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Abstract

We study the problem of obtaining accurately sized test statistics
in finite samples for linear regression models where the error depen-
dence is of unknown form. With an unknown dependence structure
there is traditionally a trade-off between the maximum lag over which
the correlation is estimated (the bandwidth) and the decision to intro-
duce conditional heteroskedasticity. In consequence, the correlation
at far lags is generally omitted and the resultant inflation of the em-
pirical size of test statistics has long been recognized. To allow for
correlation at far lags we study test statistics constructed under the
possibly misspecified assumption of conditional homoskedasticity. To
improve the accuracy of the test statistics, we employ the second-
order asymptotic refinement in Rothenberg (1988) to determine criti-
cal values. We find substantial size improvements resulting from the
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second-order theory across a wide range of specifications, including
substantial conditional heteroskedasticity. We also find that the size
gains result in only moderate increases in the length of the associated
confidence interval, which yields an increase in size-adjusted power.
Finally, we note that the proposed test statistics do not require that
the researcher specify the bandwidth or the kernel.

Key Words: Test size, confidence interval estimation, heteroskedasticity,
autocorrelation
Subject Classification: C1, C13, C14

1 Introduction

When forming test statistics for coefficients in linear regression models, it
has become widely accepted to use the Newey-West covariance estimator to
account for error serial correlation. The appeal of the Newey-West method
(introduced in 1987) is that it allows for conditional heteroskedasticity, al-
though at the cost of only admitting serial correlation at near lags. The
inability to account for serial correlation at far lags leads to test statistics
with empirical sizes that far exceed nominal sizes. To address this problem,
Kiefer and Vogelsang (2005) refine the asymptotic theory to more accurately
model the admission of serial correlation at far lags. As Kiefer and Vo-
gelsang show that the resultant non-Gaussian critical values increase with
the admitted lag length, the desire to accommodate both conditional het-
eroskedasticity and correlation at far lags carries its own cost of considerably
lengthening confidence intervals. In an effort to reduce this cost, we reex-
amine the relative merits of allowing for conditional heteroskedasticity and
for serial correlation at far lags. To do so, we compare the performance of
test statistics that allow for conditional heteroskedasticity with test statis-
tics constructed under the (possibly) misspecified assumption of conditional
homoskedasticity.
Driven by the desire to allow for general dependence in economic time

series, White and Domowitz (1984) develop a consistent standard error es-
timator under conditional heteroskedasticity. The key condition is that the
maximum lag over which the serial correlation is estimated, the bandwidth,
is an asymptotically negligible fraction of the sample size. Although the
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White-Domowitz estimator is consistent, it is not guaranteed to be positive
definite. In response, Newey and West demonstrate that the introduction of
a kernel that downweights correlations as the lag length grows, ensures that
the consistent standard error estimator is also positive semi-definite.
With every solution there comes another problem. While the Newey-

West estimator is consistent and positive semi-definite, the estimated stan-
dard errors are often too small. As Andrews (1991) demonstrates, if the
errors exhibit substantive temporal dependence, then test statistics formed
from the Newey-West standard error estimates have empirical size far in ex-
cess of nominal size (test statistics that reject too often). To reduce the
nominal size, Andrews and Monahan (1992) propose a two-step method, in
which the first step consists of prewhitening the residuals by fitting a low-
dimension process (such as a VAR(1)) to capture serial correlation at far
lags. In the second step, the conditional heteroskedasticity is estimated at
near lags.
Prewhitening the residuals prior to estimating conditional heteroskedas-

ticity at near lags goes part way to resolving the problem of high nominal
size. In an effort to make further improvements, Kiefer and Vogelsang
suggest forgoing the first step prewhitening and estimating the conditional
heteroskedasticity directly at both near and far lags. When including cor-
relation at far lags, it is no longer tenable to assume that the bandwidth is
an asymptotically negligible fraction of the sample size. In consequence,
the (first-order) asymptotic distribution of resultant test statistics is not
Gaussian. The alternative asymptotic distribution delivers simulated critical
values that are considerably larger than their Gaussian counterparts. If only
serial correlation at near lags is admitted, then the refined asymptotic criti-
cal values deliver size improvements in line with the improvements obtained
by prewhitening. If serial correlation at all lags is admitted (note that the
theory does not deliver an optimal bandwidth), then there are substantial
further reductions in empirical size.
A key insight in previous research is the need to account for serial cor-

relation at far lags to obtain more accurate coverage probabilities. Current
methods to account for correlation at far lags are either completely general,
as in Kiefer and Vogelsang, or specific, as in Andrews and Monahan. While
Kiefer and Vogelsang allow for conditional heteroskedasticity of unknown
form, the cost is longer confidence intervals resulting in loss of power for as-
sociated test statistics. The low-dimension parametric method of Andrews
and Monahan produces confidence intervals of more moderate length, but
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still suffers from high empirical size. It is therefore of interest to study
methods that lie between the two, to adjudge the trade-off between size and
power.
In contrast to Kiefer and Vogelsang, we propose broadening the first

step of Andrews-Monahan by fitting a high-dimension process to capture
serial correlation at all lags, while forgoing the second-step conditional het-
eroskedasticity estimation. The assumption underlying the method is that
standard errors can be well approximated by a conditionally homoskedas-
tic covariance matrix that is band diagonal. The band diagonals are not
restricted to be related through a low-dimension process. To obtain size
improvements we too rely on asymptotic refinements, namely the second-
order theory of Rothenberg (1988). The second-order theory yields critical
values that adjust to incorporate the behavior of the regressors. As Rothen-
berg establishes, the bandwidth need not be an asymptotically negligible
fraction of the sample size, so all correlation lags are included under condi-
tional homoskedasticity. Further, the estimator is positive semi-definite by
construction without need of a kernel.
We study the size and size-adjusted power of test statistics constructed

under the three methods. We focus not only on hypothesis tests of a single
parameter, but also on tests of multiple parameters to determine the impact
of off-diagonal elements of the estimated covariance matrix. In Section 2
we present the quantities of interest and the models to be simulated. The
conditional heteroskedasticity specifications allow us to investigate an ad-
ditional observation in Rothenberg: Namely, that the degree of correlation
between the regressor under test and the conditional heteroskedasticity plays
a key role in the empirical size. We examine the range of models typically
used to assess the performance of confidence intervals under conditional het-
eroskedasticity. Results from the simulations are contained in Section 3. We
provide an empirical application to the estimation techniques in Section 4.
A brief summary of developments in standard error estimation is contained
in Appendix A.

2 Covariance Estimators

To determine the finite sample size and size-adjusted power of hypothesis
tests constructed under the (potentially misspecified) assumption of condi-
tional homoskedasticity we employ a simulation model. Our simulation
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model is
Yt = X 0

tβ + Ut t = 1, . . . , n, (1)

where Xt contains a constant and four regressors (to allow for comparison
with the findings in both Andrews as well as Andrews and Monahan). Con-
ditional heteroskedasticity is introduced through a scale parameter that de-
pends equally on each of the varying regressors

Ut = |X 0
tζ| × Ũt,

where ζ =
¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢0
and

n
Ũt

o
is a sequence of possibly dependent ran-

dom variables defined below. This specification of conditional heteroskedas-
ticity is also employed by Andrews (as well as Andrews and Monahan) to
demonstrate the superior performance of estimators that incorporate con-
ditional heteroskedasticity over the more traditional parametric covariance
estimators.
The relative magnitude of conditional heteroskedasticity present in the

model is controlled through the degree of serial correlation in the regres-
sors and error. To capture serial correlation, the regressors and error are
generated for each t = 1, . . . , n (and each k = 2, . . . , 5) as

Ũt = ρU Ũt−1 + εt,

Xkt = ρXXkt−1 + ηkt.

We also consider serial correlation of limited duration, under which con-
ditional heteroskedasticity plays a correspondingly larger role, through the
moving-average specification

Ũt = εt + θUεt−1,

Xkt = ηkt + θXηkt−1.

The underlying errors, εt and ηkt, are mutually independent N (0, 1) random
variables.1 The serial correlation parameters (ρU , ρX) and (θU , θX) take
values in the set Λ = {0, .1, .3, .5, .7, .9}.
Rothenberg derives the second-order asymptotic distribution of test sta-

tistics on coefficients of a linear regression under the assumption of condi-
tional homoskedasticity. He finds (on page 1011) that as the correlation

1We set ε0 and ηk0 equal to 0 in the simulations and discard the first 50 observations
to remove any influence from initial values.
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between the regressor under test and the scale parameter increases, the in-
flation of the empirical size of the test statistics increases. To determine the
impact of this correlation, we employ a second conditional heteroskedasticity
specification in which the scale parameter depends on only one of the varying
regressors. To isolate the impact noted by Rothenberg, we consider two val-
ues for the parameter ζ, specifically ζ = (0, 1, 0, 0, 0)0 and ζ = (0, 0, 1, 0, 0)0,
while testing the hypothesis that the first varying regressor is equal to zero.2 ,3

The first specification provides the highest level of correlation between the
regressor under test and the error scale, while in the second specification the
correlation between the regressor and scale is zero.
We focus not only on hypothesis tests of a single coefficient, but also

on tests of multiple coefficients. Our hypothesis tests of multiple coeffi-
cients are designed to assess the effect of including off-diagonal elements of
the covariance matrix. To capture this effect, we consider the single re-
striction imposed by the hypothesis H0 : β2 − β3 = 0. In the multiple
coefficient tests we consider values of the heteroskedasticity parameter, ζ,
equal to

¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢0
, (0, 1, 0, 0, 0)0, and (0, 0, 0, 1, 0)0.

To construct test statistics for hypotheses concerning β, an estimator
of the (conditional) variance of the ordinary least-squares estimator, B, is
needed. The variance of the (ordinary) least-squares estimator B, condi-
tional on X = (X1, . . . , Xn)

0, is

V ar
³
n
1
2 (B − β) |X

´
=

Ã
n−1

nX
t=1

XtX
0
t

!−1
n−1

nX
s=1

nX
t=1

E (UsXsUtX
0
t|X)

Ã
n−1

nX
t=1

XtX
0
t

!−1
.

The key component for estimation is J = n−1
Pn

s=1

Pn
t=1E (UsXsUtX

0
t|X).

We consider five estimators of J. The first is the classic OLS variance
2The values of ζ have been chosen to ensure that the unconditional variance of Ut is

the same in all specifications. Andrews and Monahan also study this specification, albeit
without reference to the findings in Rothenberg.

3To see that this model brings conditional heteroskedasticity, consider the case in which
Ũt follows an MA(1) process. Then

E (UtUt−1) = E [(|X2t| εt + θU |X2t| εt−1) (|X2t−1| εt−1 + θU |X2t−1| εt−2)] ,

and the covariance conditional on X is θU |X2t| |X2t−1|.
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estimator, which is consistent if the errors are i.i.d., and is

Ĵiid =

Ã
1

n− 5
nX
t=1

Û2
t

!Ã
n−1

nX
t=1

XtX
0
t

!
,

where
n
Ût

on
t=1
is the OLS residual vector.4 The second estimator allows for

serial correlation, but no conditional heterogeneity, and is consistent under
the assumption that the error is generated by a parametric (AR(1)) process

Ĵpar =

Ã
1

n− 5
nX
t=1

Û2
t

!Ã
1

n

nX
t=1

nX
s=1

ρ̂|t−s|XtX
0
s

!
,

where ρ̂ is obtained from regression of residuals on lagged residuals. The
third estimator is the heteroskedasticity-autocorrelation consistent estimator
introduced by Newey and West

Ĵhac =
1

n− 5

"
nX
t=1

Û2
t XtX

0
t +

mX
j=1

µ
1− j

m+ 1

¶ nX
t=j+1

ÛtÛt−j
¡
XtX

0
t−j +Xt−jX 0

t

¢#
.

The value of m determines the maximum lag length at which the conditional
heteroskedasticity is estimated. As m controls the number of far lags that
enter the estimator, sample-based selection of m is very important in con-
trolling the size of test statistics. The value of the bandwidth is allowed to
vary across simulations and is chosen according to the automatic selection
procedure developed by Andrews.
We also focus on a variant of the heteroskedasticity-autocorrelation con-

sistent estimator, discussed in Andrews and Monahan. To reduce the bias
in Ĵhac, Andrews and Monahan advocate separating the variance estimation
into three steps. First, estimate the temporal correlation (at far lags) by

fitting a vector autoregression to
n
V̂t
o
(where V̂t = ÛtXt), which yields the

prewhitened residuals
n
Ṽt
o
. (In our implementation, we fit a vector au-

toregression of order 1.) Second, construct the variance estimator with the
prewhitened residuals

J̃pw =
1

n− 5

"
nX
t=1

ṼtṼ
0
t +

mX
j=1

µ
1− j

m+ 1

¶ nX
t=j+1

³
ṼtṼ

0
t−j + Ṽt−jṼ 0

t

´#
.

4We use n− 5, rather than n, as the divisor because the degrees-of-freedom calculation
is likely to be used when n = 50, as it does in the simulations.
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The last step is to recolor the estimator J̃pw to obtain the pre-whitened
variance estimator, Ĵpw, according to

Ĵpw = ĈJ̃pwĈ
0, where Ĉ =

Ã
I −

pX
s=1

Âs

!−1
.

Here,
n
Âs

op
s=1

are the estimated coefficient matrices from a pth-order vector

autoregression of Vt.5

With the reduction in correlation brought about by the first step prewhiten-
ing, there is less need to select a large value of m.6 Andrews and Monahan
find that use of the prewhitened residuals reduces the (downward) bias of
Ĵhac although the variance of Ĵpw exceeds the variance of Ĵhac. The down-
ward bias in the estimated standard errors is reduced to such an extent that,
despite a loss of precision in estimating the standard errors, the coverage
probabilities of confidence intervals are increased.
Constructing accurately sized tests with each of the above estimators of

J remains a problem. Because the parametric prewhitening in Ĵpw does
improve the size of test statistics, it may be the case that by increasing the
richness of the first step, in which temporal correlation is accounted for, it
is possible to forego the second step, in which conditional heteroskedasticity
is accounted for. Rather than assume a low-dimension parametric model
for temporal correlation, one could assume that the errors are generated by
a conditionally homoskedastic (stationary stochastic) process with nothing
further known about the autocorrelation function, under which

n−1
nX

s=1

nX
t=1

E (UsXsUtX
0
t|X) = n−1

nX
s=1

nX
t=1

δ|t−s|XsX
0
t,

where δ|t−s| = E (UsUt) depends only on |t− s|. The fourth estimator of J ,
which is consistent if the errors are conditionally homoskedastic, is

Ĵcho =
1

n− 5
nX

s=1

nX
t=1

δ̂|t−s|XsX
0
t,

5To ensure the matrix I −PsAs is not too close to singularity, we restrict the eigen-
values of

P
s Âs to be no larger than 0.97 in absolute value. See Andrews and Monahan

(1992, pg. 957) for the details.
6This estimator, which includes pre-whitening, retains many of the asymptotic proper-

ties of Ĵhac including the rate of convergence.

8



where (for t > s) δ̂|t−s| = 1
n

Pn
t=s+1 ÛtÛt−s. (If s > t, simply switch the values

of t and s in the formula.) For this estimator we present two sets of critical
values, those corresponding to the standard Gaussian limit theory and those
corresponding to the second-order asymptotic refinement in Rothenberg.7

While all of the estimators of J lead to Gaussian limit distributions in
testing situations, extensions to the asymptotic theory are available for two of
the estimators. For Ĵhac, Kiefer and Vogelsang have developed an alternative
limit theory based on the assumption that the fraction of lags that appear
in the estimator, m

n
, is not asymptotically negligible.8 The critical values

that arise from the alternative limit theory can be considerably larger than
the standard Gaussian critical values. As these critical values depend on m,
we report results for two sets of critical values. The first uses the Andrews
automatic bandwidth procedure to compute the bandwidth and the second
sets the bandwidth equal to the sample size (m = n).9

For Ĵcho, Rothenberg provides critical values based on a higher-order as-
ymptotic refinement. If cv denotes the critical value from the first-order
Gaussian approximation, then Rothenberg’s second-order theory delivers the
adjusted critical value

cvR = cv

µ
1 +

1

n
f
³
X, Û

´¶
.10

His asymptotic refinements indicate that Gaussian critical values should gen-
erally be increased (as f is generally greater than 0), although the precise
form of his covariance estimator differs slightly from Ĵcho.11 Because the
adjusted critical value is a function of

³
X, Û

´
, the adjusted critical value is

correlated with the estimated standard error. If this correlation is negative,

7Our finite-sample results are designed to guide researchers with moderate sample sizes,
in which size inflation is known to be a problem. While Ĵcho is not a consistent estimator
of J under conditional heteroskedasticity, a consistent estimator is easily obtained by
switching from Ĵcho to Ĵhac with first-order Gaussian critical values for large sample sizes
(say n > 5, 000).

8A similar limit theory is developed by Phillips, Sun and Jin (2006).
9The asymptotic theory in Kiefer and Vogelsang assumes that the bandwidth is selected

without use of the automatic procedure of Andrews.
10The precise form of f() is detailed in Appendix B.
11Rothenberg considers covariance estimators of the form 1

n−j
P

ÛtÛt−j , where j cor-
rects for the number of observations lost due to the lag length. To ensure a positive
semi-definite estimator we replace the factor 1

n−j with
1
n .
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then the critical value adjusts to the magnitude of the standard error and
lessens the length of estimated confidence intervals. Such an adjustment
feature can lead to a test statistic with large gains in size at the cost of only
small declines in size-adjusted power.

3 Simulation Results

For the simulations, we construct Yt according to (1) with β = 0. If we let
c be a 5 × 1 vector of constants that selects the parameters under test, we
construct the test statistic for the hypothesis H0 : c

0β = 0 according to

t = [c0VBc]
−1/2 ·√n c0B,

where B is the OLS estimate of β and VB is the 5 × 5 sample analog of
V ar

³
n
1
2 (B − β) |X

´
. (VB is constructed for each of the variance estimators

in Section 2.) The selected critical values are for a two-sided test with five
percent nominal size. The sample size is n = 50 in all models to allow
for direct comparison with the simulation results presented in recent papers,
such as Kiefer and Vogelsang (2005) and Phillips, Sun and Jin (2006). Each
experiment consists of 50,000 replications. While there are a variety of
statistics that can be used to assess the finite-sample performance of the
variance estimators, we follow the convention of more recent authors and
focus our attention on the finite-sample size and size-adjusted power of test
statistics.
It is well known that with any hypothesis test, there is a trade off between

size and power. Because each test employs the OLS estimator as a point
estimate, improvements in size will generally be accompanied by a corre-
sponding decrease in power. However, each test varies in either the variance
estimate, critical value, or both. Consequently, there is the possibility that
a particular estimator may display more accuracy in terms of both improved
test size and higher power against alternatives.
Similar to previous authors, we have chosen to study the performance of

test statistics where the underlying models of serial correlation are parametric
in nature. We note that this may place the Ĵhac and Ĵcho estimators at a slight
disadvantage as they do not restrict the relationship among the covariances
to a specific functional form.
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3.1 Single Parameter Tests

We first study H0 : c
0β = 0, with c = (0, 1, 0, 0, 0)0, and so test whether the

coefficient on the first non-constant regressor is significantly different from
zero. This choice of c leads to a standard error estimate generated only from
the diagonal elements of VB. In the tables that follow, the test statistics are
referenced by the covariance matrix estimator the test employs. Thus, hac
denotes the t-statistic when VB is constructed according to Ĵhac and evaluated
with standard asymptotic critical values. Critical values from asymptotic re-
finements are indicated by superscripts, so choR is the t-statistic constructed
with Ĵcho and evaluated with Rothenberg’s second-order critical values. In
similar fashion, hacKV indicates use of Ĵhac with the Kiefer-Vogelsang as-
ymptotic approximation to generate test critical values and a bandwidth
determined by the Andrews automatic selection procedure. As the Kiefer-
Vogelsang approximation allows the bandwidth to equal the sample size, we
denote this statistic as hacKV n.12

Table 1 reports the finite-sample empirical size of each test statistic when
the AR(1) errors are overlaid with multiplicative heteroskedasticity entering
from all four non-constant regressors, i.e. ζ = (0, 1

2
, 1
2
, 1
2
, 1
2
)0.13 As with

previous authors, we find that the traditional hac test performs quite poorly
in terms of test size, especially when the dependence in the data is strong.
Indeed, when ρX = ρU = 0.9, the hac test rejects the null hypothesis 38% of
the time. This is quite unsettling considering the applied researcher will be
making inference based on a nominal size of 5%.
As the test statistics all employ the same point estimate in the numerator,

improvements in test size will be achieved by either increasing the standard
error in the denominator or widening the test critical values. In column 2,
we see that prewhitening residuals reduces test size by inflating the estimated
standard errors, although over rejection of the null remains a problem. In
the ρX = ρU = 0.9 case, the empirical size drops to 0.32, a 16% size gain.
However, attempting to remove correlation at far lags by prewhitening when
serial correlation in the data is weak can inflate test size even more than
using the HAC estimator, which can be seen by comparing columns 1 and 2
when either ρX or ρU is less than 0.3. Column 3 shows that use of the Kiefer-
Vogelsang asymptotic refinements reduces size inflation by widening the test

12Empirical sizes for tests constructed using Ĵiid and Ĵpar are presented in Appendix C.
13As the serial correlation in the regressor mirrors the serial correlation in the error in

each simulation model, the regressors are AR(1) in Table 1.
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Table 1: Empirical Size - Heteroskedastic AR(1) Errors - ζ =
¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢
(1) (2) (3) (4) (5) (6)

ρX ρU hac pw hacKV hacKV n cho choR

0.9

0.9
0.7
0.5
0.3
0.1
0.0

0.3808
0.2834
0.2126
0.1655
0.1310
0.1213

0.3235
0.2351
0.1803
0.1501
0.1308
0.1254

0.3171
0.2327
0.1766
0.1391
0.1088
0.0987

0.2332
0.1686
0.1322
0.1102
0.0934
0.0892

0.3192
0.2371
0.1941
0.1668
0.1479
0.1403

0.2367
0.1641
0.1306
0.1076
0.0906
0.0809

0.7

0.9
0.7
0.5
0.3
0.1
0.0

0.2859
0.2352
0.1933
0.1554
0.1327
0.1209

0.2460
0.2025
0.1726
0.1469
0.1332
0.1260

0.2393
0.1970
0.1645
0.1324
0.1108
0.1007

0.1680
0.1414
0.1217
0.1034
0.0903
0.0886

0.2481
0.2087
0.1844
0.1591
0.1440
0.1345

0.1854
0.1508
0.1326
0.1136
0.1018
0.0929

0.5

0.9
0.7
0.5
0.3
0.1
0.0

0.2108
0.1836
0.1621
0.1407
0.1226
0.1159

0.1880
0.1669
0.1519
0.1382
0.1275
0.1244

0.1745
0.1557
0.1385
0.1214
0.1054
0.0994

0.1208
0.1080
0.1019
0.0927
0.0831
0.0819

0.1948
0.1711
0.1569
0.1434
0.1342
0.1285

0.1493
0.1295
0.1204
0.1077
0.1008
0.0963

0.3

0.9
0.7
0.5
0.3
0.1
0.0

0.1592
0.1473
0.1367
0.1239
0.1167
0.1142

0.1492
0.1419
0.1353
0.1277
0.1232
0.1240

0.1355
0.1261
0.1194
0.1080
0.1024
0.0996

0.0949
0.0924
0.0871
0.0819
0.0793
0.0783

0.1579
0.1471
0.1409
0.1281
0.1282
0.1237

0.1273
0.1153
0.1100
0.0994
0.0996
0.0967

0.1

0.9
0.7
0.5
0.3
0.1
0.0

0.1215
0.1187
0.1199
0.1138
0.1091
0.1094

0.1244
0.1236
0.1277
0.1227
0.1180
0.1186

0.1046
0.1024
0.1047
0.0995
0.0957
0.0954

0.0749
0.0777
0.0796
0.0758
0.0745
0.0736

0.1295
0.1285
0.1289
0.1239
0.1189
0.1195

0.1073
0.1036
0.1031
0.0997
0.0937
0.0945

0.0

0.9
0.7
0.5
0.3
0.1
0.0

0.1105
0.1087
0.1089
0.1069
0.1078
0.1059

0.1190
0.1181
0.1191
0.1178
0.1196
0.1172

0.0948
0.0941
0.0949
0.0945
0.0947
0.0925

0.0719
0.0728
0.0745
0.0747
0.0759
0.0729

0.1225
0.1225
0.1203
0.1181
0.1200
0.1190

0.1011
0.0995
0.0958
0.0949
0.0947
0.0939
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critical values. The new limit theory leads to critical values that typically
take on (absolute) values in the range of 2.0 to 4.81, depending on the chosen
bandwidth for the HAC estimator. When the bandwidth is chosen according
to the Andrews procedure, the size gains offered by the Kiefer-Vogelsang
asymptotics are slightly larger than those achieved by prewhitening, but are
typically comparable when the serial correlation is strong.
Similar to prewhitening, we find that Ĵcho delivers larger standard errors

that improve the finite-sample size of the resulting test statistics, and similar
to the Kiefer-Vogelsang asymptotics, we find that the second-order critical
value refinement of Rothenberg further improves test size by increasing the
critical values. Columns 5 and 6 of Table 1 present the empirical size of test
statistics when Ĵcho is used in conjunction with either standard normal critical
values or the second-order critical values of Rothenberg, respectively. Even
under misspecification, the choR test delivers more substantial size reductions
than both the pw and hacKV tests. For ρX = ρU = 0.9, the empirical size
of the choR test is 0.24. While the actual size remains significantly larger
than the 5% nominal level, the choR test reduces size inflation by more than
a third of the level of the hac test. Moreover, the improved accuracy of
the choR test over the more conventional HAC tests continues to hold for
very low levels of serial correlation. For ρX = ρU = 0.1, the second-order
adjusted, homoskedastic estimator improves test size accuracy relative to the
Newey-West estimator by about 14%, or a drop in raw size from 0.1091 to
0.0937.14

Recall that for a fixed value of ρX , the heteroskedastic component of the
error becomes more pronounced as ρU decreases. That the conditionally ho-
moskedastic estimator retains an advantage in test size is quite remarkable.
The favorable performance of choR is due primarily to the adaptability of the
critical value to the data generating process. The second-order theory for
Ĵcho delivers critical values that, while typically larger than their Gaussian
counterparts, adjust with the regressors and residuals in such a way that
the critical value increases when the estimated standard error is small and
decreases when the estimated standard error is large. This negative correla-
tion between the standard error and critical value serves as a hedge in cases

14As the table makes clear, the conditionally homoskedastic variance estimator can only
be recommended in conjunction with Rothenberg’s second-order critical value adjustment
when the data is heteroskedastic. While the cho test has better size than the hac test if
the serial correlation is high, it rarely exhibits smaller size than the pw or hacKV tests,
and often performs more poorly than the par and iid tests.
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Table 2: Performance of Rothenberg’s second-order-adjusted
critical value under heteroskedasticity

ρX = 0.9 (1) (2) (3)

ρU Mean V ariance Corr. with
√
c0VBc

0.9 2.37 0.04 -0.15
0.7 2.34 0.04 -0.22
0.5 2.32 0.05 -0.27
0.3 2.32 0.05 -0.32
0.1 2.33 0.08 -0.34
0.0 2.34 0.08 -0.37

where over-rejections of the null are most likely to occur. As can be seen
from column 5 of Table 1, Ĵcho is indeed influenced by the heteroskedastic-
ity as the cho test performs more poorly than the hac test when ρU drops
below 0.3. However, when the Ĵcho estimator is used in conjunction with
the second-order critical values, the choR test retains a size advantage over
the hac and pw tests for all values of ρX and ρU , and a size advantage over
hacKV for all but the smallest values of ρX and ρU .

15

Table 2 reports the mean and variance of the second-order critical value
as well as its correlation with the estimated standard error when ρX is fixed
at 0.9. While the mean of the critical value remains relatively constant
as ρU decreases, the variation increases and the negative correlation with
the estimated standard error becomes more pronounced. This critical value
adjustment feature is the reason the conditionally homoskedastic estimator
is able to maintain size improvements over the hac, hacKV , and pw tests as
the heteroskedasticity becomes more pronounced.
It is important to note that the asymptotic theory put forth by Kiefer and

Vogelsang does not restrict the bandwidth to be small relative to the sample
size in order for the testing procedure to be valid. When the bandwidth is
set equal to the sample size, the considerable downward bias of the Newey-
West estimator is offset by an adjusted critical value of 4.81, which is almost
two and a half times the critical value of the standard normal distribution.
15Intuition would suggest that for a fixed value of ρU the performance of the cho and

choR tests should deteriorate as ρX increases. However, ρX also adds to the overall
pattern of serial correlation in the regressors as well as the errors. For this reason, the
cho and choR tests show size gains over other HAC tests when ρU is large, even when ρX
is large.

14



In comparison, the average critical value for the hacKV test (as selected by
the Andrews method) ranges from 2.04 when the temporal dependence is
low to 2.26 when the dependence is high, and the average critical value for
the choR test ranges from 2.11 when the dependence is low to 2.37 when the
dependence is high. Column 4 in Table 1 shows that for more moderate
levels of dependence, further reductions in test size are achieved with the
Kiefer-Vogelsang critical values if the bandwidth is fixed and equal to the
sample size, though the improvements are small. However, such drastic
inflation of the critical value is sure to decrease the probability of rejecting
the hypothesis for all values of β, and the slight size improvements of the
hacKV n test prove to be extremely costly in terms of test power.
Figure 1 plots the upper half of the size-adjusted power functions for

the test statistics under the AR(1) specification presented in Table 1 when
ρX = ρU . While size adjustment is not possible in actual testing situations,
it is a useful measure in comparing the power of tests that do not have the
same finite-sample size. We compute the size-adjusted power as the fraction
of test rejections that arise when the true value of β2 is different from 0.
Specifically, we set β = ψ× (0, 1, 0, 0, 0)0 where ψ is chosen as a set of eleven,
equally spaced points from zero to some upper bound for which the estimated
power for all tests is roughly one.16 We simulate the power of test statistics
using 10,000 replications for each value of ψ. The size-adjusted critical values
are also computed via simulation methods using 50,000 replications. As each
estimator gives rise to only one finite-sample distribution, the size-adjusted
critical values and size-adjusted power curves for the hac and hacKV tests
are equivalent (as are those for the cho and choR tests).
The most striking feature of Figure 1 is the extent to which the power

of the hacKV n test lags the power of the other tests. When β2 = 2.4 and
the serial correlation parameters are equal to 0.9, the power of the hac test
is 0.72, while the power of the choR test is 0.70. Recall the empirical sizes
of the two tests were 0.38 and 0.24, respectively, indicating a 37% reduction
in size is achieved with approximately a 3% decrease in power. However,
the power of the hacKV n test falls to 0.59 while the empirical size is 0.23.
We see that the slight additional improvement in the size of the hacKV n test
comes at the cost of reducing the power by 16%. It is also clear from this
figure that the choR test provides size-adjusted power which is quite similar

16For example, if the upper bound is set at 6, then the distance between each element
of ψ is 6

10 , and ψ = {0, .6, 1.2, 1.8, . . . , 6} .
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Figure 1: Heteroskedastic AR(1) Regressors and Errors
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to both the hac and pw tests, although there is some crossing.
In general, the power functions for other values of ρX and ρU are similar

in shape and relative performance to those presented in Figure 1.17 The
HAC, pre-whitened, and conditionally homoskedastic estimators give rise to
tests with very similar power, while the hacKV n test exhibits power that is
substantially lower across the range of alternatives.
Table 1 and Figure 1 illustrate that the performance of the hacKV test de-

pends heavily upon the choice of bandwidth in the estimation of the standard
error. Andrews (among others) has also documented the ties between test
performance and other user-choice parameters (including bandwidth, weight-
ing kernel, and prewhitening model) for the hac and pw tests. For this rea-
son, Andrews and others have developed data-driven "optimal" bandwidth
selection procedures in an attempt to make the process more automatic. The
Kiefer-Vogelsang asymptotics incorporate the choice of bandwidth directly
into the testing problem by allowing the critical values to adjust with the
bandwidth, effectively eliminating the need for the practitioner to find an
"optimal" bandwidth. In practice, however, the researcher must still chose
a bandwidth, and different choices may give rise to very different inferences
on the parameter under test.18

To illustrate the problem that bandwidth selection could cause, Table 3
shows the probability that the hacKV test rejects the null hypothesis for at
least one bandwidth in a given replication. That is, for any given replication,
we constructed a test statistic and critical value pair for each value of the
bandwidth between 5 and m = n = 50.19 If the null hypothesis was rejected
for one or more of the test statistic/critical value pairs, the entire trial was
considered as if it rejected the null hypothesis. We then repeated the process
50,000 times and found the fraction of replications which produced at least
one rejection. The sizes of the hacKV test in Table 3 are comparable in

17Note that the range of values along the β2 axis differs for alternative values of the
serial correlation parameters. All test are showing substantial increases in power as the
correlation in the data falls.
18There is no data-dependent method of choosing an "optimal" bandwidth for the hacKV

test. Phillips, Sun and Jin propose a data dependent rule for their test that minimizes
a weighted sum of type I and type II errors, which Kiefer and Vogelsang conjecture can
be extended to their test. However, in place of selecting the bandwidth, the researcher is
now left to choose the proper weights for the type I and II errors.
19To ensure the estimator accurately accounts for the serial correlation, we impose a

minimum bandwidth of 5. Clearly, allowing for bandwidths less than 5 will further inflate
the rejection probabilities.
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Table 3: Probability the hacKV test rejects the null
hypothesis for at least one value of the bandwidth

AR(1) regressors and errors — ζ =
¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢
ρX

ρU 0.9 0.7 0.5 0.3 0.1 0.0

0.9 0.3662 0.2788 0.2164 0.1724 0.1442 0.1336
0.7 0.2776 0.2310 0.2020 0.1654 0.1418 0.1300
0.5 0.2258 0.2030 0.1756 0.1482 0.1454 0.1256
0.3 0.1916 0.1752 0.1620 0.1448 0.1342 0.1174
0.1 0.1766 0.1542 0.1478 0.1344 0.1380 0.1284
0.0 0.1468 0.1458 0.1362 0.1250 0.1328 0.1412

magnitude to the sizes of the traditional hac test in column 1 of Table 1.
Clearly, the failure to properly account for the pre-test estimation of the
bandwidth results in further size inflation and negates the advantages of the
hacKV test over the more traditional tests.
The problem of nuisance parameters in the testing process highlights an

important advantage of Ĵcho over other estimators. First, Ĵcho estimates the
correlation at all lags, eliminating the necessity of choosing a particular band-
width. Second, there is no weighting kernel or prewhitening filter involved in
the estimation. And third, while the second-order critical value adjustment
isn’t trivial, it is completely data dependent and requires no choices by the
user in implementation.
While the choR test performs favorably under the specification in Table

1 when compared to more traditional tests commonly used in the literature,
it is also important to evaluate the test under varying degrees of serial cor-
relation and heteroskedasticity.20 In Table 4, we present the finite-sample
empirical size when the data generating process for the regressors and errors
is MA(1). Once again, we set ζ =

¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢0
so that the conditional

heteroskedasticity enters multiplicatively through all four non-constant re-
gressors. In this case, the temporal dependence is of limited duration and
the heteroskedasticity plays a correspondingly larger role in the distribution
of the errors than in the AR(1) specification. Consequently, one may expect

20Not surprisingly, when the errors truely are homoskedastic, the choR test outperforms
all other robust tests in terms of finite-sample empirical size, as it exploits the homogeneity
in the data. These results can be found in the Appendix C.
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Table 4: Empirical Size - Heteroskedastic MA(1) Errors - ζ =
¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢
(1) (2) (3) (4) (5) (6)

θX θU hac pw hacKV hacKV n cho choR

0.9

0.9
0.7
0.5
0.3
0.1
0.0

0.1514
0.1533
0.1465
0.1371
0.1260
0.1201

0.1373
0.1425
0.1377
0.1348
0.1305
0.1259

0.1285
0.1311
0.1257
0.1174
0.1074
0.1017

0.0936
0.0947
0.0921
0.0880
0.0860
0.0824

0.1451
0.1448
0.1439
0.1383
0.1345
0.1307

0.1096
0.1115
0.1087
0.1041
0.0994
0.0965

0.7

0.9
0.7
0.5
0.3
0.1
0.0

0.1508
0.1487
0.1444
0.1342
0.1211
0.1163

0.1394
0.1389
0.1374
0.1325
0.1262
0.1239

0.1285
0.1273
0.1240
0.1160
0.1040
0.1000

0.0930
0.0939
0.0907
0.0871
0.0817
0.0785

0.1474
0.1447
0.1422
0.1398
0.1312
0.1269

0.1138
0.1115
0.1082
0.1049
0.0979
0.0943

0.5

0.9
0.7
0.5
0.3
0.1
0.0

0.1427
0.1410
0.1337
0.1285
0.1228
0.1143

0.1361
0.1342
0.1311
0.1300
0.1285
0.1233

0.1234
0.1215
0.1149
0.1120
0.1060
0.0990

0.0897
0.0882
0.0870
0.0860
0.0834
0.0772

0.1410
0.1403
0.1363
0.1318
0.1301
0.1259

0.1089
0.1089
0.1045
0.1005
0.0998
0.0955

0.3

0.9
0.7
0.5
0.3
0.1
0.0

0.1306
0.1277
0.1274
0.1226
0.1156
0.1105

0.1306
0.1287
0.1289
0.1271
0.1233
0.1204

0.1125
0.1113
0.1113
0.1070
0.1003
0.0963

0.0827
0.0846
0.0823
0.0817
0.0766
0.0754

0.1340
0.1314
0.1316
0.1304
0.1238
0.1206

0.1044
0.1031
0.1029
0.1021
0.0965
0.0945

0.1

0.9
0.7
0.5
0.3
0.1
0.0

0.1162
0.1165
0.1154
0.1118
0.1120
0.1093

0.1242
0.1244
0.1228
0.1212
0.1225
0.1200

0.1015
0.1020
0.1007
0.0969
0.0988
0.0953

0.0753
0.0770
0.0759
0.0750
0.0763
0.0747

0.1248
0.1250
0.1248
0.1205
0.1217
0.1207

0.1002
0.0997
0.0992
0.0954
0.0956
0.0948

0.0

0.9
0.7
0.5
0.3
0.1
0.0

0.1085
0.1076
0.1080
0.1058
0.1096
0.1101

0.1196
0.1187
0.1201
0.1178
0.1193
0.1206

0.0948
0.0940
0.0937
0.0926
0.0955
0.0961

0.0738
0.0736
0.0729
0.0721
0.0730
0.0741

0.1197
0.1214
0.1194
0.1169
0.1192
0.1208

0.0964
0.0959
0.0956
0.0928
0.0949
0.0964
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the choR test to be disadvantaged relative to more traditional tests since it
neglects to model this heterogeneity. However, we find that the choR test
enjoys advantages similar to the AR(1) case.
Table 4 shows that while the testing problem becomes easier across all

estimators (i.e. the finite-sample size is nearer the 5% nominal level for
all tests), the relative performance of the tests in the AR(1) specification
remains intact in the MA(1) specification. The prewhitened estimator shows
improvement over the traditional HAC estimator, and the Kiefer-Vogelsang
critical values offer even further improvement in size. When θX = θU = 0.9,
the hac, pw, and hacKV tests have size of 0.15, 0.14, and 0.13, respectively.
In comparison, the choR test still offers even greater improvements with a
size of 0.11, or a 27% gain in test accuracy over the traditional Newey-West
estimator. While the size gains are slightly smaller when the correlation is
of limited duration, they are still substantial.
Figure 2 shows the size-adjusted power of the test statistics under the

MA(1) specification when θX = θU . The results, as compared to the AR(1)
model, remain largely unchanged as the hac, pw, and choR tests all show
similar power, and the hacKV n test shows significantly less power against
alternatives.
Another way to alter the degree of heteroskedasticity in the data is to

adjust the impact of individual regressors on the error scale. Recall that the
error term is generated according to

Ut = |X 0
tζ| × Ũt.

Rather than set ζ = (0, 1
2
, 1
2
, 1
2
, 1
2
)0, as in the previous specifications, we now

set ζ = (0, 1, 0, 0, 0)0 and allow the heteroskedasticity to arise from scaling the
homoskedastic error term, Ũt, by the absolute value of the first non-constant
regressor. As we are testing the hypothesis H0 : β2 = 0, it may matter
whether the heteroskedasticity is brought about by the first non-constant
regressor or some other regressor in the model. For this reason, we also
report the empirical size when the error is scaled by the absolute value of the
second non-constant regressor, ζ = (0, 0, 1, 0, 0)0.
Panel A of Table 5 shows the empirical size of tests when the heterogeneity

arrises from the first non-constant regressor where, for brevity, we report only
the case where ρU = ρX . While the choR test performs comparably to the
other robust tests when the amount of serial correlation is high, it no longer
exhibits a size advantage, and it becomes progressively disadvantaged as the
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Figure 2: Heteroskedastic MA(1) Regressors and Errors
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Table 5: Empirical Size - Heteroskedastic AR(1) Errors

(1) (2) (3) (4) (5) (6)
ρX = ρU hac pw hacKV hacKV n cho choR

Panel A: ζ = (0, 1, 0, 0, 0)0

0.9
0.7
0.5
0.3
0.1
0.0

0.4452
0.2672
0.1834
0.1417
0.1271
0.1244

0.3959
0.2313
0.1708
0.1440
0.1369
0.1335

0.3820
0.2287
0.1609
0.1253
0.1123
0.1108

0.2781
0.1625
0.1142
0.0935
0.0839
0.0829

0.4851
0.3748
0.3169
0.2791
0.2697
0.2945

0.4023
0.3090
0.2674
0.2399
0.2321
0.2312

Panel B: ζ = (0, 0, 1, 0, 0)0

0.9
0.7
0.5
0.3
0.1
0.0

0.3191
0.1925
0.1319
0.0994
0.0886
0.0866

0.2561
0.1632
0.1234
0.1049
0.0988
0.0978

0.2566
0.1580
0.1104
0.0844
0.0761
0.0748

0.1883
0.1120
0.0822
0.0672
0.0610
0.0624

0.2136
0.1168
0.0824
0.0670
0.0606
0.0607

0.1402
0.0756
0.0559
0.0473
0.0439
0.0439

values of ρU and ρX fall toward zero. However, when testing the coefficient
on the second non-constant regressor, the results change dramatically. Panel
B reports the empirical size of the two-sided t-tests when ζ = (0, 0, 1, 0, 0)0

and the heteroskedasticity arises from a regressor other than the regressor
under test. In this case, the choR test offers a considerable size advantage
over all other tests, even as the values of ρX and ρU approach zero. In fact,
as the serial correlation parameters fall to zero, the size of the choR test falls
below the 5% nominal level.
This table would appear to confirm the observation in Rothenberg that

the degree of correlation between the regressor under test and the error vari-
ance has a substantial impact on inflating the empirical size of test statistics.
While this is true for all tests under examination, the size distortion is es-
pecially pronounced for choR. It is also of note that the sizes of the tests
presented in Panel B are closer to their nominal level than the corresponding
sizes of the homoskedastic model presented in Table C3 in Appendix C. In
practice, the form in which the heteroskedasticity enters the model appears
to be of considerable importance when performing tests of hypotheses.
Table 6 reports similar results for the conditionally heteroskedastic, MA(1)
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Table 6: Empirical Size - Heteroskedastic MA(1) Errors

(1) (2) (3) (4) (5) (6)
θX = θU hac pw hacKV hacKV n cho choR

Panel A: ζ = (0, 1, 0, 0, 0)0

0.9
0.7
0.5
0.3
0.1
0.0

0.1711
0.1636
0.1560
0.1401
0.1257
0.1236

0.1552
0.1511
0.1491
0.1427
0.1353
0.1339

0.1487
0.1428
0.1368
0.1247
0.1118
0.1098

0.1092
0.1016
0.0997
0.0910
0.0836
0.0833

0.3012
0.2969
0.2931
0.2784
0.2646
0.2646

0.2554
0.2524
0.2498
0.2403
0.2309
0.2295

Panel B: ζ = (0, 0, 1, 0, 0)0

0.9
0.7
0.5
0.3
0.1
0.0

0.1237
0.1213
0.1125
0.0997
0.0896
0.0877

0.1129
0.1132
0.1108
0.1057
0.0994
0.0978

0.1023
0.1004
0.0951
0.0847
0.0761
0.0752

0.0747
0.0753
0.0713
0.0665
0.0605
0.0621

0.0768
0.0755
0.0721
0.0661
0.0613
0.0603

0.0529
0.0528
0.0501
0.0478
0.0438
0.0433

model. Once again, there appears to be little change in the conclusions from
the AR(1) specification. The choR test performs rather poorly when the er-
ror is scaled by the regressor under test, but nearly achieves the 5% nominal
size when the error is scaled by the second non-constant regressor.
Figures 3 and 4 plot the corresponding size-adjusted power curves for the

AR(1) process with ρX = ρU when ζ = (0, 1, 0, 0, 0)0 and ζ = (0, 0, 1, 0, 0)0,
respectively. Likewise, Figures 5 and 6 plot the MA(1) power curves. Once
again, we see choR performs comparably to hac and hacKV in terms of size-
adjusted power, and all three outperform hacKV n by a considerable margin.

3.2 Multiple Parameter Tests

We now briefly turn our attention to testing hypotheses that involve multi-
ple parameters. These multi-parameter tests incorporate at least one off-
diagonal element of VB in computing the standard error. Specifically, we
examine the performance of tests under the null hypothesis H0 : β2−β3 = 0
(or H0 : c

0β = 0 for c = (0, 1,−1, 0, 0)0) for each of the heteroskedastic speci-
fications listed above. Tables 7 and 8 report the finite sample size for these
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Figure 3: Heteroskedastic AR(1) Regressors and Errors
ζ = (0, 1, 0, 0, 0)0 — H0 : β2 = 0
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Figure 5: Heteroskedastic MA(1) Regressors and Errors
ζ = (0, 1, 0, 0, 0)0 — H0 : β2 = 0
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Figure 6: Heteroskedastic MA(1) Regressors and Errors
ζ = (0, 0, 1, 0, 0)0 − H0 : β2 = 0
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multi-dimension tests for the AR(1) and MA(1) specifications, respectively.
Again, we report only the results from setting ρU = ρX (θU = θX).
In testing the hypothesis β2−β3 = 0, the choR test provides the best em-

pirical size under all heteroskedasticity specifications and under all degrees
of dependence, excepting the case where ζ = (0, 1, 0, 0, 0)0. The size advan-
tage of the choR tests in the first and third heteroskedasticity specifications
is quite large for both the AR(1) and MA(1) models. The empirical size of
the choR test is cut by more than half the level of the traditional estimators,
and it even exhibits better size than the hacKV n test. In both cases, the
empirical size approaches the nominal size rather quickly as the serial corre-
lation decreases. When the heteroskedasticity enters solely from the one of
the regressors under test, the choR test is not as disadvantaged as in previous
specifications, but still cannot be given a strong recommendation.
Last, note that in the model under study, the testing problem is made

easier by the introduction of the second parameter to the hypothesis. Com-
paring the relevant rows of Tables 7 and 8 to the corresponding rows in
previous tables where ρU = ρX , we see that the empirical sizes of these tests
are lower than the sizes of the single dimension tests across the full range of
estimators. The same is also true for the MA(1) models as well as for values
of ρU 6= ρX . The size-adjusted power functions for these multi-parameter
tests follow the same patterns as the power functions of previous tests. The
power figures for the AR(1) models can be found in Appendix C.
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Table 7: Empirical Size of Multi-Dimension Tests - Het. AR(1) Errors

H0 : β2 − β3 = 0

(1) (2) (3) (4) (5) (6)
ρX = ρU hac pw hacKV hacKV n cho choR

Panel A: ζ =
¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢0
0.9
0.7
0.5
0.3
0.1
0.0

0.3220
0.1930
0.1324
0.1016
0.0902
0.0840

0.2589
0.1628
0.1252
0.1066
0.0993
0.0950

0.2560
0.1561
0.1109
0.0859
0.0771
0.0712

0.1858
0.1111
0.0837
0.0675
0.0632
0.0583

0.2118
0.1157
0.0835
0.0668
0.0621
0.0593

0.1389
0.0723
0.0576
0.0474
0.0461
0.0425

Panel B: ζ = (0, 1, 0, 0, 0)0

0.9
0.7
0.5
0.3
0.1
0.0

0.4185
0.2513
0.1723
0.1346
0.1213
0.1181

0.3653
0.2184
0.1620
0.1372
0.1307
0.1293

0.3544
0.2142
0.1505
0.1168
0.1064
0.1043

0.2600
0.1514
0.1073
0.0882
0.0803
0.0793

0.3951
0.2768
0.2185
0.1899
0.1752
0.1772

0.3091
0.2142
0.1739
0.1549
0.1465
0.1458

Panel C: ζ = (0, 0, 0, 1, 0)0

0.9
0.7
0.5
0.3
0.1
0.0

0.3209
0.1883
0.1356
0.1026
0.0885
0.0887

0.2545
0.1589
0.1258
0.1073
0.0976
0.0986

0.2540
0.1519
0.1134
0.0883
0.0751
0.0765

0.1862
0.1098
0.0812
0.0721
0.0643
0.0636

0.2133
0.1163
0.0837
0.0678
0.0624
0.0635

0.1388
0.0753
0.0572
0.0482
0.0446
0.0463
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Table 8: Empirical Size of Multi-Dimension Tests - Het. MA(1) Errors

H0 : β2 − β3 = 0

(1) (2) (3) (4) (5) (6)
θX = θU hac pw hacKV hacKV n cho choR

Panel A: ζ =
¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢0
0.9
0.7
0.5
0.3
0.1
0.0

0.1250
0.1157
0.1102
0.0996
0.0870
0.0873

0.1134
0.1080
0.1084
0.1055
0.0988
0.0967

0.1021
0.0952
0.0928
0.0844
0.0750
0.0744

0.0765
0.0705
0.0701
0.0668
0.0634
0.0597

0.0762
0.0724
0.0700
0.0662
0.0612
0.0588

0.0524
0.0499
0.0486
0.0468
0.0448
0.0430

Panel B: ζ = (0, 1, 0, 0, 0)0

0.9
0.7
0.5
0.3
0.1
0.0

0.1624
0.1605
0.1463
0.1316
0.1188
0.1168

0.1481
0.1495
0.1419
0.1353
0.1294
0.1269

0.1396
0.1384
0.1283
0.1172
0.1048
0.1037

0.1021
0.1000
0.0939
0.0863
0.0803
0.0795

0.2048
0.2048
0.1970
0.1856
0.1954
0.1739

0.1653
0.1650
0.1610
0.1516
0.1448
0.1444

Panel C: ζ = (0, 0, 0, 1, 0)0

0.9
0.7
0.5
0.3
0.1
0.0

0.1244
0.1219
0.1097
0.0972
0.0884
0.0846

0.1137
0.1128
0.1089
0.1023
0.0990
0.0956

0.1023
0.1011
0.0920
0.0829
0.0766
0.0730

0.0759
0.0756
0.0704
0.0647
0.0628
0.0596

0.0762
0.0754
0.0693
0.0643
0.0619
0.0580

0.0525
0.0519
0.0487
0.0451
0.0444
0.0427

4 Empirical Application

To understand the impact of our proposed standard error estimator on ap-
plied research, we revisit Lustig and Verdelhan (2007) who use the Newey-
West standard error estimator in their study of foreign currency risk premia.
Lustig and Verdelhan propose that the excess returns of foreign currency
markets can be partially explained as a premium on aggregate consumption
growth risk in U.S. markets. The premium arises because returns from high
interest rate countries tend to be low when (U.S. aggregate) consumption
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growth is low. Conversely, the assets of the low interest rate countries neg-
atively covary with consumption growth and so can serve as a hedge against
U.S. aggregate consumption growth risk.
To verify their proposition, Lustig and Verdelhan study a panel of coun-

tries from which they first assign each country to one of eight currency portfo-
lios. The portfolios, which are formed by sorting on the short-term risk-free
interest rate of the country, are rebalanced every period so that the countries
with the lowest interest rates are in the first portfolio and countries with the
highest interest rates are in the eighth portfolio. With annual data from
1953-2002 they estimate the covariances, which underpin their analysis, be-
tween excess currency returns and the growth rate of consumption. For each
of the portfolios estimates are obtained from regressions of the form

Rt+1 = α+ βft + Ut,

where Rt+1 is the annual excess return on the portfolio and ft is the growth of
consumption in the previous year. Separate regressions are run for durable
and nondurable consumption.
The estimates β along with various estimates of their standard errors are

reported in Tables 9 and 10. Table 9 presents the results for the entire 50
year sample while Table 10 reports the results from the 32 year subsample
after the demise of Brenton-Woods in 1971. The first row of Panel A (Panel
B) reports estimates of the slope coefficients when the nondurable (durable)
consumption growth factor is used as the regressor. These estimates replicate
the results that are found in Table 6 of Lustig and Verdelhan. As can
be seen, the consumption risk is generally increasing in the interest rate,
with a difference in consumption betas of the first and seventh portfolios of
about 100 basis points for the full sample, and 150 basis points for the post
Brenton-Woods era. The remaining rows report the estimated standard
errors and critical values which are used to test hypotheses on the regression
coefficients. Numbers in braces are estimated standard errors. Numbers in
italics represent alternative critical values which can be used in the hypothesis
tests. The * represents significance at the 5% level.
When the Newey-West estimator is used to estimate the standard errors,

only two portfolios exhibit risk parameters that are significantly different
than zero when the entire 50 year sample is used. The excess currency returns
are positively correlated with nondurable consumption growth in the second
portfolio and positively correlated with durable consumption growth in the
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seventh portfolio. However, hypothesis rejection varies depending on which
standard error estimator is employed. For example, for the second portfolio
in Panel A of Table 9, the hac, hacKV , and pw tests all reject the hypothesis
that β2c is equal to zero. The hac

KV test rejects the hypothesis even though
the test critical value has increased from 1.96 to 2.0794. However, the
hacKV n, cho, and choR tests fail to reject the hypothesis. The hacKV n test
uses a standard error estimate that is almost half the size of the traditional
Newey-West and prewhitened Newey-West estimates, but the critical value
is too large to produce a rejection at a value of 4.813. On the other hand,
the cho and choR tests use more moderate critical values, but the estimated
standard errors are almost twice as large as the Newey-West standard errors.
For the seventh portfolio in Panel B, the cho and choR tests also produce
rejections in addition to the hac, hacKV , and pw tests. The critical values
of the hacKV n test are once again too large to reject the hypothesis.
The amount of heteroskedasticity in these two models may help to ex-

plain the porformance of the standard error estimate in the cho and choR

tests. We test the null hypothesis of homoskedasticiy using the White het-
eroskedasticity test, running regressions of the squared OLS residuals from
each model on a constant, the factor, and the factor squared. For portfolio
2 in Panel A, the χ2 test statistic with two degrees of freedom gives a test
statistic of 1.229 and a p-value of 0.541. The lack of heteroskedasticity in
this model may indicate that the standard error estimate in the cho and
choR tests provide the best approximation to the true standard error and the
hac, hacKV , and pw tests may falsely reject the null. On the other hand,
the White test of the seventh portfolio in Panel B produces a χ2 statistic
of 4.697 with a p-value of 0.096 indicating that substantial heteroskedastic-
ity may be present. However, the standard error estimate of cho and choR

tests, though slightly larger, are in line with the standard errors from the
heteroskedasticity consistent tests.
When the sample size is shortened to the post Brenton-Woods era, none

of the nondurable consumption growth betas are significantly different from
zero. However, the durable consumption growth betas of portfolios 3, 4, and
7 are significantly different from zero in at least one of the tests. The hac
and hacKV tests reject the null hypothesis for all three portfolios. The pw
and cho tests reject for the fourth and seventh portfolios, and the hacKV n

test rejects for the third and seventh portfolios. When using the Rothenberg
second-order critical value adjustment, the choR test fails to reject the null
hypothesis at the 5% level for any of the portfolios.
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Table 9 - Estimation of Factor Betas for Eight Portfolios Sorted on Interest Rates (1953-2002)

Portfolios

Estimate Crit. Val. 1 2 3 4 5 6 7 8

Panel A: Nondurables
βjc 0.1047 0.7615 0.2635 0.1820 0.6342 0.2605 1.1005 0.0855

hac 1.96 [0.5393] [0.3559]* [0.6878] [1.1620] [0.5460] [0.8281] [0.7742] [1.1328]
cvKV 2.0794 2.0794* 2.0797 2.0196 2.0794 2.0794 2.0196 2.0794

pw 1.96 [0.6127] [0.3479]* [0.8065] [1.2876] [0.5981] [0.9320] [0.8653] [1.2124]
hacKV n 4.813 [0.2390] [0.1879] [0.1919] [0.5543] [0.1943] [0.2908] [0.3531] [0.4178]
cho 1.96 [0.6434] [0.6571] [0.6763] [0.7677] [0.6961] [0.7752] [0.7869] [1.4216]

cvR 2.0120 2.0666 2.0241 2.0352 2.0015 2.0476 2.0468 1.9809

Panel B: Durables
βjd 0.2396 0.4889 0.6365 0.8916 0.5501 0.6948 1.2983 0.6753

hac 1.96 [0.4817] [0.3301] [0.4340] [0.6264] [0.5544] [0.6126] [0.5464]* [0.6057]
cvKV 2.0794 2.0794 2.0794 2.0794 2.0794 2.0196 2.0794* 2.1395

pw 1.96 [0.5678] [0.3374] [0.5302] [0.7037] [0.6237] [0.6745] [0.5270]* [0.6275]
hacKV n 4.813 [0.2682] [0.1816] [0.3245] [0.5612] [0.3168] [0.3647] [0.4318] [0.2432]
cho 1.96 [0.5532] [0.4862] [0.5124] [0.7154] [0.6250] [0.6374] [0.6387]* [0.9867]

cvR 1.9924 2.1345 2.0155 2.0091 1.9789 2.0647 2.0140* 2.1577
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Table 10 - Estimation of Factor Betas for Eight Portfolios Sorted on Interest Rates (1971-2002)

Portfolios

Estimate Crit. Val. 1 2 3 4 5 6 7 8

Panel A: Nondurables
βjc 0.0050 0.8962 0.3586 0.6646 0.6979 0.3191 1.5461 -0.4612

hac 1.96 [0.6575] [0.5050] [0.8875] [1.3994] [0.6270] [1.0852] [0.9876] [1.2458]
cvKV 2.1471 2.1471 2.1471 2.0532 2.1471 2.0532 2.0532 2.2416

pw 1.96 [0.7378] [0.5122] [1.0504] [1.5284] [0.6926] [1.1484] [1.0389] [1.5223]
hacKV n 4.813 [0.3251] [0.3590] [0.3049] [0.5569] [0.2401] [0.4036] [0.4236] [0.4495]
cho 1.96 [0.8913] [0.7158] [0.9462] [1.1022] [0.9247] [1.0683] [1.1270] [1.7593]

cvR 2.1118 2.0951 2.0759 2.0373 2.1608 2.0957 2.0854 2.0004

Panel B: Durables
βjd 0.5367 0.7857 1.2881 2.0321 1.2249 1.3590 2.1827 0.8447

hac 1.96 [0.7177] [0.5437] [0.5503]* [0.7371]* [0.7453] [0.9185] [0.7997]* [0.8608]
cvKV 2.1471 2.1471 2.1471* 2.0532* 2.1471 2.0532 2.0532* 2.2416

pw 1.96 [0.8108] [0.5796] [0.6712] [0.7762]* [0.8125] [0.9431] [0.7532]* [0.8516]
hacKV n 4.813 [0.5759] [0.4333] [0.2016]* [0.4434] [0.4511] [0.4013] [0.3185]* [0.4286]
cho 1.96 [0.8597] [0.7086] [0.8178] [0.9615]* [0.8409] [0.9694] [1.0425]* [1.5109]

cvR 2.2717 2.2636 2.2417 2.2678 2.3921 2.2654 2.2422 2.2476

TheWhite heteroskedasticity tests for the third, fourth, and seventh port-
folios in Panel B of Table 10 produce χ2 test statistics of 1.613, 3.242, and
8.310, with p-values of 0.446, 0.198, and 0.016, respectively. There appears
to be little evidence of heteroskedasticity for portfolio 3, slight evidence of
heteroskedasticity in portfolio 4, and substancial evidence of heteroskedas-
ticity in portfolio 7.

5 Conclusion

The simulation results of this paper suggest that when sample sizes are small,
modeling the heterogeneity of a process is secondary to accounting for de-
pendence. We find that a conditionally homoskedastic covariance matrix
estimator (when used in conjunction with Rothenberg’s second-order critical
value adjustment) improves test size with only a minimal loss in test power,
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even when the data manifest significant amounts of heteroskedasticity. In
some specifications, the size inflation was cut by nearly 40% over the tradi-
tional HAC test. Much of this size gain can be attributed to the manner
in which the second-order theory adjusts the critical value according to the
degree of correlation found in the data. Strong dependence usually leads to
estimated standard errors which are too small, resulting in tests which reject
the null hypothesis too often. Rothenberg’s second-order critical value re-
finements serve to dampen this effect by producing larger critical values when
standard errors are small, and more moderate critical values when standard
errors are large.
In addition to improved small-sample test size, the conditionally ho-

moskedastic estimator offers improvements over traditional HAC estimators
in both computational ease and testing continuity. While the second-order
critical value calculation is slightly complicated, the process is completely
data dependent, and requires no user choices in implementation. Conversely,
traditional HAC estimators require the user to specify a weighting kernel,
prewhitening filter, and a bandwidth selection procedure, which previous au-
thors have shown can have a significant impact on the performance of the
estimator.
To be sure, the conditionally homoskedastic covariance estimator does not

perform the best under all heteroskedastic conditions. As noted by Rothen-
berg, statistical inference is especially problematic when the error variance
is highly correlated with the regressor of interest. Care must be taken when
heteroskedasticity is caused primarily by the regressor whose coefficient is
under test. However, the adjusted critical values and estimator that we
propose deliver a testing procedure with substantial gains in controlling size,
at little cost in power.
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6 Appendix A

Accurate estimation of V ar
³
n
1
2 (B − β) |X

´
hinges on accurate estimation

of n−1
Pn

s=1

Pn
t=1E (UsXsUtX

0
t|X). To describe the estimation problem

let Vt = (Yt −X 0
tβ)Xt and V̂t = (Yt −X 0

tB)Xt. The average conditional
autocovariance at lag j is

Γn (j) =
1

n

nX
t=j+1

E
¡
VtV

0
t−j|X

¢
,

and n−1
Pn

s=1

Pn
t=1E (UsXsUtX

0
t|X) is equivalently expressed as

Jn = Γn (0) +
n−1X
j=1

¡
Γn (j) + Γn (j)

0¢ .
The issue of lag truncation arises immediately. If one simply replaces
the latent errors, which form Γn (j), with estimated residuals, which form
Γ̂n (j) = n−1

Pn
t=j+1 V̂tV̂

0
t−j, then the resulting sum is identically zero. To

obtain a non-zero estimator, White and Domowitz truncate the autocovari-
ance summation at m < n − 1. They establish (for a class of models that
includes linear regression) that if m is allowed to grow with n, but more

slowly than n
1
4 (m = o

³
n
1
4

´
), then replacing latent errors with estimated

residuals yields a consistent estimator of V ar
³
n
1
2 (B − β) |X

´
.21

Unfortunately, the truncation of the sum proposed by White and Do-
mowitz does not always yield a positive semi-definite estimator of the co-
variance matrix. The introduction of a weight function, or kernel, yields an
estimator that is positive semi-definite. Newey and West show that, with
the (modified) Bartlett kernel, the estimator

Ĵn = Γ̂n (0) +
mX
j=1

µ
1− j

m+ 1

¶³
Γ̂n (j) + Γ̂n (j)

0
´

is positive semi-definite. That simply downweighting autocovariances at far
lags ensures positive semi-definiteness may not be intuitive. The key insight

21White and Domowitz report thatm = o(n
1
3 ). The corrected rate is reported in Newey

and West.
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is that

s0Ĵns = γ (0) + 2
mX
j=1

w (j,m) γn (j) ,

where the scalar quantity γn (j) =
1
n

Pn
t=j+1

³
s0V̂t

´³
s0V̂t−j

´
corresponds to

the elements of the symmetric (m+ 1)-dimensional matrix P = [pij] (with
γn (|i− j|) = pij). As P is positive semi-definite by construction (McLeod
and Jimenez 1984), if there exists a vector v such that s0Ĵns = v0Pv, then Ĵn
is positive semi-definite as well. The required condition linking the kernel
and v is

w (j,m) =

"
m−jX
i=0

v (i,m) v (i+ j,m)

#
/

"
mX
i=0

v (i,m)2
#
. (2)

For the Bartlett kernel w (j,m) = 1 − ¡ j
m+1

¢
and, with v = ι/

√
m+ 1 for

ι the (m+ 1) vector of ones, (2) is satisfied for all m. For the truncated
kernel, there is no vector v for which (2) is satisfied for all m.
How rapidly m grows with n affects the rate of convergence of Ĵn. For

the Bartlett kernel, the convergence is most rapid if m is proportional to
n
1
3 , in which case the rate of convergence of Ĵn is also n

1
3 . Although this

relatively rapid rate of growth for m violates the conditions for consistency
derived by Newey and West, Andrews establishes that Ĵn is consistent (that

is, Ĵn− Jn
p→ 0) if m = o

³
n
1
2

´
.22 To provide guidance regarding the choice

of m in finite samples, Andrews derives the asymptotic (truncated) MSE of
Ĵn. As the asymptotic MSE depends upon the unknown serial correlation
structure of Vt, selection of m to minimize the asymptotic MSE requires an
estimator of this correlation structure. To implement the method, Andrews
suggests approximating the correlation structure by estimating an AR(1) for
each element of Vt.
Andrews shows that the asymptotic MSE can be reduced further by se-

lecting a kernel that assigns non-zero weight to all lags (the quadratic-spectral
kernel), hence m is termed a smoothing parameter (and need not be integer
valued). Even though the quadratic-spectral kernel does not satisfy (2),
the resulting covariance estimator is positive semi-definite because the kernel
yields a non-negative spectral density estimator (for a univariate time series).

22Indeed, under strict conditions Andrews establishes that Ĵn is consistent if m = o (n).
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Selection of a kernel that minimizes the asymptotic MSE of the estimator
of Jn may not result in test statistics with optimal performance. While the
quadratic-spectral kernel yields a smaller MSE than the Bartlett kernel in
simulations, due in large measure to smaller bias, both of these covariance
estimators produce coverage probabilities for estimated confidence intervals
that are lower than the nominal confidence levels. Indeed, no clear consensus
has emerged regarding the optimal kernel for constructing test statistics on
the elements of β.
One clear insight that has emerged is the importance of selecting m. Of

particular importance is to allow the potential contributions of far lags, which
mirrors the suggested use of the quadratic-spectral kernel that admits all lags.
With larger values of m, the number of allowable lags in the Bartlett kernel
becomes such a large fraction of the sample size that the asymptotic theory
based on m growing slowly relative to n may not deliver an accurate finite
sample approximation. To address the issue, Kiefer and Vogelsang derive
asymptotic theory for Ĵn under the assumption that m

n
= b with b ∈ (0, 1].23

As could be inferred from Andrews, Ĵn is inconsistent if m grows at the same
rate as n (m = O (n)).24 However, test statistics for β (such as t and F
statistics) remain asymptotically pivotal and their limit distributions can be
calculated. Further, as the distributions depend both upon the kernel and
b, asymptotic local power can be used to determine an optimal choice of
bandwidth and kernel.
Kiefer and Vogelsang show that the limit distribution of a t statistic

for a single element of β is QKV (b)
− 1
2 · N (0, 1), where QKV (b) is a scalar

random variable with moments that depend on both the kernel and b. As
the expected value of QKV (b) (for the Bartlett kernel) is less than 1 for all
considered values of b, the presence of QKV (b) in the limit distribution tends
to increase the dispersion of the t statistic. Although the mean and vari-
ance of QKV (b) can be represented analytically, there is no general analytic
expression for the limit distribution. Instead the critical values are obtained
by simulation, which for the Bartlett kernel and a 5 percent nominal size,

23Even if b = 1, the resultant estimator is not identically zero because of the weights
w (j,m).
24If m = O (n), then Ĵn converges to a random quantity. For b = 1, the expected

value of this quantity is only 1
3 of the asymptotic covariance matrix, which motivates why

standard errors constructed from Ĵn tend to be too small.
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Kiefer and Vogelsang calculate as

1.96 + 2.97b+ .42b2 − .53b3.

The critical values increase rapidly with b, for b = .5 the critical value is 3.48
while for b = 1 the critical value is 4.82. (The increase in critical values
is even more pronounced for the quadratic-spectral kernel.) These critical
values provide confidence interval coverage probabilities that are closer to
their nominal levels over a wide range of bandwidth parameters, though slight
over rejections still persist in finite samples. Unfortunately, the improved
coverage probability comes at the expense of lengthening the interval, and
therefore reduces the power of the test considerably.
Allowing m to grow at the same rate as n is only one way to account for

the contributions of far lags. Phillips, Sun and Jin (2006) alter the kernel,
rather than the rate of growth of m, and study

Ĵn (ρ) = Γ̂n (0) +
mX
j=1

µ
1− j

m+ 1

¶ρ ³
Γ̂n (j) + Γ̂n (j)

0
´

where ρ ≥ 1. Clearly, ρ = 1 returns the Bartlett kernel and Ĵn (1) = Ĵn. For
larger values of ρ, the weights decline more steeply and the kernel is termed
the steep-origin kernel. The presence of ρ implies that one can establish that
Ĵn (ρ) is consistent even ifm = O (n) by allowing ρ to grow at an appropriate
rate with n. In consequence, m is set equal to n in studying the properties
of Ĵn (ρ). Phillips, Sun and Jin establish that Ĵn (ρ) is consistent if ρ grows

more slowly than n/ ln(n) (ρ = o
³

n
ln(n)

´
). The convergence is most rapid if

ρ is proportional to n
2
3 , in which case the rate of convergence for Ĵn (ρ) is n

1
3

in parallel with the earlier results of Andrews.
If the value of ρ is fixed independently of n, then Phillips, Sun and Jin

show that Ĵn (ρ) converges to a random quantity. The limit distribution of a
t statistic for a single element of β is QP (ρ)

− 1
2 ·N (0, 1) where the moments

of QP depend on ρ. For the case ρ = 1 the asymptotic critical value is
again 4.82 and these values decline as ρ increases (for ρ = 16 the critical
value is 2.32). In terms of (size-adjusted) power, simulations conducted by
Phillips, Sun and Jin show surprisingly few gains for Ĵn (ρ) over a traditional
estimator (Ĵn (1) withm determined by the data rule proposed by Andrews).
For the case of ρ = 16, there are power gains for n = 50.
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7 Appendix B

CALCULATION OF SECOND-ORDER CRITICAL VALUES

We are interested in testing the single restriction hypothesis H0 : c
0β =

c0β0. Under the assumption of conditional homoskedasticity, we form the
test statistic

tcho =
c0
√
n (B − β0)h

c0 (n−1X 0X)−1 Ĵcho (n−1X 0X)−1 c
i1/2 .

Using Edgeworth expansions, Rothenberg shows that the second-order ad-
justed critical value of this test statistic, defined as Pr

¡
tcho > cvRα

¢
= α, can

be expressed as

cvRα = Zα

Ã
1 +

1
4
(1 + Z2α) V̂W − â (Z2α − 1)− b̂

2n

!
where Zα is the corresponding α critical value from the standard normal
distribution. The formula for V̂W comes from rewriting the test statistic tcho
as

tcho =
Tcho³

1 + W√
n

´1/2 .
Here, Tcho is the test statistic formed using the true value of Jcho, and by
definition,

Tcho =
c0 (B − β0)£

c0 (X 0X)−1 Jcho (X 0X)−1 c
¤1/2

and

W =
√
n
c0 (X 0X)−1

³
nĴcho − Jcho

´
(X 0X)−1 c

c0 (X 0X)−1 Jcho (X 0X)−1 c
.

If the regression errors are known to be conditionally homoskedastic and
stationary with unknown autocovariances, Rothenberg (pg. 1006) derives
the specific form of W as well as its variance. The estimator of the variance
of W is

V̂W =
2 k( j rj δ̂j+k)

2

( k rk δ̂k)
2 ,

k = − (n− 1) , . . . , 0, . . . (n− 1)
j = − (n− 1) , . . . , 0, . . . (n− 1)
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where δ̂j is the jth sample autocovariance as defined in section 2 and

rj = n−1
Pn−|j|

t=1 xtxt+|j| j = − (n− 1) , . . . , 0, . . . , n− 1

with xt = nX (X 0X)−1 c.
The parameters â and b̂ are defined as

â =

P
k rkr̄kP
k rkδ̂k

and b̂ =

P
k rkq̄kkP
k rkδ̂k

, k = − (n− 1) , ..., (n− 1)

where r̄k = (n− k)−1
P

t ẑtẑt+k, and

q̄kk = trace
h
(X 0X)−1 (X 0X−k) (X 0X)−1

³
nĴcho

´i
−2× trace

h
(X 0X)−1X 0∆̂X−k

i
.

In the equation for r̄k, ẑt is defined as the tth element of the n× 1 vector

ẑ =
M∆̂xp
n−1x0∆̂x

whereM is the n×n matrix In−X (X 0X)−1X 0, and ∆̂ is the n×n estimated
covariance matrix for U with (s, t) element equal to δ̂|s−t|. The lagged cross
product matricesX 0X−k andX 0∆̂X−k are formed by summing over the n−|k|
common observations.

8 Appendix C
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Table C1: Empirical Size of iid and par - Heteroskedastic Errors - ζ =
¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢
AR(1) MA(1)

ρX/θX ρU/θU iid par iid par

0.9

0.9
0.7
0.5
0.3
0.1
0.0

0.4422
0.3171
0.2220
0.1531
0.1010
0.0822

0.3002
0.2056
0.1547
0.1270
0.1092
0.1024

0.1760
0.1735
0.1632
0.1457
0.1233
0.1102

0.1412
0.1418
0.1385
0.1321
0.1292
0.1265

0.7

0.9
0.7
0.5
0.3
0.1
0.0

0.3464
0.2765
0.2146
0.1602
0.1192
0.0991

0.2441
0.1959
0.1677
0.1412
0.1251
0.1155

0.1762
0.1699
0.1619
0.1459
0.1211
0.1087

0.1446
0.1410
0.1383
0.1340
0.1261
0.1226

0.5

0.9
0.7
0.5
0.3
0.1
0.0

0.2596
0.2188
0.1820
0.1487
0.1215
0.1079

0.1955
0.1676
0.1509
0.1348
0.1250
0.1197

0.1636
0.1595
0.1507
0.1365
0.1209
0.1121

0.1380
0.1365
0.1322
0.1275
0.1244
0.1204

0.3

0.9
0.7
0.5
0.3
0.1
0.0

0.1876
0.1710
0.1544
0.1326
0.1203
0.1136

0.1565
0.1439
0.1363
0.1238
0.1209
0.1188

0.1454
0.1432
0.1401
0.1324
0.1183
0.1109

0.1292
0.1285
0.1285
0.1259
0.1192
0.1160

0.1

0.9
0.7
0.5
0.3
0.1
0.0

0.1342
0.1305
0.1285
0.1226
0.1134
0.1128

0.1283
0.1249
0.1245
0.1207
0.1134
0.1142

0.1261
0.1255
0.1244
0.1179
0.1174
0.1136

0.1222
0.1215
0.1212
0.1159
0.1178
0.1151

0.0

0.9
0.7
0.5
0.3
0.1
0.0

0.1157
0.1155
0.1143
0.1126
0.1140
0.1127

0.1199
0.1202
0.1169
0.1143
0.1153
0.1135

0.1142
0.1157
0.1135
0.1115
0.1128
0.1150

0.1169
0.1189
0.1150
0.1124
0.1135
0.1151
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Table C2: Empirical Size of iid and par - Heteroskedastic Errors

AR(1) MA(1)
ρX = ρU
θX = θU iid par iid par

Panel A: ζ = (0, 1, 0, 0, 0)0 − H0 : β2 = 0

0.9
0.7
0.5
0.3
0.1
0.0

0.5919
0.4412
0.3436
0.2801
0.2608
0.2550

0.4642
0.3567
0.3047
0.2697
0.2612
0.2556

0.3358
0.3248
0.3083
0.2790
0.2559
0.2541

0.2929
0.2876
0.2841
0.2696
0.2559
0.2539

Panel B: ζ = (0, 0, 1, 0, 0)0 − H0 : β2 = 0

0.9
0.7
0.5
0.3
0.1
0.0

0.3337
0.1720
0.0995
0.0681
0.0564
0.0555

0.1945
0.1084
0.0779
0.0628
0.0569
0.0562

0.0984
0.0937
0.0821
0.0675
0.0577
0.0566

0.0746
0.0733
0.0691
0.0636
0.0578
0.0566

Panel C: ζ =
¡
0, 1

2
, 1
2
, 1
2
, 1
2

¢0 − H0 : β2 − β3 = 0

0.9
0.7
0.5
0.3
0.1
0.0

0.3365
0.1717
0.1017
0.0698
0.0583
0.0550

0.1915
0.1083
0.0788
0.0639
0.0584
0.0555

0.0987
0.0902
0.0805
0.0689
0.0572
0.0556

0.0744
0.0696
0.0680
0.0637
0.0572
0.0556

Panel D: ζ = (0, 1, 0, 0, 0)0 − H0 : β2 − β3 = 0

0.9
0.7
0.5
0.3
0.1
0.0

0.5167
0.3488
0.2456
0.1933
0.1699
0.1686

0.3754
0.2623
0.2089
0.1837
0.1700
0.1698

0.2393
0.2341
0.2132
0.1876
0.1672
0.1661

0.2006
0.1998
0.1920
0.1791
0.1678
0.1669

Panel E: ζ = (0, 0, 0, 1, 0)0 − H0 : β2 − β3 = 0

0.9
0.7
0.5
0.3
0.1
0.0

0.3360
0.1734
0.1059
0.0698
0.0586
0.0598

0.1932
0.1095
0.0811
0.0632
0.0590
0.0597

0.0988
0.0941
0.0794
0.0668
0.0580
0.0538

0.0737
0.0730
0.0665
0.0625
0.0583
0.0544
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Table C3: Empirical Size - Homoskedastic AR(1) Errors

(1) (2) (3) (4) (5) (6) (7) (8)
ρX ρU iid par hac pw hacKV hacKV n cho choR

0.9

0.9
0.7
0.5
0.3
0.1
0.0

0.4229
0.2957
0.1973
0.1273
0.0763
0.0570

0.2428
0.1598
0.1210
0.0954
0.0812
0.0740

0.3746
0.2772
0.2104
0.1596
0.1262
0.1120

0.3006
0.2182
0.1716
0.1403
0.1221
0.1151

0.3019
0.2241
0.1743
0.1354
0.1088
0.0947

0.2304
0.1708
0.1350
0.1132
0.0955
0.0884

0.2537
0.1860
0.1498
0.1280
0.1128
0.1041

0.1695
0.1175
0.0951
0.0769
0.0647
0.0558

0.7

0.9
0.7
0.5
0.3
0.1
0.0

0.3106
0.2272
0.1630
0.1102
0.0713
0.0540

0.1623
0.1224
0.1015
0.0847
0.0732
0.0670

0.2779
0.2218
0.1811
0.1439
0.1155
0.1028

0.2203
0.1771
0.1520
0.1305
0.1158
0.1079

0.2194
0.1782
0.1509
0.1232
0.0984
0.0871

0.1589
0.1309
0.1124
0.0959
0.0840
0.0771

0.1557
0.1296
0.1146
0.0989
0.0860
0.0795

0.0985
0.0828
0.0738
0.0635
0.0538
0.0506

0.5

0.9
0.7
0.5
0.3
0.1
0.0

0.2087
0.1659
0.1261
0.0945
0.0668
0.0544

0.1135
0.0982
0.0850
0.0747
0.0661
0.0618

0.2012
0.1765
0.1502
0.1267
0.1081
0.0963

0.1638
0.1469
0.1329
0.1179
0.1101
0.1032

0.1586
0.1420
0.1253
0.1077
0.0922
0.0832

0.1133
0.1034
0.0932
0.0814
0.0762
0.0691

0.1006
0.0971
0.0880
0.0806
0.0728
0.0669

0.0711
0.0661
0.0595
0.0546
0.0491
0.0458

0.3

0.9
0.7
0.5
0.3
0.1
0.0

0.1351
0.1150
0.0963
0.0781
0.0630
0.0569

0.0874
0.0811
0.0719
0.0663
0.0612
0.0597

0.1521
0.1400
0.1268
0.1138
0.1025
0.0973

0.1285
0.1242
0.1193
0.1136
0.1077
0.1041

0.1220
0.1159
0.1069
0.0976
0.0890
0.0844

0.0880
0.0867
0.0807
0.0757
0.0715
0.0682

0.0722
0.0777
0.0726
0.0693
0.0647
0.0643

0.0591
0.0566
0.0521
0.0494
0.0461
0.0459

0.1

0.9
0.7
0.5
0.3
0.1
0.0

0.0761
0.0719
0.0682
0.0639
0.0583
0.0564

0.0697
0.0663
0.0638
0.0613
0.0577
0.0571

0.1083
0.1068
0.1040
0.0997
0.0955
0.0942

0.1018
0.1042
0.1069
0.1061
0.1039
0.1026

0.0899
0.0891
0.0885
0.0859
0.0833
0.0818

0.0671
0.0719
0.0711
0.0675
0.0656
0.0656

0.0531
0.0613
0.0635
0.0623
0.0607
0.0601

0.0507
0.0474
0.0477
0.0455
0.0445
0.0431

0.0

0.9
0.7
0.5
0.3
0.1
0.0

0.0575
0.0560
0.0563
0.0570
0.0569
0.0559

0.0649
0.0608
0.0596
0.0584
0.0580
0.0560

0.0925
0.0937
0.0931
0.0929
0.0945
0.0930

0.0928
0.0974
0.0986
0.0999
0.1035
0.1010

0.0769
0.0781
0.0791
0.0801
0.0821
0.0802

0.0618
0.0639
0.0647
0.0666
0.0663
0.0651

0.0463
0.0561
0.0586
0.0591
0.0601
0.0593

0.0465
0.0445
0.0434
0.0440
0.0441
0.0434
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Table C4: Empirical Size - Homoskedastic MA(1) Errors

(1) (2) (3) (4) (5) (6) (7) (8)
ρX ρU iid par hac pw hacKV hacKV n cho choR

0.9

0.9
0.7
0.5
0.3
0.1
0.0

0.1193
0.1168
0.1064
0.0903
0.0693
0.0571

0.0789
0.0773
0.0748
0.0724
0.0690
0.0669

0.1386
0.1350
0.1309
0.1236
0.1095
0.1032

0.1168
0.1158
0.1165
0.1168
0.1110
0.1084

0.1135
0.1112
0.1103
0.1061
0.0935
0.0880

0.0838
0.0803
0.0827
0.0800
0.0739
0.0727

0.0781
0.0773
0.0757
0.0748
0.0737
0.0711

0.0533
0.0525
0.0521
0.0519
0.0484
0.0471

0.7

0.9
0.7
0.5
0.3
0.1
0.0

0.1138
0.1096
0.1030
0.0884
0.0665
0.0554

0.0764
0.0750
0.0734
0.0722
0.0658
0.0638

0.1347
0.1330
0.1294
0.1206
0.1072
0.0996

0.1164
0.1150
0.1168
0.1147
0.1096
0.1055

0.1106
0.1106
0.1091
0.1035
0.0918
0.0850

0.0819
0.0810
0.0811
0.0788
0.0729
0.0705

0.0750
0.0750
0.0746
0.0744
0.0692
0.0668

0.0523
0.0531
0.0509
0.0511
0.0470
0.0450

0.5

0.9
0.7
0.5
0.3
0.1
0.0

0.1055
0.1008
0.0974
0.0849
0.0649
0.0562

0.0743
0.0732
0.0727
0.0695
0.0644
0.0622

0.1294
0.1271
0.1261
0.1170
0.1054
0.0992

0.1164
0.1133
0.1167
0.1136
0.1090
0.1053

0.1077
0.1058
0.1067
0.0990
0.0900
0.0850

0.0808
0.0783
0.0795
0.0753
0.0724
0.0682

0.0739
0.0733
0.0741
0.0712
0.0679
0.0649

0.0526
0.0518
0.0510
0.0504
0.0466
0.0457

0.3

0.9
0.7
0.5
0.3
0.1
0.0

0.0907
0.0873
0.0820
0.0742
0.0630
0.0559

0.0722
0.0687
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Figure 7: Heteroskedastic AR(1) Regressors and Errors
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Figure 8: Heteroskedastic AR(1) Regressors and Errors
ζ = (0, 1, 0, 0, 0)0 − H0 : β2 − β3 = 0
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Figure 10: Heteroskedastic AR(1) Regressors and Errors
ζ = (0, 0, 0, 1, 0)0 − H0 : β2 − β3 = 0
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