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BOSE-EINSTEIN CORRELATIONS IN e+ e- COLLISIONS 

Ivanna J urici<: 

ABSTRACT 

The MARK II detector is used to study the Bose-Einstein correlation between 

pairs and triplets of charged pions produced in hadronic decays of the J /'if;, the 

.JS = 4-7 GeV continuum above the J /'if;, two photon events at .JS = 29 GeV, and 

e+e- annihilation events at .JS = 29 GeV as a function of Q2 , the four-momentum 

transfer squared. After corrections for Coulomb effects and pion misidentification, 

we find a nearly full Bose-Einstein enhancement a in the J /'if; and the two photon 

data and about half the maximum value in the other two data sets. The radius 

parameter r (an average over space and time) given by pion pair analyses lies within 

a band of ±0.10 fm around 0. 73 fm and is the same, within errors, for all four 

data sets. Pion triplet analyses also give a consistent radius of~ 0.54 fm. Fits to 

two-dimensional distributions R(qf, qb) of invariant components of Q2 = qf + qb 

give rr ~ rc ~ r, where qr is the transverse three-momentum difference calculated 

with respect to the net pair three-momentum, and qc is in effect the longitudinal 

three-momentum difference in the pion pair rest frame. When qT is calculated 

with respect to the jet axis for two-jet events in the e+ e- annihilation data at 

.JS = 29 GeV, a fit to R(qf, qb) also gives rr ~ rc ~ r. Noting that qL and qo are 

not invariant, we make fits to R(qf,qJJ and to R(qf,q5) (Kopylov formulation), 

and we find r0 ~ r L ~ jrr to !rr. 
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Chapter 1. THE GGLP EFFECT IN PION PAIRS 

1. 1 INTRODUCTION 

From elementary quantum mechanics we know that the behavior of a wave 

function of N indistinguishable particles under the interchange of any two of them 

depends on the nature of the particle statistics. For bosons, which are parti­

cles obeying Bose-Einstein statistics, the wave function is symmetrical on such an 

interchange1 

w(1, 2, ... N) = w(2, 1, ... N). 

This simple requirement leads to an interference term in l'l112 , which results in 

an enhancement in the production of "like" or "approximately indistinguishable" 

bosons. The precise meaning of "like" will become clear in the next section, when 

we consider a simple derivation of the interference term. 

The enhancement was first noted in 1959 by Goldhaber et al.2 in a study of 

the annihilation of 1.05 GeV fc antiprotons in a hydrogen bubble chamber, 

and was interpreted by Goldhaber, Goldhaber, Lee, and Pais (GGLP) 3 . They 

found that like charged pion pairs were produced with a small relative opening 

angle more often than unlike charged pion pairs. Figure 1.1, reproduced here from 

Ref. 3, shows the GGLP distributions of pion pair opening angle for four samples: 

like charged pairs, unlike charged pairs, and the prediction of a statistical model 

with and without the Bose-Einstein symmetrization of the multi-pion wave function. 

The authors found that by using a Bose-Einstein symmetrized wave function in the 

statistical model they could explain both the like and unlike charged pair opening 

angle distributions. 

The Bose-Einstein enhancement, also referred to as the GGLP effect, has 

since been observed in a variety of particle production experiments, including heavy 
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Figure 1.1 This is a reproduction of Fig.6 from Ref. 3 showing the results of the original GGLP 

experiment. Figures {a) and {b) show the distributions of pair opening angle for like and unlike 

charged pairs in the data. The dashed lines are the predictions of a statistical model without Bose­

Einstein symmetrization, while the solid lines are the predictions of a modi6ed statistical model 

which includes Bose-Einstein symmetruation of the wave function. 
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ion, hadron, and e+ e- collisions. Most of these studies have been done with .pions. 

Measurement of the Bose-Einstein enhancement requires high statistics, and the 

pion is produced more abundantly than any other massive boson because it has the 

smallest mass. Nevertheless, some work has been done with other particles. Like 

charged kaon pairs were found to exhibit a similar enhancement4 , while like charged 

protons show evidence of the analogous Fermi-Dirac depletion5 . Two reviews of the 

experimental results can be found in Ref. 6 and Ref. 7. 

The Bose-Einstein enhancement is an observable example of an elementary 

principle at work in the complex process of particle production. As such, it is both 

rare and elegant. As we will see in the next section, the Bose-Einstein enhancement 

provides information about the space-time development of the boson source. In the 

early 1970's, several independent efforts8 ' 9 , 10 revived interest in the GGLP effect 

by showing that it can also be used to study production dynamics. 

This breakthrough was a consequence of the analogy between the Bose­

Einstein enhancement and second order interference in quantum optics. The work of 

Hanbury-Brown and-Twiss11 in optical astronomy had shown earlier that second or­

der interference, namely interference in light intensity rather than amplitude, could 

be used to determine the dimensions of a photon source, such as a star. The analogy 

between intensity interferometry in optics and the Bose-Einstein enhancement in 

particle production implies that the GGLP effect provides information about the 

particle source, including the source dimensions. This is an exciting prospect, since 

hadronic particle production processes are not well understood. However, although 

we know that the GGLP effect provides a "microscope" for viewing the hadronic 

source, the question of what exactly we "see" with it is not firmly established. This 

is discussed more fully in the next section, where we introduce the Bose-Einstein 

correlation function as the principal tool for investigating the GGLP effect. 

The terms GGLP effect, Bose-Einstein correlation, and particle or pion in­

terferometry all refer to the Bose-Einstein enhancement in boson production and 

will be used interchangeably in this thesis. 
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1. 2 THE CORRELATION FUNCTION. 

1.2.1 Elementary Derivation 

Let us consider N point sources radiating pion field with amplitude ai, where 

i = 1, 2, ... N. The amplitude for the production of a pion with four-momentum k1 

is given by 
N 

A(ki) ex L ai exp(ik1 · ri), 
i=l 

where ri is the space-time separation between source i and the observation point. 

Similarly, for the production of a pion with four-momentum k2, 

N 

A(k2) ex L ai exp(ik2 · r,;). 
i=l 

The corresponding single pion production probabilities are 

N 

P(k1) ex L aiak exp(ik1 · (ri- rk)) 
i,k 

N 

P(k2) ex L a;ai exp(ik2 · (r;- r,)). 
j,l 

The amplitude for the joint production of two pions, one with momentum k1 and 

one with k2, is then 

N 

A(k11 k2) ex L aiaj exp(ik1 · ri) exp(ik2 · r;), 
i,j 

and the joint production probability: is 

N 

P(k11 k2) ex L aiaiakai exp(ik1 · (ri- rk)) exp(ik2 · (r; - rz)). 
i,j,k,l 

Note that these expressions are symmetric on the interchange of k1 and k2 • 
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In particle production experiments we can only observe the average of the 

production probability over all the sources, (P) N· The probability of produc­

ing two like pions is then given by (P(kbk2))N· The probability of producing 

two unlike pions is just the product of the single boson production probabilities, 

(P(kl))N(P(k2))N· We form the following ratio R to compare like pion pair pro­

duction to unlike pion pair production: 

The analogous quantity in quantum optics involves the averages of intensities and 

is called the second order correlation function. R is thus often referred to as the 

Bose-Einstein correlation function. 

1.2.2 Limiting Cases: Chaotic and Coherent Sources 

One of the assumptions made by Hanbury-Brown and Twiss in their deriva­

tion of the second order correlation function is that a star is a collection of chaotic 

photon sources. In the pion model, the chaotic limit corresponds to the case where 

the pion amplitudes ai fluctuate randomly over the N sources. Consider the full 

expression for R, shown in Eqn. 1.1 

If the amplitudes ai fluctuate randomly over N, then terms with i =f. k and j =f. l in 

the denominator and ones with i =f. k, l and j =f. k, l in the numerator average out 

to zero. The expression for R reduces to 
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or simply 

The second term in the last equation is referred to as the Bose-Einstein enhance­

ment. We see that if kt = k2 we get the maximum enhancement and Rchaotic = 2. 

If k1 =j:. k2, then the size of the enhancement depends on the source distribution 

(ri - rj)· Thus the behavior of the enhancement term as a function of (kt - k2) 

gives information about the source distribution. 

Now consider the opposite limit, where the N pion sources emit coherently 

with respect to each other, and there is a fixed relation between the amplitudes 

ai. In this case averaging over sources does not result in any simplification of the 

expression for R. Keeping all the terms in the numerator and in the denominator 

of Eqn. 1.1, we get 

Rcoherent = 1. 

The coherence of the source, of course, does not eliminate or "turn off" the Bose­

Einstein correlation. It merely introduces a correlation (due to the source ampli­

tudes) into all the production probabilities, so that their ratio becomes one. 

1.2.3 Between the Limiting Cases: Partially Coherent Source 

The measured Bose-Einstein enhancement is often found to be less than 

maximum, and the res~lt is ascribed to partial coherence of the source. To see how 

partial coherence acts on the Bose-Einstein enhancement, imagine that theN point 

sources are grouped into Nc patches of oscillators, and that the sources within each 

patch radiate coherently with respect to each other to produce a patch amplitude 

ci = c(ri), where ri describes the location of the patch. Imagine also that the 

patches radiate chaotically with respect to each other. Proceeding the same way 
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as in the case of N independent sources, the single pion and joint pion production 

probabilities are given by 

and 

Nc 

P(k1) ex L cick exp(ik1 · (ri- rk)), 
i,k 

Nc 

P(k2) ex L c;ci exp(ik2 · (r;- r -l)), 
j,l 

Nc 

P(kb k2) ex L cic;cA:ci exp(ik1 · (ri- rk)) exp(ik2 · (r;- rz)), 
i,j,k,l 

and the correlation function R becomes Eqn. 1.2 

Note that in the limit of one patch we return to the result for total coherence 

lim Rpartialty coherent = Rcoherent = 1, 
Nc-+1 

(1.2) 

and if one patch dominates with lcnl2 >> lcil2, Rpartially coherent < 2. This leads 

us to parameterize R as 

R = 1 + a(Bose- Einstein enhancement term), 

where a describes the chaotidty of the source: 

fully chaotic source : a = 1 

fully coherent source: a= 0 
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partially coherent source: 0 < a< 1. 

1.2.4 What We Can Learn From the Correlation Function 

From the preceding sections it follows that the correlation function provides 

information about two things: the nature (chaotic or coherent) of the source and 

the source distribution. 

In the simplified pion source model described above, the strength of the Bose­

Einstein enhancement term parameterized by a indicates the degree of chaoticity 

of the source. As we will see in chapter four, the pion production process in our 

data contains many kinds of correlations, which may or may not include source 

coherence. These correlations as well as detector performance can interfere with 

the measurement of the Bose-Einstein enhancement. Careful analysis is required to 

extract a value for a which measures the correlations due to the source alone. 

The simplified model also shows that the behavior of the Bose-Einstein en­

hancement term as a function of (k1 - k2) provides information about the source 

distribution. In such an interpretation, however, we assume that 6.k = k1 - k2 and 

6.r = ri - rj are not correlated with each other. If the production momenta are a 

function of production points, so that 6.k and 6.r are correlated, then Eqn. 1.2 will 

contain this additional correlation within the second term (so called Bose-Einstein 

enhancement term), and this term will not measure the Bose-Einstein correlation 

alone. 

The interpretation of the parameters describing the GGLP effect is thus 

highly model dependent. However, a standardized parameterization allows a rela­

tive comparison of data sets and contributes to a better understanding of different 

hadronization processes. 

1. 3 MODELS AND PARAMETERIZATIONS 

In the limit of a continuous source distribution, the quantities in the simple 

model above become 

N---+ oo, 
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ai --+ f(r), 

and 

where pis the Fourier transform of the source distribution f. 

In this section we summarize several source parameterizations in order to 

familiarize the reader with the variables commonly used in GGLP analyses. 

1.3.1 Classical Formulation 

The classical parameterizations described here are designed for nuclear col­

lision experiments, where the pion sources are considered to be chaotic classical 

oscillators with lifetime r: exp( -t/r). 

The Gaussian model combines this time dependence with a Gaussian source 

distribution to give the following expression for R: 

where 

is the three-momentum difference of the pions in the pair, and 

is the energy difference. 

The model proposed by Kopylov and Podgoretskii8 uses the same time de­

pendence but assumes a source distribution corresponding to a sphere of radius r. 

In this case 

where 
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is the component of the pion three-momentum difference perpendicular to three­

momentum sum. The quantity ifT is often called the Kopylov variable, and we 

will refer to the unit axis defined by (k1 + k2)/lk1 + k2l as the Kopylov axis. The 

variables qT and qo are not kinematically correlated, unlike qo and lifl which are 

restricted to one half of the (lifl, qo) plane. 

For nearly indistinguishable pions qo ~ 0 and qT ~ 0. In this limit, the time 

dependence in the Gaussian and the Kopylov formulations behaves like a Gaussian 

function. In addition, the Bessel function in the Kopylov formulation is approxi­

mated by a Gaussian, since 

2J1(z) = f (-l)i (~)2; 
z . ;"!f(i+2) 2 

:J=O 

z--+ 0. 

Therefore, in the limit of qT ~ 0 and qo ~ 0, and absorbing factors of two for 

convenience, the Gaussian and the Kopylov formulations reduce to 

and 

R - 1 ( 2 2 2 2) Kopylov- + o:exp -qTr - qor 

These two formulations are generalized in a commonly used parameterization 

which assumes a Gaussian distribution of sources in both space and time: 

The longitudinal three-momentum difference qL is defined with respect to the Kopy­

lov axis as 

- . 
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Parameters rT, rL, and ro are introduced to describe the source dimensions in the 

transverse and longitudinal directions and the source lifetime, respectively. 

The Kopylov axis determines a unique direction pair by pair and thus can be 

defined in the pair analysis of any data set. In some data other directions are defined 

naturally event by event, and these can be used instead of the Kopylov axis to break 

up q into transverse and longitudinal components. For example, in nuclear collision 

experiments the beam axis enters into the kinematics of pion production and so 

defines a unique direction in the event. Thus nuclear collision experiments12 also 

use QT and qL determined relative to the beam axis. Another example is provided 

by data containing hadronic jets, where the jet axis provides a unique direction 

event by event. 

As well as they work in the case of the nuclear pion sources, these formu­

lations are inadequate in describing the hadronic source in e+ e- collisions. The 

multitude of partons involved in nuclear collisions can be modeled as a (nearly) 

continuous distribution of independent chaotic sources. e+ e- collisions are inter­

actions between two point particles, and assigning a meaningful space-time source 

distribution is not as straightforward as in the nuclear collision case. In addition, 

center of mass energies in e+ e- experiments are typically higher than in nuclear 

collision experiments, so that e+ e- produced pions have higher average momenta. 

Pion momenta in our data are high enough to make a Lorentz invariant formulation 

desirable. For these reasons we consider an invariant formulation of the correlation 

function. 

1.3.2 Invariant Formulation 

Current hadronization models do not explicitly include Bose-Einstein sym­

metrization and do not offer direct predictions of the hadronic source distribution 

in space-time. The closest to achieving these goals is the recent work done on 

the string fragmentation model13 •14 •15 to introduce the effects of Bose-Einstein 

symmetrization in terms of string tension. 

Without the guidance of an explicit source model, we adopt the parameter-



ization of Eqn. 1.3 

where 

2Q2 R = 1 + ae-r , 

12 

(1.3) 

is the four-momentum transfer squared. This expression is invariant and has been 

shown to describe e+ e- collision data very well. The parameter r cannot be in­

terpreted as a source dimension in space, but it represents some average of the 

individual space and time dimensions. 

Q2 can also be written in terms of the invariant mass M12 of the pair as 

Q2 _ M2 ( 2 2) 
- 12 - 2 m1 + m2 ' 

where for a pion pair we get 

Q2 _ M2 4 2 
- 12- m1r. 

We can expand Q2 in terms of qo and of the components of q transverse and longi­

tudinal with respect to some unit axis u: 

Q2 - q2 + q2 q2 - q2 + q2 - T L- 0- T C' 

where 

qL = q· u 

q2 - q2 2 c = L- qo. 

In chapter six we study these variables using two definitions of u: the Kopylov axis 

pair by pair in all data, and the jet axis event by event in two-jet data. 
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To prepare the way for a discussion in chapter six, it is worthwhile to point 

out several features of these equations. First, the variables qr and qc are Lorentz 

invariant for a boost along u, while ij, qo, and qL are not. Second, the only difference 

between the classical formulation in the last section and the invariant formulation 

above is the sign of the q5 term. Finally, note that when u is defined as the Kopylov 

axis 

there is a simple relationship between qL and qo 

qL = qo V 2 ' 
"/ - 1 

where "/ is defined for the pion pair as 

Then 
2 _ 2 2 ql q5 

qc = qL - qo = 2 = 2 1· 
"/ "/ -

From these relationships we see that qc is just the longitudinal component of the 

three-momentum difference in the pion pair rest frame. 

Our basic measurement of the Bose-Einstein effect is presented in chapter six 

in the form of a fit to Eqn. 1.3. This parameterization has two major advantages: 

it is invariant and is commonly used in published literature, making a comparison 

with other experiments straightforward. 

1.4 GOALS OF THIS THESIS 

This thesis is a phenomenological study of the Bose-Einstein correlation in 

e+ e- collisions. The detector used to collect the data, the MARK II, is described 

in chapter two, and data reduction procedures are discussed in chapter three. In 

this section we summarize the major aspects of the data analysis, which is done for 
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pion pairs and triplets in chapters four and five, respectively. Discussion of results 

is left for chapter six. 

1.4.1 Hadronic .Sources in e+e- Collisions 

Four separate data sets, representing different kinds of hadronic sources, are 

used to study the GGLP effect in inclusive pion production. 

The first data set consists of e+ e- annihilation into the J / t/J, at Ecm of 

3.095 GeV. The J /t/J is the lowest energy charmonium (cc) state and is not massive 

enough to decay into charmed mesons. Figure 1.2(a) shows the quark diagram for 

this favored but energy forbidden decay. Figure 1.2(b) shows the alternative decay 

mode, where the c and c annihilate into gluons, which then hadronize into mesons 

containing u, d, and s quarks. The J /t/J cannot decay through one gluon, because 

both the J /t/J and the mesons into which it decays are color singlets. It cannot decay 

into an even number of gluons, because the J /t/J has charge conjugation quantum 

number C = -1. The simplest decay mode therefore involves three gluons. 

Annihilations of e+e- at Ecm of 4.1 GeV to 6.7 GeV make up the second data 

set. The center of mass energy in this data is in the continuum above the J /t/J, where 

charmed meson production is no longer forbidden, but events do not yet show clear 

signs of jets of produced particles. Figure 1.2(c) shows the corresponding diagram. 

The third data set consists of e+ e- annihilations at Ecm of 29 Ge V. Like the 

charm continuum data, these are also e+e- ----+ qq events described by Fig. 1.2(c). 

Here the center of mass energy is high enough that the qq typically produce two or 

three hadronic jets. 

The fourth data set is made up of two photon events at e+ e- center of 

mass energy of 29 GeV. A two photon event is one where the colliding e+ and e­

do not annihilate; rather each radiates a photon, and the two photons annihilate 

into hadrons. Like their parent photons, the hadrons in these events carry only 

a fraction of the initial e+ e- energy. This fraction is between one tenth and one 

thirtieth in our two photon data. Different hadronization mechanisms are believed 

to be dominant in different regions of PT, where PT is the component of the net 
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Figure 1.2 Quark diagrams for different e+ e- -+ hadrons processes, corresponding to the four 

data sets studied. The decay of charmonium into charmed mesons (a) is favored over hadroniution 

through gluons {b), but since {a) is forbidden by energy conservation {b) is the only allowed hadronic 

decay in the J /t/J data set. The charm continuum and Ecm = 29 GeV data sets are represented in 

(c), where e+ e- annihilate into ql[ which then hadronue. Two photon annihilation in e+ e- collisions 

proceeds through ql[ hadroniution {d) at high p~ and through vector meson annihilation {e) at low 
p~ {Vector Dominance Model). 
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hadron three-momentum perpendicular with respect to the beam axis (i.e. the 

direction of the e+ and e- in the event). High PT means that the radiated photons 

had a fairly high fraction of the initial e+ e- energy, whereas low PT means that the 

e+ and e- lost only a small fraction of their energy in radiating the photons. In the 

region of high PT, the two photons annihilate into qq, as shown in figure Fig. 1.2(d). 

The quarks then hadronize as in the last two data sets, but the energy available for 

particle production is of course only a fraction of the original e+ and e- energies. 

In the low PT region, the Vector Dominance Model (VDM) statesthat the photons 

annihilate while in their vector meson form, as in Fig. 1.2(e). 

These four data sets give us the opportunity to compare qualitatively some 

very different hadronic sources. ,The J / 1/J decay to three gluons, as well as the 

VDM regime in the two photon data, involve more partons in the initial stages of 

hadronization than the qq process. Hence there is some reason to expect that they 

will exhibit a more chaotic pion source than the latter. We will see in chapter six 

that the measured values for the parameter a tend to support this interpretation. 

The full discussion of this and other results in comparing the data sets can be found 

in chapter six. 

1.4.2 Analysis of the GGLP Effect in e+e- Collisions 

As we saw earlier, a detailed model calculation of the Bose-Einstein en­

hancement in e+ e- collisions is not available. Instead, the data being studied is 

compared to a reference sample, free of Bose-Einstein correlations, in order to iso­

late the Bose-Einstein enhancement in the former. The choice of reference sample is 

therefore critical to any analysis of the GGLP effect. We use two kinds of reference 

samples suited to e+e- collision experiments. One of these reference samples is 

commonly used. The other was developed for this analysis. 

Both the study sample and the reference sample in general contain corre­

lations other than the Bose-Einstein correlation. A major part of an analysis of 

the GGLP effect in any experiment is to understand these correlations in both 

samples and correct for them when possible. Similarly, imperfect detector perfor-
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mance affects the measurement of the Bose-Einstein enhancement. These study 

sample, reference sample, and detector performance effects are discussed for pion 

pair analysis in chapter four and for pion triplets in chapter five. 

1.4.3 GGLP Topics 

Finally, we summarize the GGLP effect topics which we will address in chap-

ter six. 

The primary goal of this thesis is to compare measurements of a and r in the 

four data sets using the parameterization of Eqn. 1.3 and to see if the results can 

be understood qualitatively in terms of the different hadronic sources in the data 

sets. 

For the purpose of comparison with other experiments, we also investigate the 

Bose-Einstein enhancement in terms of other invariant and non-invariant variables 

introduced earlier in this chapter. 

A derivation of the GGLP effect for pion triplets (chapter five) analogous to 

the one for pion pairs leads us to expect a similar Bose-Einstein enhancement in 

triplets. It has not been established whether the enhancement in triplets is merely a 

reflection of the enhancement in pairs, or whether the triplet enhancement contains 

additional information. We examine this question using our measured values for 

pair and triplet enhancements. 
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Chapter 2. APPARATUS 

2 .1 INTRODUCTION 

The data sets used in this analysis were collected with the MARK II detector 

during its operation at the SPEAR (1978-79) and PEP (1980-84) e+e- collider 

storage rings located at the Stanford Linear Accelerator Center (SLAC). Relevant 

parameters of SPEAR and PEP are listed in Table 2.1 . 

Table 2.1 Parameters of SPEAR· and PEP collider storage rings. 

Collider Parameter SPEAR PEP 

Ecm 3-7 GeV 29 GeV 

ring radius 32 rn 350 rn 

horizontal beam size 0.27 Ebeam rnrn 0.48 mm 

vertical beam size 0.02 Ebeam rnrn 0.06 rnrn 

size of beam crossing area 32 rnrn 15 mm 
along beam axis 

time between collisions 780 ns 2.4 J.LS 

maximum current per beam 13 rnA 25 rnA 

average luminosity 6 x 1029 crn-2sec- 1 3.2 x 1032 cm-2sec-1 

average number of hadronic :::: 2000 per day ,_ 100 per day 
events at the Jjt/J 

The MARK II is a general purpose magnetic spectrometer designed to study 

particles produced in e+ e- collisions. It consists of about half a dozen compo­

nent systems which specialize in different detection tasks, such as charged particle 

tracking, electromagnetic calorimetry, and various methods of particle identifica­

tion. The MARK II has operated in several slightly different configurations as 

- * 
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components were added or upgraded for the move from SPEAR to PEP. The data 

sets which are studied in this thesis were collected in the SPEAR configuration 

(data sets at Ecm of 3.095 GeV and 4.1-6.7 GeV) and in the longest running PEP 

configuration (two photon data and annihilation data at Ecm of 29 GeV). From 

here on, the latter will be referred to simply as the PEP configuration. 

This chapter contains a description of detector hardware and the event trig­

ger in the SPEAR and PEP configurations. Event reconstruction is,discussed along 

with other data reduction procedures in the next chapter. 

2.2 DETECTOR HARDWARE 

Since the MARK II hardware, shown schematically in Fig. 2.1 has been 

described in great detail elsewhere,16•17 only a summary is given here. This analysis 

relies almost exclusively on charged particle tracking by the main drift chamber and 

on information from the systems used in particle identification (time of flight, liquid 

argon electromagnetic calorimeter, and the muon system). The small angle tagger 

is used to tag two photon events. Other important components are discussed below 

to give an overview of the detector as a whole. They contribute to the analysis 

indirectly through their roles in the event trigger or their effect on the performance 

of other systems. Following tradition, the components are described in the order in 

which they are encountered by the particles produced at the interaction point. 

2.2.1 Beam Pipe 

At SPEAR the vacuum along the e+ and e- beam paths was contained by a 

1.5 m long, 0.15 mm thick corrugated stainless steel pipe of radius 7.7 em. In the 

PEP configuration, a beam pipe made of 1.4 mm thick beryllium, 1.4 m long and 

7.7 em in radius, was used in order to minimize the multiple scattering contribution 

to the tracking extrapolation error. A layer of 50 J.Lm tungsten foil lined the inside 

of the pipe to absorb synchrotron radiation. 

The beam pipe at PEP also doubled as the inner wall of the vertex chamber. 

The outside of the beam pipe was wrapped in a sheet of 50 J.Lm mylar for insulation, 
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Crou-sectional &Dd i.ometric view6 of the MARK II at PEP. lo the SPEAR conlig-
uration, the 6mall &Dgle tagger &Dd the two outer Jayen of the muon qstem were not present, and 

the space taken up by the vertex chamber wu filled by the pipe counter and the trigger chamber. 
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followed by a layer of 25 p,m aluminum which served as the ground shield of the 

vertex chamber. 

2.2.2 Pipe Counter 

Surrounding the SPEAR beam pipe were two concentric cylindrical scintilla­

tors, each divided into hemicylinders. The scintillators were 81 em long and 6.4 mm 

thick, with inner radii of 11.0 em and 12.5 em. Their light was passed to photo­

multiplier tubes for use in the primary trigger logic. There was no pipe counter at 

PEP. 

2.2.3 Trigger Chamber 

In the SPEAR configuration the space between the pipe counter and the 

main drift chamber was occupied by the trigger chamber. This was an 86 em long 

cylindrical drift chamber consisting of four layers of drift cells providing a resolution 

of about 300 p,m per layer. As its name implies, the trigger chamber was used in 

the primary and secondary triggers to reject background tracks originating at large 

distances from the interaction point. Trigger chamber information was not used in 

charged track reconstruction. 

2.2.4 Vertex Chamber 

The SPEAR pipe counter and trigger chamber were replaced by the vertex 

chamber17 at PEP in order to provide more accurate secondary vertex reconstruc­

tion. The vertex chamber was a high precision cylindrical drift chamber, 1.2 m 

long and 0.70 m in diameter. It consisted of seven layers of sense wires grouped 

into four inner layers, located close to the beam pipe in order to minimize the track 

extrapolation error, and three outer layers, placed far from the beam axis in order 

to optimize the track angle measurement. The inner layers had 60 to 75 sense wires 

per layer at radii of 10 em to 13 em, while the outer layers had 180 to 190 sense wires 

per layer at radii of 30 em to 32 em. The whole tracking system, vertex chamber 

and main drift chamber, was immersed in a uniform magnetic field produced by the 
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magnet coil. The tracking region of each chamber was a single gas volume filled 

with a mixture of 50% Argon - 50% Ethane. In the case of the vertex chamber, the 

operating pressure was 15.5 psi (absolute). 

Signals from each sense wire were passed through an amplifier and discrim­

inator. Time to amplitude converters compared the discriminator pulses with a 

reference provided by the beam crossing signal. The pulses were then digitized and 

corrected for variations in timing offsets and gains. Offiine, the measured drift time 

was converted into a distance of closest approach of the track to the sense wire, 

taking into account corrections for non-uniformities in drift velocity, the curvature 

of the ionization cluster trajectories, and the time delay for signal propagation along 

the wire. 

The rms spatial resolution per layer of the vertex chamber was measured to 

be ,..,._ 100 J.tm, and the rms error on track extrapolation to the origin was given by 

2 2 95 J.tm 
( )

2 

Uex = (95 J.tm) + P , 

where the momentum is in GeV jc. The second term is due to multiple scattering 

in the 0.006 Xo of material at radii inside the chamber. In addition, the overall 

momentum resolution of the detector in the PEP configuration was improved sub­

stantially by combining the data from the main drift chamber with the tracking 

information at small radii provided by the vertex chamber. At SPEAR, lacking 

the vertex chamber, the event vertex could be reconstructed only to about 0.5 mm 

radially and 5 mm axially. 

This analysis uses the vertex finding capabilities of the vertex chamber only 

in the search for and elimination of easily identified K 0 and A decay products. 

2.2.5 Main Drift Chamber 

The same main drift chamber18 was used at both SPEAR and PEP. It con­

sisted of sixteen concentric cylindrical layers of sense wires of lengths ranging from 

2.0 m in the layer closest to the beam axis to 2.8 m in the layer farthest away. 

... . 
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The layers were equally spaced radially, with radii ranging from 41 em to 145 em. 

Six axial layers, with the wires strung parallel to the beam axis, alternated with 

five right stereo layers and five left stereo layers, where the wires were strung at 

±3° pitch to provide z information along the track. The wire layers were enclosed 

in a common gas volume of 50% Argon - 50% Ethane and immersed in a uniform 

magnetic field produced by the magnet coil. 

Main drift chamber signals were processed analogously to vertex chamber 

signals. They were first passed through a preamplifier and discriminator mounted 

on the detector, then corrected and digitized by a time to amplitude converter and 

microprocessor in the counting house, and finally written to tape by the host VAX 

11/780 computer. Offline processing combined the measured drift time and the 

known drift velocity of the ionization signal to reconstruct the distance of closest 

approach of the track to the sense wire. A separate algorithm decided on which 

side of the wire the track had passed. 

This arrangement allowed charged particle tracking over 85% of 471" and a 

resolution per layer of about 220 p,m. Because the PEP and: SPEAR configurations 

had different magnetic fields and different instrumentation between the beam pipe 

and the main drift chamber, the rms momentum resolutions were also different. At 

PEP, the resolutiqn was also improved by combining vertex chamber information 

with main drift chamber tracking. The resolution in the plane perpendicular to the 

beam axis was given by 

at SPEAR and 

6p1../P1..""' .j(0.025)2 + (O.Ollp1..)2 

at PEP, where Pl.. is in GeV je. The first term is due to multiple scattering in the 

material in front of and within the drift chamber. The second term is the intrinsic 

transverse momentum resolution for a typical track length of about 1m in the given 

magnetic field. 
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2.2.6 Time of Flight {TOF) System 

Except for a minor change, the hardware of the TOF system19 was the same 

m both the SPEAR and the PEP configurations. Forty eight strips of Pilot F 

scintillator, aligned parallel to the beam axis, formed a ring around the main drift 

chamber. The strips were 20 em wide, 3.4 m long, and 25 mm thick. Scintillator 

light from each end of a strip was passed to an Amperex XP2230 photomultiplier20 

through a lucite light rod, and both the pulse height and the arrival time of the 

output were digitized. The processed signals were first corrected for pulse height 

slewing and then used to calculate the time of flight and to associate the TOF hit 

with a drift chamber track. 

Calibration was done online and offline to align the individual time mea­

surements. Online, a nitrogen flash lamp provided an isochronous signal to each 

scintillator through an optical fiber connected to the center of each strip. This 

procedure alligned time measurements between the strips to about 100 ps. Of­

fline, further calibration was done by minimizing the variation of predicted and 

reconstructed times in a sample of Bhabha and muon pair events. 

The overall resolution of the TOF system was about 300 ps at SPEAR, giving 

one standard deviation separation of pions from kaons up to 1 GeV jc and from 

protons up to 2 GeV jc. To handle the higher average particle momenta at PEP, high 

resolution time to amplitude converters were installed in the PEP configuration. 

Unfortunately radiation damage reduced the attenuation length of the scintillator, 

and the single hit resolution was degraded to about 350 ps for the data taken in 

the PEP configuration. 

The TOF system allowed good pion-kaon separation over most of the ob­

served momentum range at SPEAR. Typical momenta at PEP were significantly 

higher, so the TO F system provided good separation over a much smaller fraction 

of the observed momentum range. In this analysis we use the TOF system to reject 

well identified kaons and protons whenever possible. 

- il 
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2.2. 7 Magnet Coil 

At SPEAR and PEP a uniform magnetic field parallel to the beam axis in 

the interaction region was supplied by a conventional solenoid magnet located at a 

radius 1.6 m. The magnet was 1.4 Xo thick and consisted of two layers of water 

cooled aluminum conductor. At SPEAR the magnetic field was held at 4.06 kG± 

1.5% in the tracking volume of the main drift chamber. The small variations about 

the nominal value were measured by a Hall probe and incorporated into the offline 

tracking fit. The absolute value of the field strength was continuously monitored 

by a nuclear magnetic resonance probe located near the beam pipe. 

For the running at PEP a larger power supply was introduced to raise the 

nominal field to 4.65 kG, and compensating magnets were rearranged to produce 

a field uniform to ±0.5%. However, an electrical short developed between the two 

layers of the magnet windings, and it became necessary to power only the outer 

coil, letting the inner one float. This resulted in a nominal 2.32 kG field. All the 

PEP data in this thesis was collected with the 2.32 kG field. The magnetic flux 

return was provided by parts of the muon system. 

2.2.8 Liquid Argon Electromagnetic Calorimeter 

The same liquid argon calorimeter21 was used both at SPEAR and PEP 

to detect electromagnetic showers. It consisted of eight self-contained modules 

arranged like the sides of a barrel around the magnet coil, providing coverage over 

65% of 47r. Each module was 3.8 m long, 1.8 m wide, and 0.3 m thick, and was 

made up of thirty seven planes of 2 mm lead-antimony alternating with 3 mm gaps 

of liquid argon. Every other lead plane was segmented into readout strips. To allow 

shower localization, the segmented planes were oriented in three directions: parallel 

to the beam axis (3.7 em wide F strips); at 90° to the F strips (5.0 em wide T 

strips); and at 45° to the F and T strips (7 .4 em wide U strips). On the side closest 

to the magnet coil, each module had a section called the trigger gap which was 

used to calculate corrections for the energy lost in the 1.4 Xo of material in front of 

the liquid argon calorimeter. The trigger gap consisted of three 1.6 mm aluminum 
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planes separated by· 8 mm liquid argon gaps. The middle aluminum plane was 

segmented into 3.7 em wide readout strips. 

To reduce the number of channels of readout electronics to about 360 per 

module, strips of similar orientation were ganged together in such a way as to 

optimize the energy resolution as well as information about the spatial development 

of the shower. The result was seven readout layers in depth, including the trigger 

gap layer. With the given geometry of the liquid argon calorimeter there was no 

charge multiplication of the primary ionization in the argon. A completely contained 

1 GeV shower resulted in an induced charge signal of about 0.5 pC, so the signal 

was preamplified by a charge sensitive, low nois~ preamp with an FET input. The 

preamplified signal passed through a shaping amplifier, a sample and hold module, 

and a microprocessor that performed the analog to digital conversion, and was then 

written to tape. Showers of energy less than 200 MeV could not be distinguished 

from random noise fluctuations. 

Roughly 20% of the particle energy was deposited in the liquid argon, re­

sulting in an rms energy resolution of 

u(E)/ E = 12%/VE, 

while the spatial resolution was measured to be about 7 mm for Bhabha electrons. 

The overall energy scale was set using non-radiative Bhabha events and scaling to 

the drift chamber measured momentum. 

The major role of the liquid argon calorimeter in this analysis is to reject 

well identified electrons. 

2.2.9 Muon System 

The liquid argon calorimeter was enclosed on the top, bottom, and two sides 

parallel to the beam axis by the four walls of the muon system, which also doubled 

as the flux return for the magnet coil. At SPEAR each wall consisted of two layers 

of steel absorber interleaved with two layers of proportional tubes. Two more layers 

' ; 
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of steel plus tubes were added to each wall for the running at PEP.22 The sensitive 

area of the muon system went from 50% of 411" at SPEAR to 45% of 411" at PEP. 

The steel layers varied in thickness from 182 g em2 to 244 g em2 • Each tube 

layer was 4.8 em thick and was made of extruded aluminum sections honeycombed 

with tubes of triangular cross section. The tube dimensions and positioning resulted 

in a 2.5 em spacing between sense wires, which matched the typical extrapolation 

error from drift chamber tracking. Tracks were localized by orienting the first tube 

layer in each wall perpendicular to the beam axis and the remaining layers parallel 

to the beam axis. 

A muon had to have at least 0.9 Ge VIe at SPEAR and 1.8 Ge VIe at PEP 

to penetrate through the last layer (second at SPEAR and fourth at PEP). Hadron 

punch through was less than about 2% at SPEAR and 1% at PEP. Muon identifi­

cation algorithms used in this analysis are described in the next chapter. 

2.2.10 End Cap Electromagnetic Calorimeters 

The two ends of the detector perpendicular to the beam axis were also in­

strumented with electromagnetic calorimeters. At SPEAR one of these end caps 

consisted of a liquid argon shower detector which followed closely the design of the 

barrel liquid argon calorimeter, while the other end cap was made of two layers of 

proportional chambers and lead planes. In the PEP configuration, the liquid argon 

end cap was replaced by a double of the proportional chamber end cap. The PEP 

end caps were 4. 7 Xo thick, covered the range of 15° to 40° in the polar angle, and 

had an rms energy resolution of about 

u(E)I E =50% lYE. 

Because of their poor energy resolution, the end caps were primarily used 

as elements in some triggers. End cap calorimetry information is not used in this 

analysis. 
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2.2.11 Small Angle Tagging {SAT) System 

The SAT system23 at PEP provided tracking and calorimetry at polar angles 

of 21 mr to 82 mr. Like the end cap calorimeter, the SAT system consisted of 

two mirror image groups of components on either end of the detector. A particle 

coming from the interaction point and entering the SAT region would encounter 

the following sequence of elements: 

1. Three sets of crossed planar drift chambers located between 320 em 

and 430 em from the beam crossing point. These chambers provided 

tracking in x and y (the plane perpendicular to the beam axis) with 

a spatial resolution of about 300 p,m. 

2. Three layers of acceptance defining scintillator. 

3. A 20 Xo thick lead-scintillator shower counter made of eighteen lay­

ers of alternating sheets of 0.25 in lead and 0.50 in NE114 plastic 

scintillator, with an rms energy resolution of 

u(E)/ E = 15%/VE. 

The SAT system was designed to identify electrons from low momentum 

transfer Bhabha scattering and from two photon interactions. The rate of small 

angle Bhabhas also provided an online measure of the luminosity. This analysis 

uses the SAT system at PEP mainly to tag two photon events. 

The analogous system24 at SPEAR was primarily designed to measure lu­

minosity and consisted of two tungsten-scintillator counters on each side of the 

detector covering a solid angle of 1.6 x 10-4 of 411". 

2.2.12 Beam Position Monitor 

Movements of the beam interaction point for different configurations were 

often greater than the position resolutions made available by the drift and vertex 

chambers. The beam position monitor25 (BPM) kept track of these movements 

online, and mean beam positions were calculated offi.ine. 

' . 
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There were two BPM units, one at each end of the detector 4.9 m from the 

interaction point. Each unit consisted of four buttons placed on the top, bottom, 

and two sides of the beam pipe. The voltages induced on the buttons by the 

passage of electrons were recorded for 96 beam crossings every four minutes during 

data acquisition. The measurements of relative beam positions within a single data 

taking run were accurate to 20 p,m. Offline, average beam positions derived from 

drift chamber tracks were compared to the BPM record of relative beam motions. 

2.3 EVENT TRIGGER 

Events of interest typically include charged particles, so the most useful 

trigger in a magnetic spectrometer such as the MARK II is based on charged track 

recognition. Triggers based on patterns in other detector components, such as the 

calorimeter, become useful in the more complex events at higher Ecm· 

In both detector configurations the MARK II event trigger26 was a two level 

process controlled by the Master Interrupt Controller (MIC) module. If the primary 

trigger logic found a potentially interesting event, it alerted the MIC module, which 

then sent out two signals. The first was a wait signal to the detector electronics to 

prevent a reset. The second was a start signal to the Master Clock (MC) module 

which controlled the hardware track finding logic. As we will see in what follows, 

the MIC module made the secondary trigger decision based on the track finding 

results and on information from other detector components. If the secondary trigger 

was satisfied, the MIC module sent an interrupt to the host VAX 11/780 computer, 

which read out detector electronics and wrote the data to tape. When the computer 

finished reading out the data, or if the secondary trigger was not satisfied, the MIC 

module cancelled the wait signal, and the detector electronics were reset. 

2.3.1 Event Trigger at SPEAR 

The primary charged trigger at SPEAR was the coincidence between the 

beam crossing signal BEAMX, the pipe counter hemicylinders PIPE, and a drift 

chamber majority DCM. BEAMX was a signal from a beam pickup electrode located 
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inside the vacuum pipe on the e- side. DCM was a logical OR of a set of trigger 

chamber and drift chamber layers. Beam crossing at SPEAR occurred every 780 ns. 

Since the primary trigger decision was made in about 500 ns, there was more 

than 200 ns left to clear and reset the detector electronics before the next beam 

crossing. Primary trigger rates varied between 10 Hz and 1 kHz depending on 

beam conditions. 

If the primary trigger was satisfied, the hardware track finding logic was 

initiated to search for candidate tracks in the drift chamber. The MC module 

controlled twenty four curvature modules which scanned the plane perpendicular 

to the beam axis for drift chamber hits within their specific masks of curvature. A 

track counter module then collated the hardware tracks into subgroups and sent 

the results to the MIC module. The track finding process took about 30 p,s. The 

definition of a hardware track was flexible because the curvature modules and the 

track counter were programmable .. For example, a track was labelled an A track if 

at least four out of the six axial layers in a mask were hit, and there was also an 

associated TOF signal. A track was called a B track if it had hits in at least three 

out of the inner five drift chamber layers. 

The secondary trigger logic selected events based on programmable combi­

nations of hardware tracks. The "1! particle" trigger, for example, required one A 

track and one B track. Typically two charged tracks, one or both with associated 

TOF hits, were required. The secondary trigger rate was on the order of a couple 

of hertz. 

2.3.2 Event Trigger at PEP 

There were several primary triggers at PEP. The charged track primary 

trigger required a coincidence between the beam crossing signal BEAMX, a drift 

chamber majority DCM, and a time-compensated latch from at least one TOF 

scintillator. The DCM at PEP was a logical OR of a set of vertex chamber and 

drift chamber layers. The neutral trigger was satisfied if various combinations of 

liquid argon and end cap modules detected energies above their thresholds. The 

. . 
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thresholds were set at 1 GeV for liquid argon modules and 3 GeV for the end 

caps. The Bhabha trigger fired if the SAT system detected a small angle Bhabha 

scattering event. A primary trigger decision was made in under 1 Jl.S, well within 

the 2.4 Jl.S interval between beam crossings, and the primary trigger rate was about 

100Hz. 

Hardware track finding at PEP typically took about 30 Jl.S and was performed 

by the same MC, curvature modules, and track counter used at SPEAR. Only the 

shapes of the curvature masks and some of the track definitions were changed. The 

curvature masks were redefined to improve rejection of background tracks originat­

ing at large radii from the beam line. In the more complex event environment at 

PEP, hardware track definitions were made more demanding. For example, an A 

track at PEP required hits in at least two out of the four inner vertex chamber 

layers, at least five out of seven designated drift chamber layers, at least one out of 

three outer drift chamber layers, and an associated TOF hit. 

The secondary trigger could be satisfied in several ways: 

1. Two or more hardware tracks were found with momenta greater than 

100 MeV/ c within the central 75% of the drift chamber tracking vol-

ume. 

2. Energies above the 1 Ge V threshold were detected in the front sections 

of two or more liquid argon modules. 

3. The sum of the signals in all the liquid argon modules, or the sum of 

the signals in both end caps, or the sum of the signals in the liquid 

argon and the end caps was greater than 4 GeV. 

4. One hardware track was found and one liquid argon module was above 

threshold. 

5. The Bhabha primary trigger was satisfied. Because of its high rate, 

the trigger for small angle Bhabhas was prescaled by a factor of six­

teen. 

The typical secondary trigger rate was on the order 1 Hz. 
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Chapter 3. DATA REDUCTION 

3. 1 INTRODUCTION 

This chapter covers data reduction, by which we mean the steps that lead 

from the raw detector data read out of the electronics to a sample of pions ready 

to be analyzed. The first data reduction step is event reconstruction, a process 

which transforms the raw data into convenient variables such as charge, momentum, 

energy, and time of flight of particles in an event. The second step is event selection, 

where a sample of pion rich hadronic events is selected out of the set of reconstructed 

events. The selection process involves decisions that range from straightforward 

cuts. on particle and event parameters to the fairly sophisticated algorithms used in 

particle identification. 

3. 2 EVENT RECONSTRUCTION 

The raw event data that was read out of the detector electronics was packed 

into a large array and written to tape by the VAX 11/780. It included lists of 

wire numbers and drift times for the tracking chambers, of counter numbers and 

times for the TOF system, of channels and pulse heights for the calorimeter, and 

data from smaller systems and monitoring devices. Offline processing was done on 

an IBM 370/168 for SPEAR data and an IBM 3081 for PEP data. The raw data 

tapes were run through two production analysis programs called P ASS1 and PASS2, 

which transformed the raw detector information into useful physical quantities such 

as particle momentum vectors and energies. P ASS2 improved on the reconstruction 

done in PASS1 by using detector constants derived in PASSl. 

3.2.1 Charged Particle Tracking 

Drift chamber raw data consisted of a list of hit wires and their drift times, 

ordered by layer and azimuth. The tracking process began with the set of hard­

ware tracks found by the secondary trigger logic. A fast track association algorithm 

. . 
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(TLTRKR) matched hit axial wires with hardware tracks and converted drift times 

to distances using a constant drift velocity. To decide on which side of the wire the 

track had passed, TLTRKR used simple circle fits and a constant field approxima­

tion. It also searched the list of non-axial wires for hits that could be associated 

with the track. Because the algorithm had trouble with low momentum or steeply 

dipped tracks and tracks that were close together, its overall track finding efficiency 

was""" 85%. Groups of twelve or more adjacent hits were avoided in this initial pass 

at track reconstruction because they were often due to showers, grazing tracks, 

or cross-talk between the wires. Individual hits whose drift times were outside 

expected limits were also left out. 

A more sophisticated tracking program, called TRAKR at SPEAR and 

PTRAKR at PEP, did the final track finding and fitting. The program performed 

three tasks: 

1. It fitted TLTRKR tracks and made a cut on the x2 of the fit. 

2. It attempted to find tracks in the set of unused wire hits and to resolve 

ambiguities. 

3. It tried to fit collections of hits where most of the ambiguities were 

resolved. 

The fitting procedure was a linear least squares fit to a helical orbit in the correct 

magnetic field. The helix parameters were the azimuth (¢),the tangent of the dip 

angle (tan>.), the curvature (1/pcos >.), and TJ and E which were the distance of 

closest approach to the origin from two orthogonal directions. In the PEP version 

of the tracking program the vertex chamber and the drift chamber were treated as 

a composite tracking system. In this case an additional parameter in the fit allowed 

for a kink due to multiple scattering at the transition between the two chambers. 

Requiring the tracks to pass through the beam interaction point as measured by 

the beam position monitor helped the fit and improved the intrinsic transverse 

momentum resolution by """ 50% at SPEAR energies and """ 15% at PEP. 

The event vertex was found by taking all the tracks within a 15 em radius 

of the beam and finding the point which minimized the summed distance of closest 
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approach. To minimize displacements of the vertex by strange decays and multiply 

scattered or poorly measured tracks, any track contributing more than 100 to the 

x2 of the fit was discarded, and the fit was repeated. Further details of the track 

finding, fitting, and vertexing algorithms can be found in Ref. 19 for the data at 

SPEAR and Ref. 27 for the data at PEP. 

The reconstructed tracks were projected to the TOF, liquid argon, and muon 

systems and associated with hits there. 

3.2.2 Particle Identification with TOF 

The raw data from the TOF system consisted of the phototube number, 

the integral of the scintillator signal pulse height, and the flight time measured 

by the phototube at a given discriminator threshold. A drift chamber track that 

projected into the scintillator strip gave the position of the TOF hit along z. The 

time measurement from each phototube was corrected for time alignment with other 

phototubes, for time slewing due to pulse height variations, and for travel time along 

z of the strip. Then the time of flight of the particle was calculated by taking a 

weighted average of the corrected times from the two phototubes on either end of 

the active strip. The weighting favored the phototube closer to the track entrance 

point since photostatistics are better for scintillation light that travels a shorter 

distance. If the drift chamber indicated that there were two tracks hitting one 

strip, the time of flight for each was calculated using the phototube nearest to that 

track in z, and the resolution was degraded to "'500 ps from a single hit resolution 

of"' 350 ps. 

The mass of the charged particle was determined by combining the time of 

flight (t) from the TOF counter with the path length (l) and momentum (p) of the 

corresponding track measured by the drift chamber: 

with 
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and 6t""" 350 ns. Figure 3.1 is a scatterplot of m 2 versus p, showing the separation 

of pions, kaons, and protons in a sample of SPEAR events at Ecm of 4.5 GeV to 

6.8 GeV. The vertical bands centered on m1r2 , mK2, and mi widen with increasing 

momentum and illustrate the range of momenta over which pions can be separated 

from kaons and protons. 

In practice, the mass of the particle was assigned using a weighting technique. 

The weight for a given mass hypothesis mi was calculated as 

where 

i = 71"± K± p± 
' ' ' 

t is the measured time of flight, u is the measured TOF resolution, and p is the 

particle momentum. The section on analysis event selection describes how the 

weights are used to identify kaons and protons in the four data sets. 

Although the TOF system provided good separation between pions and elec­

trons below about 300 MeV, particle momenta at both SPEAR and PEP were 

typically above that value, and the TOF system was not helpful in electron identi­

fication. Further information on TOF data processing can be found in Ref. 28. 

3.2.3 Particle Identification with the Liquid Argon Calorimeter 

Liquid argon raw data was written to tape as a list of ganged channels and 

corresponding energies. Figure 3.2 shows the six readout layers and the trigger 

gap. Our main interest in the calorimeter is its electron identification capability, 

so the reconstruction algorithms for photons28 will not be discussed here. Utility 

a,lgorithms for the identification of electrons and muons have been developed for the 

MARK II detector at SPEAR and PEP. These are described in detail in Ref. 29, 
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and only a summary of the electron algorithm is given below. Muons are treated 

in the next section. 

Electron identification is based on the characteristics of the electron's inter­

action with matter. Bremsstrahlung is the major source of energy loss for electrons 

with energy above a few MeV. In the MARK II liquid argon calorimeter, an elec­

tron with energy greater than about 100 MeV radiates a photon which is energetic 

enough to produce e+ e- pairs that radiate in turn and result in an electromagnetic 

shower. Since the cross section for Bremsstrahlung is inversely proportional to the 

square of the particle mass, the signature of other massive particles in the calorime­

ter is typically a minimum ionization track. Occasionally a hadron will interact 

strongly and lose a fraction of its incident energy in a hadronic shower. Because 

the interaction length is longer (- 17 em) than the radiation length (- 0.6 em), 

hadronic showers tend to start deeper in the calorimeter and to exhibit a broader 

transverse structure than electromagnetic ones. 

The MARK II electron identification algorithm used a combination of energy 

deposition and shower geometry information. The first step was to calculate the 

path of the incident charged particle through the calorimeter using the projected 

drift chamber track. A search was then made for energy deposits in nearby chan­

nels. The width of the search area was the sum of two terms, the typical width 

of an electromagnetic shower and a factor that took into account the geometry of 

the ganging pattern. A channel was included if its center lay within the search 

area. Typically - 80 - 90% of the deposited energy in an electromagnetic shower 

was located within this region. Energy deposits in these channels were summed 

according to layers into EF1+F2' ETb and Eu, and Erront = EF1+F2 + ET1 + Eu. 

These quantities were used to define 

E . _ . . ( EF1+F2 ET1 Eu Erront) 
mm - minimum , , , , 

aF aT au arront 

where the ai's were chosen to make Ei > aip for most electrons (70-90%, depending 

on momentum p). A particle was an electron candidate if Emin/P > 1.1 and if the 
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Figure 3.2 Ganging pattern in the liquid argon calorimeter modules showing the seven readout 
layers. 
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associated shower was not too close to the edge of the liquid argon module. 

As discussed in the next chapter, we want to reject as many electrons as 

possible while losing as few pions as possible in the process. In this case the useful­

ness of the algorithm is measured by the electron identification efficiency and the 

pion misidentification probability. For electrons within the sensitive volume of the 

calorimeter, Fig. 3.3 shows that the identification efficiency varies from ,...... 90% for 

momenta greater than 2 Ge VIc to ,...... 70- 80% for 1 Ge VIc < p < 2 Ge VI c. The 

efficiency decreases steeply below 1 GeV lc, because electrons with low momenta 

tend to be close to other tracks, and this worsens the energy overlap problem. 

Table 3.1 shows the results of the pion misidentification study done in Ref. 29 

using several reliable samples of pions. The hadronic decays J 11/J --+ 2(7r+7r-)7r0 

from the MARK II running at SPEAR were used to look at pions with momenta 

0.5- 1.3 GeV I c. Another sample was pion beam test data at 2 GeV and 4 GeV 

taken with one liquid argon module. Both of these indicated that the pion misiden­

tification probability was less than one percent at SPEAR. Two data samples from 

the running at PEP were also examined: pions from K 0 --+ 1r+ 1r- and from three 

pion decays of r pair events. Because of higher track multiplicities at PEP, track 

energy overlap became significant enough to increase the pion misidentification as 

an electron by a factor of about three. 

3.2.4 Particle Identification with the Muon System 

The MARK II muon system and muon identification algorithm described in 

Ref. 29 take advantage of the fact that the muon is one of the least interactive 

massive particles. The muon does not initiate hadronic showers because it does not 

experience strong interactions, and it typically does not initiate electromagnetic 

showers because the cross section for muon Bremsstrahlung is suppressed by a 

factor of (melml-') 2 relative to the electron cross section. The main energy loss 

mechanism for muons above momenta greater than a few hundred MeV is due to 

ionization of the medium (dEidx"" 200 MeV per interaction length in iron). A 

muon entering the MARK II muon system (at PEP) at normal incidence requires 
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Table 3.1 Overall pion misidentification probability from Ref. 29. Momenta are 

given in GeV fc. 

P\PT 0.0-0.5 0.5-1.0 1.0- 1.5 ~ 1.5 

1.0-2.0 0.023 0.010 0.007 0.007 

2.0-3.0 0.015 0.008 0.007 0.007 

3.0-4.0 0.010 0.006 0.005 0.005 

4.0-5.0 0.007 0.005 0.004 0.004 

5.0-6.0 0.007 0.005 0.004 0.004 

2:: 6.0 0.006 0.004 0.003 0.003 

a momentum p 2:: 1.5 GeV lc to penetrate all four layers. In general, the signature 

of a muon is that it penetrates an absorber further than other particles of similar 

momentum. 

The first step of the muon identification algorithm was to project the path 

of the charged particle through the muon system using drift chamber tracking in­

formation. A search was then made in the vicinity for hits in the proportional 

tube planes. The size of the search area was determined by the tracking projection 

error, which took into account dE I dx losses, multiple scattering, and bending in 

the magnetic field due to the flux return. Two variables were formed to summarize 

the results of the search. MUSTAT was defined as a binary four bit word where 

each bit corresponded to one layer. A track with an associated hit in layers one 

and two would have MUSTAT= 00112 = 310, while hits in all four layers would 

give MUSTAT= 11112 = 1510. The second variable MULEVE was the number of 

layers a given muon was expected to penetrate given its momentum and angle of 

production. The algorithm required that muon candidates satisfy MULEVE= 4 

and p > 2 GeVIc. 

For tracks within the sensitive volume of the muon system ( ....... 45% of 47r), 

the muon identification efficiency ranged from ....... 80% for momenta of 2-3 GeV lc to 

over 90% for momenta greater than 6 Ge VI c. Inefficiencies were due to proportional 
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tube problems and to effects which placed the hits outside of the nominal search 

area. The latter included range straggling, unusually bad track extrapolation, and 

multiple scattering losses. Pion misidentification was studied in Ref. 29 to see what 

fraction of pions penetrated through the muon layers. Table 3.2 shows that the 

pion punchthrough probability to the third layer was found to be less than a few 

percent. 

Table 3.2 Measured punchthrough probabilities from Ref. 29. Momenta are 

given in GeV fc. 

pion sample momentum layer 1 layer 2 layer 3 

Ko ~ 1r+1r- 2<p<6 0.099 0.034 < 0.011 

T ~ 31rl.l 2 < p < 10 0.215 0.066 0.008 

1r from D 0 3<p<6 0.068 0.054 < 0.070 

3.3 THE FOUR DATA SETS 

The reconstructed events were written onto so called P ASS2 tapes in the 

form of arrays containing track and vertex information ready for user analysis. 

These tapes contained every event that survived reconstruction, including cosmic 

ray, beam-gas, two photon, and e+ e- annihilation interactions. Data summary 

tapes (DST's) were made of specific kinds of events by applying loose cuts to filter 

out other processes. 

As discussed in chapter one, we are interested in hadronic events produced 

by two distinct processes, e+ e- annihilation and the two photon interaction, which 

we abbreviate as e+e- and "Y"Y for convenience. DST's for hadronic e+e- events 

were made for most of the data collected with the MARK II, and "Y"Y DST's have 

recently been produced for the PEP data. The cuts used to assemble hadronic 

DST's are looser than the cuts which define a hadronic event in this analysis, so the 

DST cuts have no effect on the final data sample and will not be discussed here. 

The I"Y DST's required similarly loose cuts on the event and the detection of at 
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least one electron shower of 7-20 GeV in the SAT system, which tagged the event 

as a "/"/ interaction or a low momentum transfer Bhabha scattering. The selection 

of hadronic events and the elimination of background processes, including Bhabha 

scattering, is discussed in the next section. 

While nearly all of the running at PEP was at Ecm of 29 Ge V, the operation 

at SPEAR included energy scans as well as extended runs at several energies in 

the range of 3.095 GeV to 7.4 GeV. By the time this analysis began, roughly 15% 

of the SPEAR DST's had succumbed to the ravages of time and were unreadable. 

The P ASS2 tapes which were used to make these DST's were too numerous to store 

for long, so they disappeared into archives soon after the MARK II moved to PEP. 

They were used less frequently and were probably in even.worse condition than the 

DST's. These factors discouraged the creation of new DST's from archived SPEAR 

P ASS2 tapes as both difficult and haphazard. One set of SPEAR DST's that retains 

enough statistics to be of use in this analysis is the set of hadronic .e+e- events at 

the J /'1/J (Ecm of 3.095 GeV). DST's also exist for hadronic e+e- events at Ecm of 

4.1-4.4 GeV, 5.2 GeV, and 6.4-6.7 GeV, but each of these is too small to be 

statistic~lly significant on its own. They are added together into a data set labelled 

SPEAR qq, which represents a sample of the continuum above the J jt/J. 

Data collected during the running at PEP is divided into good and poor 

quality data. In the fall of 1982, the MARK II main drift chamber began to draw 

unacceptably high currents. This phenomenon, also called glow, has been observed 

in many wire chamber experiments30 and is usually ascribed to coating of the field 

wires by products of organic molecules in the chamber gas. In order to continue 

data taking while the problem was studied, chamber voltages were lowered by "'"' 

500 V from their optimal values of 3000 - 3500 V, resulting in a degraded drift 

chamber tracking efficiency. Roughly 40% of the PEP data was collected under 

these conditions. In the spring of 1983, 0. 7% oxygen was added to the drift chamber 

gas to eliminate the glow problem. The remedy worked, and drift chamber voltages 

were soon returned to their optimal levels, restoring the original tracking efficiency. 

Data collected before the glow problem and after the introduction of oxygen is 
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referred to as good PEP data, while data taken with reduced drift chamber voltage 

is called poor PEP data. Two PEP data sets are used in this analysis. One is the 

set of hadronic e+ e- DST's made from the good PEP data, and the other is the 

set of 11 DST's made from all the PEP data. 

The four data sets we have assembled are summarized in Table 3.3. 

Table 3.3 The four data sets used in this analysis. 

Data Set N arne Process Ecm(GeV) ..C(pb-1) Comments 

SPEAR Jj.,P t/J ---+ hadrons 3.1 0.4 hadronic DST's 
SPEAR data 

SPEAR qq qq ---+ hadrons 4.1-4.4 1.7 hadronic DST's 

5.2 5.1 SPEAR data 

6.4-6.7 6.4 

PEP 11 11 ---+ hadrons 29 198.0 two photon DST's 
all PEP data 

PEP qq qq---+ hadrons 29 113.2 hadronic DST's 
good PEP data 

3.4 MONTE CARLO EVENT SIMULATION 

Monte Carlo data is created in two steps. First, a given model of the 

hadronization process produces an event consisting of a set of particles and their 

momenta. This is the Monte Carlo event generator. The particles are then passed 

through simulations of detector components, where tracking and calorimetric re­

sponse are modelled. This is the Monte Carlo detector simulation. The resulting 

Monte Carlo event is written to tape in the form of raw data (drift chamber hits, 

calorimeter pulse heights, TOF times, etc.) and then processed the same way as 

a detected event. Monte Carlo data is compared to detected data and is used to 

study the event generator or the detector simulation. 

Ideally, we would like to have four Monte Carlo data sets, corresponding 

to the four data sets. These Monte Carlo data sets are: a J / t/J event generator 
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with SPEAR MARK II simulation; a qq event generator with SPEAR MARK II 

simulation; a "1"1 event generator with PEP MARK II simulation; and a qq event 

generator with PEP MARK II simulation. However, this is not possible. We found 

that the code for the SPEAR MARK II detector simulation, specifically the tracking 

routine used on the SPEAR data, no longer exists in a usable form. While the PEP 

MARK II tracking routine is still fully functional, an event generator for "!') events 

is not available to us. These are the major reasons why we are limited to only the 

last Monte Carlo data set listed above, which was created using the Lund string 

fragmentation model 31 in the event generator. Since this Monte Carlo data is made 

to reproduce the PEP qq data set, we refer to it as the MC PEP qq data set. 

Despite the variety of the detected data sets and the scarcity of Monte Carlo 

data sets, we are still able to accomplish two critical studies of detector performance: 

pion misidentification and tracking efficiency. The major detector component in­

volved in pion identification is the TOF system. Its performance was essentially 

unchanged in the transition from SPEAR to PEP, so that the PEP MARK II sim­

ulation of the TOF system is nearly the same as the SPEAR MARK II simulation 

of the TOF system. As discussed in section 4.6.1, this fact allows us to get an 

accurate estimate of the pion misidentification fraction in all the detected data sets. 

The study of tracking efficiency requires the full tracking code, so the MC PEP qq 

data allows us to study only the PEP data sets. However, based on these results 

and on a comparison of known tracking efficiencies, we can make some estimates 

for the SPEAR data sets (section 4.6.2). 

3. 5 HADRONIC EVENT SELECTION 

In order to study pions, we must first select well measured hadronic events 

from the DST's. The major backgrounds common to all the four data sets are beam­

gas, cosmic ray, and lepton pair production processes. Except for r+r- production, 

these background events have characteristically low charged track multiplicity. In 

addition, the primary vertices of beam-gas or cosmic ray events are usually recon­

structed far from the interaction point. r+r- events consist of two to six charged 
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tracks in a two jet topology, where each jet has a low effective mass. A standard 

set of cuts has been developed over the course of the MARK II running to select 

well measured hadronic events with maximum efficiency while minimizing contam­

ination from the above backgrounds. The following sequence of these cuts serves to 

define a hadronic event in this analysis. 

1. A search is made for charged tracks which have well measured momenta and 

project close to the primary vertex. In order to be called a good charged 

track, 

a) the momentum of the track must satisfy p ~ Ecm, and the projection 

of the momentum in the plane perpendicular to the drift chamber axis 

(xy plane) must be P.L ~ 0.1 GeV je; 

b) the angle of the track with respect to the beam axis must be within 

the sensitive tracking volume of the drift chamber: 

I cosO 1=1 Pz I~ 0.794; 
p 

c) the minimum distance of approach of the track to the primary vertex 

must be z ~ 5.0 em along the beam axis and 

T_L ~ 1.0 em for p > 1 GeVje, 

p T_L ~ 1.0 em GeVje for p ~ 1 GeVje, 

radially in the xy plane. This cut removes most mismeasured tracks 

as well as a good fraction of the tracks from K 0 and A decays. 

2. Neutral tracks are subjected to minimal quality cuts since they are only used 

in calculating event sphericity and total visible energy. A neutral track is 

used if 

a) the liquid argon shower energy is above 200 MeV; 

b) the closest approach of a drift chamber projected track to the neutral 

shower center is more than 7 em. 

. . 
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3. With this set of good charged and neutral tracks, several cuts are made on 

the event as a whole. Note that in the case of the "'Y"'Y data, the electron that 

tags the event by showering in the SAT system cannot be seen in the drift 

chamber and thus is not included in the list of charged tracks. 

a) The primary vertex of the event must be within 1.0 em of the inter­

action point in the xy plane and within 5.0 em in the direction along 

the z axis. 

b) The event must have three or more good charged tracks. This cut is 

chosen to retain maximum pion statistics. Contamination by simple 

QED events is handled by two additional cuts. First, an event is 

rejected if it has three or four good charged tracks and it contains at 

least one well identified32 e or J.L. Second, an event is rejected if it is 

determined to have two jets33 each of which has an effective mass less 

than 2.5 GeV. The latter is intended to remove r+r- pairs. 

In the sample of e+e- annihilation events, we still need to remove the "'Y"'Y 

interaction background. Because the final state e+ and e- in a "'Y"'Y event typically 

stay close to the initial beam direction, only a fraction of the Ecm is available for 

the production of hadrons. The signature of the "'Y"'Y interaction is therefore that the 

sum of energies of charged and neutral tracks in the event, called the total visible 

energy, is a relatively small fraction of Ecm· We require that the total visible energy 

in an e+e- event satisfy Etotal ~ 0.25 Ecm· 

The visible energy in a "'Y event decreases as the final state e+ and e- get 

closer to the beam direction. The triggering of both SAT modules means that the 

e+ and e- radiated very low energy photons, which would have too little energy to 

annihilate into a lot of hadrons. We want populous hadronic events, so we require 

a single SAT tag in the "'Y"'Y event sample. 

Since the PEP qq and PEP "'Y"'Y data sets come from the same pool of PEP 

data, it is important to check that the separate criteria used to assemble the e+ e­

and "'Y"'Y event samples did indeed produce mutually exclusive sets of events. When 
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the analysis was run on the "'/"'/ DST's with the e+ e- event req~irements, only 1.5% 

of the"'/"'/ events passed the cuts. The total number of events passing the hadronic 

cuts is listed for each data set in Table 3.4. 

Table 3.4 Number of events surviving hadronic and analysis cuts, and the mean 

number of pions per event in events that pass analysis cuts. 

Data Set Number of Number of Number of (N1r±) in 
DST Events Hadronic Events Analysis Events Analysis Event 

SPEAR Jf'f/J 1,285,000 477,000 308,000 3.6 

SPEAR qq 495,000 78,000 51,000 3.9 

PEP"'/"'/ 264,000 42,000 18,000 3.6 

PEP qq 182,000 54,000 52,000 5.2 

3.6 ANALYSIS EVENT SELECTION 

Out of the sample of hadronic events we need to select those which have 

enough pions to make combinations of like charge and mixed charge pion pairs and 

triplets possible. 

The pion sample is defined as all the ±1 charged tracks in the event which 

are not well identified electrons, muons, kaons, or protons. Since pions constitute by 

far the largest fraction of produced charged particles, the odds are favorable that 

a particle is a pion when the other identifications are borderline. To handle the 

residual contamination of the pion sample, a correction for pion misidentification is 

later applied using a Monte Carlo calculation. This correction is discussed in detail 

in the next chapter. We use the following particle definitions: 

1. A well identified electron is a particle with momentum p 2 1 GeV f c which 

satisfies the standard MARK II requirements for an electron candidate dis­

cussed in section 3.2.3. 

2. A well identified muon is a particle with momentum p 2 2 GeV fc which 

satisfies the standard MARK II requirements for a muon candidate discussed 

in section 3.2.4. 

. . 
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3. A well identified kaon is a particle which satisfies 

a) p~1GeV/c 

b) the TOF weight for a kaon, discussed in section 3.2.2, is W K 2: 0.35 

c) the measured time of flight is within 4a of the calculated time of flight 

for a kaon with momentum p. 

4. A well identified proton is a particle which satisfies 

a) p ~ 2 GeV /c 

b) the TOF weight for a proton, discussed in section 3.2.2, is Wp 2: 0.35 

c) the measured time of flight is within 4a of the calculated time of flight 

for a proton with momentum p. 

Table 3.5 shows the purity of the resulting pion sample, namely what fraction of 

the particles identified as pions are really pions. These numbers are derived by 

applying the pion selection criteria to Monte Carlo data, examining the Monte 

Carlo generated identities of the particles identified as pions, and calculating the 

fractional contamination by other particles. The Monte Carlo data sets listed in 

Table 3.5 are described in more detail in section 4.6.1. 

Table 3.5 The table below shows the results of a Monte Carlo study which 

calculated what fraction of particles identified as pions were really generated e, p,, 

K, and p. 

Monte Carlo Data Set 11" e J), K p 

MC SPEAR J /'1/J 0.90 0.05 0.03 0.02 0.00 

MC SPEAR qq 0.90 0.04 0.03 0.02 0.01 

MC PEP 11 0.90 0.04 0.03 0.02 0.01 

MC PEP qq 0.84 0.03 0.02 0.08 0.03 

In order to eliminate the products of 1 -+ e+ e- which can be misidentified 

as an unlike charged pion pair, we apply a cut on the pair angle: cos Opair ~ 0.997. 

The same cut is applied to like charged pairs to preserve the phase space match 
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between the like and unlike pairs. About 70% of the conversion pairs misidentified 

as pion pairs are removed in this way, and the angle cut is small enough to fall well 

within the first bin of our Q2 distributions. As we will see in chapter six, this cut 

does not measurably influence the fitted values of parameters a and r, 

Finally, we must ensure that there are enough pions to make pairs and 

triplets. Events with two pions would overwhelmingly favor unlike charged pairs, 

which would distort the kinematic phase space match between the like and unlike 

pairs. For pair analysis, therefore, we require that at least three pions and both 

charges be present in an event. For similar reasons a minimum multiplicity of five 

pions and both charges are required for making triplets. Each pair, alone or in 

a triplet, is subject to a cut whose purpose is to remove photon conversion pairs. 

Namely, the opening angle between an unlike pair is required to be greater than 

five degrees, and a similar cut is made on like pairs in order to preserve the phase 

space match. 

Table 3.4 gives the total number of events that survive the analysis cuts, 

and Table 3.6 shows the total number of pions, pairs, and triplets in each data set. 

The relative numbers of like and mixed charge combinations are the result of the 

combinatorics involved in forming pairs and triplets. Note also that not all events 

used to make pairs (N1r± > 3) can be used to make triplets (N1r± 2:: 5). 

Table 3.6 Pion statistics in the four data sets. 

Data Set N'lr± N1r±1r± N1r±7rT N1r±1r±1r± N1r±1r±7rT 

SPEAR Jft/J 911,000 484,000 813,000 55,000 436,000 

SPEAR qq 236,000 149,000 224,000 36,000 216,000 

PEP 'Y'Y 109,000 61,000 94,000 13,000 73,000 

PEP qq 281,000 278,000 323,000 341,000 1,375,000 
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Chapter 4. DATA ANALYSIS FOR PION PAIRS 

4. 1 INTRODUCTION 

In the previous chapter we discussed the four data sets, event selection, and 

the identification of pions. This chapter deals with data analysis, namely the steps 

leading to the observation and measurement of the Bose-Einstein enhancement in 

a given set of pion pairs. The analogous steps for triplets are discussed in the next 

chapter. 

Why use pions? A study of the GGLP effect requires large statistics, and 

pions are the most abundantly produced bosons in e+ e- collisions. The MARK II 

n° reconstruction is too poor to permit a measurement of the effect in n°n° pairs. 

We therefore confine the investigation to like charged pions. 

Other groups have seen the Bose-Einstein enhancement in like charged kaons4 

and the analogous Fermi-Dirac depletion in like charged protons5 . We are unable 

to make comparable measurements for lack of kaon statistics. 

4.2 STUDY SAMPLE 

We expect to see the GGLP effect in like charged pions, which we will also call 

the study sample from here on, because in the limit of similar momenta they become 

identical bosons; they are subject to Bose-Einstein statistics and are expected to 

exhibit the Bose-Einstein correlation. The study sample contains other correlations 

as well. In order to look for evidence of the Bose-Einstein enhancement we must 

first consider competing effects. 

All particles produced in hadronic processes are subject to correlations from 

two general sources: conservation laws and dynamics. These can be further subdi­

vided as follows. 

1. Conservation Laws: 
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a) Conservation of energy-momentum leads to strong correlations when 

particles are produced near a kinematical boundary. 

b) Conservation of quantum numbers and internal symmetries, such as 

isospin and parity, imposes constraints on the identity and number of 

particles produced. 

2. Dynamics: 

a) The particle production mechanism, such as production of resonances, 

can lead to correlations. Some of the hadronization models discussed 

in chapter one predict production related correlations. 

b) Final state interactions between the newly formed particles can also 

introduce correlations in observed particle distributions. It is difficult 

to make a rigorous separation between production and final state dy­

namics since the strong force is the dominant interaction during and 

immediately after production. Once the particles are out of its range, 
' 

however, the Coulomb interaction becomes dominant for charged par­

ticles. 

Let us examine how each of these effects is manifested in the study sample. 

Energy-momentum is conserved in the event as a whole, but the charged 

pions constitute only a part of the hadronic event. Other particles, detected and 

undetected, carry a significant fraction of the event energy and momentum. This 

"leftover" part of the event provides a buffer against the kinematical boundary for 

the charged pions. Figure 4.1 shows the distribution of the fraction of Ecm carried 

by charged pions in the study sample. In each of the four data sets, the distribution 

is close to symmetric and peaked about a value well below one, and the number of 

events goes smoothly to zero as the charged pion energy sum goes to Ecm· Thus the 

set of charged pions within an event is well away from the kinematical boundary 

in nearly all the analysis events. Similarly, the "leftover" part of the event acts 

as a reservoir of quantum numbers, allowing the smooth distribution of 7r+ and 

7r multiplicities shown in Table 4.1. Although conservation laws do not impose 
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constraints directly on the charged pions, energy-momentum considerations and 

pion multiplicities together determine the kinematical phase space distribution of 

the study sample. 

Final state dynamics turn out to be relatively unimportant compared to 

the Bose-Einstein enhancement. The Coulomb interaction between produced pions 

can be calculated34 , and strong force final state interactions have recently been 

estimated for pions in Ref. 35. Sections 4.5.2 and 4.5.3 contain a discussion of these 

effects. 

Assuming we understand the effects of kinematical phase space and final state 

interactions, measuring a less than maximum Bose-Einstein enhancement could be 

interpreted several ways. 

To start with the most mundane explanation, we consider detector perfor­

mance. The two track resolution of the drift chamber is important because it de­

termines the minimum momentum difference, and therefore the maximum length, 

that we can resolve with the pion interferometer. If the pion source is bigger than 

this maximum, we will not be able to "see" it. In addition, if like charged pairs 

with a small pair angle are resolved less efficiently than unlike charged pairs with 

the same pair angle, then in the ratio of like to unlike pairs we will measure a 

Bose-Einstein enhancement lower than its true value. Finally any particles which 

were misidentified as pions will not be subject to Bose-Einstein statistics and will 

contaminate the true 1r±1r± pairs with an uncorrelated background. These effects 

and the performance of the MARK II are discussed in detail in section 4.6. 

Many of the charged pions in the study sample are the decay products of 

resonances, which are produced abundantly in hadronic e+ e- processes. The res­

onances are either short lived or long lived relative to the time it takes to traverse 

the size of the primary source. If a pion from a long lived resonance is paired with a 

pion from the primary source, that pair will give a measure of the resonance decay 

length rather than the dimension of the primary source. Depending on the number 

of resonances produced, a significant fraction of the pion pairs will measure various 

decay lengths and will mix together in the total sample to give some complicated 
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Figure 4.1 Distributions of the fraction of Ecm carried by charged pions in the analysis event. 



Table 4.1 Distributions of 1r+ and 1r:- multiplicities within an event for the four 

data sets. The entries are percentages of analysis events with the given (N1r+, N'lr-) 

multiplicity. 

N1r+ % events with (N 1r+, N 11"-) 

N1r_ 1 2 3 4 5 6 7 8 

1 27 4 <1 

SPEAR Jf'l/; 2 27 22 5 <1 

3 4 5 2 <1 

4 <1 <1 <1 <1 

1 19 6 <1 

SPEAR qq 2 20 21 8 1 

3 6 8 4 <1 

4 <1 1 <1 <1 

1 22 6 <1 

PEP 11 2 22 22 6 1 

3 6 6 3 <1 

4 <1 1 <1 <1 

1 3 1 <1 <1 

2 3 5 5 3 1 <1 

3 1 5 7 5 3 1 <1 

PEP qq 4 1 3 5 5 4 2 <1 

5 <1 1 3 4 4 3 1 <1 

6 <1 1 2 2 2 1 <1 

7 <1 1 1 1 1 <1 

• 8 <1 <1 <1 <1 <1 
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average of all the lengths. In appendix B we discuss further the effect of resonances 

on the Bose-Einstein enhancement. 
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Ifdetector performance and the effect of resonances are accounted _for, and 

the corrected Bose-Einstein enhancement is still less than maximum, then we turn 

to the remaining unknown. As we saw in chapter one, a less than maximum Bose­

Einstein enhancement can also be interpreted as evidence of partial coherence in 

the hadronization process. 

Figure 4.2 shows the distribution of the like charged pairs in Q2 • Over most 

of Q2 , the shape of the distribution reflects pion pair phase space. The GGLP effect 

leads us to expect an excess of pairs over the prediction of phase space alone in the 

region of small Q2 • We use a "reference sample" to try to measure this excess. 

4.3 REFERENCE SAMPLE 

The central problem in the analysis of the GGLP effect is to separate the 

Bose-Einstein enhancement from other correlations in the study sample. To do this 

we introduce the reference sample, which is a representation of the study sample in 

the absence of Bose-Einstein statistics. The ideal reference sample 

a) contains all of the correlations that exist in the study sample except 

the Bose-Einstein correlation and 

b) is free of correlations which are absent from the study sample. 

Unfortunately, the ideal reference sample for our study sample does not exist m 

nature. All the reference samples that have been used or proposed thus far fail to 

satisfy one or both of the requirements for the ideal reference sample. This section 

describes the advantages and disadvantages of several commonly used reference 

samples and introduces one new candidate. 

4.3.1 Unlike Charged Pion Pairs 

If the study sample consists of like charged pion pairs, then at first glance 

unlike charged pion pairs are the natural choice for· the reference sample. 7r+7r­

pairs have the same kinematical phase space as 7r±7r± pairs, and since 7r+ and 7r­

are different particles the Bose-Einstein enhancement is absent. 

There are some complications, however. 
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As we saw in the preceding section, decay products of resonances make up a 

large fraction of the charged pions. Many ?r+?r- pairs reconstruct to all or part of 

a resonance, distorting the kinematic phase space of the unlike pairs in the region 

of the resonance mass. Problems could arise if a resonance distorts the unlike pair 

phase space so much that the latter cannot be used to "divide out" the like pair 

phase space in the region of the Bose-Einstein enhancement. Figure 4.3 shows the 

distribution of the unlike charged pairs in Q 2 • Keeping in mind that Q 2 is equal to 

the effective mass of the pair to within an additive constant, it is easy to find the 

K 0 and p0 signals at Q 2 ~ 0.19 GeV2 and Q 2 ~ 0.4-0.6 GeV2 , respectively. There 

is no. clear evidence for other resonances in the range of Q2 shown. If we normalize 

the number of like pairs to the number of unlike pairs, and we superimpose the Q2 

distributions of like and unlike pairs as in Fig. 4.4, then we can see the agreement 

in the phase space envelopes of the two samples, the Bose-Einstein enhancement 

in the region of small Q2 in the like charged pairs, and the resonance signals in 

the unlike charged pairs. These features can also be seen in Fig. 4.5, which shows 

the result of subtracting the normalized unlike pair distribution from the like pair 

distribution. Normalization was done by rescaJing the total number of unlike pairs 

in the region of 0.0 GeV2 ~ Q2 ~ 1.0 GeV2 to the total number of like pairs in the 

same region. 

Another kind of phase space distortion is evident in the PEP qq data set: 

the ratio R of like to unlike charged pairs rises slowly with Q2 • This long range 

correlation is the result of charge and energy conservation and is most evident in 

events containing jets36 • Although it does not distort R locally in the Bose-Einstein 

enhancement region of Q2 , the long range correlation affects the overall fit to R. 

Corrections for resonances in the unlike charged pairs and for long range correlations 

in Q2 are discussed further in section 4.5.1. 

Complications also arise from final state interactions. The Coulomb attrac­

tion between unlike pairs is opposite to the repulsion in like pairs. Thus the Coulomb 

force creates a net suppression in the ratio of like to unlike charged pairs, and the 

suppression gets stronger as the pair effective masses get smaller. Similarly, the 
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strong force final state interaction deduced from 1r1r phase shift35 . may create a net 

suppression in the ratio at small pair masses. In sections 4.5.2 and 4.5.3 we discuss 

these effects in more detail. 

Finally, residual correlations arise because we use the same pions to make 

the reference sample pairs as we do to make the study sample pairs. This effect 

is more pronounced in nuclear collision experiments, where the reference sample 

is often constructed directly from the set of like charged pions37. In the case of 

our study sample, we have seen how the Bose-Einstein correlation distorts like pair 

phase space near small Q2 • This is reflected in the distribution of individual1r+'s 

and 11"- 's in an event: They in turn determine the phase space of the unlike pairs 

in the event, resulting in a residual correlation. In appendix A we discuss how an 

iterative procedure can be used to estimate the magnitude of this effect. Typically 

first order corrections are small enough to be neglected36 • 

The unlike charged pair reference sample was the first to be proposed3 and 

has since been used extensively in GGLP analyses, often as a double check on 

alternate reference samples. It reproduces the study sample kinematical phase 

space well, and its complications do not seriously interfere with the measurement 

of the Bose-Einstein enhancement. For these reasons we use it as the standard 

reference sample against which all other candidate samples are tested. 

4.3.2 Alternate Reference Samples 

In some GGLP experiments it may not be possible to use unlike charged 

pa1rs as a reference sample. For example, the detector may be set up to detect 

only one sign of pion charge12• Experiments like these have pioneered the search 

for alternate reference samples. 

After our experience with the unlike charged pairs, we see that a reference 

sample need not be ideal in order to be useful. We loosen the requirements and 

define a good reference sample as one which 

a) reproduces the kinematical phase space of the study sample and 
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b) does not contain correlations which interfere with the measurement 

of the GGLP effect. 

The relatively small final state effects are simply neglected. 

We refer to unlike charged pairs as a natural reference sample because the 

pions have not been manipulated in any way. An artificial reference sample can be 

made by taking the detected data and randomizing some aspect of the events or 

the charged pions. In the following sections we discuss artificial reference samples 

based on event mixing and introduce the mixing algorithm that is used on triplets 

in chapter five. 

4.3.3 Introduction to Mixing Events 

Although many of the general comments about event mixing apply equally 

well to pairs and triplets, we will postpone a discussion of triplets until the next 

chapter and will refer only to pairs here. A mixed event reference sample consists 

of pairs created by combining pions from one event with pions from another event. 

Obviously, these pairs are not dynamically constrained and do not have to obey 

conservation laws, so they are free of the corresponding correlations. The event 

mixing process in effect constructs a hybrid event which is a superposition of two 

real events. 

4.3.4 Mixing Events: Cluster Mixing Algorithm 

The four data sets are geometrically distinct. A typical SPEAR J / 1/J event 

is nearly spherical. The SPEAR qq continuum above the 1/J consists of less spher­

ical events, as e+e- ---+ qq begins the transition to distinguishable jets. Particles 

produced in a PEP 11 event are often bunched together to balance the momentum 

carried off by the missing e+ or e-. Finally, the PEP qq data is in an energy regime 

where two-jet events are typical and events with three jets are fairly common. 

These geometries are evident in Table 4.2, which shows for each data set 

the fraction of events with a given number of particle clusters. Cluster finding is 

done the same way for all the data sets: all the good charged tracks and neutral 
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tracks in an event are fed into a utility cluster finding routine LCLUS, which is part 

of the Lund Monte Carlo package. LCLUS uses particle momenta to find groups 

of particles clustered together in jet-like structures, labels the groups in order of 

decreasing cluster momentum, returns the energy-momentum of each cluster, and 

assigns the input particles to clusters. In this way we can reduce the geometry of 

all four data sets to a common denominator, the cluster. 

Table 4.2 Fraction of events with the given number of clusters. 

Number of Clusters in Event 

Data Set one two three four five or more 

SPEAR Jj,P 1.00 .0 .0 .0 .0 

SPEAR qq 0.99 0.01 .0 .0 .0 

PEP "'fl 0.95 0.05 <0.01 .0 .0 

PEP qq 0.02 0.69 0.26 0.03 <0.01 

Before describing the cluster mixing algorithm, we need to make some pre­

liminary remarks. Each cluster, as it is found by the utility routine, consists of 

three sets of detected tracks: 1r+'s, 1r-'s, and non-charged-pions (NCP). 

In order to combine pions from different events, we must have a storing 

mechanism. The. event being analyzed is called the current event, while events 

analyzed before the current event are referred to as previous events. For example, 

in the case of whole event mixing, we store the momenta of all the charged pions 

from a previous event, and we pair all the charged pions in the current event with 

all the stored pions. For the cluster mixing algorithm, we store "one third" of each 

cluster from a previous event: namely, from each cluster we store all the pions of 

one charge. For simplicity, we will use the term stored pions to refer to this set of 

1r+ 's or 1r- 's taken from a cluster of a previous event. 

The stored pions are sorted by two variables. The first is their multiplicity. 

We use clusters which have no more than ten pions of any one charge. Table 4.3. 
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shows that the 7r+ and 7r- multiplicity distributions within a cluster are well within 

these limits for all four data sets. The second variable is the order number of the 

cluster from which the stored pions were taken. Recall that the cluster finding 

routine labels the clusters in order of decreasing momentum. Thus the kinematics 

of a fourth cluster can be quite different from those of a first cluster .. Keeping track 

of both of these variables is necessary in order to produce a hybrid event which is 

geometrically equivalent to a real event. 

We make the following definitions for use in the cluster mixing algorithm: 

a) P+ is the vector sum of the three-momenta of the 1r+'s in the cluster; 

b) P- is the vector sum of the three-momenta of the 1r-'s in the cluster; 

c) Pc is the three-momentum of the cluster; 

d) Po= Pc- P+- P-· 

Note that p0 is the net three-momentum of all the NCP ("other") tracks in the 

cluster. 

With these comments and definitions in mind, we can now describe the 

cluster mixing algorithm and its hybrid event. For each cluster in the event 

1. select a set of stored pions which 

a) has a multiplicity equal to the average of the 1r+ and 7r- multiplicities 

in the cluster, and 

b) was taken from a cluster of the same order number as the cluster being 

analyzed; 

2. find the vector sum Pc of the three-momenta of these stored pions; 

3. find a three-dimensional rotation U which takes the p8 direction into the p0 

direction. This rotation is not unique. We define U to be the rotation by 0 

about the axis r' where 

cos 0 =Po· Ps, 

r =Po X Ps, 

Po= Ups. 



Table 4.3 Distributions of 1r+ and 11"- multiplicities within a cluster for the 

four data sets. The entries are percentages of clusters with the given (N1r+, N"-) 

multiplicity. 

N11'"+ % clusters with ( N 1r+, N 11'"-) 

N11'"_ 1 2 3 4 5 

1 27 4 <1 

SPEAR Jj'f/J 2 27 22 5 <1 

3 4 5 2 <1 

4 <1 <1 <1 <1 

1 19 6 <1 

SPEAR qq 2 20 21 8 1 

3 6 8 4 <1 

4 <1 1 <1 <1 

1 22 6 <1 

PEP 11 2 22 22 6 <1 

3 6 6 3 <1 

4 <1 <1 <1 <1 

1 16 6 2 <1 

PEP qq 2 16 15 8 2 <1 

3 6 8 5 2 <1 

4 2 2 2 1 <1 

5 <1 <1 <1 <1 <1 
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4. Apply U to all the three-momenta of the stored pions, and call these the 

rotated stored pions. In a sense, the effect of U is to allign the set of stored 

pions with the set of NCP tracks in the cluster using the net three-momenta 

vectors as a guide. 

5. Now treat the rotated stored pions, 1rmix, just like the 1r+'s and 1r-'s in 
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the cluster. Make pairs by combining a 1r± with a 1rmix. Make triplets by 

combining a 1r+, a 1r-, and a 1rmix. 

In Table 4.4 we show the total number of pairs and triplets made using the 

mixed cluster algorithm. Figure 4.6 shows how well the cluster mixing reference 

sample reproduces the kinematical phase space of the unlike charged pairs. The 

main advantage of using the mixed cluster reference sample in pair analysis is that 

it is free of resonances such as the K 0 and the p0 , that are evident in the unlike 

pairs; This is helpful in fitting the ratio of like to reference pairs. Using mixed 

cluster pairs, the fit can include regions of Q2 which must be avoided because of 

resonances when using unlike pairs. The results of fits with both reference samples 

are presented in chapter six. 

Table 4.4 
algorithm. 

The total number of pairs and triplets made using the mixed cluster 

Data Set N1r±1rmix N1r±1rT1rmix 

SPEAR Jft/J 1,201,000 783,000 

SPEAR qq 549,000 372,000 

PEP TY 236,000 136,000 

PEP qq 742,000 1,863,000 

4.4 MONTE CARLO SAMPLE 

With the two requirements for a good reference sample in mind, Monte Carlo 

data seems like an excellent candidate for an alternate reference sample. However, 

the mechanics of current event generators introduce some difficulties. 

Monte Carlo event generators are adjusted to reproduce detected data by way 

of a given set of built-in parameters. Typically, these parameters affect only single 

particle production, which is reflected in distributions of particle momenta, fraction 

of particles containing strange, charmed and bottom quarks, particle multiplicity, 
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and event sphericity and thrust, among others. Distributions involving two or more 

particles, such as the Q2 distribution for pion pairs and the analogous distribution 

for pion triplets, cannot be adjusted directly to reproduce detected data. They are 

only affected indirectly by changes in the single particle distributions. 

Since pair distributions are not adjusted in the event generator, it is more 

difficult to tune the kinematic phase space of Monte Carlo pairs to the one of 

detected pairs. Therefore we have not used a Monte Carlo generated data set as 

a reference sample. However, we expect that the ratio of like to unlike pairs Rmc 

in the Monte Carlo behaves the same way as the ratio R in detected data, since 

kinematic phase space cancels out in the ratio. Our Monte Carlo data set, MC PEP 

qq, correctly models both the resonances and the long range energy correlations in 

the PEP qq data set. In section 4.5.1 we describe how the ratio R/ Rmc is used to 

correct for these effects in the PEP qq data set, and in section 4.6.2 Rmc is used to 

investigate the tracking performance of the MARK II drift chamber. 

4.5 CORRECTIONS: DUE TO NATURE OF STUDY AND REFERENCE SAMPLES 

When we described the study and reference samples, we noted that several 

mechanisms can result in an observed Bose-Einstein enhancement that is less than 

maximum. In this section we discuss the mechanisms which are inherent in our 

particular study and reference samples, while the next section covers mechanisms 

which arise from detector performance. 

4.5.1 Resonances and Long Range Correlations 

The two effects we discuss in this section influence the ratio R of like to unlike 

pairs in the region of Q2 away from the Bose-Einstein enhancement. Although they 

do not distort the Bose-Einstein enhancement itself, they affect the overall fit toR. 

We saw in section 4.3.1 that the unlike charged pairs show no evidence of 

resonances in the region of Q2 < 0.15 GeV 2 • In the fit toR (section 4.7), we exclude 

only the regions of Q2 near K 0 and p0 • This works well in SPEAR data, where 

the K 0 is narrow and just on the edge of the Bose-Einstein enhancement region. 
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However, in PEP data the K 0 is much wider and may overlap the Bose-Einstein 

enhancement region significantly enough to affect the fit. Figure 4. 7 shows the 

ratio R of like to unlike charged pion pairs in the PEP qq data set, the K 0 and p0 

resonances, and the slow rise in R as a function of Q2 • The rise in R is due to a 

combination of long range correlations38 which are the result of charge and energy 

conservation laws. 

The MC PEP qq data set introduced in chapter three has been· tuned to 

reproduce the resonances and jet structure present in PEP qq data. Forming the 

ratio Rmc of like to unlike charged pion pairs in the Monte Carlo, we see in Fig. 4.8 

the same resonances and long range correlations observed in the PEP qq data. 

Dividing R by Rmc, as in Fig. 4.9, we remove the effects of resonances in the 

reference sample and of the long range correlations in Q 2 • As noted in section 

4.6.2, R/ Rmc also divides out any asymmetry in the detection of like versus unlike 

charged pairs. 

The influence of the K 0 and the p0 on the fit to R is checked in all data 

sets by comparing the fit using the unlike pair reference sample to the fit using the 

mixed cluster reference sample. 

Long range correlations in Q2 are present in all four data sets. We take into 

account this slow variation with Q2 by fitting the ratio R to the expression 

where 8 is a measure of the overall slope of R. As we will see in chapter six, in the 

region 0.0 GeV2 < Q2 < 1.0 GeV2 over which we fit R, 8 is close to zero for all 

data sets except the PEP qq data. 

4.5.2 Final State Strong Interaction Effects 

The hadronization process is governed by the strong interaction, which con­

tinues to act between the pions immediately after production until they get far 

enough away from each other to be out of its range. No analytic solution exists 

which describes how the pion wavefunctions are modified by this interaction. 
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Figure 4.1 Ratio of like to unlike charged pairs in the PEP qq data showing the Bose-Einstein 

enhancement at small Q2, the K 0 and p0 resonances, and the slow rise with Q2 ascribed to long 

range correlations. 
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Figure 4.9 Ratio of R for the PEP qq data set divided by Rmc for the Monte Carlo data. Note 
that there is no evidence of resonances or long range correlations in Q2 in this ratio R/ Rmc· 
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However, an estimate has been made recently by Suzuki35 of the effect 

of the final state strong interaction on the observed Bose-Einstein enhancement. 

In e+ e- collisions, the Bose-Einstein enhancement is confined to the region of 

Q2 < 0.2 GeV2 • Making the assumption that p-wave 7r+1r0 scattering can be 

neglected and s-wave scattering is dominant. in this region of Q2 , and using the 

measured values of the s-wave scattering phase shifts in the channel of isospin 2, 

he estimates that the observed Bose-Einstein enhancement is suppressed 20~~3% 
by the presence of the strong interaction. The errors are calculated from the un­

certainties in the parameterization of the energy dependence of the phase shifts. 

Suzuki also points out that the separation between production dynamics and final 

state strong interactions is ambiguous, and improvement of the estimate above will 

require a better understanding of the production process. 

This calculation indicates that an uncorrected measurement underestimates 

the true Bose-Einstein enhancement. Since the estimate of the effect of the strong 

interaction in the data is less precise than the corrections for the Coulomb interac­

tion and for pion misidentification, we do not attempt to correct systematically for 

the effects of the final state strong interaction as we do for the latter two. 

4.5.3 Final State Coulomb Force Effects 

Once produced pions are out of the range of the final state strong force, 

the dominant interaction is Coulomb repulsion or attraction. In heavy ion collision 

experiments, a produced pion is affected by the Coulomb potentials of both the 

other produced pions and the nuclear fragments in an event. In e+ e- collisions, 

the charge of the remaining hadrons is relatively small. Therefore we expect that 

we can neglect the Coulomb interaction between a pion and the remaining hadrons 

compared to the Coulomb force between the two pions in a pair. 

Two like charged pions experience Coulomb repulsion, depopulating like pair 

phase space at small relative momenta. The standard derivation of the correction 

factor for this effect for like charged pairs can be found in the work of Gyulassy and 

Kauffmann34• The like charged pion pair inclusive distribution in the presence of 

. . 
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the pair Coulomb interaction is given by 

where Pn(kt, k2) is the like pair inclusive distribution in the absence of the Coulomb 

final state interaction, and 

G ( ) 27r17 
l 11 = exp(21r17) - 1' 

Here, a = 1/137, and k1 and k2 are pion four-momenta in the pair center of mass 

frame, so that 
am1r 

11 = VQ2" 
Gl(11) is the modulus square of the nonrelativistic Coulomb wavefunction at the 

origin, also known as the Gamow factor for like charged pairs. The correction is 

small except for small Q2 , as shown in Fig. 4.10. 

Two unlike charged pions experience Coulomb attraction, producing extra 

unlike pairs in the phase space region of small relative momenta. The correction fac­

tor for this effect follows from the generalized Gamow factor derived by Davydov39 

(section 100, p.403): 

G( €) _ 21r1 €1 
- I exp(27r€) - 11' 

where 
e- { am1r/Vfi2 = 11, 

-am1r/VCJ2 = -17, 

for repulsive forces; 

for attractive forces. 

The unlike charged pion pair inclusive distribution in the presence of the pa1r 

Coulomb interaction is then given by 

where Pn(kl, k2) is the like pair inclusive distribution in the absence of the Coulomb 

final state interaction, and 

G ( ) 27r17 
u 

11 = 1- exp(-21r17) · 
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Figure 4.10 The Gamow factors G,('7) {dot-dash line) and Gu('7) {dashed line). In order to get 
the ratio R of like to unlike charged pairs in the absence of the Coulomb final state interaction, we 

in effect multiply the observed R by the factor GufG, {solid line). 

. . 
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Gu(?J) is shown in Fig. 4.10. 

The correction for Coulomb effects is done by weighting each like pair by 

1/Gz (17) and each unlike pair by 1/Gu(?J ). The ratio of the corrected like to corrected 

unlike pairs then represents R in the absence of the Coulomb interaction. There is 

no Coulomb interaction between the pions in a mixed cluster pair, because they are 

taken from different events. Thus when we form the ratio of like to mixed cluster 

pairs, we correct only for the Coulomb repulsion in the like pairs. 

4.6 CORRECTIONS: DUE TO DETECTOR PERFORMANCE 

In this section we discuss how non-ideal detector performance can result in 

the observation of a less than maximum Bose-Einstein enhancement. 

4.6.1 Pion Misidentification 

Recall that pions are defined as those particles which remain after all well 

identified electrons, muons, kaons, and protons are removed. In the Monte Carlo 

section of the last chapter we noted that the performance of detector components 

used in particle identification did not change significantly in the move from SPEAR 

to PEP. Hence we can use the MC PEP qq data set to measure the fraction of 

misidentified pions in all the data sets. 

Pion misidentification is a function of momentum, so to get the correct frac­

tion of misidentified pions in a data sample, the Monte Carlo data sample must have 

the same pion momentum distribution as the detected data. Figure 4.11 shows the 

pion momentum distributions (data points) in the four data sets. The MC PEP 

qq data reproduces the PEP qq data momentum distribution. In order to mimic 

the momentum distributions of the other data sets, we start with the MC PEP 

qq momentum distribution and "filter" it into the momentum distribution of the 

required shape. The filtering process involves first dividing the pion momentum 

distribution from the desired data set by the one from the PEP qq data set. Then 

event by event, the momenta of the pions in the MC PEP qq data set are kept or 

discarded by a random dice roll weighted by this ratio. Figure 4.11 shows the pion 
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momentum distributions (histogram) generated from the MC PEP qq data set in 

this way. The resulting data sets are called MC SPEAR J /1/J, MC SPEAR qq, and 

MC PEP 'Y'Y, and are used in this section to investigate the fraction of misidentified 

pions and pion pairs. In chapter five, we use the same Monte Carlo data sets to 

calculate the fraction of misidentified pion triplets. 

Close inspection of Fig. 4.11 reveals a kink in the distribution at p = 1 GeV /c. 

This is the result of the pion identification algorithm. Recall that we use TOF to 

separate pions from kaons below 1 GeVjc, but that above 1 GeVfc we do not 

attempt to identify and remove kaons. Thus above 1 GeV fc, kaon contamination 

of the pion sample jumps slightly and causes the observed discontinuity in the 

distribution of pion momenta. It turns out that this kink is small enough to be 

unimportant in the analysis that follows. 

The fraction of Monte Carlo generated, or "true" ptons 1ft in the set of all 

particles identified as pions 1r is a function of momentum, as shown in Fig. 4.12. 

The fraction of correctly identified pions translates into a lower fraction of correctly 

identified pion pairs and a lower still fraction of correctly identified pion triplets. 

This is illustrated for like charged and unlike charged pairs in Fig. 4.13 and Fig. 4.14, 

respectively. These figures show the fraction of 1ft 1ft in the set of all1r1r as a function 

of Q2 • 

We can see that the fraction of correctly identified pairs is not a strong 

function of Q 2 or of the charge of the pair. Therefore we average over these variables 

and use the average values, listed in Table 4.5, to correct each like charged pair 

distribution in Q2. 

Like charged pairs which are not 7rt1f't pairs exhibit no Bose-Einstein en­

hancement, so we use the reference sample as a model for their distribution in Q2 • 

Since Monte Carlo does not model the Coulomb interaction between its produced 

pions, the corrections listed in Table 4.5 must be applied to data· distributions only 

after the latter have been corrected for the Coulomb interaction, if necessary. Thus 

the like and unlike pair distributions used in the pion misidentification correction 

below are distributions which have been corrected for Coulomb effects. The mixed 
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Figure 4.11 Pion momentum distributions (data points) in the four data sets and the momentum 

distributions (histogram) produced by the filtering process applied to the MC PEP qq data set. The 

filtering process and the kink in the distributions at 1 GeV / c are discussed in the text. 
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Figure 4.12 A study done with Monte Carlo data showing the fraction T,.. of correctly identified 

pions 1rt in the set of all particles identified as pions 1r. The fraction is a function of pion three­
momentum. 
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A study done with Monte Carlo data showing the fraction T,.,.. of like charged pairs 

of correctly identified pions 11"t11"t in the set of like charged pairs of particles identified as pions 11'11'. 

The fraction is shown as a function of Q2 • 
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A study done with Monte Carlo data showing the fraction T,.,. of unlike charged 

pairs of correctly identified pions 1rt1rt in _the set of unlike charged pairs of particles identified as 

pions 1r1r. The fraction is shown as a function of Q2 • 



Table 4.5 The fractions plotted in Fig. 4.12, Fig. 4.13, and Fig. 4.14 are aver­

aged over the charge combination and over the variable (three-momentum and Q2 , 

respectively), and the average values are listed here. 

Monte Carlo Data Set T1r = ( ¥) T. =(J21.) 1r1r 1r1r 

MC SPEAR J j.,P 0.90 0.81 

MC SPEAR qq 0.90 0.81 

MC PEP 11 0.89 0.80 

MC PEP qq 0.84 0.72 
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cluster reference pairs require no Coulomb correction. 

The pion misidentification correction (PMC) is done bin by bin on the like 

pair Q2 distributions as follows: 

where 

B corr B nlike B (1 T. ) 
like = like - -- ref - 1r1r ' 

nref 

- Eft£: is the content of the bin in the PMC-corrected like pair Q2 

distribution; 

- Btike is the content of the bin in the PMC-uncorrected like pair Q2 

distribution; 

- Bref is the content of the bin in the (PMC-uncorrected) reference pair 

Q2 distribution; 

- nlike is the sum of the bins in the normalizing region of the like pair 

Q2 distribution; 

- nref is the sum of the bins in the normalizing region of the reference 

pair Q2 distribution; 

- T1r1r is the fraction of 7rt7rt pairs in the set of all 7r7r pairs, listed in 

Table 4.5. 

The normalizing region referred to in the definition of ntike and nref is a region of Q2 
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where the like pair distribution and the unlike pair distribution follow each other's 

shape, namely the like and reference pairs exhibit the same phase space. This allows 

us to normalize the like distribution to the unlike one, and to subtract the correct 

absolute number of pairs from the like pair distribution. The normalizing region 

for the pair Q2 distribution is taken as 0.68 GeV 2 to 0.98 GeV2 • Figure 4.4 shows 

how closely the like and unlike pair distributions follow each other in this region. 

The corresponding pion misidentification correction for the unlike pair Q2 

distribution is given by 

B corr- B nrefB (1 rp ) - B rp ref - ref- -- ref - ..L7r7r - ref..L7r7r' 
nref . 

where all the quantities are defined above except 

- B~~Y is the content of the bin in the PMC-corrected reference pair 

Q2 distribution. 

Because the correction only multiplies the reference sample distribution by a con­

stant factor, we do not apply it to the reference pairs. As we will see later, the fitting 

procedure takes into account any correction to the normalization of the study sam­

ple to the reference sample. 

4.6.2 Tracking 

The drift chamber tracking performance affects this analysis in three ways. 

First, the two track resolution limit dictates how small a Q2 and thus how large a 

parameter r (Eqn. 1.3) we can resolve. Second, there is the question of how much 

the Bose-Einstein enhancement is broadened by the finite momentum resolution of 

the drift chamber. Finally, any asymmetry in the detection of like versus unlike 

pairs with small pair angles could influence the ratio R in the region of small Q2 

and hence the measurement of the Bose-Einstein enhancement. 

Recall that we have no Monte Carlo data which simulates drift chamber 

tracking at SPEAR. The following discussion is based on studies done with the MC 

PEP qq data set, namely Monte Carlo simulation of the detector at PEP. We have 
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seen in Fig. 4.11 that the distribution of pion momenta in the MC PEP qq data set 

follows closely the distribution found in PEP qq data. In Fig. 4.15 we show that the 

the MC PEP qq data also reproduces the distribution of the angle between pions 

in an unlike charged pair. Since the quantity of interest, Q2 , is basically a function 

of pion three momenta and of the angle between the pions in a pair, the MC PEP 

qq data set is therefore a useful model of the systematic tracking effects in the PEP 

qq data. 

Figure 4.16 is a plot of the difference between VQ2 calculated using the 

Monte Carlo generated momenta and VQ2 calculated using the reconstructed 

Monte Carlo tracks (see section 3.4), referred to as Qgen and Qdet' respectively. 

This distribution has a full width at half maximum of ~Q = 0.028 GeV. We 

estimate the maximum parameter r that can be observed as 

rmoz = he~= 5.9 fm. 

This is well outside the range of 1 fm, which is the outer limit of the published values 

found in e+ e- collision experi~ents. In order to estimate Tmax in the SPEAR data, 

we note that average event multiplicity at SPEAR was less than at PEP, making 

it easier for the tracking routine to find a pair at SPEAR than in the crowded jet 

environment at PEP. However, the tracking routine at SPEAR was less efficient 

than the one used at PEP. The two effects compete, so we make a rough estimate 

that the value of Tmax for the SPEAR data is nearly the same as that found for the 

PEP data. 

One of the major systematic errors in this analysis is the broadening of 

the Bose-Einstein enhancement due to the momentum resolution. To study this 

effect alone, without introducing complications due to pion misidentification, we 

consider particles which are both generated and detected pions. The Bose-Einstein 

enhancement is simulated in the Monte Carlo data by weighting each like charged 

pion pair by Eqn. 1.3 with given values for parameters a and r. We use a = 1.00 

and r = 1.00 fm. Distributions in Q~en and Q~et are made for like, weighted like, 
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Figure 4.15 Distribution of the angle between pions in an unlike charged pair in the PEP qq 
data (points) and in the MC PEP qq data set {histogram). 
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Figure 4.16 Distribution of (Q11en- Qdet) for the MC PEP qq data set. 
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and unlike pion pairs. Two ratios are formed for both Q~en and Q~et: Rmc of like to 

unlike pairs and Rwt of weighted like to unlike pairs. As discussed in section 4.5.1, 

taking the ratio of Rwt / Rmc removes the evidence of resonances in the reference 

sample as well as the long range correlations evident in PEP qq and MC PEP qq 

data. The ratio Rwt/ Rmc is then fitted to Eqn. 1.3, for both Q~en and Q~et' and 

the results of the fit are shown in Table 4.6. Based on these numbers, we assign a 

systematic error of 5% in o: and 3% in r due to the momentum resolution. These 

values apply to the PEP data, since the Monte Carlo uses PEP detector simulation. 

From chapter two we recall that the momentum resolution at SPEAR was slightly 

better than at PEP, so we take the PEP systematic errors as upper limits for the 

data at SPEAR. 

Table 4.6 This table shows how much the Bose-Einstein enhancement is broad-

ened by the momentum resolution of the drift chamber. The first row shows the 

input values of a and r used to simulate the Bose-Einstein enhancement in the 

Monte Carlo (see text). The second row is the result of the fit to Eqn. 1.3 in Q~en• 

while the third row is the result of the fit in Qaet· 

0: r (fm) 

input values 1.00 1.00 

fit to (1 + o:exp(-r2 Q~en)) 0.99 0.99 

fit to (1 + o: exp( -r2 Q~et)) 0.95 0.97 

The asymmetry in the detection of like versus unlike charged pairs at small 

angles can be the result of an underpopulation of like charged pairs, or an over­

population of unlike charged pairs, or a combination of the two effects. The under­

population of like charged pairs is due to the fact that the drift chamber resolves 

like charged pairs with small pair angles with less efficiency than unlike charged 

pairs with small pair angles. Two like charged tracks will curl in the same direction 

under the influence of the magnetic field in the drift chamber. If their momenta are 

close to each other, and the pair angle is small, the two tracks will overlap. Two 
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unlike charged tracks will curl in opposite directions, and even if their momenta 

are nearly the same the tracking program will still be able to separate them. The 

overpopulation of unlike charged pairs at small angles is the result of "/ conversion 

products: e+e- misidentified as an unlike charged pion pair. Most of these con­

version pairs are removed by a cut on very small pair angles (see section 3.6), but 

a residual contamination remains. The combination of these effects can be seen in 

Fig. 4.8, which shows the ratio Rmc of like to unlike pion pairs in the MC PEP qq 

data set. Note that the asymmetry seems to be confined to a dip in the first bin. 
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Chapter 5. PION TRIPLETS 

5.1 GGLP EFFECT IN PION TRIPLETS 

We began chapter one by stating that the wave function of a set of N indistin­

guishable pions must be symmetric on the interchange of any two of those pions. It 

follows that the wave function is always symmetric on the interchange of any three 

pions, so that like charged pion triplets are expected to exhibit a Bose-Einstein 

enhancement analogous to the GGLP effect in pairs. 

What can we learn from the Bose-Einstein correlation in triplets? In order 

to answer this question, we first consider an elementary derivation and a common 

parameterization of the GGLP effect in triplets. 

5.1.1 Elementary Derivation 

Let us consider a simple derivation analogous to the one given for pairs in 

section 1.2.1. Given N point sources, the probability of producing three pions, of 

momenta k1, k2, and kg, is given by 

N 
P(kb k2, kg) ex: L aiajakai a:na~e(ikl·(ri-rz)) e(ik2·(r;-rm)) e(ik3·(rk-rn))' 

i,j,k 
l,m,n 

and the correlation function for pion triplets is given by the ratio 

The analogous quantity in optics is referred to as a third order correlation function. 

If the N source amplitudes are chaotic with respect to each other, terms 

in the numerator with (i =/= l, m, n; j =f. l, m, n; k =/= l, m, n) average out to zero. 
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Terms in the denominator with (i =/:. l; j =/:. m; k =/:. n) also average out to zero. The 

numerator reduces to three sets of terms: 

1. i = l, j = m, k = n 

All possible single pion production probabilities: 

Since the denominator also reduces to this expression, the ratio of this 

numerator term to the denominator is equal to one. 

2. (i = l,j = n, k = m) + (i = n,j = m, k = l) + (i = m,j = l, k = n) 

The sum of all possible production probabilities for one pion plus one 

pair of pions: 

N N 
( ~ lail2) ( ?= !ai12!ak!2e(i(k2-k3)·(rj-rk))) 

' J=n 
k=m 

+ ( t lak I') ( t Ia; l'la; I' e( i(kt -k2)·(r ;-r;))). 

k 1=m 
i=l 

Divided by the denominator, this term becomes a sum of the familiar 

pair Bose-Einstein enhancements for the three pairs in the triplet. 

3. (i = m,j = n, k = l) + (i = n,j = l, k = m) 

The sum of all possible production probabilities for a triplet of pions: 

N ( ?= !ai 121aj 121akl2 e(i(kl-k2)·ri) e(i(k2-k3)·ri) e(i(k3-kd ·rk) 

1=m 
j=n 
k=l 
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+ t Ia; 1•1a; 1•1ak 12 e< -i(kt -ka) ., ;) e< -i(ka-k•) ·••) e< -i(k.-kd ., ; ) ) . 

i=n 
j=l 

k=m 

If we relabel the indices in the ·second term as i ---+ i, i ---+ k, and 

k ---+ i, then the sum becomes 

This term is the pure triplet Bose-Einstein enhancement. 

In the limit of a continuous source distribution, N---+ oo, the triplet correla­

tion function becomes Eqn. 5.1 

where p is the Fourier transform of the source distribution, and a and J.L account 

for a partially coherent source as in section 1.2.3: 

fully chaotic source : a = 1, J.L = 1 

fully coherent source: a= 0, J.L = 0 

partially coherent source: 0 < a < 1, 0 < J.L < 1. 

We can see from Eqn. 5.1 that the Bose-Einstein enhancement in pion triplets 

consists of contributions from each of the three pairs in the triplet plus a purely 

triplet enhancement term. 

5.1.2 Parameterization 

To get an idea of what the triplet enhancement looks like, we substitute the 

parameterization for p used in pair analysis 
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and 

where 

Q~j = -(ki- k;). 

We cannot calculate the product (p(k1 - k2)p(k2 - k3)p(k3 - kl)) in general, but 

to the extent that phase factors can be neglected, R31r becomes 

2Q2 2Q2 2Q2 1 2Q2 
R31r = 1 + o:e-r 12 + o:e-r 23 + o:e-r 31 + 2J.Le-"'ir 371", 

where 

Q 2 - Q2 Q2 Q2 
31f' = 12 + 23 + 31· 

Note that the r in this equation is the same r as in the pair parameterization, and 

that Q~1f' is analogous to Q~ in the sense that 

where M31r is the invariant mass of the three pions. 

This triplet parameterization implies that the proper way to observe the 

Bose-Einstein enhancement in triplets is to consider the three-dimensional mani­

fold (Q~2 , Q~3 , Q~ 1 ). In analogy to the pair analysis, we should cumulate a three 

dimensional histogram in these variables for both the study sample and the ref­

erence sample, and then fit the ratio to the parameterization above. In practice, 

however, low statistics make this method impractical. 

In analogy to the pion pair analysis, the GGLP effect in triplets is parameterized40 

as Eqn. 5.2 

(5.2) 

In this case we need to cumulate one-dimensional histograms in Q~1f' for the study 

and reference samples. The strength of the purely triplet enhancement J1. can be 

extracted in the limit of small pair Q~j 's, 
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The triplet variable r31r is related to the pair variable r in a complicated way, but 

we can put limits on it if we assume that Q~1r ~ 3Q~j in the region of interest (small 

Q~;)· In such a case, 

Substituting the expression for o:31r in the limit of small Q;j, we get 

so that 

. e '' 

{ 

-r2Q~. 

-3ra2 Q~. 
e ~r ' 3 ~ to 

3 2 2 -...-r Q .. 
e ~ '' 

r~1r ~ { ::/3 
r 2/2 

With these relationships in mind, there are two things we can learn from the 

GGLP effect in triplets. First, we must check whether it makes sense to use the 

pair parameterization for pin triplet analysis. To do this, we compare the measured 

values of o:31r and r31r with the measured values of o: and r to see if the measurements 

are consistent within the relationships given above. If they are consistent, we can 

derive the purely triplet enhancement J-t from the measured values of o: and o:31r· 

5. 2 DATA ANALYSIS FOR PION TRIPLETS 

This section contains details specific to the analysis of pion triplets. It follows 

closely the analysis for pairs described in chapter four. 

5.2.1 Study and Reference Samples 

The general comments made for the pair study sample in section 4.2 and the 

pair reference sample in section 4.3 apply equally well to triplets. As in the case of 

pairs, both the triplet study sample and the triplet reference sample are subject to 
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the effects of kinematical phase space restrictions, final state dynamics, and detector 

performance. These are discussed in more detail in section 5.2. Figure 5.1 shows 

the distribution of like charged triplets in Q~""· 

The selection of a triplet reference sample poses a problem, since we have no 

way of creating a triplet of unlike charged pions out of 1r+'s and 1r-'s alone. The 

only natural reference sample available consists of 7r±7r±7r=F triplets, which contain 

one like charged and therefore Bose-Einstein correlated pair. We will refer to this 

as the ± ± =f reference sample. The ratio of the triplet study sample to the ± ± =f 

reference sample would not exhibit the full Bose-Einstein enhancement for triplets. 

Instead, we expect to see an enhancement on the order of 

lim R31r ~ 1 + 3o: + 2J.t 

Q~--o R 1 + o: 
'3 

Figure 5.2 shows the distribution of 7r±7r±7r=F triplets in Q~""· 

An alternative reference sample can be created using the cluster mixing rou­

tine. We have shown in section 4.3.4 (Fig. 4.6) that pairs made of one pion from 

the analysis event and one pion from a stored cluster have the same kinematical 

phase space as unlike charged pairs from a single event. Thus if we make a triplet 

consisting of one pion from a stored cluster and an unlike charged pair from the 

analysis event, we have in effect a triplet of unlike charged pions. We will call 

this the mixed cluster reference sample. The ratio of the triplet study sample to 

the cluster mixed reference sample is therefore expected to exhibit the full triplet 

Bose-Einstein enhancement. 

5.2.2 Final State Coulomb Force Effects 

In section 4.5.3 we discussed the Gamow factor, which corrects for the final 

state Coulomb interaction between the two charged pions in a pair. The exten­

sion of this correction to charged pion triplets was derived by Liu41 . If we label 

the three pions in a triplet as 1, 2, and 3, then the charged triplet distribution 

Pc(kb k2, k3) is related to the same distribution in the absence of the Coulomb 
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where 

( ) { 
Gt("'ij), 

a eij = 
Gu('TJij), 

for a like charged pair; 

for an unlike charged pair. 

This result describes to first order in a the Coulomb interaction within the three 

pairs of the pion triplet. 

Let us consider the specific categories of charged triplets which we deal with. 

The like charged triplet contains three like charged pairs, so the Gamow correction 

is given by 

The ± ± =F reference sample triplet contains one like charged pair and two unlike 

charged pairs, so this reference sample is corrected using 

Finally, the mixed cluster reference sample triplet contains one unlike charged pair 

and two effectively neutral pairs, so this reference sample is corrected with 

In analogy to the procedure in pairs, the Coulomb correction for triplets is done by 

weighting each like charged triplet with 1/C17 each ± ± =F triplet with 1/C2 , and 

each mixed cluster reference triplet with 1/C3 • 

5.2.3 Pion Misidentification 

Using the MC SPEAR J /1/J, MC SPEAR qq, MC PEP //, and MC PEP 

qq data sets described in section 4.6.1, we calculate the fraction of triplets which 

contain one or more misidentified pions. Figure 5.3 and Fig. 5.4 show the fraction 
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of 7rt7rt7rt in the set of all 7r7r7r as a function of Q~11'" for like charged triplets and for 

± ± =f triplets, respectively. Within statistics, there is no significant variation of this 

fraction with the charge of the triplet or with Q§11'", so we average the fraction over 

the charge of the triplet and over Q~1r· The average values are listed in Table 5.1. 

However, these averages alone are not enough to correct for pion misidentification 

in triplets. 

Recall from the example of pair analysis that correcting for pion misidentifi­

cation requires us to model the behavior of the contaminating triplets in Q§11'". Let 

us use 1r 1 to denote a particle identified as a pion but which is not a true pion. One 

part of the contaminating set (1r1r1r -7rt7rt7rt) consists of 7rt7rt7rl, which behaves like 

the ± ± =f reference sample. The other part of the c~ntaminating set consists of 

7rt7r 11r 1 and 1r 11r 11r 1' both of which behave like the mixed cluster reference sample. 

The relative contributions of all these contaminants are listed in Table 5.1. 

We can now proceed to correct for pion misidentification in like charged 

triplets by using these fractions and both ± ± =f and mixed cluster reference sample 

distributions. Note that the ± ± =f reference sample we use below is also subject 

to contamination by 7rt7r 11r 1 and 1r 11r 11r 1' which lowers the observed Bose-Einstein 

enhancement from the like pair in the reference triplet. However, this is a second 

order effect in our correction, and we neglect it. Also, as in the case of pairs, all 

the distributions used in the pion misidentification correction for triplets have been 

first corrected for appropriate Coulomb interactions. 

Analogous to pairs, the pion misidentification correction (PMC) is done bin 

by bin on like triplet Q~11'" distributions as follows: 

where 

B corr B nlike B F nlike B ( D F ) 
like = like- ±±=t= 1- -- mix .c2 + 3 ' 

n±±=t= nmix 

- Bfi0k: is the content of the bin in the PMC-corrected like triplet Q§11'" 

distribution; 

- Btike is the content of the bin in the PMC-uncorrected like triplet 
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Table 5.1 The fractions plotted in Fig. 5.3 and Fig. 5.4 are averaged over the 

charge combination and over Q~.,., and the average values are listed in the first 

column. The second, third, and fourth columns contain the same averages for three 

kinds of contaminating triplets: 1rt 7rt 1r 1, 7rt 1r 1 1r 1, and 1r 1 1r 1 1r 1, respectively. 

Monte Carlo Data Set T7r7r1r = Fl = F2 Fg-

( 7rt7rt7rt) 
7r7r7r 

( 7rt7rt7r t) 
7r7r7r 

( 7rt7r ['lr t) 
7r1r7r 

(7rt7rl7rt) 
7r7r7r 

MC SPEAR Jjtf; 0.73 0.24 0.02 < 0.01 

MC SPEAR qq 0.72 0.25 0.02 < 0.01 

MC PEP 11 0.71 0.26 0.02 < 0.01 

MC PEP qq 0.64 0.30 0.05 < 0.01 

Q~'lr distribution; 
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- B±±=F is the content of the bin in the (PMC-uncorrected) ± ± =f 

reference triplet Q~'lr distribution; 

- Bmix is the content of the bin in the (PMC-uncorrected) mixed cluster 

reference triplet Q~'lr distribution; 

nlike is the sum of the content of the bins in the normalizing regwn 

of the like triplet Q~7r distribution; 

- n±±=F is the sum of the content of the bins in the normalizing region 

of the ± ± =f reference triplet Q~'lr distribution; 

- nmix is the sum of the content of the bins in the normalizing region 

of the mixed cluster reference triplet Q~'lr distribution; 

- F1 is the fraction of 1ft1ft1f 1 triplets in the set of all 7r7f7f triplets, listed 

in Table 5.1; 

- F2 is the fraction of 7ft7f 11r 1 triplets in the set of all 7f7f7f triplets, listed 

in Table 5.1; 

- Fg is the fraction of 1r 11r 11r 1 triplets in the set of all 7f7f7f triplets, 

listed in Table 5.1. 

The normalizing region referred to above is used here the same way as it 
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was used in section 4.6.1 for the PMC-correction in pairs. We take 0.50 GeV2 to 

1.00 GeV 2 as the normalizing region for the triplet Q~11" distribution. 

5.2.4 Tracking 

Drift chamber tracking performance affects triplet analysis much the same 

way as it affects pair analysis. We follow section 4.6.2 and first consider the maxi­

mum value of the parameter r 311" that the detector can resolve. Figure 5.5 is a plot of 

the difference between jQf; calculated using Monte Carlo generated momenta and 

the same quantity calculated using the reconstructed tracks, referred to as Q31r gen 

and Q31r det, respectively. Then we estimate r31r max as 

T31r max= he 
ln2 

(.6.Q
3

11" )2 = 3.8 fm, 

where .6.Q31r = 0.05 GeV is the full width at half maximum of the distribution in 

Fig. 5.5. As in the case of pair analysis, r31r max is well outside the typical values 
'-' 

As we did for pairs, we use Monte Carlo data to study the broadening of the 

observed Bose-Einstein enhancement in triplets due to the momentum resolution. 

Again, we look only at particles which are both generated and detected as pions. 

The Bose-Einstein enhancement in triplets is simulated in Monte Carlo data by 

weighting each like charged pion triplet by Eqn. 5.2 with given values of a:31r and 

r31r· Although the maximum value of a:31r is expected to be close to 5.00, we use 

0:311" = 2.00 and r31r = 1.00 fm because these values are closer to the uncorrected 

values measured in our data. Distributions in Q~11" gen and Q~11" det are made for 

like, weighted like, and ± ± =F triplets. Two ratios are then made for both Q~11" gen 

and Q~11" det: R31r me of like to ± ± =F triplets, and R31r wt of weighted like to ± ± =F 

triplets. The ratio R31r wtf R31r me is then fitted to Eqn. 5.2, for both Q~11" gen and 

Q~11" det' and the results of the fit are shown in Table 5.2. Based on these numbers, 

we assign a systematic error of 13% in 0:311" and 3% in r31r due to the momentum 

resolution. 
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Table 5.2 This table shows how much the Bose-Einstein enhancement in triplets 

is broadened by the momentum resolution of the drift chamber. The first row shows 

the input values of as1r and r3 1r used to simulate the Bose-Einstein enhancement in 
the Monte Carlo (see text). The second row is the result of the fit to Eqn. 5.2 in 

Q~11' gen• while the third row is the result of the fit in Q~11' det· 

ag'~~" rg'~~" (fm) 

input values 2.00 1.00 

fit to (1 + ag'll" exp( -r~'ll"Q§'Il" gen)) 1.95 0.99 

fit to (1 + ag1l"exp(-r~1l"Q~11" det)) 1.77 0.97 
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Chapter 6. RESULTS AND DISCUSSION 

6.1 GGLP EFFECT IN PION PAIRS 

6.1.1 Calculation and Fitting of the Pair Correlation Function 

We make two corrections before taking any ratios: the Coulomb correction 

to the like charged pair distribution and to the unlike charged pair distribution 

(section 4.5.3), and the pion misidentification correction to the like charged pair 

distribution (section 4.6.1). Data that has been corrected using both of these is 

referred to as fully corrected data. 

Recall that the ratio R of study sample to reference sample is parameterized 

in chapter one as 
2q2 R = (1 +a e-r ). 

In section 4.5.1, we discussed how the modification 

takes into account the presence of long range correlations in the data. We introduce 

one more parameter, ""f, to reflect the overall normalization of the number of like 

charged pairs to the number of reference pairs. Then the complete expression we 

use in fitting R is 

All the fits are done by minimizing the x2 with the utility minimization routine 

MINUIT42 . For the ratio of like to unlike charged pairs, fitting R to the last 

expression above is done over the following regions of Q2 : 

0.00 GeV2 < Q2 < 0.12 GeV2 , 

0.20 GeV2 < Q2 < 0.36 GeV2 , 

0.68 GeV2 < Q2 < 1.00 GeV2 • 
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These regions avoid the K 0 and p0 resonances, and since they cover 57 bins with 

four parameters they constitute (57- 4 = 53) degrees of freedom. For the ratio of 

like charged pairs to mixed cluster pairs, fitting R is done over 

0.00 GeV2 < Q2 < 1.00 GeV 2 • 

In this case, there is no need to avoid any regions in Q2 , and the number of degrees 

of freedom is (99- 4 = 95). 

Recall that we make a cut on small pair angles (cos ()pair ::; 0.997) in both the 

study sample and the reference sample in order to remove products of "Y --+ e+ e­

which can be misidentified as an unlike charged pair. This cut falls well within 

the first bin of the Q2 distribution. We test its effect on the fitted parameters by 

comparing the results with and without the first bin included in the fitting region. 

The two results are the same within a fraction of the statistical error for all four 

data sets, so we keep the first bin in the fitting region. 

Some groups have tried other fitting expressions for R. A comparison of 

several fitting expressions is shown in Table 6.1 for the case of the uncorrected 

SPEAR J jtf; data. We find that the expression we have chosen ( (3) in the table ) 

describes the data as well if not better than the others listed. Expression (5), which 

involves two Gaussians, has recently4 been put forward as a better description of R 

in the region of small Q2 • In our fit to the SPEAR J /¢data, which has the highest 

statistics of the four data sets, the values of r1 and r2 come out the same regardless 

of the initial values given to MINUIT. Similarly, regardless of the initial values of 

a1 and a2, the sum of their fitted values always comes out to be the same as the 

value for a in expression (3). Thus we conclude that expression (5) gives the same 

information as expression (3). 

The results of the fits for the pair study sample are shown in Table 6.2 and 

Table 6.3 for no corrections and all corrections, respectively. The corresponding 

distributions and fitted curves are shown in Fig. 6.1, Fig. 6.2, Fig. 6.3, and Fig. 6.4. 

In the sections that follow, we discuss the results found using the unlike 

charged pair reference sample. The mixed cluster reference sample results are dis­

cussed in detail in section 6.1.6. 
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Table 6.1 The results of fitting to various expressions for R for uncorrected 

SPEAR J /1/J data. The errors shown are statistical. 

FITTING EXPRESSION FIT VALUES 

a= 0.70 ± 0.02 

(1) 
2Q2 1'(1 + ae-r ) r = 0.76 ± 0.02 fm 

no pre-normalization ')' = 0.58 ± 0.01 

(see section 6.1.2) x2/DOF =58/54 

a= 0.70 ± 0.02 

(2) 
2Q2 1'(1 + ae-r ) r = 0.76 ± 0.02 fm 

')' = 0.98 ± 0.01 

x2/DOF =58/54 

a = 0.69 ± 0.03 

r = 0.77 ± 0.02 fm 

(3) 1'(1 + 6Q2)(1 + ae-r
2
Q

2
) ')' = 0.99 ± 0.01 

0 = -0.01 ± 0.02 

x2 /DOF=51/53 

a = 1.19 ± 0.03 

(4) 1'(1 + ae-rQ) r = 1.11 ± 0.05 fm 

')' = 0.95 ± 0.01 

x2 1 DOF = 119/54 

0:1 = 0.51 ± 0.02 

a2 = 0.18 ± 0.01 

r1 = 0.76 ± 0.05 fm 

(5) 
2Q2 2Q2 

1'(1 + a1e-r1 + a2e-r2 ) r2 = 0.76 ± 0.13 fm 

')' = 0.98 ± 0.01 

0 = -0.01 ± 0.02 

x2 1 DOF =58/51 



Table 6.2 Fit results for the pion pair study sample with no corrections. The 

first error shown is statistical while the second is systematic. 

PION PAIRS IN PAIR ANALYSIS EVENTS (N, ~ 3) 

NO CORRECTIONS 

FIT TO: R = "'Y(l + 6Q2)(1 + aexp(-r2Q2)) 

parameter SPEAR Jjt/J SPEAR qq PEP "'Y""f PEP qq 

REFERENCE SAMPLE: UNLIKE CHARGED PAIRS 

Q 0.69 ± 0.03 ± 0.04 0.46 ± 0.04 ± 0.03 0.56 ± 0.05 ± 0.03 0.28 ± 0.02 ± 0.02 

,. (fm) 0.77 ± 0.02 ± 0.03 0.63 ± 0.06 ± 0.03 0.74 ± 0.07 ± 0.03 0.75 ± 0.03 ± 0.03 

6 (Gev-2) -0.01 ± 0.02 ± 0.01 0.07 ± 0.04 ± 0.01 -0.06 ± 0.04 ± 0.01 0.18 ± O.ot ± 0.02 

., 0.99 ± 0.01 ± O.ot 0.95 ± 0.03 ± O.ot 1.00 ± 0.03 ± O.Ql 0.95 ± O.Ql ± 0.01 

x2/DOF 57/53 65/53 48/53 89/53 

REFERENCE SAMPLE: MIXED CLUSTER PAIRS 

Q 0.69 ± 0.02 ± 0.04 0.55 ± 0.03 ± 0.03 0.89 ± 0.06 ± 0.05 0.27 ± 0.04 ± 0.02 

,. (fm) 0. 70 ± 0.02 ± 0.03 0. 72 ± 0.03 ± 0.03 0.99 ± 0.05 ± 0.04 0.99 ± 0.12 ± 0.04 

6 (GeV-2) 0.26 ± 0.03 ± 0.02 -0.01 ± 0.02 ± O.ot 0.09 ± 0.03 ± 0.01 0.13 ± 0.02 ± 0.01 

., 0.90 ± O.Ql ± O.Ql 0.98 ± 0.01 ± O.ot 0.97 ± O.Ql ± O.ot 0.97 ± O.Ql ± O.Dl 

x2/DOF 139/95 87/95 99/95 137/95 
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Table 6.3 Fit results for the pion pair study sample with both Coulomb and pion 

misidentification corrections. The first error shown is statistical while the second is 

systematic. 

PION PAIRS IN PAIR ANALYSIS EVENTS (Nw ~ 3) 

COULOMB AND PION MISIDENTIFICATION CORRECTIONS 

FIT TO: R = -y(1 + cSQ2)(1 + oexp(-r2Q2)) 

parameter SPEAR JN SPEAR qq PEP '"Y'"Y PEP qq 

REFERENCE SAMPLE: UNLIKE CHARGED PAIRS 

Q 1.00 ± 0.03 ± 0.05 0.66 ± 0.04 ± 0.04 0.87 ± 0.07 ± 0.05 0.50 ± 0.04 ± 0.03 

r (fm) 0.81 ± 0.02 ± 0.03 0. 71 ± 0.04 ± 0.03 0.84 ± 0.05 ± 0.03 0.84 ± 0.06 ± 0.03 

cS (Gev-2) 0.02 ± 0.02 ± 0.01 0.03 ± 0.03 ± 0.01 -0.07 ± 0.04 ± 0.01 0.23 ± 0.03 ± O.Q2 

'"Y 0.98 ± 0.01 ± 0.01 0.97 ± 0.02 ± O.Ql 1.02 ± 0.03 ± 0.02 0.94 ± 0.02 ± O.Dl 

x2/DOF 55/53 69/53 57/53 118/53 

REFERENCE SAMPLE: MIXED CLUSTER PAIRS 

Q 0.94 ± 0.03 ± 0.05 0.72 ± 0.03 ± 0.04 1.21 ± 0.07 ± 0.07 0.45 ± 0.05 ± 0.03 

r (!m) 0. 72 ± 0.02 ± 0.03 0.74 ± 0.03 ± 0.03 1.01 ± 0.04 ± 0.04 1.02 ± 0.09 ± 0.04 

cS (Gev-2) 0.31 ± 0.03 ± 0.02 -0.03 ± 0.03 ± O.Ql 0.09 ± 0.04 ± O.Ql 0.18 ± 0.02 ± O.Dl 

"Y 0.89 ± 0.01 ± 0.01 0.98 ± 0.01 ± 0.01 0.97 ± 0.02 ± O.Ql 0.96 ± 0.01 ± 0.01 

x2/DOF 192/95 110/95 132/95 213/95 
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Figure 6.1 PION PAIRS IN PAIR EVENTS (N1T>3). 
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6.1.2 Parameter"'' Using Unlike Charged Pairs 

The number of like charged pairs is typically about two thirds to three quar­

ters of the number of unlike charged pairs. This ratio, measured by ""f, is a combina­

torial function of the charged pion multiplicity distributions in the four data sets. 

In the tables of results and in the figures shown here, ""f is close to 1.00 because we 

have chosen to insert a pre-normalization factor for each ratio before fitting. This 

is done in order to make it easier to compare visually the R distributions of vari­

ous data sets. The pre-normalization factor is calculated using the normalization 

regions described in sections 4.6.1 and 5.2.3 for pairs and triplets, respectively. The 

fit to R was done with and without this pre-normalization (expressions (2) and (1) 

in Table 6.1, respectively), and only the value of ""f was affected, as expected. 

6.1.3 Parameter a Using Unlike Charged Pairs 
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The major result of this analysis is that the SPEAR J / t/J and PEP ""!""! data 

sets show a significantly higher value of a than the SPEAR qq and PEP qq data sets. 

In section 1.4.1 we discussed how the comparison of the hadronization processes in 

the four data sets leads us to expect this result. 

With or without corrections, the values of a for the SPEAR J /t/J and PEP 

""!""! data sets are nearly equal to each other within errors. Once the pion misiden­

tification correction is applied, the values of a for the SPEAR qq and PEP qq data 

sets are also nearly equal to each other within errors. The pion misidentification 

correction is important in the latter case, because the pion misidentification in the 

PEP qq data set is significantly worse than the ones for the SPEAR J f.,P, SPEAR 

qq, and PEP ""!""! data sets. 

Recall that for the PEP qq data set we can form the ratio R / Rmc, using 

the MC PEP qq data in the denominator. As we saw in Fig. 4.9, taking this ratio 

removes evidence of resonances introduced by the unlike charged pion pairs. H we 

take the uncorrected R distribution from the PEP qq data, divide it by Rmc, and 

fit R/ Rmc 1 we get a = 0.28 ± 0.07 ± 0.02 and r = (0.84 ± 0.17 ± 0.03) fm. These 

values are within error of the fit results of R alone, listed in Table 6.2. Rmc is not 

a corrected ratio, since neither correction we apply to PEP qq data is necessary 

in Monte Carlo data: Coulomb final state effects are not simulated in the Monte 
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Carlo, and the pion misidentification correction is a multiplicative factor for both 

the like and unlike charged pairs. 

After all corrections, the values of o: for the SPEAR J / t/J and PEP 'Y'Y data 

sets are close to the maximum expected value of o:, indicating nearly full chaoticity. 

The fully corrected values of o: for the SPEAR qq and PEP qq data sets indicate 

only about half of the maximum expected value. 

6.1.4 Parameter r Using Unlike Charged Pairs 

For the pair analysis done using the unlike charged pair reference sample, 

two trends stand out clearly in the behavior of the parameter r. First, the value of 

r is the same within errors for all four data sets. Second, the value of r is. the same 

within errors before and after all corrections. Thus we measure a fairly constant 

value for r of about 0.75 fm to 0.85 fm for all data sets. 

6.1.5 Parameter 8 Using Unlike Charged Pairs 

Using the unlike charged pair reference sample, the value of the parameter 

8 is within error of zero in the SPEAR J /t/J, SPEAR qq, and PEP 'Y'Y data. Thus 

we see no strong long range correlations within the fitting region in these data sets. 

The same measurement of 8 in the PEP qq data set reflects the non-negligible long 

range correlations in this data discussed in section 4.5.1. 

Note that the values of 8 are nearly independent of the corrections applied. 

6.1.6 Results Using the Mixed Cluster Reference Sample 

We begin this section by discussing some performance tests of the mixed 

cluster reference sample. The goal is to ensure that the cluster mixing algorithm 

does not introduce any artificial correlations into the reference sample. In order to 

test this, we take the MC PEP qq data set and form ratios of like to unlike charged 

pairs, mixed cluster to unlike pairs, and like to mixed cluster pairs. Since Monte 

Carlo does not simulate the Bose-Einstein enhancement, we expect these ratios to 

be alike and flat near Q2 = 0. Indeed, we find the fit values to be (statistical errors 

only): 



.• . 

ll'T 

1. for the ratio of like to unlike charged pairs in the MC PEP qq data 

set, 

a = -0.12 ± 0.13, r = 0.38 ± 0.31, 6 = 0.07 ± 0.16; 

2. for the ratio of mixed cluster to unlike charged pairs in the MC PEP 

qq data set, 

a = -0.12 ± 0.03, r = 0.82 ± 1.00, 6 = 0.02 ± 0.01; 

2. and for the ratio of like to mixed cluster pairs in the MC PEP qq data 

set, 

a= -0.01 ± 0.14, r = 0.30 ± 1.16, 6 = 0.10 ± 0.16. 

These numbers show that, aside from some difficulty in fitting a nearly flat ratio to 

an exponential, the fitting routine finds the ratios to be very much alike and close 

to flat within errors. A visual inspection of the three distributions confirms this 

result. This test indicates that, overall, the mixed cluster reference sample is a good 

reference sample, because it reproduces the unlike charged pair kinematical phase 

space without the presence of the K 0 and p0 resonances. This leads us to expect 

that the mixed cluster reference sample will give us approximately the same results 

in pair analysis as the unlike charged pair reference sample. Note that this is merely 

a test of the mixed cluster algorithm, whose full usefulness becomes apparent in the 

an,alysis of pion triplets. 

To see qualitatively how well the mixed reference sample reproduces the 

results obtained with unlike pairs in the actual data, we compare visually Fig. 6.2 

with Fig. 6.1 and Fig. 6.4 with Fig. 6.3. The K 0 and p0 resonances evident in the 

ratio of like to unlike pairs are absent as expected in the ratio of like to mixed 

cluster pairs. The mixed cluster pairs reproduce the distribution of unlike pairs 
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at large Q2 fairly well for all data sets except the SPEAR J lt/J data set. This 

discrepancy is evident in the 8 parameter of the fits. Recall that 6 is a measure 

of long range correlations in the data. It measures the slope in the ratio of study 

sample to reference sample. If the 6 measured using the mixed cluster reference 

sample is significantly different from the 8 found using the unlike charged reference 

sample, then the mixed cluster reference sample is not reproducing the kinematical 

phase space of unlike charged pairs very well. We find that 6 in SPEAR qq, PEP 

11, and PEP qq data sets measured using the mixed cluster reference sample is the 

same within errors as the 6 found using the unlike charged pairs. Therefore, in these 

data sets the mixed cluster reference sample performs satisfactorily. In the case of 

the SPEAR J I t/J data, the mixed cluster reference sample finds a somewhat higher 

value, of 6 than that given by the unlike charged pairs. In this data, the mixed 

cluster reference sample is not as good an idealization of the unlike charged pairs 

for large Q2 as it is in the other three data sets. This shortcoming does not appear 

to affect the parameters of interest, since we get nearly the same fitted values of 

a and r with the mixed cluster pairs as we do with the unlike charged pairs. The 

fit to the ratio of like to mixed cluster pairs for SPEAR J lt/J data also has a fairly 

high x2 per degree of freedom. From Fig. 6.4 we can see that this is due to the fact 

that our chosen fitting expression, which does well for the other data sets, does not 

fit the data precisely in this case. 

Looking at Table 6.2 and Table 6.3, we indeed find that in the case of SPEAR 

J lt/J, SPEAR qq, and PEP qq data, the mixed cluster reference sample tends to give 

the same values of a as the unlike charged pair reference sample. The PEP 11 data 

shows a slightly higher value of a with the mixed cluster reference sample. 

The mixed cluster reference sample gives about the same value of r in the 

SPEAR J I t/J and SPEAR qq data sets as the r found using the unlike charged pair 

reference sample. In addition, r in the SPEAR J I t/J data set is nearly equal to r in 

the SPEAR qq data set and is independent of corrections applied. The value of r 

in the PEP 11 and PEP qq data sets given by the mixed cluster reference sample 

is significantly higher than the r given by the unlike charged pair reference sample. 

. . 
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However, the mixed cluster reference sample gives the same r in both the PEP 11 

data and the PEP qq data, independent of corrections applied. 

6.2 GGLP EFFECT IN PION TRIPLETS 

6.2.1 Calculation and Fitting of the Triplet Correlation Function 

We correct individual study sample and reference sample distributions for 

Coulomb effects using the appropriate Gamow factors (section 5.2.2). These 

Coulomb corrected distributions are then corrected for pion misidentification (sec­

tion 5.2.3), and their ratio Ra1r is fitted to a slightly modified form of Eqn. 5.2: 

where 1 normalizes the relative numbers of study sample and reference sample 

triplets. As in the analysis of pion pairs, all the fits are done with the utility 

minimization routine MINUIT used in pair analysis fitting. The fit to Ra1r is done 

over 

both for the ± ± =f reference sample and for the mixed cluster reference sample. 

The results of the fits for the triplet study sample are shown in Table 6.4 

and Table 6.5 for no corrections and all corrections, respectively. The corresponding 

distributions and fitted curves are shown in Fig. 6.5, Fig. 6.6, Fig. 6. 7, and Fig. 6.8. 

As in the case of pairs, we show triplet ratios which have been pre-normalized 

(section 5.2.3) to make visual comparisons easier. The pre-normalization affects only 

the fitted value of 1, which after pre-normalization is close to 1.00. 

6.2.2 Mixed Cluster Reference Sample in Triplet Analysis 

In this section we discuss an obvious consistency check of the mixed cluster 

algorithm in triplet analysis. We take the ± ± =f triplet reference sample and 

divide it by the mixed cluster reference sample. The ratio of these uncorrected 



Table 6.4 Fit results for the pion triplet study sample with no corrections. The 

first error shown is statistical while the second is systematic. 

PION TRIPLETS IN TRIPLET ANALYSIS EVENTS (N,? 5) 

NO CORRECTIONS 

FIT TO: R3, = -y(1 + a3, exp( -r~,Q~,.)) 

parameter SPEAR Jjt/J SPEAR qq PEP -y-y PEP qg 

REFERENCE SAMPLE: ± ± :r= TRIPLETS 

(contains correlation in one like pair) 

a3, 2.46 ± 0.17 ± 0.30 1.12 ± 0.12 ± 0.13 1.61 ± 0.42 ± 0.19 0.86 ± 0.17 ± 0.12 

r3, (fm) 0.47 ± 0.02 ± 0.02 0.41 ± 0.03 ± 0.02 0.51 ± 0.05 ± 0.02 0.66 ± 0.04 ± 0.03 

'Y 0.95 ± 0.01 ± O.Ql 0.94 ± 0.02 ± 0.01 0.97 ± 0.02 ± O.Ql 0.99 ± 0.01 ± 0.01 

x2 /DOF 09/95 106/95 112/95 86/95 

REFERENCE SAMPLE: MIXED CLUSTER TRIPLETS 

a3, 3.37 ± 0.24 ± 0.40 1.69 ± 0.16 ± 0.20 2.94 ± 0.63 ± 0.35 0.83 ± 0.16 ± 0.10 

r3, (/m) 0.53 ± 0.01 ± 0.02 0.44 ± 0.02 ± 0.02 0.54 ± 0.04 ± 0.02 0.66 ± 0.04 ± 0.03 

'Y 0.97 ± 0.01 ± O.Ql 0.95 ± 0.02 ± 0.01 0.97 ± 0.02 ± O.Ql 0.09 ± 0.01 ± 0.01 

x2 /DOF 92/95 94/95 119/95 90/95 
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distributions in Q~1r is expected to exhibit a Bose-Einstein enhancement due to the 

one like charged pair present in the ± ± =f reference sample. 

When we attempt to fit the ratio of±± =f to mixed cluster pairs, we run into 

the problem of low triplet statistics in the bins close to Q~1r = 0. The largest data 



Table 6.5 Fit results lor the pion triplet study sample with both Coulomb and 
pion misidentification corrections. The first error shown is statistical while the 

.second is systematic. 

PION TRIPLETS IN TRIPLET ANALYSIS EVENTS (N. ~ 5) 

COULOMB AND PION MISIDENTIFICATION CORRECTIONS 

FIT TO: R3• = -y(1 + 03•exp(-r~.Q~.)) 

parameter SPEAR Jft/J SPEAR qq PEP 'Y'Y PEP qq 

REFERENCE SAMPLE: ± ± =f TRIPLETS 

(contains correlation in one like pair) 

a a. 3.80 ± 0.23 ± 0.46 1.83 ± 0.16 ± 0.22 2.58 ± 0.36 ± 0.31 1.60 ± 0.21 ± 0.19 

r3• (fm) 0.48 ± 0.01 ± 0.02 0.42 ± 0.02 ± 0.02 0.4 7 ± 0.03 ± 0.02 0.64 ± 0.03 ± 0.03 

'Y 0.93 ± 0.02 ± 0.01 0.92 ± 0.02 ± 0.01 0.91 ± 0.03 ± 0.01 0.99 ± 0.01 ± 0.01 

x2/DOF 138/95 147/95 163/95 140/95 

REFERENCE SAMPLE: MIXED CLUSTER TRIPLETS 

a a. 4.92 ± 0.31 ± 0.59 2.57 ± 0.22 ± 0.31 4.40 ± 0.88 ± 0.53 1.54 ± 0.20 ± 0.18 

ra. (fm) 0.53 ± 0.01 ± 0.02 0.45 ± 0.02 ± 0.02 0.54 ± 0.03 ± 0.02 0.64 ± 0.03 ± 0.03 

'Y 0.95 ± 0.01 ± 0.01 0.92 ± 0.02 ± 0.01 0.94 ± 0.02 ± 0.01 0.99 ± 0.01 ± 0.01 

x2 /DOF 130/95 133/95 166/95 134/95 
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set, SPEAR J /t/J data, is the only one where we can make a statistically significant 

fit to this ratio. We find 

a= 0.53 ± 0.15, r = 0.77 ± 0.07 fm. 
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Figure 6.5 PION TRIPLETS IN TRIPLET EVENTS (Nrr>5) 

NO CORRECTIONS 

REFERENCE SAMPLE: ±±+ TRIPLETS 
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Figure 6.6 PION TRIPLETS IN TRIPLET EVENTS (NTT>5) 
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REFERENCE SAMPLE: MIXED CLUSTER TRIPLETS 
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Figure 6.8. PION TRIPLETS IN TRIPLET EVENTS (NTT>5) 

COULOMB AND PION MISIDENTIFICATION CORRECTIONS 

REFERENCE SAMPLE: MIXED CLUSTER TRIPLETS 
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This fit and the unfitted ratios for the other three data sets are shown in Fig. 6.9 

Although we can fit only the SPEAR J lt/J data set, all four data sets show indica­

tions of some enhancement near Q~1r· This is consistent with the expectation that 

the mixed cluster reference sample behaves like a triplet of non-identical pions. 

6.2.3 Parameters a31r and r31r 

The fitted values of a 31r and r31r follow the same general patterns as a and 

r do for pairs. 

As we discussed in 5.2.1, the ±±=F reference sample contains one like charged 

pair, so it is not surprising that a31r found using this reference sample is less than 

the maximum expected value of 5.00. However, the same reference sample shows 

that the SPEAR J I t/J and PEP 'Y'Y data sets have higher values of a31r than the 

other two data sets. The PEP 'Y'Y data set suffers from comparatively low statistics 

and thus has higher errors, but we can still see in triplets the same data set grouping 

we see in pairs: SPEAR J lt/J and PEP 'Y'Y data have similar values of a31r, while 

SPEAR qq and PEP qq data also have similar values of a31r after applying the 

pion misidentification correction. Again, these are the overall features of the triplet 

analysis done with the ± ± =f reference sample. 

Looking at the values of a 31r found using the mixed cluster reference sample, 

we see the same data groupings as described in the previous paragraph. This 

reference sample, however, contains no Bose-Einstein correlations, and after all 

corrections have been applied we measure close to maximum values of a31r for the 

SPEAR J lt/J and PEP 'Y'Y data sets. The fully corrected fits of a31r for the SPEAR 

qq and PEP qq data sets show about a half to a third of the maximum values. As 

in the case of the pair analysis, these results indicate nearly full chaoticity for the 

SPEAR J I t/J and PEP 'Y'Y data sets. 

Both reference samples show values of r31r to be uniform over data sets and 

over corrections. Only the PEP qq data set has r31r slightly higher than the other 

three. The values of r31r found using the ± ± =f reference sample are within errors 

of r31r measured with the mixed cluster reference sample, so this parameter is also 
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Figure 6.9 Ratios in Q~,.. of±± =f triplets to mixed cluster triplets (no corrections}, where we 

expect to see evidence of the Bose-Einstein enhancement in the single like pair within the ± ± =f 

triplet. Only the SPEAR J /t/J data has enough statistics to permit fitting this ratio. The other data 

sets suffer from low statistics but seem to indicate some enhancement near Q~ ... = 0. 
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independent of the reference sample used. 

6.2.4 Comparison of Triplets and Pairs 

We will now calculate the purely triplet Bose-Einstein enhancement J.£ de­

scribed in section 5.1.2 using the measured values of the enhancement in triplets 

and in pairs. 

The pion pairs we use in this calculation must of course come from the same 

events used in the triplet analysis. Recall that the pion multiplicity requirement for 

pair analysis events is Nn 2: 3, while the requirement for triplet analysis events is 

N1r 2: 5. In Table 6.6 we show the pion misidentification fractions for pairs in triplet 

analysis events. These values differ slightly from Table 4.5 because the pion mul­

tiplicity requirements make the average pion momentum in a triplet analysis event 

lower than the one in a pair analysis event. A lower average momentum means a 

better average pion identification efficiency (see section 4.6.1). Using these misiden­

tification fractions, we form pair distribution ratios (for pairs in triplet events) with 

no corrections and with both coulomb and pion misidentification corrections. The 

results of the fits to these ratios are shown in Table 6. 7 and Table 6.8. 

Table 6.6 Pion misidentification fractions for pion pairs in triplet analysis events. 

Monte Carlo Data Set T = ( !!l!!:1) 1r1r 1r1r 

MC SPEAR J j.,P 0.88 

MC SPEAR qq 0.88 

MC PEP "f"f 0.82 

MC PEP qq 0.72 

Note that before any corrections, p1on pa1rs m pair analysis events have 

significantly lower values of a than pion pairs in triplet analysis events, but this 

difference disappears after the pion misidentification correction is applied. 

.. 
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Table 6.1 Fit reaulta for pion paira in triplet events with no corrections. The 
first error shown is statistical while the second is systematic. 

PION PAIRS IN TRIPLET ANALYSIS EVENTS (N, ~ 5) 

NO CORRECTIONS 

FIT TO: R = "J(1 + cSQ2)(1 +a exp( -r2Q2)) 

parameter SPEAR Jjtp SPEAR qq PEP "Y"Y PEP qq 

REFERENCE SAMPLE: UNLIKE CHARGED PAIRS 

Q 0. 79 ± 0.04 ± 0.04 0.60 ± 0.12 ± 0.03 0.56 ± 0.09 ± 0.03 0.28 ± 0.03 ± O.Q2 

r (!m) 0.75 ± 0.03 ± 0.03 0.53 ± 0.07 ± 0.02 0.63 ± 0.09 ± 0.03 0.75 ± 0.07 ± 0.03 

6 (GeV-2) -0.02 ± 0.03 ± 0.01 0.21 ± 0.12 ± 0.02 -0.06 ± 0.09 ± 0.01 0.18 ± 0.03 ± O.Dl 

"Y 0.99 ± 0.02 ± 0.01 0.87 ± 0.07 ± 0.01 0.98 ± 0.06 ± 0.01 0.95 ± 0.02 ± O.Ql 

x.2 /DOF 68/53 61/53 40/53 91/53 

REFERENCE SAMPLE: MIXED CLUSTER PAIRS 

Q 0.89 ± 0.04 ± 0.04 0.58 ± 0.04 ± 0.03 0.74 ± 0.07 ± 0.05 0.26 ± 0.04 ± 0.02 

r (!m) 0. 72 ± 0.03 ± 0.03 0. 75 ± 0.04 ± 0.03 0.92 ± 0.07 ± 0.04 0.99 ± 0.12 ± 0.04 

6 (GeV-2) 0.69 ± 0.07 ± 0.02 0.06 ± 0.03 ± 0.01 0.07 ± 0.05 ± O.Dl 0.13 ± 0.02 ± 0.01 

"Y 0.82 ± 0.02 ± 0.01 0.97 ± 0.02 ± 0.01 0.97 ± 0.02 ± 0.01 0.97 ± 0.01 ± O.Dl 

x.2/DOF 99/95 94/95 89/95 138/95 

.• ' 



Table 6.8 Fit results for pion pairs in triplet events with both Coulomb and pion, 
misidentification corrections. The first error shown is statistical while the second is 

systematic. 

PION PAIRS IN TRIPLET ANALYSIS EVENTS (N, ~ 5) 

COULOMB AND PION MISIDENTIFICATION CORRECTIONS 

FIT TO: R = "'t(1 + 6Q2)(1 + aexp(-r2Q2)) 

parameter SPEAR JN SPEAR qq PEP..,.., PEP qq 

REFERENCE SAMPLE: UNLIKE CHARGED PAIRS 

Q 1.08 ± 0.05 ± 0.06 0.69 ± 0.06 ± 0.04 0.80 ± 0.09 ± 0.04 0.49 ± 0.04 ± 0.03 

r (/m) 0. 79 ± 0.03 ± 0.03 0.62 ± 0.05 ± 0.03 0. 73 ± 0.07 ± 0.03 0.84 ± 0.06 ± 0.03 

6 (Gev-2) 0.05 ± 0.04 ± 0.01 0.14 ± 0.07 ± 0.01 -0.10 ± 0.07 ± 0.01 0.23 ± 0.03 ± 0.02 

..., 0.97 ± 0.02 ± 0.01 0.91 ± 0.04 ± 0.01 1.01 ± 0.04 ± 0.02 0.94 ± 0.02 ± 0.01 

x2/DOF '67 /53 63/53 "5/53 120/53 

REFERENCE SAMPLE: MIXED CLUSTER PAIRS 

Q 1.14 ± 0.03 ± 0.07 0. 71 ± 0.04 ± 0.04 1.01 ± 0.09 ± 0.06 0.44 ± 0.05 ± 0.03 

r (/m) 0.74 ± 0.01 ± 0.03 0. 77 ± 0.04 ± 0.03 0.94 ± 0.06 ± 0.04 1.02 ± 0.09 ± 0.04 

6 (Gev-2) 0.81 ± 0.01 ± 0.05 0.06 ± 0.03 ± 0.01 0.06 ± 0.05 ± 0.01 0.18 ± 0.02 ± 0.01 

..., 0.80 ± 0.01 ± 0.01 0.97 ± 0.02 ± 0.01 0.97 ± 0.02 ± 0.01 0.96 ± 0.01 ± O.Dl 

x2/DOF 121/95 110/95 118/95 213/95 
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The pure triplet contribution to the Bose-Einstein enhancement is calculated 

using the approximate relation derived in section 5.1.2, 

and the results are shown in Table 6.9. The large errors in na""' which are the result 

of low triplet statistics, make the errors in p, large compared to the values of p, 

found. H we ignore the errors for a moment, the SPEAR J /t/J and PEP "Y"Y data do 

seem to have higher values of p, than SPEAR qq and ~EP qq data. Qualitatively, 

therefore, p, favors the same pattern as we saw in a for pairs. However, within 

the given statistical and systematic errors, the values of p, in all four data sets are 

consistent with each other as well as with the conclusion that p, ~ 0 in all four data 

sets. 

Table 6.9 Results of the calculation of the pure triplet contribution to the Bose­

Einstein enhancement in triplets. The a listed here is for the pion pairs in triplet 
events (see text). All the values are for fully corrected ratios using the mixed cluster 
reference sample is used. 

Data Set lk311" a p, 

SPEAR Jj¢ 4.92 ± 0.31 ± 0.59 1.14 ± 0.03 ± 0.07 0. 75 ± 0.31 ± 0.59 

SPEAR qq 2.57 ± 0.22 ± 0.31 0. 71 ± 0.04 ± 0.04 0.22 ± 0.22 ± 0.31 

PEP "Y"Y 4.40 ± 0.88 ± 0.53 1.01 ± 0.09 ± 0.06 0.66 ± 0.88 ± 0.53 

PEP qq 1.54 ± 0.20 ± 0.18 0.44 ± 0.05 ± 0.03 0.11 ± 0.21 ± 0.18 

Next, we compare r31r in triplets with r in pairs. In section 5.1.2 we discussed 

why it is plausible to expect 

r~"" ~ I ::/3 
r 2 /2 

Table 6.10. indeed shows that r31r for all four data sets is within these values. The 

SPEAR J /t/J data has a ratio of about 1/2, while the other three data sets are closer 

to 1/3. 



Table 6.10 Results of the comparison of rs,. and r. The r listed here is for the 

pion pairs in triplet events (see text). All the values are for fully corrected ratios 

using the mixed cluster reference sample. 

Data Set r31r (fm) r (fm) r2 /r2 311" 

SPEAR Jf.,P 0.53 ± 0.01 ± 0.02 0.74 ± 0.01 ± 0.03 ~ 0.51 

SPEAR qq 0.45 ± 0.02 ± 0.02 0. 77 ± 0.04 ± 0.03 ~ 0.34 

PEP 11 0.54 ± 0.03 ± 0.02 0.94 ± 0.06 ± 0.04 ~ 0.33 

PEP qq 0.64 ± 0.03 ± 0.03 1.02 ± 0.09 ± 0.04 ~ 0.39 

6.3 GGLP EFFECT IN PEP 11 DATA 
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Recall from section 1.4.1 that in PEP 11 data different hadronization mecha­

nisms are expected to dominate in different regions of PT, where PT is the component 

of the net hadron three-momentum perpendicular with respect to the beam axis. 

The two photons annihilate directly into qq in the region of high PT, while for low 

PT they annihilate predominantly in their vector meson form (VDM). 

Our goal in this section is to find out if the source parameters measured by 

the GGLP effect vary as a function of PT· In other words, does the GGLP effect 

distinguish between the two hadronization processes in PEP 11 data? Instead of 

using PT, the component of net hadronic three-momentum, we follow convention 

and use the highest single hadron track component in an event, PTmax· Figure 6.10 

shows the distribution of PTmax in PEP 11 events. To maximize statistical sig­

nificance, we choose three bins in PTmax with an approximately equal number of 

events in each bin. Then we form ratios of like to unlike charged pairs within each 

PTmax bin and fit these ratios as we fitted pairs in section 6.1. 

The results of these fits are listed in Table 6.11. We see a clear decrease of 

a with PTmax· The corrected ratio shows full chaoticity within errors in the lowest 

PTmax bin. In the highest PTmax bin, the value of a approaches the value for the 

SPEAR qq and PEP qq data sets listed in Table 6.3. Thus the VDM hadronization 

process appears more chaotic than the high PT process, and the latter is consistent 

' ·• 
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Figure 6.10 Distribution of PTmax for PEP"("( data. PTmax is the highest single hadron track 
component in an event. 
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with measurements done on other qq hadronization processes (SPEAR qq and PEP 

qq data). Within errors, the value of r is independent of PTmaz and of corrections 

applied. 

Table 6.11 PEP 'Y'Y data is divided into three bins of PTm=• and the .ratio of 

like to unlike charged pairs in each bin is fitted as in section 6.1. 

PTmaz (GeV /c) 

parameter 0.0 - 0.5 0.5-0.7 > 0.7 

N 'lr± 'lr± IN 'lr+ 'lr- 19,480/30,911 21,340/32,506 20,922/31,243 

NO CORRECTIONS 

a 0. 72 ± 0.07 ± 0.04 0.61 ± 0.08 ± 0.04 0.53 ± 0.09 ± 0.03 

r (fm) 0. 72 ± 0.08 ± 0.03 0.55 ± 0.12 ± 0.02 0.79 ± 0.10 ± 0.03 

WITH COULOMB AND PION MISID. CORRECTIONS 

a 1.03 ± 0.09 ± 0.06 0.84 ± 0.08 ± 0.05 0.78 ± 0.11 ± 0.04 

r (fm) 0. 76 ± 0.07 ± 0.03 0.63 ± 0.09 ± 0.03 0.83 ± 0.08 ± 0.03 

6.4 GGLP EFFECT IN COMPONENTS OF Q2 

6.4.1 Motivation 

Here we consider the GGLP effect in terms of some of the variables intro­

duced in section 1.3. The purpose behind separating Q2 into components is to 

measure a source dimension parameter corresponding to each "direction" defined 

by the components. Recall from section 1.3 that we have a choice between the 

classical formulation (Gaussian space-time source distribution) 

and the invariant formulation based on an expansion of Q2 
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where 

QT = qx u, 

QL = q· u, 

q2 - q2 q2 
C = L- O· 

Thus Qf and qJ_ are the transverse and longitudinal components, respectively, of 

IQI 2 relative to some unit axis u defined by the pair or in the event. Recall from 

chapter one that Qf and qb are invariant under a boost along the axis u, while the 

other variables are not. The parameter ro is usually interpreted as a measure of the 

source lifetime r in the laboratory: ro =cr. In the sections that follow, we consider 

two natural choices for the axis u. 

6.4.2 Kopylov Axis Variables 

In the Kopylov formulation, u is the direction defined by the vector sum of 

the three-momenta of the pions in a pair: 

(kl + k2) 
lkl + k21. 

Unlike the beam direction in nuclear collision experiments or the jet axis in two-jet 

events, the Kopylov axis can be defined pair by pair in any kind of pion production 

data. 

To study individual components of Q2 , we cumulate uncorrected two dimen­

sional histograms of like and unlike charged pairs, as well as mixed cluster pairs, in 

three sets of variables: (q},qb), (q},q5), and (q},qJJ. The ratios of like to unlike 

charged pairs are then fitted to the following expressions: 
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The R(qf, q5) distribution in all four data sets favors the given fitting expression 

(same sign for both Qf and q5 terms) over the invariant formulation (opposite signs 

for the Qf and q5 terms). However, we still define q'tJ = qL - q5 as an invariant 

component of Q2 = Qf + q'tJ. These fits are also performed on the ratio of like to 

mixed cluster pairs. 

Of course, the same decay products of the K 0 and p0 that we have seen so 

clearly in the Q2 distribution of unlike pairs are also present in two-dimensional 

distributions of unlike pairs. · These decay products populate bands of constant 

Q2 = qf + q'tJ and are easily spotted in the ratio of like to unlike pairs in the ( Qf, q'tJ) 
distribution. In the case of the other two distributions, (qf,q5) and (qf,q'i), we 

are integrating over one variable (qL and Qo, respectively), so areas of constant Q2 

are not clear cut bands as in the ( Qf, q'tJ) distribution. There is no simple way 

to cut out the regions of these decay products from the fitting region. In order 

to minimize the effect of the K 0 and p0 oh the fitting results, we also study the 

mixed cluster reference sample. We fit the two-dimensional distributions both for 

the ratio''of like to unlike and the ratio of like to mixed cluster pairs, and we take 

the average of the two fit values as the measured value. In this way we reduce the 

effect of the K 0 and p0 distortions on the fitted parameters. We take half of the 

difference between the two fit values as part of the systematic error to the measured 

value. The results of these calculations are listed in Table 6.12, and some of the 

corresponding two-dimensional distributions are shown in Fig. 6.11 and Fig. 6.12. 

We see that for each data set (going along a row in Table 6.12), a does not 

vary much as a function of the three sets of variables. The variation of a with data 

set (going along a column) follows the pattern seen in pairs: the SPEAR qq and 

PEP qq data sets show a significantly lower value of a than the SPEAR J Jt/J and 

PEP 11 data sets. 

I The values of a found by fitting these uncorrected two-dimensional distri­

butions are systematically slightly higher than the values of alpha found by fitting 
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Table 6.12 Results of fits to two-dimensional distributions in Kopylov variables. 

No corrections .have been applied to this data. The calculation of these values and 

the corresponding statistical (first) and systematic (second) errors is discussed in 

the text. Values of the parameters rT, rc, ro, and rL are in fm. Since these values 

are an average of the results found using the unlike pairs and the mixed cluster 

pairs, we give the x2 for the unlike pair analysis first and for the mixed cluster 

analysis second. 

Data Set (q},qb) (q}.q;n (q},q]J 

Q = 0.74 ± 0.02 ± 0.09 Q = 0.70 ± 0.02 ± 0.06 a= 0.77 ± 0.02 ± 0.07 

SPEAR Jjtp rT = 0. 77 ± 0.02 ± 0.09 rT = 0.85 ± 0.02 ± 0.05 rT = 0.84 ± 0.02 ± 0.04 

rc = 0.88 ± 0.05 ± 0.07 ro = 0.64 ± 0.03 ± 0.16 r L = 0.58 ± 0.02 ± 0.08 

x2 /DOF = 1.90, 1.26 x2 /DOF = 1.58, 1.38 x2 /DOF = 1.59, 1.24 

Q = 0.58 ± 0.03 ± 0.07 Q = 0.54 ± 0.03 ± 0.08 a = 0.57 ± 0.03 ± 0.06 

SPEAR qq rT = 0.66 ± 0.04 ± 0.08 rT = 0.82 ± 0.05 ± 0.03 rT = 0.78 ± 0.05 ± 0.06 

rc = 0. 73 ± 0.07 ± 0.06 r 0 = 0.45 ± 0.04 ± 0.03 r L = 0.39 ± 0.04 ± 0.03 

x2 /DOF= 1.13, 1.16 x2 /DOF = 1.00, 1.19 x2 /DOF = 1.09,1.18 

Q = 0.93 ± 0.10 ± 0.11 Q = 0.84 ± 0.05 ± 0.12 Q = 0.89 ± 0.07 ± 0.10 

PEP 11 rT = 0.86 ± 0.06 ± 0.20 rT = 1.00 ± 0.05 ± 0.15 rT = 0.97 ± 0.06 ± 0.16 

rc = 0.93 ± 0.13 ± 0.07 r 0 = 0.45 ± 0.05 ± 0.03 r L = 0.46 ± 0.05 ± 0.03 

x2 /DOF = 1.21, 1.02 x2 /DOF = 1.30, 1.02 x2 /DOF = 1.09, 1.06 

Q = 0.40 ± 0.20 ± 0.09 Q = 0.25 ± 0.06 ± 0.03 Q = 0.34 ± 0.11 ± 0.04 

PEP qq rT = 0.90 ± 0.12 ± 0.04 rT = 0.94 ± 0.15 ± 0.16 rT = 1.06 ± 0.15 ± 0.25 

rc = 1.41 ± 0.45 ± 0.50 r 0 = 0.49 ± 0.15 ± 0.22 rL = 0.64 ± 0.18 ± 0.25 

x2 /DOF= 1.13, 1.03 x2 /DOF = 0.90, 0.98 x2 /DOF = 1.13, 1.15 
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uncorrected distributions in Q2 (Table 6.2). To understand this, let us consider 

the Bose-Einstein enhancement in the (qf, qb) distribution. We pick this distribu­

tion because the fact that Q2 = qf + qb makes this demonstration simpler. Fig­

ure 6.13(a) shows the enhancement in the SPEAR J /t/J data, where it is strongest. 

The enhancement is in the shape of a sombrero centered on the z axis. In the region 
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Figure 6.11 The ratio of like to unlike pairs (no corrections) in the SPEAR J /,P data. The 

variables q'f, ql, and q& are defined with respect to the Kopylov axis, and all variables are given in 
GeV2 • 
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Figure 6.12 The ratio of like to unlike pairs R(qf., q~) {no corrections) in the SPEAR qq, PEP 
TY1 and PEP qq data. The variables qf. and q~ are defined with respect to the Kopylov axis and 
are given in GeV2. 
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of the rise of the sombrero, the distribution in Q2 averages over the independent 

rises in q} and q'b, with the result that the fitted a from the R(Q2 ) distributions 

is slightly lower than the fitted a from the (q}, q'b) distribution. This effect can 

also be seen by fitting slices of the (q}, qb) distribution independently. These slices 

and their fitted curves are shown in Fig. 6.13(b) and (c). Excluding the K 0 and p0 

regions from the fit, we find (statistical errors only): 

1. for ( q}, 0.00 GeV 2 < q'b < 0.06 GeV2 ), 

a = 0.65 ± 0.02, 

TT = 0.78 ± 0.01 fm. 

2. for ( 0.00 GeV2 < q} < 0.06 GeV2 , q'b ), 

a = 0.57 ± 0.03, 

rc = 0.76 ± 0.06 fm. 

These a's are smaller than the a derived from the ( q}, q'b) distribution, because 

the Bose-Einstein enhancement falls off significantly within the width of the slice. 

Averaging over the slice, therefore, reduces the observed a. Within error, the 

measured radii are the same in the two slices as in the (q},q'b) distribution. Note 

that although the values of a found by fitting the two dimensional distributions are 

slightly higher than those derived from R(Q2 ), the difference is only a few percent. 

Thus we do not expect that a goes above one (within errors) after full corrections 

are applied to the SPEAR J /t/J and PEP "'("'( data. 

The value of ro ~ T£ < TT ~ rc in all four data sets, with TT and rc 

approximately equal to the radius r found in the fits to R(Q2 ). Similar observations 

are reported by CLE043 and TASS044 . In addition, TT ~ rc ~ r, where r is the 

parameter extracted by fitting to R(Q2 ). Although the definition of q'b clearly 

indicates that q'b is the longitudinal component of the three-momentum difference 
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Figure 6.13 (a) The Bose-Einstein enhancement in R(qf, q~) lor the uncorrected ratio of like 
to unlike pairs in the SPEAR J / ,P data set. The dips due to the K 0 and p0 in the unlike pairs 

become more evident in {b) when we take a slice consisting of O.OOGeV2 < qf < 0.06 GeV2 and 

project it onto the q~ axis; and in (c) when the slice O.OOGeV2 < q~ < 0.06 GeV2 is projected onto 

the qf axis. The K 0 dip in {b) is nearly absent in {c) due to kinematical constraints. The p0 dip is 
clearly present in {b) and {c). 
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in the pair rest frame (since qo = 0 in that frame), the interpretation of rc is highly 

model dependent. The pair rest frame is different for each pair, so that a fit to a 

distribution in qc represents some average over all of these frames. It is therefore 

not clear whether rc has a straightforward spatial interpretation. In summary, we 

find that rr, a purely spatial parameter, is approximately equal to rc and tor, two 

different averages over space and time parameters. 

6.4.3 Jet Axis Variables 

In a data set consisting of two-jet events, u can also be naturally defined 

as the jet axis. We study rr, rc, and rL defined with respect to this axis using a 

subset of PEP qq data consisting of two-jet events. Again, no corrections have been 

applied to the data. 

Following the fitting procedure described in the previous section, we calculate 

the values shown in Table 6.13. We find that a does not vary much for the three 

distributions, and that these values of a are within error of the values found with 

the Kopylov variables. We also find that ro ~ r L < rr ~ rc, the same relationship 

we found using the Kopylov variables. Here, also, we have rr and rc approximately 

equal to the radius r found in the fits to R(Q2 ). Similar results showing (in our 

notation) ro ~ rL < rr ~ rc have been found by the AFS Collaboration4 in two-jet 

events produced in pp collisions at the ISR. 

All the r values found using the jet axis variables are systematically smaller 

than the corresponding r values found with the Kopylov variables. Note, however, 

that the jet axis study is done with a subset of the PEP qq data (two-jet events 

only), and that the Kopylov axis study of the previous section is done with all PEP 

qq data, which includes roughly 30% three-jet events. 

6.5 RESULTS FROM OTHER e+e- EXPERIMENTS 

There are three major experiments which have published studies of the Bose­

Einstein correlation in e+ e- annihilation. Their results for pion pair analysis are 

listed in Table 6.14. 



Table 6.13 Results of fits to jet axis variables in a sample consisting of two­

jet events from PEP qq data. No corrections have been applied to this data. The 

calculation of the measured values and the statistical (first) and systematic (second} 

errors is analogous to the procedure described in the previous section for Kopylov 

variables. Values of the parameters rT, rc, ro, and rL are in fm. Since these values 

are an average of the results found using the unlike pairs and the mixed cluster 

pairs, we give the x2 for the unlike pair analysis first and for the mixed cluster 

analysis second. 

Data Set (qq., qb) (qq., q5) (q},qJJ 
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a = 0.40 ± 0.03 ± 0.06 a = 0.33 ± 0.04 ± 0.09 a = 0.38 ± 0.04 ± 0.06 

PEP qq TT = 0.66 ± 0.07 ± 0.07 TT = 0.61 ± 0.11 ± 0.04 TT = 0.59 ± 0.09 ± 0.08 

rc = 0. 71 ± 0.08 ± 0.10 ro = 0.33 ± 0.08 ± 0.06 r L = 0.39 ± 0.09 ± 0.13 

x21DOF= 1.01, 1.03 x2 1 DOF = 0.94, 0.94 x2 1 DOF = 0.94, 0.89 

The CLEO group43 has looked at the T(1S) region and the continuum below 

and above the T(4S). They use unlike charged pairs as the reference sample and 

make no Coulomb or pion misidentification corrections. Their (thus uncorrected) 

value of a is the same within errors for these regions and is very close to our 

uncorrected value of a for the SPEAR qq data set. The latter contains open charm 

production, while CLEO's data above the T(1S) contains both open charm and 

bottom production. As we have seen earlier, our analysis indicates a significant 

difference between the values of a for the SPEAR J 11/J data and the SPEAR qq data. 

The CLEO group also attempts to correct for the presence of long lived resonances 

in the data, assuming that pions from the decay of these resonances would not 

contribute to the Bose-Einstein enhancement of the pions from the primary source. 

Their correction for this effect raises the value of a above the maximum of one, 

leaving no room for other detector and source effects which act to lower a. 

The TPC group36 studied two-jet events at ys = 29 GeV. They use pairs 

from mixed events as the reference sample and correct for both Coulomb effects 

and pion misidentification. We can thus compare their corrected measurements 

with our fully corrected values for the PEP qq data set. Our measurement of a is 
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Table 6.14 Summary of studies of the GGLP effect in pion pairs by other major 

e+e- experiments. 

CLEO TPC TASSO 

Vs T(1S) ~ 10.5 GeV 29 GeV 29 __:_ 34 GeV. 

corrections none Coulomb, R/RMc 
pion misid. 

our comparable uncorrected corrected corrected 
data set SPEAR Jjtf; PEP qq PEP qq 

SPEAR qq 

R R(qr) R(Q) R(Q2) 

fitting form 
2 2 

1(1 + ae-r qT) 1(1 + oQ)x - 2Q2 1(1 + ae r ) 

for R (1 + ae-r2Q2) 

measured values, a = 0.43 ± 0.07 a = 0.61 ± 0.05 a = 0.60 ± 0.09 
statistical r = 0.86 ± 0.15 r = 0.65 ± 0.04 r = 0.76 ± 0.12 
errors only 

shape of ellipsoid, but spherical 
jet source consistent r~0.7 fm 

with sphere 

triplets R(like/ ±±=f) 
a311" = 1.65 ± 0.36 
r31r = 0.52 ± 0.07 

slightly lower than theirs, while our measurement of r is slightly higher, but the 

measurements agree within errors. The TPC group uses the familiar 

with 

2Q2 R = 1 + ae-r 

r - ---;======= 
.Jsin2 () + cos2 () / k2 

to investigate the shape of the pion source with respect to the jet axis. Here () is 

the angle between the net three-momentum of the pair and the jet axis, and k and 
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ra are fitted parameters. They find that 

k - 2 o+L3 
- . -0.8' 
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indicating that an ellipsoidal shape is preferred (long axis along jet axis), but that 

the data is consistent with a sphere within errors. We have seen in the preceding 

section that we find a spherical source shape in an equivalent analysis with jet axis 

variables. 

The TASSO Collaboration44 studied pion pairs and triplets at y'S = 29-

34 GeV. They performed corrections on their data by fitting the ratio of R/ RMc, 

as we discussed in section 6.1.3. Their values of a and r are within errors of our 

values for the fully corrected PEP qq data set. The TASSO group investigated the 

shape of the jet source by looking at two dimensional distributions of q} and qb 

(which they label Q} and QJJ and fitting this distribution to the expression 

This is similar to the procedure we followed in the previous section (jet axis vari­

ables). As we see in Table 6.14, they find a spherical source with nearly the same 

radii and a as we find in the PEP qq data set using the jet axis variables. Fi­

nally, the TASSO group also studied pion triplets. Their values for the ratio of like 

charged triplets to±± =f triplets are (statistical errors only): 

a3rr = 1.65 ± 0.36, 

r3rr = 0.52 ± 0.07 fm. 

These are within errors of the fully corrected values we find with the PEP qq data 

set. 

6.6 CONCLUSIONS 

Figure 6.14 displays the values of a and r for the pair analysis of the four 

data sets, arranged roughly in the order of increasing energy available for hadron 
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production. We find that after all corrections have been applied, the SPEAR J / '1/J 

and PEP 11 data sets show nearly maximum values of a:. There is no evidence of 

a decrease in a: due to long lived resonances (section 4.2) such as the p, w, and ¢. 

Like CLEO (section 6.5), we find that correcting for long lived resonances would 

bring a: above its maximum expected value of onein these two data sets. Similarly, 

no suppression due to the effects of the final state strong interaction (section 4.5.2) 

is evident within errors in these data sets. 

The SPEAR qq and PEP qq data sets show significantly smaller values of 

a:. In appendix B we use a Monte Carlo calculation to show that a major fraction 

of this suppression in a: can be ascribed to the presence of charm mesons in the 

SPEAR qq data and both charm and bottom mesons in the PEP qq data, leaving 

only a small part of the suppression as possible evidence of source coherence. The 

values of the parameter r seem to be fairly constant for the four data sets. 

Results of the triplet analysis in the four data sets are summarized in Fig­

ure 6.15, which displays the values of a:31r and r31r found using the mixed cluster 

reference sample. Although statistics are more limited in triplet analysis than in 

pair analysis, overall we find qualitatively similar patterns in a:31r and r31r as we do 

in a: and r. The SPEAR J /t/J data set, with the largest statistics, clearly shows 

nearly maximum value of a:31r using the mixed cluster reference sample with all 

corrections. We find evidence for a purely triplet enhancement term JL in triplet 

Bose-Einstein correlations in all four data sets. Within the limitations imposed by 

available statistics, we also find that JL qualitatively follows the same pattern as a: 

does in these data sets. The value of T31r is approximately the same for all the data 

and is between 1/3 and 1/2 of the value of r, as expected (section 5.1.2). 

We consider a: and r as a function of PTmax in the PEP 11 data in order to 

establish if the GGLP effect sees a difference between the hadronic source dominant 

at high PTmax and the one dominant at low PTmax· Figure 6.16 displays the values 

of a: and r for pair analysis in the PEP 11 data as a function of PTmax· Within the 

available statistics, we find that a: in the lowest PTmax bin is consistent with maxi­

mum value, and that a: decreases with increasing PTmax as the direct annihilation 

•· .. 
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Figure 6.14 Plots of o and r for the four data sets, arranged roughly in the order of increasing 

energy available for hadron production. The values shown are for the fully corrected ratio of like 

to unlike charged pairs (circles) and of like to mixed cluster pairs (stars). The errors indicated are 
statistical (inner) plus systematic (outer). 
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of the two photons into qq becomes the dominant hadronic source. 

A study of the pion pair Bose-Einstein enhancement in the two-dimensional 

distribution R(qf,qb) gives the same value for the purely spatial parameter rr as 

for rc and r, two different averages of space and time parameters. This result is 

obtained both when qT is calculated with respect to the net pair three-momentum 

and when it is calculated with respect to the jet axis for two-jet events in the PEP 

qq data set. Similar results have been reported by CLE043 , TASS044, and AFS4. 

Fits to the two-dimensional distributions R(qf, qlJ and R(qf, q5), which contain 

the non-invariant variables qL and qo, indicate ro ~ TL ~ ~rT to !rr. 
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Figure 6.16 Plots of a and r for the PEP "1"1 data set as a function of PTm=. The values 

shown are for the fully corrected ratio of like to unlike charged pairs, and the errors indicated are 
statistical. 
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Appendix A. RESIDUAL CORRELATIONS 

Recall that in order to do pair analysis we require that at least three pions 

and both charges be present in the event. In an unlike charged pair, therefore, 

at least one pion comes from a set of two or more like charged (Bose-Einstein 

correlated) pions. A residual correlation arises from the fact that the phase space 

density of single pions in the presence of the Bose-Einstein correlation, the measured 

Pbe(k), is different from the one in the absence of the Bose-Einstein correlation, the 

ideal p(k). In this section we estimate the effect of this residual correlation on the 

reference samples we use. 

Let us denote the suitably normalized pair phase space density in the study 

sample as p8 (k~,k2), where k1 and k2 are pion four-momenta. Note that p8 (kbk2) 

contains all the correlations between like charged pairs, including the Bose-Einstein 

enhancement. Similarly, let pr(kbk2) represent the pair phase space density in the 

ideal reference sample. The reference density is factored into 

where p(k1) and p(k2) represent the single particle phase space densities of the two 

pions in the absence of the Bose-Einstein correlation. We saw in chapter one that 

the correlation function is given by Eqn. A.l 

(A.l) 

Both of our reference samples, unlike charged pairs and mixed cluster pairs, consist 

of pions which populate Pbe(k) rather than p(k), so that the correlation we measure 

is given by 
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where 

Substituting from Eqn. A.l, we get 

Thus ;11 order to get the ideal single pion density p(k1) we must weight each pion 

in the measured single pion density Pbe (k1) by a correction factor W ( kl). In ef­

fect, 1/W(kl) measures the average Bose-Einstein correlation between a pion of 

momentum k1 and a set of pions populating p(k). 

Since we do not know R(kb k2) or p(k2), we calculate a first approximation 

as fo11vws: 

and 

We use an iterative procedure 37 to get the n'th approximation to R: 

and 
P8 (kbk2) 

Rn(kbk2) = (k ) (k ) . 
Pn-1 1 Pn-1 2 

Now we consider the specific case of our study and reference samples. We 

calculate R1 and compare it to Rbe in order to get an estimate of the effect of the 

residual correlation. Because of the complexity and variety of events in the four 

data sets, we focus on representative special cases. 

..! • 
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The first step is to map out the single pion phase space density Pbe(k) in 

terms of the variables (kx, ky, kz) which are used to calculate Rbe(kb k2). The map 

consists of a three dimensional histogram, since ko is calculated from the space 

components when needed. Rigorously, the density Pbe(k) depends on both the 7r+ 

and the 7r- multiplicity in the event. Table A.1 shows the charged pion multiplicities 

in the four data sets. In order to apply the same procedure to all four data sets, 

we again work with clusters in an event rather than events themselves. In the case 

of SPEAR J jt/J, SPEAR qq, and PEP 11 data sets, almost always there is only 

one cluster per event, so the average pion multiplicities in the event as well as the 

cluster are approximately two 1r+'s and two 1r-'s. In the PEP qq data set pion 

multiplicities per event are of course higher, but the average pion multiplicities 

in each cluster are approximately two 1r+ 's and two 7r- 's. Keeping track of the 

single pion phase space density in three variables, for four data sets, and for each 

possible combination of N 1r+ and N 7r- would be prohibitive in terms of computer 

time and memory. Therefore, with the average multiplicities in mind, we consider 

the representative case in each data set of events with two 1r+'s and two 1r-'s per 

cluster. 

Table A.l Average charged pion multiplicity in an analysis event. 

per cluster per event 

Data Set N1r± (N'Ir±) N1r± (N'Ir±) 

SPEAR J /t/J 1.0 < N1r± < 5.0 1.8 1.0 < N1r± < 5.0 1.8 

SPEAR qq 1.0 < N1r± < 7.0 2.0 1.0 < N1r± < 7.0 2.0 

PEP 11 1.0 < N1r± < 8.0 1.9 1.0 < N1r± < 8.0 1.9 

PEP qq 1.0 < N1r± < 9.0 2.1 1.0 < N1r± < 11.0 3.9 

Once we have a map of Pbe(k), Wbe(k) is calculated using Rbe(k~, k2) fitted to 

the expression R( Q2) = 1 + o: exp( -r2 Q2), the standard parameterization discussed 

in chapter one. The parameters o: and r are the fitted values for each data set 
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from chapter six. Like Pbe(k), Wbe(k) is a three dimensional histogram of weights 

associated with each pion momentum k. 
To create the reference sample represented by P1(kl)p1(k2), we weight 

each unlike charged pion pair by the product of the individual pion weights 

Wbe(kl)Wbe(k2)· Then R1 is calculated and fitted using the resulting reference 

sample in the same way that Rbe is calculated and fitted using Pbe(kl)Pbe(k2)· Ta­

ble A.2 shows that the fitted parameters of Rbe and R1 are well within statistical 

errors of each other. 

Table A.2 Fitted values of a and r for Rbe and R1 • The parameterization is 

the standard R(Q2 ) = 1 + aexp(-r2 Q2 ). As discussed in the text, the events (or 

clusters in the case of PEP qq data) used in this comparison are required to have 

two 11'+ 's and two 11'- 's, and the errors quoted are statistical. 

Rbe Rl 

Data Set a r (fm) a r (fm) 

SPEAR Jj'ljJ 0.58 ± 0.06 0.86 ± 0.11 0.59±0.06 0.81 ± 0.12 

SPEAR qq 0.32 ± 0.07 0.68 ± 0.25 0.33 ± 0.07 0.60 ± 0.27 

PEP 11 0.79 ± 0.10 0.66 ± 0.18 0.83 ± 0.11 0.56 ± 0.17 

PEP qq 0.24 ± 0.04 0.79 ± 0.21 0.24 ± 0.05 0.76 ± 0.31 

Because of the nature of the cluster mixing algorithm, the calculation of the 

residual correlation in the mixed cluster reference sample is analogous to the one 

described above for the unlike charged pairs. Thus the fitted parameters of Rbe and 

R1 using mixed cluster pairs are also expected to be the same within errors. 

Since the correction in the first iteration R1 - Rbe is relatively small, we 

conclude that the effect of the residual correlation can be neglected: the ideal R is 

nearly the same as the ratio Rbe that we measure using the uncorrected unlike pair 

or mixed cluster pair reference sample. In summary, therefore, we make no residual 

correlation corrections in this analysis. 

J • 

.. 
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Appendix B. LONG LIVED RESONANCES AND PARTICLES 

Recall from section 4.2 that many of the charged pions in the study sample 

are the decay products of resonances and particles, such as K 0 , p0 , w0 , etc., and 

charm and bottom mesons. We say that a resonance is long lived if it decays over 

a time which is long compared to the size of the primary source. If a pion from 

a long lived resonance is paired with a pion from the primary source, such a pair 

will reflect the resonance· decay length rather than the dimension of the primary 

source. The study sample will then measure some complicated average of the source 

dimension and all the decay lengths. From the familiar parameterization of R, 

2Q2 R = 1 +a e-r , 

we can also see that, for a given value of a, as the value of r increases the Bose­

Einstein enhancement gets narrower in Q2 • As we determined in section 4.6.2, 

for r > 5.9 fm the MARK II drift chamber is unable to resolve the 6.Q of the 

two tracks, and we in effect lose that pair and its contribution to the Bose-Einstein 

enhancement. One explanation of the observation of a less than maximum value of a 

has been the claim that the presence of long lived resonances and their corresponding 

ultra-narrow and unobservable contribution to the Bose-Einstein enhancement in 

effect suppresses the measured value of a from its true value. 

Our measurement of a in the SPEAR J /'1/J and PEP "/"/ data sets finds a 

value close to maximum, with no apparent suppression by the long lived resonances 

present in these data sets. The SPEAR qq and PEP qq data sets, however, show 

a significantly smaller a. The. major difference between the SPEAR J /'1/J, PEP "/"/ 

data sets and the SPEAR qq, PEP qq data sets, in terms ofresonances produced, 

is the presence of charm mesons in SPEAR qq data and charm and bottom mesons 

in PEP qq data. If we assume on the basis of the measurement of a in SPEAR 

J /'1/J and PEP "/"/data that other long lived resonances introduce no suppression of 
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a, then we can use Monte Carlo data to estimate how large a suppression we can 

expect from the presence of charm and bottom mesons alone. 

In order to make this estimate, we analyze Monte Carlo data with the same 

cuts and in the same way as we do the four data sets. The ratio of the resulting like 

to unlike charged pair distributions is of course flat near Q2 = 0 since our Monte 

Carlo does not model the Bose-Einstein correlation (see Fig. 4.8). We introduce a 

representation of the Bose-Einstein correlation into the Monte Carlo by weighting a 

like charged pair with the expression above and a given set of a and r. In this study, 

we use (a,r) = (1.0,0.8/m). If we weight only pairs of pions which are correctly 

identified as pions, the resulting distribution corresponds to data distributions which 

have been fully corrected. (Recall that Monte Carlo data does not simulate the final 

state Coulomb interaction, so no correction is required for that effect here.) 

Figure B.l(a) shows the ratio of weighted like to unlike charged pairs in the 

Monte Carlo, where all the like charged pairs have been weighted. We show this 

dist~ibution in order to establish that the input variables a and r come out the 

same within errors in the fit. The solid curve in Fig. B.l(a) is the fitted expression 

with 

0: = 0.98 ± 0.03 

r = 0.80 ± 0.02 fm 

6 = 0.16 ± 0.02 Gev-2 • 

The PEP qq data set contains both charm and bottom mesons. To model this 

data we weight all like charged Monte Carlo pairs of correctly identified pions except 

the decay products of charm and bottom mesons. Figure B.l(b) shows the ratio of 

these weighted like to unlike Monte Carlo data pairs, The solid curve corresponds 

to 

0: = 0.63 ± 0.03 

J • 
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Figure B.l Ratios of weighted like to unlike charged pairs in the Monte Carlo data and the 

corresponding fitted curves. {a) All like charged pairs have been weighted. {b) Here we weight 
all like charged pairs of correctly identified pions except the decay products of charm and bottom 
mesons. This distribution corresponds to a fully corrected data distribution. 
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r = 0.81 ± 0.04 fm 

6 = 0.16 ± 0.02 Gev-2 • 

The SPEAR qq data set contains charm but no bottom mesons. To see what 

effect this combination has on a, we weight all like charged Monte Carlo pairs of 

correctly identified pions except the decay products of charm mesons. The fitted 

values are essentially the same: 

a = 0.66 ± 0.03 

r = 0.82 ± 0.04 fm 

6 = 0.16 ± 0.02 Gev-2 • 

Comparing these results with the fitted parameters in the fully corrected 

PEP qq data set (Table 6.3), 

a = 0.50 ± 0.04 

r = 0.84 ± 0.06 fm 

6 = 0.23±0.03 Gev-2 , 

we see that the presence of charm and bottom mesons seems to account for the 

major fraction of the suppression of a from its maximum value. Only a small part 

of the suppression remains as possible evidence of source coherence. 
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