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Abstract

A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney 

Diseases to focus on research gaps and opportunities on drug development for pancreatitis. This 

conference was held on July 25th, 2018 and structured into three working groups (WG): Acute 

Pancreatitis (AP) WG, Recurrent Acute Pancreatitis WG and Chronic Pancreatitis WG. This paper 

reports the outcome of the work accomplished by the AP WG to provide the natural history, 

epidemiology, and current management of AP; inform about the role of preclinical models in 

therapy selection; and discuss clinical trial designs with clinical and patient reported outcomes to 

test new therapies.

Keywords

acute pancreatitis; drug therapy; trials; molecular targets

INTRODUCTION

Acute Pancreatitis (AP) is defined by meeting two out of the three criteria: abdominal pain 

and symptoms suggestive of pancreatitis, lipase and/or amylase three times the upper limit 

of normal, and image findings of AP.1,2 Acute pancreatitis is a leading cause of emergency 

department visits and gastrointestinal admissions in the United States (U.S.).3–5 

Hospitalizations costs are well above $2 billion annually.6 This constitutes a health and 

economic burden with increased hospitalizations, medications, lost work and school time for 

the patients and caregivers. There has been increasing trends in incidence of AP in adults 

with 30–100/100,000 (250,000 cases per year in the US alone,7,8 and in children up to 

13/100,000/year.9–13 In most patients, pancreatic damage ultimately resolves, but in severe 

cases unremitting persistent systemic inflammatory response (SIRS) leads to multiple organ 

(especially lung) failure, a major cause of mortality among patients with AP. In adult cases, 

AP has a mortality rate of up to 6%,14 but as many as 50% of patients with severe disease 

associated with persistent multi-organ dysfunction have a risk of death.14–16 The majority of 

cases in children are mild, with a subset that progress to severe acute pancreatitis (SAP) with 

increased risk of complications, prolonged length of stay (LOS) and significant morbidity.
17–19 Severe acute pancreatitis in children represents 15–30% of all cases depending on the 

definition used.20–23 With the rise in AP incidence, and its high morbidity rates,17–19 

significant advances in prevention and treatment are urgent. However, we strongly believe 

that the incidence rate is still much higher than currently diagnosed. A multinational 

prospective clinical trial aiming to answer the real incidence rate of AP in children is in 

process (Pain in early phase of pediatric pancreatitis [PINEAPPLE] trial). 24
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Pancreatitis has been associated with gallstones, alcohol abuse, hypertriglyceridemia, and 

genetic factors. Hallmark responses of AP include hyperamylasemia, inappropriate 

activation of digestive enzymes (e.g., conversion of trypsinogen to trypsin), accumulation of 

large vacuoles in acinar cells, induction of proinflammatory signals (e.g., the key 

transcription factor nuclear factor-κB [NF-κB]) resulting in inflammatory cell infiltration in 

the pancreas, a systemic inflammatory response and acinar cell death through apoptosis and 

necrosis.25,26 The pathogenesis of AP it is not fully understood, but evidence from basic 

science studies indicates critical roles for pathologic calcium signals, NF-κB and zymogen 

activation.27 Other observations in experimental and human AP have shown the formation of 

cytoplasmic vacuoles in acinar cells that represent disordered autophagy. Activation of 

trypsinogen to trypsin occurs then possibly through cathepsin B in these abnormal 

autophagic vacuoles.28 Further, the mechanisms leading to trypsinogen activation as well as 

how trypsin causes AP are largely unknown. Recent insights into the pathogenic mechanism 

of pancreatitis provided novel information on role of acinar cell organelle disorders in AP.
26,29

Despite advances in understanding of the pathobiology of AP,26 there is currently no 

pharmacologic therapy that has demonstrated efficacy in altering the natural history of the 

disease course. As a result, the mainstay of treatment continues to be entirely based on 

supportive care and management of complications.

A barrier to drug development in AP is the reduction in investment on novel drug research 

and development (R&D) that is part of a larger overall trend. Research investment in novel 

drug R&D decreased from $21 billion (2004–2008) to $17 billion (2009–2013). 

Unfortunately, the biggest decrease was in gastrointestinal (GI) diseases (62% from $828 

million to $311 million). Furthermore, the relative research activity in pancreatitis dropped 

from 25.7% to 10.7% in the last 50 years compared to other GI inflammatory disorders.30

The objectives of the AP working groups were to address four main domains pertinent to 

development of drug therapy in AP: (1) Natural history, epidemiology and current 

management, (2) Preclinical models, and animal models of AP, (3) Potential therapeutic 

targets, and (4) Risk stratification and patient selection.

NATURAL HISTORY AND CURRENT MANAGEMENT OF ACUTE PANCREATITIS

According to the revised Atlanta classification, around 2/3 of AP is categorized as mild, 20–

30% moderate, and 5–10% as severe. The overall mortality is up to 6%.14 As many as 50% 

of patients with severe disease have a risk of mortality.14–16 In children, the majority of 

patients experience mild disease, with 15–34% developing SAP with attendant morbidity 

and mortality.19,22,31 A paucity of prospective studies is an obstacle to understanding the 

natural history and identification of risk stratified therapies in pediatric AP.

Biliary and alcoholic pancreatitis are the two most common causes of AP in adults,32,33 

while pediatric cases are associated with a variety of etiologies that encompass biliary, 

metabolic/systemic factors, hereditary and anatomic anomalies.12,34–36
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In terms of risk factors in adult SAP, there have been several risk factors studied including 

aging, comorbidities, hypertriglyceridemia, elevated Body Mass Index (BMI), and pre-

existing diabetes.37 A number of scoring systems and simple laboratory markers have been 

developed with the aim of predicting prognosis during the early phase of AP. 

Hemoconcentration, elevated blood urea nitrogen (BUN), elevated C-reactive protein (CRP), 

an elevated Ranson’s score, APACHE (Acute Physiology And Chronic Health Evaluation) II 

score and SIRS have been associated with severe AP. However, the accuracy of both 

individual or combination of scoring systems such as BISAP (Bedside Index of Severity in 

Acute Pancreatitis ), or the HAPS (Harmless Acute Pancreatitis Score) needs to be 

improved.38–40 To date, there is no validated pediatric severity scoring system.41,42 The 

applicability of various clinical scoring systems for intervention trials in AP is described 

below in the discussion on risk-stratification.

In respect to current management, early (first 24h) adequate intravenous fluid resuscitation, 

enteral feeding in predicted severe and severe AP, early endoscopic retrograde 

cholangiopancreatography (ERCP) in biliary AP with concomitant biliary obstruction or 

cholangitis, and delaying surgical interventions for infectious complications have been 

shown to be of high importance. The most common local complication is peripancreatic 

fluid collections, whereas the most common distant organ failure is lung injury. Importantly, 

centralized care improves, whereas deviation from the recommendations of the International 

Association of Pancreatology/American Pancreatic Association evidence-based guidelines 

was found to worsen, the outcome of AP.43

PRECLINICAL/ANIMAL MODELS IN ACUTE PANCREATITIS RESEARCH

The pathophysiologic mechanisms of AP are not completely known.27,44 Mechanistic 

studies have been largely performed in rodent tissues as human tissue is difficult to obtain 

during the disease process. Recent studies in pancreatic parenchymal cells have revealed that 

pathobiologic pathways in rodent and human tissue are probably the same. In the context of 

drug development, it is important to determine the suitability of various experimental animal 

models for testing of potential novel therapeutic agents.

Over the past several decades, different species have been used in experimental studies,45–51 

but currently mice are preferred because of the availability of strains with specific genetic 

deletions, low cost housing and other resources related to this species.52–55 In the animal 

models, the disease is induced experimentally by common duct ligation, hyper-stimulation 

using cholecystokinin analogs, retrograde injection of bile acids or other chemicals or 

dietary modifications.56 The end result of such insults is acute pancreatic inflammation and 

necrosis of varying severity with symptoms resembling clinical disease. These models have 

been used extensively by investigators to understand the mechanism of the disease as well as 

pre-clinical models for testing of therapeutic agents. Methods of induction of disease may or 

may not have an etiological equivalent for human disease and this limitation has often been 

used to criticize the relevance of a model to the human disease.57 Using these experimental 

animal models, the ‘Auto digestion Hypothesis’ and role of ‘Gall stone induced blockage of 

pancreatic flow or influx of bile in pancreatic duct’ in biliary pancreatitis have been 

rigorously tested and published.58–61 Based upon these studies, consensus exists regarding 
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the early activation of digestive enzymes in the pancreas in response to insult and pancreatic 

acinar cells being the primary site of initiation of injury in AP.62 Whether the blockage of 

pancreatic flow itself is sufficient in inducing AP or the influx of bile is required to trigger 

the disease was answered by the development of an animal model with anatomical similarity 

to the human pancreatic biliary ductal system.61,63

Although these animal-based experimental models have helped us to understand the steps 

involved in the initiation and progression of the disease, there are several limitations. Human 

patients comprise a diverse population with different genetic backgrounds and different 

epigenetics and dietary preferences, which, on their own or in combination, can contribute to 

susceptibility, severity and progression of the disease. In animal models, full recovery is 

mostly observed although in patients, the disease might follow a complicated course with 

extended hospitalization. The distribution of bile acid surface receptors is different in rodent 

acinar and human cells, thereby making the applicability of the conclusions from rodent 

models to human disease difficult. Overall, experimental animal models are important for 

understanding the disease mechanism but due considerations should be given to the 

dissimilarities in rodent and human pancreatitis when extrapolating these findings in animals 

for developing strategies to treat human AP.

POTENTIAL MOLECULAR TARGETS IN AP

The current paradigm is that AP originates in injured acinar cells. Its manifestations 

(responses) are inappropriate, intra-acinar activation of digestive enzymes, in particular 

conversion of trypsinogen into active trypsin, dysregulation and inhibition of secretion, and 

activation of inflammatory transcription factors, followed by the inflammatory cell 

infiltration and necrosis, which are the major determinants of disease severity.4,25,26 

Experimental studies strongly indicate that the inflammatory, especially neutrophilic, 

response in AP is non-resolving/un(der)controlled, and its down-regulation could have 

beneficial effects. To date, our knowledge of the inflammatory response in pancreatitis has 

not translated into effective therapies. One cause of non-resolving inflammation in AP could 

be unremitting acinar cell injury, which perpetuates the inflammatory response—a vicious 

cycle of parenchymal necrosis and immune cell infiltration.

Considerable progress has been achieved during the last decade in elucidating the nature of 

acinar cell injury leading to AP. Several critical cellular processes that become disordered in 

acinar cells have been elucidated and shown to drive (or even initiate) AP. In particular, 

pancreatitis causes disordering of autophagy, the principal catabolic cellular pathway for 

degradation and recycling of unneeded or dysfunctional cytoplasmic organelles.29,64,65 This 

results in accumulation in acinar cells of large vacuoles with poorly degraded cargo, a long-

noted feature of pancreatitis. Impaired autophagy is a common feature of all experimental 

AP models and is prominent in human disease.29,64,65 Recent studies in genetic models66–69 

provide mechanistic insights into the role of autophagy in pancreas: autophagy blockade or 

impairment triggers spontaneous pancreatitis in 4 different knockout mouse strains. These 

findings indicate that enhancing autophagic efficiency could be a promising approach for AP 

treatment. Impaired/inefficient autophagy is a common feature of various neurodegenerative 

diseases, and pharmacologic agents are being developed to normalize autophagy in these 
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diseases. These approaches should be tested for AP in pre-clinical studies. For example, it 

was found that the disaccharide trehalose, known to enhance autophagy and improve the 

outcome in neurodegenerative diseases, greatly ameliorates pathologic responses in 2 mouse 

models of AP.70

Mitochondrial dysfunction is another key organelle disorder both in acinar and ductal cells 

found in AP.29,70–76 Pancreatitis causes persistent opening of a non-selective channel in the 

mitochondrial membrane, called the permeability transition pore (MPTP), resulting in 

mitochondrial depolarization and fragmentation followed by drop in ATP level – features 

prominent in various experimental AP models and in human disease. The protein cyclophilin 

D is a key mediator of MPTP opening, and studies have shown that genetic or 

pharmacologic knockdown of cyclophilin D abolishes or greatly reduces both local 

(pancreatic) and systemic pathologic responses in multiple experimental models of AP.
29,70–72 These findings validate restoring mitochondrial function as a promising approach for 

AP treatment.70 In this regard, a UK-based company, is pursuing preclinical development of 

cyclophilin D inhibors for potential treatment for AP. In addition, a registered multicentre 

randomised double-blind clinical trial investigating the effects of high energy in the early 

phase of acute pancreatitis (High versus low energy administration in early phase of 

pancreatitis [GOULASH] trial) is currently ongoing.77

The physiologic digestive enzyme secretion from acinar cells is mediated by oscillatory 

increases of cytosolic Ca2+ triggered in response to neurotransmitters such as acetylcholine. 

The increases result from Ca2+ released from endoplasmic reticulum (ER) stores and are 

transient because the released Ca2+ is rapidly re-uptaken into the stores. In contrast, several 

AP triggers, such as bile salts, or acinar cells’ hyperstimulation with caerulein, cause 

massive and persistent Ca2+ release from ER stores resulting in their sustained Ca2+ 

depletion.78,79 In this state, the acinar cell attempts to refill ER stores by Ca2+ entry through 

the activation of the plasma membrane CRAC channel,78,79 resulting in sustained increase in 

cytosolic Ca2+. Sustained increase in cytosolic Ca2+ causes acinar cell damage through 

several pathways directly or through activating the Ca2+-dependent phosphatase calcineurin. 

For example, increase in cytosolic Ca2+ causes its uptake by mitochondria leading to 

mitochondrial Ca2+ overload, which in turn causes mitochondrial depolarization, decrease in 

ATP synthesis and, ultimately, necrosis.71,72 Calcineurin further exacerbates mitochondrial 

dysfunction by promoting mitochondrial fragmentation.80 In addition, Ca2+ directly and 

through calcineurin stimulates activation of the proinflammatory transcription factors NF-

κB and NF-AT.81 Recent reports demonstrate that approaches to inhibit the CRAC channel 

or prevent calcineurin activation both attenuate experimental pancreatitis, suggesting them as 

important targets for disease treatment.78–83 The importance of calcium toxicity has also 

been widely investigated in pancreatic ductal cells. Bile acids, fatty acids, ethanol and even 

the activated trypsin have been shown to trigger two phases toxic calcium elevation causing 

decreased fluid and bicarbonate secretion.84–86 Of note, one of a series of CRAC inhibitors 

(developed by a U.S.-based company) has reached a phase I clinical trial.87

Finally, pancreatic fluid and bicarbonate secretion seems to be protective against acute 

pancreatitis. Pancreatitis induced either aquaporin 1−/−, CFTR−/− or NHERF1−/− mice 

resulted more severe pancreatitis.88–90 On the other hand all pancreatitis inducing factors 
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were shown not only damaging to the acinar cells but decreasing fluid and bicarbonate 

secretion as well.60,90,91

Table 1, lists potential approaches for AP treatment, including normalizing autophagic and, 

mitochondrial functions, blocking Ca2+ influx through CRAC channels, and inhibiting Ca2+-

dependent phosphatase calcineurin.

RISK STRATIFICATION AND SUBJECT SELECTION

A patient is given a diagnosis of AP by meeting two out of three criteria: upper abdominal 

pain and symptoms suggestive of pancreatitis, serum lipase and/or amylase three times the 

upper limit of normal, and image findings of AP on cross-sectional imaging.1,2

Identification of Complication Risk—Both local (pancreatic or peri-pancreatic) 

complications as well as systemic complications (distant organ failure) may occur in the 

setting of AP. Consensus-based definitions for complications related to AP have been 

previously described and incorporated into classification systems for categorizing the 

severity of AP.1,92 The most widely recognized complications of AP are pancreatic necrosis 

and distant organ failure (respiratory failure, renal failure, and/or circulatory shock). Both 

the revised Atlanta criteria and determinants-based classification systems make a distinction 

according to the duration of organ failure with emphasis placed on persistent (>48 hours) 

organ failure as the most ominous complication defining SAP.

While the frequency of major complications related to AP is relatively low, the 

consequences of SAP can be life-threatening. As such, substantial effort has been devoted to 

developing strategies for early identification of patients at increased risk for complications 

related to AP. Numerous approaches to risk stratification have been developed that include 

clinical prediction scores, biochemical parameters as well as machine learning algorithms.38 

A comparison of nine scoring systems in two prospectively collected cohorts of patients 

hospitalized for AP did not demonstrate clear advantage in terms of accuracy for any 

specific approach to identify patients at increased risk for persistent organ failure.38 As a 

result, most clinical practice guidelines43 currently recommend use of a simplified 

assessment system such as the systemic inflammatory response syndrome (SIRS) score that 

comprises vital signs and laboratory parameters to assess the extent of systemic 

inflammation related to an AP episode. It should be noted that SIRS is not specific to AP. 

However, previous studies have demonstrated an association between the duration of SIRS 

(lasting>48 hours) with persistent organ failure as well as mortality in AP.1,43

Definition of Endpoints/Outcomes—Selection of study endpoints in AP should be 

determined based on the context of the proposed intervention. Traditional approaches for 

development of novel therapeutics in AP have focused on prevention of severe forms of 

illness. These studies incorporated initial risk-stratification to identify a higher-risk subgroup 

of patients for outcomes such as persistent organ failure or mortality.93 In these trials, organ 

failure is typically defined based on an established scoring system such as the Modified 

Marshall Score [Atlanta] and mortality is typically defined as in-hospital death.1
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Additional outcomes to be considered in AP might include amelioration of disease or 

expedited recovery. Length of stay has often been reported in studies of AP.94,95 However, 

LOS is problematic as an outcome parameter as it can be influenced by factors unrelated to 

the disease process and is a poor overall measure of disease activity. To address these 

limitations, a disease-specific activity measurement scale has recently been developed 

through a consensus-based process.96 This scale, the Pancreatitis Activity Scoring System or 

PASS comprises five domains: ability to tolerate oral intake, abdominal pain, opioid 

requirement, SIRS, and organ failure. Each of these components is given a weighted score 

with the total score represented as the sum of each individual category. The score is designed 

to be calculated based on 12-hour intervals to reflect dynamic changes in disease status. In a 

validation study using a prospective cohort of consecutively admitted patients (excluding 

hospital transfers) an elevated PASS at admission (>140) was shown to be associated with 

increased risk of moderate and severe pancreatitis while a discharge PASS >60 was 

associated with increased risk of early re-hospitalization.97

Critical Path Innovation Meeting: To explore the next steps in development of clinical 

outcome assessment (COA) tools in AP, a Critical Path Innovation Meeting was convened 

with members from the FDA Center for Drug Evaluation and Research on October 26, 2017. 

The intent of the meeting was to learn more about the FDA drug development tool (DDT) 

qualification process as well as discussion regarding additional considerations for further 

development of the PASS instrument as a COA in AP. The findings from the meeting are 

intended to be available in the public domain and a summary of the meeting is included as 

Supplemental Digital Content 1.

Performance Characteristics of Measures—In a previous systematic literature review 

of clinical trials in AP involving human subjects 61 studies were identified from 1996–

2014.98 The most common primary outcome was mortality (16%). Other common outcome 

parameters included organ failure (15%), pancreatic infections (13%), and SIRS (10%). 

Included in the review were nine studies that evaluated pharmacologic intervention in AP.98

Among these trials the Lexipifant study merits special consideration as the study design 

reflects most closely the established paradigm for testing early intervention in AP. In this 

phase III study, investigators in the United Kingdom conducted a large scale multi-center 

trial to evaluate the impact of early treatment (initiation of therapy within 72 hours of 

symptom onset) on disease course in patients with predicted severe AP.93 The primary 

outcome measure was incidence of complications (organ failure, necrotizing pancreatitis, or 

acute fluid collections). The study was powered based on an assumed reduction from a 40% 

complication rate in the placebo arm to 24% in the intervention arm. However, after 

completing the trial, the investigators noted that only 14% of enrolled study participants 

developed new-onset organ failure. In addition, assessment of local complications (necrosis, 

fluid complications) was complicated by the fact that cross-sectional imaging was performed 

in less than half of the study participants (45% in placebo group, 38% in the intervention 

arm).

As a case study, the Lexipifant trial highlights several of the challenges with studying the 

impact of widely accepted outcome parameters such as persistent organ failure or necrosis. 
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In the case of the former, organ failure is a rare outcome even among patients with predicted 

severe disease. In the case of necrosis, this is a radiographic finding that can be problematic 

with respect to ascertainment given not all subjects will typically undergo cross-sectional 

imaging during hospitalization.

Subject Selection for Drug Trials and Time of Treatment

A major challenge in designing clinical trials for testing new drug treatments in AP relates to 

participant selection as well as timing of intervention. Work from previous observational 

studies has shown that the precision with which a patient’s outcome can be predicted 

increases over time. However, delays in initiating therapy may limit the subsequent 

observable effect of an intervention. The following potential strategies address these 

limitations:

- Recruitment of all potentially eligible participants with established AP 
irrespective of disease severity. This trial design would be best suited for low-

cost interventions intended to ameliorate the overall disease course. Advantages 

of this approach would include rapid accrual and the ability to initiate 

intervention as early as possible as well as the ability to broadly generalize the 

study findings to the AP population at large. Disadvantages of this approach 

would include limited feasibility to assess for outcomes such as persistent organ 

failure or necrosis given the anticipated low incidence in the general AP 

population.

- Stratified randomization based on initial markers of disease severity. Ensuring 

equal distribution of participants at risk for severe illness is paramount in 

circumstances where the impact of an intervention may vary based on the extent 

of disease activity (effect modification). In these settings, stratified 

randomization based on markers of initial disease severity available at the time 

of enrollment will help to ensure balanced representation across the study arms. 

An adaptive study design with a priori criteria to evaluate for feasibility can help 

to target further enrollment criteria following planned interim analysis.

- Randomization following ‘run-in’ period. Newly developed drugs that can 

prevent or diminish complications related to SAP are of critical importance. 

However, such agents will likely bear increased cost related to the expense 

associated with drug development. As a result, these newer agents will most 

likely be used as second-line therapy in clinical practice reserved for those 

patients not responding to standard resuscitation protocols. A trial design that 

incorporates a run-in period can be used to reflect this reality as well as enrich 

the study population with patients most likely to experience severe forms of AP. 

In this study design, eligible patients are identified at the time of presentation to 

the hospital but randomization only occurs once they have undergone a period of 

initial fluid resuscitation to evaluate for ongoing eligibility.
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Logistical and Regulatory Issues in AP Related Drug Trials

A number of logistical and regulatory factors must be addressed in order to successfully 

conduct early intervention trials in AP. One challenge is that patients may present at various 

times in their disease course, which would make the initiation of therapy at an “early” stage 

difficult. The effect of timing with respect to onset of symptoms and initiation of therapy is 

an important consideration. Future trials should either incorporate the timing of symptom 

onset in their eligibility assessment criteria or at least carefully record this information for 

study participants in order to ascertain the optimal therapeutic window for future treatment.

Similar to other serious acute illnesses, caring for patients hospitalized for AP involves 

coordination among multiple disciplines including emergency medical teams, inpatient care 

services as well as potentially intensive care units or surgical teams. As a result, a successful 

trial requires the participation of multiple investigative teams comprising all providers that 

may be involved in the care of patients with AP.

Several key steps are needed to facilitate regulatory approval of new agents for treatment of 

acute pancreatitis. First is the development of disease-specific clinical endpoints to 

demonstrate efficacy of a new therapeutic intervention. An overview of the development of 

clinical outcome assessment as part of a drug development tool qualification program can be 

found at the FDA website: https://www.fda.gov/drugs/developmentapprovalprocess/

drugdevelopmenttoolsqualificationprogram.

Types of clinical outcome assessments include patient-, clinician-, or observer-reported 

outcomes as well as performance outcome measures. Of particular interest are patient 

reported outcomes (PROs), which have not been thoroughly evaluated in AP. In addition, 

long-term outcomes of AP merit further consideration. With the recent observations that 15–

30% of patients develop impaired glucose tolerance or diabetes within three years after a 

single episode of AP,99,100 it is important to follow patients for longer observation periods 

after treatment. Furthermore, recent studies have shown that the quality of life of patients 

remains impaired in the long term following an AP attack.101

RESEARCH GAPS AND OPPORTUNITIES

As the study of AP has evolved from natural history and epidemiology, to pathophysiology 

defined through preclinical models, to potential targets and clinical trial design, a number of 

factors remain, which are required to improve outcomes through the design of the next phase 

of human intervention studies.

• In terms of patient selection and defined outcomes, methods of defining 

pathobiologic pathways and severity are needed. This will allow a more 

“personalized” approach to therapy.

• Early prediction of SAP through novel blood and imaging biomarkers are 

needed.

• Patient reported outcomes (PRO) in AP are not well studied nor are PROs 

defined to measure the impact of AP on patients’ lives.

• PROs on pain, nutrition and quality of life should be developed for trials.
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• The most important endpoints of clinical trials are death and end- organ failure, 

but surrogate outcomes of severity such as CRP and procalcitonin need to be 

validated.

• The time points for follow up ranging from inpatient admission, to recovery, to 

post discharge are not well defined. Long-term follow up is lacking in most 

studies.

• Effect of disease beyond AP such recurrent acute pancreatitis, chronic 

pancreatitis, exocrine and endocrine insufficiency are poorly studied. These 

outcomes should be considered in study designs.

• Although most studies have focused on patients with predicted severe outcomes, 

including all AP patients at onset of disease may be the most appropriate 

approach to observe the prevention of progression to SAP, given the limitations 

of the prognostic scoring systems for predicting severity.

CONCLUSIONS

The workshop examined all aspects of AP from basic pathophysiology in preclinical models, 

and potential targets to clinical presentation, diagnosis, current management, severity 

predictive models to the defined outcomes. Studies that included adults as well as childhood 

AP were reviewed. Several gaps in the current understanding and management of AP were 

identified. Without addressing these gaps in designing clinical trials for treatment of AP, no 

further progress can be made. AP is the leading gastrointestinal disease for emergency 

department visits and hospitalizations, and therefore warrants further studies dedicated to 

target negative outcomes. The lack of animal models that mimic human disease remains a 

hindering factor to progress. Biomarkers to detect severity and disease pathways early on 

presentation are desperately needed to stratify patients with AP and allow targeted therapy 

designs. Future study designs should require input from regulatory agencies, focus on 

patient-related outcomes, develop well-defined and objective clinical outcomes to ensure 

progress in the management of AP that involves all stakeholders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Potential Molecular Targets for AP Therapy

Cellular Process to Target
Association With AP

Experimental Human Genetic Approaches Pharmacologic Approaches

Impaired Autophagy Shown in 10 
experimental and 

genetic pancreatitis 
models

Associated 
with human 

disease

Genetic approaches to block 
autophagy trigger 

spontaneous pancreatitis in 
4 genetic mouse models

Enhancing autophagy efficiency with 
trehalose prevented or alleviated 
pathologic responses in 2 mouse 

models in AP

Mitochondrial Dysfunction Shown in 9 
experimental and 

genetic pancreatitis 
models

Associated 
with human 

disease

Genetic approaches to 
restore mitochondrial 

function ameliorate AP in 
all models tested

Pharmacologic approaches to restore 
mitochondrial function greatly 

ameliorated AP severity in 4 models 
tested

Excessive Ca2+ Influx Shown in at least in 3 
experimental 

pancreatitis models

? ? Pharmacologic approaches to block 
CRAC channel alleviate AP in 3 

models tested

Calcineurin Activation Shown in a mouse 
model of post-ERCP 

pancreatitis

? Genetic approaches to block 
calcineurin alleviate 

inflammation

Pharmacologic approaches to inhibit 
calcineurin alleviate inflammation in a 

mouse model

CFTR Shown in at least in 3 
pancreatitis models

Associated 
with human 

disease

Deletion of CFTR in at least 
3 animal models trigger 
spontaneous pancreatitis

VX-770 and VX-809 restore the 
expression cystic fibrosis 

transmembrane conductance regulator 
of CFTR
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