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Mathematical models can be very useful for improving understanding of human behavior

and helping forecasting it. In this thesis, we develop and explore three models of human

dynamics. One is a model of disease spread coupled to opinion dynamics, another is a model

of opinion dynamics, and the third is a model of illegal logging. We build models in the

form of dynamical processes on networks for the first two applications and employ optimal

control theory to study the third application.

We first introduce a network model of the spread of a disease under the influence of the

spread of competing opinions. We describe the network structure in this model as a two-layer

multilayer network. On one layer, two opinions — pro-physical-distancing and anti-physical-

distancing — spread concurrently and compete with each other. On the other layer, the

disease evolves and individuals are less likely (respectively, more likely) to become infected if

they adopt the pro-physical-distancing (respectively, anti-physical-distancing) opinion. We

explore both beneficial and harmful effects of the spread of opinions on disease transmission

ii



with mean-field approximations and direct numerical simulations. We also examine how

heterogeneous networks with specified interlayer and intralyer degree–degree correlations

influence the dynamics.

We then develop an opinion-dynamics model that extends the majority-vote model to

two-layer multilayer networks with community structure. We assume that neighbors from

different social relationships have different abilities to change an individual’s opinions. We

find three patterns of steady-state opinion distributions and study phase transitions in the

model with a mean-field approximation and direct numerical simulations.

Finally, we study a model of the behavior of uncontrolled loggers in the presence of

law-enforcement agencies. We assume that loggers want to maximize a profit function that

incorporates the benefit of logging, travel cost, and the the risk of capture by finding optimal

travel trajectories and optimal logging duration. We formulate the problem as a static

Hamilton–Jacobi equation, which we solve using a fast sweeping method. We use Brazilian

rainforest data and demonstrate the importance of geographically targeted patrol strategies

using numerical experiments.
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5.1 An overview of the data from PRODES [IN]. Panel (a) shows the deforestation

events between 2001 and 2015 in Roraima on top of the transportation system.

We use the highway and waterway map from OpenStreetMap [Ope17]. Dark

blue indicates rivers, white indicates major highways, and red dots indicate de-

forestation events. Panel (b) shows tree-coverage data for 2015; yellow represents

regions that are covered by trees and blue represents uncovered regions. . . . . 88

5.2 Illustration of previous work. (a) Albers’ [Alb10] model assumes a radially sym-

metric and radially symmetric functions so that extractors only move along the

radius. (b) Arnold et al. [AFJ19] generalized the model to terrains with arbi-

trary shapes and applied their generalized model to the Yosemite national park.

In both panels, the white area is pristine and the grey area is affected by criminals. 89

5.3 We show (a) logging events from 2001 to 2015 and the 15 municipalities, which we

mark with red circles and yellow dots, respectively, (b) the indicator function of

tree coverage (yellow) from 2015 PRODES data, and (c) the constructed benefit

function. We assume that deforestation events that are at least 50 kilometers

away from the major highways are logging events. We discretize the region into

a 806 × 622 grid. We construct the benefit function in panel (c) by combining

a density function with the indicator function in panel (b). We normalize the

benefit function so that the maximum benefit is 10. We construct the density

function by convolving the event count in panel (a) with a 2-D Gaussian kernel

of size 17 × 17 with a standard deviation of 20. . . . . . . . . . . . . . . . . . . 101

5.4 Speed field in the state of Roraima. The speed on major highways, secondary

highways, and waterways is 1, 0.7, and 0.4, respectively. The speed in off-highway

and off-water areas depends on the change of elevation. . . . . . . . . . . . . . . 102

5.5 Expected non-negative profit P+ when there is no control. The speed when the

loggers return depends on the amount of timber and is defined to be v(x)/(1 +

c(tlog/T )γ). The weighted profit WP is (a) 2.4091, (b) 2.3499, and (c) 2.2622. . . 104
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on regions with positive benefit. We set the proportion to be 0 on regions with
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80%, (2) 70%, (3) 60%, and (4) 50% of T . (b) Profit as a function of logging time

at each of the sampled point from panel (a). . . . . . . . . . . . . . . . . . . . . 106

5.8 (a) Capture intensity is based on distance only, with r = 1 in equation (5.16).
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CHAPTER 1

Introduction

Mathematical models, through tractable formulations and rigorous reasoning, can help us

understand the fundamental mechanisms of numerous real-world situations, including com-

plex and mysterious human behavior. Through predictions and development of intervention

strategies, these models can assist in decision-making and policy-making and help address

social issues, mitigate disease impact, boost economic growth, and even save lives. One way

to understand human behavior is by considering how humans interact with other humans,

social environments, and natural environments. In this thesis, we propose models of human

activities in two applications. In Chapters 3 and 4, we study the spread of opinions and

infectious diseases through network analysis. Chapter 5 concerns modeling illegal logging by

focusing on strategic interactions between loggers and law-enforcement agencies.

1.1 Modeling the spread of diseases and opinions on networks

The spread of infectious diseases is a major threat to human health [BC19]. Despite the im-

provement of medical technology and medical systems, the outbreak of COVID-19, Ebola,

Zika, dengue, and other diseases continually reminds us of the vulnerability of human lives.

Disease outbreaks also lead to broader social and economic consequences [MFA21]. Mean-

while, due to the ubiquity of digital and social media, the pervasive spread of opinions

(especially misinformation and disinformation) affects the mental health of people and can

jeopardize democracy and social justice [DBZ16]. This can lead to so-called infodemics, which

refer to epidemics of information [GVC20, YPH21]. Among the various efforts to combat the
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spread of pathogens and misinformation, mathematical models lie at the core of understand-

ing and forecasting spreading mechanisms and patterns [CFL09, DHB12, BCC12, KMS17].

Both the spread of infectious diseases and the spread of opinions arise from interactions

between individuals. Network models provide an intuitive framework to represent contact

patterns in a mathematically tractable way and to study spreading processes that unfold

on top of them [New18]. The study of structural properties of real-world networks (e.g.,

degree distribution, local clustering, community structure, and so on) and the emergence

and evolution of these properties is a major research effort that attracts and benefits from

researchers from many different disciplines [Est12, BP16, New18]. The influence of network

structure on dynamical processes is heavily investigated [DL94, New18]. Through empha-

sizing the importance of contact patterns and the heterogeneity of individuals, models that

incorporate network structure are more sophisticated and realistic than those that rely on

well-mixed populations. These network models are able to showcase many interesting phe-

nomena (e.g., the majority illusion [LYW16], echo chambers [CMG21] and filter bubbles

[IDC22] on social media, and super-spreader events [STW06] in disease transmission) and

suggest possible mechanisms for them. In Chapter 2, we briefly review structural analysis of

networks and dynamical processes on networks.

During the advancement of network science, researchers have realized that using sim-

ple graphs is insufficient for modeling various situations. A variety of generalizations of

traditional networks have been developed, including so-called multilayer networks [DSC13,

KAB14, Man22]. Multilayer networks consist of multiple layers of networks with different

layers representing different types of iterations. For example, one can construct a three-layer

network with the layers representing friendship/following relationships on Facebook, Insta-

gram, and Twitter, respectively. The contact patterns can be platform-dependent but are

correlated. Moreover, information can flow both within or across platforms (i.e., layers). As

another example, disease transmissions and human behavior (e.g., whether or not an indi-

vidual is complying with intervention measures) are inextricably coupled [BSP21]. Because
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people can influence others’ behavior through online contacts even if they have never physi-

cally met, it is appropriate to construct a two-layer network with both in-person and online

contacts. These examples reveal the relevance of incorporating multilayer structures when

modeling contact patterns and the importance of developing tools and theories for under-

standing such more complicated systems. In Chapters 3 and 4, we propose two models that

build on multilayer networks and study the influence of multilayer structure on dynamics.

In Chapter 2, we give a brief overview of key mathematical ideas in network science,

with a focus on definitions, tools, and models that we will use in later chapters. Starting

with structural features, we introduce important network measurements to effectively study

qualitative features of networks. We then discuss several random-graph models that we use

to generate synthetic networks with specific structural features. These models often serve as

“substrates” for simulating and studying dynamics on networks. We finish our brief review

of the structural side of network science by discussing the generalization of several concepts

to multilayer networks. In our subsequent discussion of dynamical processes on networks,

we survey classical disease models and opinion models on networks. We then discuss mean-

field approximations, which give an approach for obtaining theoretical understanding of

dynamical systems on networks.

In Chapter 3, we study a model of disease transmission coupled with opinion spreading.

During the COVID-19 pandemic, conflicting opinions on physical distancing swept across

social media, affecting both human behavior and the spread of COVID-19. Inspired by

such phenomena, we construct a two-layer multilayer network for the coupled spread of a

disease and conflicting opinions. We model each process as a contagion. On one layer,

we consider the concurrent evolution of two opinions — pro-physical-distancing and anti-

physical-distancing — that compete with each other and have mutual immunity to each

other. The disease evolves on the other layer, and individuals are less likely (respectively,

more likely) to become infected when they adopt the pro-physical-distancing (respectively,

anti-physical-distancing) opinion. We develop approximations of mean-field type by gener-
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alizing monolayer pair approximations to multilayer networks. These approximations agree

well with Monte Carlo simulations for a broad range of parameters and several network struc-

tures. Through numerical simulations, we illustrate the influence of opinion dynamics on the

spread of the disease from complex interactions both between the two conflicting opinions

and between the opinions and the disease. We find that lengthening the duration that in-

dividuals hold an opinion may help suppress disease transmission, and we demonstrate that

increasing the cross-layer correlations or intralayer correlations of node degrees may lead to

fewer individuals becoming infected with the disease. This chapter consists of work that

was done in collaboration with Zheng Lu, Vanessa Lin, Michael R. Lindstrom, Christian

Parkinson, Chuntian Wang, Andrea L. Bertozzi, and Mason A. Porter in Ref. [PLL21].

In Chapter 4, we investigate a majority-vote model [Lig85] — a type of opinion model

— on multilayer networks with community structure [POM09]. In our majority-vote model,

each layer represents one social relationship and an individual changes their opinion based

on the majority opinions of their neighbors in each layer. To capture the fact that differ-

ent relationships often have different levels of importance, we introduce a layer-preference

parameter, which determines the probability of adopting an opinion when different layers

have different majority opinions. We build our networks so that each individual is a member

of one community on each layer. Individuals tend to have more connections with people

from the same community than with people from different communities. We study how the

correlation of memberships across layers influences the formation of consensus. Through

numerical simulations, we find that when individuals who belong to the same community

in one layer tend to belong to the same community in other layer(s), different communities

may ultimately have different mean opinions. As the correlation decreases, each community

may ultimately have the same mean opinion. We develop mean-field approximations of the

dynamical system and reveal critical conditions where there is a transition between the above

two behaviors.
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1.2 Modeling illegal logging

Deforestation is a major threat to global environmental wellness [Fea05, MRB08, LV15], with

illegal logging as one of the major causes [Reb13]. Recently, there has been increased effort to

model environmental crime, with the goal of assisting law-enforcement agencies in deterring

these activities [FJT13, KFD15, FNP17, KFG17]. In Chapter 5, we present a model for

illegal logging that is applicable to regions of arbitrary geometry. We model the practice of

loggers in the presence of law-enforcement agencies using tools from multiobjective optimal

control theory and consider non-instantaneous logging events and load-dependent travel

velocity. We calibrate our model using real deforestation data from the Brazilian rainforest

and demonstrate the importance of geographically targeted patrol strategies. This chapter

consists of work that was done in collaboration with Bohan Chen, Christian Parkinson,

Andrea L. Bertozzi, Tara Lyn Slough, and Johannes Urpelainen in Ref. [CPP21].
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CHAPTER 2

Background on Structural Analysis of Networks and

Dynamical Systems on Networks

2.1 Networks

A network is a natural approach for modeling relationships between entities [New18]. The

simplest type of network is a graph G = (V,E). We also call this type of networks monolayer

networks. The entities V (e.g., humans, websites, airports, neurons, and so on) are called

nodes or vertices. The pairwise relationships E ⊆ V ×V (e.g., friendship relationships, cita-

tion relationshisp, direct flight connections, and so on) are given by edges, which connect two

vertices. In its simplest form, the existence or absence of an edge corresponds to the existence

or absence of a relationship. One can use directed edges to encode asymmetric relationships

[BG09] and associate edges with weights to model connection strengths [BBP04]. Because

networks lie at the heart of numerous complex systems (e.g., human societies, transportation

systems, neural networks, and so on), there is considerable interest in network science from

the social, physical, biological and information sciences and the development of network sci-

ence has borrowed ideas from all of these fields [Bar05, BP16, New18]. In the rest of this

section, we briefly discuss several basic network structures and representative random-graph

models that we use in Chapter 3 and Chapter 4. We then discuss multilayer networks, which

are generalizations of ordinary networks.
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2.1.1 Network structures

Network measurements can yield important insights into the functionality, history, and future

evolution of networked systems. Network structures can be described from local (e.g., nodes

and edges), global (e.g., degree distribution and diameter) and mesoscale (e.g., community

structure [POM09, FH16] and core–periphery structure [RPF17]) perspectives [New18].

The most basic measure is the degree of a node, which is defined as the number of edges

that are attached to the node. A network can have a wide range of degrees. For example,

at the time of writing this thesis, the most followed account on Twitter is @BarackObama,

which has about 130 million followers. The degree distribution, which is a probability distri-

bution P(k), describes the fraction of nodes with degree k. Alternatively, P(k) represents the

probability that a uniformly randomly chosen node has degree k. Many real-world networks

possess a heavy-tailed degree distribution [BA99, CSN09], with a small number of entities

having a large number of connections.

Node degrees are sometimes correlated with the existence or absence of edges [New18].

Many nodes in a network are connected preferentially to other nodes of similar degrees.

This pattern is called assortative mixing by degree [New02, NG03] or simply assortativity.

Conversely, networks can be mixed disassortatively by degree if large-degree nodes tend to be

adjacent to small-degree nodes. To quantify assortativity, we use a degree–degree correlation

matrix E (which is also called a mixing matrix ) that specifies the joint distribution of

degrees at both ends of an edge that we choose uniformly at random. Given a mixing

matrix E, the degree distribution is P(k) =
(∑

k′
Ek, k′

k

)/(∑
k, k′

Ek, k′

k

)
. For a network

with N nodes, the expected number of edges that connect nodes with degrees k and k′ is

Ek, k′ = Ek,k′
∑

k(kpk)N/2. In Chapter 3, we investigate how assortativity can influence the

dynamics.

One of the most commonly studied mesoscale structures is community structure [POM09,

FH16]. Loosely speaking, a community is a set of nodes in a network that are densely con-
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nected to each other and have few connections to the rest of the network [New18]. Commu-

nities are ubiquitous in social networks and biological networks. The existence of community

structures is closely related with network functionality [BP16] and can affect how opinions

and diseases spread. In Chapter 4, we generalize community structure to multilayer networks

and investigate its influence on an opinion model called the majority-vote model [Lig85].

2.1.2 Random-graph models

A random-graph model defines a distribution over possible networks in which some network

properties are fixed and the networks are random in other aspects [New18]. Random-graph

models are important tools for studying the emergence of network structures and for under-

standing dynamical processes on networks [Gre21]. In the following paragraphs, we discuss

several popular random-graph models that we use in later chapters.

The Erdős–Rényi (ER) network model [SR51, ER59, ER60, ER61] is one of the simplest

random-graph models and is sometimes called simply “the” random graph. An ER network

G(N, p) is an ensemble of networks with N nodes in which every pair of distinct nodes

is connected with uniform, independent probability p. In contrast to common observations

from real networks, the expected degree distribution of an ER network approximately follows

a Poisson distribution when N is large.

A configuration-model network [FLN18] overcomes the shortcoming of the unrealistic de-

gree distribution of the G(N, p) ER model and offers the flexibility of configuring degree

distributions. In one version of a configuration-model network, one specifies a degree se-

quence. A configuration model defines a uniform distribution over all networks with the

given degree sequence. Sometimes, we are interested in a specific degree distribution instead

of a degree sequence. In this case, we first sample degree sequences from the degree distribu-

tion of interest and then generate random graphs with the sampled degree sequences. There

are many ways to generalize configuration models. In Chapter 3, we generate networks with

degree–degree correlations using a generalized configuration-model network.
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A stochastic block model (SBM) [HLL83, Pei19] is a common generative model for intro-

ducing modules (such as communities) into networks. The simplest type of SBM generalizes

ER networks by assigning nodes to disjoint groups (e.g., communities) and sampling edges

based on group labels. More specifically, one defines a matrix P, where Pi,j represents the

probability that a node in group i is adjacent to a node in group j. The planted-partition

model is a special type of SBM with Pi,i = Pin and Pi,j = Pout for i ̸= j. In our numerical

experiments in Chapter 4, we consider Pin = 3Pout, so that nodes are much more likely to

be adjacent when they belong to the same group than when they belong to different groups.

Therefore, the constructed networks have strong community structure.

2.1.3 Multilayer networks

In most social and natural systems, the relationships between entities are time-dependent

and multiplex. To improve our understanding of such complicated systems, it is useful to

consider network structures that are more elaborate than ordinary graphs. A multilayer

network [KAB14, AM19] has layers in addition to nodes and edges; different layers encode

different types of interactions. A node can exist in one or multiple layers. The instantiation

of an entity in a layer is called a state node. The set of all state nodes of the same entity

corresponds to a physical node. In the most general form, any two state nodes can be con-

nected. The interlayer edges (i.e., edges that run across layers) introduce new structural

correlations between the layers and introduce a fundamental feature that is absent in mono-

player networks. In this thesis, we focus on a special type of multilayer networks, called

multiplex networks, in which interlayer edges can only connect state nodes that correspond

to the same physical node. Edges in different layers (i.e., intralayer edges) can form different

patterns. For example, a node can have different neighboring nodes in different layers and

the number of neighboring nodes can also be different. The patterns of edges in different

layers can depend on each other [PHP20]. There has been a lot of work on generalizing

concepts from monolayer networks to multilayer networks [AM19]. For example, a variety
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of random-graph models of multilayer networks have been proposed [KBS16, BJA20].

2.2 Dynamical processes on networks

One fundamental reason for the huge interest in network analysis is the inextricable coupling

between network structures and dynamics on networks. The importance of network struc-

tures to dynamical processes has long been recognized [DL94], and there has been extensive

research on how contact patterns can shape the spread of infectious diseases [PCV15], so-

cial dynamics [CFL09], percolation processes [LLL21], synchronization of coupled oscillators

[DB14, RPJ16], and so on. Dynamical processes can also affect the dynamics of a network

[GB08]. For example, a person may stop following a Twitter account because of disagreement

with that account’s viewpoint. Likewise, they may start to follow other accounts and even

actively retweet the content from those accounts because they share similar views. In this

thesis, we only consider time-independent networks for simplicity. However, time-evolving

networks are often a more accurate way to model real situations. To study the behavior of a

dynamical process, it is common to study them on random graphs. By simulating dynamical

processes on random graphs and real-world networks, one can observe discrepancies between

different dynamical processes and explore what network structures are essential for certain

dynamical processes.

With the importance of network structure in mind, we now discuss the modeling of

dynamical processes. One first defines a set of possible states of each node. The state of a

node can take a discrete value (e.g., individuals can be either susceptible or infected) or a

value in a continuous space (e.g., an individual’s political ideology is a real number between

−1 and 1). After assigning each node an initial state, one needs to specify how node states

update with time. The state evolution with time can be either discrete or continuous. State

changes may be spontaneous (e.g., self-recovery from illness) or arise from contacting one

or more neighbors or other sources of influence (e.g., people may change opinions because
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of media broadcasts). When making such choices, one needs to balance model complexity

and tractability. For example, modeling opinions as taking discrete values is typically an

oversimplification, but discrete-valued opinions is generally easier to analyze than continuous-

valued opinions. Therefore, we consider discrete opinion states in this thesis. We discuss

typical models of disease dynamics and opinion dynamics in Section 2.2.1 and Section 2.2.2,

respectively. In Section 2.2.3, we discuss mean-field calculations, which are commonly used

to approximate the population-level behavior of dynamical processes.

2.2.1 Disease dynamics

The mathematical modeling of the spread of infectious diseases has a long history [AM92,

PCV15, KMS17]. In the most common type of model, it is assumed that individuals are

assigned to different compartments and that people in the same compartment are in the same

state [AM92, BCC12]. For example, people can be susceptible or infected, which we denote

by S and I, respectively. Depending on the nature of the disease, people who are infected

are not necessarily infectious. However, in this thesis, we treat infected and infectious states

as the same for simplicity. The recovered or removed compartment (which we denote by

R) is another commonly used class; it includes individuals who either have recovered or

have died after contracting a disease and are thus removed from disease transmission. Other

compartments (e.g., an asymptomatic state) can also be included to make models more

realistic. Transitions between different states govern disease transmission and recovery. They

are best described as stochastic events and are often assumed to follow a Poisson process

for simplicity [Dur19]. Under this assumption, one obtains a system that possesses the

Markovian property [Lig10]. With the Markovian assumption, a continuous-time formulation

of a model of disease spread assumes that a susceptible individual contracts a disease from an

infectious neighbor at rate β, which is called the disease transmission rate. The probability

that an individual is infected by a disease depends on the number of their infectious neighbors.

It is thus important to incorporate contact patterns into models of disease spread. An
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infected individual recovers spontaneously with rate γ, which is called the recovery rate. It

is usually assumed that the transmission rate and the recovery rate are time-independent.

Classical works on disease transmission assume that the population in which the disease

spreads is fully mixed, which means that each individual has an equal probability to contact

any other individual in the population [AM92, BCC12]. In these classical models, one tracks

the evolution of the expected number of individuals in each compartment. This approach

leads to a deterministic system that can be described by a small set of coupled ordinary

differential equations (ODEs). As an example, the population-level deterministic equations

for the susceptible–infected–recovered (SIR) process [KM27] is

d

dt
[|S|] = −β[|I|][|S|] ,

d

dt
[|I|] = β[|I|][|S|] − γ[|I|] ,

d

dt
[|R|] = γ[|I|] ,

[|S|]+[|I|] + [|R|] = 1 ,

(2.1)

where we use | · | to denote cardinality and [X] = E[X]/N is the expectation of the random

variable X divided by the population size N . Equation (2.1) demonstrates one type of mean-

field approximation, which we will discuss further in Section 2.2.3. An essential question

about disease models is whether or not an epidemic outbreak will occur. From (2.1), the

early-time behavior of the I compartment is approximately I(0)e(β−γ)t; at early times, the

number of infected people grows exponentially if β/γ > 1. This observation connects the

quantity β/γ, which is the basic reproduction number for (2.1) and is commonly denoted by

R0, with the concept of an epidemic threshold. The basic reproduction number R0 measures

the mean number of secondary infections that arise from a single infectious individual in a

fully susceptible population [DHM90, BCF19]. An epidemic outbreak occurs, with a finite

fraction of an infinitely large population becoming infected, if R0 > 1. Other models of

disease spread also have epidemic outbreak thresholds and basic reproduction numbers. The
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expressions for these quantities depend on the parameters of the dynamical processes and

on the parameters of contact patterns.

In a real contact network, infected individuals may run out of susceptible neighbors and

susceptible individuals may differ in infection risk because of heterogeneity in the number

of contacts. Therefore, the assumption of a fully-mixed population is typically inadequate.

It is necessary to include a faithful representation of contact patterns to obtain a better

understanding of how diseases spread. In recent years, the pervasive use of Bluetooth, Wi-

Fi, sensors, and mobile phones [CBB10, SVB11, SSL19] and the advancement of computation

power have changed how one can measure contact and mobility networks. The availability of

abundant data have supported and advanced research on agent-based disease-transmission

models [MAP11, LAA18, ZLL20].

To incorporate contact networks, we represent each individual as a node and encode con-

tacts with edges. Each node has a state that corresponds to membership in a compartment.

For simplicity, we again assume that the system is Markovian. For example, in an SIR

process, we assume that transmission from an infected node to a susceptible node occurs

across an edge as a Poisson process with rate β that is independent of all other nodes and

an infected node recovers (or is removed) as an independent Poisson process with rate γ. It

is straightforward to simulate such a model using a Gillespie algorithm [KMS17], which is a

well-known algorithm for performing continuous-time simulations of Markov processes. The

Poisson-process assumption leads to more mathematical tractability than other general pro-

cesses but there has also been many works on studying non-Markovian disease dynamics on

networks [MGK13, RVK16, SGB17]. It is challenging to develop theoretical understanding

of network models because the state space is very high-dimensional. There have been works

that provide exact understanding of the dynamics of some models by using the Markov-chain

theory [STK11, VC12]. A mean-field approach [Kue16, KMS17], however, can be applied to

a broader range of models and provides a more general framework for studying dynamics on

networked systems. We discuss mean-field approximations in Section 2.2.3.
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Compartmental models of disease spread have also been applied to studies of many other

phenomena. There is a large body of work on the spread of social phenomena [LA18], in-

cluding the dissemination of information and the adoption of behaviors, which are often

modeled as contagion processes that are similar to disease spread [GN64, BCK06, GGA14].

See [WMA13, HL14] for discussions of when social contagions resemble and do not resemble

contagions of infectious diseases. Although the basic mechanisms for different spreading phe-

nomena can be different, interactions between peers tend to strongly influence the dynamics

that unfold on a network in all cases. By introducing ideas from classical disease models to

other fields, one can take advantage of our understanding of existing models. In Chapter

3, where we study the coupled evolution of disease and opinion dynamics, we model the

spread of opinions with a compartmental model that is similar to an SIR model. Having

both the disease dynamics and the opinion dynamics share similar mathematical descriptions

simplifies the mathematical analysis.

2.2.2 Opinion dynamics

Although compartmental models for disease transmissions are well grounded in real-life phe-

nomena, much less is known about how to best model opinion dynamics [CFL09]. How

individuals contract and recover from a disease follows a relatively simple and standard

pattern. By contrast, the possession of an opinion is extremely complicated and much is

unknown about how individuals change their opinions due to the influence of others. This

complexity poses great difficulties for modeling the “microscopic” behavior of individuals

(i.e., the mechanisms of changing opinion states). Consequently, most of the models of opin-

ion dynamics are theoretical models that rely on huge simplifications and are often justified

primarily by vague arguments; they lack empirical validation [CFL09, PKI22]. Nevertheless,

these models still add value to studying opinion dynamics. Although detailed microscopic

models are oversimplification of reality, one can still study population-level and community-

level features and hope that the models capture important factors that contribute to trends
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that we observe in real-life data. The main themes of opinion-dynamics models are the types

of interaction mechanisms that promote or hinder the formation of consensus, polarization,

fragmentation, extremist opinions, and so on [CFL09, NVT20]. We briefly discuss some of

these models.

The voter model [CS73, HL75] and its variants are among the most studied models of

opinion dynamics. In the standard voter model, each individual holds one of two opinions,

which one can label as ±1. This may describe a yes-or-no situation. At each time step, a

pair of adjacent nodes are chosen according to some random process and one node adopts

the opinion of the other. Different variants of voter models include variations in how one

chooses node pairs, the number of different opinions, and other features. Generally speaking,

voter models attempt to model the behavior of imitation, where each individual acts under

the pressure of their neighbors. There have been many attempts to generalize or modify the

voter model to make it more realistic [Red19]. Some variants include the incorporation of

zealots [Mob03, MG05], multi-state opinion spaces [VKR03, CES06], memory [DC07], and

inertia [STS08].

Different from standard voter models, which incorporate a local majority opinion in an

average sense, the majority-vote model [Lig85] employs an explicit majority rule. At each

time step, a uniformly randomly chosen node adopts the majority opinion of its neighbors

with probability 1− f and adopts the minority opinion with probability f , where f is called

the noise parameter. If there is no majority opinion, which can occur if a node’s neighborhood

has an even number of nodes, the focal node adopts one of the two opinions with an equal

probability. There is an order–disorder phase transition at a critical value fc of the noise

parameter [Oli92]; this value depends on network structure [COM03, PM05, LSS08]. A

different model with a similar name is the majority-rule model [Gal02], which instead assumes

that a group of nodes are chosen and that all members of that group adopt the majority

opinion of that group. Another interesting model [KLT08] interpolates between a standard

voter model and the majority-vote model; it assumes that a node adopts an opinion if at
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least a fraction p of its neighbors have that opinion.

The models that we have mentioned thus far assume that opinions take discrete values.

This assumption is valid in some applications, but it is inadequate in others. For example,

when we describe the political position of a person, instead of classifying them as either

on the Left or on the Right, it is often better to incorporate positions that lie between

these extremes. In mathematical language, we let the opinion space in this example consist

of an interval of numbers. An important concept that is commonly used in continuous-

opinion dynamics models is bounded confidence [NVT20]. The idea is that two individuals

will not influence each other unless their opinions are close enough to each other. Two

well-known bounded-confidence models are the Deffuant–Weisbuch model [DNA00] and the

Hegselmann–Krause model [HK02].

2.2.3 Mean-field approximations

Due to the high dimensionality of networked systems, theoretical analysis of dynamical pro-

cesses on networks often relies on mean-field approximations [PCV15], which focus on ex-

amining the dynamics of expectations of population-scaled quantities. Many approximation

methods have been developed for dynamics on monolayer networks (i.e., ordinary graphs)

[KMS17]. Examples of approaches include edge-based compartmental modeling [MSV12],

pair approximations [KRM97], effective-degree approximations [LMD11], and approximate

master equations [Gle11, Gle13]. The essence of a mean-field approximation is to find appro-

priate course-grained quantities of a system (e.g., the number of nodes in each compartment

in a model of disease spread) and develop differential equations that describe the evolution

of mean values of these quantities. These equations are also called rate equations or mo-

ment equations. When a system of coupled differential equations is high-dimensional (even

infinite-dimensional), one uses moment closure [Kue16] to approximate higher-order quan-

tities with lower-order quantities to close the system [KMS17]. Different methods can track

the evolution of different quantities, rely on different assumptions, and achieve results with
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different levels of accuracy. In Chapter 3, we use a pair approximation [KRM97], with which

we track the expected number of nodes and edges grouped by degrees and compartments.

The dimension of the resulting system of equations scales as K3, where K is the number of

different node degrees. Because K is typically large, the system of equations is very high-

dimensional. We rely on numerical methods to solve this system, and it is very hard to study

such high-dimensional systems analytically. A key advantage, however, is that the mean-field

approach can handle networks with any degree distribution and networks with degree–degree

correlations. By contrast, we use a much less granular approximation in Chapter 4. In this

approximation, we ignore the degree heterogeneity and only track the expected number of

nodes based on their communities and opinions. Because the number of communities in a

network is usually much smaller than the number of different nodes degrees, we obtain a

small system that allows analytical study of steady states and phase transitions.
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CHAPTER 3

Modeling the Coevolution of the Spread of a Disease

and Competing Opinions

This chapter is adapted from an original paper [PLL21] that I co-authored with Zheng

Lu, Vanessa Lin, Michael R. Lindstrom, Christian Parkinson, Chuntian Wang, Andrea L.

Bertozzi and Mason A. Porter.

3.1 Introduction

Since the outbreak of coronavirus disease 2019 (COVID-19), researchers in numerous disci-

plines have used diverse approaches to analyze the spread of the disease, forecast its subse-

quent spread under many scenarios, and investigated strategies to mitigate it [Est20, BBC20,

Ari22]. As cases of COVID-19 escalated, collective compliance with non-pharmaceutical in-

tervention (NPI) measures were vital for dealing with the COVID-19 pandemic in the absence

of effective treatments, vaccines [Per21]. As information — some of which was accurate and

some of which was not — flooded social media [GVC20, YPH21], people adopted different

opinions about the implementation of NPI measures [ANS21]. These opinions affect human

behavior and ultimately also the spread of diseases.

It is important to understand the influence of human behavior on the spread of diseases

because these two processes are inextricably coupled [VWB16, BSP21]. Past research has

examined whether the spread of information can help contain an epidemic (e.g., through

decreased transmission rate, fewer contacts, and/or acquired immunity) by leading to a
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smaller disease prevalence and/or a smaller basic reproduction number (and hence a reduced

probability of a large disease outbreak) [FSJ10, WAW15]. However, as has been striking

during the COVID-19 pandemic [Zar20], how people act on information (and misinformation

and disinformation) can also have a negative impact on disease propagation; this undermines

the potential benefits of information. For example, there have been many anti-physical-

distancing rallies in which protesters flout behavioral intervention measures such as wearing

masks and practicing physical distancing. Moreover, such large gatherings can directly cause

surges of infections [Gab20].

Motivated by the mixed effects of information and opinion spreading, we study a model in

which disease transmission is influenced by two opposing opinions: pro-physical-distancing

(which we sometimes write simply as “pro” as a shorthand) and anti-physical-distancing

(which we sometimes write as “anti”). Following Ref. [GGA14], we consider a two-layer

multiplex network. We model the simultaneous evolution of two competing opinions on

one layer of a multiplex network as a contagion process of either susceptible–infectious–

recovered (SIR) [KM27] or susceptible–infectious–recovered–susceptible (SIRS) form, with

opinion adoption that occurs between susceptible and infectious individuals. Similar models

have been proposed for studying competing diseases [KN11, Mil13] and ideas [WXL12]. A

disease spreads on the other layer (a physical layer) of the multiplex network; the connections

in this physical layer encode in-person social contacts. The disease transmission rate depends

on the opinions of the individuals.

In our model, we investigate which opinion has greater influence, which we evaluate based

on the disease’s final epidemic size (i.e., the number of individuals who catch the disease

during the disease outbreak). We generate networks using configuration-model networks

[FLN18] and their extensions [MPM14]. We demonstrate complex interactions between the

two opinions and (because of ensuing behavioral changes, which lead to changes in the

physical layer) between the opinions and the disease. We explore how the influence of

opinions is affected by various factors, including opinion-contagion parameters and network

19



structures.

We derive a mean-field description of our multilayer dynamical system for the expected

values of population-scale quantities. We use a degree-based pair approximation [EK02] and

generalize it to our multiplex system. As we discussed in Section 2.2.3, in a pair approxi-

mation, one examines the various types of pairs in a system and approximates higher-order

structures using moment closure [Kue16]. Our approximation scheme incorporates dynam-

ical correlations both within and across the layers of a multiplex network. To capture the

influence of opinions on individuals’ susceptibility to a disease, we also define effective trans-

mission rates that are time-dependent functions of the distribution of opinions in populations

of interest. We develop approximations of the effective transmission rates based on the num-

bers of various types of pairs. Our numerical simulations reveal that our approximate system

is able to capture the influence of the spread of opinions on disease spread for population-

scale quantities. We find that the time evolution of the expected numbers of individuals in

different states in our pair approximation match very well with simulations on a variety of

networks with different degree distributions and degree–degree correlations.

This chapter proceeds as follows. In Section 3.2, we briefly discuss prior work. We present

our first model in Section 3.3. In this model, both the spread of the disease and the spread

of opinions follow an SIR process. In Section 3.4, we assume that the SIR process occurs

in a fully-mixed population, yielding a description of our system in terms of a small set of

coupled ODEs. In this ODE system, we observe some influence of opinion dynamics on the

spread of the disease, but this framework does not include the effects of social contacts. In

Section 3.5, we incorporate social contact structures between individuals to yield a dynamical

system on a network. We derive a pair approximation for this network model. In Section 3.6,

we conduct stochastic simulations of this network model to investigate the influence of the

contagion parameters and network structures on the dynamics of the system. In Section 3.7,

we generalize our dynamical system by considering an SIRS process for opinion spreading.

We conclude in Section 3.8.
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3.2 Related work

To give further context for our work, we briefly mention prior investigations on the co-

evolution of diseases with behavior, awareness, and/or opinions on multilayer networks

[WAW15, VWB16]. In particular, many researchers have examined how the spread of aware-

ness can suppress the spread of a disease. Funk et al. [FGW09] developed a coevolution

model in which individuals acquire different levels of awareness of a disease either by be-

coming infected or by communicating with their neighbors. In their model, individuals are

less susceptible to infection by a disease when they have a higher level of awareness. Sub-

sequently, Funk et al. [FGJ10] simplified the above model so that individuals are either

aware or unaware of a disease, in analogy to the infectious and susceptible states (i.e., “com-

partments”) of a traditional susceptible–infectious–susceptible (SIS) model of disease spread

[BCF19]. A similar model was proposed by Granell et al. [GGA13, GGA14]. Subsequent

research has generalized these ideas by modeling the spread of the disease and informa-

tion using other dynamical systems, such as by modeling disease spread with an SIR model

[WTY14] and modeling information transmission with a threshold model [GJL15, GLJ16]

or a generalized Maki–Thompson rumor model [SVC19]. Other works have examined the

influence of global information and mass media [GGA14, QXU20], the relative speeds of

the dynamics of information spread and disease spread [SVC19, VVC20], and heterogeneous

risk perceptions of disease spread [PY18, YZR20]. Researchers have also incorporated time-

varying networks when studying the combined spread of disease and information, such as by

coupling an activity-driven information layer with a time-independent disease layer [GLJ16]

or a time-independent information layer with an adaptive physical layer [PZ21]. Addition-

ally, evolutionary game theory has been used to study decision-making in the presence of

government-mandated interventions, socioeconomic costs, socioeconomic costs, perceived in-

fection risks, and social influence [YZR21].

Several recent works have examined competing opinion dynamics. Johnson et al. [JVR20]
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studied the evolution of anti-vaccine and pro-vaccine clusters of people on Facebook. She

et al. [SLS22] examined an opinion model with continuous-valued opinions to study the

beliefs of different communities about the severity of disease spread with both cooperative

and antagonistic opinion spreading. Epstein et al. [EHC21] used compartmental models to

study the fear of infection and the fear of vaccines. Johnston and Pell [JP20] examined the

fear of infection and frustration with physical distancing.

3.3 Our model

We study the spread of a disease and two competing opinions on a two-layer multiplex net-

work with one physical layer (where the disease spreads) and one information layer (where

opinions spread). We assume that all individuals are present in both layers, and we ignore

demographic processes such as birth, death, and migration. We model each layer as an

undirected, unweighted, simple graph; we couple the two layers to each other by connecting

nodes that correspond to the same individual. Intralayer edges encode in-person contacts

in the physical layer and information-exchange channels (especially on social media) in the

information layer. In Section 3.6, we give further details about the network structure and

we explore the influence of interlayer and intralayer structure on opinion and disease dynam-

ics. In Sections 3.3–3.6, we use SIR dynamics for each process and associate nodes in the

physical layer with individuals’ health states and nodes in the information layer with their

opinions about physical distancing. In Section 3.7, we extend our model by modeling the

spread of opinions as an SIRS process. In all versions of our model, we treat each process

as a continuous-time Markov chain. We detail how the disease-spread and opinion-spread

processes operate and interact in Sections 3.3.1 and 3.3.2. In Table 3.1, we summarize the

key parameters of our model.
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Table 3.1: Key parameters in our model of coupled opinion adoption and disease spread. In (a), the first

column gives the parameters of the opinion dynamics that are related to pro-physical-distancing and the

second column gives the parameters that are related to anti-physical-distancing. We use the subscript “info”

when the two opinions share parameters; we indicate these parameters in the third column. In (b), each

column indicates the parameters of the disease dynamics when individuals adopt the corresponding opinions.

(a) Parameters for dynamics (of opinion adoption) on the information layer

Pro Anti Shared by pro and anti
Transmission rate βpro βanti βinfo
Recovery rate γpro γanti γinfo
Immunity-loss rate τ

(b) Parameters for dynamics (of disease spread) on the physical layer
``````````````̀Parameter

Opinion
U or Rinfo A P

Transmission rate βphy αantiβphy αproβphy
Recovery rate γphy

3.3.1 Information layer

Two competing social contagions, which model pro-physical-distancing and anti-physical-

distancing opinions, spread concurrently on the information layer. We use P (respectively, A)

to denote the pro-physical-distancing (respectively, anti-physical-distancing) state in which

individuals both adopt the associated opinion and actively advocate the corresponding be-

havior. Uninformed (U) individuals are susceptible to both opinions and transition to state

P or state A at rates of βpro and βanti, respectively, by communicating with neighbors in the

corresponding states. We suppose that people who adopt either behavior can become weary

of acting unusually in comparison with life without a disease epidemic, and they then become

less passionate about maintaining their current conduct. We assume that individuals in state

P and state A transition to the recovered (Rinfo) state at rates of γpro and γanti, respectively.

After this transition occurs, these individuals practice the same behavior as individuals in

the uninformed group, but they are resistant to future influence from neighbors. When the

two opinions share the same parameters, we use the subscript “info” (see Table 3.1). We
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make the assumption of permanent mutual immunity [KN11]: once an uninformed individual

adopts one opinion, it can no longer be influenced by the other opinion. Therefore, upon

recovery, it enters state Rinfo. Because the pro- and anti-physical-distancing opinions are

opposing opinions, it is reasonable to assume that individuals do not adopt both behaviors

simultaneously. We relax the assumption of permanent immunity in Section 3.7. In Figure

3.1, we show a compartment flow diagram of the opinion dynamics.

Figure 3.1: Schematic illustration of the (opinion-spreading) dynamics on the information layer of a two-layer

multiplex network. There are four states in the information layer: uninformed (U), pro-physical-distancing

(P ), anti-physical-distancing (A), and recovered (Rinfo). Nodes in state U transition to state P (respectively,

A) with a rate of βpro (respectively, βanti) by communicating with neighbors in state P (respectively, A). We

use “+P” (respectively, “+A”) to emphasize that state transitions occur under the influence of neighbors in

P (respectively, A). Nodes in state P (respectively, A) transition to state Rinfo at a rate of γpro (respectively,

γanti).

3.3.2 Physical layer

We model the spread of a contagious disease on the physical layer as an SIR-like process.

The key difference from a standard SIR contagion is that susceptible nodes have transmission

rates that depend on their opinion states [FGW09, GGA13]. We divide susceptible nodes

into three types: (1) nodes that do not hold any opinion (i.e., their opinions are in state

U or state Rinfo) experience the baseline transmission rate βphy; (2) nodes that hold the

pro-physical-distancing opinion experience a reduced transmission rate βphy, pro = αproβphy,

with αpro ≤ 1; and (3) nodes that hold the anti-physical-distancing opinion experience an
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increased transmission rate βphy, anti = αantiβphy, with αanti ≥ 1. We refer to αpro and αanti

as “influence coefficients”. To model the effects of competing opinions on disease spread, it

seems appropriate to study an adaptive network [PG16] in which structure coevolves with

node states. For example, individuals who hold an anti-physical-distancing opinion may

have more contacts than other people. However, it is difficult to analyze such a model.

Therefore, for simplicity, we assume that individuals who hold the anti-physical-distancing

opinion in our model have a higher risk of contracting the disease than the baseline through

a higher transmission rate. We make an analogous assumption for individuals that hold the

pro-physical-distancing opinion. Infected individuals (which we assume to be the same as

infectious individuals) recover at rate γphy. We show the compartment flow diagram of the

disease dynamics in Figure 3.2.

Figure 3.2: Schematic illustration of the (disease-spreading) dynamics on the physical layer of a two-layer

multiplex network. There are three states in the physical layer : susceptible (S), infectious (I), and recovered

(Rphy). Based on the opinion states of the node, we further divide the S state into PS, AS, and US/RS.

Nodes in state S transition to state I through in-person social contacts with infectious neighbors (which we

emphasize with “+I”), with rates that we mark close to the corresponding arrow. Nodes in state I recover

at a rate of γphy.

Combining the dynamics on the two layers, we use two letters to describe the full profile of

an individual; the first one indicates a node’s opinion state, and the second one indicates its

disease state. To simplify our notation, we also drop the subscript for the R compartment, as

the order of the two letters in a state already indicates whether we are referring to the opinion
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state or the disease state. There are a total of 12 possible states (i.e., compartments). We

show the complete compartment flow diagram for our model in Figure 3.3. For convenience,

we use the same notation for the state of a node and the set of nodes in a specified state

throughout this chapter.

�pro

�pro

�pro

�anti

�anti

�anti

�phy

�phy

↵pro�phy

↵anti�phy�pro

�pro

�pro

�anti

�anti

�anti

�phy

�phy

�phy

�phy

US

PS

UI

PI

UR

PRAS

AI

AR

RS

RI

RR

+I

+I

+I

+I

+P

+P

+P

+A

+A

+A

Opinion Dynamics

Pro-opinion infection
Anti-opinion infection
Pro-opinion recovery
Anti-opinion recovery

Disease Dynamics

Disease infection
Disease recovery

U → P → R

S → I → R

U → A → R

Figure 3.3: Schematic illustration of our model which has dynamics on both information and physical layers.

The disks indicate the possible states (i.e., compartments) of a node. In each state, the first letter (U , P , A,

or R) indicates the opinion state and the second letter (S, I, or R) indicates the disease state. The arrows

mark the possible state transitions.
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3.4 Dynamics for a fully-mixed population

We first study our model in a fully-mixed population, which yields a small set of coupled

ODEs [BCF19]. We ignore contact patterns in both the information layer and the physical

layer. Additionally, in each small time interval, we assume that each node interacts with other

nodes in the same layer uniformly at random. We refer to this assumption as the “random-

mixing assumption”. In each time interval, we also assign each node in one layer to a

counterpart node in the other layer uniformly at random (without replacement). We refer to

this assumption as the “random-recoupling assumption”. Recall that we use [X] = E[X]/N

as the shorthand notation for the expectation of the random variable X divided by the

population size N . Using the law of mass action, we obtain the following population-level

dynamics:

d

dt
[|U |] = −βpro

N
[|U | × |P |] − βanti

N
[|U | × |A|] ,

d

dt
[|P |] =

βpro
N

[|U | × |P |] − γpro[|P |] ,

d

dt
[|A|] =

βanti
N

[|U | × |A|] − γanti[|A|] ,

d

dt
[|Rinfo|] = γpro[|P |] + γanti[|A|] , (3.1)

d

dt
[|S|] = −β

∗

N
[|S| × |I|] ,

d

dt
[|I|] =

β∗

N
[|S| × |I|] − γphy[|I|] ,

d

dt
[|Rphy|] = γphy[|I|] ,

where we use | · | to denote cardinality and

β∗ = ([|P |]αpro + [|A|]αanti + 1 − [|A|] − [|P |])βphy .
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The first four equations in (3.1) describe the opinion dynamics. Uninformed nodes may adopt

the pro- or anti-physical-distancing opinions by interacting with a node in the corresponding

state. If a node adopts an opinion, it then can spread that opinion to its neighbors. The last

four equations in (3.1) describe disease dynamics as a variant of the standard SIR model.

The quantity β∗ is the effective transmission rate; it depends on the relative prevalence of

nodes in states P and A. To close the system, we approximate the expectations of products

with the products of expectations. For example,

1

N
[|U | × |P |] ≈ [|U |] × [|P |] .

This provides a good approximation when N is large. Henceforth, we omit | · | to simplify

our notation.

Consider the special case in which the transmission rate βpro, recovery rate γpro, and

initial population proportion of the pro-physical-distancing opinion are the same as the

corresponding parameters for the anti-physical-distancing opinion. In this case, the effective

transmission rate is β∗ = ([P ](αanti + αpro − 2) + 1)βphy. Because [P ] ≥ 0, it follows that

β∗ ≥ βphy if and only if αanti +αpro ≥ 2. Therefore, if αanti +αpro > 2, the spread of opinions

always leads to more individuals infected with the disease. If αanti + αpro = 2, the opinion

dynamics has no effect on disease spread. This conclusion relies on the random-recoupling

assumption, which implies that the information-layer counterpart of any physical-layer node

is equally likely to be in any given opinion state. Because individuals hold an opinion for

some time, the sign of αanti + αpro − 2 alone does not determine whether the influence of

opinions leads to more infections or fewer infections when we consider the effects of network

structure in Section 3.6.

Recall that the epidemic threshold in a standard SIR model of disease spread is charac-

terized by the basic reproduction number R0 = β/γ. An epidemic outbreak of the disease

occurs if R0 > 1. In our model, suppose that we start with a population in which most peo-
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ple are susceptible and uninformed about the disease. In this case, β∗ is close to β. In the

limit in which the population becomes infinite with a vanishing fraction of people initially

holding any opinion, the epidemic threshold is the same as in the standard SIR model and it

is independent of the information layer. However, this conclusion does not hold if too many

individuals hold some opinions about the disease at time 0.

Although an information contagion may not affect the epidemic threshold for the spread

of a disease, it can still have a large impact on the disease’s prevalence if an epidemic

outbreak occurs. In Figure 3.4, we show an illustrative example to demonstrate how the

information layer can affect the spread of a disease. For simplicity, we suppose that the pro-

and anti-physical-distancing opinions share the same contagion parameters. Figure 3.4(a)

shows an example in which we fix the parameters in the physical layer (on which the disease

spreads) and investigate the effect of the opinion recovery rate on the final epidemic size

(i.e., the total number of people who become infectious during the outbreak). Because we

fix βinfo = 2, the opinion contagion grows into an outbreak if γinfo is less than approximately

2. Consequently, all curves for the final epidemic size converge to the same value when γinfo

is at least approximately 2. To assist our exposition, we use the term “basic size” to indicate

the final epidemic size when the disease spreads independently of opinions. Because the

effective transmission rate β∗ satisfies β∗ ≥ βphy, we expect the final epidemic size to be no

smaller than the basic size.

The final epidemic size is affected by the prevalence of the nodes in states P and A and

the relative spreading speeds of the opinions and the disease. As we increase γinfo in Figure

3.4(a), the final epidemic size tends to decrease, but it grows at first before decreasing to the

basic size. To understand this, we compare the spreading dynamics on the two layers (see

Figures 3.4(b) and 3.4(c)). Increasing γinfo leads to a reduction in the number of people in

states P and A, which reduces the adverse influence from the information layer and results in

fewer people becoming infected. Increasing γinfo also postpones the time that it takes for the

physical layer to achieve herd immunity. Specifically, it takes longer for the I compartment
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to reach its maximum size. We also see that increasing γinfo from 1 to 1.5 shortens the time

difference between the opinion-prevalence peak and the disease-prevalence peak. As the two

peaks become closer to each other, we observe transient growth in Figure 3.4(a). When we

change the initial numbers of individuals in states A and P while fixing the initial numbers

of individuals in state I in Figure 3.4(a), we effectively change the relative starting times of

the opinion dynamics versus the disease dynamics, leading to differences between the curves.

3.5 Dynamics on a population with network structure

The random-mixing assumption and the random-recoupling assumption in Section 3.4 ignore

contact patterns and oversimplify the dynamics of the spread of opinions and diseases. In real

life, both in-person contacts and online interactions have intricate structural patterns that

are far from homogeneous [New18]. Moreover, the random-recoupling assumption mixes

the effects of the pro- and anti-physical-distancing opinions in a naive way and leads to

features that contradict what we observe in individual-level simulations. Consequently, it is

necessary to differentiate between different opinion states within the susceptible population

and analyze the dynamics of the 12 compartments in Figure 3.3. Starting in this section, we

incorporate network structure into our model and study the resulting dynamics in detail.

We develop a mean-field description of our system by generalizing the degree-based pair

approximation model of Eames and Keeling [EK02] to our system of coupled opinion and

disease dynamics. We assume that all nodes with the same degree are statistically equivalent,

and we estimate the expected number of nodes and the expected number of dyads (i.e., pairs

of nodes that are attached to the same edge) for each degree and each compartment [KMS17]

using a closure model. We examine the dynamics of the spread of opinions and a disease

using a mean of an ensemble of networks [PCV15, PG16]. We first develop an exact ODE

system that involves single, pair, and triple terms based on the law of mass action. This

system also depends on a set of time-dependent effective transmission rates. We close the
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(a) Final epidemic size

(b) Information layer

(c) Physical layer

Figure 3.4: The influence of the information layer on the physical layer depends on the opinion recovery

rates. (a) Effects of γinfo on the final epidemic size for different initial conditions. For simplicity, we suppose

that the pro- and anti-physical-distancing opinions share the same contagion parameters for all examples

in the chapter. That is, βanti = βpro (which we denote by βinfo), γanti = γpro (which we denote by γinfo),

and A0 = P0, where A0 = [A](0) and P0 = [P ](0). In the physical layer, we uniformly randomly infect a

fraction I0 = [I](0) = 1 × 10−6 of the population; the rest of the population starts in the susceptible state.

The other parameters are βphy = 1, γphy = 0.5, αpro = 0.1, αanti = 10, and βinfo = 2. To help explain the

non-monotonic curve in panel (a), we fix P0 = A0 = 1× 10−6 and examine different values of γinfo. We show

the ensuing dynamics of the fraction of the population in states P and Rinfo in panel (b) and the fraction of

the population in states I and Rphy in panel (c).

system by approximating triple terms and the effective transmission rates using pair terms.

The number of equations in the system depends on the number of distinct degrees and is

independent of the population size.
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3.5.1 Our dynamical system at the level of triples

Recall that we use two adjacent letters Y X to describe the state (i.e., compartment) of

an individual, where the first letter indicates the information layer and the second letter

indicates the disease layer. The two intralayer degrees of a node are its numbers of neighbors

in the two layers. We are interested only in intralayer degrees, so we treat our multiplex

networks as edge-colored multigraphs [KAB14]. We use Yk1Xk2 to refer to nodes in state

Y X with degree k1 in the information layer and degree k2 in the physical layer. We write the

expected density of these nodes as [Yk1Xk2 ]. To simplify our notation, we drop subscripts to

indicate summation over all possible degrees. For example, [Y Xk2 ] =
∑

k1
[Yk1Xk2 ]. For ease

of notation, we also use one letter and thereby specify the state only in that layer when the

context is clear. For example, Sk2 refers to susceptible nodes with degree k2 in the physical

layer and [Sk2 ] refers to the expected density of these nodes.

To track the states of the neighbors of a node, we write the expected normalized count

of the dyads of nodes with states S1 and S2 as [S1 ◦ S2], where ◦ denotes an edge and the

normalized count is the number of dyads divided by the population size. The layer of a dyad

is clear from the context. For example, [Uk1Sk2 ◦I] represents the expected normalized count

of dyads in the physical layer for which one end is attached to a Uk1Sk2 node and the other

end is attached to an infectious node.

Given the above notation and definitions, the time evolution of the expected density of

each compartment is

d

dt
[Uk1Sk2 ] = −[Uk1Sk2 ◦ I]βphy − [Uk1Sk2 ◦ A]βanti − [Uk1Sk2 ◦ P ]βpro ,

d

dt
[Uk1Ik2 ] = [Uk1Sk2 ◦ I]βphy − [Uk1Ik2 ]γphy − [Uk1Ik2 ◦ A]βanti − [Uk1Ik2 ◦ P ]βpro ,

d

dt
[Uk1Rk2 ] = [Uk1Ik2 ]γphy − [Uk1Rk2 ◦ A]βanti − [Uk1Rk2 ◦ P ]βpro ,

d

dt
[Ak1Sk2 ] = −[Ak1Sk2 ◦ I]βphyαanti + [Uk1Sk2 ◦ A]βanti − [Ak1Sk2 ]γanti ,

32



d

dt
[Ak1Ik2 ] = [Ak1Sk2 ◦ I]βphyαanti − [Ak1Ik2 ](γphy + γanti) + [Uk1Ik2 ◦ A]βanti ,

d

dt
[Ak1Rk2 ] = [Ak1Ik2 ]γphy + [Uk1Rk2 ◦ A]βanti − [Ak1Rk2 ]γanti ,

d

dt
[Pk1Sk2 ] = −[Pk1Sk2 ◦ I]βphyαpro + [Uk1Sk2 ◦ P ]βpro − [Pk1Sk2 ]γpro ,

d

dt
[Pk1Ik2 ] = [Pk1Sk2 ◦ I]βphyαpro − [Pk1Ik2 ](γphy + γpro) + [Uk1Ik2 ◦ P ]βpro ,

d

dt
[Pk1Rk2 ] = [Pk1Ik2 ]γphy + [Uk1Rk2 ◦ P ]βpro − [Pk1Rk2 ]γpro ,

d

dt
[Rk1Sk2 ] = −[Rk1Sk2 ◦ I]βphy + [Ak1Sk2 ]γanti + [Pk1Sk2 ]γpro ,

d

dt
[Rk1Ik2 ] = [Rk1Sk2 ◦ I]βphy − [Rk1Ik2 ]γphy + [Ak1Ik2 ]γanti + [Pk1Ik2 ]γpro . (3.2)

To illustrate the equations in (3.2), we briefly discuss one of them. In the first equation, the

expected number of Uk1Sk2 nodes decreases as the nodes become infectious or adopt one of

the two opinions. The infection rate is proportional to the number of infectious neighbors (or,

equivalently, to the number of Uk1Sk2 ◦Il dyads). We do not track the opinion states of those

infectious neighbors because we assume that those opinions do not affect the transmission

rate of the Uk1Sk2 nodes. The same reasoning applies to the other dyads.

We expand the right-hand side of the system (3.2) by tracking the dynamics of node

pairs, which depend on the neighbors of both nodes and thus involve triples. Let [X ◦Y ◦Z]

denote the expected normalized count of triples in which the center node Y is adjacent to X

and to Z. Analogously to the normalized count of a dyad, we define the normalized count

of a triple to be the number of triples divided by the population size. The two edges may

belong to the same layer or to different layers; this is clear from the context. For example,

Uk1Sk2 ◦ Sl ◦ I refers to triples in which the center node Sl has physical-layer neighbors with

states Uk1Sk2 and I. Additionally, P ◦Uk1Sk2 ◦ Il refers to triples in which one edge connects

Uk1Sk2 and P nodes in the information layer and the other connects Uk1Sk2 and Il nodes

in the physical layer. We now write the evolution of the expected normalized count of the
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dyads in terms of triple terms:

d

dt
[Uk1Sk2 ◦ Il] = [Uk1Sk2 ◦ Sl ◦ I]β̂l, k2 − ([Uk1Sk2 ◦ Il] + [I ◦ Uk1Sk2 ◦ Il])βphy

− [Uk1Sk2 ◦ Il]γphy − [P ◦ Uk1Sk2 ◦ Il]βpro − [A ◦ Uk1Sk2 ◦ Il]βanti ,
d

dt
[Uk1Sk2 ◦ Sl] = −[Uk1Sk2 ◦ Sl ◦ I]β̂l, k2 − [I ◦ Uk1Sk2 ◦ Sl]βphy

− [P ◦ Uk1Sk2 ◦ Sl]βpro − [A ◦ Uk1Sk2 ◦ Sl]βanti ,
d

dt
[Uk1Sk2 ◦ Al] = −[P ◦ Uk1Sk2 ◦ Al]βpro − [Uk1Sk2 ◦ Al]γanti − [I ◦ Uk1Sk2 ◦ Al]βphy

+ ([Uk1Sk2 ◦ Ul ◦ A] − [Uk1Sk2 ◦ Al] − [A ◦ Uk1Sk2 ◦ Al])βanti ,
d

dt
[Uk1Sk2 ◦ Pl] = −[A ◦ Uk1Sk2 ◦ Pl]βanti − [Uk1Sk2 ◦ Pl]γpro − [I ◦ Uk1Sk2 ◦ Pl]βphy

+ ([Uk1Sk2 ◦ Ul ◦ P ] − [Uk1Sk2 ◦ Pl] − [P ◦ Uk1Sk2 ◦ Pl])βpro ,
d

dt
[Uk1Sk2 ◦ Ul] = −([P ◦ Uk1Sk2 ◦ Ul] + [Uk1Sk2 ◦ Ul ◦ P ])βpro − [I ◦ Uk1Sk2 ◦ Ul]βphy

− ([A ◦ Uk1Sk2 ◦ Ul] + [Uk1Sk2 ◦ Ul ◦ A])βanti ,

d

dt
[Uk1Ik2 ◦ Al] = ([Uk1Ik2 ◦ Ul ◦ A] − [A ◦ Uk1Ik2 ◦ Al])βanti − [P ◦ Uk1Ik2 ◦ Al]βpro

+ [I ◦ Uk1Sk2 ◦ Al]βphy − [Uk1Ik2 ◦ Al](γphy + γanti + βanti) ,

d

dt
[Uk1Ik2 ◦ Pl] = ([Uk1Ik2 ◦ Ul ◦ P ] − [P ◦ Uk1Ik2 ◦ Pl])βpro − [A ◦ Uk1Ik2 ◦ Pl]βanti

+ [I ◦ Uk1Sk2 ◦ Pl]βphy − [Uk1Ik2 ◦ Pl](βpro + γphy + γpro) ,

d

dt
[Uk1Ik2 ◦ Ul] = [I ◦ Uk1Sk2 ◦ Ul]βphy − ([A ◦ Uk1Ik2 ◦ Ul] + [Uk1Ik2 ◦ Ul ◦ A])βanti

− ([Uk1Ik2 ◦ Ul ◦ P ] + [P ◦ Uk1Ik2 ◦ Ul])βpro − [Uk1Ik2 ◦ Ul]γphy ,
d

dt
[Uk1Rk2 ◦ Al] = [Uk1Ik2 ◦ Al]γphy − [Uk1Rk2 ◦ Al]γanti − [P ◦ Uk1Rk2 ◦ Al]βpro

+ ([Uk1Rk2 ◦ Ul ◦ A] − [Uk1Rk2 ◦ Al] − [A ◦ Uk1Rk2 ◦ Al])βanti ,
d

dt
[Uk1Rk2 ◦ Pl] = [Uk1Ik2 ◦ Pl]γphy − [Uk1Rk2 ◦ Pl]γpro − [A ◦ Uk1Rk2 ◦ Pl]βanti

+ ([Uk1Rk2 ◦ Ul ◦ P ] − [Uk1Rk2 ◦ Pl] − [P ◦ Uk1Rk2 ◦ Pl])βpro ,
d

dt
[Uk1Rk2 ◦ Ul] = [Uk1Ik2 ◦ Ul]γphy − ([Uk1Rk2 ◦ Ul ◦ A] + [A ◦ Uk1Rk2 ◦ Ul])βanti
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− ([Uk1Rk2 ◦ Ul ◦ P ] + [P ◦ Uk1Rk2 ◦ Ul])βpro ,
d

dt
[Ak1Sk2 ◦ Il] = [A ◦ Uk1Sk2 ◦ Il]βanti − [Ak1Sk2 ◦ Il](γphy + γanti + βphyαanti)

+ [Ak1Sk2 ◦ Sl ◦ I]β̂l, k2 − [I ◦ Ak1Sk2 ◦ Il]βphyαanti ,

d

dt
[Ak1Sk2 ◦ Sl] = −[Ak1Sk2 ◦ Sl ◦ I]β̂l, k2 − [I ◦ Ak1Sk2 ◦ Sl]βphyαanti

+ [A ◦ Uk1Sk2 ◦ Sl]βanti − [Ak1Sk2 ◦ Sl]γanti ,
d

dt
[Pk1Sk2 ◦ Il] = [P ◦ Uk1Sk2 ◦ Il]βpro − [Pk1Sk2 ◦ Il](γphy + γanti + βphyαpro)

+ [Pk1Sk2 ◦ Sl ◦ I]β̂l, k2 − [I ◦ Pk1Sk2 ◦ Il]βphyαpro ,

d

dt
[Pk1Sk2 ◦ Sl] = −[Pk1Sk2 ◦ Sl ◦ I]β̂l, k2 − [I ◦ Pk1Sk2 ◦ Sl]βphyαpro

+ [P ◦ Uk1Sk2 ◦ Sl]βpro − [Pk1Sk2 ◦ Sl]γpro ,
d

dt
[Rk1Sk2 ◦ Il] = [Rk1Sk2 ◦ Sl ◦ I]β̂l, k2 − ([Rk1Sk2 ◦ Il] + [I ◦Rk1Sk2 ◦ Il])βphy

− [Rk1Sk2 ◦ Il]γphy + [Ak1Sk2 ◦ Il]γanti + [Pk1Sk2 ◦ Il]γpro ,
d

dt
[Rk1Sk2 ◦ Sl] = −[Rk1Sk2 ◦ Sl ◦ I]β̂l, k2 − [I ◦Rk1Sk2 ◦ Sl]βphy

+ [Ak1Sk2 ◦ Sl]γanti + [Pk1Sk2 ◦ Sl]γpro , (3.3)

where β̂l, k2 is the expected transmission rate of the center node Sl in a triple of the form

Y Sk2 ◦ Sl ◦ I.

One derives the system (3.3) using the same reasoning as in (3.2). For example, consider

the first equation in (3.3). The normalized count of the dyads Uk1Sk2 ◦ Il decreases as Uk1Sk2

nodes adopt one of the two opinions at rate [P ◦ Uk1Sk2 ◦ Il]βpro + [A ◦ Uk1Sk2 ◦ Il]βanti, is

infected by Il at rate [Uk1Sk2 ◦ Il]βphy, or is infected by infectious neighbors other than Il at

rate [I◦Uk1Sk2 ◦Il]βphy. The normalized count of Uk1Sk2 ◦Il increases as susceptible neighbors

of Uk1Sk2 are infected by their infectious neighbors at rate [Uk1Sk2 ◦ Sl ◦ I]β̂l, k2 . Each dyad

in (3.3) has one node whose state we track in only one of the layers. For example, for the

dyad Uk1Sk2 ◦ Sl, we do not know the opinion states of node Sl. We need an approximation
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for the disease transmission rate β̂l, k2 when node Sl is infected by a neighbor in state I. In

principle, one can track the states of both nodes on both layers and avoid the need for this

approximation. However, doing this leads to a higher-dimensional system. We discuss the

approximation of β̂l, k2 in Section 3.5.3.

In principle, one can also work out the right-hand sides for the evolution of the expected

normalized counts of the triple terms. These incorporate quadruple terms, and if we expand

those terms and keep expanding expressions for the evolution of progressively larger network

motifs (i.e., connected subgraphs), we eventually obtain an exact dynamical system. How-

ever, it is very high-dimensional and difficult to study. Therefore, we approximate the triple

terms with pair terms on the right-hand sides of (3.3) using the approach in [EK02].

3.5.2 Closure of the triple terms

For a given type of triple X ◦ Yk ◦ Z, we assume that the neighbors of all Yk nodes are

interchangeable. Therefore, every neighbor has the same probability of being in a given

state (e.g., state X).

If both edges are in the same layer, then for nodes X and Z that are adjacent to a center

degree-k node in state Y in the same layer, it follows that

[X ◦ Yk ◦ Z] ≈ k(k − 1)[Yk]
[X ◦ Yk]
k[Yk]

[Yk ◦ Z]

k[Yk]

=
k − 1

k

[X ◦ Yk][Yk ◦ Z]

[Yk]
. (3.4)

Intuitively, nodes in state Yk have k[Yk] edges; an expected fraction [X◦Yk]
k[Yk]

of these edges are

attached to nodes in state X, and an expected fraction [Yk◦Z]
k[Yk]

of these edges are attached

to nodes in state Z. Therefore, if we choose a node in state Yk uniformly at random, the

probability that two uniformly random neighbors of the Yk node are in states X and Z is

approximately [X◦Yk]
k[Yk]

× [Yk◦Z]
k[Yk]

when N is large. Because there are k(k − 1) ways to choose
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the two neighbors, we obtain (3.4). As concrete examples,

[Uk1Sk2 ◦ Sl ◦ I] ≈ l − 1

l

[Uk1Sk2 ◦ Sl][Sl ◦ I]

[Sl]
,

[I ◦ Uk1Sk2 ◦ Sl] ≈
k2 − 1

k2

[I ◦ Uk1Sk2 ][Uk1Sk2 ◦ Sl]
[Uk1Sk2 ]

,

[A ◦ Uk1Sk2 ◦ Al] ≈
k1 − 1

k1

[A ◦ Uk1Sk2 ][Uk1Sk2 ◦ Al]
[Uk1Sk2 ]

.

Suppose instead that the two edges that connect the center node Y1,k1Y2,k2 to nodes in

states X and Z are in different layers. If the node in state X is in the information layer and

the node in state Z is in the physical layer, we obtain

[X ◦ Y1,k1Y2,k2 ◦ Z] ≈ k1k2[Y1,k1Y2,k2 ]
[X ◦ Y1,k1Y2,k2 ]
k1[Y1,k1Y2,k2 ]

[Y1,k1Y2,k2 ◦ Z]

k2[Y1,k1Y2,k2 ]

=
[X ◦ Y1,k1Y2,k2 ][Y1,k1Y2,k2 ◦ Z]

[Y1,k1Y2,k2 ]
.

For example,

[P ◦ Uk1Sk2 ◦ Il] ≈
[P ◦ Uk1Sk2 ][Uk1Sk2 ◦ Il]

[Uk1Sk2 ]
.

One can work out approximations for the other triple terms similarly.

3.5.3 Approximate transmission rate

To close equations (3.2)–(3.3), we need to find an approximation of β̂l, k2 , which is the ex-

pected transmission rate of the center node for triples of the form Y Sk2 ◦ Sl ◦ I. We need to

approximate the opinion distribution in each population of interest. The random-recoupling

assumption in Section 3.4 corresponds to setting

β̂l, k2 ≈ ([U ] + [A]αanti + [P ]αpro + [R])βphy . (3.5)
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However, it is possible to keep track of corresponding nodes in the two layers. A naive

approach is to weight the influence coefficients based on the densities of nodes with different

opinion states among the Sl nodes. That is,

β̂l, k2 ≈
[USl] + [ASl]αanti + [PSl]αpro + [RSl]

[Sl]
βphy . (3.6)

However, the approximation (3.6) ignores the fact that the Sl node of interest has both

an intralayer neighbor in state S and an intralayer neighbor in state I. Incorporating this

neighborhood information yields the approximation

β̂l, k2 ≈
(

[Sk2 ◦ USl ◦ I] + [Sk2 ◦ ASl ◦ I]αanti

+ [Sk2 ◦ PSl ◦ I]αpro + [Sk2 ◦RSl ◦ I]
)
× βphy

[Sk2 ◦ Sl ◦ I]
. (3.7)

We approximate the triples in (3.7) with our pair approximation:

[Sk2 ◦ UkSl ◦ I] ≈ l − 1

l

[UkSl ◦ Sk2 ][UkSl ◦ I]

[UkSl]
,

[Sk2 ◦ AkSl ◦ I] ≈ l − 1

l

[AkSl ◦ Sk2 ][AkSl ◦ I]

[AkSl]
,

[Sk2 ◦ PkSl ◦ I] ≈ l − 1

l

[PkSl ◦ Sk2 ][PkSl ◦ I]

[PkSl]
,

[Sk2 ◦RkSl ◦ I] ≈ l − 1

l

[RkSl ◦ Sk2 ][RkSl ◦ I]

[RkSl]
,

[Sk2 ◦ Sl ◦ I] = [Sk2 ◦ USl ◦ I] + [Sk2 ◦ ASl ◦ I]

+ [Sk2 ◦ PSl ◦ I] + [Sk2 ◦RSl ◦ I] .

We expect the value of β̂l, k2 in equation (3.6) to be smaller than its value in equation

(3.5). This, in turn, leads to a smaller estimate of the disease prevalence from equation

(3.6) than from equation (3.5). Intuitively, because individuals who hold the anti-physical-

distancing opinion become infected at a higher rate, a typical susceptible individual is less
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likely to have an anti-physical-distancing opinion than a member of the population that

one selects uniformly at random. Therefore, we expect that [A] ≥ [ASl]
[Sl]

. By applying

analogous reasoning to individuals who hold the pro-physical-distancing opinion, we expect

that [P ] ≤ [PSl]
[Sl]

. We do not have a mathematically rigorous understanding of how well

the approximations (3.6) and (3.7) match the full stochastic system (see Section 3.3 and

our code in [Pen21].) We compare the three different pair approximations of the disease

prevalence that are based on equations (3.5)–(3.7) with direct numerical simulations of the

full stochastic system in Figure 3.5. From this comparison, we see that the approximations

(3.5) and (3.6) overestimate the infectious population and that the approximation (3.7)

matches the simulations very well. These numerical results indicate that it is essential to

track the coupling of the nodes’ states at both ends of interlayer edges and intralayer edges

to ensure accurate estimations of time evolution of disease prevalence. We use the pair

approximation (3.2, 3.3, 3.7) in our experiments in Section 3.6.

3.6 Computational experiments

We now investigate our full model by simulating the stochastic system (see our code in

[Pen21]) and applying the pair approximation (3.2, 3.3, 3.7), which we henceforth call our

“PA”. We explore the influence of competing opinion contagions on the spread of a disease

for a variety of parameter values. We focus on examining different opinion contagion pa-

rameters (see Section 3.6.1) and network structures (see Sections 3.6.2 and 3.6.3). For ease

of comparison, we consider the special case in which the pro- and anti-physical-distancing

opinions share the same contagion parameters for all examples in this chapter. Additionally,

we fix the disease contagion parameters to be βphy = 0.6 and γphy = 1. Unless we spec-

ify otherwise, we set the opinion influence coefficients to be αpro = 0.1 and αanti = 10 to

incorporate nontrivial influence of the corresponding opinion on the spread of the disease.

This asymmetry between pro- and anti-physical-distancing opinions affects the dynamics in
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Figure 3.5: Comparison of our pair approximations (PAs) based on equations (3.5)–(3.7) (the curves) with

direct numerical simulations (the markers). The trajectories show the time evolution of the infectious

population. In each simulation, we generate a network with layers that consist of 5-regular configuration-

model graphs (i.e., each node has degree 5). We uniformly randomly infect a fraction I0 = 0.01 of the nodes,

and we independently and uniformly randomly choose initial opinions such that A0 = P0 = 0.005. The

displayed results are means of 100 simulations. The other parameters are βphy = βinfo = 0.6, γphy = γinfo = 1,

αanti = 10, and αpro = 0.1.
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an interesting way, as we illustrate in this section. In many of the following examples, it is

helpful to separate the influence of the two opinions to gain understanding of the overall be-

havior. To do this, we suppress the influence of an opinion by setting its influence coefficient

to be 1. In Section 3.6.1, we do a parameter sweep of the opinion transmission parameters

in the range [0, 2] to illustrate that the final epidemic size can change non-monotonically as

we increase the recovery rate of an opinion. This feature occurs in networks with a variety

of degree distributions. Because of the issuing or lifting of stay-at-home orders, people’s

contact patterns in the offline world can change a lot over the course of an epidemic (and

especially a pandemic) [ZLL20, FM21]. In Sections 3.6.2 and 3.6.3, we show examples that

illustrate that the influence of an opinion contagion on the spread of a disease can change

in important ways when we change the intralayer or cross-layer correlations of intralayer

degrees.

In each computational experiment, we construct a network of N = 10000 nodes and simu-

late the dynamics on it using a Gillespie algorithm [KMS17], which is a well-known approach

for performing continuous-time simulations of Markovian processes. In all experiments in

this section, we report results as means of 200 simulations. In each simulation, we generate

new random graphs (of a few different types, which we specify below). We uniformly ran-

domly infect a fraction I0 = 0.01 of the nodes in the physical layer, and we independently

and uniformly randomly choose A0 = P0 = 0.005 nodes as anti- or pro-physical-distancing

in the information layer. We set all remaining node states to S in the physical layer and to

U in the information layer. Henceforth, unless we state otherwise, we use these choices of

initial states in our numerical computations.

In our initial experiments, we construct each network layer from a configuration model

[FLN18] and match the nodes from the two layers uniformly at random. Specifically, we

specify degree distributions Pinfo and Pphy, which need not be the same. For each layer, we

sample a degree sequence {ki} (where i ∈ {1, . . . , N} indexes the nodes) from the correspond-

ing degree distribution; therefore, node i has ki ends of edges (i.e., stubs). We match these
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stubs uniformly at random to form a network. Correspondingly, in the pair approximation,

we have

[Yk1Xk2 ](0) = Y0X0Pinfo(k1)Pphy(k2) ,

[Yk1Xk2 ◦ Zk3 ](0) =


[Yk1Xk2 ](0) × Z0Pinfo(k3)k1k3/⟨kinfo⟩ , Z ∈ {U, P, A, Rinfo}

[Yk1Xk2 ](0) × Z0Pphy(k3)k2k3/⟨kphy⟩ , Z ∈ {S, I, Rphy} .

In Figure 3.6, we compare typical disease prevalence curves (i.e., the time evolution of

infectious populations) when we choose different coefficients for the influence of the opinions.

The influence from the information layer changes a disease’s prevalence, its peak value, and

the time at which the peak number of infections occurs. Although an opinion does not alter

the susceptibility of individuals to infection when the corresponding influence coefficient is

1, the spread of that opinion can still indirectly affect the overall disease dynamics, which

thus can be different from the dynamics in a system with only one opinion. For example, in

Figure 3.6(a), the purple curve with triangle markers (for which αanti = 1 and αpro = 0.1)

has a higher disease prevalence than the green curve with plus signs (for which αpro =

0.1 and the anti-physical-distancing opinion is absent). The spread of the anti-physical-

distancing opinion prevents some people from adopting the pro-physical-distancing opinion,

although the anti-physical-distancing opinion has an influence coefficient of 1. We show the

corresponding dynamics on the information layer in Figures 3.6(b) and 3.6(c).

3.6.1 Opinion contagion parameters

Recall from Section 3.4 that in a fully-mixed population with αpro+αanti > 2, the information

layer leads to a larger epidemic size than when there is no influence from the information

layer. We repeat the experiment that we showed in Figure 3.4, but now we have a network

structure and we employ our PA. We again consider the scenario in which the anti- and

pro-physical-distancing opinions have the same contagion parameter values; we denote this
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(a) Disease prevalence

(b) Information layer; only the pro-physical-
distance opinion has influence

(c) Information layer; no anti-physical-distance
opinion

Figure 3.6: Dynamics for different opinion influence coefficients. (a) Disease prevalence curves for different

influence coefficients, including when the anti-physical-distancing opinion is absent (which we denote by “anti

= None”). In (b, c), we show the dynamics on the information layer when (b) both opinions are present and

(c) only the pro-physical-distancing opinion is present. We construct each layer from a configuration model

with a degree sequence that we choose from a Poisson degree distribution with mean degree 5. The other

parameters are βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1. The curves (respectively, markers) indicate

results from the PA (respectively, from means of 200 direct simulations).

situation using the subscript “info”. Figure 3.7(a) shows final epidemic sizes versus the

recovery rate γinfo in the information layer for the following three situations: (1) all nodes

have degree 5 (i.e., we consider 5-regular graphs); (2) all node degrees follow a Poisson

distribution with mean 5; and (3) all node degrees follow a truncated power-law distribution

with P(k = x) ∝ x−1.32e−x/35 for x ≤ 50 and P(k = x) = 0 for x > 50. In each situation,
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we generate both layers using configuration-model networks and we independently sample

degrees for each layer from the same distribution. The mean degree is roughly 5 in all

three situations. In all three situations, the final epidemic size can be smaller than the

corresponding basic size (i.e., without opinion spread) when γinfo is very small. As we increase

γinfo, the final epidemic size first increases and surpasses the basic size before reaching a peak;

it subsequently decreases to the basic size.

(a) Final epidemic size (b) Decomposition of opinion states

Figure 3.7: Influence of the opinion recovery rate γinfo on disease prevalence and on the distribution of

opinion states when people become infectious. (a) The final epidemic size for different values of γinfo. The

solid curves and non-circle symbols mark the final epidemic sizes under influence from the information layer.

The dashed curves and circles mark the basic size. We consider three situations: (1) each layer is a 5-regular

graph; (2) all node degrees follow a Poisson distribution with mean 5; and (3) all node degrees follow a

truncated power-law distribution with P(k = x) ∝ x−1.32e−x/35 for x ≤ 50 and P(k = x) = 0 for x > 50.

We construct each layer from a configuration model with a degree sequence chosen from the specified degree

distribution. The other parameters are βphy = βinfo = 0.6, γphy = 1, αanti = 10, and αpro = 0.1. (b) We

group recovered people based on their opinion states when they become infectious (we use the notation U ,

P, A, and R for these subpopulations) and plot the normalized size. We show results (which are means

of 200 simulations) for 5-regular configuration-model graphs. The curves (respectively, markers) indicate

results from the PA (respectively, direct simulations).

To explain this non-monotonic behavior, we decompose the recovered population at

steady state into subpopulations based on their opinion states when they become infec-
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tious and plot the relative size of each subpopulation (with a sum that is normalized to 1) in

Figure 3.7(b). We use U , A, P , and R to denote the subpopulations that become infectious

when they are in the U , A, P , and Rinfo states, respectively. We show results when both lay-

ers are 5-regular graphs. Our results on networks with the Poisson and truncated power-law

distributions are qualitatively the same. Because increasing opinion recovery rates results in

fewer individuals adopting any opinions, the size of the U subpopulation increases (i.e., more

people become infected while uninformed). For the same reason, the sizes of the subpopu-

lations with the anti- and pro-physical-distancing opinions decrease with increasing opinion

recovery rates. The size of the R subpopulation first increases as we increase γinfo. This

occurs because when γinfo is very small, many individuals keep the same opinion (P or A)

until the disease dies out in the population. When we start to increase γinfo, more individuals

recover from an opinion when the disease is still actively spreading. Because individuals who

abandon the pro-physical-distancing behavior increase their risk of becoming infected, the

overall epidemic size may increase when they become less cautious. As γinfo grows, fewer

individuals adopt an opinion; this, in turn, leads to a smaller R subpopulation and a drop

in the overall epidemic size.

The non-monotonic behavior that we described above suggests that if enough individuals

hold the pro-physical-distancing opinion for a sufficiently long time, the prevalence of a

disease can decrease, even when the anti-physical-distancing opinion has an arbitrarily large

influence coefficient. When both opinions are present, the overall influence of opinions on

disease spread is not determined by the two influence coefficients alone; instead, it arises

from a complex interaction between the dynamics of the two opinions.

We plot the final epidemic size minus the basic size in Figure 3.8 for different values of

the opinion transmission rates and opinion recovery rates. For fixed opinion recovery rates,

the final epidemic size does not change much as we vary the opinion transmission rates if

the information layer has an outbreak. The results in Figure 3.8 are outputs of our PA on

5-regular configuration-model graphs.
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Figure 3.8: The final epidemic size minus the basic size for different values of the opinion contagion parameters

for our PA on networks with layers that consist of 5-regular configuration-model graphs. We fix the other

parameters to be βphy = 0.6, γphy = 1, αanti = 10, and αpro = 0.1.

3.6.2 Random graphs with intralayer degree–degree correlations

Degree assortativity can have a strong impact on disease spread and other dynamical pro-

cesses [KGK08, MPM14]. Assortative networks may have a core with large-degree nodes,

so a disease may spread faster but terminate with a smaller final epidemic size on such a

network than on a disassortative network [NG03, MGP03]. In this subsection, we investigate

how differences in assortativity structure, which we encode in an intralayer degree–degree

correlation matrix, can influence the dynamics of our model.

For all experiments in this subsection, we generate networks with intralayer degree–degree

correlations using a model from Melnik et al. [MPM14]. For each of the two layers in the net-

work, we start with a mixing matrix E. Recall that the number of edges that connect nodes

with degrees k and k′ is Ek, k′ = Ek,k′
∑

k(kpk)N/2, where pk =
(∑

k′
Ek, k′

k

)/(∑
k, k′

Ek, k′

k

)
.

We first create the required number of edges that will connect node pairs with specified

combinations of the degrees k and k′. We then generate nodes by selecting k ends of edges
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uniformly at random from those that are prescribed to attach to degree-k nodes. We obtain

networks with the desired degree–degree correlation when we finish attaching all ends of

edges to nodes.

Because we track the expected number of edges with all possible degree combinations

explicitly and separately in our PA system, we only need to modify the initialization step to

encode the desired intralayer degree–degree correlation. For example, we let [Uk ◦ Pl](0) =

Einfo, k, l×(1−P0−A0)P0, where Einfo, k, l denotes the number of edges that connect degree-k and

degree-l nodes in the information layer. We initialize the physical layer and the information

layer independently, so [Uk1Sk2 ◦Pl](0) = [Uk1 ◦Pl](0)×Pphy(k2)× (1− I0). We initialize the

other dyads similarly.

3.6.2.1 Pedagogical example: Networks whose nodes have one of two possible

degrees

To illustrate the importance of intralayer degree–degree correlations, we consider a simple

example of a network whose nodes have one of two possible degrees. Its degree distribution

is P(k = k1) = p1 and P(k = k2) = p2, where p1 + p2 = 1. The mixing matrix is

E =

 a k1p1
⟨k⟩ − a

k1p1
⟨k⟩ − a k2p2−k1p1

⟨k⟩ + a

 , (3.8)

where a ∈
[
max

{
0, k1p1−k2p2⟨k⟩

}
, k1p1⟨k⟩

]
and ⟨k⟩ denotes the mean degree. We calculate the

assortativity coefficient rintra, which is given by the Pearson correlation coefficient of the

degrees at the two ends of an edge that we choose uniformly at random. Given the mixing

matrix (3.8), the assortativity coefficient rintra is linear in a and is given by

rintra =
a− k21p

2
1/⟨k⟩2

k1k2p1p2/⟨k⟩2
.
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(a) Pinfo(k = 2) = Pphy(k = 2) = 0.4 (b) Pinfo(k = 2) = Pphy(k = 2) = 0.9

Figure 3.9: The final epidemic size depends on the intralayer degree–degree correlations. We generate each

layer independently using a generalization of a configuration-model network with the procedure that we

described in the text. Each layer consists of nodes with degrees 2 and 8, and the intralayer degree–degree

correlation is the same in the two layers. The other parameters are βphy = βinfo = 0.6, γphy = 1, and

γinfo = 0.1. The curves (respectively, markers) indicate results from our PA (respectively, from means of 200

direct simulations).

Figure 3.9 shows two typical sets of curves for the final epidemic size for different values of

the intralayer degree–degree correlation. We fix k1 = 2 and k2 = 8, and we assign a fraction

0.4 of the nodes to have degree 2 in Figure 3.9(a) and a fraction 0.9 of them to have degree

2 in Figure 3.9(b). We set the intralayer degree–degree correlations to be the same in the

two layers. The blue circles indicate the influence of degree assortativity on disease spread

when the disease spreads independently of opinions. The decreasing trend in Figure 3.9(a)

and in the right part of Figure 3.9(b) is consistent with the known result [MGP03, KGK08]

that a disease tends to affect a smaller fraction of a population in an assortative network

than in a disassortative network when an epidemic outbreak occurs. The increasing trend in

the left part of Figure 3.9(b) arises from the fact that the disease is initially impeded from

spreading because of the disassortative structure and a denser network helps the disease to
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spread and persist. Similar trends also occur in the information layer, so if outbreaks do

occur on both layers, an opinion contagion has a smaller impact when networks have a larger

degree assortativity (as we see in both panels of Figure 3.9). In Figure 3.10, we compare the

disease prevalence curves with and without the influence of each opinion for networks with

Pinfo(k = 2) = Pphy(k = 2) = 0.4. The results demonstrate that disassortative structures

tend to enhance the influence of both pro- and anti-physical-distancing opinions. When

both opinions have nontrivial effects on the transmission of a disease, the overall effect of

the opinion dynamics on the disease dynamics is a complicated combination of the dynamics

of the opinions; in this situation, it is unclear whether an assortative or a disassortative

structure promotes the spread of the disease.

(a) αanti = 10 , αpro = 1 (b) αanti = 1 , αpro = 0.1

Figure 3.10: Prevalence curves from our PA for different intralayer degree–degree correlations in networks

with Pinfo(k = 2) = Pphy(k = 2) = 0.4 and Pinfo(k = 8) = Pphy(k = 8) = 0.6. We generate each layer

independently using a generalization of a configuration-model network with the procedure that we described

in the text. The upper row shows the (identical) dynamics of the fraction of individuals in states P and A.

The lower row shows the dynamics of the population in state I. The solid curves show results when (left)

αanti = 10 and αpro = 1 and (right) αanti = 1 and αpro = 0.1. The dashed curves indicate results without

any opinion contagion. The other parameters are βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1. Curves with

the same color share all parameters except opinion influence coefficients.

The intralayer degree–degree correlations in the two layers need not be the same. Figure

3.11 shows heat maps of the final epidemic size from our PA for different values of the two
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degree–degree correlations, which we vary independently in each layer. The issuance of a

stay-at-home order may lead to a physical layer with many small-degree nodes, and such

an order is not likely to affect the information layer (which may describe online contacts).

Therefore, we also consider the case with Pinfo(k = 2) = 0.4 and Pphy(k = 2) = 0.9. We show

the results for this case in the third row of Figure 3.11. In this example, the physical-layer

network structures have a stronger influence on the disease dynamics than the information-

layer network structures.

3.6.3 Random graphs with cross-layer correlations of intralayer degrees

We also investigate the influence of cross-layer correlations of intralayer degrees on the dy-

namics. We refer to such correlations as “interlayer degree–degree correlations”. People who

are active on social-media platforms may also have frequent offline social contacts, and vice

versa [Aca08]. Let C denote the interlayer degree–degree correlation matrix, so Ck1, k2 is the

probability that a node that we choose uniformly at random has degree k1 in the information

layer and degree k2 in the physical layer. We say that these nodes are “of type (k1, k2)”. An

uncorrelated model corresponds to Ck1, k2 = Pinfo(k1)Pphy(k2). We uniformly randomly pair

N × Ck1, k2 degree-k1 nodes from the information layer with the same number of degree-k2

nodes from the physical layer to construct a network with N nodes and a specified interlayer

degree–degree correlation.

A PA can deal with interlayer degree–degree correlations properly as long as we build

them into the initial conditions. The modification of the PA is straightforward. For example,

we write

[Uk1Sk2 ](0) = Ck1,k2(1 − A0 − P0)(1 − I0) ,

[Uk1Sk2 ◦ Il](0) = [Sk2 ◦ Il](0) × Ck1,k2
Pphy(k2)

× (1 − A0 − P0) .

We use similar formulas for the other pairs.
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(a) Pinfo(k = 2) = Pphy(k = 2) = 0.4

(b) Pinfo(k = 2) = Pphy(k = 2) = 0.9

(c) Pinfo(k = 2) = 0.4, Pphy(k = 2) = 0.9

Figure 3.11: Heat maps of the final epidemic size from our PA as we vary the assortativities in the two

layers. The three columns have parameter values of (left) αpro = 0.1 and αanti = 10, (center) αpro = 0.1 and

αanti = 1, and (right) αpro = 1, and αanti = 10. The other parameters are βphy = βinfo = 0.6, γphy = 1, and

γinfo = 0.1.

3.6.3.1 Pedagogical example: Networks whose nodes have one of two possible

degrees

We again suppose that nodes have one of two possible degrees in each layer. These degrees

are kinfo, 1, kinfo, 2, kphy, 1, and kphy, 2, where Pinfo(k = kinfo, 1) = q1 and Pphy(k = kphy, 1) = q2.
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The correlation matrix C is  a q1 − a

q2 − a 1 − q1 − q2 + a

 , (3.9)

where a ∈ [min{0, q1 + q2 − 1}, min{q1, q2}]. The Pearson correlation coefficient is

rinter =
(kinfo, 1 − kinfo, 2)(kphy, 1 − kphy, 2)(a− q1q2)

σinfoσphy
,

where σinfo and σphy denote the standard deviations of the degrees in the two layers.

Figure 3.12 shows the dependence of the final epidemic size on the interlayer degree–

degree correlations. Each of the two layers has nodes of degrees 2 and 8, and we set

Pinfo(k = 2) = Pphy(k = 2) = 0.5. We generate each layer independently with a gener-

alization of a configuration-model network following the procedure in Section 3.6.2. We

suppose either that both intralayer degree–degree correlations are 1 or that both intralayer

degree–degree correlations are −0.25, and we couple the two layers as described above.1 The

pro-physical-distancing opinion has a larger influence when the two layers are more positively

correlated. (See the red curves with square markers.) However, the anti-physical-distancing

opinion’s influence can either decrease or increase as we increase the interlayer degree–degree

correlation. (See the purple curves with asterisk markers.)

To understand the trends in Figure 3.12, we again decompose the population based on

their opinion states (see Figure 3.13). Recall that U , A, P , and R denote the subpopulations

that become infectious when they are in the U , A, P , and Rinfo states, respectively. Addition-

ally, we decompose the U and A subpopulations based on node degrees and plot the fraction

of the population in each group in Figure 3.14. We examine the effects of positive intralayer

degree–degree correlations in Figures 3.13(a) and 3.14(a,c), and we examine the effects of

negative intralayer degree–degree correlations in Figures 3.13(b) and 3.14(b,d). In our dis-

1A layer with an intralayer degree–degree correlation of 1 has more than one component.
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(a) rintra = 1 (b) rintra = −0.25

Figure 3.12: The final epidemic size depends on the interlayer degree–degree correlation. Both layers have

nodes of degrees 2 and 8, and we set Pinfo(k = 2) = Pphy(k = 2) = 0.5. We generate each layer using the

procedure in Section 3.6.2. We couple the two layers following the approach in Section 3.6.3. We set the

intralayer degree–degree correlation of both layers to be (a) 1 and (b) −0.25. The other parameters are

βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1. The curves (respectively, markers) show results from our PA

(respectively, from means of 200 direct simulations).

cussion, it is instructive to consider the case of two independent layers (i.e., αpro = αanti = 1).

The interlayer degree–degree correlation changes the opinion distributions, but the final epi-

demic size stays the same. We investigate the influence of opinions and how this influence

depends on the interlayer degree–degree correlation.

We first examine the case in which the intralayer degree–degree correlation is 1 and

node opinions do not affect the spread of the disease. A positive interlayer degree–degree

correlation encourages the coupling of large-degree nodes in the two layers; these nodes have

larger probabilities than small-degree nodes both of becoming infected and of forming an

opinion. Therefore, as we increase the interlayer degree–degree correlation, fewer nodes are

uninformed when they catch the disease. Figure 3.14(a) shows the decomposition of the U
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(a) rintra = 1 (b) rintra = −0.25

Figure 3.13: Decomposition of the opinion states of nodes that eventually become infected and recover. We

group the recovered population based on their opinion states when they become infectious. Recall that the

associated subpopulations are U , P, A, and R. The vertical axis indicates the fraction of the population in

each of these subpopulations. We plot the subpopulation sizes versus the interlayer degree–degree correlation

from our PA. The intralayer degree–degree correlation is (a) 1 and (b) −0.25. The other parameters are

βphy = βinfo = 0.6, γphy = 1, and γinfo = 0.1.

subpopulation based on the degrees of its nodes. Because the degree-2 nodes are adjacent

only to other degree-2 nodes in each layer, they are rarely infected and rarely form an opinion.

Therefore, the U subpopulation consists primarily of nodes of types (2, 8) or (8, 8). As we

increase the interlayer degree–degree correlation, there are more (8, 8)-type nodes and fewer

(2, 8)-type nodes in the network. Because U8-nodes (i.e., nodes that are uninformed and

have degree 8 in the information layer) have a larger probability of forming an opinion than

U2-nodes, fewer nodes become infected while still uninformed as we increase the correlation.

If we perturb the influence coefficients αanti and αpro from 1, the opinions on the in-

formation layer directly affect the A and P subpopulations, respectively, through modified

infection risks. These modified risks then influence the speed of disease spread and affect

the other subpopulations. Therefore, the information layer has a larger affect on the disease

dynamics when more people become infected while holding some opinion. Based on our dis-

cussion above, we expect that increasing the interlayer degree–degree correlation amplifies

54



the influence of opinion spread on disease dynamics.

We now examine the case in which either the pro-physical-distancing opinion or the anti-

physical-distancing opinion has a nontrivial influence on disease dynamics. For simplicity,

we suppose that only one opinion is effective. When αpro < 1, the spread of the pro-physical-

distancing opinion protects people who adopt that opinion because it suppresses the spread

of the disease. In Figure 3.13(a), we see that the U subpopulation tends to decrease faster

and that the P and A subpopulations tend to increase slower in this situation than when

the disease spreads independently of opinions. Therefore, the final epidemic size decreases

as we increase the interlayer degree–degree correlation. When αanti > 1, the anti-physical-

distancing opinion accelerates the spread of the disease. Therefore, more people become

infected before their opinions change; this, in turn, leads to a larger U subpopulation and

smaller A, P , and R subpopulations. The growing gap between the dashed purple curve and

the dashed blue curves (i.e., the U subpopulation for different parameter values) in Figure

3.13(a) illustrates the increase in the epidemic size as we increase the interlayer degree–degree

correlation.

The situation is more intricate when the intralayer degree–degree correlation is −0.25 in

each layer. Because the intralayer edges now can connect degree-2 nodes to degree-8 nodes,

the former are more likely both to become infectious and to adopt an opinion than when

the intralayer degree–degree correlations are 1. Therefore, when αanti = αpro = 1, nodes

of types (8, 2) and (2, 2) constitute a larger proportion of the U subpopulation in Figure

3.14(b) than in Figure 3.14(a). As we increase the interlayer degree–degree correlation, the

U subpopulation has progressively more nodes with degree 2 in the physical layer because

there are gradually fewer (8, 2)-type nodes and gradually more (2, 2)-type nodes and it is

more difficult for the (2, 2)-type nodes to form an opinion. Consequently, the decreasing

trend in the U subpopulation (see the dashed blue curve) in Figure 3.13(b) is less drastic

than in Figure 3.13(a).

When αanti > 1, the A subpopulation in Figure 3.13(b) (see the purple curve with asterisk
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(a) Decomposition of the U subpopula-
tion when the intralayer degree–degree
correlation is 1

(b) Decomposition of the U subpopula-
tion when the intralayer degree–degree
correlation is −0.25

(c) Decomposition of the A subpopula-
tion when the intralayer degree–degree
correlation is 1

(d) Decomposition of theA subpopula-
tion when the intralayer degree–degree
correlation is −0.25

Figure 3.14: Decomposition based on the degrees of the nodes that eventually become infectious and recover.

We decompose (a, b) the U subpopulation and (c, d) the A subpopulation by degree. The vertical axes

indicate the fraction of the population in each subpopulation. We show the changes in subpopulation size

versus the interlayer degree–degree correlation from our PA. The other parameters are βphy = βinfo = 0.6,

γphy = 1, and γinfo = 0.1.

markers) has qualitatively different dynamics than in Figure 3.13(a). This difference arises

from the influence of opinions on degree-2 nodes in the physical layer. Nodes that adopt the

anti-physical-distancing opinion now have a larger infection risk than when αanti = 1, so we

expect more nodes to become infected while holding the anti-physical-distancing opinion.

In Figure 3.14(d), we see that the anti-physical-distancing opinion leads to an increase in
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the numbers of nodes of types (8, 2) and (2, 2) in the A subpopulation as we increase αanti

from 1 to 10. Moreover, as we increase αanti from 1 to 10, the increase in the number

of (8, 2)-type nodes in the A subpopulation when the interlayer degree–degree correlation

is −1 is larger than the increase in the number of (2, 2)-type nodes in that population

when the interlayer degree–degree correlation is 1. This phenomenon arises because degree-8

nodes are more likely than degree-2 nodes to adopt an opinion. This, in turn, leads to a

decrease of the A subpopulation and ultimately to a decrease of the total epidemic size as we

increase the interlayer degree–degree correlation. The anti-physical-distancing opinion does

not lead to a clear increase in the number of the degree-8 nodes in the A subpopulation.

One plausible explanation is that the degree-8 nodes are already very likely to become

infected at the baseline transmission rate of the disease. Additionally, the anti-physical-

distancing opinion does not lead to an increase in the number of nodes of types (8, 2) or

(2, 2) when the intralayer degree–degree correaltion is 1 (see Figure 3.14(c)). We conjecture

that this is because the positive intralayer degree–degree correlation imposes sufficiently

strong constraints so that it is difficult for nodes with degree 2 in the physical layer to

become infected even when the transmission rate is high.

3.7 Modeling temporary immunity to opinions

In previous sections, we assumed that people who adopt a pro- or anti-physical-distancing

opinion develop immunity to both opinions after they recover. More generally, the opinions

of individuals can change back and forth [GF20]. In this section, we extend the opinion

dynamics to an SIRS process (see Figure 3.15). With conversion rate τ , people in the Rinfo

compartment return to the U compartment and again become susceptible to the pro- and

anti-physical-distancing opinions. When τ = 0, this refined model reduces to the model in

Section 3.3 (see Figure 3.1).

Figure 3.16 shows the final epidemic size minus the basic size as we vary the contagion
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Figure 3.15: Schematic illustration of the dynamics on the information layer with temporary immunity to

opinions. The transitions are the same as in Figure 3.1, except that nodes in state Rinfo transition to state

U at rate τ .

parameters τ , γinfo, and βinfo in direct simulations of our refined model. For fixed values of

τ , we obtain a heat map similar to the one in Figure 3.8. As we increase τ , our simulations

suggest that there is an increase in the overall influence from the information layer. For fixed

values of γinfo and βinfo, the colors in the heat map become brighter (respectively, darker)

from left to right because the spread of opinions leads to a decrease (respectively, increase)

in the final epidemic size in comparison to the basic size as we increase τ .

(a) τ = 0 (b) τ = 1 (c) τ = 2

Figure 3.16: The final epidemic size minus the basic size as we vary γinfo, βinfo, and τ in direct simulations

of our refined model. We generate each layer using a configuration-model network with a Poisson degree

distribution with a mean degree of 5. The other parameters are βphy = 0.6, γphy = 1, αanti = 10, and

αpro = 0.1. Each panel is a mean of 600 simulations.

Consider the case βinfo = 2, where the effect of τ is particularly evident. Figure 3.17(a)

shows the influence of τ on the final epidemic size for a few values of γinfo. It is hard to see
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the trend when γinfo = 1 because of the stochasticity of the simulations, but the behavior of

the other three curves is consistent with that of Figure 3.16. As we increase τ , there is a

decrease in the expected duration that individuals stay in the Rinfo state. Consequently, as

we increase τ in Figure 3.17(b), there is a decrease in the size of the R subpopulation and

an increase in the sizes of the other subpopulations (U , A, and P).

We conjecture that the overall influence (i.e., whether increasing τ leads to more or fewer

disease infections) depends on whether or not people tend to adopt an opinion that departs

from their earlier opinion(s). If individuals tend to adopt different opinions over time, increas-

ing τ makes the model with SIRS opinion dynamics exhibit behavior that resembles what

we observed after applying the random-recoupling assumption (see Section 3.4) and leads

to more people adopting the anti-physical-distancing opinion at an earlier time. Susceptible

individuals are likely to become infected when they adopt the anti-physical-distancing opin-

ion, regardless of whether or not they have previously adopted the pro-physical-distancing

opinion. Consequently, increasing τ leads to more disease infections. However, if people tend

to adopt the same opinion over time, susceptible individuals who adopt the pro-physical-

distancing opinion also are more likely to avoid future infections. In this case, enforcing a

faster reversion to the U state has a similar effect as decreasing γinfo, which (as we showed

in Section 3.6.1) may help suppress disease spreading. Figure 3.17(c) shows the fractions of

individuals who adopt (i) both opinions and (ii) at least one opinion within the time frame

of our experiments for γinfo = 0.2 and γinfo = 2. Many fewer people adopt both opinions

when γinfo = 0.2 than when γinfo = 2. Additionally, as we increase τ , there is only a slightly

increasing trend in the fraction of people who adopt both opinions for γinfo = 0.2, in contrast

to the rapid growth of the fraction for γinfo = 2. Intuitively, a node that adopts one opinion

can influence more neighbors when γinfo is smaller. Therefore, it is more likely to adopt the

same opinion later. Suppose that a node holds an opinion when it becomes infected on the

physical layer, and suppose that this is not the first opinion that it has held (i.e., it previously

returned to the U state in the information layer). In Figure 3.17(d), we examine the counts
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(a) Final epidemic size (b) Decomposition of opinion states

(c) Fractions of the population that adopt (i) both
opinions and (ii) at least one opinion

(d) Fractions of the population that are infected
during their second or subsequent time that they
adopt an opinion (the second and subsequent
opinions need not be the same as prior opinions)

Figure 3.17: Influence of the opinion recovery rate γinfo and the conversion rate τ on the final epidemic

size and on the opinion distribution when we consider SIRS dynamics in the information layer. (a) The

influence of τ on the final epidemic size. We decompose the recovered population based on their opinion

states when they become infected and plot the sizes of these subpopulations in (b). In (c, d), we show

additional opinion-distribution statistics; we specify them in the subtitles. We generate each layer using a

configuration model with a Poisson degree distribution with a mean degree of 5. The curves show means of

200 direct simulations with βphy = 0.6, γphy = 1, βinfo = 2, αpro = 0.1, and αanti = 10.

of these individuals for both opinions as a function of τ . Consistent with our conjecture, as

we increase τ , we observe a larger increase of the fraction of the population that holds the
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anti-physical-distancing opinion when γinfo = 2 than when γinfo = 0.2.

3.8 Conclusions and discussion

We studied the influence of the spread of competing opinions on the spread of a disease.

We assumed that pro- and anti-physical-distancing opinions circulate within a population

and affect the spread of the disease. We developed a degree-based pair approximation for

the time evolution of the expected number of individuals in different compartments and

used it to study dynamics on heterogeneous networks with specified interlayer and intralayer

degree–degree correlations. We examined different approximation schemes for the effective

transmission rate of susceptible individuals in the physical layer. We found that the distri-

bution of the opinions of the nodes in a given disease state is correlated both with their own

disease state and with the disease states of their neighbors in the physical layer.

Through extensive numerical simulations, we showed that the opinion contagions in our

model can either increase or decrease the disease transmission speed, the peak infection

counts, and the number of people who become infected. We demonstrated that the overall

impact of the opinion dynamics on disease prevalence depends not only on the opinion

influence coefficients, but also on the network structure and on how the opinions couple to

the spread of the disease.

We found that lengthening the duration (through decreasing the opinion recovery rate)

over which people adopt opinions — whether in favor of or against physical distancing —

may help suppress disease transmission. We also saw that physically distancing for too short

a duration may still entail a high infection risk; this is well-known for models of infectious

disease with a fully-mixed population [BF07, BFM20]. We observed that the benefit of a

long opinion-adoption period is reinforced when we let the spread of opinions follow SIRS

dynamics instead of SIR dynamics. Allowing people to become susceptible to opinions after

having a previous opinion helps create neighborhoods in a network’s information layer in
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which adjacent nodes tend to adopt the same opinion over time. Consequently, people who

adopt the pro-physical-distancing opinion are more likely to adopt it again later. Although

the same phenomenon applies to the spread of the anti-physical-distancing opinion, the

difference in the influence of the two opinions on disease transmission rates leads to an

asymmetry in their influence on disease prevalence.

We examined both beneficial and harmful effects of the spread of opinions on other

dynamical processes (such as the spread of a disease). There are many ways to build on

our research. Although two competing opinions can have different contagion parameters,

we only showed results in which these parameters are identical. One can study our model

when the two competing opinions spread asymmetrically. We also assumed a unidirectional

influence from the information layer to the physical layer, but disease states can also influence

opinion states [FSJ10, WAW15], and one can incorporate such coupling. Additionally, time-

dependent network structures in which node states coevolve with network structures [SPS13,

PG16] are relevant for behavioral changes when individuals adopt opinions about physical

distancing. Such time-dependent networks allow one to model changes in contact patterns

due to lockdowns and stay-at-home orders. One can also consider additional opinions (e.g.,

opinions on vaccines) in conjunction with more complex disease dynamics due to vaccines

[SVB21] and variants.
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CHAPTER 4

Majority-Vote Model On Multiplex Networks with

Community Structure

4.1 Introduction

In everyday life, the opinions of people who we know often influence our decisions. People

may change their opinions or behavior to conform to group behavior [Asc51]. Researchers

have proposed many mathematical models to study such social forces [FMF17]. One of

these models is the majority-vote model. In the classical monolayer majority-vote model

[Oli92], each node has one of two opinions. At each time step, a uniformly randomly chosen

node adopts the majority opinion of its neighbors with probability 1 − f and adopts the

minority opinion of its neighbors with probability f , where f is called the noise parameter.

Researchers have adapted the majority-vote model to study financial markets [VWN19], tax

envision [Lim10], and the effect of filter bubbles [VPD21].

The classical majority-vote model on a square lattice has a continuous phase transition

at a critical value fc of the noise parameter f [Oli92]. When f < fc, the mean opinion

of the population on the lattice is close to 0 at steady states and the two opinions are

distributed uniformly in the population. This is called a “disordered” regime in the physics

literature. When f > fc, the system is in an “ordered” regime in which the absolute value

of the mean opinion is positive and increases with f . Researchers have studied the classical

majority-vote model on various networks, including ER networks [PM05, LSS08], Watts–

Strogatz networks [COM03, LL07, SM15], Barabási–Albert networks [Lim06], networks with
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community structure [HCS15], and several types of lattices [YKK08, WH10, SLM11, ASV14].

In our extension of the majority-vote model, we consider networks with community struc-

ture. Community structure is a common feature of social networks [POM09, FH16]. Individ-

uals have more connections with individuals from the same community than with individuals

from different communities. A large body of research has examined the influence of com-

munity structure on a variety of dynamical processes, including the majority-vote model

[HCS15], the majority-rule model [LA07, LAH07], the Ising model [DPS09, BNM18], the

Sznajd model [RL08], the spread of infectious diseases [LH05, WL08, SVV16], information

spread using an SIR model [HPL06], and information spread using a linear threshold model

[NFF14]. Huang et al. [HCS15] showed that the majority-vote model on networks with

planted community structure undergoes the same continuous disorder–order transition at a

critical value fc1 as the majority-vote model on regular lattices. When f is smaller than and

close to fc1 , the entire population favors one opinion and the distribution of opinions is inde-

pendent of the community memberships of the network’s nodes. When the noise parameter

decreases further, the system in Ref. [HCS15] undergoes a discontinuous phase transition

at a second critical value fc2 under certain conditions. When f < fc2 , the mean opinions

of the different communities can have different signs, which means that the different com-

munities favor different opinions. Researchers have also observed the presence of clusters of

nodes with different opinions when studying the Ising model [SH09, DPS09, BNM18] and

the majority-rule model [LA07, LAH07] on networks with community structure.

Social relationships in real life are multifaceted [KAB14], and it is important to take this

into account in the study of opinion dynamics. One approach is to consider opinion dynamics

on multiplex networks. Each layer in a multiplex network can represent a relationship.

In this scenario, it is reasonable to assume that all nodes that correspond to a physical

node share the same opinion. Different relationships differ in how they are formed and

maintained, and they have different levels of importance to an individual. Consequently,

the opinions from disparate sources may spread following different rules. Alternatively,
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layers can represent different topics and state nodes that correspond to a physical node

can often have distinct opinions. Many dynamical processes on multilayer networks cannot

be reduced to equivalent processes on monolayer networks that one obtains by aggregating

multiplex networks [DNL16]. Researchers have studied several types of opinion dynamics

on multilayer networks. Examples include the majority-vote model [KGS18, CG19], the

voter model [DNL16], the q-voter model [CSS17, GK20], threshold models [LBG14], and the

Deffuant–Weisbuch model [NXX18] .

In this chapter, we study steady-state behavior in a majority-vote model on multiplex

networks with community structure. For simplicity, we consider two-layer networks. To

incorporate community structure into our multiplex networks, we construct each layer using

a stochastic block model (SBM) [New18]. We assume that each physical node holds one

opinion. When the two layers have the same majority opinion, the update rules are the same

as in the monolayer majority-vote model. Previous extensions of the majority-vote model

to multiplex networks [KGS18, CG19] treated the two layers equally so that when majority

opinions differ in different layers, a focal node either uniformly randomly adopts an opinion or

maintains its current opinion. However, in real life, individuals can attach different levels of

importance to different relationships or favor some social relationships over others. We model

this situation by introducing a layer-preference parameter that controls the probability of

adopting each opinion when the two layers do not have a common majority opinion. We study

the influence of the layer-preference parameter, the intralayer communities, and interlayer

membership correlations on the steady-state behavior with direct numerical simulations and

with a mean-field approximation.

This chapter proceeds as follows. In Section 4.2, we introduce our majority-vote model

and discuss the structure of the multiplex networks on which we consider these dynamics.

We derive a mean-field approximation of our model in Section 4.3; this yields a coupled

system of ODEs. In Section 4.4, we conduct linear stability analysis of three steady-state

behaviors that we observe in our mean-field system. In Section 4.5, we compare the results
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of direct numerical simulations with those of our mean-field approximation and explore the

influence of the model parameters on the locations of our model’s phase transitions. We

conclude in Section 4.6.

4.2 Model

We consider a two-layer multiplex network of N physical nodes, and we suppose that all

physical nodes are present in both layers. Each physical node is associated with one of two

opinions (1 and −1). The two layers represent two relationships, which can be online and

offline relationships, LinkedIn and Facebook friendship relationships, or something else. We

label the two layers as layer 1 and layer 2. We introduce our majority-vote model in Section

4.2.1 and discuss the network structure in Section 4.2.2.

4.2.1 Majority-vote model on multiplex networks

Our extension of the majority-vote model emphasizes layer heterogeneity. Suppose that our

system updates at discrete time steps. At each time step, we uniformly randomly choose a

physical node. We denote its opinion by O1 and denote the other opinion by O2. This focal

node conducts a local survey of its neighbors’ opinions on each layer. There are four possible

situations, which we summarize in Table 4.1. If the opinion O1 is the common majority

opinion in both layers, the chosen node flips its opinion with probability f1. If O1 is the

majority opinion in layer 1 but not layer 2, the node changes its opinion and adopts opinion

O2 with probability f2. If O1 is the majority opinion in layer 2 but not in layer 1, it changes

its opinion with probability 1 − f2. Finally, if O1 is not the majority opinion in either layer,

the focal node changes its opinion with probability 1 − f1. The parameter f1 is a natural

extension of the noise parameter in the classical majority-vote model, so we call it the “noise

parameter” in this chapter. We only consider f1 < 0.5, as nodes are more likely to follow the

majority opinion. We introduce the parameter f2 to model the situation that neighbors in
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Table 4.1: The probability that a focal node changes its opinion. We denote the original opinion of the focal

node by O1 and denote the other opinion by O2. The first column indicates the majority opinion in each

layer. We use Ō1 to indicate that O1 is not the majority opinion in a layer. The second column gives the

probability that the focal node adopts opinion O2.

Majority opinions
Opinion-flip probability

Layer 1 Layer 2
O1 O1 f1
O1 Ō1 f2
Ō1 O1 1 − f2
Ō1 Ō1 1 − f1

one layer are more influential than neighbors in the other layer. We call this parameter the

“layer-preference parameter”. Without loss of generality, we assume that f2 ≤ 0.5, which

implies that neighbors in layer 1 are at least as persuasive as neighbors in layer 2. When

f2 = 0.5, our model is similar to the model that was studied in Ref. [KGS18]; when f2 = 0,

our model is similar to the “AND” model that was studied in Ref. [CG19]. We also assume

that f2 > f1, so a node is more likely to adopt an opinion that is the common majority

opinion in both layers than an opinion that is the majority opinion in only one of the layers.

4.2.2 Multiplex networks with community structure

To incorporate community structure into our multiplex networks, we construct each layer

using an SBM. For simplicity, we assume that each layer has two communities and that

each community consists of N/2 nodes. For physical nodes, there are 4 different community

labels, which we denote by g = (g1, g2), where gl ∈ {1, 2} is the label in layer l. To control

the correlation of community assignments across layers, we define ν as the probability that

a physical node belongs to community g (with g ∈ {1, 2}) in both layers. We calculate

that E[|C(1,1)|] = E[|C(2,2)|] = νN/2 and E[|C(1,2)|] = E[|C(2,1)|] = (1 − ν)N/2, where C(g1,g2)

denotes the set of physical nodes with community label (g1, g2) and E[|·|] denotes the expected
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cardinality of a set. In our simulations, we independently assign each physical node to

community Cg with probability E[|Cg|]. Without loss of generality, we assume that ν ≥ 0.5.

One can exchange community labels in one of the two layers to obtain an equivalent model

with ν < 0.5. After we determine community assignments, we generate intralayer edges

independently in each layer using an SBM. To do this, in each layer l, we connect two state

nodes that belong to the same community with probability pin,l and we connect two state

nodes that belong to different communities with probability pout,l, where 0 < pout,l < pin,l. We

measure the strength of intralayer communities with the parameter µl = pout,l/(pout,l+pin,l) ∈

(0, 0.5). A smaller value of µl means that a larger fraction of edges connect nodes that are in

the same community. We use a simplistic network structure for convenience. More realistic

network structures can include more layers and more communities; each layer can have

different numbers of communities of different sizes and different densities. To use such a

general setting, one can impose interlayer community correlations and construct intralayer

communities following Ref. [BJA20]. One can also study the influence of more sophisticated

community structures, such as ones with overlapping communities.

4.3 A mean-field approximation

In this section, we derive a mean-field approximation of our majority-vote model and study

its dynamics. As in Section 3.5, we group nodes with the same degrees. We denote the

degree of a physical node by k = (k1, k2), where kl is the node’s degree in layer l. We also

group nodes based on their community assignments. Let qk,g denote the probability that

a uniformly randomly chosen node with degree k in community Cg holds opinion 1. The

probability qk,g evolves as

d

dt
qk,g = (1 − qk,g)P−1→1

k,g − qk,gP
1→−1
k,g , (4.1)
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where PO→−O
k,g is the probability that a node changes its opinion to −O from opinion O ∈

{1,−1}. The probability PO→−O
k,g depends on the opinion distribution of a focal node’s

neighbors; the opinion distribution depends implicitly on the opinion of the focal node.

However, as a simplification, we assume that the states of the neighbors and the state of the

focal node are independent when updating the state of the focal node. This assumption is

called “absence of dynamical correlations” in Ref. [GMW12]. Additionally, we only consider

the case that both layers have majority opinions; we ignore all other situations. In our

simulations, we examined several opinion-update probabilities for when one or both layers

do not have a majority opinion. We do not observe meaningful differences between the

steady-state behavior of these different choices. Therefore, we claim that ignoring the case

of an equal number of neighbors supporting each opinion in a layer has minimal influence

on our mean-field expressions. With these simplifications, we define P→O
k,g as the probability

that the focal node adopts opinion O regardless of its current state. The probability P→O
k,g

satisfies P→−1
k,g = 1−P→1

k,g . Let q̄g =
∑

k P(k)qk,g, where P(k) denotes the degree distribution

of the physical nodes. Based on equation (4.1), we have

d

dt
q̄g = −q̄g +

∑
k

P(k)P→1
k,g . (4.2)

We seek to expand P→1
k,g . Let ξ

(l)
k,g denote the probability that the majority opinion of the

neighbors is 1 for a focal state node in layer l with degree k and community label g. We

assume that the states of the neighbors in the two layers are independent, so that

P→1
k,g = (1 − f1)ξ

(1)
k1,g1

ξ
(2)
k2,g2

+ f1(1 − ξ
(1)
k1,g1

)(1 − ξ
(2)
k2,g2

)

+ (1 − f2)ξ
(1)
k1,g1

(1 − ξ
(2)
k2,g2

) + f2(1 − ξ
(1)
k1,g1

)ξ
(2)
k2,g2

= f1 + (1 − f2 − f1)ξ
(1)
k1,g1

+ (f2 − f1)ξ
(2)
k2,g2

. (4.3)
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The probability ξ
(l)
k,g is

ξ
(l)
k,g =

k∑
n=⌈k/2⌉

(
1 − 1

2
δn,k/2

)(
k

n

)
(Q(l)

g )n(1 −Q(l)
g )k−n , (4.4)

where δ is the Kronecker delta and Q
(l)
g denotes the probability that a uniformly randomly

chosen neighbor of a state node with community label g in layer l holds opinion 1. To close

the system, we write Q
(l)
g in terms of q̄g as follows:

Q
(1)
1 = (1 − µ1)νq̄(1,1) + (1 − µ1)(1 − ν)q̄(1,2) + µ1(1 − ν)q̄(2,1) + µ1νq̄(2,2) ,

Q
(1)
2 = µ1νq̄(1,1) + µ1(1 − ν)q̄(1,2) + (1 − µ1)(1 − ν)q̄(2,1) + (1 − µ1)νq̄(2,2) ,

Q
(2)
1 = (1 − µ2)νq̄(1,1) + µ2(1 − ν)q̄(1,2) + (1 − µ2)(1 − ν)q̄(2,1) + µ2νq̄(2,2) ,

Q
(2)
2 = µ2νq̄(1,1) + (1 − µ2)(1 − ν)q̄(1,2) + µ2(1 − ν)q̄(2,1) + (1 − µ2)νq̄(2,2) .

(4.5)

Equations (4.2)–(4.5) are a closed system that approximates the time evolution of q̄g.

The binomial distribution in equation (4.4) is expensive to compute for large values of k.

Therefore, we approximate it with a normal distribution using the central limit theorem. In

our analysis and experiments in the subsequent sections, we use the following approximation:

ξ
(l)
k,g ≈

1

2
+

1

2
erf

(√
2k

(
Q(l)
g − 1

2

))
, (4.6)

where erf(z) = 2√
π

∫ z
0
e−t

2
dt is the error function.

4.4 Steady states

By numerically solving the ODE system (4.2, 4.3, 4.5, 4.6), we find that there are three

types of steady states; these states depend on the choices of parameters and on the initial

conditions. Let m̄(g1,g2) = 2q̄(g1,g2) − 1 denote the mean opinion of community C(g1,g2), and

let m̄ = 2q̄ − 1 denote the mean opinion of the entire population. One steady-state solution
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is q̄(g1,g2) = 1
2

for all g1 and g2. In this solution, the two opinions are uniformly randomly

distributed in the population and the mean opinion m̄(g1,g2) of each community is 0. We

call this solution the “fully-mixed steady state”. The four communities in the other two

types of steady-state solutions have preferences either for the same opinion or for different

opinions. Specifically, q̄(g1,g2) deviates from 1
2

and has equal values for all g1 and g2 in one

case, which corresponds to “consensus steady states”. In the other case, q̄(g1,g2) − 1
2

do not

all have the same sign; these correspond to “polarized steady states”. In this section, we

derive expressions for the steady-state solutions and conditions for the linear stability of

these solutions using our mean-field approximation (4.2, 4.3, 4.5, 4.6).

4.4.1 The fully-mixed steady state

We start with the fully-mixed steady-state solution. The Jacobian matrix of equation (4.2)

at q̄(g1,g2) = 1
2

for all g1, g2 is

Jfull =

√
2√
π

(1 − f2 − f1)⟨
√
k⟩(1) ×


(1 − µ1)ν (1 − µ1)(1 − ν) µ1(1 − ν) µ1ν

(1 − µ1)ν (1 − µ1)(1 − ν) µ1(1 − ν) µ1ν

µ1ν µ1(1 − ν) (1 − 1µ1)(1 − ν) (1 − µ1)ν

µ1ν µ1(1 − ν) (1 − 1µ1)(1 − ν) (1 − µ1)ν



+

√
2√
π

(f2 − f1)⟨
√
k⟩(2) ×


(1 − µ2)ν µ2(1 − ν) (1 − µ2)(1 − ν) µ2ν

µ2ν (1 − µ2)(1 − ν) µ2(1 − ν) (1 − µ2)ν

(1 − µ2)ν µ2(1 − ν) (1 − µ2)(1 − ν) µ2ν

µ2ν (1 − µ2)(1 − ν) µ2(1 − ν) (1 − µ2)ν

− I ,

(4.7)
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where ⟨
√
k⟩(l) denotes the mean of the square root of the degree in layer l. Because 0.5 ≥

f2 > f1, the largest eigenvalue of Jfull is

λfull = −1 +

√
2√
π

(1 − f2 − f1)⟨
√
k⟩(1) +

√
2√
π

(f2 − f1)⟨
√
k⟩(2) . (4.8)

Therefore, the fully-mixed steady state q̄(g1,g2) = 1
2

(with g1, g2 ∈ {1, 2}) is linearly stable if

λfull < 0. This condition is independent of µ1, µ2, and ν. This result is the same as in the

majority-vote model on monolayer networks with community structure [HCS15]. Increasing

f1 always decreases λfull; this helps stabilize the fully-mixed solution. By contrast, the effect

of f2 depends on the difference between the edge densities of the two layers. Recall that

f2 measures the tendency for nodes to favor the majority opinion in layer 1 over that in

layer 2 when their majority opinions differ. A smaller value of f2 implies that nodes have

a larger preference for layer 1. When layer 1 has fewer (respectively, more) edges, which

is equivalent to the condition that layer 1 has a smaller (respectively, larger) value of ⟨k⟩,

decreasing (respectively, increasing) f2 helps stabilize the fully-mixed state.

4.4.2 Consensus steady states

We study the situation that each community has the same mean opinion. To do this, we

examine steady-state solutions of the system (4.2, 4.3, 4.5, 4.6) of the form

q̄g =
1

2
+ ϵ for all g (4.9)

for some ϵ ∈ [−1
2
, 0)∪ (0, 1

2
]. Consequently, the mean opinions m̄g = m̄ = 2ϵ ̸= 0. We set the

right-hand sides of equations (4.2) to 0 and insert the ansatz (4.9). The parameter ϵ satisfies

ϵ =
1

2
(1−f2−f1)

(∑
k1

P(1)(k1)erf(
√

2k1ϵ)

)
+

1

2
(f2−f1)

(∑
k2

P(2)(k2)erf(
√

2k2ϵ)

)
, (4.10)
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where P(l)(k) denotes the degree distribution of the state nodes in layer l. The error function

is an S-shaped odd function and is bounded by −1 and 1. Therefore, equation (4.10) admits

a solution ϵ ∈ [−1
2
, 0) ∪ (0, 1

2
] if and only if the value on the right-hand side of (4.10) is

smaller than 1
2

at ϵ = 1
2

and its derivative at ϵ = 0 is larger than 1. The former condition is

always satisfied. The latter condition is equivalent to

1 <

√
2√
π

(1 − f2 − f1)⟨
√
k⟩(1) +

√
2√
π

(f2 − f1)⟨
√
k⟩(2) , (4.11)

which is also the condition for the disordered steady state to be unstable. Suppose that

equation (4.10) has a non-zero solution ϵ∗ ∈ [−1
2
, 1
2
]. The solution q̄g = 1

2
+ ϵ∗ is always

linearly stable because the largest eigenvalue of the Jacobian matrix of equation (4.2) at

these values of q̄g equals the derivative of the right-hand side of equation (4.10) minus 1.

The derivative is always smaller than 1. Therefore, for a fixed f2, when f1 is smaller than a

critical value, consensus steady states are linearly stable. Moreover, the mean opinions m̄g

at a consensus steady state and the critical value of f1 are independent of the values of µ1,

µ2, and ν.

4.4.3 Polarized steady states

Suppose that the two communities in one layer have different mean opinions at steady

states. Because of the symmetry between the two opinions and the symmetry between the

two communities, we expect that the steady-state solutions also have a symmetric structure.

Suppose that

q̄(1,1) =
1

2
+ ϵ1 , q̄(1,2) =

1

2
+ ϵ2 ,

q̄(2,1) =
1

2
− ϵ2 , q̄(2,2) =

1

2
− ϵ1 .
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Inserting this ansatz into the steady state of the system (4.2, 4.3, 4.5, 4.6) yields

ϵ1 =
1

2
(1 − f2 − f1)

(∑
k1

P(1)(k1)erf(
√

2k1y1)

)
+

1

2
(f2 − f1)

(∑
k2

P(2)(k2)erf(
√

2k2y2)

)
,

ϵ2 =
1

2
(1 − f2 − f1)

(∑
k1

P(1)(k1)erf(
√

2k1y1)

)
− 1

2
(f2 − f1)

(∑
k2

P(2)(k2)erf(
√

2k2y2)

)
,

(4.12)

where

y1 = (1 − 2µ1)νϵ1 + (1 − 2µ1)(1 − ν)ϵ2 ,

y2 = (1 − 2µ2)νϵ1 − (1 − 2µ2)(1 − ν)ϵ2 .
(4.13)

One can solve equations (4.12)–(4.13) for ϵ1 and ϵ2 using fixed-point iterations and determine

the linear stability of polarized steady states by evaluating the largest eigenvalue of the

Jacobian matrix. The eigenvalue is

λpolarized = −1 +

√
2√
π

(1 − f2 − f1)

(∑
k1

P(1)(k1)
√
k1e

−(
√
2k1y1)2

)

+

√
2√
π

(f2 − f1)

(∑
k2

P(2)(k2)
√
k2e

−(
√
2k2y2)2

)
.

(4.14)

Consider the special case in which we construct the two layers from the same random-

network ensemble. Specifically, we take µ1 = µ2 = µ and P(1)(k) = P(2)(k) = P(k). Ad-

ditionally, we let f2 = 0.5. Because of the symmetry between the two layers, ϵ2 = 0 and

ϵ1 =

(
1

2
− f1

)∑
k

P(k)erf
(√

2k(1 − 2µ)νϵ1

)
. (4.15)

As we discussed in Section 4.4.2, equation (4.15) admits a nontrivial solution if the derivative
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of its right-hand side at ϵ1 = 0 is larger than 1. Equivalently, there is a nontrivial solution if

f1 <
1

2
−

√
π

2
√

2(1 − 2µ)ν⟨k1/2⟩
. (4.16)

Suppose that condition (4.16) is satisfied, We denote the solution to (4.15) by ϵ∗1. The largest

eigenvalue of the Jacobian matrix is −1 + 2
√
2√
π

(1
2
− f)

∑
k P(k)

√
ke−(

√
2k(1−2µ)νϵ∗1)

2
. Therefore,

the steady-state solution is linearly stable if and only if

ϵ1 =

(
1

2
− f1

)∑
k

P(k)erf
(√

2k(1 − 2µ)νϵ1

)
,

1 >
2
√

2√
π

(
1

2
− f1

)∑
k

P(k)
√
ke−(

√
2k(1−2µ)νϵ1)

2

.

(4.17)

In this special case, consensus steady states are linearly stable if and only if f1 <
1
2
−

√
π

2
√
2⟨k1/2⟩ ,

which is larger than the right-hand side of equation (4.16) because µ ∈ (0, 0.5) and ν ∈

[0.5, 1]. Because equation (4.16) is only a necessary condition for polarized steady states to

be linearly stable, the stability region of polarized steady states is a subset of the stability

region of consensus steady states. This result is consistent with and generalizes previous

results for the monolayer majority-vote model [HCS15].

4.5 Numerical experiments

We now compare the results of computational simulations with our analytical results. In all

of our simulations, we generate multiplex networks using the network model in Section 4.2.2.

We sample the two layers from the same network ensemble. We set the mean degrees to be

⟨k⟩ = 60 in each layer and let µ1 = µ2 = µ = 0.25. Consequently, the degree distribution

of state nodes in each layer approximately follows a Poisson distribution with mean 60 and

(pin, pout) =
(

2(1−µ)⟨k⟩
N

, 2µ⟨k⟩
N

)
. We run each simulation for 200N time steps. We consider

a steady state to be stable if we observe it in our simulations. In our simulations, when
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we assign the initial opinions uniformly at random, the system can reach either consensus

steady states or polarized steady states if the system is in the regime in which both steady

states are stable. However, because (1) the linear stability region of the consensus steady

states contains the linear stability region of polarized steady states in our mean-field model

and (2) we are more interested in locating the boundary at which polarized steady states

lose stability, we want more simulations to reach polarized steady states. To achieve this, we

assign the initial opinions based on the community assignments of nodes. We assign opinion

1 to all physical nodes in community 1 in layer 1 and assign opinion −1 to the remaining

physical nodes. By maximizing |m̄(1,1) − m̄(2,2)| and |m̄(1,2) − m̄(2,1)|, we expect that the

initial state of the system is closer in the state space to a polarized steady state than to a

consensus steady state. Consequently, we expect that it is more difficult for stochasticity

in our numerical simulations to pull the system towards a consensus steady state. In our

simulations, this choice of initial opinions always yields polarized steady states when the

parameters are inside the polarized regime and are sufficiently far away from its stability

boundary. We initialize the opinions of the nodes based on their community assignments in

all subsequent simulations.

For both our simulations and our mean-field approximation, we calculate the overall

mean opinion m̄ and the single-community mean opinion m̄(1,1) to see which steady state

the system reaches. At the fully-mixed steady state, we expect that both m̄ and m(1,1) are

close to 0. At a consensus steady state, neither m̄ or m̄(1,1) is close to 0. At a polarized

steady state, we expect that m̄ is close to 0 and m̄(1,1) is not. For each set of parameters, we

run our model on 10 networks. To calculate the mean opinions in our simulations, we first

calculate the mean opinion of each node over the last 30 time steps. We then calculate the

mean of these time-averaged opinions in the entire population and in community C(1,1). We

take absolute values of these means because there is an equal probability for the system or

a community to favor each opinion. Finally, we report the means of these absolute values

(the population-scale and the community-scale time-averaged opinions) over the simulations.
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When we refer to “mean opinions” from simulations in the rest of this section, we refer to

the means that we calculate using this procedure.

4.5.1 Experiment 1

We set f2 = 0.5 so that the nodes treat neighbors in the two layers equally when the majority

opinions are different in the two layers. With this choice of f2, our majority-vote model is

the same as the model that was studied in Ref. [KGS18] if one ignores the case that an equal

number of neighbors hold each opinion in a layer.

Figure 4.1: Heat maps of (left) the mean opinions of the entire population and (right) the mean opinions of

community C(1,1) from means of 10 direct numerical simulations. The horizontal axis is the parameter ν that

controls the correlation of community assignments across layers and the vertical axis is the noise parameter

f1. In the left panel, we mark the boundaries of the stability regions of each steady state that we obtain

from direct simulations and from our mean-field approximation. We set f2 = 0.5, N = 15000, and µ = 0.25.

In Figure 4.1, we compare our simulation results and our mean-field results for different

values of f1 and ν. We set N = 15000. For each set of parameters, we sample 10 networks

from the SBM and run our model once on each network. We show the results of our simu-

lations as heat maps; the left panel shows the mean opinions of the whole population, and

the right panel shows the mean opinions of community C(1,1). The heat maps in both panels
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have three regions. In the left panel, the middle region with values far away from 0 separates

the bottom-right and the top regions, which have values that are close to 0. In the right

panel, the top region has values that are close to 0. The middle and the bottom-right regions

both have values that are far away from 0. The colors undergo sharper changes at locations

where the two regions meet than inside the regions. The fully-mixed steady state is stable

in the top region, and the consensus steady states are stable in the middle region. In the

bottom-right region, both the consensus steady states and the polarized steady states are

stable. Because of our choice of initial opinion distributions, the system reaches polarized

steady states for almost every simulation except when the parameters are close to the bound-

ary of the bottom-right region. Based on our simulations, it seems that the mean opinions

undergo a smooth transition between the fully-mixed region and the consensus region but

that there is an abrupt transition between the consensus region and the polarized region.

We mark the boundaries of the stability regions in the left panel of Figure 4.1. For

the transition between the fully-mixed regime and the consensus regime, we calculate an

approximate zero level set of the mean opinions from our simulation results. Because we

take absolute values when calculating the mean opinions, the values are larger than 0. We

use Matlab’s contour function1 to find the parameter values at which the mean opinion

equals 0.01. (See the green curve with triangles.) We plot the linear-stability boundaries

using (4.11). (See the yellow dashed curves.) These two curves are close to each other.

For the transition between the consensus regime and the polarized regime, we observe a

rapid decrease of the mean opinions when we decrease f1, so we do not try to plot an

approximate zero level set. Instead, we determine the values of f1 that yield the maximum

mean opinions for each ν. (See the blue curve with triangles.) From our linear stability

condition (4.17), for each pair of f and ν, we solve for ϵ1 using fixed-point iterations and

calculate the value of the largest eigenvalue. We collect the largest eigenvalues and obtain

a matrix of eigenvalues. We calculate an approximate zero level set of this matrix using

1Matlab’s contour function finds isolines of a matrix through interpolation.
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the contour function. (See the purple dashed curve.) We obtain a matrix of mean opinions

by numerically solving the ODE system (4.2, 4.3, 4.5, 4.6) for each pair of f and ν. The

light-blue curve with asterisks indicates the approximate zero level set of this mean-opinion

matrix. We set the initial condition to be compatible with the initial opinion distributions

in our direct numerical simulations; this entails that (q̄(1,1), q̄(1,2), q̄(2,1), q̄(2,2)) = (1, 1, 0, 0).

The three curves are close to each other, but they are not very close to the approximate zero

level set of the mean opinions from our simulation results. As the parameters approach the

boundary of the stability region of the polarized steady states, it seems that the polarized

steady states become less stable and the stochasticity of our numerical simulations makes it

easier for the system to reach a consensus steady state. We also expect that the stochasticity

has more influence as N decreases and that the gap between the three curves and the actual

zero level set decreases as N increases. To examine this, we run the same simulations for

N = 5000 and plot our results in Figure 4.2. The gap widens, as expected. Finally, we

plot the condition (4.16) (see the red curve with circles) to verify that condition (4.16) is a

necessary but not sufficient condition for polarized steady states to be linearly stable.

Overall, we observe that the phase-transition patterns for f2 = 0.5 are qualitatively the

same as what was obtained for the monolayer majority-vote model in Ref. [HCS15]. For a

fixed ν, the system undergoes two transitions as f1 decreases. The smaller critical value is

independent of ν (as we see in our mean-field model) and the larger critical value increases

with ν.

4.5.2 Experiment 2

In this experiment, we explore the influence of the layer-preference parameter f2. In Figures

4.3 and 4.4, we show heat maps of the mean opinions for a range of f1 and ν values when

f2 = 0.32 and f2 = 0.26, respectively. These two figures show two typical heat maps. In the

left panels of both figures, the dark-blue regions indicate regimes in which both consensus

steady states and polarized steady states are stable; in the yellow regions, only consensus
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Figure 4.2: Heat maps of (left) the mean opinions of the entire population and (right) the mean opinions of

community C(1,1) from means of 10 direct numerical simulations. In the left panel, we mark the boundaries

of the stability regions of each steady state that we obtain from direct simulations and from our mean-field

approximation. We set f2 = 0.5, N = 5000, and µ = 0.25.

steady states are stable. At locations where the two regions meet, both figures have jagged

boundaries, which one can smoothen by running simulations with more finely-grained values

of f1 and ν. Figure 4.3 has a similar pattern as Figure 4.1. In Figure 4.4, however, we see

that the polarized steady states are stable in a much larger region than in Figures 4.1 and

4.3. This indicates that it is easier for different communities to favor different opinions when

the nodes have a stronger preference for opinions in one layer than for those in the other.

Additionally, when ν is small, polarized steady states are stable for large values of f1 but

not for small values of f1. We do not know the reason that small values of f1 appear to

destabilize polarized steady states.

4.5.3 Experiment 3

In this experiment, we fix ν and run our model for different values of f1 and f2 with 0.5 ≥

f2 > f1 > 0. We show heat maps of the mean opinions in Figure 4.5–4.7 for different values
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Figure 4.3: Heat maps of (left) the mean opinions of the entire population and (right) the mean opinions of

community C(1,1) from means of 10 direct numerical simulations. In both panels, we mark the boundary of

the linear stability region of polarized steady states; we obtain it by setting λpolarized = 0 in equation (4.14).

We set f2 = 0.32, N = 10000, and µ = 0.25.

Figure 4.4: Heat maps of (left) the mean opinions of the entire population and (right) the mean opinions of

community C(1,1) from means of 10 direct numerical simulations. In both panels, we mark the boundary of

the linear stability region of polarized steady states; we obtain it by setting λpolarized = 0 in equation (4.14).

We set f2 = 0.26, N = 10000, and µ = 0.25.
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of ν. The dark-blue regions in the lower part of the triangles are regions where polarized

steady states are stable. From our linear stability analysis, we obtain the boundaries of linear

stability regions of polarized steady states by setting λpolarized = 0 in equation (4.14). We

mark the boundaries with dashed curves. The area of this region increases as ν increases, so

it is easier for different communities to develop preferences for different opinions when the

communities in the two layers are more strongly correlated with each other. We also observe

some other interesting features. Let f ∗
1 denote the maximum value of f1 for which there

exists some f2 such that polarized steady states are stable. When f1 > f ∗
1 , polarized steady

states are not stable for any value of f2. The value of f ∗
1 is the same in Figures 4.5–4.7. Let

f ∗
2 denote the value of f2 such that (f ∗

1 , f
∗
2 ) is on the boundary of the stability region. When

ν is small (see Figure 4.5), there exists f2 < f ∗
2 such that polarized steady states are stable

for some f1. For larger values of ν (see Figures 4.6 and 4.7), f ∗
2 is the minimum value of f2

such that polarized steady states are stable.

Figure 4.5: Heat maps of (left) the mean opinions of the entire population and (right) the mean opinions of

community C(1,1) from means of 10 direct numerical simulations. In both panels, we mark the boundary of

the linear stability region of polarized steady states; we obtain it by setting λpolarized = 0 in equation (4.14).

We set ν = 0.5, N = 10000, and µ = 0.25.
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Figure 4.6: Heat maps of (left) the mean opinions of the entire population and (right) the mean opinions of

community C(1,1) from means of 10 direct numerical simulations. In both panels, we mark the boundary of

the linear stability region of polarized steady states; we obtain it by setting λpolarized = 0 in equation (4.14).

We set ν = 0.6, N = 10000, and µ = 0.25.

Figure 4.7: Heat maps of (left) the mean opinions of the entire population and (right) the mean opinions of

community C(1,1) from means of 10 direct numerical simulations. In both panels, we mark the boundary of

the linear stability region of polarized steady states; we obtain it by setting λpolarized = 0 in equation (4.14).

We set ν = 0.7, N = 10000, and µ = 0.25.
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4.6 Conclusions and discussions

We proposed a multiplex majority-vote model in which each layer represents one relationship

and each physical node holds one opinion. Our model considers situations in which different

relationships have different propensities to influence an individual’s opinion. This feature

cannot exist in monolayer opinion models and (to the best of our knowledge) was neglected

in the multiplex majority-vote models that were studied in previous works. We examined the

steady-state opinion distributions of our majority-vote model on networks with community

structure. We observed the same three regimes as those that were observed in majority-

vote models on monolayer networks with community structure [HCS15]. Additionally, we

showed using simulations and mean-field calculations that heterogeneous influence abilities

of different layers can qualitatively affect the regions in which polarized steady states are

stable.

There are many ways to generalize our model. First, one can consider more complicated

network structures. One can examine more realistic community structures (e.g., by con-

sidering degree-corrected SBMs or overlapping communities), and one can also study the

influence of interlayer degree correlations and interlayer edge overlaps on opinion spread.

Second, one can consider more general opinion-update rules. For example, when the two

layers have the same majority opinion, the probability that a node flips its opinion when the

common majority opinion is the same as its opinion and the probability that it flips when

the common majority opinion is different from its opinion do not have to sum to 1. Third, in

our model, each node has the same propensity of conforming to one of the two layers when

the two layers have different majority opinions (i.e., they have the same value of f2). A

natural extension is to consider a model in which the nodes have heterogeneous propensities.

This is typically relevant when the different layers represent different online social platforms;

different people do prefer different social platforms in real life. Moreover, because individuals

who belong to the same communities often share common traits, it seems sensible to study
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situations in which individuals’ preferred relationships are correlated with their community

memberships .
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CHAPTER 5

Modeling Illegal Logging in Brazil

This chapter is adapted from an original paper [CPP21] that I co-authored with Bohan Chen,

Christian Parkinson, Andrea L. Bertozzi, Tara Lyn Slough and Johannes Urpelainen. Bohan

implemented the main algorithm, and I performed experiments and analyzed results.

5.1 Introduction

Deforestation, and illegal logging in particular, has caused some of the most damaging effects

to the world’s forests [Reb13, LV15]. There have been a variety of attempts to model and

quantify deforestation from ecologists, political scientists, applied mathematicians, and oth-

ers. For example, Pfaff studied the correlation between certain parameters and deforestation

in tropical regions such as Brazil [Pfa99] . The three dominant categories of parameters

were identified by Pfaff and other authors [LAS02, AGR15] as accessibility, population, and

climate. One effort to control deforestation in Brazil while exploiting timber in a sustain-

able way is through allowing legal concessions for industrial timber harvest in public forests

[ASM15]. Under such concessions, companies that operated in Brazil fell an average of only

one tree per acre instead of clear-cutting to allow tree regrowth [TF20]. However, as was

reported by Trevisani et al. [TF20], legal timber companies pulled out of the concession

because uncontrolled loggers invaded the companies’ land, illegally toppling and stealing

trees. They also mentioned that the Brazilian government’s failure to detect and punish

these criminals led to even more rampant organized crime and more severe deforestation.

86



It is an essential and urgent task to determine effective tactics to combat illegal logging.

Efficient and effective deployment of law enforcement to threatened areas is essential to deter

these crimes. Such deployment has been modeled in a continuum setting [Alb10, AFJ19,

CV20]. However, effective deterrence can lead to spatial “spillovers” as loggers move away

from areas with heavy monitoring. Assessing loggers’ responses to policies is important

when designing an effective system that minimizes deforestation of forested areas. In this

chapter, we build a game-theoretic model to infer interactions between uncontrolled loggers

and law-enforcement agents.

5.1.1 Deforestation in the state of Roraima

We use the PRODES (Programa Despoluição de Bacias Hidrográficas, or “Basin Restoration

Program”) data set [IN], which is the official data set that the Brazilian government uses for

annual statistics that are related to deforestation. PRODES includes a mixture of computer

analysis and human expert analysis to delineate deforestation regions in the Brazilian Ama-

zon. The minimum patch size of such region is 6.25 hectares (ha). We focus on the state of

Roraima, which is the northernmost state in Brazil. We extract annual deforestation-event

data and tree-coverage data from PRODES. We also use the transportation system map

(including highways and waterways) from OpenStreetMap [Ope17]. OpenStreeMap labels

highways based on their importance. In this chapter, we call the highways with labels mo-

torway, trunk, primary, secondary, and tertiary as “major highways” and the highways with

labels road, track, and unclassified as “secondary highways”. We ignore the highways with

other labels. In Figure 5.1(a), we plot the deforestation events from 2001 to 2015 and the

transportation system of Roraima. We see that many of the deforestation events occur near

highways and rivers. We show the tree-coverage data for 2015 in Figure 5.1(b), where yellow

indicates land covered by trees and blue indicates cleared land. There are fifteen munici-

palities in the state of Roraima. In our model, we assume that loggers originate from and

return to these fifteen municipalities.
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(a) Deforestation events on top of the transportation
system

(b) The indicator function of tree cover-
age

Figure 5.1: An overview of the data from PRODES [IN]. Panel (a) shows the deforestation events between

2001 and 2015 in Roraima on top of the transportation system. We use the highway and waterway map from

OpenStreetMap [Ope17]. Dark blue indicates rivers, white indicates major highways, and red dots indicate

deforestation events. Panel (b) shows tree-coverage data for 2015; yellow represents regions that are covered

by trees and blue represents uncovered regions.

5.1.2 Previous work

Albers [Alb10] proposed the first game-theoretic model of deforestation that is continuous in

space. They modeled deforestation events in a circular area with radially symmetric benefit

and patrol functions. Criminals enter from the boundary of the area and want to maximize

their profit

P (d) = (1 − Φ(d))B(d) − C(d) ,

where d is the shortest distance between the extraction point to the boundary, B is the

benefit to an attacker, C is the travel cost, Φ is the cumulative patrol function (so (1 − Φ)

indicates the probability of avoiding capture).

Johnson et al. [JFT12] examined optimal patrol strategies in the framework of Albers’

model [Alb10]. Kamra et al. [KGF18] extended Albers’ model by removing the assumption

that the distribution of trees is radially symmetric. They considered a game between law

enforcement and extractors and applied machine-learning techniques to find optimal or near-

optimal patrol strategies. All of these works considered a circular region and assumed that
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(a) Model of Albers [Alb10] in radially symmetric
areas

(b) Model of Arnold et al. [AFJ19] applied to
Yosemite National Park

Figure 5.2: Illustration of previous work. (a) Albers’ [Alb10] model assumes a radially symmetric and radially

symmetric functions so that extractors only move along the radius. (b) Arnold et al. [AFJ19] generalized

the model to terrains with arbitrary shapes and applied their generalized model to the Yosemite national

park. In both panels, the white area is pristine and the grey area is affected by criminals.

extractors come from the boundary of the region and move toward the center. The radial

symmetry of the region and the functions is a major restriction.

Arnold et al. [AFJ19] generalized Albers’ model [Alb10] to any closed, simple region

in R2. The primary tool that they employed to study their model is the level-set method

[OS88]. In their model, the cost represents the effort of logging at any point in the protected

area. They evaluated the effort by calculating the optimal travel time, where the travel

speed is allowed to depend on terrain data. They modeled the impact of patrol by including

capture probability in the form of a heuristic modified speed that decreases as the product of

patrol intensity and benefit increases. The model has not been evaluated against real-world

data, but it was recently modified and improved by Cartee and Vladimirsky [CV20]. They

constructed two models that are based on whether or not authorities use ground patrol

(where confiscation takes place as perpetrators are detected) or aerial patrol (with which

illegal goods are not confiscated until perpetrators exit the protected area).
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Models for illegal extraction with discretized domains have been developed by Fang et

al. [YFT14, FNP17] and Kar et al. [KFD15, KFG17]. Fang et al. [FNP17] developed the

PAWS (Protection Assistant for Wildlife Security) algorithm and described the protected

region as nodes that are connected by edges, which are natural pathways such as rivers or

roads. They deployed their models in Queen Elizabeth National Park (QENP), Uganda and

a conservation area in Malaysia. Kar et al. [KFG17] used machine-learning techniques to

predict attacks from extractors and conducted a one-month field test in QENP. Both methods

showed potential to improve the effectiveness of law enforcement agencies. One advantage

of these methods, which are discrete, is that they can readily incorporate realistic features

such as detailed terrain information, different types of environmental crime (including animal

poaching), and different types of patrol teams [MTK16]. However they have the disadvantage

that they do not track the actual movement of the environmental criminals. Additionally, it

can be difficult to interpret the results of these models because of the “black box” nature of

parameter-estimation methods.

5.1.3 Our contribution

Our model builds on the works by Arnold et al. [AFJ19] and Cartee et al. [CV20]. We

use optimal control theory to model and solve a path-planning problem that is faced by

uncontrolled loggers as they balance benefit, travel cost, and capture risk. We assume that

authorities deploy remote patrols, similarly to model A in [CV20]; therefore there is a delay

in confiscation of illegal goods. We introduce several improvements to make our model more

realistic than previous works. We consider non-instantaneous logging activities and positive

capture risk while logging on site so that loggers can choose optimal logging time to maximize

their profit. We also incorporate load-dependent travel speed when loggers return from a

forest with illegal goods. We work directly with real-world data from Brazil to calibrate

our model. We simulate and conduct a side-by-side comparison of the inferred outcomes of

several geographically targeted and data-driven patrol strategies.
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The remainder of the chapter is organized as follows. In Section 5.2, we discuss our model

formulation. We discuss a multiobjective approach that transforms our optimization problem

into solving ekonal equations, which we solve numerically with a fast-sweeping method. In

Section 5.3, we discuss the setup and results of our numerical experiments. We summarize

our conclusions in Section 5.4.

5.2 Illegal-logging model

Our model, which is based on the work of Albers [Alb10] and Arnold et al. [AFJ19], examines

the decision-making process of loggers. Our model allows an arbitrary domain as in Ref.

[AFJ19], but it balances travel time and capture risk in a more judicious manner than in Ref.

[AFJ19] by appealing to optimal control theory. We also account for logging time, which

was ignored by previous models but makes a big difference to loggers’ profit (see Section

5.3). In the remaining part of the present section, we construct our model and then pose an

optimal control problem as a static Hamilton–Jacobi equation. We solve this equation using

a fast-sweeping method [BD99, ZOM00, TCO03, Zha05, Par21].

5.2.1 Model construction

Given an arbitrary domain Ω ⊆ R2, our goal is to construct an expected profit function

P (x) : Ω → R from the perspective of loggers. We adopt the basic idea from Albers [Alb10],

who used P = (1 − Φ)B − C. The function B is a benefit function that describes the

value of the timber if loggers are not captured during a trip. The function C represents

the cost and is measured by the travel cost of both entering and leaving the forest. The

term 1 − Φ describes the probability of not being captured, which depends on patrollers’

detection ability and loggers’ trajectories. We present details of these three components in

the following paragraphs. We follow the Stackelberg game model [Von10] and assume that

loggers have perfect information about patrol.

91



The benefit function B depends on the value and amount of timber that perpetrators log.

We assume that each location x in the domain Ω has a fixed amount of timber, but with

a different total value B(x) that depends on the category and quality of timber. Departing

from previous models, for which extraction happens instantaneously, we introduce the notion

of a logging time tlog, which is comparable to the travel time. We assume that loggers have

a constant production rate 1/T , where T is a global constant that represents the time to

clear all of the trees in one location. If one ignores the existence of patrollers, the benetift

function is B(t) =
tlog
T
B(x). We always assume that tlog ≤ T and that loggers only extract

from one spot x in one trip.

We assume that loggers can be detected when they are logging or when they are returning

with illegal goods. We define the capture intensity using the function ψ : Ω → R, which

we assume to be known to loggers and dependent on patrol resources and strategies. In

particular, we assume that it satisfies a budget constraint

∫
Ω

ψ(x)(1 + µd(x))2 dx ≤ E , (5.1)

where E represents the budget, d(x) is the Euclidean distance from location x to major

highways, and µ is an adjustable weight parameter. The term (1+µd(x))2 models a scenario

in which it is more expensive to patrol deeper into a forest. We try several capture intensity

functions in the experiments in Section 5.3. Following the derivation in [CV20], we take the

probability of not being captured while logging at x for time tlog to be e−ψ(x)tlog . Longer

logging time entails a larger benefit, but it also entails a larger risk of being detected. We

assume that the loggers are detectable only when they have timber in their possession. The

probability of not being captured when a logger returns via a path X(s) is e−
∫ τ
0 ψ(X(s))ds,

where τ is the travel time. If they are detected, they lose all of the benefit without extra

penalty. (See the discussion at the end of this subsection.) The expected benefit of logging
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at location x for time tlog and returning via path X(s) is

B(x)
tlog
T
e−ψ(x)tloge−

∫ τ
0 ψ(X(s)) ds . (5.2)

The cost, represented by the travel time, is straightforward to calculate if one has a path

and the loggers’ travel speed. We assume that loggers embark from and return to one of the

fifteen municipalities in Roraima. We use Xin and Xout to represent the paths to and from

the logging location, respectively. We allow loggers to return to any municipality — not

necessarily the one from which they embarked from. In our model, we first define the travel

speed v : Ω → R2 towards the forest based on the region’s transportation system. Loggers

travel fastest when they are on major highways and are slower when they are on water or

secondary highways. When loggers are not on highways or waterways, we scale their speed

according to terrain slope, in the same ways as in Ref. [AFJ19]. When they return, we

assume that their speed is slower because of loaded cars or boats. We set the return speed of

loggers to be vout = v(x)/(1 + c(tlog/T )γ), where tlog/T measures the amount of timber that

loggers carry back. The parameters c and γ model the influence of carrying timber on the

speed of motion. A larger travel cost may be another reason that loggers decide to spend

less than the maximum logging time.

Based on our previous assumptions, the profit of logging at position x for time tlog and

following paths Xin and Xout is

P (x, tlog, Xin, Xout) = B(x)
tlog
T
e−ψ(x)tloge−

∫ τout
0 ψ(Xout(s)) ds (5.3)

−
∫ τout

0

α(Xout(s)) ds−
∫ τin

0

α(Xin(s)) ds ,

where τin and τout are travel times and α is a dimensional function that converts time to

monetary value. As in [CV20], α may be constant or may depend on the regions. This can

model loggers’ preferences for certain areas or represent differences in the unit cost of travel
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time for different modes of travel. For example, perhaps the unit time cost of traveling on

waterways is smaller than that of traveling on highways. We have made various assumptions

and choices to obtain a concrete profit function. It is difficult to verify their validity and it

seems useful to study variations of our model with other assumptions.

Rational loggers try to solve the optimization problem

Popt(x) = max
tlog,Xin,Xout

P (x, tlog, Xin, Xout) (5.4)

and may fall trees from locations with positive profit. The optimal paths going in and out of

a forest can be different because of patrols. In reality, a mixture of different patrol methods

are deployed, including ground patrol (which use boats and motor vehicles), and remote

patrol, (which use satellite, helicopters, planes and drones). As was pointed out in [CV20],

ground patrols lead to immediate confiscation, so it seems more reasonable for loggers to

switch to the minimum-time path after they are detected. In this chapter, we always assume

that the government deploys remote patrols. Because loggers are unaware of being detected,

they choose optimal return paths that balance capture risk and travel time.

5.2.2 Multiobjective approach and eikonal equations

We adapt the multiobjective optimal-control approach of Cartee and Vladimirsky [CV20]

to our model and describe its use in solving the optimization problem (5.4). We consider a

trajectory X(s) that follows the dynamics

Ẋ(t) = a(t)v(X(t)) , t ∈ [0, S] ,

X(0) = x ,

X(S) ∈ X0 ,

(5.5)
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where X0 denotes the set of possible destinations (the fifteen municipalities). The map a is

the control plan; it is an element of the set of valid control functions

A = {a : [0, S] → R2 | a measurable, |a(t)| = 1, for all t ∈ [0, S]} .

Define J1(x, a, v) =
∫ τ
0
ψ(X(s)) ds and J2(x, a, v) =

∫ τ
0
α(X(s)) ds. According to (5.3), the

profit is

P (x, tlog, Xin, Xout) =B(x)
tlog
T
e−ψ(x)tloge−J1(x,a,vout) − J2(x, a, vout) −R(x) , (5.6)

where R(x) is the minimum cost of traveling from X0 to x. In fact, because our speed is

isotropic, R(x) is the unique viscosity solution [CL83, BC08] of the eikonal equation

v(x)|∇R(x)| = α(x) , x ∈ Ω \ X0 ,

R(x) = 0 , x ∈ X0 .
(5.7)

Recall that in our model, loggers do not need to worry about patrols and they travel with

speed v(x) along a path toward a forest. Along a return path, the loggers’ speed decreases

if they carry timber. The amount of timber that they carry is proportional to their logging

time. In our model, we set vout = v/(1 + c(tlog/T )γ). Expanding vout in equation (5.6) yields

P (x, tlog, Xin, Xout) = B(x)
tlog
T
e−ψ(x)tloge−J1(x,a,v)(1+c(tlog/T )

γ)

− J2(x, a, v)(1 + c(tlog/T )γ) −R(x) .

(5.8)

We determine the optimum profit value using a multiobjective control formulation as in

[CV20]. For any λ ∈ [0, 1], let Kλ(x) = λψ(x) + (1 − λ)α(x). Then the λ-optimal value

function uλ(x)

uλ(x) = inf
a∈A

{λJ1(x, a, v) + (1 − λ)J2(x, a, v)} (5.9)
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is the unique viscosity solution of the eikonal equation

v(x)|∇uλ(x)| = Kλ(x) , x ∈ Ω \ X0 ,

uλ(x) = 0 , x ∈ X0 .
(5.10)

While we do not expect uλ to be smooth, under mild conditions on v and K, it is Lipschitz

continuous and hence differentiable almost everywhere. Therefore, the optimal controls that

achieve uλ(x), which we call λ-optimal controls, are uniquely determined for almost every

starting point x ∈ Ω \ X0. We denote the set of λ-optimal controls corresponding to uλ(x)

as

Aλ
x = arg min

a∈A
{λJ1(x, a, v) + (1 − λ)J2(x, a, v)} .

The value functions that correspond to λ-optimal controls are defined by

uλ1(x) = inf
a∈Aλ

x

{J1(x, a, v)} ,

uλ2(x) = inf
a∈Aλ

x

{J2(x, a, v)} .
(5.11)

Given uλ, we obtain uλ1 and uλ2 by solving

∇uλ(x)∇uλ1(x) =
ψ(x)Kλ(x)

v2(x)
, x ∈ Ω \ X0 ,

∇uλ(x)∇uλ2(x) =
α(x)Kλ(x)

v2(x)
, x ∈ Ω \ X0 ,

(5.12)

with boundary conditions u1(x) = u2(x) = 0, for x ∈ X0 [CV20, MS03].
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The optimal profit is

Popt(x) = max
tlog, Xin, Xout

P (x, tlog, Xin, Xout)

= max
tlog∈[0,T ]

{
sup
a∈A

[
B(x)

tlog
T
e−ψ(x)tloge

−J1(x,a,v)
(
1+c

(
tlog
T

)γ)

−J2(x, a, v)

(
1 + c

(
tlog
T

)γ)]}
−R(x)

= max
tlog∈[0,T ]

{
max
λ∈[0,1]

[
B(x)

tlog
T
e−ψ(x)tloge

−uλ1 (x)
(
1+c

(
tlog
T

)γ)

−uλ2(x)

(
1 + c

(
tlog
T

)γ)]}
−R(x)

= max
λ∈[0,1]

{
max

tlog∈[0,T ]

[
B(x)

tlog
T
e−ψ(x)tloge

−uλ1 (x)
(
1+c

(
tlog
T

)γ)

−uλ2(x)

(
1 + c

(
tlog
T

)γ)]}
−R(x) .

(5.13)

The expression

B(x)
tlog
T
e−ψ(x)tloge

−uλ1 (x)
(
1+c

(
tlog
T

)γ)
− uλ2(x)

(
1 + c

(
tlog
T

)γ)
(5.14)

is a function of tlog. It is not easy to find an explicit value of the location where the maximum

is obtained. In practice, we discretize [0, T ]×[0, 1] into finitely many points (ti, λj) and choose

the one that yields the largest profit.

We conclude the discussion of our model with two remarks regarding implementation.

Remark 1: Choice of X0. In our model, we need to solve the eikonal equation (5.7) for

the minimum travel time, where we take X0 to be the set of municipalities from which the

loggers depart. We also need to solve (5.10) for the λ-optimal value function uλ, where we

take X0 to be the set of municipalities to which loggers transport timber. As we mentioned

briefly in Section 5.2.1, we do not require loggers to return to the same municipality from

which they start. From the patrol perspective, it is not be clear which municipality the

loggers will choose. Accordingly, we let X0 be the set of all fifteen municipalities in both
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(5.7) and (5.10). The resulting maximum profit for loggers reflects their freedom to choose

their starting and terminal municipalities. If loggers are required to return to their starting

point, one can perform 15 calculations that each take X0 to be a singleton corresponding to

one municipality in both equation (5.7) and (5.10). In all of our simulations, we allow loggers

to return to any municipality, which always gives a profit that is at least as large as that

from insisting that they return to their starting municipality. One can view this situation as

a worst-case situation.

Remark 2: Optimal paths. We find optimal paths from x ∈ Ω to the set X0 by

following the negative gradient directions of the value functions. More specifically, to find a

minimum-cost path from x to X0 in the absence of patrols (i.e., an optimal path towards the

forest), we integrate ẋ = −v(x) ∇R(x)
|∇R(x)| . To find an optimal path when loggers carry timber

and go outwards (i.e., an optimal return path), we integrate ẋ = −v(x) ∇uλ(x)
|∇uλ(x)| , where λ is

an optimal value of the extraction point x.

In our model, optimal logging times can be different at different locations. However, an

optimal path is the same regardless of the logging time because the logging time and the

amount of timber carried influence the speed uniformly. Consequently, a path is traversed

more slowly for a longer logging time, but the spatial location of that path is the same.

One of the basic assumptions of our model is that travel speed is isotropic, meaning that

it depends only on position and not on the direction of motion. Therefore, one can determine

optimal paths between two points regardless of which is the starting point and which is the

ending point. If we instead use an anisotropic speed — for example, if the downstream and

upstream velocities of a river are different — this is no longer true. We would then need

to compute entering and leaving paths separately, which would require additional partial

differential equations (PDEs) similar to (5.7) and (5.10) but formulated with a reversed

orientation.
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5.2.3 Numerical methods

We need to solve two types of PDE in our model: standard eikonal equations (5.7), (5.10)

and auxiliary PDEs (5.12). Because the region Ω (the state of Roraima) has an irregular

shape, we use a uniform Cartesian grid to discretize a rectangular region in R2 that contains

Ω. As mentioned in Section 5.2.2, we choose X0 to be the set of all 15 municipalities in the

state of Roraima. This applies to all three equations (5.7), (5.10), and (5.12). To mark the

boundary of Ω, we set the travel speed to 0 outside Ω; this makes it impossible for paths to

leave the region.

To numerically solve the equations, one can apply standard numerical methods for static

Hamilton–Jacobi equations [FF16]. Two of the most popular methods are fast-marching and

fast-sweeping schemes. The basic idea of fast-marching methods is to follow characteristic

flow and update values at grid nodes monotonically based on the values at neighboring nodes

[Tsi95, Set99, SV00, SV03]. With a proper choice of the order of node updates, fast-marching

methods can approximate the value function at N grid points with a computational cost

of O(N logN). By contrast, the philosophy of fast-sweeping methods is to account for all

possible directions of characteristic flow. Fast-sweeping methods sweep through grid nodes in

alternating directions and update values at nodes in a Gauss–Seidel manner [BD99, ZOM00,

TCO03, Zha05, Par21]. Each sweep captures the correct characteristic flow for some subset

of the nodes. This process is iterated until convergence.

We use the basic fast-sweeping method of Ref. [Zha05]. While the fast-marching method

is more efficient, the standard fast-sweeping scheme is sufficient for our purposes and is very

easy to implement. If efficiency is a concern and one prefers fast-sweeping methods, one can

parallelize the computation as in Ref. [Zha07], though we did not do this. There also exist

other fast methods to solve eikonal equations; one example is the method in Ref. [CV12],

which uses a hybrid fast-marching and fast-sweeping approach.
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5.3 Implementation and results

In this section, we apply the optimization solver (see Section 5.2.2) to our model. We start

with a detailed description of the benefit function, the speed function, and the evaluation

measures in Section 5.3.1. We then discuss our numerical results in Section 5.3.2.

5.3.1 Experimental setup

High-fidelity inference of the benefit function requires detailed knowledge of Brazilian forest.

We construct the benefit function based on the PRODES data set [IN]. Deforestation events

within 50 kilometers of the major highways are dense and clustered. We manually checked

the street views of many of these locations through Google Map and found that they were

used for agricultural purposes. Therefore, we assume that deforestation for agricultural

land clearance takes place within 50 kilometers of the major highways and treat all other

deforestation events as the result of logging. We mark events with red circles in Figure 5.3(a).

We also assume that regions with a high event frequency have a large benefit. We use the

same technique as in kernel density estimation [Par62]. We construct a density function by

assigning a 2-D Gaussian kernel to each event. From the PRODES data, we also construct

an indicator function of tree coverage within the region (see Figure 5.3(b)). We then write

the logging benefit function as a linear combination of the density function and the indicator

function (see Figure 5.3(c)). Our approach gives some idea of the true benefit but it is not

fully accurate, because we do not incorporate features like distance to municipalities and

patrols. The simpler benefit function allows us to focus on exploring loggers’ behavior under

the influence of other factors. The inverse problem of recovering the benefit function based

on the deforestation event data, travel distance, and capture risk if of interest by itself.

Moreover, as we show in Figure 5.3(a), many logging events are in the periphery of the state

of Roraima, providing further evidence that these regions have sufficient benefit to be worthy

of long-distance travel. In practice, local governments may be able to design a more realistic
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benefit function by incorporating more granular data that involves types of trees and other

vegetation in specific areas.

(a) (b) (c)

Figure 5.3: We show (a) logging events from 2001 to 2015 and the 15 municipalities, which we mark with red

circles and yellow dots, respectively, (b) the indicator function of tree coverage (yellow) from 2015 PRODES

data, and (c) the constructed benefit function. We assume that deforestation events that are at least 50

kilometers away from the major highways are logging events. We discretize the region into a 806× 622 grid.

We construct the benefit function in panel (c) by combining a density function with the indicator function in

panel (b). We normalize the benefit function so that the maximum benefit is 10. We construct the density

function by convolving the event count in panel (a) with a 2-D Gaussian kernel of size 17×17 with a standard

deviation of 20.

Because our logging model is sensitive to the transportation system, we design a speed

field (see Figure 5.4) to capture the movement of loggers in a region. Using the highway and

waterway map from OpenStreetMap [Ope17], we assign velocities of 1, 0.7, and 0.4 to major

highways, secondary highways, and waterways, respectively. This reflects the assumption

that loggers use trucks and cargo ships to transport timber. Outside these regions, we use a

speed model that is based on the local slope of the terrain. Specifically, we use elevation data

from the Shuttle Radar Topography Mission [FRC07] and set the slope S(x, y) = |∇E(x, y)|,

where E(x, y) is the elevation of the region. The speed is 0.2 multiplied by a function of the

local slope; see Arnold et al. [AFJ19], who based their speed function on that of Irmischer

and Clarke [IC18]. In reality, the speed on waterways may be anisotropic, in contrast to

the isotropic assumption in our model. One can generalize our model to incorporate this
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more realistic scenario and derive anisotropic Hamilton–Jacobi equations that are similar to

equations (5.7) and (5.10).

Figure 5.4: Speed field in the state of Roraima. The speed on major highways, secondary highways, and

waterways is 1, 0.7, and 0.4, respectively. The speed in off-highway and off-water areas depends on the

change of elevation.

Many governments, including the Brazilian government, endeavor to combat deforesta-

tion by designating geographic areas as protected areas or priority areas for monitoring

and enforcement. However, identifying where to target protection presents challenges for

policymakers. We evaluate the efficiency with which targeted patrol strategies can reduce

deforestation using three measures:

1. Pristine area ratio PA: We designate the regions with non-positive profit as pristine

areas. The ratio of the area of pristine region over the area of the state is PA =∫
Ω 1{P (x)≤0}dx∫

Ω 1dx
.

2. Pristine benefit ratio PB: This measure calculates the ratio of the benefit in a pristine
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area to the total benefit as PB =
∫
ΩB(x)1{P (x)≤0}dx∫

ΩB(x)dx
.

3. Weighted profit WP: We interpret the positive part of the profit as the inclination for

loggers to choose the logging location. We define WP as the expected profit of loggers

using the formula WP =
∫
Ω P+(x)2dx∫
Ω P+(x)dx

, where P+(x) = P (x)1{P (x)≥0} is the non-negative

profit.

We run our model on a 600×600 grid. To search for optimal λ ∈ [0, 1] and tlog ∈ [0, T ], we

discretize both [0, 1] and [0, T ] into 101 equally spaced values. The choices of the following

parameter values are somewhat arbitrary because we do not have access to empirical data.

We expect that the distance to major highways has a moderate influence on patrol cost, so

µ × d should be roughly at the same order of magnitude as 1. In our experiments, we set

µ = 2
5maxx∈Ω d(x)

≈ 7.33 × 107. We let the maximal logging time to be T = 2000000 so that

it has a similar scale as the travel time. We expect that the unit time cost of traveling on

waterways to be smaller than on waterways, so we set α = µ on the highways and α = 0.7µ

otherwise.

5.3.2 Results

We run our model with different patrol budgets and patrol strategies. We also explore the

influence of logging time and decreased speed when traveling with goods.

5.3.2.1 Example 1: No patrol

We first suppose that there is no patrol. Recall that the the speed when the loggers return

is v(x)/(1 + c(tlog/T )γ) to account for the influence of carrying timber. When there is no

patrol (i.e., ψ(x) = 0), the optimal paths are the same when traveling to and from the forest.

Additionally, when the amount of timber has no influence (i.e., c = 0), the loggers always

use the maximum logging time T . These statements are generally not true when patrol is
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present or c ̸= 0. We show the resulting non-negative profit P+ in Figure 5.5(a). We then

test c = 0.5, γ = 1 and c = 1, γ = 1.5. As we show in Figure 5.5, a larger c entails a larger

reduction of the travel speed and thus leads to a smaller profit. In all of the subsequent

experiments, we fix c = 0.5 and γ = 1.

(a) c = 0 (b) c = 0.5, γ = 1 (c) c = 1.5, γ = 1

Figure 5.5: Expected non-negative profit P+ when there is no control. The speed when the loggers return

depends on the amount of timber and is defined to be v(x)/(1 + c(tlog/T )
γ). The weighted profit WP is (a)

2.4091, (b) 2.3499, and (c) 2.2622.

5.3.2.2 Example 2: Comparison of different budgets

Recall that we imposed a budget constraint for patrols in (5.1). We assume that a patrol

uses all available resources and impose equality in (5.1) for all of our simulations. In this

example, we set

ψ(x) =
E

(1 + µd(x))5
∫
Ω

(1 + µd(x))3 dx
. (5.15)

Recall that d(x) is the Euclidean distance to major highways; the above patrol function

puts more patrol effort on regions that are closer to major highways. We plot the capture

intensity in Figure 5.9(c); we discuss this intensity further in Section 5.3.2.4. We set E to

be 0.001, 0.003, and 0.005 and we plot the resulting non-negative profit in Figure 5.6. As

expected, a higher budget yields a lower profit. In all of our subsequent experiments, we fix

E = 0.003.
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(a) E = 0.001 (b) E = 0.003 (c) E = 0.005

Figure 5.6: Expected non-negative profit P+ with different budgets E while fixing the other parameters.

5.3.2.3 Example 3: Influence of patrol on optimal logging time

We use the same experimental setup as in example 2, and we fix E = 0.003. Recall that

we discretize the logging time interval [0, T ] into 101 equally spaced values and search for

the best logging time at those values. We plot the optimal logging times in Figure 5.7(a)

as a proportion of the maximum logging time T used. Because we assume that loggers do

not choose locations with zero benefit, we set the optimal logging time at those locations to

be 0 in all of our figures of optimal time. We sample four points in this region that achieve

optimal logging time when logging for 50%, 60%, 70%, and 80% of T . We mark these points

with white dots in Figure 5.7(a). In figure 5.7(b), we show the profit as a function of logging

time at each point; the optimal logging times are different for each point. When c = 0 (i.e.,

when carrying timber does not influence travel speed), the optimal time depends only on

the capture intensity and is equal to min{1/ψ(x), T}. When c is non-zero, the solution of

optimal logging time is more complicated because benefit and travel time also play a role.

5.3.2.4 Example 4: Comparison of different patrol strategies

The enforcement strategy in Brazil in the time period 2003–2012 involved a combination

of satellite and ground patrols. They successfully reduced deforestation with these strate-

gies. Patrols were active in areas with significant deforestation. These areas are “priority”
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(a) Optimal logging time
(b) Profit versus logging time

Figure 5.7: (a) Optimal logging time. We show the proportion of the maximum time T used on regions

with positive benefit. We set the proportion to be 0 on regions with 0 benefit. White points mark locations

where the optimal logging times are (1) 80%, (2) 70%, (3) 60%, and (4) 50% of T . (b) Profit as a function

of logging time at each of the sampled point from panel (a).

municipalities. Patrols were also sent where the satellite system revealed suspiciously high

deforestation [Jac16]. These spatially targeting patrols follow sensible strategies. But we

are interested in studying if more sophisticated strategies can improve patrolling efficiency.

In this example, we compare the patrolling efficiency of different capture intensity functions

ψ(x). Each patrol strategy has a budget E = 0.003. We plot the corresponding capture

intensity function, non-negative profit P+, and optimal logging time for each experiment

and summarize the values of these quantities in Table 5.1.

We first consider a patrol function that is based only on the distance to major highways

by setting

ψ(x) =
E

(1 + µd(x))r
∫
Ω

(1 + µd(x))2−r dx
, (5.16)

where we choose r from the values 1, 5, and 15. We focus on regions that are close to highways

because logging and patrol costs are low in these regions. A larger value of r means that

the patrol is more concentrated near the highways, and a smaller value of r entails a patrol

that is distributed more uniformly. In Figures 5.8–5.10, we show the corresponding capture
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(a) Capture intensity (b) Profit P+ (c) Optimal logging time

Figure 5.8: (a) Capture intensity is based on distance only, with r = 1 in equation (5.16). (b) Expected

non-negative profit P+ for the entire region. (c) Optimal logging time on regions with positive benefit.

intensities, non-negative profits P+ and, optimal logging times. When r = 1, the optimal

logging times are distributed more uniformly than for larger values of r. In high-benefit

regions (these regions are away from major highways), the optimal logging time and the

profit increase markedly with increasing r because loggers are less likely to be captured away

from major highways. All three profit plots in Figures 5.8–5.10 have the pattern that high-

benefit regions are also high-profit regions. This suggests that we should take the benefit

function into consideration when designing patrol strategies.

(a) Capture intensity (b) Profit P+ (c) Optimal logging time

Figure 5.9: (a) Capture intensity is based on distance only, with r = 5 in equation (5.16). (b) Expected

non-negative profit P+ for the entire region. (c) Optimal logging time on regions with positive benefit.
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(a) Capture intensity (b) Profit P+ (c) Optimal logging time

Figure 5.10: (a) Capture intensity is based on distance only, with r = 15 in equation (5.16). (b) Expected

non-negative profit P+ for the entire region. (c) Optimal logging time on regions with positive benefit.

(a) Capture intensity (b) Profit P+ (c) Optimal logging time

Figure 5.11: (a) Capture intensity is based on benefit only, with w = 1 in equation (5.17). (b) Expected

non-negative profit P+ for the entire region. (c) Optimal logging time on regions with positive benefit.

We now set

ψ(x) =
B(x)wE∫

Ω
(1 + µd(x))2B(x)w dx

, (5.17)

where we choose w to be 1, 0.5, or 0.2 to target the high-benefit regions. Similar to the

previous example, a larger value of w indicates a more concentrated patrol. We show the

results in Figures 5.11–5.13. The intense patrol in high-profit regions makes those regions

less vulnerable. Additionally, profitable regions now cluster around highways because both

the initial benefit and the travel cost are relatively low near highways .

Our experiments thus far in Section 5.3.2.4 inform us that we need to balance benefit
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(a) Capture intensity (b) Profit P+ (c) Optimal logging time

Figure 5.12: (a) Capture intensity is based on benefit only, with w = 0.5 in equation (5.17). (b) Expected

non-negative profit P+ for the entire region. (c) Optimal logging time on regions with positive benefit.

(a) Capture intensity (b) Profit P+ (c) Optimal logging time

Figure 5.13: (a) Capture intensity is based on benefit only, with w = 0.2 in equation (5.17). (b) Expected

non-negative profit P+ for the entire region. (c) Optimal logging time on regions with positive benefit.

and distance when designing a patrol strategy. We set the patrol function to be

ψ(x) =
B(x)wE

(1 + µd(x))r
∫
Ω

(1 + µd(x))2−rB(x)w dx
. (5.18)

We test this patrol function with w = 0.2 and r = 1, 5, 15. We plot the results in Figures

5.14–5.16. The statistics in Table 5.1 confirm that forests are better protected when patrol

strategies take both distance and benefit into account. (Compare (7)–(9) to (1)–(6) in Table

5.1.) Compare the patrol results based on distance only (results (1)–(3)) to the results based

on strategy (5.18) (results (7)–(9)) in Table 5.1. It is clear that the “optimal” attention that
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(a) Capture intensity (b) Profit P+ (c) Optimal logging time

Figure 5.14: (a) Capture intensity is based on benefit and distance, with w = 0.2 and r = 1 in equation

(5.18). (b) Expected non-negative profit P+ for the entire region. (c) Optimal logging time on regions with

positive benefit.

we should give to small-distance regions, as indicated by the value of r, can depend on w

(i.e., the attention that is given to high-benefit regions). When we ignore the benefit, the

weighted profit (WP) and the protected benefit (PB) measures indicate that smaller r (for

which the patrol is more uniform) is better. However, when we take benefit into consideration

and let w = 0.2, our computations suggest that a moderately large patrol concentration

along highways is more appropriate than a uniform patrol distribution. Moreover, the three

measures are not necessarily positively or negatively correlated. For example, both the

protected area (PA) and weighted profit (WP) in Figure 5.16 are larger then those in Figure

5.14 and 5.15, although in many cases PA decrease if WP increases. This feature adds to

the complexity of finding an “optimal” patrol strategy.

Finally, we consider a patrol strategy that puts more effort along specific waterways

than any of previous strategies in addition to targeting highways and high-benefit regions.

We mark the selected waterways in Figure 5.17(a) with blue curves. As we will discuss

in Section 5.3.2.5, the waterways are in many optimal paths. We define a new distance

function d̂(x) that calculates the minimum Euclidean distance to major highways and the

selected waterways. We modify the patrol function in equation (5.18) to obtain the following
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(a) Capture intensity (b) Profit P+
(c) Optimal logging time

Figure 5.15: (a) Capture intensity is based on benefit and distance, with w = 0.2 and r = 5 in equation

(5.18). (b) Expected non-negative profit P+ for the entire region. (c) Optimal logging time on regions with

positive benefit.

(a) Capture intensity (b) Profit P+ (c) Optimal logging time

Figure 5.16: (a) Capture intensity is based on benefit and distance, with w = 0.2 and r = 15 in equation

(5.18). (b) Expected non-negative profit P+ for the entire region. (c) Optimal logging time on regions with

positive benefit.

strategy:

ψ(x) =
B(x)wE

(1 + µd̂(x))r
∫
Ω
B(x)w(1 + µd(x))2(1 + µd̂(x))−r dx

. (5.19)

In Figure 5.17, we plot the results when w = 0.2 and r = 15. Because loggers have to

reroute to avoid heavy patrolling (see Figure 5.18(d)), the profit is less than that of previous

strategies.

All of our numerical experiments indicate that both distance and potential benefit are
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(a) Capture intensity (b) Profit P+
(c) Optimal logging time

Figure 5.17: (a) Capture intensity is based on benefit and distance to both highways and waterways, with

w = 0.2 and r = 15 in equation (5.19). (b) Expected non-negative profit P+ for the entire region. (c)

Optimal logging time on regions with positive benefit.

important factors for patrol allocation. For now, we do not have a method to find optimal

patrol strategies, but our model can be applied to evaluate and compare different strategies.

5.3.2.5 Example 5: Optimal paths

We now calculate and compare optimal paths in different regions under different patrol

strategies. We randomly sample 500 target locations with probabilities that are proportional

to the non-negative profits in Figure 5.8(b). We plot the optimal paths that go to each of

these points in Figure 5.18(a) and show the optimal paths that return from these points

under different patrol strategies in Figures 5.18(b)–5.18(d). As discussed previously (see

Section 5.2.2), the optimal paths that go to the targets are the same regardless of the patrol

strategy. To convey the differences between these paths, we plot the paths that leave the

target points (blue curves) on top of those that go to the target points (red curves) in

panels (b)–(d). Figure 5.18(b) illustrates that most of the optimal paths that enter and

leave the forest are very similar under the patrol strategy in Figure 5.13. As we increase

the nonuniformity of capture intensity by focusing more on the northwest corner (see Figure

5.11), we observe a major change in Figure 5.18(c). Loggers now choose a different route to
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Patrol based on Parameters WP PA PB Index

Distance only
r = 1 0.1321 0.7667 0.6912 (1)
r = 5 0.3419 0.7702 0.6231 (2)
r = 15 1.6289 0.7632 0.5311 (3)

Benefit only
w = 1 0.1774 0.7493 0.7827 (4)
w = 0.5 0.1130 0.8108 0.8376 (5)
w = 0.2 0.0917 0.8384 0.8600 (6)

Benefit and
distance to
highways

w = 0.2, r = 1 0.0773 0.8611 0.8791 (7)
w = 0.2, r = 5 0.0683 0.8863 0.9059 (8)
w = 0.2, r = 15 0.6714 0.9056 0.7695 (9)

Benefit and
distance to highways
and waterways

w = 0.2, r = 15 0.0582 0.8944 0.9101 (10)

Table 5.1: Results of numerical experiments with different patrol strategies. We defined the evaluation

measures WP, PA, and PB in Section 5.3.1.

avoid patrols and return to a different municipality than the one from which they started.

Nevertheless, many optimal paths that go deeper into the forest in the northwest corner

cluster into one trajectory; one reason for this is that the capture intensity is much more

uniform than the travel speed due to the presence of rivers. The fast travel speed along the

river outweighs the risk of being captured. With this in mind, we design the patrol strategy

that we plot in Figure 5.17; in this patrol strategy, we target waterways that attract loggers.

As expected, the corresponding optimal paths in Figure 5.18(d) demonstrate huge differences

from those in Figure 5.18(bc). Because of these differences, this patrol strategy (see Figure

5.17) achieves the smallest WP and the largest PB in Table 5.1. This result again emphasizes

the importance of spatially targeted patrolling.

5.4 Conclusions and discussion

We presented a control-theoretic model to infer the behavior of uncontrolled loggers, in-

cluding their travel paths and target logging locations. We consider logging events that

are sufficiently lucrative for the criminals so that they are willing to incur some risk of be-
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(a) Optimal paths entering the forest
(b) Optimal paths leaving the forest with the patrol
function in Figure 5.13

(c) Optimal paths leaving the forest with the
patrol function in Figure 5.11

(d) Optimal paths leaving the forest with the patrol
function in Figure 5.17

Figure 5.18: We sample 500 target points in the region with probabilities that are proportional to the

non-negative profits in Figure 5.8(b). We plot the optimal paths entering the forest in panel (a) and the

optimal paths leaving the forest in panels (b)–(d). We write the deployed patrols in the subtitles. We plot

the departing paths (blue) on top of the entering paths (red) in panels (b)–(d). Yellow dots mark the 15

municipalities.

ing caught. The criminals balance that risk against the benefit to find an optimal logging

duration. Our model quantifies the intensity of a logging event, in contrast to models in
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which deforestation events clear all of the trees from an area. We believe that our approach

is more realistic because the PRODES data set [IN] shows that trees are still present in

many locations where past deforestation events have occurred. We detailed the underly-

ing mathematical formalism, including the numerical schemes that we used to simulate our

model. Finally, we explored the influence of different parameter values through numerical

experiments and compared different patrol strategies.

Our model is built on the idea that efficient patrols against deforestation should be

spatially targeted, rather than applied uniformly across a territory. This assumption com-

ports with the targeted nature of deforestation enforcement policies used by many countries.

However, the most efficient patrols that we obtained in our experiments require more precise

spatial targeting than the ones that are specified by most existing public policies. Such

policies typically target administrative units (e.g., municipalities in Brazil) or other large

swaths of a forest. There are clear tradeoffs between precise and blunt targeting, including

challenges in patrol-strategy implementation, difficulties in communication of control strate-

gies, and political costs of targeting. The model that we developed in this chapter reveals

the necessity to study these tradeoffs to improve the efficacy of deforestation control policies.

We now discuss several directions for future work. First, one of the basic assumptions

in our model is that the loggers know the precise patrol strategy. This is a standard game-

theoretic simplification, but we expect that it is false in reality. Incorporation of imperfect

knowledge (perhaps using stochastic effects) may better model the strategic game between

the criminals and the patrol. Relevant work exists on surveillance uncertainty in reach–

avoid games [GV20]. Second, although our model can evaluate a suggested patrol strategy,

we are not able to find optimal patrol strategies using our current formulation. It would

be useful to design a model that can resolve optimal strategies or suggest a constructive

method for improving a given suboptimal strategy. Additionally, our model is static. One

can envision a time-series model such that the model that we have described in this chapter

is one stage in an ongoing game and the patrol strategy can change with time. Studying the
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long-term behavior of such a model may provide additional insight into the expected amount

of deforestation over long stretches of time.
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CHAPTER 6

Conclusions

In this thesis, we developed and studied several models of human dynamics. We discussed a

model of coupled epidemic spread and opinion spread and a model of opinion spread in the

form of dynamical processes on multilayer networks. We then discussed a model of human

movement using optimal control.

We introduced a model of the spread of a infectious disease when competing opinions

on physical distancing spread concurrently in a population. Our model takes the form of a

dynamical system on a two-layer multiplex network. We assumed that the disease and the

opinions spread on different layers following compartmental models. We developed a degree-

based pair approximation for the time evolution of population-scale quantities. Using direct

numerical simulations and our pair approximation, we explored the influence of opinion

spread on disease spread. We also explored the influence of several network structures on

the dynamics.

We extended a majority-vote model to two-layer multiplex networks. In our model,

neighbors in one layer are more influential at changing an individual’s opinion than neighbors

in the other layer. We studied our model on multiplex networks with community structure in

which we controlled intralayer community strength and interlayer community correlation. We

found three different types of steady-state behavior — fully mixed, consensus, and polarized

steady states. We studied phase transitions with a mean-field approximation and obtained

results that are close to those that we observed using direct numerical simulations. We found

that a stronger interlayer community correlation results in polarized steady states being
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reachable for wider ranges of the other model parameters. We also found that different

values of the layer-preference parameter (which quantifies the degree to which neighbors

in one layer are more influential than neighbors in the other layer) result in qualitatively

different phase diagrams for the mean opinions at steady states.

Finally, we studied a model of illegal logging. We examined the behavior of illegal loggers

who want to maximize their profit by balancing benefit and cost. We formulated our model

as an optimal control problem and solved it numerically using a fast-sweeping method. Our

numerical experiments demonstrated that, in our model, spatially targeted patrols are more

efficient than uniform patrols at deterring illegal logging.

Our three models of human dynamics are inspired by real-life applications. However,

much work is necessary before it is possible to use such models to truly address real-world

issues. Our models rely on many assumptions. We make some of the assumptions to sim-

plify analysis and calculations. These assumptions are generally not true. For example,

a more realistic effect of adopting an opinion on physical distancing is to change contact

patterns rather than to change the disease transmission rate. It is important to develop new

mathematical tools to solve the more sophisticated mathematical problems that we obtain

when we relax these assumptions. Moreover, some of our assumptions are inherently hard

to verify. One example is how opinions change under peer pressure. In this case, comparing

the behavior of our models and of variations of our models with empirical data is essential

to help evaluate these assumptions. Even with these drawbacks, we believe that our models

improve upon previous works and can provide insights for future research.
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