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4Institute of High Energy Physics, Beijing 100039, China

5Institute of Physics, University of Bergen, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

7University of Birmingham, Birmingham, B15 2TT, United Kingdom
8Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany

9University of Bristol, Bristol BS8 1TL, United Kingdom
10University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

11Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
12Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
13University of California at Irvine, Irvine, California 92697, USA

14University of California at Los Angeles, Los Angeles, California 90024, USA
15University of California at Riverside, Riverside, California 92521, USA
16University of California at San Diego, La Jolla, California 92093, USA

17University of California at Santa Barbara, Santa Barbara, California 93106, USA
18Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA

19California Institute of Technology, Pasadena, California 91125, USA
20University of Cincinnati, Cincinnati, Ohio 45221, USA
21University of Colorado, Boulder, Colorado 80309, USA

22Colorado State University, Fort Collins, Colorado 80523, USA
23Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany

24Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany

PRL 96, 251802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
30 JUNE 2006

251802-2



25Ecole Polytechnique, LLR, F-91128 Palaiseau, France
26University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

27Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
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We report the results of a search for T, CP, and CPT violation in B0- �B0 mixing using an inclusive
dilepton sample collected by the BABAR experiment at the PEP-II B factory. Using a sample of 232� 106
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B �B pairs, we measure the T and CP violation parameter jq=pj � 1 � ��0:8� 2:7�stat� � 1:9�syst���
10�3, and the CPT and CP parameters Imz � ��13:9� 7:3�stat� � 3:2�syst��� 10�3 and ��� Rez �
��7:1� 3:9�stat� � 2:0�syst��� 10�3 ps�1. The statistical correlation between the measurements of Imz
and ��� Rez is 76%.

DOI: 10.1103/PhysRevLett.96.251802 PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw, 14.40.Nd

Since the first observation of CP violation in 1964 [1],
the neutral kaon system has provided many results probing
the discrete symmetries CPT and T in K0- �K0 mixing [2].
Similarly, the BABAR experiment can investigate T, CP,
and CPT violation in B0- �B0 mixing.

The physical states (solutions of the complex effective
Hamiltonian for the B0- �B0 system) [3] can be written as
 

jBLi � p
������������
1� z
p

jB0i � q
������������
1� z
p

j �B0i;

jBHi � p
������������
1� z
p

jB0i � q
������������
1� z
p

j �B0i;

where H and L stand for heavy and light. Under CPT
symmetry, the complex parameter z vanishes. Similarly, T
invariance implies jq=pj � 1. Finally, CP invariance re-
quires both jq=pj � 1 and z � 0.

Inclusive dilepton events, where both B mesons decay
semileptonically (b! Xl�, with l � e or�), represent 4%
of all ��4S� ! B �B decays and provide a very large sample
with which to study T, CPT, and CP violation in mixing.
In the direct semileptonic neutral B decay, the flavor
B0� �B0� is tagged by the charge of the lepton l��l��.

At the ��4S� resonance, neutral B mesons are produced
in a coherent P-wave state. The B mesons remain in
orthogonal flavor states until one decays, after which the
flavor of the other B meson evolves with time. Neglecting
second order terms in z, the decay rates for the three
configurations (l�l�, l�l�, and l�l�) are given by

 N�� /
e��j�tj

2
j
p
q
j2
�
cosh�

���t
2
� � cos��m�t�

�
;

N�� /
e��j�tj

2
j
q
p
j2
�
cosh�

���t
2
� � cos��m�t�

�
;

N�� /
e��j�tj

2

�
cosh�

���t
2
� � 2 Rez sinh�

���t
2
�

� cos��m�t� � 2 Imz sin��m�t�
�
;

(1)

where �t is the difference between the neutral B decay
times, �m is the B0- �B0 oscillation frequency, � is the
average neutral B decay rate and �� is the decay rate
difference between the two physical states. The sign of
�t has a physical meaning only for opposite-sign dileptons
and is given by �t � t� � t� where t��t�� corresponds to
l��l��, respectively.

The same-sign dilepton asymmetry AT=CP, between the
two oscillation probabilities P� �B0 ! B0� and P�B0 ! �B0�
probes both T and CP symmetries and can be expressed in
terms of jq=pj:

 

AT=CP �
P� �B0 ! B0� � P�B0 ! �B0�

P� �B0 ! B0� � P�B0 ! �B0�

�
N�� � N��

N�� � N��

�
1� jq=pj4

1� jq=pj4
: (2)

Standard model calculations [4] predict the magnitude of
this asymmetry to be at or below 10�3. A large measured
value would be an indication of new physics.

Similarly, the opposite-sign dilepton asymmetry,
ACPT=CP, between events with �t > 0 and �t < 0 com-
pares the B0 ! B0 and �B0 ! �B0 probabilities and is sensi-
tive to CPT and CP violation. This asymmetry is given by

 ACPT=CP�j�tj� �
P�B0 ! B0� � P� �B0 ! �B0�

P�B0 ! B0� � P� �B0 ! �B0�

�
N����t > 0� � N����t < 0�

N����t > 0� � N����t < 0�

’ 2
Imz sin��m�t� � Rez sinh����t

2 �

cosh����t
2 � � cos��m�t�

: (3)

As j��j=�� 1 [3], we have Rez sinh����t=2� ’ ���
Rez� ��t=2� and this asymmetry is not sensitive to the
CPT-violating term Rez alone, but to the product ���
Rez.

In this Letter, we present measurements of jq=pj, Imz
and ��� Rez with a simultaneous likelihood fit to the
observed �t distributions of same-sign and opposite-sign
dilepton events. In the cosh����t=2� term, we use j��j �
�5� 3� � 10�3 ps�1, the value reported in Ref. [3].

This study is performed with data collected by the
BABAR detector [5] at the PEP-II asymmetric-energy B
factory between October 1999 and July 2004. The inte-
grated luminosity of this sample is 211 fb�1 recorded at
the ��4S� resonance (‘‘on resonance’’) (232� 106 B �B
pairs) and about 16 fb�1 recorded 40 MeV below the
��4S� resonance (‘‘off resonance’’).

The event selection is similar to that described in
Ref. [6]. Non-B �B events, mainly e�e� ! q �q�q � udsc�
continuum events, are suppressed by applying require-
ments on the shape and the topology of the event.

Lepton candidate tracks must have at least 12 hits in the
drift chamber, at least one z-coordinate hit in the silicon
vertex tracker (SVT), and a momentum in the ��4S�
center-of-mass system between 0.8 and 2:3 GeV=c.
Electrons are selected by requirements on the ratio of the
energy deposited in the electromagnetic calorimeter to the
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momentum measured in the drift chamber. Muons are
identified through the energy released in the calorimeter,
as well as the strip multiplicity, track continuity, and
penetration depth in the instrumented flux return. Lepton
candidates are rejected if their signal in the Cherenkov
detector is consistent with that of a kaon or a proton. The
electron and muon selection efficiencies are about 85% and
55%, with pion misidentification probabilities around 0.2%
and 3%, respectively.

Electrons from photon conversions are identified and
rejected with a negligible loss of efficiency for signal
events. Leptons from J= and  �2S� decays are identified
by pairing them with other oppositely charged candidates
of the same lepton species, selected with looser criteria.
Events with at least two leptons are retained and the two
highest momentum leptons in the ��4S� rest frame are
used in the following.

The separation between direct leptons �b! l� and back-
ground from the b! c! l decay chain (cascade leptons)
is achieved with a neural network that combines five
discriminating variables: the momenta and opening angle
of the two lepton candidates, and the total visible energy
and missing momentum of the event, all computed in the
��4S� rest frame. Of the original sample of 232� 106 B �B
pairs, 1:4� 106 pass this dilepton selection.

Since the asymmetry AT=CP is expected to be small, we
have determined the possible charge asymmetries induced
by charge-dependent differences in the reconstruction and
identification of electrons and muons. The charge asym-
metries are defined by a 	 �"� � "��=�"� � "�� where
"��"�� is the efficiency for positive and negative particles.
As the lepton efficiencies and purities depend mainly on
their momenta, we consider separately the asymmetry for
the higher and lower momentum lepton, respectively, al1
and al2 .

The charge asymmetry of track reconstruction is mea-
sured in the data by comparing tracks reconstructed using
only the SVT with those passing the dilepton track selec-
tion, obtaining atrk � �0:8� 0:2� � 10�3.

The lepton identification efficiencies are measured as a
function of total momentum and polar and azimuthal an-
gles, with a control sample of radiative Bhabha events for
electrons, and with a ee! ��� control sample for
muons. The misidentification probabilities are determined
with control samples of kaons produced in D
� !
��D0 ! ��K��� (and charge conjugate) decays, pions
produced in KS ! ���� decays, three-prong � decays,
and protons produced in � decays.

The control samples show that the muon track recon-
struction efficiency has a charge asymmetry reaching
�5� 10�3 and that positive kaons are 20%–30% more
likely than negative kaons to be misidentified as muons. As
a consequence, in the likelihood fit (described below), we
float the charge asymmetries adir

� and acasc
� for direct and

cascade muons.
For electrons, the charge asymmetry averaged over the

signal phase space is ae � �0:4� 0:2� � 10�3 and we find

that antiprotons with momentum �1 GeV=c are signifi-
cantly more likely than protons to be misidentified, due to
annihilation with nucleons in the calorimeter material.
Based on the charge asymmetry in tracking and in identi-
fication, we fix the charge asymmetry for the direct elec-
trons with the higher momentum to adir

e1
� 1:2� 10�3. For

the lower momentum direct electrons and the cascade
electrons, for which antiproton contamination is more
important, we correct the initial charge asymmetry by the
fraction of antiprotons estimated with B �B Monte Carlo
samples and the proton control sample. This gives the
following charge asymmetries: adir

e2
� 0:8� 10�3, acasc

e1
�

0:5� 10�3, and acasc
e2
� 0:2� 10�3.

In the inclusive approach used here, the z coordinate of
the B decay point is approximated by the z position of the
point of closest approach between the lepton candidate and
an estimate of the ��4S� decay point in the transverse
plane. The ��4S� decay point is obtained by fitting the
two lepton tracks to a common vertex, constrained to be
consistent with the beam-spot position in the transverse
plane. The proper time difference �t between the two B
meson decays is taken as �t � �z=h��ic, where �z is the
difference between the z coordinates of the leptons, with
the same-sign convention as for �t, and h��i � 0:55 is the
nominal Lorentz boost. For same-sign dileptons, the sign
of �t is chosen randomly.

We model the contributions to our sample from B �B
decays using five categories of events, i, each represented
by a probability density function (PDF) in �t, P n;c

i . Their
shapes are determined using the B0 �B0 (n) and B�B� (c)
Monte Carlo simulation separately, with the approach de-
scribed in Ref. [7].

The five categories are the following. First, the pure
signal events with two direct leptons (sig), which are
81% of the B �B events, give information on the T, CPT,
and CP parameters. Then, we consider two categories of
cascade decays: those in which the direct lepton and the
cascade lepton come from different B decays (obc), and
those in which the direct lepton and the cascade lepton
stem from the same B decay (sbc). According to B �B
Monte Carlo simulation, their contributions are around
9% and 4%, respectively. In addition, 3% of the dilepton
events originate from the decay chain b! �� ! l�

(1d1�), which tags the B flavor correctly. Finally, the
remaining events (other) consist mainly of one direct lep-
ton and one lepton from the decay of a charmonium
resonance from the other B decay.

The sig event PDF, P n;c
sig , are obtained by the convolution

of an oscillatory term containing the T, CPT, and CP
parameters [Eq. (1)] for neutral B decays (or an exponen-
tial function for charged B decays) with a resolution func-
tion which is the sum of three Gaussians. The widths of the
core and tail Gaussians and the fractions of the core and
outlier Gaussians are free parameters in the fit. The width
of the outlier Gaussian is fixed to 8 ps. The means of the
Gaussians are fixed to zero [8].
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The obc event PDF, P n;c
obc, are modeled by the convolu-

tion of �t-dependent terms of a form similar to those of the
signal with a resolution function which takes into account
the effect of the charmed meson lifetimes. Since both
short-lived D0 and D�s , and long-lived D� mesons are
involved in cascade decays, the resolution function for
the long-lived and short-lived components is a double-
sided exponential convolved with the sum of three
Gaussians. To allow for possible outliers not present in
the Monte Carlo simulation, the fraction of the third
Gaussian is free in the fit. The parameterization of the
sbc event PDF, P n;c

sbc, account for the lifetimes of charmed
mesons in a similar way.

The PDF for 1d1� events, P n;c
1d1� are similar to that of the

sig events. The resolution function used takes into account
the � lifetime and is chosen to be two double-sided ex-
ponentials convolved with two Gaussians. Finally, the PDF
for the remaining events, P n;c

other, are the convolution of an
exponential function with an effective lifetime and two
Gaussians.

The fractions (fn;csbc, fn;c1d1�, and fn;cother) of sbc, 1d1� and
other events, are determined directly from the B0 �B0 and
B�B� Monte Carlo simulation. The fraction fnobc of obc
events are fitted to the data, with the ratio fnobc=f

c
obc con-

strained to the estimate obtained with Monte Carlo
samples. The fraction f�� of B�B� events is determined
from the data themselves.

The last component of the dilepton sample originates
from non-B �B events, and has been estimated using off-
resonance data to be fcont � �3:1� 0:1�% of the data

set. This PDF is modeled using off-resonance events
with looser cuts and on-resonance events that fail the
continuum-rejection cuts. The charge asymmetries acont

e;�

obtained with the two samples are consistent with zero at
the 1% level and thus are fixed to zero in the likelihood.

The T=CP and CPT=CP violation parameters are ex-
tracted from a binned maximum likelihood fit to the events
that pass the dilepton selection. The likelihood L combines
the detector-related charge asymmetries and the time-
dependent PDFs described previously. As the charge asym-
metries are significantly different for electrons and muons,
we split the sample into four lepton combinations: ee, e�,
�e and ��, in which the first lepton has the higher
momentum.

The likelihood is given by

 

L��t� � �1� q1acont
l1
��1�q2acont

l2
�fcontP cont

��1� fcont�ff��P B�B� � �1� f���P B0 �B0g

P B0 �B0 � �1� fnsig��1�q1a
casc
l1
��1� q2a

casc
l2
�P n

casc

� fnsig�1�q1adir
l1
��1� q2adir

l2
�P n

sig

P B�B� � �1� f
c
sig��1�q1a

casc
l1
��1� q2a

casc
l2
�P c

casc

� fcsig�1�q1adir
l1
��1� q2adir

l2
�P c

sig

P n;c
casc � f

n;c
otherP

n;c
other� f

n;c
1d1�P

n;c
1d1�� f

n;c
sbcP

n;c
sbc� f

n;c
obcP

n;c
obc;

where q1, q2, l1, and l2 are the charges and the flavors
�e;�� of the two leptons.

The likelihood fit gives jq=pj � 1 � ��0:8� 2:7� �
10�3, Imz � ��13:9� 7:3� � 10�3, and ��� Rez �
��7:1� 3:9� � 10�3 ps�1. The correlation between the
measurements of Imz and ��� Rez is 76%. If we fix
�� � 0, we obtain Imz � ��3:7� 4:6� � 10�3. The fit-
ted fractions of B�B� and obc events are f�� � �59:1�
0:3�% and fnobc � �10:7� 0:1�%. Figure 1 shows the
AT=CP asymmetry between (l�; l�) and (l�; l�) dileptons
defined in Eq. (2) and the ACPT=CP asymmetry between
(l�; l�) dileptons with �t > 0 and �t < 0 defined in
Eq. (3).

There are several sources of systematic uncertainty in
these measurements. To determine their magnitude, we
vary each source of systematic effect by its known or
estimated uncertainty, and take the resulting deviations in
the measured parameters as its error.

For jq=pj, the most important systematic uncertainties
are due to the correction of electron charge asymmetries. A
1:4� 10�3 deviation of jq=pj is observed by shifting
simultaneously the electron charge asymmetries by 1:0�
10�3 which corresponds to the uncertainty estimated with
Monte Carlo and control samples. The systematic uncer-
tainty related to the charge asymmetry due to the tracking
is estimated by randomly discarding 0.16% of the negative
tracks from our data sample. This fraction has been deter-
mined from an independent data control sample. A 1:0�
10�3 deviation of jq=pj is observed. Similarly, a possible
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FIG. 1 (color online). (a) AT=CP asymmetry between (l�; l�)
and (l�; l�). A larger charge asymmetry for cascade muons,
dominant at small j�tj, explains the nonflatness of the curve.
(b) ACPT=CP asymmetry between �l�; l�� dileptons with �t > 0
and �t < 0.
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1% charge asymmetry for non-B �B backgrounds induces a
systematic uncertainty of 0:6� 10�3.

The widths of the first and second Gaussian of the
resolution function for the obc and sbc categories as well
as the pseudolifetime for the 1d1� and other categories are
varied separately by 10%. This variation is motivated by
the comparison of the fitted parameters of the signal reso-
lution function obtained on B �B Monte Carlo samples and
on data. The fractions of the short-lived and long-lived
charmed meson components for obc and sbc are varied by
10%.

We have also varied the parameters �m, �B0 , and �B�
independently within their known uncertainties [9], and
�� from 10�5 to 0:1 ps�1. Finally, one of the dominant
systematic uncertainties on ��� Rez is the imperfect
knowledge of the absolute z scale of the detector and the
residual uncertainties in the SVT local alignment, for
which we estimate an error of 1:2� 10�3 ps�1.

For each parameter, the total systematic uncertainty is
the sum in quadrature of the estimated systematic uncer-
tainties from each source, as summarized in Table I. When
we assume �� � 0, the systematic uncertainty for Imz is
2:9� 10�3.

If we compare our results to ��� Rez � 0:0 and
Imz � 0:0 (no CPT violation case), the �2 is 3.25 for
2 degrees of freedom, which is consistent with CPT
invariance at 19.7% confidence level. Finally, assum-
ing �� � 0, we obtain Imz � ��3:7� 4:6�stat� �
2:9�syst:��� 10�3.

In summary with the 1999–2004 data (232� 106 B �B
pairs), we have performed a simultaneous likelihood fit of
same-sign and opposite-sign dileptons. We measure the
independent parameters governing CP and T violation,
and the CPT and CP violation parameters. The results are

 

jq=pj � 1 � ��0:8� 2:7�stat� � 1:9�syst��� 10�3;

Imz � ��13:9� 7:3�stat� � 3:2�syst��� 10�3;

��� Rez � ��7:1� 3:9�stat� � 2:0�syst��� 10�3 ps�1:

These measurements are a clear improvement over previ-

ously published values [3,10]. The new measurement of
jq=pj is consistent with the standard model predictions [4].
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TABLE I. Summary of systematic uncertainties for jq=pj, Imz, and ��� Rez measurements.

Systematic effects 	�jq=pj� (�10�3) 	�Imz� (�10�3) 	���� Rez� (�10�3 ps�1)

Charge asymmetry of non-B �B background 0.6 0.0 0.0
Charge asymmetry in tracking 1.0 0.0 0.0
Charge asymmetry of electrons 1.4 0.0 0.0
PDF modeling 0.3 2.5 1.2
Fraction of background components 0.2 0.4 0.1
�m, �B0 , �B� and �� 0.2 1.9 1.1
SVT alignment 0.5 0.6 1.2
Total 1.9 3.2 2.0

PRL 96, 251802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
30 JUNE 2006

251802-7




