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Abstract

We consider the running of the neutrino mass matrix in the Standard Model and the Minimal Supersymmetric Standard
Model, extended by heavy singlet Majorana neutrinos. Unlike previous studies, we do not assume that all of the heavy mass
eigenvalues are degenerate. This leads to various effective theories when the heavy degrees of freedom are integrated out
successively. We calculate the Renormalization Group Equations that govern the evolution of the neutrino mass matrix in these
effective theories. We show that an appropriate treatment of the singlet mass scales can yield a substantially different result
compared to integrating out the singlets at a common intermediate scale. 2002 Elsevier Science B.V. All rights reserved.

PACS: 11.10.Gh; 11.10.Hi; 14.60.Pq

Keywords: Renormalization group equation; Beta-function; Neutrino mass

1. Introduction

The discovery of neutrino masses requires an extension of the Standard Model (SM) or the Minimal
Supersymmetric Standard Model (MSSM), which may involve right-handed neutrinos, or more generally gauge
singlets. Since there are no protective symmetries, these singlets are usually expected to have huge explicit
(Majorana) masses. This leads to the see-saw mechanism [1], which provides a convincing explanation for small
neutrino masses. This scenario can be realized in many Grand Unified Theories (GUTs) and their supersymmetric
counterparts. For instance, left–right symmetric models and SO(10) GUTs include singlet neutrinos, which can get
huge masses in several ways, e.g., by a Higgs in a suitable representation or radiatively. Furthermore, additional
singlets may exist, which can also be involved in the see-saw mechanism.

It is often assumed that all heavy singlet mass eigenvalues are degenerate. However, in all the models a large
hierarchy of the singlet masses is possible. Note that such a hierarchical spectrum may even show up if all elements
of the singlet mass matrix are of the same order. Democratic mass matrices, where this is the case due to discrete
symmetries, are an example. Another argument for a non-degenerate spectrum follows from assuming a neutrino
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Yukawa matrixYν which is proportional to the diagonalized charged lepton Yukawa matrixYe, i.e., the relation

Yν = cνYe ≈ cν diag
(
10−2,10−3,10−5)

holds with a constant real numbercν . If the neutrino masses are degenerate and of the order 1 eV, the see-saw
relation

κ = 4

v2
EW

Mν = 2YT
ν M−1Yν

for the neutrino mass matrixMν allows to determine the singlet mass matrixM. Mixings do not significantly alter
this picture, since, e.g., bimaximal mixing can be accomplished by small modifications of a degenerateMν of the
order 10−2 or 10−3 eV, respectively. Taking, for example,cν = 100, the mass eigenvalues ofM are of the order
107, 1011 and 1013 GeV for the case at hand. It is therefore conceivable that there may be an even larger hierarchy
in M than in the charged lepton Yukawa matrices. Altogether, there are thus good reasons to study the effects of a
non-degenerate or even hierarchical singlet mass spectrum.

In this Letter, we calculate the Renormalization Group Equations (RGEs) for the evolution of the neutrino mass
matrix from the GUT scale to the electroweak or SUSY breaking scale. We consider the case where the SM and the
MSSM are extended by an arbitrary number of heavy singlets which have explicit (Majorana) masses with a non-
degenerate spectrum. Hence, to study the RG evolution of neutrino masses several Effective Field Theories (EFTs),
with the singlets partly integrated out, have to be taken into account. Below the lowest mass threshold, the neutrino
mass matrix is given by the effective dimension 5 neutrino mass operator in the SM or MSSM, respectively. The
corresponding RGEs were derived in [2–6].

2. Effective theories from integrating out singlet neutrinos

Consider the SM or the MSSM withnG additional sterile neutrinos. The eigenvalues of the mass matrixM,
i.e., the masses of the mass eigenstates{N1

R, · · · ,NnG
R }, have a certain spectrum,M1 � M2 � · · · � MnG . We

will consider the general case that this spectrum is non-degenerate. Successively integrating out the heavy sterile
neutrinos at the thresholdsMi results in effective theories, valid in certain energy ranges as depicted in Fig. 1.

Before we calculate the RGEs in the various theories, let us specify the modifications in the Lagrangians due to
the appearance of the heavy neutrinos. In the SM above the highest mass threshold (“Full theory” in Fig. 1), the

Fig. 1. Illustration of the ranges of the different theories. The EFTs emerge from successively integrating out the heavy fields. “EFT 1”
corresponds to the SM or MSSM with additional dimension 5 mass operators for neutrino masses. “Full theory” refers to the SM or MSSM,
extended bynG gauge singlets. The meaning of the variables is explained in the text.
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kinetic and mass term as well as the Yukawa interaction for the singlet neutrinosNi
R, i ∈ {1, . . . , nG}, are added:

(1)LN =Ni
R

(
iγ µ∂µ

)
Ni

R +
(

−1

2
Ni

RMijN
Cj
R − (Yν)if N

i
Rφ̃

†�
f
L + h.c.

)
,

whereNC
R := (NR)

C is the charge conjugate ofNR. f ∈ {1, . . . , nF } are flavour indices,�fL are the SU(2)L-doublets
of leptons,φ is the Higgs doublet, and̃φ := iσ 2φ∗. Summation over repeated indices is implied throughout the
Letter. For the calculation of the RGEs, we will work in a basis in which the Majorana mass matrixM is diagonal.

In the MSSM, the additional gauge singlet Weyl spinorsνCi , which correspond to the right-handed Dirac spinors
Ni

R, and their superpartners are components of the chiral superfieldsνCi . The terms of the superpotential containing
these superfields are

(2)W(N) = 1

2
νCiMij ν

Cj + (Yν)if ν
Cih(2)a

(
εT

)ab
l
f
b + h.c.,

wherelf andh(2) are the chiral superfields that contain the leptonic SU(2)L-doublets and the Higgs doublet with
weak hypercharge+1/2. ε is the totally antisymmetric tensor in 2 dimensions, anda, b, c, d ∈ {1,2} are SU(2)
indices.

The Higgs doublet superfieldh(1) with weak hypercharge−1/2 is involved in the Yukawa couplings of the
SU(2)L-singlet superfieldseC anddC containing the charged leptons and down-type quarks, whereash(2) couples
to νC and the superfielduC containing the up-type quarks. The part of the superpotential describing the remaining
Yukawa interactions is given by

(3)WMSSM
Yuk = (Ye)gf e

Cgh(1)a εabl
f

b + (Yd)gf d
Cgh(1)a εabq

f

b + (Yu)gf u
Cgh(2)a

(
εT

)ab
q
f

b ,

whereq is the quark doublet superfield. The field content of the superfields is

(4a)lf = �̃f + √
2θ�f + θθF

f

� ,

(4b)eCg = ẽCg + √
2θeCg + θθF

g
e ,

(4c)νCj = ν̃Cj + √
2θνCj + θθF j

ν ,

(4d)qf = q̃f + √
2θqf + θθF

f
q ,

(4e)uCg = ũCg + √
2θuCg + θθF

g
u ,

(4f)dCg = d̃Cg + √
2θdCg + θθF

g
d ,

(4g)h(1) = φ(1) + √
2θφ̃(1) + θθFh(1) ,

(4h)h(2) = φ(2) + √
2θφ̃(2) + θθFh(2) .

By integrating out all singlet neutrinos of the extended SM, one obtains the dimension 5 operator that gives
Majorana masses to the light neutrinos,

(5)LSM
κ = 1

4
κgf �

C
L
g
c ε

cdφd�
f

Lbε
baφa + h.c.

The corresponding expression in the MSSM is theF -term of

(6)WMSSM
κ = −1

4
κgf l

g
c ε

cdh
(2)
d l

f
b ε

bah(2)a + h.c.

In the intermediate region between the(n − 1)th and thenth threshold, the singlets{Nn
R, . . . ,N

nG
R } or singlet

superfields{νCn, . . . , νCnG} are integrated out, leading to an effective operator of the type (5) or (6) with coupling

constant
(n)
κgf , where

(n)
κgf is identical toκgf . In this region, the Yukawa matrix for the remaining singlet neutrinos
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is a(n− 1)× nF matrix and will be referred to as
(n)

Yν ,

(7)Yν →




(Yν)1,1 · · · (Yν)1,nF
...

...

(Yν)n−1,1 · · · (Yν)n−1,nF

0 · · · 0
...

...

0 · · · 0







=:(n)Yν,




nG − n+ 1 heavy, sterile
neutrinos integrated out.

The tree-level matching condition for the effective coupling constant at the threshold corresponding to the largest

eigenvalueMn of
(n+1)
M is given by

(8)
(n)
κgf

∣∣
Mn

:= (n+1)
κgf

∣∣
Mn

+ 2
( (n+1)

Yν

T )
gn
M−1

n

( (n+1)
Yν

)
nf

∣∣∣
Mn

(no sum overn).

To determine the RGEs, we first calculate the relevant counterterms for the effective theories. We use dimensional
regularization (withd := 4 − ε dimensions) and the MS renormalization scheme. The renormalization constants

below thenth threshold are denoted by
(n)

Z , δ
(n)
κ , etc., analogous to our notation for the coupling constants.

3. Calculation of the counterterms

For the one-loop wavefunction renormalization constants
(n)

Z : = 1+δ
(n)

Z between the thresholds in the extended
SM, we find inRξ gauge for U(1)Y and SU(2)L

(9a)δ
(n)

Z�L = − 1

16π2

[
(n)

Y †
ν

(n)

Yν +Y †
e Ye + 1

2
ξBg

2
1 + 3

2
ξWg2

2

]
1

ε
,

(9b)

δ
(n)

Yφ = − 1

16π2

[
2 Tr

( (n)

Y †
ν

(n)

Yν

)
+ 2 Tr

(
Y †
e Ye

) + 6 Tr
(
Y †
uYu

) + 6 Tr
(
Y

†
d Yd

) + 1

2
(ξB − 3)g2

1

+ 3

2
(ξW − 3)g2

2

]
1

ε
,

(9c)δ
(n)

ZN = − 1

16π2

[
2
(n)

Yν
(n)

Y †
ν

]1

ε
.

For the vertex renormalization constants we obtain

(10a)δ
(n)

Yν = − 1

16π2

[
2
(n)

Yν
(
Y †
e Ye

) + 1

2
ξBg

2
1

(n)

Yν +3

2
ξWg2

2

(n)

Yν

]
1

ε
,

(10b)δ
(n)
κ = − 1

16π2

[
2
(
Y †
e Ye

)T (n)
κ +2

(n)
κ

(
Y †
e Ye

) − λ
(n)
κ + 1

2
(2ξB − 3)g2

1
(n)
κ +3

2
(2ξW − 1)g2

2
(n)
κ

]
1

ε
,

(10c)δ
(n)

M = 0,

whereλ is the scalar quartic coupling appearing in the interaction term−1
4λ(φ

†φ)2. The above quantities are
defined by the counterterms for the mass and the Yukawa vertex of the sterile neutrinos as well as the one for the
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effective vertex,

(11a)
(n)

Cmass(N)= −1

2
Ni

Rδ
(n)

MijN
Cj
R + h.c.,

(11b)
(n)

CYν= −(
δ
(n)

Yν
)
if
Ni

Rφ̃
†�

f
L + h.c.,

(11c)
(n)

Cκ= 1

4
δ
(n)
κgf �

C
L
g
c ε

cdφd�
f

Lbε
baφa + h.c.,

where the sums overi andj run from 1 ton− 1.
In the extended MSSM, only wavefunction renormalization is required except for the contributions from

the gauge boson—matter interactions. Fixing theRξ gauges and using Wess Zumino (WZ) gauge breaks
supersymmetry explicitly, and thus the non-renormalization theorem is not manifest. Hence, the counterterms for
the vertices do not vanish in general. We use the same notation for them as in the SM. The relevant diagrams for the

renormalization of the
(n)
κ -vertex are the gauge contributions similar to those of the SM, the gaugino contributions

(Fig. 2(a)–(d)) and the diagrams from theD-terms (Fig. 2(e)–(f)). The resulting wavefunction renormalization
constants are given by

(12a)δ
(n)

Z�L = − 1

16π2

[
2
(n)

Y †
ν

(n)

Yν +2Y †
e Ye + 1

2
(ξB − 1)g2

1 + 3

2
(ξW − 1)g2

2

]
1

ε
,

(12b)δ
(n)

Zφ(2) = − 1

16π2

[
2 Tr

( (n)

Y †
ν

(n)

Yν

)
+ 6 Tr

(
Y †
uYu

) + 1

2
(ξB + 1)g2

1 + 3

2
(ξW + 1)g2

2

]
1

ε
,

(12c)δ
(n)

ZN = − 1

16π2

[
4
(n)

Yν
(n)

Y †
ν

]1

ε
,

and the vertex renormalization constants are

(13a)δ
(n)

Yν = − 1

16π2

[
1

2
(ξB + 2)g2

1

(n)

Yν +3

2
(ξW + 2)g2

2

(n)

Yν

]
1

ε
,

Fig. 2. (a)–(d) are the contributions from the gauginosλA to the renormalization of the dimension 5 operator in the MSSM. (e) and (f) show
theD-term contributions. The gray arrow indicates the fermion flow as defined in [7].
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(13b)δ
(n)
κ = − 1

16π2

[
(ξB + 2)g2

1
(n)
κ +3(ξW + 2)g2

2
(n)
κ

]1

ε
,

(13c)δ
(n)

M = 0.

4. Beta-functions in the effective theories

4.1. Standard Model with additional Majorana neutrinos

Using the counterterms calculated in the previous section, we find in the SM the followingβ-functions
(n)

βκ= µ d
dµ

(n)
κgf for the effective vertex below thenth threshold:

16π2
(n)

βκ = −3

2

(
Y †
e Ye

)T (n)
κ − 3

2

(n)
κ

(
Y †
e Ye

) + 1

2

( (n)

Y †
ν

(n)

Yν

)T (n)
κ + 1

2

(n)
κ

( (n)

Y †
ν

(n)

Yν

)
+ 2 Tr

(
Y †
e Ye

)(n)
κ

(14)+ 2 Tr
( (n)

Y †
ν

(n)

Yν

)
(n)
κ + 6 Tr

(
Y †
u Yu

)(n)
κ + 6 Tr

(
Y

†
d Yd

)(n)
κ − 3g2

2
(n)
κ + λ

(n)
κ .

The method used to calculateβ-functions from counterterms in MS-like renormalization schemes for tensorial

quantities is described in [4]. For the Yukawa matrix, theβ-function
(n)

β Yν
(n > 1) is given by

16π2
(n)

β Yν
=(n)

Yν

[
3

2

( (n)

Y †
ν

(n)

Yν

)
− 3

2

(
Y †
e Ye

) + Tr
( (n)

Y †
ν

(n)

Yν

)
+ Tr

(
Y †
e Ye

) + 3 Tr
(
Y †
uYu

) + 3 Tr
(
Y

†
d Yd

)

(15)− 3

4
g2

1 − 9

4
g2

2

]
.

Calculating theβ-function for the Majorana mass matrix of the singlets yields

(16)16π2
(n)

βM=
( (n)

Yν
(n)

Y †
ν

) (n)

M +
(n)

M
( (n)

Yν
(n)

Y †
ν

)T
.

4.2. MSSM with additional singlets

In the MSSM with additional chiral superfields including sterile neutrinos, theβ-function for the effective vertex
below thenth threshold is given by

16π2
(n)

βκ = (
Y †
e Ye

)T (n)
κ + (n)

κ
(
Y †
e Ye

) +
( (n)

Y †
ν

(n)

Yν

)T (n)
κ + (n)

κ
( (n)

Y †
ν

(n)

Yν

)
+ 2 Tr

( (n)

Y †
ν

(n)

Yν

)
(n)
κ

(17)+ 6 Tr
(
Y †
u Yu

) (n)
κ −2g2

1
(n)
κ −6g2

2
(n)
κ .

For
(n)

β Yν
we obtain

(18)16π2
(n)

β Yν
=(n)

Yν

[
3
(n)

Y †
ν

(n)

Yν +Y †
e Ye + Tr

( (n)

Y †
ν

(n)

Yν

)
+ 3 Tr

(
Y †
uYu

) − g2
1 − 3g2

2

]

and theβ-function for the Majorana mass matrix of the singlets is

(19)16π2
(n)

βM= 2
( (n)

Yν
(n)

Y †
ν

) (n)

M +2
(n)

M
( (n)

Yν
(n)

Y †
ν

)T
.

Theβ-functions for the gauge couplings and for the Yukawa couplings of the quarks and charged leptons are

not listed here. We found them to be the same as in the extended SM or MSSM [8], if one substitutesYν →(n)

Yν .
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4.3. Calculation of the low-energy effective neutrino mass matrix

From the aboveβ-functions, the low-energy effective neutrino mass matrix can now be calculated as follows:
At the GUT scale, we start with the Yukawa matricesYν and the Majorana mass matrixM for the sterile neutrinos.
Using the relevant RGEs (15), (16) or (18), (19) (with the superscripts(n) omitted) together with those of the
gauge and the other Yukawa couplings, we calculate the renormalization group running ofYν ,M and the remaining
parameters of the theory.

At the first mass threshold, i.e., the largest eigenvalueMnG of M, we integrate out the heaviest sterile neutrino
and perform tree-level matching according to Eq. (8). Note that this procedure is only possible in the mass
eigenstate basis at the threshold, which is different from the original one at the GUT scale, since the RG evolution
produces non-zero off-diagonal entries inM. Therefore, the mass matrix has to be diagonalized by a unitary
transformation,M → UTMU , which leads to the redefinitionsNR → UT NR, νC → UT νC andYν → UT Yν of
the singlet neutrino fields and their Yukawa matrix.1

Integrating out the heaviest neutrino state yields an effective theory valid at mass scales belowMnG . The

effective dimension 5 operator
(nG)
κ that gives Majorana masses to the left-handed SM neutrinos appears in this

effective theory. Next,
(nG)

Yν,
(nG)
κ ,

(nG)

M , Ye etc. are evolved down to the next threshold, the largest eigenvalue of the

remaining mass matrix
(nG)

M . The RGEs that determine the running of the dimension 5 effective operator between
the thresholds are given by Eq. (14) or (17), respectively.

Again, changing to the mass eigenstate basis, integrating out the singlet neutrino corresponding to this threshold
and performing tree-level matching gives another contribution to the effective dimension 5 operator. The quantities
in this effective theory are now evolved down to the next threshold and so on. This procedure finally yields the
low-energy effective neutrino mass matrix.

4.4. Running of the mixing angle in an example with two generations

Numerical results for the RG evolution of the mixing angleθ in a generic example with two generations of
lepton doublets and two singlets are shown as solid lines in Fig. 3 for the SM and in Fig. 4 for the MSSM. Here,θ

is defined as the angle that appears in the leptonic mixing matrixV = U
†
e Uν , whereUe diagonalizesY †

e Ye andUν

diagonalizes the effective mass matrix of the active (non-sterile) neutrinos. Below the lowest threshold, the latter
is proportional to the couplingκ . In the energy region where heavy neutrinos are present, the effective Majorana

mass matrix of the non-sterile neutrinos is given by
(n)
κ +2

(n)

Y T
ν

(n)

M−1
(n)

Yν .
The transitions to the various effective theories at the mass thresholds lead to pronounced kinks in the evolution.

For comparison, the dotted and dashed lines in Figs. 3 and 4 show the results when both heavy neutrinos are
integrated out at the higher or the lower threshold, respectively. Obviously, this produces large deviations from the
true evolution, and the correct result need not even lie between the two extreme cases. Although this is only shown
for the SM in our example, the same happens in the MSSM, if suitable initial values for the Yukawa couplings are
chosen. Consequently, the correct running of the mixing angle cannot be reproduced by integrating out all heavy
neutrinos at some intermediate mass scaleMint ∈ [M1,M2] in general.

1 One could worry that the running, which spoils the diagonal structure ofM , might require a constant re-diagonalization while solving
the RGEs, since their derivations assume a diagonal mass matrix. However, this is not necessary because the RGEs are invariant under the
transformations that diagonalizeM .
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Fig. 3. RG evolution of the mixing angleθ in the extended SM with 2 generations of lepton doublets and 2 singlets. We usedMGUT = 1016 GeV
and the initial conditionsM1(MGUT) = 108 GeV, M2(MGUT) = 1012 GeV for the Majorana masses of the heavy neutrinos at this scale.
Besides, we chose the initial values of the Yukawa coupling matricesYν(MGUT) to be real with (untuned) entries between 0.025 and 1. Further
explanations are given in the text.

Fig. 4. RG evolution of the mixing angleθ in the extended MSSM with 2 generations of lepton doublets, 2 singlets and
〈φ(2)〉/〈φ(1)〉 =: tanβ = 35 as well asMSUSY ≈ MEW for simplicity. (A moderate change of the SUSY breaking scaleMSUSY does not
change the qualitative picture.) The other parameters are the same as in the SM case (cf. Fig. 3).

5. Discussion and conclusions

We have calculated the RGEs for the evolution of a see-saw neutrino mass matrix from the GUT scale to
the electroweak scale in an extension of the SM and the MSSM by an arbitrary number of gauge singlets with
Majorana masses. These masses need not be degenerate and can even have a large hierarchy, as pointed out in the
introduction. At each mass threshold, the corresponding sterile fermion is integrated out, which leads to an effective
intermediate theory and affects the RG evolution of the neutrino masses, mixing angles and CP phases. To obtain
the low-energy neutrino mass matrix from the Yukawa and Majorana mass matrices given at the GUT scale, the
RGEs for the various effective theories have to be solved. In a numerical analysis for two flavours and two singlets,
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we have found that the renormalization group evolution of the mixing angle in the case where the heavy degrees of
freedom are integrated out appropriately differs substantially from that in the case where all of them are integrated
out at a common scale. The correct running can in general not even be reproduced by integrating out all heavy
neutrinos at some intermediate mass scale. Obviously, similar effects exist for the RG evolution of all parameters
of a given theory, such as mass eigenvalues, mixings and CP phases.
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