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Nonlinear Triad Interactions and the Mechanism of Spreading in Drift-Wave Turbulence
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We present the results of a derivation of the fluctuation energy transport matrix for the two-field
Hasegawa-Wakatani model of drift wave turbulence. The energy transport matrix is derived from a two-
scale direct interaction approximation assuming weak turbulence. We examine different classes of triad
interactions and show that radially extended eddies, as occurs in penetrative convection, are the most
effective in turbulence spreading. We show that in the near-adiabatic limit internal energy spreads faster
than the kinetic energy. Previous theories of spreading results are discussed in the context of weak
turbulence theory.
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Turbulence spreading or radial transport of turbulence
energy occurs because inhomogeneous turbulence generi-
cally tends to relax its intensity gradients and to entrain
laminar or more weakly turbulent regions, which may be
marginal or damped locally (i.e., regions which do not
access external free energy sources directly). This causes
spreading of turbulence from regions that are strongly
driven (i.e., unstable regions) into regions which are locally
damped or only weakly driven. Although the modeling of
turbulence spreading in terms of intensity dependent ‘‘eddy
diffusion’’ is an element of virtually every K-� type model
of fully developed turbulence, there is no corresponding
model of turbulence spreading for ‘‘wave turbulence’’ in
inhomogeneous, anisotropic media, such as magnetic fu-
sion energy (MFE) plasmas. In MFE plasmas, which are
relatively weakly turbulent, spreading occurs via linear or
nonlinear mode couplings, i.e., toroidal coupling or wave
interaction. Although the study of turbulence spreading in
magnetically confined plasmas have started in the literature
with a theoretical investigation [1], the interest in the
subject is motivated by many observations of turbulent
fluctuations in locally stable or damped regions of both
simulations [2,3] and physical experiment [4].

Moreover, turbulence spreading is generally related to
transport barrier back transitions and has recently been
recognized [5–8] as an important issue in anomalous
transport. It has also been linked to the breaking of gyro-
Bohm scaling [9–11] in transport theory. Nevertheless, the
study of nonlinear interactions in an inhomogenous me-
dium in a general sense is not new. It is studied previously
in the context of Langmuir waves [12], where the dynamics
of mean flow and turbulence are represented by the equa-
tions of ideal hydrodynamics. More recently, a bivariate
Burger’s equation (also in qualitative agreement with ideal
hydrodynamic hypothesis) was introduced for the nonper-
turbative dynamics of inhomogenous turbulence [13,14]. It

is also noteworthy that a model of coherent three-wave
coupling in an inhomogenous media was previously con-
sidered in order to explain the laser pellet irradiation
problem [15].

Nonetheless, the current understanding of the funda-
mental dynamics of turbulence spreading as a result of
nonlocal, nonlinear mode couplings is far from being
satisfactory. In particular, the relation between the mecha-
nisms of spreading and those of nonlinear wave interaction
processes in drift wave turbulence is not well understood.
Interactions involving zonal flows (i.e., qy � 0, qk ! 0
modes) are especially perplexing in this context, and the
subject of some controversy.

In this work, we elucidate the dynamics of turbulence
spreading in weak, wave turbulence, and present a model
of the process in terms of resonant three-wave interactions.
We examine three major classes of triad interactions:
‘‘equilateral‘‘ triads of general orientation (couplings be-
tween three drift waves of comparable scale), isosceles
triads when one of the legs is a long wavelength, low k
convective cell (i.e., couplings between two drift waves
and a hydrodynamic perturbation) and study two subcases
of the latter, namely, the case where the short leg of the
triad interaction is a zonal flow (i.e., qy � 0, qk ! 0 qx �

0), and the case when it is a streamer (i.e., qx � 0, qk ! 0,
qy � 0). In view of the weak turbulence approximation, we
consider only resonant interactions. We show that it is
possible, within this framework, to systematically study
the mechanism of spreading in weak wave turbulence and
to quantitatively assess the relative importance of different
classes of wave-wave interactions. This is accomplished by
first examining the general structure of the intensity flux
and then later constructing a transport model for the mul-
ticomponent fluctuation energy density.

Wave-dominated turbulence has certain essential fea-
tures, which are fundamentally different from the conven-
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tional paradigm of fully developed Navier-Stokes turbu-
lence. In fully developed fluid turbulence, it is common to
model the overall effect of small scales on large scales as
an effective ‘‘eddy’’ diffusivity—an effect which appears
in all K-� models. However, in the case of drift-wave
turbulence, wave resonances play an essential role in reg-
ulating the diffusion induced by small scales, and neither
homogeneity nor isotropy can be assumed. One way to deal
with this problem is to compute the three-wave interaction
induced flux of turbulence energy, using a Markovian two-
scale direct interaction approximation (TSDIA) [16], as-
suming weak turbulence and weak mean flows. Weak
turbulence, in this picture, implies taking only resonant
contributions to the fluxes. This approach implicitly makes
use of the random phase approximation (RPA) commonly
made in weak turbulence studies. Use of weak turbulence
here is mainly based on the observation that in most
numerical simulations of plasma turbulent transport coef-
ficients scale linearly with intensity (i.e., D� je�=Tej2

instead of D� je�=Tej). The basic formulation of the
model is based on a two-scale approach (i.e., � �P

k�k�X�eik�x) and requires a computation of the fluxes
of nonlinear kinetic (i.e., K � hjr�j2i) and internal en-
ergy (i.e., N � hn2i) in the radial direction. The latter are
roughly similar in various drift wave-turbulence models:

 �K �
1

2
h�2ẑ� r�r2��iX
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�
i
6
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p�q�k�0
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which are derived by substituting the Fourier expansions
into the expressions for flux and averaging. Notice that the
factor 1=6 is the result of writing the permutations of wave
numbers, explicitly. There are several observations that can
be made directly upon examination of these expressions.

First, close to the adiabatic limit (i.e.,
k2
k
v2

theLn
cs

> 1), where
the dispersion relation for drift waves is !k 	 ky=�1�
k2�, the kinetic energy flux coefficient � 
 �qyq

2 �

pyp2 � kyk2� vanishes for wavelengths k� 1 (the most
interesting limit for drift waves), whenever the three-wave
resonance condition is satisfied (i.e., !k �!p �!q � 0,
where p� q� k � 0). Thus, somewhat surprisingly, the
kinetic energy cannot ‘‘spread‘‘ itself in the adiabatic (i.e.

Hasegawa-Mima) limit. Thus, three-wave interactions in
drift wave turbulence can be said to possess an element of
resiliency or self-binding. Second, if we pick one of the
modes as a zonal flow (i.e., qy � 0), the kinetic energy
coefficient vanishes regardless of the collisionality limit,
whenever there is resonance, since �� ky�k2 � p2� �

�!�1� k2��1� p2�. However, this is not true for
‘‘streamers’’, which are radially elongated structures (i.e.,
qx � 0) that are effective in mixing the turbulence in the
radial direction, since their flow is radial. This suggests
that, not surprisingly, large scale radially extended cells are
most effective at spreading turbulence and that zonal flows,
which can shear apart such cells, must necessarily inhibit
spreading, since they destroy the structures most likely to
promote it.

We now proceed to discussion of a transport theory for
fluctuation intensity. The aim here is to represent the flux of
turbulence energy in drift wave turbulence (i.e., ��, where
different values of Greek indices correspond toN andK) as
the product of a thermodynamic force vector @XN� �
f@Xh~v

2i; @Xh~n
2ig and a transport matrix D�� so that ��

can be written in the form of a Fick’s law:

 �� 	
X

p
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p @XN
�
p 
 D��@XN� (3)

resembling the flux-force relation form of collisional trans-
port theory of gases. However, we note that here D�� has
off-diagonal components which are not positive definite
and that DKK � DNN in general. In (3), the elements of the
transport matrix are
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where �!� is the mismatch between frequencies of three
growing modes and �!� is the mismatch when one of the
modes is damped. The detailed derivation of Eqs. (4)–(6)
can be found in [8]. The key steps in the derivation are the
assumptions of two-scale evolution for the ‘‘beat mode’’ in
the DIA, leading to the Fick’s law form, and weak turbu-
lence (also RPA), which results in the � functions that
impose the resonance conditions �!� � 0. Notice that
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in the case of the near-adiabatic limit, the damped mode is
strongly damped [i.e., �� ��c�1� k2�=k2], so in this
limit �!� should be neglected. It is also useful to note
here that we have neglected resonance broadening in the
transport matrix, consistent with weak turbulence, and
higher order nonlinear effects corresponding to nonlinear
corrections to radial group velocity. Thus, the ‘‘drift term’’
(�� V��N�) consisting of these two higher order correc-
tions is neglected. Here D�KK� / K is the nonlinear self-
diffusion of kinetic energy, D�NN� / K is the nonlinear
diffusion of internal energy by the drift motions and
D�NK� / N is a radial stress acting on the local internal
energy (and so is an off-diagonal term, and not a ‘‘diffu-
sion’’ term).

Notice for the near-adiabatic case, the internal energy
may spread, and since the kinetic energy is linearly
coupled to the internal energy, it would still eventually
follow N. In this scenario, N is expected to ‘‘lead‘‘ K at
least by a few linear growth times. It is likely that this is a
result of the dual cascade that results in N (which forward
cascades) being mixed at smaller scales compared to K
(which inverse cascades). If we consider the limit of ‘‘pas-
sive scalar turbulence’’. It is clear that n and n2 (both being
passive scalars) evolve the same way statistically. Since
shear flows reduce the transport of n, they should also
reduce the transport of n2. Since the spreading of N � n2

is the dominant cause in the overall spreading of energy, it
becomes evident that radially sheared poloidal flows must
reduce spreading of energy rather than induce it. Even
though this statement is strictly true only for passive scalar
evolution and the drift-wave equations are always linearly
coupled, it is important to note that shear flow also reduces
the linear coupling. These predictions are testable in direct
numerical simulations.

We now discuss the predictions of the energy transport
theory for three distinct classes of nonlinear interactions,
which were previously mentioned. In all cases the energy
transport matrix has been computed, explicitly.

When a spectrum consisting of a qx � 0, �qk; qy� � 0
drift wave, and two other drift waves from its resonance
manifold (see Fig. 1) is considered in the near-adiabatic
limit (further assuming Nq <Nk and Kq <Kk, for sim-
plicity), the transport coefficients are

 

D�NN�p � Re��kpq

k2
y

k2
x � k

2
y
Kk;

D�NK�p � Re��kpq

ky�qy � ky�

k2
x � �qy � ky�

2 Nk:

(7)

On the other hand, a spectrum consisting of two drift waves
and a zonal flow (or a qy � 0 mode, see Fig. 2), which
interact resonantly with each other, yields transport coef-
ficients:
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y
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x=4� k2

y
Nk:

For this particular case, the coefficient of turbulence ki-
netic energy flux vanishes exactly, regardless of the colli-
sionality limit. It is easy to see that in the limit of small �n,
spreading is caused mainly by the beat term � �nq;0 [i.e.
h�nni ! h�n� �ni]. Thus, only the internal energy spreads
as a result of � �nq;0 dynamics. It carries the kinetic energy
via linear couplings. It is important to note that only � �nq;0
plays a role in this ‘‘three-wave interaction’’, which results
in spreading and that � ��q;0 has no effect.

One can consider a slight deviation from weak turbu-
lence theory by considering the damping of the zonal flows
by ion drag. When included, this damping effectively
broadens the three-wave resonance in weak turbulence
theory and results in a ‘‘triad interaction time’’ �k;p;q,
such that Im��k;p;q
 � 0. This allows the Fick’s law for

k

q

p

dp

−1 −0.5  0  0.5  1

−1

−0.5

 0

 0.5

 1

Resonance Manifold

qx

qy

FIG. 1. The manifold of wave numbers that interact resonantly
with a px � 0 mode. In a full spectrum one should integrate over
the other two wave numbers of the triad to compute the diffusion
coefficients [as in Eqs. (4)–(6)], only taking the resonant inter-
actions into account. This can be achieved by computing the
integrals along the resonance manifold as shown (up to a wave-
number dependent coefficient).
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FIG. 2. The resonance manifold for the interaction involving a
qy � 0 mode.
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the kinetic energy transport to be modified to �K 	
VKK ~K �DKK@X ~K, where VKK is a radial propagation
term in the form VKK � �ZF

�K. Even though this depen-
dence of radial energy flux on zonal flow intensity seems to
imply higher transport for higher zonal flow intensity, the
term is also proportional to zonal flow damping, which is
actually what determines the maximum value of zonal flow
intensity. Thus we may say VKK � �ZF

�K��ZF� � f��ZF�,
where f��ZF� ! 0 for both �ZF ! 0 or �ZF >�l (since the
ZFs are not excited).

Since the zonal flow is essentially a large scale hydro-
dynamic flow (qk ! 0), we should also compare to the
hydrodynamic streamer (qy < 1 and qk ! 0 (see Fig. 3).
Equation (7) is valid also for streamers (but the resonance
condition is different, which gives a larger �ac 

Re��kpq
). Kinetic energy also diffuses:
 

D�KK�p 
 Re��kpq

�kyk2 � pyp2 � q3

y�

k2p2q2
y

� �ky�k
2
y � p

2
y� � 2k2

xqy
Kk;

where we can set kx � px � 0 and py > 0, qy > 0, and

ky < 0, for example, to see that D�KK�p � �ac3�qy=py �
2�Kk, is positive (see Fig. 3, k2

y > p2
y). Also, streamers

remain correlated longer, since the change in their radial
distribution as they spread, does not destroy their reso-
nance. Thus one is inexorably lead to the conclusion that it
is the large scale hydrodynamic streamers that most effec-
tively transport energy (also streamers interact effectively
with the most-unstable modes of the drift waves).

It has been suggested that zonal flows may ‘‘promote’’
spreading [17] in realistic toroidal geometry. However,
simple physical intuition and direct gyrokinetic particle
simulations indicate that the addition of external shear
flows reduces turbulence spreading [18]. We argue that
the reason the zonal flow might appear to play an important
role in spreading is that fluctuation-fluctuation coupling is
neglected in most of the models of turbulence-mean-flow
interactions. As a result, the zonal flow is, by construction,

the only path through which nonlinear energy transfer may
occur. This in turn creates the illusion that turbulence
spreading is due to wave-zonal flow interactions. We argue
that for developed wave turbulence, the main cause of
nonlinear spreading is the total contribution from direct
interactions between fluctuations. Admittedly, our model,
while allowing more nonlinear coupling processes, does
not take realistic geometry effects into account, therefore a
direct quantitative comparison with [17] is not meaningful.

In conclusion, we have constructed force-flux relations
for the transport of turbulence intensity and calculated the
transport matrix for fluctuation energy. The theory is cast in
terms of wave interaction processes. We show that radially
extended eddies are most effective for turbulence spread-
ing while zonal flows inhibit spreading rather than promote
it.
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FIG. 3. The resonance manifold for the interaction involving a
hydrodynamic streamer [i.e., �kx; kk� ! 0].
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