
i∈Sk

∑m
j=1 yij

nkm
,

σ̂2
a,k =

SSAk

nkm
− RSSEk
nkm(m− 1)

,

σ̂2
k =RMSEk,

where SSAk, RSSEk and RMSEk are based on the subset Sk.

The estimators of the overall mean can be written as

µ̂k = µ+ ξµk ,

where ξµk ∼ N(0, σ
2+mσ2

a

nkm
), and they are mutually independent. Using the method in

meta-analysis by DerSimonian and Laird [33], the combined estimator

µ̂dc =

∑K
k=1

µ̂k
Var(µ̂k)∑K

k=1
1

Var(µ̂k)

=

∑K
k=1 nkµ̂k
n

. (2.63)

Theorem 13. The mean, variance and MSE of the combined estimator of the overall

mean under divide and conquer method are

E(µ̂dc) =µ, (2.64)

MSE(µ̂dc) =Var(µ̂dc) =
σ2 +mσ2

a

nm
. (2.65)
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Proof. The mean and variance of the meta-analysis estimator

E(µ̂dc) =

∑K
k=1 nkE(µ̂k)

n
= µ,

Var(µ̂dc) =

∑K
k=1 Var(µ̂k)/[Var(µ̂k)]

2

[
∑K

k=1
1

Var(µ̂k)
]2

=
1∑K

k=1
1

Var(µ̂k)

=
σ2 +mσ2

a

nm
.

The MSE of the unbiased estimator µ̂dc is the same as the variance.

Remark 11. The mean, variance and MSE of µ from the D&C method are the same as

those based on the full data.

We use the same method to combine the estimators of σ2
a and σ2. From Section 2.1, we

have E(σ̂2
a,k) =

(
1− 1

nk

)
σ2
a−

σ2

nkm
, Var(σ̂2

a,k) =
2(nk − 1)(σ2

a + σ2/m)2

n2
k

+
2σ4

nkm2(m− 1)
,

E(σ̂2
k) = σ2, and Var(σ̂2

k) =
2σ2

nk(m− 1)
. The estimators of σ2

a and σ2 of the D&C method:

σ̂2
a,dc =

∑K
k=1

σ̂2
a,k

Var(σ̂2
a,k)∑K

k=1
1

Var(σ̂2
a,k)

=

∑K
k=1

n2
kσ̂

2
a,k

2(nk−1)(σ2
a+σ2/m)2m2(m−1)+2σ4nk∑K

k=1

n2
k

2(nk−1)(σ2
a+σ2/m)2m2(m−1)+2σ4nk

, (2.66)

σ̂2
dc =

∑K
k=1

σ̂2
k

Var(σ̂2
k)∑K

k=1
1

Var(σ̂2
k)

=

∑K
k=1 nkσ̂

2
k

n
. (2.67)

Theorem 14. (a) The mean, variance and MSE of σ̂2
a,dc are

E(σ̂2
a,dc) =σ2

a −
∑K

k=1
nk

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4∑K

k=1

n2
k

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4

(
σ2
a +

σ2

m

)
, (2.68)

Var(σ̂2
a,dc) =

1∑K
k=1

n2
km

2(m−1)

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4

, (2.69)

MSE(σ̂2
a,dc) =

1∑K
k=1

n2
km

2(m−1)

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4

+

∑K
k=1

nk
2(nk−1)m2(m−1)(σ2

a+σ2/m)2+2nkσ4∑K
k=1

n2
k

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4

2(
σ2
a +

σ2

m

)2

. (2.70)
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(b) The mean, variance and MSE of σ̂2
dc are

E(σ̂2
dc) =σ2 (2.71)

MSE(σ̂2
dc) =Var(σ̂2

dc) =
2σ4

n(m− 1)
. (2.72)

Proof.

E(σ̂2
a,dc) =

∑K
k=1

n2
kE(σ̂2

a,k)

2(nk−1)(σ2
a+σ2/m)2m2(m−1)+2σ4nk∑K

k=1

n2
k

2(nk−1)(σ2
a+σ2/m)2m2(m−1)+2σ4nk

=

∑K
k=1

n2
k[σ2

a− 1
nk

(σ2
a+σ2/m)]

2(nk−1)(σ2
a+σ2/m)2m2(m−1)+2σ4nk∑K

k=1

n2
k

2(nk−1)(σ2
a+σ2/m)2m2(m−1)+2σ4nk

=σ2
a −

∑K
k=1

nk
2(nk−1)m2(m−1)(σ2

a+σ2/m)2+2nkσ4∑K
k=1

n2
k

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4

(
σ2
a +

σ2

m

)
,

E(σ̂2
dc) =

∑K
k=1 nkE(σ̂2

k)

n
= σ2.

Furthermore,

Var(σ̂2
a,dc) =

1∑K
k=1

1
Var(σ̂2

a,k)

=
1∑K

k=1

n2
km

2(m−1)

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4

,

Var(σ̂2
dc) =

1∑K
k=1

1
Var(σ̂2

k)

=
2σ2

n(m− 1)
.
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Then the MSEs of σ̂2
a,dc and σ̂2

dc

MSE(σ̂2
a,dc) =Var(σ̂2

a,dc) + bias2(σ̂2
a,dc)

=
1∑K

k=1

n2
km

2(m−1)

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4

+

∑K
k=1

nk
2(nk−1)m2(m−1)(σ2

a+σ2/m)2+2nkσ4∑K
k=1

n2
k

2(nk−1)m2(m−1)(σ2
a+σ2/m)2+2nkσ4

2(
σ2
a +

σ2

m

)2

,

MSE(σ̂2
dc) =Var(σ̂2

dc) =
2σ4

n(m− 1)
.

For a simple case with nk =
n

K
, we have

E(σ̂2
a,dc) =

(
1− K

n

)
σ2
a −

K

nm
σ2,

Var(σ̂2
a,dc) =

2(n−K)

n2

(
σ2
a +

σ2

m

)2

+
2σ4

nm2(m− 1)
,

MSE(σ̂2
a,dc) =

2(n−K) +K2

n2

(
σ2
a +

σ2

m

)2

+
2σ4

nm2(m− 1)
.

We note that the MSE of σ̂2
a,dc becomes bigger as K increases due to the increasing bias of

σ̂2
a,dc. We can adjust σ̂2

a,k to reduce the bias before we apply the method in meta-analysis.

Define

(σ̂∗a,k)
2 =

(
1 +

1

nk

)[
SSAk

nkm
− RSSEk
nkm(m− 1)

]
+

RMSEk
nkm

=
nk + 1

n2
km

SSAk −
RSSEk

nkm(m− 1)
.
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Then

E[(σ̂∗a,k)
2] =

nk + 1

n2
km

E(SSAk)−
E(RSSEk)
nkm(m− 1)

=

(
1− 1

n2
k

)
σ2
a −

σ2

n2
km

,

Var[(σ̂∗a,k)
2] =

(nk + 1)2

n4
km

2
Var(SSAk) +

Var(RSSEk)
n2
km

2(m− 1)2

=
2(nk − 1)(nk + 1)2(σ2

a + σ2/m)2

n4
k

+
2σ4

nkm2(m− 1)
.

The adjusted estimator of σ̂2
a of the D&C method:

(σ̂∗a,dc)
2 =

∑K
k=1

(σ̂∗a,k)2

Var[(σ̂∗a,k)2]∑K
k=1

1
Var[(σ̂∗a,k)2]

. (2.73)

Theorem 15. The mean and variance of (σ̂∗a,dc)
2 are

E[(σ̂∗a,dc)
2] =σ2

a −

∑K
k=1

1
2(nk−1)(nk+1)2m2(m−1)(σ2

a+σ2/m)2+2n3
kσ

4∑K
k=1

n2
k

2(nk−1)(nk+1)2m2(m−1)(σ2
a+σ2/m)2+2n3

kσ
4

(
σ2
a +

σ2

m

)
, (2.74)

Var[(σ̂∗a,dc)
2] =

1∑K
k=1

n4
km

2(m−1)

2(nk−1)(nk+1)2m2(m−1)(σ2
a+σ2/m)2+2n3

kσ
4

, (2.75)

MSE[(σ̂∗a,dc)
2] =

1∑K
k=1

n4
km

2(m−1)

2(nk−1)(nk+1)2m2(m−1)(σ2
a+σ2/m)2+2n3

kσ
4

+

∑K
k=1

1
2(nk−1)(nk+1)2m2(m−1)(σ2

a+σ2/m)2+2n3
kσ

4∑K
k=1

n2
k

2(nk−1)(nk+1)2m2(m−1)(σ2
a+σ2/m)2+2n3

kσ
4

2(
σ2
a +

σ2

m

)2

. (2.76)
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Proof.

E[(σ̂∗a,dc)
2] =

∑K
k=1

E[(σ̂∗a,k)2]

Var[(σ̂∗a,k)2∑K
k=1

1
Var[(σ̂∗a,k)2]

=σ2
a −

∑K
k=1

1
n2
kVar[(σ̂∗a,k)2]∑K

k=1
1

Var[(σ̂∗a,k)2]

(
σ2
a +

σ2

m

)

=σ2
a −

∑K
k=1

1
2(nk−1)(nk+1)2m2(m−1)(σ2

a+σ2/m)2+2n3
kσ

4∑K
k=1

n2
k

2(nk−1)(nk+1)2m2(m−1)(σ2
a+σ2/m)2+2n3

kσ
4

(
σ2
a +

σ2

m

)
,

and

Var[(σ̂∗a,dc)
2] =

1∑K
k=1

1
Var[(σ̂∗a,k)2]

=
1∑K

k=1

n4
km

2(m−1)

2(nk−1)(nk+1)2m2(m−1)(σ2
a+σ2/m)2+2n3

kσ
4

.

Then the MSE of (σ̂∗a,dc)
2

MSE[(σ̂∗a,dc)
2] =Var[(σ̂∗a,dc)

2] + bias2[(σ̂∗a,dc)
2]

=
1∑K

k=1
1

Var[(σ̂∗a,k)2]

+

∑K
k=1

1
n2
kVar[(σ̂∗a,k)2]∑K

k=1
1

Var[(σ̂∗a,k)2]

2(
σ2
a +

σ2

m

)2

=
1∑K

k=1

n4
km

2(m−1)

2(nk−1)(nk+1)2m2(m−1)(σ2
a+σ2/m)2+2n3

kσ
4

+

∑K
k=1

1
2(nk−1)(nk+1)2m2(m−1)(σ2

a+σ2/m)2+2n3
kσ

4∑K
k=1

n2
k

2(nk−1)(nk+1)2m2(m−1)(σ2
a+σ2/m)2+2n3

kσ
4

2(
σ2
a +

σ2

m

)2

.
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When nk = n
K
, we have

E[(σ̂∗a,dc)
2] =

(
1− K2

n2

)
σ2
a −

K2

n2m
σ2,

Var[(σ̂∗a,dc)
2] =

2(n−K)(n+K)2

n4

(
σ2
a +

σ2

m

)2

+
2σ4

nm2(m− 1)
,

MSE[(σ̂∗a,dc)
2] =

2(n−K)(n+K)2 +K4

n4

(
σ2
a +

σ2

m

)2

+
2σ4

nm2(m− 1)
.

Remark 12. When the sample sizes are equal for all the subsets, the bias of σ̂2
a,dc

increases as K increases; the bias of σ̂2
a,dc is larger than that based on the full data by the

amount of
K − 1

n

(
σ2
a +

σ2

m

)
; the variance of σ̂2

a,dc is smaller than that based on the full

data by the amount
2(K − 1)(σ2

a + σ2/m)2

n2
. Consequently, the MSE of σ̂2

a,dc is larger than

that based on the full data by the amount
(K − 1)2(σ2

a + σ2/m)2

n2
. After the adjustment

of σ̂2
a,dc, the bias becomes smaller and the MSE increases slowly as K increases. When

K ≥ 3, the MSE of (σ̂∗a,dc)
2 is equal or smaller than that of σ̂2

a,dc. The mean, variance

and MSE of σ̂2
dc are the same as that based on the full data.

To compare the sample MSEs of estimators and their theoretical MSEs, we generate

2000 data sets from the model (2.1) with µ = 10, σ2
a = 1, σ2 = 0.01, n = 48000 and

m = 100. For the simplicity, we choose K = 1, 10, 20, 30, 50, 60, 80, 100, 150, and 200

with nk =
n

K
. We compute sample MSE of σ̂2

a,dc using formula (2.66), and its theoretical

MSE using formula (2.70), and sample MSE of (σ̂∗a,dc)
2 using formula (2.73), and its

theoretical MSE using formula (2.76).
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Figure 2.9: The purple line is the sample MSEs of σ̂2
a,dc, the red line is the theoretical

MSEs of σ̂2
a,dc, the green line is the sample MSEs of MSE(σ̂∗a,dc)

2, and the blue line is
the theoretical MSEs of (σ̂∗a,dc)

2.

2.5 Comparison

In this section, we compared the estimators from the subsampling methods and the D&C

method with those based on the full dataset. Table 2.1 shows the means, variances and

MSEs of the estimators of µ from the full dataset, the D&C method and the subsampling

methods. The estimators of µ from all three methods are unbiased. The estimator from

D&C method has the same mean, variance and MSE of µ as those from full data set.

In subsampling methods, sampling without replacement has smaller variances and MSEs

than those from sampling with replacement.
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Table 2.1: The means, variances and MSEs of the estimators of µ under different methods.

Estimator Expectation Variance & MSE

Full data (µ̂) µ σ2+mσ2
a

nm

D&C (µ̂dc) µ σ2+mσ2
a

nm

Sampling with replacement
µ

(
n−1
r

+ 1
)
σ2+mσ2

a

nmof subjects only (µ̂wr)

Sampling without replacement
µ σ2+mσ2

a

rmof subjects only (µ̂wo)

Sampling with replacement of
µ

(
n−1
r

+ 1
) [σ2

a

n
+ (s+m−1)σ2

snm

]
subjects and repeated measurements (µ̂rcwr)

Sampling without replacement of
µ σ2+sσ2

a

rssubjects and repeated measurements (µ̂rcwo)

Table 2.2 lists the means, variances and MSEs of the estimators of σ2 from the full

dataset, the D&C method and the subsampling methods. The estimator from the D&C

method has the same mean, variance and MSE as those from the full dataset. The

estimator form the D&C method is unbiased and has the smaller variance and MSE than

those from the subsampling methods. All the estimators of σ2 from subsampling are

unbiased except (σ̂rcwr)
2, which under-estimates σ2 by the amount of

σ2

m
.
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Table 2.2: The means, variances and MSEs of the estimators of σ2 under different
methods. An NA means that there is no explicit formula for that quantity.

Estimator Expectation Variance MSE

Full data (σ̂2) σ2 2σ4

n(m−1)
2σ4

n(m−1)

D&C (σ̂2
dc) σ2 2σ4

n(m−1)
2σ4

n(m−1)

Sampling with replacement
σ2 NA NAof subjects only (σ̂2

wr)

Sampling without replacement
σ2 2σ4

r(m−1)
2σ4

r(m−1)of subjects only (σ̂2
wo)

Sampling with replacement of subjects (
1− 1

m

)
σ2 NA NAand repeated measurements ((σ̂rcwr)

2)

Sampling without replacement of subjects
σ2 2σ4

r(s−1)
2σ4

r(s−1)and repeated measurements ((σ̂rcwo)
2)

Table 2.3 summarizes the means, variances and MSEs of the estimators of σ2
a from the

full dataset, the D&C method and the subsampling methods. For the D&C method, there

are two estimators: σ̂2
a,dc and the adjusted one (σ̂∗a,dc)

2. The adjusted estimator (σ̂∗a,dc)
2

has smaller MSE than that of σ̂2
a,dc. We consider equal sample sizes for all subsets for

simplicity, where K is the number of the subsets of the D&C methods.

The estimators of σ2
a from the full dataset and the D&C method tend to under-

estimate σ2
a. The bias of the D&C estimator σ̂2

a,dc is larger than that based on the full

dataset by the amount of (K − 1)
mσ2

a + σ2

m
, because each subset gives under-estimated

estimates. If K2 ≥ n, the bias of the adjusted D&C estimator (σ̂∗a,dc)
2 is larger than

or equal to that based on the full dataset by the amount of (
K2

n
− 1)

mσ2
a + σ2

nm
. When

K2 < n, the bias of adjusted D&C estimator (σ̂∗a,dc)
2 is smaller than that based on

the full dataset by the amount of
(

1− K2

n

)
mσ2

a + σ2

nm
. The variance of σ̂2

a,dc is smaller

than that based on the full dataset by the amount of
2(K − 1)

n2

(
mσ2

a + σ2

m

)2

, while
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the variance of (σ̂∗a,dc)
2 is larger than that based on the full dataset by the amount

of
2[n2(K + 1)− nK2 −K3]

n4

(
mσ2

a + σ2

m

)2

. The MSE of σ̂2
a,dc and (σ̂∗a,dc)

2 are larger

than that based on the full dataset by the amount of
(K − 1)2

n2

(
mσ2

a + σ2

m

)2

and

(2K + 1)n2 − 2nK2 − 2K3 +K4

n4

(
mσ2

a + σ2

m

)2

, respectively.
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Table 2.3: The means, variances and MSEs of the estimators of σ2
a under different

methods. The K is the number of the subsets in D&C method. An NA means that
there is no explicit formula for that quantity.

Estimator Expectation Variance MSE

Full data (σ̂2
a) σ2

a −
mσ2

a+σ2

nm

2(n−1)
n2

(
mσ2

a+σ2

m

)2
(2n−1)
n2

(
mσ2

a+σ2

m

)2

+ 2σ4

nm2(m−1)
+ 2σ4

nm2(m−1)

D&C (σ̂2
a,dc) σ2

a −K
(
mσ2

a+σ2

nm

) 2(n−K)
n2

(
mσ2

a+σ2

m

)2
2(n−K)+K2

n2

(
mσ2

a+σ2

m

)2

+ 2σ4

nm2(m−1)
+ 2σ4

nm2(m−1)

D&C (σ̂∗a,dc)
2 σ2

a − K2

n

(
mσ2

a+σ2

nm

) 2(n−K)(n+K)2

n4

(
mσ2

a+σ2

m

)2
2(n−K)(n+K)2+K4

n4

+ 2σ4

nm2(m−1)

(
mσ2

a+σ2

m

)2

+ 2σ4

nm2(m−1)

Sampling with
σ2
a − r+n−1

r

(
mσ2

a+σ2

nm

)
NA NAreplacement of

subjects only (σ̂2
a,wr)

Sampling with
σ2
a −

mσ2
a+σ2

nm
NA NAreplacement of

subjects only (σ̂∗a,wr)
2

Sampling without
σ2
a −

mσ2
a+σ2

rmreplacement of 2(r−1)
r2

(
mσ2

a+σ2

m

)2
(2r−1)
r2

(
mσ2

a+σ2

m

)2

subjects only (σ̂2
a,wo) + 2σ4

rm2(m−1)
+ 2σ4

rm2(m−1)

Sampling without
σ2
a NA NAreplacement of

subjects only (σ̂∗a,wo)
2

Sampling with (
1− 1

r
− 1

n
+ 1

rn

)
σ2
a

NA NAreplacement of
subjects and repeated + (r−1)(n−1)(m+s−1)σ2

rsnm

measurements (σ̂rca,wr)
2 +(1−m) σ

2

sm

Sampling without

σ2
a −

sσ2
a+σ2

rs

2(r−1)
r2

(
sσ2
a+σ2

s

)2
(2r−1)
r2

(
sσ2
a+σ2

s

)2

replacement of
subjects and repeated

+ 2σ4

rs2(s−1)
+ 2σ4

rs2(s−1)measurements (σ̂rca,wo)
2

When K ≥ 3, the MSE of (σ̂∗a,dc)
2 is equal or smaller than that of σ̂2

a,dc, so we consider
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the comparison between (σ̂∗a,dc)
2 and σ̂2

a,wo. The bias of (σ̂∗a,dc)
2 is smaller than that of

σ̂2
a,wo by the amount of

(
1− 1

r

)
mσ2

a + σ2

rm
. The variance of (σ̂∗a,dc)

2 is smaller than that

of σ̂2
a,wo by the amount of

2(r − 1)

r2

[
1− (r + 1)2

rn

](
mσ2

a + σ2

m

)2

+

(
1

r
− 1

n

)
2σ4

m2(m− 1)

and the MSE of (σ̂∗a,dc)
2 is smaller than that of σ̂2

a,wo by the amount of

[
2

r
− 1

r2
− 1

r4
−

2(1− 1
r
)(1 + 1

r
)2

nr3

](
mσ2

a + σ2

m

)2

+

(
1

r
− 1

n

)
2σ4

m2(m− 1)
.

Overall, we conclude that the D&C method performs better than the subsampling

methods. Furthermore, debias for some estimators before recombining may improve the

performance of the D&C method.
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Chapter 3

Random Intercepts Model with Big

Data

3.1 The Model and Estimation Based on Whole Data

In this chapter, we consider the random intercepts model (RIM) as an extension of one-

way random effect model. The RIM with balanced design assumes that

yij = β0 + αi + β1xij + εij, i = 1, ..., n; j = 1, ...,m, (3.1)

where yij is the jth observation from the ith subject, β0 is the population intercept, αi

is the random intercept of the ith subject, β1 is the population slope for all subjects, xij

is the observed value of a covariate x associated with the jth observation from the ith

subject, and εij
iid∼ N(0, σ2) are random errors. We assume that αi

iid∼ N(0, σ2
a), and αi

and εij are mutually independent.
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Let yi = (yi1, ..., yim)T , xi = (xi1, ..., xim)T and εi = (εi1, ..., εim)T , then

yi ∼ N(β01m + β1xi, V ),

where V = σ2Im+σ2
aJm. Note that observations of the same subject are correlated due to

the same random effect αi. Let y = (yT1 , ...,y
T
n )T , x = (xT1 , ...,x

T
n )T , α = (α1, ..., αn)T ,

and ε = (εT1 , ..., ε
T
n )T .

The model (3.1) can be written in a matrix form

y = Xβ + Zα+ ε, (3.2)

where X = (1nm,x) is the design matrix for the fixed effects, Z = (z1, ...,zn) is the design

matrix for the random effects, zi is a vector of length nm with the elements from index

(i− 1)m+ 1 to im being equal to one and the rest being equal to zero, and β = (β0, β1)T

is the vector of the fixed effects.

The MLEs of β0 and β1 based on the full data are given as follows [23]:

β̂0 =ȳ·· − β̂1x̄··,

β̂1 =
(mσ̂2

a + σ̂2)
∑n

i=1

∑m
j=1 xijyij −m2σ̂2

a

∑n
i=1 x̄i·ȳi· − nmσ̂2x̄··ȳ··

(mσ̂2
a + σ̂2)

∑n
i=1

∑m
j=1 x

2
ij −m2σ̂2

a

∑n
i=1 x̄

2
i· − nmσ̂2x̄2

··
,

σ̂2 =
RSSE + β̂2

1(
∑n

i=1

∑m
j=1 x

2
ij −m

∑n
i=1 x̄

2
i·)

n(m− 1)

−
2β̂1(

∑n
i=1

∑m
j=1 xijyij −m

∑n
i=1 x̄i·ȳi·)

n(m− 1)
,

σ̂2
a =

SSA
nm
− RSSE
nm(m− 1)

− β̂2
1

∑n
i=1

∑m
j=1 x

2
ij −m2

∑n
i=1 x̄

2
i· + nm(m− 1)x̄2

··

nm(m− 1)

+ 2β̂1

∑n
i=1

∑m
j=1 xijyij −m2

∑n
i=1 x̄i·ȳi· + nm(m− 1)x̄··ȳ··

nm(m− 1)
,

(3.3)
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where x̄i· =

∑m
j=1 xij

m
, x̄·· =

∑n
i=1 xi·
nm

=

∑n
i=1

∑m
j=1 xij

nm
, ȳi· =

∑m
j=1 yij

m
, ȳ·· =

∑n
i=1 yi·
nm

=∑n
i=1

∑m
j=1 yij

nm
, SSA = m

n∑
i=1

(ȳi· − ȳ··)2, and RSSE =
n∑
i=1

m∑
j=1

(yij − ȳi·)2. Note that the

estimators of β0 and β1 are equivalent to the WLS estimators

β̂wls = argminβ(y −Xβ)TV −1
n (y −Xβ),

where Vn = diag(V, ..., V︸ ︷︷ ︸
n

).

For simplicity, in the remainder of this section we assume all subjects have the same

observed x, that is, xi = (x1, ..., xm)T and x̄· =
∑m

j=1 xj

m
. Then the MLEs of β

β̂0 = ȳ·· − β̂1x̄·,

β̂1 =

∑n
i=1

∑m
j=1 xjyij − nmx̄·ȳ··

n(
∑m

j=1 x
2
j −mx̄2

· )
,

(3.4)

The MLEs of σ2
a and σ2 based on the full data

σ̂2
a =

SSA
nm
− RSSE
nm(m− 1)

+ β̂2
1

∑m
j=1 x

2
j −mx̄2

·

m(m− 1)
,

σ̂2 =
RSSE− β̂2

1(
∑m

j=1 x
2
j −mx̄2

· )

m− 1
.

(3.5)

Note that β̂0 and β̂1 in (3.4) are not mathematical functions of σ̂2
a and σ̂2 in (3.5).

The expectations of the intercept and slope estimators (3.4) are

E(β̂0) = β0,

E(β̂1) = β1.
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The variance-covariance matrix of β̂ is (XTV −1
n X)−1 , specifically

Var(β̂0) =
mσ2

a + σ2

nm
+

x̄2
· σ

2

n(
∑m

j=1 x
2
j −mx̄2

· )
,

Var(β̂1) =
σ2

n(
∑m

j=1 x
2
j −mx̄2

· )
,

Cov(β̂0, β̂1) = − x̄·σ
2

n(
∑m

j=1 x
2
j −mx̄2

· )
.

Since the estimators in (3.4) of β are unbiased, the MSEs of these estimators are the

same as their variances. We also have

E(SSA) =mE

(
n∑
i=1

ȳ2
i· − nȳ2

··

)

=m

[
n(mσ2

a + σ2)

m
+

n∑
i=1

(β0 + β1x̄·)
2

]
− nm

[
mσ2

a + σ2

nm
+ (β0 + β1x̄·)

2

]
=(n− 1)(mσ2

a + σ2),

and

E(RSSE) =E

(
n∑
i=1

m∑
j=1

y2
ij −m

n∑
i=1

ȳ2
i·

)

=
n∑
i=1

m∑
j=1

[σ2 + σ2
a + (β0 + β1xj)

2]−m
n∑
i=1

[σ2
a + σ2/m+ (β0 + β1x̄·)

2]

=n(m− 1)σ2 + nβ2
1

(
m∑
j=1

x2
j −mx̄2

·

)
,
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then we have the expectations for the MLEs of σ2
a and σ2 in (3.5)

E(σ̂2
a) =

E(SSA)

nm
− E(RSSE)

nm(m− 1)
+ E(β̂2

1)

∑m
j=1 x

2
j −mx̄2

·

m(m− 1)

=
(n− 1)(mσ2

a + σ2)

nm
−
n(m− 1)σ2 + nβ2

1

(∑m
j=1 x

2
j −mx̄2

·

)
nm(m− 1)

+

[
σ2

n(
∑m

j=1 x
2
j −mx̄2

· )
+ β2

1

] ∑m
j=1 x

2
j −mx̄2

·

m(m− 1)

=

(
1− 1

n

)
σ2
a −

(m− 2)σ2

nm(m− 1)
,

and

E(σ̂2) =
E(RSSE)− nE(β̂2

1)(
∑m

j=1 x
2
j −mx̄2

· )

n(m− 1)
,

=σ2 +
nβ2

1

(∑m
j=1 x

2
j −mx̄2

·

)
n(m− 1)

−

(∑m
j=1 x

2
j −mx̄2

·

)[
σ2

n(
∑m
j=1 x

2
j−mx̄2· )

+ β2
1

]
m− 1

=

[
1− 1

n(m− 1)

]
σ2.

Therefore, both σ̂2
a,mle and σ̂2

mle are biased. The variances of σ̂2
a,mle and σ̂2

mle are very

complicated, so we did not provide here. We consider the special case when β1 is known,
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then the variances of σ̂2
a and σ̂2 can be calculated as the following

Var(σ̂2
a) =Var

[
SSA
nm
− RSSE
nm(m− 1)

+ β2
1

∑m
j=1 x

2
j −mx̄2

·

m(m− 1)

]

=Var
[∑n

i=1(αi + ε̄i· − ᾱ− ε̄··)2

n
−
∑n

i=1

∑m
j=1(εij − ε̄i·)2

nm(m− 1)

−
2β
∑n

i=1

∑m
j=1(xj − x̄·)(εij − ε̄i·)
nm(m− 1)

]
=

2(n− 1)(σ2
a + σ2/m)2

n2
+

2σ4

nm2(m− 1)

+
4β2

1σ
2

nm3(m− 1)2

[
(m− 1)

(
m∑
j=1

x2
j −mx̄2

·

)
−
∑
j1 6=j2

(xj1 − x̄·)(xj2 − x̄·)

]

=
2(n− 1)(σ2

a + σ2/m)2

n2
+

2σ4

nm2(m− 1)
+

4β2
1σ

2

nm2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
,

and

Var(σ̂2) =
Var

[
RSSE− nβ2

1(
∑m

j=1 x
2
j −mx̄2

· )
]

n2(m− 1)2

=
Var

[∑n
i=1

∑m
j=1(εij − ε̄i·)2 + 2β1

∑n
i=1

∑m
j=1(xj − x̄·)(εij − ε̄i·)

]
n2(m− 1)2

=
2σ4

n(m− 1)
+

4β2
1σ

2

nm(m− 1)

(
m∑
j=1

x2
j −mx̄2

·

)

− 4β2
1σ

2

nm(m− 1)2

∑
j1 6=j2

(xj1 − x̄·)(xj2 − x̄·)

=
2σ4

n(m− 1)
+

4β2
1σ

2

n(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
.

When we replace β1 by an estimator in the above variance, the variation associated with

β̂1 is ignored. We will conduct simulations to evaluate how much variation has being
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ignored. The MSEs of σ̂2
a and σ̂2 with fixed β1 are

MSE(σ̂2
a) =

1

n2

[
σ2
a +

(m− 2)σ2

m(m− 1)

]2

+
2(n− 1)(σ2

a + σ2/m)2

n2
+

2σ4

nm2(m− 1)

+
4β2

1σ
2

nm2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
,

MSE(σ̂2) =
σ4

n2(m− 1)2
+

2σ4

n(m− 1)
+

4β2
1σ

2

n(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
.

Based on the results in Section 2.5, we will only consider two methods for the random

intercept model: sampling without replacement of subjects in Section 3.2.2 and the D&C

method in Section 3.3.

3.2 Subsampling of Subjects

3.2.1 MLE of Sampling of Subjects

As in Section 2.2.1 we denote ki as the number of times that subject i has been selected

such that
n∑
i=1

ki = r. From the vector form (2.2) in Section 2.1 and McCulloch et al.

[23], we have yi
iid∼ N(Xiβ, V ) with Xi = (1m xi), V

−1 =
1

σ2
Im −

σ2
a

σ2(σ2 +mσ2
a)
Jm and

|V | = (σ2 + mσ2
a)(σ

2)m−1. Define Li(li) as the likelihood (log likelihood) of yi|k, where

k is a vector with the ith element is the number of times that the ith subject is selected.
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Then L =
n∏
i=1

Lkii and l =
n∑
i=1

kili, where

Li =(2π)−
m
2 |V |−

1
2 exp

{
−1

2
(yi −Xiβ)TV −1(yi −Xiβ)

}
,

li =− m

2
log(2π)− 1

2
log(σ2 +mσ2

a)−
m− 1

2
log(σ2)− 1

2σ2

m∑
j=1

(yij − β0 − β1xij)
2

+
σ2
a(yi· −mβ0 − β1xi·)

2

2σ2(σ2 +mσ2
a)

.

Then the log-likelihood function

l = −m
∑n

i=1 ki
2

log(2π)− 1

2
log(σ2 +mσ2

a)
n∑
i=1

ki −
m− 1

2
log(σ2)

n∑
i=1

ki

− 1

2σ2

n∑
i=1

m∑
j=1

ki(yij − β0 − β1xij)
2 +

n∑
i=1

kiσ
2
a(yi· −mβ0 − β1xi·)

2

2σ2(σ2 +mσ2
a)

.

Let

SSAsub =m
n∑
i=1

ki(ȳi· − ȳsub·· )2,

MSAsub =
m
∑n

i=1 ki(ȳi· − ȳsub·· )2

r − 1
,

RSSEsub =
n∑
i=1

m∑
j=1

ki(yij − ȳi·)2,

λ =σ2 +mσ2
a,
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where ȳsub·· =

∑n
i=1

∑m
j=1 kiyij

rm
=

∑n
i=1 kiȳi·
r

and x̄sub·· =

∑n
i=1

∑m
j=1 kixij

rm
.We can re-write

log-likelihood function as the following:

l =− rm

2
log(2π)− r

2
log(σ2 +mσ2

a)−
r(m− 1)

2
log(σ2)− 1

2σ2

n∑
i=1

m∑
j=1

ki(yij − ȳi·)2

− 1

2σ2

n∑
i=1

m∑
j=1

ki(ȳi· − ȳsub·· )2 − 1

2σ2

n∑
i=1

m∑
j=1

ki(ȳ
sub
·· − β0 − β1x̄

sub
·· )2

+
n∑
i=1

m2σ2
aki(ȳi· − β0 − β1x̄

sub
·· )2

2σ2(σ2 +mσ2
a)

=− rm

2
log(2π)− r

2
log(λ)− r(m− 1)

2
log(σ2)− RSSEsub

2σ2
− SSAsub

2λ

− rm(ȳsub·· − β0 − β1x̄
sub
·· )2

2λ

−

{
m[
∑n

i=1 kix̄
2
i· − r(x̄sub·· )2]

2λ
+

∑n
i=1

∑m
j=1 kix

2
ij −m

∑n
i=1 kix̄

2
i·

2σ2

}
β2

1

+

[
m(
∑n

i=1 kix̄i·ȳi· − rx̄sub·· ȳsub·· )

λ
+

∑n
i=1

∑m
j=1 kixijyij −m

∑n
i=1 kix̄i·ȳi·

σ2

]
β1.

The first order partial derivative with respective to β are

∂l

∂β0

=
2rm(ȳsub·· − β0 − β1x̄

sub
·· )

2λ
,

∂l

∂β1

=
2rmx̄sub·· (ȳsub·· − β0 − β1x̄

sub
·· )

2λ

−

{
m[
∑n

i=1 kix̄
2
i· − r(x̄sub·· )2]

λ
+

∑n
i=1

∑m
j=1 kix

2
ij −m

∑n
i=1 kix̄

2
i·

σ2

}
β1

+

[
m(
∑n

i=1 kix̄i·ȳi· − rx̄sub·· ȳsub·· )

λ
+

∑n
i=1

∑m
j=1 kixijyij −m

∑n
i=1 kix̄i·ȳi·

σ2

]
.
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The MLEs of β are

β̂0,sub = ȳsub·· − β̂sub1 x̄sub·· , (3.6)

β̂1,sub =
(σ̂2 +mσ̂2

a)
∑n

i=1

∑m
j=1 kixijyij −m2σ̂2

a

∑n
i=1 kix̄i·ȳi· − rmσ̂2x̄sub·· ȳ

sub
··

(σ̂2 +mσ̂2
a)
∑n

i=1

∑m
j=1 kix

2
ij −m2σ̂2

a

∑n
i=1 kix̄

2
i· − rmσ̂2(x̄sub·· )2

.(3.7)

Setting the first derivative

∂l

∂σ2
a

= −rm
2λ

+
mSSAsub

2λ2
+
rm2(ȳsub·· − β0 − β1x̄

sub
·· )2

2λ2
+
m2[
∑n

i=1 kix̄
2
i· − r(x̄sub·· )2]

2λ2
β2

1

−m
2(
∑n

i=1 kix̄i·ȳi· − rx̄sub·· ȳsub·· )

λ2
β1

to zero, we get

λ̂ =
SSA +mβ2

1 [
∑n

i=1 kix̄
2
i· − r(x̄sub·· )2]− 2mβ1(

∑n
i=1 kix̄i·ȳi· − rx̄sub·· ȳsub·· )

r
.

Plugging λ̂ into the first derivative with respect to σ2, we have

∂l

∂σ2
= −r(m− 1)

2σ2
+

RSSEsub
2σ4

+

∑n
i=1

∑m
j=1 kix

2
ij −m

∑n
i=1 kix̄

2
i·

2σ4
β2

1

−
∑n

i=1

∑m
j=1 kixijyij −m

∑n
i=1 kix̄i·ȳi·

σ4
β1.
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Then the MLE estimates of σ2 and σ2
a:

σ̂2
sub =

RSSEsub + β̂2
1,sub(

∑n
i=1

∑m
j=1 kix

2
ij −m

∑n
i=1 kix̄

2
i·)

r(m− 1)

−
2β̂1,sub(

∑n
i=1

∑m
j=1 kixijyij −m

∑n
i=1 kix̄i·ȳi·)

r(m− 1)
, (3.8)

σ̂2
a,sub =

SSAsub

rm
− RSSEsub
rm(m− 1)

+2β̂1,sub

∑n
i=1

∑m
j=1 kixjyij −m2

∑n
i=1 kix̄i·ȳi· + rm(m− 1)x̄sub·· ȳ

sub
··

rm(m− 1)

−β̂2
1,sub

∑n
i=1

∑m
j=1 kix

2
ij −m2

∑n
i=1 kix̄

2
i· + rm(m− 1)(x̄sub·· )2

rm(m− 1)
. (3.9)

In order to get simple forms of the means, variances and MSEs of those estimates, in the

remainder of this section we assume that all subjects have the same observed covariate

x, that is, xi = (x1, ..., xm)T . Consequently x̄· = x̄··. Then

β̂0,sub = ȳsub·· − β̂sub1 x̄·, (3.10)

β̂1,sub =

∑n
i=1

∑m
j=1 kixjyij − rmx̄·ȳsub··

r(
∑m

j=1 x
2
j −mx̄2

· )
, (3.11)

σ̂2
a,sub =

SSAsub

rm
−

RSSEsub − rβ̂2
1,sub(

∑m
j=1 x

2
j −mx̄2

· )

rm(m− 1)
. (3.12)

σ̂2
sub =

RSSEsub − rβ̂2
1,sub(

∑m
j=1 x

2
j −mx̄2

· )

r(m− 1)
, (3.13)

3.2.2 Properties of Estimators Under Sampling without Replace-

ment of Subjects

For sampling without replacement, k follows a multivariate hypergeometric distribution

with E(ki) =
r

n
, Var(ki) =

r(n− r)
n2

, and Cov(ki, kj) = − r(n− r)
n2(n− 1)

.

Theorem 16. When all subjects have the same observed x, the conditional expectations
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of the estimators of the overall mean and the slope under sampling without replacement

of subjects only are

E(β̂0,wo|k) = β0, (3.14)

E(β̂1,wo|k) = β1. (3.15)

The unconditional expectations of the estimators of the overall mean and the slope under

sampling without replacement of subjects only are

E(β̂0,wo) = β0, (3.16)

E(β̂1,wo) = β1. (3.17)

Proof. Given the vector k and all subjects have the same observed x, the conditional

expectations of the overall mean and the slope

E(β̂1,wo|k) =

∑n
i=1

∑m
j=1 kixjE(yij)− rmx̄·E(ȳsub·· )

r(
∑m

j=1 x
2
j −mx̄2

· )
= β1,

E(β̂0,wo|k) =

∑n
i=1

∑m
j=1 kiE(yij)

rm
−
∑n

i=1

∑m
j=1 kixj

rm
β1 = β0.

Then the unconditional expectations of the overall mean and the slope

E(β̂0,wo) = E(E(β̂0,wo|k)) = β0,

E(β̂1,wo) = E(E(β̂1,wo|k)) = β1.

Therefore, the estimators of the population mean and the population slope under sam-

pling without replacement of subjects are unbiased.

Theorem 17. When all subjects have the same observed x, the conditional and uncon-
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ditional variances and MSEs of β̂ are

MSE(β̂0,wo) = Var(β̂0,wo) = Var(β̂0,wo|k) =
mσ2

a + σ2

rm
+

x̄2
· σ

2

r(
∑m

j=1 x
2
j −mx̄2

· )
, (3.18)

MSE(β̂1,wo) = Var(β̂1,wo) = Var(β̂1,wo|k) =
σ2

r(
∑m

j=1 x
2
j −mx̄2

· )
, (3.19)

Cov(β̂0,wo, β̂1,wo) = Cov(β̂0,wo, β̂1,wo|k) = − x̄·σ
2

r(
∑m

j=1 x
2
j −mx̄2

· )
. (3.20)

Proof. To calculate the variance of β̂wo, we start from the matrix form

β̂wo = [(Xsub)TV −1
r Xsub]−1(Xsub)TV −1

r ysub,

then the variance of β̂wo

Var(β̂wo) = [(Xsub)TV −1
r Xsub]−1(Xsub)TV −1

r Var(ysub)[(Xsub)TV −1
r ]T{[(Xsub)TV −1

r Xsub]−1}T .

[(Xsub)TV −1
r Xsub]−1 =

mσ2
a + σ2

r(
∑m

j=1 x
2
j −mx̄2

· )


∑m
j=1 x

2
j

m
− mσ2

ax̄
2
·

mσ2
a+σ2 − x̄·

mσ2
a+σ2

− x̄·
mσ2

a+σ2
1

mσ2
a+σ2

 ,

and

(Xsub)TV −1
r Var(ysub)[(Xsub)TV −1

r ]T =

 rm
mσ2

a+σ2
rmx̄·

mσ2
a+σ2

rmx̄·
mσ2

a+σ2

r
∑m
j=1 x

2
j

σ2 − rm2x̄2· σ
2
a

σ2(mσ2
a+σ2)

 .

So

Var(β̂wo|k) =

 mσ2
a+σ2

rm
+ x̄2· σ

2

r(
∑m
j=1 x

2
j−mx̄2· )

− x̄·σ2

r(
∑m
j=1 x

2
j−mx̄2· )

− x̄·σ2

r(
∑m
j=1 x

2
j−mx̄2· )

σ2

r(
∑m
j=1 x

2
j−mx̄2· )

 .

The unconditional variances of β̂wo is the same as the conditional variances. Since the

estimators of β̂wo are unbiased, the MSEs are the same as the variances.
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Remark 13. When all subjects have the same observed x, the variances and MSEs of

β̂wo are inflated by a factor of
n

r
compared with that from the full data.

To confirm our theoretical results, we generate x by normal distribution with mean

zero and variance 1, then generate 10000 data sets from model (3.1) with β0 = 10, β1 = 2,

σ2
a = 1, σ2 = 0.01, n = 10000 and m = 100. We choose r = 300 + 50k, and k = 0, ..., 14.

All subjects have the same observed x. We compute the sample variances of β̂0,wo and

β̂1,wo using equations (3.10) and (3.11), and their theoretical variances using equations

(3.18) and (3.19) with the estimated value of and true value of σ2. These variances are

shown in Figure 3.1.
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Figure 3.1: The green lines are the sample variances of β̂, the red lines are the the-
oretical variances of β̂ using the estimated value of σ2, and the blue lines are the
theoretical variances of β̂ using the true value of σ2.

Theorem 18. When all subjects have the same observed x, the conditional and uncon-

ditional expectations of the estimators of σ2
a and σ2 under sampling without replacement
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of subjects only are

E(σ̂2
a,wo) =E(σ̂2

a,wo|k) =

(
1− 1

r

)
σ2
a −

(m− 2)σ2

rm(m− 1)
, (3.21)

E(σ̂2
wo) =E(σ̂2

wo|k) =

[
1− 1

r(m− 1)

]
σ2. (3.22)

Proof. Given k, the sum of squares

SSAsub = m
n∑
i=1

ki(ȳi· − ȳsub·· )2 = m
n∑
i=1

ki[αi + ε̄i· − (ᾱ + ε̄sub·· )]2.

According to the Cochran theorem, we have

SSAsub

mσ2
a + σ2

=

∑n
i=1 ki[αi + ε̄i· − (ᾱ + ε̄sub·· )]2

σ2
a + σ2/m

∼ χ2
r−1.

So the expectation and variance of the sum of squares are

E(SSAsub) =(r − 1)(mσ2
a + σ2),

Var(SSAsub) =Var

[
m

n∑
i=1

ki(ȳi· − ȳsub·· )2

]
= 2m2(r − 1)(σ2

a + σ2/m)2.

We also have the residual sum of squares

RSSEsub =
n∑
i=1

m∑
j=1

ki(yij − ȳi·)2

= β2
1

n∑
i=1

m∑
j=1

ki(xj − x̄·)2 +
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2 + 2β1

n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·),
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then the conditional expectation of RSSEsub

E(RSSEsub|k) =E
[
β2

1

n∑
i=1

m∑
j=1

ki(xj − x̄·)2 +
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2

+ 2β1

n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·)|k
]

=rβ2
1

(
m∑
j=1

x2
j −mx̄2

·

)
+ r(m− 1)σ2.

Then the conditional and unconditional expectations of σ̂2
wo

E(σ̂2
wo|k) =E

[RSSEsub − rβ̂2
1,sub(

∑m
j=1 x

2
j −mx̄2

· )

r(m− 1)

∣∣∣∣k]

=
rβ2

1

(∑m
j=1 x

2
j −mx̄2

·

)
+ r(m− 1)σ2 −

[
σ2

r(
∑m
j=1 x

2
j−mx̄2· )

+ β2
1

]
r
(∑m

j=1 x
2
j −mx̄2

·

)
r(m− 1)

=

[
1− 1

r(m− 1)

]
σ2,

E(σ̂2
wo) =

[
1− 1

r(m− 1)

]
σ2.

And the conditional and unconditional expectations of σ̂2
a,wo

E(σ̂2
a,wo|k) =E

[
SSAsub

rm
− RSSEsub
rm(m− 1)

+ β̂2
1,sub

∑m
j=1 x

2
j −mx̄2

·

m(m− 1)

∣∣∣∣k],
=

(r − 1)(mσ2
a + σ2)

rm
−
rβ2

1(
∑m

j=1 x
2
j −mx̄2

· ) + r(m− 1)σ2

rm(m− 1)

+

[
σ2

r(
∑m

j=1 x
2
j −mx̄2

· )
+ β2

1

] ∑m
j=1 x

2
j −mx̄2

·

m(m− 1)

=

(
1− 1

r

)
σ2
a +

(2−m)σ2

rm(m− 1)
,

E(σ̂2
a,wo) =

(
1− 1

r

)
σ2
a −

(m− 2)σ2

rm(m− 1)
.
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Remark 14. When all subjects have the same observed x and sampling without replace-

ments of subjects only, both of the estimators of σ2 and σ2
a are underestimated, and the

expectations of the estimators of σ2
a and σ2 are smaller than those based on the full data

by the amount of
(

1

r
− 1

n

)[
σ2
a +

(m− 2)σ2

m(m− 1)

]
and

(
1

r
− 1

n

)
σ2

m− 1
, respectively.

The variances of σ̂2
a,wo and σ̂2

wo are complicated, so we only consider a special case

when β1 is known.

Theorem 19. (a) When β1 is known and all subjects have the same observed x, the

conditional and unconditional variances of the estimators of σ2
a and σ2 under sampling

without replacement of subjects only are

Var(σ̂2
a,wo) =Var(σ̂2

a,wo|k) =
2(r − 1)(σ2

a + σ2/m)2

r2
+

2σ4

rm2(m− 1)

+
4β2

1σ
2

rm2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
, (3.23)

Var(σ̂2
wo) =Var(σ̂2

wo|k) =
2σ4

r(m− 1)
+

4β2
1σ

2
(∑m

j=1 x
2
j −mx̄2

·

)
r(m− 1)2

. (3.24)

(3.25)

(b) When β1 is known and all subjects have the same observed x, the MSEs of the esti-

mators of σ2
a and σ2 under sampling without replacement of subjects only are

MSE(σ̂2
a,wo) =

2(r − 1)(σ2
a + σ2/m)2

r2
+

1

r2

[
σ2
a +

(m− 2)σ2

m(m− 1)

]2

+
2σ4

rm2(m− 1)
+

4β2
1σ

2

rm2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
, (3.26)

MSE(σ̂2
wo) =

2r(m− 1) + 1

r2(m− 1)2
σ4 +

4β2
1σ

2
(∑m

j=1 x
2
j −mx̄2

·

)
r(m− 1)2

. (3.27)
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Proof. Since
∑n

i=1

∑m
j=1 ki(εij − ε̄i·)2

σ2
∼ χ2

r(m−1), then E

[
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2

]
= 2r(m−

1)σ2 and Var

[
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2

]
= 2r(m−1)σ4. In order to get the variance of σ̂2

wo|k,

we need Var

[
n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·)

]
and

Cov

[
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2,

n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·)

]
.

First of all,

Var

[
n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·)

]

=
n∑
i=1

E

[
m∑
j=1

ki(xj − x̄·)(εij − ε̄i·)

]2

=
n∑
i=1

E

[
m∑
j1,j2

ki(xj1 − x̄·)(xj2 − x̄·)(εij1 − ε̄i·)(εij2 − ε̄i·)

]

=
n∑
i=1

{
m− 1

m
σ2

m∑
j=1

ki(xj − x̄·)2 − σ2

m

∑
j1 6=j2

ki(xj1 − x̄·)(xj2 − x̄·)
}

=
σ2

m

[
r(m− 1)

(
m∑
j=1

x2
j −mx̄2

·

)
−

n∑
i=1

∑
j1 6=j2

ki(xj1 − x̄·)(xj2 − x̄·)

]

=
σ2

m

[
r(m− 1)

(
m∑
j=1

x2
j −mx̄2

·

)
+

n∑
i=1

m∑
j=1

ki(xj − x̄·)2

]

=rσ2

(
m∑
j=1

x2
j −mx̄2

·

)
,
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and

Cov

[
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2,

n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·)

]

=E

[
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2

n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·)

]

=E
n∑
i=1

{ m∑
j1=1

ki [εi1 + ...− (m− 1)εij1 + ...+ εim]2

m∑
j2=1

ki(xj2 − x̄·) [εi1 + ...− (m− 1)εij2 + ...+ εim]

}

=E
n∑
i=1

{ m∑
j1,j2

ki(xj2 − x̄·) [εi1 + ...− (m− 1)εij1 + ...+ εim]2

[εi1 + ...− (m− 1)εij2 + ...+ εim]

}
=E

n∑
i=1

{ m∑
j=1

ki(xj − x̄·) [εi1 + ...− (m− 1)εij + ...+ εim]3

+
∑
j1 6=j2

ki(xj2 − x̄·) [εi1 + ...− (m− 1)εij1 + ...+ εim]2

[εi1 + ...− (m− 1)εij2 + ...+ εim]

}
=0.

Assuming β1 is known, then

Var(σ̂2
wo|k) =Var

[
RSSEsub − rβ2

1,sub(
∑m

j=1 x
2
j −mx̄2

· )

r(m− 1)

∣∣∣∣k
]

=
1

r2(m− 1)2
Var

[
n∑
i=1

m∑
j=1

ki(εij − ε̄i·)2 + 2β1

n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·)

]

=
2σ4

r(m− 1)
+

4β2
1σ

2
(∑m

j=1 x
2
j −mx̄2

·

)
r(m− 1)2

,
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Var(σ̂2
wo) =E[Var(σ̂2

wo|k)] + Var[E(σ̂2
wo|k)] =

2σ4

r(m− 1)
+

4β2
1σ

2
(∑m

j=1 x
2
j −mx̄2

·

)
r(m− 1)2

.

Assuming β1 is known, and according to the Cochran theorem, we have
n∑
i=1

m∑
j=1

ki(εij −

ε̄i·)
2 + 2β1

n∑
i=1

m∑
j=1

ki(xj − x̄·)(εij − ε̄i·) is independent of ε̄i· under sampling without re-

placement, and SSAsub is the function of ε̄i· for i = 1, ..., n. Therefore, SSAsub and

RSSEsub − β2
1,subr(

∑m
j=1 x

2
j −mx̄2

· ) are independent. Then

Var(σ̂2
a,wo|k) =Var

[
SSAsub

rm
−

RSSEsub − β2
1,subr(

∑m
j=1 x

2
j −mx̄2

· )

rm(m− 1)

∣∣∣∣k]
=
Var(SSAsub)

r2m2
+

Var[RSSEsub − β2
1,subr(

∑m
j=1 x

2
j −mx̄2

· )]

r2m2(m− 1)2

− 2Cov
[
SSAsub

rm
,
RSSEsub − β2

1,subr(
∑m

j=1 x
2
j −mx̄2

· )

rm(m− 1)

]
=

2(r − 1)(σ2
a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
+

4β2
1σ

2

rm3(m− 1)

(
m∑
j=1

x2
j −mx̄2

·

)

− 4β2
1σ

2

r2m3(m− 1)2

n∑
i=1

∑
j1 6=j2

ki(xj1 − x̄·)(xj2 − x̄·)

=
2(r − 1)(σ2

a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
+

4β2
1σ

2

rm2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
,

and

Var(σ̂2
a,wo) =E[Var(σ̂2

a,wo|k)] + Var[E(σ̂2
a,wo|k)]

=
2(r − 1)(σ2

a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
+

4β2
1σ

2

rm2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
.
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The MSEs of σ̂2
a,wo and σ̂2

wo

MSE(σ̂2
a,wo) =Var(σ̂2

a,wo) + bias2(σ̂2
a,wo)

=
2(r − 1)(σ2

a + σ2/m)2

r2
+

2σ4

rm2(m− 1)
+

4β2
1σ

2

rm2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)

+
1

r2

[
σ2
a +

(m− 2)σ2

m(m− 1)

]2

,

and

MSE(σ̂2
wo) =Var(σ̂2

wo) + bias2(σ̂2
wo)

=
2r(m− 1) + 1

r2(m− 1)2
σ4 +

4β2
1σ

2
(∑m

j=1 x
2
j −mx̄2

·

)
r(m− 1)2

.

Remark 15. When β1 is known and all subjects have the same observed x, the variance

of σ̂2
a,wo is larger than that based on full data by the amount of

(
1

r
− 1

n

)[
2

(
1− 1

r
− 1

n

)(
σ2
a +

σ2

m

)2

+
2σ4

m2(m− 1)
+

4β2
1σ

2

m2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)]
,

and the MSE of σ̂2
a,wo is larger than that based on full data by the amount of

(
1

r
− 1

n

){
2

(
1− 1

r
− 1

n

)(
σ2
a +

σ2

m

)2

+

(
1

r
+

1

n

)[
σ2
a +

m− 2

m(m− 1)
σ2

]2

+
2σ4

m2(m− 1)
+

4β2
1σ

2

m2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)}
.

The variance of σ̂2
wo is inflated by a factor of

n

r
, the MSE is larger than that based on
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full data by

(
1

r
− 1

n

)[(
1

r
+

1

n

)
σ4

(m− 1)2
+

2σ4

m− 1
+

4β2
1σ

2

(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)]
.

To confirm our theoretical results, we generate x by normal distribution with mean

zero and variance 1, then generate 10000 data sets from model (3.1) with β0 = 10, β1 = 2,

σ2
a = 5, σ2 = 1, n = 10000 and m = 100. We choose r =We compute the estimates of

σ̂2
a,wo and σ̂2

wo using formula (3.12) and (3.13), their expectations using formula (3.21) and

(3.22), their theoretical variances using formula (3.23) and (3.24), and their theoretical

MSEs using formula (3.26) and (3.27). The results are shown in the Figure 3.2 3.3 and

3.4.
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Figure 3.2: The green lines are the averages of σ̂2
a,wo and σ̂2

wo with unknown β1, the
red lines are the averages of σ̂2

a,wo and σ̂2
wo using the true value of β1 , and the blue

lines are the expectations of σ̂2
a,wo and σ̂2

wo from equation (3.21) and (3.22).
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Figure 3.3: The green lines are the sample variances (left) and sample MSEs (right)
of σ̂2

a,wo with unknown β1, the red lines are the sample variances (left) and sample
MSEs (right) of σ̂2

a,wo using the true values of β1, and the blue lines are the theoretical
variances (left) and MSEs (right) of σ̂2

a,wo from equation (3.23) and (3.26).
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Figure 3.4: The green lines are the sample variances (left) and sample MSEs (right) of
σ̂2
wo with unknown β1, the red lines are the sample variances (left) and sample MSEs

(right) of σ̂2
wo using the true value of β1, and the blue lines are the theoretical variances

and MSEs of σ̂2
wo from equation (3.24) and (3.27).

Remark 16. Note that the approximations with known β1 are pretty accurate.
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3.3 Divide and Conquer

In this section, we apply the D&C method for the random intercept model with big data.

Suppose we divide the n subjects into K subsets, and each subset has size nk such that∑K
k=1 nk = n. When all the subjects have the same observed x, the random intercept

model for subset Sk can be written as

yij = β0 + β1xj + αi + εij, i ∈ Sk; j = 1, ...,m, (3.28)

According to the equations (3.10) to (3.13) in Section 3.1, we have

β̂1,k =

∑
i∈Sk

∑m
j=1 xjyij − nkmx̄·ȳk··

nk(
∑m

j=1 x
2
j −mx̄2

· )
,

β̂0,k =ȳk·· − β̂1,kx̄·,

σ̂2
a,k =

SSAk

nkm
− RSSEk
nkm(m− 1)

+ β̂2
1,k

∑m
j=1 x

2
j −mx̄2

·

m(m− 1)
,

σ̂2
k =

RSSEk − nkβ̂2
1,k

(∑m
j=1 x

2
j −mx̄2

·

)
nk(m− 1)

,

where ȳk·· =

∑
i∈Sk

∑m
j=1 yij

nkm
, SSAk = m

∑
i∈Sk

(ȳi· − ȳk··)2, RSSEk =
∑
i∈Sk

m∑
j=1

(yij − ȳi·)2, and

RMSEk =
RSSEk

nk(m− 1)
.
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We also have E(β̂0,k) = β0, E(β̂1,k) = β1, and

Var(β̂0,k) =
mσ2

a + σ2

nkm
+

x̄2
· σ

2

nk

(∑m
j=1 x

2
j −mx̄2

·

) ,
Var(β̂1,k) =

σ2

nk

(∑m
j=1 x

2
j −mx̄2

·

) ,
Cov(β̂0,k, β̂1,k) =− x̄·σ

2

nk

(∑m
j=1 x

2
j −mx̄2

·

) .
We use the method in meta-analysis by Zeng and Lin [34] to combine the estimates.

Define Wβ,k as the variance-covariance matrix of β̂k in subset k, where β̂k = (β̂0,k, β̂1,k)
T ,

then the meta estimator is

β̂meta =

(
K∑
k=1

W−1
β,k

)−1 K∑
k=1

W−1
β,kβ̂k. (3.29)

When all the subjects have the same x, we have

W−1
β,k =

 mnk
mσ2

a+σ2
mnkx̄·
mσ2

a+σ2

mnkx̄·
mσ2

a+σ2

nk(mσ2
a+σ2)

∑m
j=1 x

2
j−m2nkσ

2
ax̄

2
·

σ2(mσ2
a+σ2)

 ,

(
K∑
k=1

W−1
β,k

)−1

=

 (mσ2
a + σ2)

∑m
j=1 x

2
j −m2σ2

ax̄
2
· −mx̄·σ2

−mx̄·σ2 mσ2


mn

(∑m
j=1 x

2
j −mx̄2

·

)
and

K∑
k=1

W−1
β,kβ̂k =

 m
∑K
k=1 nk(β̂0,k+β̂1,kx̄·)

mσ2
a+σ2

mσ2x̄·
∑K
k=1 nkβ̂0,k+(mσ2

a+σ2)
∑m
j=1 x

2
j

∑K
k=1 nkβ̂1,k−m2σ2

ax̄
2
·
∑K
k=1 nkβ̂1,k

σ2(mσ2
a+σ2)

 .
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Then the combined estimator of β̂ under D&C method

β̂dc =

(
K∑
k=1

W−1
β,k

)−1 K∑
k=1

W−1
β,kβ̂k

=


∑K
k=1 nkβ̂0,k

n∑K
k=1 nkβ̂1,k

n


=


∑K
k=1

∑
i∈Sk

∑m
j=1 yij

nm
− β̂1,dcx̄·∑K

k=1(
∑
i∈Sk

∑m
j=1 xjyij−x̄·

∑
i∈Sk

∑m
j=1 yij)

n(
∑m
j=1 xj−mx̄2· )

 .

(3.30)

Theorem 20. When all the subjects have the same observed x, the expectation of β̂

under divide and conquer method are

E(β̂1,dc) =β1, (3.31)

E(β̂0,dc) =β0, (3.32)

Var(β̂0,dc) =
mσ2

a + σ2

nm
+

x̄2
· σ

2

n
(∑m

j=1 x
2
j −mx̄2

·

) , (3.33)

Var(β̂1,dc) =
σ2

n
(∑m

j=1 x
2
j −mx̄2

·

) , (3.34)

Cov(β̂0,dc, β̂1,dc) =− x̄··σ
2

n
(∑m

j=1 x
2
j −mx̄2

·

) . (3.35)
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Proof. According to (3.30), the expectation of the β̂dc

E(β̂1,dc) =

∑K
k=1

[∑
i∈Sk

∑m
j=1 xjE(yij)− x̄·

∑
i∈Sk

∑m
j=1 E(yij)

]
n(
∑m

j=1 xj −mx̄2
· )

=

∑K
k=1

[∑
i∈Sk

∑m
j=1 xj(β0 + β1xj)− x̄·

∑
i∈Sk

∑m
j=1(β0 + β1xj)

]
n(
∑m

j=1 xj −mx̄2
· )

= β1,

E(β̂0,dc) =

∑K
k=1

∑
i∈Sk

∑m
j=1 E(yij)

nm
− E(β̂1,dc)x̄· = β0.

For the variances of β̂dc, we let β̂dc = Aβ̂K , where

A =

 n1

n
0 · · · nK

n
0

0 n1

n
· · · 0 nK

n

 ,

and

β̂TK =

(
β̂0,1 β̂1,1 · · · β̂0,K β̂1,K

)

with Var(β̂K) = diag(Wβ,1, · · · ,Wβ,K). Then the variance of β̂dc

Var(β̂dc) =AVar(β̂K)AT

=

 mσ2
a+σ2

nm
+ x̄2· σ

2

n(
∑m
j=1 x

2
j−mx̄2· )

− x̄·σ2

n(
∑m
j=1 x

2
j−mx̄2· )

− x̄·σ2

n(
∑m
j=1 x

2
j−mx̄2· )

σ2

n(
∑m
j=1 x

2
j−mx̄2· )

 .

The MSEs of β̂dc are the same as the variances since they are unbiased.

Remark 17. When all the subjects have the same observed x, the estimators of β from

the D&C method are unbiased, and the variance of β̂dc are the same as those based on
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full data.

From Section 3.1, considering the special case when β1 is known, we have E(σ̂2
a,k) =(

1− 1

nk

)
σ2
a −

(m− 2)σ2

nkm(m− 1)
, E(σ̂2

k) =

[
1− 1

nk(m− 1)

]
σ2,

Var(σ̂2
a,k) =

2(nk − 1)

n2
k

(
σ2
a +

σ2

m

)2

+
2σ4

nkm2(m− 1)
+

4β2
1σ

2

nkm2(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
,

and Var(σ̂2
k) =

2σ4

nk(m− 1)
+

4β2
1σ

2

nk(m− 1)2

(
m∑
j=1

x2
j −mx̄2

·

)
. Again we use the method in

meta-analysis to combine the estimators of σ2
a and σ2:

σ̂2
a,dc =

∑K
k=1

σ̂2
a,k

Var(σ̂2
a,k)∑K

k=1
1

Var(σ̂2
a,k)

=

∑K
k=1

n2
kσ̂

2
a,k

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1

n2
k

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

,

σ̂2
dc =

∑K
k=1

σ̂2
k

Var(σ̂2
k)∑K

k=1
1

Var(σ̂2
k)

=

∑K
k=1

nkσ̂
2
k

(m−1)σ2+2β2
1(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1
nk

(m−1)σ2+2β2
1(
∑m
j=1 x

2
j−mx̄2· )

.

(3.36)

Theorem 21. When β1 is known and all subjects have the same observed x,

(a) the mean, variance and MSE of σ2
a,dc are

E(σ̂2
a,dc) =σ2

a −

∑K
k=1

nk

[
σ2
a+

(m−2)σ2

m(m−1)

]
(nk−1)(mσ2

a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ
2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1

n2
k

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

, (3.37)

Var(σ̂2
a,dc) =

1∑K
k=1

n2
km

2(m−1)2

2(nk−1)(mσ2
a+σ2)2(m−1)2+2(m−1)σ4nk+4nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

, (3.38)

MSE(σ̂2
a,dc) =

1∑K
k=1

n2
km

2(m−1)2

2(nk−1)(mσ2
a+σ2)2(m−1)2+2(m−1)σ4nk+4nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

+

[
σ2
a +

(m− 2)σ2

m(m− 1)

]2


∑K

k=1
nk

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1

n2
k

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )


2

. (3.39)
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(b) the mean, variance and MSE of σ2
dc are

E(σ̂2
dc) =

[
1− K

n(m− 1)

]
σ2, (3.40)

Var(σ̂2
dc) =

2σ4

n(m− 1)
+

4β2
1

(∑m
j=1 x

2
j −mx̄2

·

)
σ2

n(m− 1)2
, (3.41)

MSE(σ̂2
dc) =

2n(m− 1) +K2

n2(m− 1)2
σ4 +

4β2
1

(∑m
j=1 x

2
j −mx̄2

·

)
σ2

n(m− 1)2
. (3.42)

Proof. Assume β1 is known, we have

E(σ̂2
a,dc) =

∑K
k=1

n2
kE(σ̂2

a,k)

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1

n2
k

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

=

∑K
k=1

n2
k{(1−1/nk)σ2

a−(m−2)σ2/[nkm(m−1)]}
(nk−1)(mσ2

a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ
2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1

n2
k

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

=σ2
a −

∑K
k=1

nk
(nk−1)(mσ2

a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ
2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1

n2
k

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

[
σ2
a +

(m− 2)σ2

m(m− 1)

]
,

E(σ̂2
dc) =

∑K
k=1

nkE(σ̂2
k)

(m−1)σ2+2β2
1(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1
nk

(m−1)σ2+2β2
1(
∑m
j=1 x

2
j−mx̄2· )

=

∑K
k=1

nk

[
1− 1

nk(m−1)

]
σ2

(m−1)σ2+2β2
1(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1
nk

(m−1)σ2+2β2
1(
∑m
j=1 x

2
j−mx̄2· )

=

1−

∑K
k=1

1

(m−1)σ2+2β2
1(
∑m
j=1 x

2
j−mx̄2· )

(m− 1)
∑K

k=1
nk

(m−1)σ2+2β2
1(
∑m
j=1 x

2
j−mx̄2· )

σ2

=

[
1− K

n(m− 1)

]
σ2.
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And according to the results in [33], we have

Var(σ̂2
a,dc) =

1∑K
k=1

1
Var(σ̂2

a,k)

=
1∑K

k=1

n2
km

2(m−1)2

2(nk−1)(mσ2
a+σ2)2(m−1)2+2(m−1)σ4nk+4nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

,

Var(σ̂2
dc) =

1∑K
k=1

1
Var(σ̂2

k)

=
2σ4

n(m− 1)
+

4β2
1

(∑m
j=1 x

2
j −mx̄2

·

)
σ2

n(m− 1)2
.

Then the MSEs of σ̂2
a,dc and σ̂2

dc are

MSE(σ̂2
a,dc) =Var(σ̂2

a,dc) + bias2(σ̂2
a,dc)

=
1∑K

k=1

n2
km

2(m−1)2

2(nk−1)(mσ2
a+σ2)2(m−1)2+2(m−1)σ4nk+4nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

+

[
σ2
a +

(m− 2)σ2

m(m− 1)

]2


∑K

k=1
nk

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )∑K

k=1

n2
k

(nk−1)(mσ2
a+σ2)2(m−1)2+(m−1)σ4nk+2nkβ

2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )


2

,

MSE(σ̂2
dc) =Var(σ̂2

dc) + bias2(σ̂2
dc)

=
2n(m− 1) +K2

n2(m− 1)2
σ4 +

4β2
1

(∑m
j=1 x

2
j −mx̄2

·

)
σ2

n(m− 1)2
.

Consider the simple case, nk =
n

K
, then the mean, variance and MSE of σ2

a,dc are given
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by

E(σ̂2
a,dc) =

(
1− K

n

)
σ2
a −

K(m− 2)

nm(m− 1)
σ2, (3.43)

Var(σ̂2
a,dc) =

2(n−K)

n2

(
σ2
a +

σ2

m

)2

+
2σ4

nm2(m− 1)
+

4β2
1

(∑m
j=1 x

2
j −mx̄2

·

)
σ2

nm2(m− 1)2
,

(3.44)

MSE(σ̂2
a,dc) =

2(n−K)

n2

(
σ2
a +

σ2

m

)2

+
2σ4

nm2(m− 1)
+
K2

n2

[
σ2
a +

(m− 2)σ2

m(m− 1)

]2

+
4β2

1

(∑m
j=1 x

2
j −mx̄2

·

)
σ2

nm2(m− 1)2
. (3.45)

Remark 18. When all the subjects have the same observed x and same number of

subjects for each subset, the bias of σ̂2
dc is larger than that from the full data by the

amount of
(K − 1)σ2

n(m− 1)
, the variance of σ̂2

dc is the same as that from full data, and the

MSE of σ̂2
dc is larger than that from full dataset by the amount of

(K2 − 1)σ2

n2(m− 1)2
. Under

the same conditions, the bias of σ̂2
a,dc increases as K increases, and is larger than that

based on the full data by the amount of
K − 1

n

[
σ2
a +

(m− 2)σ2

m(m− 1)

]
; the variance of σ̂2

a,dc

is smaller than that based on the full data by the amount of
2(K − 1)(σ2

a + σ2/m)2

n2
.

Consequently, the MSE of σ̂2
a,dc is larger than that based on the full data by the amount

of
2(1−K)(σ2

a + σ2/m)2 + (K2 − 1)
[
σ2
a + (m−2)σ2

m(m−1)

]
n2

.

We now conduct a simulation to compare the sample variances and MSEs of σ̂2
a,dc and

σ̂2
dc with their theoretical variances and MSEs. We generate 10000 data sets from model

(3.1) with β0 = 10, β1 = 2, σ2
a = 25, σ2 = 1, n = 5000, and m = 50. We generate x from

unif [0, 1] and all the subjects have the same x. We choose K = 1, 5, 10, 20, 40, 50, and

100 with nk =
n

K
. We compute sample variances of σ̂2

a,dc and σ̂2
dc using formula (3.36),
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their theoretical variances using formula (3.44) and (3.41), and their theoretical MSEs

using formula (3.45) and (3.42).
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Figure 3.5: Plots of variances (left) and MSE (right) for σ2
a. The blue lines are the

sample variances and MSEs of σ̂2
a, the red lines are the sample variances and MSEs of

σ̂2
a when β1 is known, and the purple lines are the theoretical variance and MSE of σ̂2

a

using formulas (3.44) and (3.45).
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Figure 3.6: Plots of variances (left) and MSE (right) for σ2.The blue lines are the
sample variances and MSEs of σ̂2, the red lines are the sample variances and MSEs of
σ̂2 when β1 is known, and the purple lines are the theoretical variance and MSE of σ̂2

using formulas (3.41) and (3.42).
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Figure 3.5 shows that the MSE of σ̂a,dc incrases as K increases. We notice that the

simulation estimates of Var(σ̂2) is smaller than that using the true value of β1, that may

caused by the relationship between β̂1,k and σ̂2
k.

3.4 Comparison

In this section, we compare estimates from the subsampling without replacement of

subjects only and the D&C method with those based on the full dataset when all the

subjects have the same observed x. Table 3.1 shows the means, variances and MSEs of

the estimators of β from the full dataset, the D&C method and the subsampling method.

The estimators of β from all three methods are unbiased. When all the subjects have

the same observed x, the estimators from the D&C method has the same mean, variance

and MSE of β as those from the full dataset. The variances and MSEs of the estimators

from sampling without replacement of subjects only are inflated by a factor of
n

r
.

Table 3.1: The means, variances and MSEs of the estimators of β from different methods.

Parameter Method Mean Variance & MSE

β0

Full data (β̂0) β0
mσ2

a+σ2

nm
+ x̄2· σ

2

n(
∑m
j=1 x

2
j−mx̄2· )

D&C (β̂0,dc) β0
mσ2

a+σ2

nm
+ x̄2· σ

2

n(
∑m
j=1 x

2
j−mx̄2· )

Sampling w/o replacement
β0

mσ2
a+σ2

rm
+ x̄2· σ

2

r(
∑m
j=1 x

2
j−mx̄2· )of subjects (β̂0,wo)

β1

Full data(β̂1) β1
σ2

n(
∑m
j=1 x

2
j−mx̄2· )

D&C (β̂1,dc) β1
σ2

n(
∑m
j=1 x

2
j−mx̄2· )

Sampling w/o replacement
β1

σ2

r(
∑m
j=1 x

2
j−mx̄2· )of subjects (β̂1,wo)
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Table 3.2 lists the means, variances and MSEs of the estimators of σ2 from the full

dataset, the D&C method and subsampling without replacement of subjects only when

all the subjects have the same observed x and β1 is known. All there estimators are

biased, the biases of the estimators from the D&C method and subsampling are larger

than that from full data by the amount of
(K − 1)σ2

n(m− 1)
and

(
1

r
− 1

n

)
σ2

m− 1
, respec-

tively. The estimator from the D&C method has the same variance as that from the

full data, while the variance of the estimator from the subsampling method is inflated

by a factor of
n

r
. The MSE of σ̂2

dc is larger than that from full dataset by the amount

of
(K2 − 1)σ2

n2(m− 1)2
, and the MSE of σ̂2

wo is larger than that from full data by the mount of(
1

r
− 1

n

)[
2σ4

m− 1
+

(
1

r
+

1

n

)
σ4

(m− 1)2
+

4β2
1σ

2(
∑m

j=1 x
2
j −mx̄2

· )

(m− 1)2

]
.

Table 3.2: The means, variances and MSEs of the estimators of σ2 from different
methods. β1 is known.

Estimator Mean Variance MSE

Full data (σ̂2)
[
1− 1

n(m−1)

]
σ2

2σ4

n(m−1)
2n(m−1)+1
n2(m−1)2

σ4

+
4β2

1σ
2(
∑m
j=1 x

2
j−mx̄2· )

n(m−1)2
+

4β2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

n(m−1)2

D&C (σ̂2
dc)

[
1− K

n(m−1)

]
σ2

2σ4

n(m−1)
2n(m−1)+K2

n2(m−1)2
σ4

+
4β2

1σ
2(
∑m
j=1 x

2
j−mx̄2· )

n(m−1)2
+

4β2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

n(m−1)2

Sampling w/o replacement [
1− 1

r(m−1)

]
σ2

2σ4

r(m−1)
2r(m−1)+1
r2(m−1)2

σ4

of subjects (σ̂2
wo) +

4β2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

r(m−1)2
+

4β2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

r(m−1)2

Table 3.3 summarizes the means, variances and MSEs of the estimators of σ2
a from

the full dataset, the D&C method and subsampling without replacement of subjects only

when all the subjects have the same observed x and β1 is known. All three estimators of

σ2
a are under estimated. The biases of σ̂2

a,dc and σ̂2
a,wo are larger than that based on the full
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dataset by the amount of
K − 1

n

[
σ2
a +

(m− 2)σ2

m(m− 1)

]
and

(
1

r
− 1

n

)[
σ2
a +

(m− 2)σ2

m(m− 1)

]
, re-

spectively. The variances of σ̂2
a,dc and σ̂2

a,wo are smaller than that based on the full dataset

by the amount of
2(K − 1)

n2

(
mσ2

a + σ2

m

)2

and 2

(
1

r
− 1

n

)[(
1 +

1

r
+

1

n

)
(σ2

a+σ2/m)2+

σ4

m2(m− 1)
+

2β2
1σ

2(
∑m

j=1 x
2
j −mx̄2

··)

m2(m− 1)2

]
. Consequently, the MSE of σ̂2

a,dc is larger than that

based on the full dataset by the amount of
K − 1

n2

{
(K + 1)

[
σ2
a +

(m− 2)σ2

m(m− 1)

]2

− 2(σ2
a +

σ2/m)2

}
for K ≥ 2. The MSE of σ̂2

a,wo is larger than that based on the full dataset by

the amount of
(

1

r
− 1

n

){(
1

r
+

1

n

)[
σ2
a +

(m− 2)σ2

m(m− 1)

]2

+2

(
1− 1

r
− 1

n

)
(σ2

a+σ2/m)2+

2σ4

m2(m− 1)2
+

4β2
1σ

2(
∑m

j=1 x
2
j −mx̄2

··)

m2(m− 1)2

}
.

Table 3.3: The means, variances and MSEs of the estimators of σ2
a from different

methods. The K is the number of the subsets in D&C method. β1 is known.

Estimator Mean Variance MSE

Full data (σ̂2
a)

(
1− 1

n

)
σ2
a

2(n−1)(σ2
a+σ2/m)2

n2
1
n2

[
σ2
a + (m−2)σ2

m(m−1)

]2

− m−2
nm(m−1)

σ2 + 2σ4

nm2(m−1)
+2(n−1)(σ2

a+σ2/m)2

n2 + 2σ4

nm2(m−1)

+
4β2

1σ
2(
∑m
j=1 x

2
j−mx̄2· )

nm2(m−1)2
+

4β2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

nm2(m−1)2

D&C (σ̂2
a,dc)

(
1− K

n

)
σ2
a

2(n−K)(σ2
a+σ2/m)2

n2
K2

n2

[
σ2
a + (m−2)σ2

m(m−1)

]2

−K(m−2)σ2

nm(m−1)

+ 2σ4

nm2(m−1)
+2(n−K)(σ2

a+σ2/m)2

n2 + 2σ4

nm2(m−1)

+
4β2

1σ
2(
∑m
j=1 x

2
j−mx̄2· )

nm2(m−1)2
+

4β2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

nm2(m−1)2

Sampling without (
1− 1

r

)
σ2
a

2(r−1)(σ2
a+σ2/m)2

r2
1
r2

[
σ2
a + (m−2)σ2

m(m−1)

]2

replacement of − m−2
rm(m−1)

σ2 + 2σ4

rm2(m−1)
+2(r−1)(σ2

a+σ2/m)2

r2
+ 2σ4

rm2(m−1)

subjects (σ̂2
a,wo) +

4β2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

rm2(m−1)2
+

4β2
1σ

2(
∑m
j=1 x

2
j−mx̄2· )

rm2(m−1)2

Again we conclude that overall the D&C method performs better than the subsam-

pling methods.
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Chapter 4

Linear Mixed Effects Model with Big

Data

4.1 The Model and Estimation Based on Whole Data

After exploring the one-way random effect model and the random intercept model, we

consider the general linear mixed effects model (LME) in this chapter. An LME model

assumes that [35]

yij =

p∑
u=1

xijuβu +
k∑
v=1

zijvbiv + εij, i = 1, ..., n; j = 1, ...,mi, (4.1)

where yij is the jth observation of the ith subject, xiju is the jth observation from the

ith subject on the uth covariate for the fixed effects, βu is the uth fixed effect, zijv is the

jth observation from the ith subject on the vth covariate for the random effects, biv is

the vth random effect for the ith subject, and εij is the within-subject random error.
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Model (4.1) can be re-written in the following vector form

yi = Xiβ + Zibi + εi, i = 1, ..., n, (4.2)

where yi = (yi1, ..., yimi)
T are the responses for subject i, β = (β1, ..., βp)

T is a p-

dimensional vector of fixed effects, Xi is ami×p design matrix for the fixed effects of sub-

ject i, Zi is ami×k design matrix for the random effects of subject i, bi = (bi1, ..., bik)
T is a

k-dimensional vector of random effects, bi
iid∼ N(0, σ2D), εi = (εi1, ..., εimi)

T∼N(0, σ2Σi),

and bi and εi are mutually independent.

Let y = (yT1 , ...,y
T
n )T , X = (XT

1 , ..., X
T
n )T , Z = diag(Z1, ..., Zn), b = (bT1 , ..., b

T
n )T ,

and ε = (εT1 , ..., ε
T
n )T . Then the stacked form for model (4.1) is:

y = Xβ + Zb+ ε, (4.3)

where y is a
n∑
i=1

mi dimensional vector of all responses, X is a
n∑
i=1

mi × p design matrix

for the fixed effects, β is a p dimensional vector of fixed effects, Z is a
n∑
i=1

mi × nk

design matrix for the random effects, b is a nk dimensional vector of random effects,

b
iid∼ N(0, σ2G) with G = diag (D, ..., D)︸ ︷︷ ︸

n

, ε∼N(0, σ2R) with R = diag(Σ1, ...,Σn), and b

and ε are independent. We assume that G and R depend on a vector of parameters θ.

According to Larid and Ware [36] , the estimates of β and b based on the full data is

β̂ =(XTWX)−1XTWy,

b̂ =GZTW−1(y −Xβ̂),

(4.4)

where W = (ZGZT +R)−1. W matrix depends on the unknown parameters θ, they will
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be replaced by MLEs or restricted maximum likelihood (REML) estimates. The MLEs

or REML estimates of parameters σ2 and θ do not have closed forms. They can only be

calculated by numerical methods, as shown in Lindstrom and Bates [37].

Based on the results in Section 2.5, we again consider the subsampling without re-

placement of subjects and the D&C method for fitting the LME model with big data.

The rest of this chapter is organized as follows: Section 4.2 discusses the subsampling

method and its estimators for sampling without replacement of subjects with big data.

Section 4.3 discusses the D&C method for fitting an LME model with big data. Section

4.4 presents the simulation results and running times for fitting a growth curve model

and a more general LME model with big data.

4.2 Subsampling of Subjects

For the subsampling without replacement of subjects, we denote ki as the number of times

that subject i has been selected such that
n∑
i=1

ki = r. According to the vector form (4.2)

and McCulloch et al. [23], we have yi ∼ N(Xiβ, σ
2W−1

i ) where Wi = (ZiDZ
T
i + Σi)

−1.

Let ỹsub, X̃sub, Z̃sub, G̃sub, R̃sub and W̃sub be the corresponding y, X, Z,G,R and W for

data in the sampled data. Then the MLE of β based on the sampled data is

β̂sub,wo =(X̃T
subW̃subX̃sub)

−1X̃T
subW̃subỹsub. (4.5)

4.3 Divide and Conquer

Suppose we divide n subjects into K subsets S1, ..., SK . Let ỹk, X̃k, Z̃k, G̃k, R̃k and W̃k

be the corresponding y, X, Z,G,R and W for data in subset Sk, k = 1, ..., K. Without

loss of generality, we assume that the subjects are reordered as y = (ỹT1 , ..., ỹ
T
K)T , X =
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(X̃T
1 , ..., X̃

T
K)T , Z = diag(Z̃1, ..., Z̃K), G = diag(G̃1, ..., G̃K), and R = diag(R̃1, ..., R̃K).

ThenW−1 = ZGZT +R = diag(Z̃1G̃1Z̃
T
1 +R̃1, ..., Z̃KG̃KZ̃

T
K+R̃K) = diag(W̃−1

1 , ..., W̃−1
K ).

Therefore, W = diag(W̃1, ..., W̃K).

Furthermore,

XTWX = (X̃T
1 , ..., X̃

T
K)


W̃1 . . . 0

...
...

0 . . . W̃K




X̃1

...

X̃K

 =
K∑
k=1

X̃T
k W̃kX̃k,

and

XTWy = (X̃T
1 , ..., X̃

T
K)


W̃1 . . . 0

...
...

0 . . . W̃K



ỹ1

...

ỹK

 =
K∑
k=1

X̃T
k W̃kỹk.

Consequently, the MLE of β in (4.4)

β̂dc =

(
K∑
k=1

X̃T
k W̃kX̃k

)−1 K∑
k=1

X̃T
k W̃kỹk, (4.6)

and

Var(β̂dc) =

(
K∑
k=1

X̃T
k W̃kX̃k

)−1 K∑
k=1

X̃T
k W̃kVar(ỹk)W̃

T
k X̃k

( K∑
k=1

X̃T
k W̃kX̃k

)−1
T

=σ2

(
K∑
k=1

X̃T
k W̃kX̃k

)−1 K∑
k=1

X̃T
k W̃kX̃k

( K∑
k=1

X̃T
k W̃kX̃k

)−1
T

=σ2

(
K∑
k=1

X̃T
k W̃kX̃k

)−1

.

Formula (4.6) suggests that we can compute the MLE of β by combining outputs

X̃T
k W̃kX̃k and X̃T

k W̃kỹk from each subset. That is, we do not need to compute β̂k for
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each subset. Instead, we can recover the MLE for the full data using formula (4.6).

Note that W depends on θ which has to be estimated first. This suggests that following

algorithm:

1. Divide n subjects into K subsets;

2. Compute MLE or REML estimates of σ2 and θ for each subset and denote them

as σ̂2
1, θ̂1, ..., σ̂

2
K , θ̂K ;

3. Combine estimates of σ2 and θ (e.g. using the DerSimonian & Laird rule [38]) and

denote them as σ̂2 and θ̂;

4. Compute X̃T
k W̃kX̃k and X̃T

k W̃kỹk for k = 1, ..., K with fixed estimates σ̂2 and θ̂,

then compute β̂ using formula (4.6).

4.4 Simulation

In this section, we conduct comprehensive simulations to evaluate and compare per-

formances of different methods. From the previous results, we consider two methods:

subsampling without replacement of subjects only and the D&C method. We use a

growth curve model and a more general linear mixed effect model with two covariates to

show the performances of those two methods.

4.4.1 Growth Curve Model

We consider the growth curve model:

yij = β0 + b0i + β1xj + b1ixj + εij, i = 1, ..., n; j = 1, ...,m, (4.7)
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where yij is the jth observation from the ith subject, β0 is the population intercept, β1 is

the population slope for all subjects, b0i is the random intercept of the ith subject, b1i is

the random slope of the ith subject, xj is the observed value of the covariate x associated

with the jth observation for all subjects, and εij
iid∼ N(0, σ2) is the random error. We

assume that bi
iid∼ N(0, σ2D), and bi and εi are mutually independent.

We generate xj’s from uniform[0, 1], and set (β0, β1) = (1, 2), σ2 = 0.04, and m = 20.

We consider a uncorrelated covariance matrix

σ2D =

 25 0

0 1


and a correlated covariance matrix

σ2D =

 25 2.5

2.5 1

 .

For each method, we consider the following four scenarios:

• Scenario I: n = 5000, uncorrelated covariance matrix;

• Scenario II: n = 5000, correlated covariance matrix;

• Scenario III: n = 50000, uncorrelated covariance matrix;

• Scenario IV: n = 50000, correlated covariance matrix.

To compare the performances of the subsampling method and the D&C method, we

consider the same sample sizes for subsampling data set and the subsets of the D&C

method, that is r = nk. For n = 5000, we chose four different sample sizes r = nk =

100, 125, 250 and 500. For n = 50000, we chose four sample sizes r = nk = 250, 500, 625
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and 1000. We generate 1000 data sets from model (4.7) to compare the accuracies of

estimators from the subsampling method and the D&C method with different settings.

Biases, variances and MSEs of different estimators are shown in Figures 4.1-4.2 for

scenario I, Figures 4.3-4.4 for scenario II, Figures 4.5-4.6 for scenario III, and Figures

4.7-4.8 for scenario IV.

Overall, the D&C method has smaller bias, variance and MSE for the growth curve

model under all scenarios.
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Figure 4.1: Biases (left), variances (middle) and MSEs (right) of β̂0 (top) and β̂1

(bottom) under scenario I. The red lines are from the D&C method, and the blue lines
are from the subsampling method.
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Figure 4.2: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) under scenario I. The red lines are from the D&C method, and the
blue lines are from the subsampling method.
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Figure 4.3: Biases (left), variances (middle) and MSEs (right) of β̂0 (top), β̂1 (middle)
and the correlation coefficient (bottom) under scenario II. The red lines are from the
D&C method, and the blue lines are from the subsampling method.
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Figure 4.4: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) under scenario II. The red lines are from the D&C method, and the
blue lines are from the subsampling method.
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Figure 4.5: Biases (left), variances (middle) and MSEs (right) of β̂0 (top) and β̂1

(bottom) under scenario III. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.6: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) under scenario III. The red lines are from the D&C method, and the
blue lines are from the subsampling method.
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Figure 4.7: Biases (left), variances (middle) and MSEs (right) of β̂0 (top), β̂1 (middle)
and the correlation coefficient (bottom) under scenario IV. The red lines are from the
D&C method, and the blue lines are from the subsampling method.
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Figure 4.8: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) under scenario IV. The red lines are from the D&C method, and the
blue lines are from the subsampling method.

To compare the running times, we generate 50 data sets from model (4.7) for each

scenario. Table 4.1 shows the average CPU times for fitting a single data set on a machine

with the following configuration: 2.2 GHz Intel Core i7 processor and 16 GB 1600 MHz

DDR3 memory.
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Table 4.1: Average CPU times in seconds for growth curve model.

nk = 100 nk = 125 nk = 250 nk = 500 Whole data

scenario I Subsampling 0.0605 0.0656 0.1041 0.1827 1.7184D&C 0.0668 0.0749 0.1344 0.4356

scenario II Subsampling 0.0797 0.0896 0.1499 0.2468 2.2347D&C 0.0729 0.0871 0.1714 0.5048

nk = 250 nk = 500 nk = 625 nk = 1000 Whole data

scenario III Subsampling 0.2243 0.3189 0.3562 0.5081 18.8022D&C 0.2322 0.3215 0.3620 0.6140

scenario IV Subsampling 0.2794 0.3838 0.4425 0.6388 22.6130D&C 0.2723 0.3879 0.4763 0.7863

4.4.2 General Linear Mixed Effect Model

We consider the following LME model:

yij = β0 + β1x1j + β2x2j + b0i + b1ix1j + εij, i = 1, ..., n; j = 1, ...,m, (4.8)

where yij is the jth observation from the ith subject, β0 is the population intercept, β1 is

the population slope of covariate x1 for all subjects, β2 is the population slope of covariate

x2 for all subjects, b0i is the random intercept of the ith subject, b1i is the random slope

of the ith subject corresponding to covariate x1, x1j and x2j are the observed values

of the covariate x1 and x2 associated with the jth observations for all subjects, and

εij
iid∼ N(0, σ2) is the random error. We assume that bi

iid∼ N(0, σ2D), and bi and εi are

mutually independent.
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We generate (x1j, x2j)
T iid∼ N(0,Σx) for j = 1, ...,m, where

Σx =

 1 ρ

ρ 1

 ,

and ρ equals 0 or 0.5. We set (β0, β1, β2) = (1, 2, 5), σ2 = 0.04, and m = 20. We consider

a uncorrelated covariance matrix

σ2D =

 25 0

0 1


and a correlated covariance matrix

σ2D =

 25 2.5

2.5 1

 .

For each method, we consider the following eight scenarios:

• Scenario I: n = 5000, ρ = 0, and uncorrelated covariance matrix;

• Scenario II: n = 5000, ρ = 0, and correlated covariance matrix;

• Scenario III: n = 5000, ρ = 0.5, and uncorrelated covariance matrix;

• Scenario IV: n = 5000, ρ = 0.5, and correlated covariance matrix;

• Scenario V: n = 50000, ρ = 0, and uncorrelated covariance matrix;

• Scenario VI: n = 50000, ρ = 0, and correlated covariance matrix;

• Scenario VII: n = 50000, ρ = 0.5, and uncorrelated covariance matrix;

• Scenario VIII: n = 50000, ρ = 0.5, and correlated covariance matrix.
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As for the growth curve model, we consider the same sample sizes for subsampling

data set and the subsets of the D&C method, that is r = nk. For n = 5000, we chose

four different sample sizes r = nk = 100, 125, 250 and 500. For n = 50000, we chose

four sample sizes r = nk = 250, 500, 625 and 1000. We generate 1000 data sets from

model (4.8) to compare the accuracies of estimators from the subsampling method and

the D&C method with different settings.

Biases, variances and MSEs of different estimators are shown in Figures 4.9-4.10 for

scenario I, Figures 4.11-4.12 for scenario II, Figures 4.13-4.14 for scenario II, Figures

4.15-4.16 for scenario IV, Figures 4.17-4.18 for scenario V, Figures 4.19-4.20 for scenario

VI, Figures 4.21-4.22 for scenario VII, and Figures 4.23-4.24 for scenario VIII.

Overall, the D&C method has smaller bias, variance and MSE for the model (4.8)

under all scenarios.
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Figure 4.9: Biases (left), variances (middle) and MSEs (right) of β̂0(top), β̂1 (middle)
and β̂2 (bottom) in scenario I. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.10: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) in scenario I. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.11: Biases (left), variances (middle) and MSEs (right) of β̂0 (top), β̂1 (second
row), β̂2 (third row) and correlation coefficient (bottom) in scenario II. The red lines
are from the D&C method, and the blue lines are from the subsampling method.
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Figure 4.12: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) in scenario II. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.13: Biases (left), variances (middle) and MSEs (right) of β̂0(top), β̂1 (middle)
and β̂2 (bottom) in scenario III. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.14: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) in scenario III. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.15: Biases (left), variances (middle) and MSEs (right) of β̂0 (top), β̂1 (second
row), β̂2 (third row) and correlation coefficient (bottom) in scenario IV. The red lines
are from the D&C method, and the blue lines are from the subsampling method.
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Figure 4.16: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) in scenario IV. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.17: Biases (left), variances (middle) and MSEs (right) of β̂0(top), β̂1 (middle)
and β̂2 (bottom) in scenario V. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.18: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) in scenario V. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.19: Biases (left), variances (middle) and MSEs (right) of β̂0 (top), β̂1 (second
row), β̂2 (third row) and correlation coefficient (bottom) in scenario VI. The red lines
are from the D&C method, and the blue lines are from the subsampling method.
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Figure 4.20: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) in scenario VI. The red lines are from the D&C method, and the blue
lines are from the subsampling method.
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Figure 4.21: Biases (left), variances (middle) and MSEs (right) of β̂0(top), β̂1 (middle)
and β̂2 (bottom) in scenario VII. The red lines are from the D&C method, and the
blue lines are from the subsampling method.
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Figure 4.22: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) in scenario VII. The red lines are from the D&C method, and the
blue lines are from the subsampling method.
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Figure 4.23: Biases (left), variances (middle) and MSEs (right) of β̂0 (top), β̂1 (second
row), β̂2 (third row) and correlation coefficient (bottom) in scenario VIII. The red lines
are from the D&C method, and the blue lines are from the subsampling method.
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Figure 4.24: Biases (left), variances (middle) and MSEs (right) of σ̂2
a (top), σ̂2

b (middle)
and σ̂2 (bottom) in scenario VIII. The red lines are from the D&C method, and the
blue lines are from the subsampling method.

We generate 50 data sets from model (4.8) for each scenario to compare the running

times. Table 4.2 shows the average CPU times for fitting a single data set on a machine

with the following configuration: 2.2 GHz Intel Core i7 processor and 16 GB 1600 MHz

DDR3 memory.
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Table 4.2: CPU times in seconds for the LME model (4.8).

nk = 100 nk = 125 nk = 250 nk = 500 Whole data

scenario I Subsampling 0.0676 0.0742 0.1153 0.2146 2.0824D&C 0.0571 0.0650 0.1400 0.4668

scenario II Subsampling 0.0810 0.0996 0.1523 0.2772 2.6587D&C 0.0729 0.0885 0.1605 0.4693

scenario III Subsampling 0.0646 0.0748 0.1233 0.2181 2.0304D&C 0.0524 0.0625 0.1283 0.4262

scenario IV Subsampling 0.0850 0.0969 0.1509 0.2715 2.4663D&C 0.0686 0.0826 0.1631 0.4751

nk = 250 nk = 500 nk = 625 nk = 1000 Whole data

scenario V Subsampling 0.2792 0.371 0.4092 0.5616 20.9044D&C 0.2352 0.3250 0.4042 0.6642

scenario VI Subsampling 0.2934 0.4150 0.5038 0.6852 28.6479D&C 0.2549 0.3712 0.4399 0.7738

scenario VII Subsampling 0.3133 0.3537 0.3983 0.5525 21.3901D&C 0.2323 0.3176 0.3893 0.6591

scenario VIII Subsampling 0.2985 0.4136 0.4724 0.6610 26.3668D&C 0.2681 0.3810 0.4552 0.7514

Both subsampling and D&C method require much less time than fitting the whole

data.
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Chapter 5

Association of Ultraviolet Radiation on

Blood Pressure

To illustrate the methods developed in this thesis, we apply the subsampling without

replacement of subjects and the D&C method to the UV data described in Section

1.4. The project aims at investigating the possible relationship between UV and blood

pressure.

5.1 Data Sets

The blood pressure data include 342,457 patients who underwent hemodialysis in 2,178

US Fresenius Medical Care facilities between January 2011 and December 2013. The

study was reviewed by the Western Institutional Review Board’s Affairs Department

and was deemed to meet the conditions for exemption under 45 CFR 46.101 (b)(4).

Patients visited dialysis facilities 2-4 times per week and had their BP measured before

each treatment in a sitting position per a standard protocol using an automated device.

We use monthly averages of pre-dialysis systolic blood pressures (SBP, mmHg) as the
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response variable. Other demographic variables such as race, gender, age, comorbidity

of hypertension, catheter use, and monthly averages of body mass index (BMI, kg/m2),

interdialytic weight gain (IDWG, kg), albumin (g/dL), erythropoietin use (units per

dialysis), hemoglobin (g/dL), serum sodium (mEq/L), and serum potassium (mEq/L)

will be used as covariates.

For the UV data, we compute hourly spectral irradiances (Watts per square meter

per nanometer) at each wavelength from 280 to 400 nm using the tropospheric UV

and visible radiation model from the National Center for Atmospheric Research web

site (http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV/). We then compute

hourly UVA and UVB as the summations of spectral irradiances over wavelength ranges

321 - 400 and 280 - 320 nm, respectively. Lastly, we compute summations of hourly UVA

and UVB over each day to approximate the total daily exposure for each location, and

averages of daily UVA and UVB to calculate monthly averages.

The daily average temperatures (Celsius) for all locations are downloaded from the

U.S. National Oceanic and Atmospheric Administration (NOAA)web site

(http://www.ncdc.noaa.gov/cdo-web/search). For locations lacking temperature stations

with matching latitude and longitude, we approximate temperatures from the measure-

ment locations with the shortest great circle distance using spherical law of cosines.

5.2 Models and Results

In this section, we consider subsampling without replacement of subjects and the D&C

method for two models of the UV project:

1. Model 1:

yij = β0 + b0i + β1xij + b1ixij + εij, i = 1, ..., n; j = 1, ...,mi, (5.1)
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where yij is the ith patient’s jth monthly average of pre-dialysis SBP, β0 is the

population intercept, β1 is the population slope for all patients, b0i is the random

intercept of the ith patient, b1i is the random slope of the ith patient, xij is the

monthly UVA/UVB associated with the jth monthly average of pre-dialysis SBP

of the ith patient, and εij
iid∼ N(0, σ2) is the random error. We assume that bi

iid∼

N(0, σ2D), and bi and εi are mutually independent.

2. Model 2: model 1 with additional baseline covariates race, gender, age, comorbidity

of hypertension, catheter use, BMI, IDWG, albumin, epo-dose, hemoglobin, serum

sodium, potassium, linear trend for calendar time and temperature.

We consider three analyses for each model: black & white patients, black patients only

and white patients only. We also compute estimates using the whole data and compare

them with those based on subsampling and D&C methods.

5.2.1 Subsampling of Subjects Without Replacement

Tables 5.1 and 5.2 show the estimates and confidence intervals of UVA/UVB coefficients

for models 1 and 2 using subsampling method with different subsample sizes. As the

sample size increases, the estimates are closer to those from the whole data.
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Table 5.1: Estimates of coefficients for UVA and UVB in model 1 using subsampling
method with different subsample sizes. Estimates are multiplied by 100.

Group Sample size Model 1

(r) UVA CI UVB CI

Black & White

r = 500 -0.57 (-1.01, -0.12) -9.38 (-16.83, -1.93)
r = 5000 -0.72 (-0.84, -0.60) -12.11 (-14.13, -10.09)
r = 50000 -0.75 (-0.79, -0.71) -12.63 (-13.28, -11.98)
Whole data -0.73 (-0.74, -0.71) -12.21 (-12.46, -11.97)

White

r = 500 -1.02 (-1.45, -0.59) -17.11 (-24.34, -9.88)
r = 5000 -0.85 (-0.99, -0.71) -14.19 (-16.35, -12.03)
r = 50000 -0.78 (-0.82, -0.74) -13.06 (-13.73, -12.39)
Whole data -0.79 (-0.81, -0.77) -13.26 (-13.58, -12.94)

Black

r = 500 -0.45 (-0.80, -0.10) -7.40 (-13.38, -1.42)
r = 5000 -0.58 (-0.70, -0.46) -9.67 (-11.55, -7.79)
r = 50000 -0.64 (-0.68, -0.60) -10.77 (-11.38, -10.16)
Whole data -0.63 (-0.66, -0.61) -10.64 (-11.03, -10.25)

Table 5.2: Estimates of coefficients for UVA and UVB in model 2 using subsampling
method with different subsample sizes. Estimates are multiplied by 100.

Group Sample size Model 2

(r) UVA CI UVB CI

Black & White

r = 500 -0.76 (-1.39, -0.12) -13.04 (-23.61, -2.48)
r = 5000 -0.35 (-0.56, -0.13) -6.16 (-9.68, -2.63)
r = 50000 -0.41 (-0.48, -0.35) -7.53 (-8.67, -6.38)
Whole data -0.39 (-0.41, -0.36) -7.05 (-7.49, -6.62)

White

r = 500 -0.99 (-1.67, -0.30) -17.24 (-28.69, -5.79)
r = 5000 -0.61 (-0.83, -0.38) -10.44 (-14.17, -6.72)
r = 50000 -0.44 (-0.51, -0.37) -7.84 (-9.02, -6.66)
Whole data -0.44 (-0.47, -0.40) -7.89 (-8.45, -7.32)

Black

r = 500 -0.71 (-1.36, -0.06) -11.70 (-22.43, -0.97)
r = 5000 -0.30 (-0.50, -0.10) -5.63 (-8.97, -2.29)
r = 50000 -0.30 (-0.36, -0.23) -5.56 (-6.64, -4.48)
Whole data -0.31 (-0.35, -0.27) -5.79 (-6.48, -5.10)
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5.2.2 D&C Method

For the D&C method, we consider random splitting and location splitting for the UV

data. Here we chose K = 500 for the random splitting of subjects, which means we

randomly assign the patients to K subsets. We use zip codes for location splitting.

Define three methods as follows:

1. Method I: random splitting and combining the estimates using the formula (4.6) in

Chapter 4,

2. Method II: random splitting and combining the estimates using the method in

meta-analysis with formula (3.29) in Chapter 3,

3. Method III: location splitting according to zip codes, and combining the estimates

using the method in meta-analysis with formula (3.29) in Chapter 3,

For location splitting, we present the results using the method in meta-analysis only

since some locations had the poor performances due to very small sample sizes. The

results from three different data sets are shown in Tables 5.3 and 5.4. For model 1, the

confidence intervals using Method II and III include the estimates from the whole data.

Method II has better performance than other methods for model 2.
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Table 5.3: Estimates and confidence intervals of coefficients for UVA/UVB in model
1 using different methods. Estimates are multiplied by 100.

Group Method Model 1

UVA CI UVB CI

Black & White

I -0.33 (-0.334, -0.333) -5.24 (-5.25, -5.23)
II -0.73 (-0.75, -0.72) -12.36 (-12.61, -12.12)
III -0.74 (-0.76, -0.72) -12.38 (-12.74, -12.02)

Whole data -0.73 (-0.74, -0.71) -12.21 (-12.46, -11.97)

White

I -0.25 (-0.250, -0.248) -3.6 (-3.63, -3.60)
II -0.80 (-0.82, -0.78) -13.40 (-13.72, -13.08)
III -0.80 (-0.82, -0.77) -13.37 (-13.81, -12.93)

Whole data -0.79 (-0.81, -0.77) -13.26 (-13.58, -12.94)

Black

I -0.45 (-0.455, -0.451) -7.39 (-7.41, -7.37)
II -0.65 (-0.67, -0.62) -10.82 (-11.21, -10.43)
III -0.66 (-0.70, -0.63) -11.13 (-11.65, -10.61)

Whole data -0.63 (-0.66, -0.61) -10.64 (-11.03, -10.25)

Table 5.4: Estimates and confidence intervals of coefficients for UVA/UVB in model
2 using different methods. Estimates are multiplied by 100.

Group Method Model 2

UVA CI UVB CI

Black & White

I -1.11 (-1.11, -1.10) -18.31 (-18.34, -18.28)
II -0.38 (-0.41, -0.36) -6.95 (-7.39, -6.52)
III -0.31 (-0.35, -0.26) -5.53 (-6.26, -4.81)

Whole data -0.39 (-0.41, -0.36) -7.05 (-7.49, -6.62)

White

I -1.27 (-1.27, 1.26) -19.33 (-19.37, -19.29)
II -0.44 (-0.47, -0.40) -7.89 (-8.46, -7.33)
III -0.33 (-0.38, -0.28) -5.83 (-6.71, -4.95)

Whole data -0.44 (-0.47, -0.40) -7.89 (-8.45, -7.32)

Black

I -0.58 (-0.59, -0.58) -9.28 (-9.33, -9.24)
II -0.30 (-0.34, -0.26) -5.59 (-6.28, -4.91)
III -0.24 (-0.32, -0.17) -4.56 (-5.74, -3.38)

Whole data -0.31 (-0.35, -0.27) -5.79 (-6.48, -5.10)
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5.3 Conclusions of the Association between UV and

SBP

We conclude that, without adjustments, both UVA and UVB have significant negative

associations with SBP from model 1. The association between UVB is stronger than

that of UVA. The association holds for both black and white, and stronger for white

than black.

Based on model 1 (no covariate adjustment), 1 unit increase of UVA is associated

with a decrease of SBP by .0063 mmHg with 95% confidence interval (0.0061, 0.0066)

for black patients and by .0079 mmHg with 95% confidence interval (0.0077, 0.0081) for

white patients, and 1 unit increase of UVB is associated with a decrease of SBP by .1064

mmHg with 95% confidence interval (0.1025, 0.1103) for black patients and by .1326

mmHg with 95% confidence interval (0.1294, 0.1358) for white patients.

Based on model 2, 1 unit increase of UVA is associated with a decrease of SBP by

.0031 mmHg with 95% confidence interval (0.0027, 0.0035) for black patients and by

.0044 mmHg with 95% confidence interval (0.0040, 0.0047) for white patients, and 1

unit increase of UVB is associated with a decrease of SBP by .0579 mmHg with 95%

confidence interval (0.0510, 0.0648) for black patients and by .0789 mmHg with 95%

confidence interval (0.0732, 0.0845) for white patients.

Seasonal variations in BP have previously been attributed to temperature variation,

but by correcting for temperature (model 2) we were able to show that the inverse

relationship between UV and SBP remains, albeit less strongly than before.
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