UC Berkeley
UC Berkeley Previously Published Works

Title
Emergence of the giant component in special Marcus-Lushnikov processes

Permalink
https://escholarship.org/uc/item/5rv5s7agb

Journal
Random Structures and Algorithms, 12(2)

ISSN
1042-9832

Author
Aldous, David

Publication Date
1998-03-01

DOI
10.1002/(sici)1098-2418(199803)12:2<179::aid-rsa2>3.0.co;2-u

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5rv5s7gb
https://escholarship.org
http://www.cdlib.org/

1

Emergence of the Giant Component in Special
Marcus-Lushnikov Processes

David Aldous*
Department of Statistics
University of California
Berkeley CA 94720
aldous@stat.berkeley.edu
http://www.stat.berkeley.edu/users/aldous

June 17, 1997

Abstract

Component sizes in the usual random graph process are a special
case of the Marcus-Lushnikov process discussed in the scientific litera-
ture, so it 1s natural to ask how theory surrounding emergence of the
giant component generalizes to the Marcus-Lushnikov process. Essen-
tially no rigorous results are known; we make a start by proving a weak
result, but our main purpose is to draw this topic to the attention of
random graph theorists.

Introduction

1.1 Background

At time zero there are n separate “atoms”; as time increases, these atoms

coalesce into clusters according to the rule

for each pair of clusters, of sizes {x,y} say, they coalesce into a
single cluster of size x + y at rate K(z,y)/n

where K(z,y) = K(y,x) > 0 is some specified rate kernel. This rule spec-
ifies a continuous-time finite-state Markov process which we shall call the
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Marcus-Lushnikov process. The model was introduced by Marcus [16], and
further studied by Lushnikov [15] as a model of gelation. Observe that
in the special case K(x,y) = zy the Marcus-Lushnikov process describes
the component sizes in the random graph process G/(n, P(edge) = p(t)) with
p(t) = 1—exp(—t/n) ~ t/n. Topics surrounding the “emergence of the giant
component” in the random graph process have been studied by mathemati-
cians in great detail (see [4, 11] and citations therein), so it seems natural to
ask how far the known behavior for K (z,y) = zy extends to more general
gelling kernels (see (4) below). It turns out that there is a large scientific
literature relevant to the Marcus-Lushnikov process, mostly focusing on its
deterministic approximation (2). Curiously, this literature has been largely
ignored by random graph theorists; a survey aimed at probabilists is given
in [2], and we now summarize some relevant aspects.

The state of the Marcus-Lushnikov process at time ¢t may be described
in two equivalent ways: as a vector (N.(t),2 > 1) where

N,(t) = number of size-z clusters
or as a vector (X;(¢),7 > 1), where
Xi(t) = size of ¢’th cluster

and the clusters are ordered so that Xy(¢) > Xy(¢) > .... Heuristically, if
we suppose there exists a deterministic limit

nTINL(t) L n(z,t)as n — oo (1)

then the limit should satisfy the Smoluchowski coagulation equations
z—1 0
La(a,1) = 13" K(y,z - y)n(y, (e - y,0) —n(a,6) S K(a,y)n(y, 1) (2)
y=1 y=1

with n(z,0) = l(z=1).- These equations are a classical subject: the 1972
survey by Drake [8] cites 250 papers. In the Marcus-Lushnikov process we
have conservation of mass (>, 2N,(t) = n Vt) and so one might expect
conservation of mass

an(w,t):1,0§t<oo (3)
r=1

for the solution of the Smoluchowski coagulation equations. When (3) holds,
call K a non-gelling kernel; it is easy to show rigorously [25] that K (z,y) <



ko(1+ x4 y) is sufficient for K to be non-gelling. If (3) fails, K is a gelling
kernel with gelation time 0 < Tye) < oo such that

[ee]

=1 : t< Ty
> an(x,t) ) 5¢ (4)
ot <1l : t>Tgel-
For the kernel K(x,y) = ay corresponding to the random graph process,
Toer = 1. Intuitively speaking, gelation occurs when some non-vanishing
proportion of the mass is in clusters whose size is not O(1). Say K has
exponent vy if

K(cx,cy)~ c"K(z,y) as ¢ — oo.

It is widely believed [23, 24] that any “reasonable” kernel K with exponent
1 <y < 2is gelling and has Tye > 0, based on arguments showing that
the second moment " x2?n(z,t) diverges at some finite time. But there
are essentially no rigorous results to uphold this belief, except for variations
of zy (e.g. K(z,y) = azy + b(z + y) + ¢: [21]) and degenerate cases like
K(z,y) = 271 (y=p [5].

Returning to the Marcus-Lushnikov process, one expects the “weak law
of large numbers” (1) to hold for ¢ < T,q), and though this is classically true
for K(z,y) = 2y, general kernels have only recently become the object of
rigorous study (Jeon [12, 13]). More qualitatively, we expect the significance
of Tge) in the Marcus-Lushnikov process to be as follows. Write C',(t) for the
size of the cluster containing a prespecified atom: P(C,(t) = x) = ZEN.(t).
Then we expect Ty to be the threshold for tightness of (C'u(¢);n > 1), that
is

lim_lim sup P(Cu(t) > ) =0, t<Tyq (5)
lim lim inf P(Cn(t) > z) >0, 1> Ty (6)

1.2 Statement of result

Our result concerns kernels of a special form. Recall X;(¢) and X5(¢) are the
two largest cluster-sizes, and that C,(¢) is the size of the cluster containing
a prespecified atom.

Theorem 1 Fiz 1 < v < 2 and write f(z) = z7. Consider the Marcus-
Lushnikov process with kernel

2f(=)f(y)
flx+y)— flz) = fy)

K(z,y)= (7)
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(a) For fized t < 1

lim limsup P(C,(t) > z) = 0.

Tr—00 n

(b) For fizred t < 1 there exists h, = o(n®) Ve > 0 such that

(¢) There exist random times U, L1 such that infi>p, Xq(1)/Xo(t) 4 .

Discussion. Note that f(z) = 22 would give K(x,y) = 2y, the random
graph process. Theorem 1 provides weak formalizations of the idea that
a giant cluster emerges around time 1. What is important for our proof
is the form (7) of the kernel and that K has exponent v, rather than the
exact form of f(x), and the proof should extend essentially unchanged to
the case where f is regularly varying with exponent v. The special feature of
kernels of form (7) is that, writing s(t) = >, f(2)n(z,t), the Smoluchowski
coagulation equations yield

) (8)

implying
s(y=(1-1)"" 0<t<1. (9)

(We haven’t seen this idea stated explicitly, but with hindsight it seems im-
plicit in Ziff [26], appendix). Now (9) implies Tge > 1, and strongly suggests
Toer = 1, but we are unable to prove this, or to prove its stochastic analog
(6). For the random graph process it is classical that X;(¢) = O(logn) for
fixed t < 1, so (b) is a comparatively weak assertion. We cannot prove the
complementary assertion that X;(¢) = Q(n'~°(")) for fixed ¢ > 1. Assertion
(c) establishes existence at some time near 1 of a “giant cluster” (as mea-
sured by relative size) which persists as time increases, but we are unable
to show that such a giant cluster does not appear before time 1. Finally,
note that part (a) could alternatively be deduced from the results of Jeon
[12, 13] mentioned above.

While the conclusions of Theorem 1 are much weaker, and the hypothesis
on K much more restrictive, than one would like, the point is that Theorem
1 is the first rigorous result dealing with the Marcus-Lushnikov process for
a family of gelling kernels with general exponent 1 < v < 2. Indeed, the
only detailed study of this question we have found is van Dongen [22], who
gives a non-rigorous treatment of scaling properties near the critical point



Tye1- His analysis suggests in particular ([22] eq. (8.6)) that the size of the

emerging giant cluster is @(n%), which is of course consistent with the
known size @(n2/3) for the usual random graph process. Rigorous proof of
such refined conjectures presents a major challenge, as does study of general
gelling kernels of exponent 7.

Theorem 1 is proved in sections 2 — 4 via fairly routine stochastic cal-
culus techniques. Section 2 develops the stochastic analog of (8,9): see (10)
and Proposition 2. Section 3 records two essentially standard exponential
tail inequalities for continuous-time martingale-like processes with bounded
jumps. In section 4 these tools are used to prove Theorem 1.

Some Monte Carlo simulations are shown in section 5.1. A different ap-
proach to the analysis of Marcus-Lushnikov processes for a different special
class of kernels is mentioned in section 5.2. Finally, we mention that stochas-
tic calculus techniques are also useful in analysis [1, 3] of the multiplicative
coalescent, i.e. the n — oo limit continuous-space process arising from the
random graph process.

2 The process S(t)

Recall that the Marcus-Lushnikov process is described equivalently as a
vector (Nx(t),z > 1) where

N,(t) = number of size-z clusters
or as a vector (X;(¢),7 > 1), where
Xi(t) = size of ¢’th cluster

and the clusters are ordered so that Xy(?) > X5(¢) > .... Assume K is of the
form (7) specified in Theorem 1. Write F(¢) for the natural filtration. The
“stochastic calculus” we use is no more than estimates of conditional means
and variances; instead of the usual theoretical probabilist’s notation (e.g.
[20]) we use more intuitive “infinitesimal” notation. That is, E(dZ(t)|F(t) =
a(t)dt means that Z(t)— A(t) is a local martingale for A(t) = [} a(s)ds, and
var (dZ(t)|F(t)) = v(t)dt means that (Z(t) — A(1))? — [iv(s)ds is a local
martingale. All asymptotics are as n — oo; we suppress dependence on n in
our notation.
Our analysis centers on the process

§(0) =07 Y0 f)NAn) = 7 YD F(X),



Note 5(0) = 1 and S5(¢) is increasing. This section is devoted to the proof
of the following stochastic analog of (9).

Proposition 2 For fived to < 1

sup |S(t) — 15| & 0.
0<t<to

The proof proceeds via a series of lemmas.

Lemma 3
E(dS(t)|F(t)) = (Sz(t) — n_lY(t)) dt (10)
where

Y(t) =m0 F@Na(t) = 07t 30 FXi(0).
Proof. From the definition of the Marcus-Lushnikov process,
E(dS(O]F(1)) =
3 NSl 9) - f(o) - FONEEL NN (1) = Na()] (=) d.
Using theyspecial form (7) of K, this becomes
L 2; F@) PG NS N (1) = No(t)1 ()t = (§3(1) = 7'V (1)) .

a
Set a = (5 + %)/2, so that § < o < %, and note in particular that
ay —1 < 0. Define
T = min{t: X1(t) > n”}.

Lemma 4 For fized tg < 1

sup 15(t) — 1] Lo, (11)
0<t<min(to,T)

Proof. The estimates in this proof hold for t < T. Write AS(t) = S(t) —
S(t—) for the jump-sizes of S. Then

jljg AS(t) < n7H(f(2n) = 2f(n®)) < 202771 (12)

Y(t) < S()F(X1(1)) < 4n*VS(1). (13)



And

var (dS(D)|F(1)) < 20 " E(dS(1)|F(1)) by (12)
< 2n7L82(1)dt by (10). (14)
Consider )
QU =1~ 577 1
Then o a5 (1)
Q) = =i+ 55050 + ds0)
and so
0> dQ(t) + di - fg((f)) > —(dg((i))) (15)

Combining (10,13,14),
0> E(dQ(1)|F(t)) > —GnM_l/S(t) dt > —6n°71dt

var (dS(t)|F(t)) _ 2n°7~1dt
<
S4(1) RO
Recall that all these estimates are asserted only for t < T. By a straightfor-
ward application of the L? maximal inequality, as n — oo

var (dQ(t)|F(t)) < < 207t

sup Q)] £ 0.
0<t<min(2,T)
Because S(t) = 1/(1 —t — ((t)), this implies that T is asymptotically at
most 1:
(T-1)* £ 0 (16)

and also establishes the Lemma. O

Lemma 5
K(z,y) < 4(xy" ™ +y27 ") (17)

where A depends only on ~.

Proof. By considering the ratios, and scaling to make 2 = 1, we need to
verify
y’y
sup — < 0.
v (L+y) =1=y)(y" +y)




But the ratio has finite limits at 0 and co. O
Next consider

V(t)y=n"" ZX?(t) =n! Z 22N,(1).

Lemma 6 Write "
VA1)

1) =

R(1) S0

for A as in Lemma 5. Then E(dR(t)|F(t)) < 6n°7"'R(t)dt ont <T.

Proof. Since a merger of clusters of sizes {x,y} causes an increase of 2zy/n

inV,
v olF) = 155 LD 08, 0) - Ko1)oy d

A _ _
< oY ay(ey’ ™ +ya TON(ON, () di by (17)
z oy

= AV(t)S(t) dt. (18)
Expanding d(1/5(1)) as at (15),
(o) < £ 5 By - v 4 s S

Evaluate E(-|F(t)) for each term, using (18,10,14):
first term < V/A(1) dt

second term < —Vl/A(t)(l _p! 542%) dt

Qnoz'y—l

5(1)
Bounding Y (¢) by (13), the bound reduces to the bound stated in the lemma.
a

dt.

third term < VY/4(1)

Proof of Proposition 2. Set R(t) = (1—=6n°7"1)F R(1). Lemma 6 implies
that R(min(z,T)) is a positive supermartingale, and since R(0) = 1 we see

that (R(T)) is tight (as n — o0). Then using (16)
R(T) is tight . (19)

But by definition of 7" we have V(T') > n® for ¢ = 2o — 1 > 0, and hence
R(T) > n&/S(T). So by (19) S(T) = oc. But from (11) this implies

T 2 1 and so the Proposition follows from Lemma 4.



3 Exponential tail bounds

There are well-developed techniques for proving exponential tail bounds
for stochastic processes via construction of an “exponential martingale”.
Results of this type at a high level of generality are presented in section 4.13
of [14] in the continuous-time setting relevant here. (Part of the discrete-time
analog is the “method of bounded martingale differences” [17] popularized
in the 1980’s.) We need the following two results.

Lemma 7 Let (M(t)) be a continuous-time martingale with M(0) = 0 and
with quadratic variation Q(t), that is E((dM(t))*|F(t)) = dQ(t). Suppose
sup, |[M(t)— M(t—)| < 1. Then

log P(M(1) > a,Q(t) < q) < F-b(a/q) (20)

where b(y) = 2y~2((1 + y)log(1 + y) — y). In particular, there exists ao(q)
such that

log P(M(t) > a,Q(t) < q) < —galoga, a > ag(q). (21)

Comments. Here (21) follows from (20) by noting b(y) ~ 2y~ 'logy as
y — oo. And (20) is stated as a standard fact in [7] equation (2): they write
P(M(t) > a)—P(Q(t) > q) in place of P(M(t) > a,Q(t) < ¢), but our form
is equivalent by simply stopping the martingale at inf{¢ : Q(¢) > ¢}. In [7]
the result is cited as a reformulation of [14] Theorem 4.13.5.

The second lemma, though not explicitly stated in [14] section 4.13, can
be proved using the same set of ideas. We shall just outline the intuitive
ideas underlying a proof.

Lemma 8 Let (D(t),t > 0) be a process such that
(a) E(dD(1)|F(t)) > bR(t)dt

(b) var (dD(t)|F(t)) < aR(t)dt

(¢) supy | D(1) = D(1=)[ <1

for some process R(t) > 0 and some constants 0 < a,b < co. Then
P(D(t) < D(0) — ¢ for some t > 0) < e’ . ¢>0
where § > 0 is the solution of § = $(e’ — 1 —8).

Outline of proof. The issue is to show that exp(—6D(¢)) is a supermartingale,
for then the desired inequality follows in the usual way via the optional



sampling theorem and Markov’s inequality. Writing informally A = dD(%)
and dr = R(t)dt, the supermartingale requirement is: if

IA| <1, EA>bdr, var A < adr (22)
then Fexp(—0A) <1+ o(dr).

But consider the problem of maximizing F exp(—6#A) subject to the con-
straints (22). It is easy to see that the maximizing distribution of A must
be the distribution on {—1, 2} for the  such that the latter two inequalities
in (22) are equalities. This distribution is (up to o(dr) terms)

P(A — —1) = adr, P(A = (a + b)dT) =1—adr
and so satisfies

Fexp(—6A) adr + eI (L adr) + o(dr)
14 (%a—0(a+0b) — a)dr + o(dr)

= 1+ o(dr) by definition of 6.

4 Proof of Theorem 1

4.1 Part (a)

Recall (1) denotes the size of the cluster containing a prespecified atom.
Writing ¢(2) = f(x)/x, by Markov’s inequality

PCL(1) > #]5(1)) < ZLeCaISM) _ S()

¢(x) ¢()

and part (a) of Theorem 1 follows from Proposition 2.

4.2 Part (b)

The idea of the proof is to follow the growth of a particular cluster. Dis-
tinguish one atom a, and let Z,(t) be the size of the cluster containing
atom a at time ¢t. Let T be the first time that the cluster merges with
some strictly larger cluster, and let 7,(t) be the “stopped” process Z,(t) =

Za(min(t, T—)).

Lemma 9



Proof. 1t X1(t) > z, distinguish some cluster at time ¢ with at least 2 atoms,
and as time decreases, at each split distinguish the larger of the two clusters
(choosing arbitrarily if equal). At time 0 we obtain a distinguished atom.
Reversing time, we see that the event {X;(¢) > z} is the union over atoms
a of the events {Z,(¢) > «}. The lemma follows. O

We proceed to analyze Z(t) = Z,(t) via stochastic calculus.

Lemma 10 Fort < T,
E(dZ ()| F(1))
var (dZ(t)|F(1))
where A is the constant in Lemma 5.
Proof. E(dZ(t)|F(t)) = E(Z(t))dt where
b —12)( K (2, X;(1)) (23)

AZ(1)S(t)dt
SAZE()S(t)dt

and where the sum is over clusters not containing the distinguished atom.
For the stopped process 7, we retain only the summands with X;(¢) < z,
for which (by Lemma 5) K(z, Xi(t)) < A2X7"'(t). So E(dZ(1)|F(t)) =
b(Z(t))dt, where

2) < L3TX(1) AX]TH(E) = AzS(1).

This establishes the first assertion of the lemma. The argument for the
second assertion is similar: in calculating var (dZ(¢)|F(t)) the term X;(¢) in
(23) is replaced by

(2 4+ Xi(1)? — 2% = 22X,(1) + X2 (1) < 32X,(t)

when X;(t) < z, and the argument goes through with this extra factor of
3z. O
Proof of (b). Write W(t) = log Z(t). Since dW(t) < %(tt)), Lemma 10

implies
f
f

E(dW(t)
var (dW (t)

1)
1)

AS(t)dt (24)

[7(1) <
|F(t)) < 3AS(t)dt (25)
Consider the martingale part of W (t), that is the martingale M with M (0) =
W(0) =0 and dM(t) = dW(t) — E(dW(t)|F(t)). Note that by integrating
(24),

W(t) < M(t) + 1AS(1) (26)
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and by integrating (25) the quadratic variation process ()(t) of M (t) satisfies
Q(t) < 3tAS(t).

By construction of the stopped process 7 we have Z(u) < 27(u—) and hence
Wi(u) — W(u—) <log2 < 1, implying |M(u) — M(u—)| < 1. Fixing t < 1
and applying the general martingale tail bound (21),

log P(M(t) > z,5(t) < 125) < —32 loga
for sufficiently large z, not depending on n. Take z, such that
z, = o(logn), x,logx, > 3logn.

Then
nP(M(t) > x,,5(t) < &) — 0.

Applying (26), we see that there exist h, = O(exp(z,)) = o(n®) for all ¢ > 0
such that
nP(Z(t) > hy,S(t) < %) — 0.

Lemma 9 now implies
P(X((t) > hn, S(1) < 72) = 0

and the proof of part (b) is completed by appealing to Proposition 2.

4.3 Part (¢)
Fix 0 < n < 1 and define

U = min{t: f(X2(1) 2 (1 - n)ns(0)}.
For t < U we have
V(1) < FX20)S(1) < (1 - )ns()

and so by (10)
E(dS()|F(t)) > nS*(t)dt, t < U. (27)

Define ) 4
U; = min{t : S(t) > 2’}

U; = min(T7;, 7).

12



From (27) and the optional sampling theorem
E(S(Uj1) = S(U;) 2 n22 E(Ujsa = U;).

It is easy to see that the jumps AS(2) = S(t)— 5 (¢1—) satisfy AS(t) < S(t—),
so S(Ujy1) — S(U;) <4-27, and so

E(Uiy — U;) < 4n~1274,
Summing over j > k,
E(U - Up)* < 8pt27*.
But for fixed k, Proposition 2 implies (U —1)F 2 0 asn — oo, and hence
(U -1)*r 2o (28)

From the definition of U we have f(X1(U)) > (1=n)(f(X1(U))+ f(X2(U))),
and so

FX1() ) f(Xao(U)) > 2. (29)
The definition of U also gives the final inequality in

n—=Xi(U) =) Xi(U) <D f(Xi(U)) = nS(U) = f(X1(U)) < qnS(U).

i>2 i>2

It S(I7) < £ then Xy(U7) > n/2 implying S(U) > f(X:(1)) > (n/2)", 2

contradiction for large n. So S(U) is asymptotically at least 21—77, implying
by Proposition 2 that U is asymptotically at least 1 — 2#n:

(1-2p—-0)" 2 0. (30)

Assume we know

Lemma 11

P(E%%ST) < (172777)6, r>4

where 8 > 0 depends only on 7.

13



Then (28,29,30) give n — oo asymptotics for U = U,(n) for each fixed 7,
and therefore hold for 5, — 0 sufficiently slowly, in which setting U 2
and then Lemma 11 establishes part (c¢) of Theorem 1.

Proof of Lemma 11. Recall S(t) = n=" Y ;51 f(X,(t)). We separate the
contribution of the largest cluster from the remainder, by writing

Lt) = n~' f(Xa(1), R(t) = n~" Y f(X(t)).
i>2
The definition of U may be rephrased as
U =inf{t: %(% > 177;77}

Note that L(t) is an increasing process. Although R(t) is not increasing, we
can define an increasing process (R*(t),t > U) by censoring the negative
jumps:
R = RU)+ Y (R(s)— R(s—))* > R(1).
U<s<t

Take n < 1/5, so that L(U)/R(U) > 4, and define
V=inf{t > U : L(t)/R(t) < 4}.

Our goal is to obtain estimates for the process D(¢) = log(L(t)/R*(t)), U <
t < V. By copying the proof of Lemma 3

E(dR*(0)|F(1)) < RX(1)dt (31)
and so 2
E(dlog R*(1)|F(1)) < RR%; < R(1)dt. (32)

On {U <t < V} the largest cluster cannot be overtaken by coalescence of
two smaller clusters, so

E(dL)|F(1))

= w7t SR (0) + FX(D)n

i>2 X3 (1) + Xi() = f(Xa (1) = f(Xu(1))

> dt n_22f(X1(t))Zf(Xi(t))
= 2L(t)R(t)dt. )

14



For U <t <V we have L(t) > 4R(t) and so the jumps AL(t) satisfy

AL() < ((3)7 = DI(t-) < 35L(1-) (34)
and so
log 22 — 1 AL(t) _ 5 AL(1)
Alog L(t) 2 =5 /16~ Ta—) 2 1 (=)
So from (33)
E(dlog L(t)|F(t)) > 3R(t)dt
and now (32) implies
E(dlog D(t)|F(t)) > L R(t)dt. (35)

For U <t <V we have L(t) > 4R(t) and so
FIXA(1) + Xi(1) = f(X1(1) < BPXTTHOXA(1), i > 2
where B depends only on 7. So
var (dL(1)|F(1)) < n72dt S (BYEX(0)X]T (1) w7 K (X(1), Xi(1))

i>2
An~dt BXZ(1)X7 ()X (1) X" (1) using Lemma 5
i>2
= ABn7?dt Y X7 0)XH (1)
i>2
< ABnTidt Y XP(0)X](t)

IN

i>2
= ABL*(t)R(t)dt
and so
var (dlog L(t)|F(t)) < ABR(t)dt. (36)
And AR " " "
R(t—) = zy>0 Y + g
and so

var (dR*(t)|F (1)) R(t)E(dR(1)|F(t))

R3(1)dt by (31)



and so

var (dlog R*(1)| (1)) < 435 < R(1)dt.
Combining with (36),
var (dlog D(1)|F(1)) < 2(1 + AB)R(t)dt. (38)

Now (35,38) verify hypotheses (a,b) of Lemma 8 for (D(¢),U <t < V), and
hypothesis (c¢) follows easily from (34,37). The conclusion of the lemma is

LU+t L) N\
< <
(0§t1§nX£—U U +1) = RO ) S e>d

where 6 depends only on 5. Since R* > R and L(U)/R(U) > (1 —1n)/n,

P( inf LU +1) < 1_776_0) <e ¥ c¢>0.
0<t<V-U R(U + t) n

Provided 177;776_C > 4, we may (from definition of V') replace inf;cy_ir by
infico, and so

6
p( inf Mgr)§< r ) e,
0<t<oo R(U + 1) 1—-n

This establishes Lemma 11.

5 Final remarks

5.1 Monte Carlo simulations

Put figures 1, 2, 3 near here.

Figures 1 and 2 present data from a simulation with v = 1.5 and
n = 100,000. Figure 1 indicates slow convergence in Proposition 2. The
are several ways to quantify the notion of “size of the emerging giant com-
ponent”. One way is via M,,, the maximum (over time ¢) of the size of the
second-largest cluster at time ¢. The heuristic analysis mentioned in section
1.2 suggests the conjecture n_%Mn LM with a non-degenerate limit
M. This is known in the “random graph” case y = 2 [11, 1]. Figure 3 shows
the value of M,, in 10 simulations for varying values of n, and the results
are consistent with the conjecture.
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5.2 Another approach

Implicit in Lushnikov [15] (see [10, 6] for clearer expositions) is the follow-
ing result, which gives an exact relationship between the Marcus-Lushnikov
process and a finite analog of the Smoluchowski coagulation equations, for
certain kernels.

Lemma 12 Consider the Marcus-Lushnikov process with

K(z,y)=af(y)+yf(x) (39)

for some f. Then

P(N(t) = ng,z > 1):n!HM

ng!

where (by(t)) are the solutions of the differential equations

Dhai1) = Z (2 = Dbi(D)bo—il1) — (0 — 2) f(2)ba(1)

with b,(0) = 1(1,:1).

This result seems close in spirit to mathematical work on random graphs
[9, 18, 19] featuring first-order approximations to various stochastic processes
by differential equations. It seems plausible that Lemma 12 could be used as
a starting point for investigating emergence of the giant cluster for kernels

of the form (39) with f(z) = 27"

Acknowledgements. 1 thank Michael Ostland for carrying out the simu-
lations in section 5.1, and Vlada Limic for careful reading of a draft version.
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