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ABSTRACT

The conneétion between Regée poles, bound states‘and resonances, and
asymptotic behavior in momentnm transfer is reviewed within the‘framewofk of
the anaiytically continued S matrix, and a convergént iteration prpcedure
‘is given for calculating the position and residueiof‘a Reége'pole in terms~of
| a given (generalized) potential. By exemining the lpng-fange pqtentialiin
the = system it is inferfed that Regge poles shbuld appear in the I = 0
and I = 1 states, and that the latter pole may be responsible for the p
meson while thelformer may well dominate highnenergy behavior at low momentum
transfer in the crossed channels., The cnnnectiqn of this possibility with
fofward coherent (diffractibn) scattsring in general is explored, and s
1numner of'ekperimental predictions aré emphasized. Finally it is shown that
“the . short-range forces due to exchange of 4, 6, plons are likely to be
‘repulsive and must be included in some form if a consistent solution is to

be achieved.
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I. AINTRODUCTION
In the S—matrix theory'of stroné interactions, dynamical-resonances
and bound states have been easily and naturally handled insofar as partial-
wave (one-variable) dispersion relations are concerned, but they have been
a source of confusion with respect to double—dispersion relations. Froissart;

showed that partial waves with J° >'l are completely determined by the

;double-spectral functions, at the same time, as emphasized in the original

paper by Mandelstam,2 resonances or bound states require subtractions-in the -
double-spectral‘integrals if the usual convergence criteria are applied. The
resolution of this dilemma was given by Regge for nonrelativistic potential

scattering, where in fact all partial waves are determined by the double-

}*spectral function (even though in the absence of a fcrossed" channel, “the

-considerations of Froissart are inapplicable).' Regge's explanation is based

on the occurrence of poles in the complex angular momentum plane and the
association of such poles with resonances and bound states.5
The point at issue is essentially the asymptotic behavior of the

scattering amplitude as cos © approaches infinity and the energy is kept

fixed. This is & highly unphysical region but, as 1t is here that the double
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spectral function fails to vanish,pthe question is of interest to us. The
-number of subtractions in cos © which it is'necesssry-to perform depends on
" the asynptotic behavior,r As suhtraction terms’in'cos © are just polynomials
‘in this Variahle, they correspond to 1ow_partiel wefes, 80 that-the number
of partial waves which are undetermined hy the donble-spectral function depends

on’ the number of subtractions necessary.

~ In Born approximation, the potential scattering amplitude vanishes

asymptotically for large cos O, and it is reasonable to suppose that the

complete amplitude has this behavior if.the‘potential strength is sufficiently

small. It is evident, however, that such a behavior cannot persist as the .

strength of an attractive force increases sincepvif thére is a bound state of

angular'momentum £ , the scatteringvamplitude contains a poie_term with
residue Pz(cosje) , whose asymptotic behayiof-is '(cosAe)zp. _If we assume
that the esymptotic behavior does not change suddenly when a bound state

appears, we reach the conclusion that the asymptoticfbehavior becomes

progressiﬁely more‘divergent as the strength of attraction increases. ‘Regge's :

resﬁits'give one great'insightuinto thefnature‘of thisidivefgence, and.show‘
“that it does not in fact necessitaté:nndetermined suhtraction terms.“.
Although the existence of Regge poles in the relativistic S matrix
has not been establlshed, it appears plausible “that they should occur, and
we propose here to discnss . scattering on such a basis. In'particular,
we'shsll show thet‘the“Ih= l; J = 1 resonance can plausibly be associated
with a Reggefpole.L Tt will also be argued that in the I = 0. state there
may be a Regge pole thch, hecsnse of Bose statistics andlthe necessity for
an independent-sﬁbtrsction, does nothcorrespond to a resonance’or bound state,

but which may bé connected with high-energy diffraction scattering. -

o
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An important practical consequence of an approacﬁ-ih'whicthegge poles
are recognized is that partial—wave calculations for J > l are no longer
necessary. Computational difficulties associated}with nonzero angular
momeetumvin the N/D ‘method thus-can be avoided.

We list now those conclusions of Regge that are most important from
our point of view. '

‘ (a) The elastic scattering amplitude at a fixed energy, if regarded
as a function of £ , may be analytically continued into the complek £ plane -

for Re £ > ,"1/2 . The only singularities are poles that for positive

(physical) kinetic energles are confined to the upper half plane (Im £ > 0) ;

these poles migrate to the_real axis for negative kinetic energies°

4

(b) On the basis of the Sommerfeld-Watson contour representation

. in the complex £ plane, the amplitude may be divided into two parts with

different asymptotic bebavior. The first psrt is an inﬁegral, along the

vertical line Re £ .= «1/2 » that vanishes as cog @ =+ 0. The second part

consists of pole contributions that generally do not vanish at'infiﬁity,

these being of“the form

? (Bi/sin 7 ai) Pai (- cos @) , : (1.2)

yhere ai. is the position of the ithfpole, in the complex £ plane., It may
be described as a complex angular momentum for which there exists a bouﬁd state
at the given energy. Both aiv'and ﬁi depend:on the‘energy. As stated above,
each ai isireal'for.negative kinetic energy but acquires a positive imaginary
part for physical energies, (The Sommerfeld-Watson representation is, strictly
speaking, valid only for positive kinetic energy, but the conclusions employed

here about the connection between Regge poles, bound states and resonances, and

asymptotic behavior can be justified by an'analytic'continuation in E o)
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If an individual (physical) partial wave is projected out of (I.1),

uéing'the formulas
) T ' - ' . N - )
L e (2)p (ca)az - 2 BT 0 (r2)
2 et ; -

(o - 2){a + 4+ 1)

for 4 integer,. £ >0 , one finds -

i (cxi - ﬂ)(ai + 4+ 1) _ L

‘& result that is immediately interpretable in terms of bound states and =
. resonances,  Consider a particular Regge pole and suppbsé that at4$omej'
energy E =hEm«’ Re @ 1is eqpal_ﬁo an integer m >0 . In the neighborhood

of Eﬁ ve may write

Re a(E) =~ m + (.EQ Em9 (4 Re d/aE)E ,

vm. .
mafE) ~ ImolE), @
and ‘
B(E) ~ B(E ),

so - the Reggé pole contributes to the fth wave a term, for E néar_ Em B

B(Em)/d(Em) + 4+ 1

1 S P :
;t- - . AW R . . s 4 (1‘5)
m - 1+ (E = Em)( d Re afdE )E. + 1iIm gag:m) | -
. - m ) . \
vhich, for £ = m , has the familiar Breit-Wigner resonance form with a ,-

width

T = Ina(E)/(d Re afaB); . - L (1.6)
- o - m . '
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- be true for sharp resonances-AWhich normally occur at low energies.
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For negative kinetic energy, im a ’vaniéhes and We'havejaAbound'atate (i.e.,
a pole in E on the real E axis). |

. The above reasoning enablesAone'to extend our previous resalt that
if, at given energy, there existed a bound state of angular momentum y , the

scattering;amplitude would contain a term behaVing'asymptoticaily iike

Pz(cos 8) . We can now say that if there exists a resonancevof engulan

Vmomentum 2 (at‘a'given energy), the amplitude will contain a term behaving

asymptotlcally like P (cos e), vhere a is complex and Re 0 ~ £ . If the
resonance 'is narrow, Im a is small.

Regge was able to prove that (d Re a/dE) is positive for a
B

’ bound-state pole, and gave qpalltative arguments to show that the same would

3

One

may conjecture that when (d Re a/dE) is negative one 1s not dealing with
m

& resonance but with the familiar high-energy return of the phase shift

through 90 deg that always occurs in potentlal scattering. We add the remank
that an analysis of the Born‘series suggests that Re o 41/2 at sufficiently
large IEI |
' For sunefpositions of Yukawa‘potentials all Regge noles ane connected
with bound states and resonancee, and thus may be presumed to have the

'foilowing general behavior in the complex £ plane with E . real: For an

_ attractive potential a particular pole passes through « = ~1/2 at some

negative E , and moves to the right along the real axis as E'rincreases,

When E reaches zero the pole moves into the upper half plane, perhaps

continuing its rightward movement temporarily but,eventually"swinging back
through the Vertical line,  Re £ = el/? . For weak potentials the pole will

leave the‘axis before reaching even £ = O, and there are no bound states.
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since it has been: discussed in Ref. 8 and will arise again in what follows.'
.In the follow1ng section we rev1ew the S-matrix approach to e
nonrelativistic potential scattering, showing how the Regge poles are to B E 5
.'be extracted and--how they are related to the partial-wave N/D problem.v The
. , o

_ final section discusses possible Regge poles in the relativistic Rl

amplitude. - . . .. . - .nr7;de R

© II. CALCULATION OF REGGE POLESlIN'
NONREIATIVISTIC POTENTIAL SCATTERING

9 that for nonrelativistic

It has been shown by Blankenbecler et al.
-gcattering by a superposition of direct Yukawa potentials, the double-spectral .

'function is determined by the following equation, first derived in’ Ref 2

2 = _]:._ L . ". '5*(17 29 ) 'f)'(t").qg)’ o -
ela"t) = 7 3 /] at at” v Ry e S {ITa)-

The integration is restricted to that part of the region tl/2 >At'1/2.+ t"}/a
for which '

K(q%; t,b7,8") = 5+ T G R ') - (tt't"/q?)

. (II.2)
1s positive. The fﬁnction.,ﬁ(t,q?) is the discontinuitydin the amplitude
in crossing the positive t -axis with q? fixed: it is related to the - . «
potential and .to the:double-spectral function'by
ar? pla?t) - .

[ aq'"™ - ' 0 (11.3)

2 2 7
Q = q

Al

B(t,q%) = v(t) +

where v(t) determines the configuration space potential V(r) through ‘the.

formula
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S R : exolot}2 S
V(r) = -—3 [avv(y) SRLE_@) (TI.b)
) 2M ’ ) S r ’ . :
Generally speaking there is some positive thrésholdn t , such that v(t)
0] ,
vahishes for t < to .. We shall speak of toul/z as the 9range”-of'the

potential,

As has been explained in Ref. 2, the pair of Pquations (II 1) and
(11.3) uniquely determines D(t,q‘) since the nature of the integration
region in (II.1) ensures that n iterations glve a result exact for

t < (n + l)2 t In other words the Born eries for D(t,q ) certainly

O o
converges (although not necessarily unlformly in t) regardloss of the

cccurrence of resonances or bound states. It is well known, ‘on the other

bhand “that the Born series for the SCattering amplitude .A(q?;t)' does not

always converge, a circumstance that at firet sight is puzzling if one

¢

Pxpects the unsubtracted dispersion relation

| - N B
[ ag Pi.t_'.d_)_ - (1T.5)

Al

o 2
'A(qvgt) = £ - 1

to'be meaniangful., In Eq. (1.7) above, however,_we have seen that when Regge

poles occur with. Re @ > 0 the integral (II.5) is not defined in the

elementary sense but only through,analyuic continuation; sc precisely when

‘the first resonance or bound state appears the poesibility of expanding B

in & power series no longer implies that A similarly cen be expanded.

Nevertheless, a kuowledge of ﬁ(t,q?) implies a-knowledgé cf

‘A(q?,t)., as we shall now-show, sc the iteration of Egs. (II.1) and (II.3)

actually forms the basis for a practical method of calculation--with or

without bound states or resonasnces. The essential point is that, acéqrding

to Regge,3
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' g, (g7 : -
2. 2 N A : : t -
A(QS,t) = AY(QS,t) + & — i P (-1 = =—=)
" 7’ - T i sinx a‘i(qg) "ai(qe) B ?qa ’
| - (11.6) i

where _A'(q?,t), is the backghound term that vanishes as t = o (we may

‘also allow A' to contain Regge poieS'with Re @, <0 ). Then by reference

i
to‘(I,7)
B(t,q7) = D'(t,q7) - = B(a) By 2y (1 + —3 ) s (1I.7)
- ' - 1 1 - 2q ' :
with the integral
L, 2 o 1 - D(t o
A Ee) - i faw R2lhd) o (15.8)

defined 1n the elementary sense, Thus if it is possible to decompose.
D(t,q ) according to (II.7) ~--s0 that one has a separate knowledge of :
5'(t’q?)v, 'Bi(q?) , and qi(q,) -—then one can construct the amplitudev
Aa5t) | | N |

An elementary method for determining a, (q ) and Bi(q ) ‘may be
based on the’ dominance of the Regge poles over the background term for
| large ¢t ; Sﬁpposevthat there is only one pole for.whieh' Re & Z,OA;’then
‘for sufficientiy'large4 't this pole will be dominant in formule (II.7),
and one may calculate the position o (q ) and the strength’ Bi(q ) by. . ¢
equating, at’ large - ;- the calculated D(t, q ) with -By By 1+ (t/2q )1 . )
One'then subtracts out this pole term at all t “t0.obtain theibackground
term D'(t,q ) ¢ ~ If there is more5than one pole, the one. for which - Re ai‘

is largest can be determined first and subtracted; the remainder will thenvl

be dominated by the pole with the next largest Re & i ;5 and the procedure
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zan be repeated until.all pole:parameteré‘are détermined; in an actual
numerical calculation one may'ﬁish‘to use a‘more»elegant approachs but.there
seems nothlng in prin01ple to prevent the extraction of the ne ceésary |
information from the iterative solutionffor- D(t,q') ‘10 |

Note that when the potential problem is ébproached,in this way. there
is no need té ‘treat aﬁy partiai waves sépérateiva ‘In principle an alternative
to separating and identi“ymng the Regge polea is. to calculate individually
by N/D method all waves for < (Re a) . thn these low partial waves

are subtracted out of farmula {II. 5) the remainder of the integral -

‘(containing all high waves) converges in the elementary sense.‘ The necessary

ingredient for the N/D partialmwave calculation is the discontinuity across

the left-hand cut; this is given for the Eth wave by

2

~hg~
Im A (qg) = .-}7-. ’ dt P (1 + —% ) 'ﬁ’(t»_,qe) ,
£ 2 bgs 4 2¢° !
g < wto/h T * . <4 o

(II.9)

and presents nc diffieulty ¢f principle if, as Eonje¢tured in Sec. I, the
Regge polésﬂall retreat through the vertiggl line, Reyzrf - %f , for large
Iq?[‘, "In this case Im AB(Q?) vanishes sufficiently rapidly as q? T

so that the N/D integral equations areﬂnonSingular. In préctice, however,

for all 4 >0 s delicate’caﬁcéllations must occur between the right and

1eft cuts to produce the correct threshold behavioro“Az(Q?)'oC (qg)z ,
near q?'ﬁ 0., The N/D eQﬁations then become'akaErdifrom a numerical

standpsint, 86 &n approsch that do®E nct séParate pertial waves is preferable.
o sdostis wyuwens-wol sdd Tedd wolsd Demgye sd Lilw 3 dud (yooslollsb el

sids od hluvcde ow ca ,evielugeyr yidadory sus aiaiﬁﬁedoq sungi-redieds saadl

e(iyili)'?a slesd odf o spobdesup eviderifeup sauoald of
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III. REGGE POLES IN REIATIVISTIC =z SCATTERING
We now illustrate by a discussion of = scattering our conjecture
that Reggé>poles occur qpite'generaliy”in'the'relativistic strong—interédﬁion

S matrix. Consider the three amplitudes AI(s,t) which represent purevi

o

scattering (I =0, 1, 2) in the s channel. Two of the authorsvhave defined
a "generalized potential,“ here to be denoted by vI(t;s), which is to be

used in equations of the type.(II.B) and (II.1) in place of the nonrelativistic
potential v(t). 8 The "loﬁg range" part of the géneraiizedvpotential,-exéctv

for t < 16»m“2 , is aséociated vith 2-pion exchange, aﬁd is given'by

I - I o s
v, (t,8) = z Brys D (t,s) y (I11.1)
2 : 1'=0,1,2 II e@ | |
11 .
where the crossing matrix B has the form, S
1/3 1 5/3.

Pz = 1/3 /2 -5/6

“ | | 1/3 | -l/é (.,1/6

(111.2)

- and DezI(t,s) 1s the elastic absorptive part for 1sotopic spin I scattering
in the t channel. As discussed below, the imaginary part of VQKI(t,s) )
which develops at large s , produces inelastic scattering in the s channel

that is not properly bounded by uniﬁarity._'An approximation which replaces _ “

vy v

interest. Cohtributions from vhﬂ;,’ VGnI-’ ete. ﬁust be added to correct

then leads to inconsistencies in the case of actual physical

'&hisudefiéiency, but if will be argued below that the low-energy effects of
these shorter-range potentials are probably repulsive, so we should be able

to discuss qualitative questions on the basis of (III.1).
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If Regge pélés in fact dominate ‘asymptotic behavior in the relativistic

amplitude, as discussed above fqr'theﬂhonrelativisticgcase; then for the

interval in s ‘such that aﬂsmall-humber”of*poles are consistently to the

right of all other singﬁlaritiés {and within the region of analyticity in £ ),

it follows thsat

A (s,t) I, L o

s QO . ta (b) o : “ | - (I11.3)
oT » t - 0o : : ,
D7(t,s) |

if .al(s)f is the position of the pole farthest\to'the righﬁ in the £ plane
and ﬁm(t,s) is the dlscontinulty in A” (s t) in crOSSLng the positive 4

axis. An appropriate general definition of the "strip" region discussed earlier

1n a qpalltative way’ by two of the autnorq would be Just this interval in s ,12

(The earlier dafinition of the "Strlp” was.linked:to the approximation

vI ~ vgnl . We now wish to dissolve this link.) If the analogy with

nonr:lativistic potential scattering holds, we expect 'al(s) to increase
with the strength of the geveralized potential Vl(t,s) , When vr corresponds
to sttracticn; fUrﬁhermcre,:we éxpect dal/ds- to be positive for s <4 ,

]

For s> L4, a}(s) bécomés.complex, but the real part is continuous.and

should reach a maximum value at some moderate value of- s', eventually falling

to a negativé value for 'sﬁfsuffiaiently large.

 Frdm the elements of the crossing matrikll”lI ?) one sees that all
cqntributions:to vgwl;o are'attradtiye and .stronger than (or at least as

strong as) in the other two I-spin statess Thus if any_Regge poles develop,
‘the one standing farthﬁst_pe.the right‘in_thef-z plane at a given s should
L=0(s):_is st11l positive for some range of

negative, s then in the crossed chamnel (vhere t corresponds to energy
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and s to momentum transfer) the highaenergyvbehavior at fixed (low) momentum

transfer evidently will be controlled by the I'=0 Regge pole. We-now‘
examine the connection between this possibility and constant limits for- high-
energy total cross sections.v

From the optical theorem-it follows that

D;(t, §=0) = (cLC tl/?/16 ) °to£(t) s 'f' . (III.N4)

where - DI(t,s) i1s the complete absorptive part in the t channel and

5 I
tot

the t channel., Then, since

is the total cross section, both qnantitites'for isotopic spin I in

pt(t,8) ',: | f'A: - 'kiri,s)"

el e
D (tys) = z BII'

I

a glance at the elements of' B “in (lII.2) showstthat‘no cencelation can

II'

prevent a behavior
§1=0 (t, O) OC t , as £ - o |, A o (III.G),

if each total cross section approaches a constant. Such asymptotic

I
tot
behavior, pointed out in an earlier paper by two of the authors,le‘implies

that
aI=9(s=o) = 1., , , | A (ITI.7)

At first sight this-last reqpirement seems to predict a.bonnd P state of zero
total energy, ‘but symmetry reqpirements eliminate all odd £ waves with I =
'Because of the presence of exchange as well as direct forces, the potential
determining even physical'values of z is different.from that determining '

odd values of £ . Nevertheless we must ask théiduestion: Is 1t reasonéble“

L33
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to expect a direct potential equal to v
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=0 1? it ﬁere'éffe¢t;§e in both |

odd and even f states, tb be suffigiently attfactive aé to 51gd a P étate?
We believe the anSwef to be éffirmative becaﬁéeﬂQpalitativé.arguments havé

shown that a "bootgtrgpﬁ_mechanism probably can sustain an I = 1 E-wéve

résonance iﬁ‘terms of 1tself¢}? In,othef words, a potential.
I=1 . =1, S ,

Vox (t,8) = 5311 Deﬂ (t,s) > N (III'B)
when Deiil containsta P-resonance contribution, is attractive and has
roughly the required strength to produce the I = 1 P resonance in question.
Now_vﬁ01 nf2Bil » 80 the corresponding contribution to _vI;O is twice as
attractive as (III.8) and might well produce a bound P sﬁate,__ f

-The.above,argument 1mplies that - |

@ He0) <1, - (115.9)

which 1s consistent with the experimental requirement that  Re aI=l(9528)v= l,l

and the theoretical éxpgctgtidn that for s < 28 , - d Re afds is positive.

Since Bél.= —Bll , the potential vI=2 is probably repulsive and no Regge:

- pole will even appear in the I =2 state. Thus we expect

b 2(t0) — 0, (II1.10)
R [11.10)

g

and in view of the relstion

o J8) = (6x/a, tY2) 5 B, T,  (mriy

there follows from (III.5) the expectation that



UCRL-9925

«16=
lim'h utot=°‘.;‘ lim .tot (t) iim’v ;ot (t) .
t -+ @ : t-> ' 't - o0 ‘ _ o
: (II1.12) -
. g L}
By such a mechanism, therefore, one expects to achieve both Pomerdnchuk - Co '&,
conditions.'” '

Tw“_umljcmayﬂappear_sxrangeﬁatwfiretmsightuthatwthe;Eomeranchuk_relatione_
shocld depend on the detailed strucfure of tﬁeAcrossing matrix. When one
realizes, however, that.ccherent‘elastic scattering is'uniQpely essociated
~with states in the crossed channel that have:the“quentum rumbers ‘of the
vacuum, ‘then a. select roie'ﬁcrf‘i'=~0ﬂ inlaeymptofic considerations is no-
'longer surprising. - Ponmeranchuk's second ccndition,;afterAéll, is équivalent
_to the assertion that completely cohérent;elastic»ecatﬁering_predominates 1§
the forward‘direction at high'energj.

We now remark on two conseqpences of the- assumption that da /ds >0
for s <4 . ‘The first is that in view of (III,?) we expect"al” "to vanish
at some negative value of s, a'circumstanCe which would-correspopd to an
unphysical bound S state of'imaginary'ehergy. Qell-Menn has pointed out po
us thet if the residue of-such_a pole were to vanish_ﬁhere would'be.no
'coqflict witﬁ unitarity.;6,‘If the ree;due does not vanish we cannct‘determine
"the I =0 S wave from §t=0- , but muetvUSe the N/D method.

-

The second conseqpence of the positive derivative of aIzov'with

respect to s 1is that the width of the hlgh-energy elaatic diffraction peak _ b
will shrink indefinltely w1th inecreasing energy--albelt only logarlthmically.
Since the first Pomeranchuk conditlon ensures that’ the real part’ of the amplltude
. near the forward direction is negligible with respect tc the imaginary part,

we have



UCRL-9925

-17-
do- 0 [ 1pt 2 B
. ry (t,s) 17, s .= -2q, (1 - cos et)
i t - 00 . o
, -~ (ITI.13)
I=0 : : .
2 -
- f(s)tb(a (s) 1) .

If 'aI=O is a sloﬁly varying function of s , we'may write for small |s|
| 1=0, . | | o h ) :
a7 (s) =~ 1l+es, o €>0, (III.1k4)

and thus deduce the small momentum-transfer behavior

g.o Ef( )tQGS
s
t = o
= f(s) exp(s2€edtnt) . v o (III.15)

Integration of (III.15) over the elastic diffraction peak yields the related

prediction

o) /O o0 (esat)T. . (IIT1.16)

t - oo
P

Evidentl&, the rate of shrinkage is small;.nevertheless, precision experimenté
at_very'high enérgy should detect such an.effect,l7 It is prsible to argue,
as pointed out by I.ovelace,18 that experiments already are giving suppoff for
the form (III.15) through the obéerved exponential behavior‘éf the tail of
diffraction peaks. Such beha#iorvis difficult to{understaﬁd in any classical
model but follows 1mmedia£ely from the Regge pole hypothesis.

‘As discussed by two of the authors, all fofﬁard,diffradtion peaks
(nN, NN, nx, KN, etc.) are controlled by thé Regge ﬁole under discussion here,

if any are.19 The universal character of the slope ¢ (and of course higher
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derivatives if they can be,measurgd) is‘another striking feature of our
mechanism. Oné must keep it in mind, of course, that the diffractioh peak
may well be produced byvé moreiéomplicated mechanism than envisaged here. L
Experiments to test the characteristic features‘of formula (III.15) are
therefore'ofvcrugial importancé. The predictions discussed above are so !
startlingly nonclassical in nature that their confirmation would provide
' conv1ncing evidence for the Regge pole hypothesis.
| We return finally to discuss the inconsistency in the equations, as
I I

they are at present formulated with Vo=, in the case where there is

a P-wave resonance. The difficulty arises essentiully from the equation

I 1 | | e (t',s) ) (t"282
(s,t) = [ at' at
5,t) ﬂqs(qs N 1)1/2 1/a Q 2 o, t0)

(III.lf)

which is the réiativistic analogue of (II.l). Here 51 is given by

F(t,s) = vi(t,s) + = a8 - , . (III.18)

‘ ' T
the analogue of (11.3), and vL 4s in turn given in terms of . DeﬂI (t,s)

by theHCfoising equation (III.1l). Now, DezI=1(t,s) will behave like
a. (t

61(t)s 1 as s approaches infinity and, if there is a P-wave resonance, @

the oy will be greater than 1 for some values of s . We have indicated

that the same may well be true fbr_ p° . From (1IX.17) one may deduce that

sa(t) at large s the contribution to-the

integral for ,peé from . t' = t" = t, 'will behave like _sga(tl) -1
velue of t' and 1" will contribute 1f t b t, . If p_ ,(s,t) behaves
el
Ea(tl)—l
like s for t > 4t

K ’
if D and D behave like

This

, » 1t follows from (III.18), even if subtractions

are made, that D(t,s) has the same behavior for such values of t . On
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putting this behavior of D into (III.17), we find that - Py ‘behaves like
ha(t, )-3 |
s 1 when t > 16 tl . The procedure can be repeated and, if

Re a(tl) > 1, it appears that the asymptotic behavior of p apd- b as a

function of s becomes worse and worse as. t increases.

It is unlikely that the oscillatory behavior of D will decrease the -

'ésymptotic behavior of p .given by (IIT.17). The simplest Qay of seeing this

is to make a Froissart transformation by ﬁhiﬁh the integral in (III.17) is

" replaced by another containing a d function,lo SO that; for any value of t',

only one value of t" contributes; The asymptotic behavior. is unchanged by |

this transformation. Writing this functional relationship as t" = t"(t') ,"

and denoting a[t"(t')] by 7(t'), we observe that the contribution to the

integral on the right-hand side of (III.17) from a particular value of t*

¥ o
f ? : :
behaves like sa.(t ) + (% ), The integral of such a function over t'
will ordinarily be dominated by that value of t*' for which Re @ + Re ¥
is greatest, and cancelatidns wili in general not occur. |

If one seeks the physical origin of the inconsisteﬁcylof our equations,

-

the most likely culprit is the failure of the approximation vI ~ v to

en
put a unitarity bound on inelastic séqtteringa 'Thé trouble develops as”soon'
as the real part of any aI_ beéomes greater than unity, and FfoisSart has
shown that ﬁnitariﬁy requires aI(S=O).s 1 ,l a constraint that is lackihg
in our saspproximation. To remedy the problem one must take some account';h
the inelastic processes of hultipioh exchange. An exact treatment is, of ‘

course, out of the question, but it may be possible somehow to impose the

correct unitarity bound. In terms of our genersalized potential, vI(t,S),

the required unitarity damping in the inelastic part comes about ihrough

hﬂ, 6ﬂ, etc, contributiqns; it seems plausible that such contributions

appear as repulsive’forées, since their effect haé to limit the magnitude K
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of afs) at ioﬁ eneréy;J'dne may sbecﬁlate;»in fact, thaﬁ there“ﬁai be a
universal repuisive éo?e’in all fwo-bodyﬂforéeé dué to exchange of multiparticlé_
: systemsAwith;the qpéntﬁm'ﬁumbersvof the vacuﬁmf= If.is for these quantum L L
‘numbers that the Froiséart limit is most‘cioséiy'approached, so fhe.combensating’ .
. . : : L

: reaétion of multipafticle-contributions'should here be the strongést.
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