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Impact of the Manufacturing Phase on the Life Cycle of Machined Products

Nancy Diaz, Moneer Helu, Kevin Ninomiya, David Dornfeld
Laboratory for Manufacturing and Sustainability, Dept. of Mechanical Engineering, University of California, Berkeley

Abstract

Growing global energy demands require manufacturers to implement strategies to improve energy efficiency
over the entire product life cycle. These strategies must consider the complexity of modern manufacturing
systems by evaluating impacts at both the process- and facility-level while also considering the effect of any
strategy on part quality to ensure a salable product that meets its intended function. This paper presents three
studies that focus on how green machining strategies can be implemented on the shop floor and how they
subsequently affect facility planning and the product use phase. The results of these studies highlight the
need for a holistic perspective that emphasizes resource efficiency over consumption reduction to provide

green products.

Keywords: Energy, green machining, product life cycle

1 INTRODUCTION

Global energy demand is expected to grow by 53%
between 2008 and 2035 [1]. China and India are projected
to more than double their energy demand by 2035.
Previous literature has shown that the manufacturing phase
can have a substantial effect on the environmental impact
of a product, particularly when flows beyond electrical
energy are considered [2]. This is especially true since
manufacturing decisions can have a direct effect on a
product’'s use phase impacts. Therefore, we must continue
to propose and implement efficient and realistic strategies
to reduce natural resource consumption in all phases of a
product’s life cycle.

This paper first characterizes energy in the manufacturing
phase for both process- and factory-level assessments.
We initially validate the energy model from Diaz et al. [3] for
a toolpath with varied MRR [4]. The energy model is then
utilized in a facility energy assessment conducted by means
of a discrete event simulation (DES) to identify green
operation strategies [5]. While it is important to implement
green strategies during the manufacturing phase, we
cannot ignore the effects of these strategies on machine
tool service costs and surface quality. Effects on part quality
are particularly important to consider since part quality must
remain sufficient to ensure that the product meets its
intended function and provides value to the manufacturer
and customer. Furthermore, these effects can also impact
resource efficiency over the entire product life cycle [6]. For
example, improvements in part precision generally lead to
greater operational efficiency and longer service life [7].
Thus, any change in the manufacture of a part must be
holistically considered across the entire product life cycle.

2 VALIDATION OF THE ENERGY MODEL FOR
VARIED PROCESS RATES

Gutowski et al. [8] showed that the specific electrical energy
requirement of manufacturing processes was inversely
proportional to the process rate. Based on this work, Diaz et
al. [9]-[10] and Kara et al. [11] developed a method to
model the specific electrical energy of machining centers
that will be utilized in this paper. The model was previously
used to predict the energy consumed to manufacture parts
produced under a constant material removal rate (MRR)
with 91.95% to 97.63% accuracy [11].
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2.1 Methodology

To assess the validity of this model for complex parts, we
conducted experiments on the Mori Seiki NVD1500 for a
toolpath with variable MRR. The electrical energy required
for milling was estimated for an inclined spiral design on an
ANSI 1018 steel workpiece with flood cooling. Machining
occurred over 87% of the total cycle time of 259 seconds.
The part design was broken down into 9 features as shown
in Figure 1; each feature indicates a change in the MRR.
The same part was machined six times to gage
repeatability.
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Figure 1: Spiral geometry and feature label of part design
for energy characterization experiments
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The MRR as a function of elapsed time was then used to
estimate the energy consumption with Equations 1 and 2 for
areas of constant (feature x+7 in Figure 2) and variable
MRR (feature x in Figure 2), respectively:

const = V *( k
i MRR

b +b) (1

N
E,=N*A) (k+b*MRR, ) @)
i=1

where V is the volume of material removed, k and b are
constants to the specific energy model [10], N is the
subintervals per feature, and At the processing time for the
feature. For each scenario, the average MRR of each
subinterval, MRR,4;, was used to calculate the energy
consumed per feature, E .. The energy consumed for part
manufacture was thereafter found by summing E, .,
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Figure 2: (a) MRR breakdown of feature x with N=5
subintervals; (b) MRR breakdown of feature x with N=10
subintervals

over all features and adding the energy consumed for the
features produced under constant MRR, E;qpst.

The number of subintervals necessary for the energy
estimate per feature converged within 1000 subintervals or
less, so N of 1000 was used in the following results. The
corresponding subintervals were between 0.02 seconds
and 0.11 seconds in size. The point of convergence would
be expected to vary by machine tool and toolpath.

2.2 Discussion of Results

Figure 3 shows the predicted energy (“Model”) and the
actual energy (“Experiment”’) consumed to machine the
sample part [4]. The average percent error (over the six
experiments) is also shown for each feature. The model
typically overestimated the energy consumption for part
production.

aan
o
o

[0}
o

“Model ® Experiment

(o2}

o
©
o
°

=)

1.0% -0.2% 4.9% -1.7% 9 7%-12.9%

—_————

N
o

Energy Consumption (kJ)
S
()

1 2 =gl Foegehass i

Feature

Figure 3: Energy consumed to create each feature of the
sample part

The accuracy of the energy estimates were affected by
several aspects of the manufacturing process. First,
features machined under a low MRR (i.e., features 3 and 9)
were hypothesized to have a large error between measured
and predicted energy since at low process rates the specific
energy model shows a steep change in energy. A second
aspect affecting the accuracy is process time. More time is
required for the power demand to reach a steady state
because short process times provide fewer data points, the
initial tool engagement causes a peak in the power
demand, the power fluctuates over time (even in standby
mode), and the internal cooling unit must do more work
while machining to maintain precision. Conversely, with
long process times when more data is collected at a
constant MRR, the power required to create a feature can

98

reach a steady state and be closer to the energy predicted
by the energy model. This fluctuation in power demand is
more pronounced in machine tools with a small work
volume [12]. Therefore, larger machine tools are expected
to behave in accordance with the energy model. Lastly, the
power demand is dependent on prior processing conditions.
For example, the energy for feature 1 had a relatively high
average error and range of errors since it was the first
feature produced. In addition, the energy estimate was
lower than the actual in all experiments. The feature was
also produced over a short process time so the power did
not reach a steady state even though it was milled at a high
MRR, which is why we see a large range in power demand
and predicted a lower energy consumption.

The predicted energy showed significant deviation from the
measured energy when it was differentiated by feature.
However, the average error of the part’s energy estimate for
the six parts produced was only -2.6% with a standard
deviation of 3.8%. This shows that estimating the energy
consumption for complex parts using our method is indeed
promising since product designers and manufacturers may
deem more valuable the estimated energy needed to create
an entire part.

2.3 Scope of Analysis

Though the specific energy model provided accurate
estimates for the part as a whole, it only accounts for the
steady state electrical energy consumed during material
removal. Machine tool users can account for air cutting
power demand by estimating the power demand of
components that contribute to the constant and variable
power demand [13]. Also, the machine tool exhibits peaks
in power demand many times throughout processing such
as when the spindle starts, the cutting tool initially engages
with the workpiece, and the cutting tool changes. Dietmair
et al. [14] modeled the power demand of machine tools to
account for these various states, but their methodology
requires greater time to acquire data, which results in
higher costs for model development.

3 ENERGY ANALYSIS OF THE FACTORY

Though resource use characterization and reduction for
production equipment are important, machine tools rarely
operate in isolation. Therefore, expanding the scope to at
least the facility level is necessary to manufacture products
in a sustainable manner. Previous consideration of
sustainability of a facility is limited since the majority of
facility level optimization has ftraditionally focused on
financial costs. Research that accounts for the
environmental impact of a facility include Fang et al. [15],
who studied the energy consumption and peak power
demanded by a two machine job shop; Heilala et al. [16]
who developed a simulation tool for optimizing between
production efficiency and environmental impact using a toy
manufacturing plant as a case study; and Johansson et al.
[17] who showed how discrete-event simulation (DES) and
life-cycle assessment can be combined to evaluate the
performance of a manufacturing system with the exemplary
case study of a paint shop. In essence, these studies
focused on manufacturing one type of product,
manufacturing with preset processing conditions and
equipment, or both. Since products change over time and
facilities can manufacture a high mixture of products at a
range of processing conditions, a method that adds
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flexibility to the environmental impact assessment is
needed to capture the evolution of facility operation.

We applied the energy model in a DES environment to
estimate the energy of the production equipment within a
factory [5]. Using this approach, we evaluated the energy
consumption on smaller scales in the manufacturing system
as well: the machine tool cells, the individual machine tools,
and the parts produced. This spectrum of analysis allows
the implementation of a broad range of sustainability
strategies.

3.1 Methodology

DES was used to model the processing of three types of
parts in a flexible manufacturing facility. The analyst may
choose the types of parts that are manufactured by
defining, for example, machine tool production constraints,
process rates, process times, and interarrival times for the
parts. The parts in this study are generically labeled types
A, B, and C, and were produced in proportions of 45%,
30%, and 25%, respectively. We modeled the parts to have
exponentially distributed interarrival times with a mean
interarrival time of 10 minutes. Each part was processed
using a first-in-first-out (FIFO) queuing discipline in a multi-
server queuing model with five manufacturing cells.

Table 2: Uniformly distributed part processing parameters.

Cell MRR tprocess
Type ; 3 .
Constraints (mm°/s) (min)
A M1, M2, M3, or M4 500 to 600 4510 50
B M2, M4, or M5 305 to 350 95 to 105
Cc M5 0.75t0 1.75 120 to 135

Table 2 shows the cell constraints placed on the machine
tools capable of producing the different part types. That is,
part type A could be produced with a machine tool in either
cell M1, M2, M3, or M4, while part type C could only be
produced by a machine tool in cell M5 (e, a
micromachining center). The MRR and the processing time
remained constant throughout the production of any given
part. However, these parameters were uniformly distributed
over the ranges outlined in Table 2 for each part type.
Therefore, the facility produced a high mix of products. The
conversion to low mix manufacturing can be achieved by
constraining the process rates and times.

Since the parts could be produced by a range of machine
tools, we programmed the selection criteria such that the
machine tool was chosen to reduce the energy consumed
while machining. The facility was modeled such that it had
the machine tool cells provided in Table 3 with the cutting
conditions (dry or wet). The cells were preferred in the
following order based on lowest processing energy
consumption: M1, M3, M2, M5, and M4 (i.e., a machine tool
in cell M1 consumed the lowest energy while processing
parts at a particular MRR and one in cell M4 consumed the
highest energy at the same MRR).

The DES model tracked the number of available machine
tools within a cell rather than the availability of each
individual machine tool. If no machine tool was readily
available to start production then the part entered the
shortest queue. This machine tool selection strategy gives
preference to high machine tool utilization to avoid the
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consumption of energy for non-value added time during
idling. Alternative strategies also can be studied, such as
reducing the overall time spent in the facility (processing
and wait time) or prioritizing parts in queues based on
expected processing energy consumption or lead time.
Since flexible manufacturing facilities, such as job shops,
underutilize machine tools, it is also important to consider if
it would be more beneficial for a part to wait for a less
energy intensive machine tool to become available rather
than immediately start production at an available machine
tool especially if the part has a long processing time. Such
a part scheduling strategy will be studied in future work.

Table 3: Parameters for process energy and idle power
demand [9]-[11] for machine tool cells M1-M5.

. K b Pi«:IIe
Machine Tool &
[JIs] | [J/mm7] [w]
M1 | Fadal VMC 4020 (Dry) 1330 2.845 740
M2 | Fadal VMC 4020 (Wet) 1396 3.082 740

M3 | Mori Seiki DV 5500 (Dry) 1344 2.830 1020
M4 | Mori Seiki DV 5500 (Wet) 2019 2.953 1020
M5 | Mori Seiki NVD 1500 (Wet) | 1481 3.678 924

3.2 Discussion of Results

With DES the energy consumed by the facility can be
assessed at the level of the facility, cell, machine tool, and
part in order to look at the effectiveness of green strategies.
The total energy consumed by the five cells in this case
study was 11.85 GJ, 92.8% of which was used for process
energy and the remaining 7.2% for idle energy (see Figure
4). Cells M1, M2, and M5 consumed the greatest
proportions of idle energy; we used this information to
design six additional scenarios.

Facility
11.48 GJ

|

92.8% 7.2%

Process Idle
10.65 GJ 0.83 GJ

59.1%

2.5%
M4
1.7%
., |253%
5% ——{ ™5 |

Figure 4: Breakdown of machine tool energy consumption.
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Table 4 shows how the number of machine tools in each
cell varied for the baseline scenario (case 1) and each
subsequent case. The cells that were altered in this study
relative to the base case are highlighted in gray.

The energy saved for the scenarios are shown in Figures 5-
6. Case 4 is the only scenario that consumes more energy
than the baseline; 11.1% of the total energy consumed by
the machine tools (11.88 GJ) was spent on idling machine
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tools. The idle energy consumption increased relative to the
baseline case when a machine tool from cells M2 and M4
were removed in case 4 due to part queuing.

Table 4. Number of machine tools in each manufacturing
cell for cases 1-7 where (*) represents the base case.

Case
1*
M1 3
M2 2
M3 1
M4 1
M5 4

Even though we lowered the idle energy consumed in a
facility by reducing the number of machine tools, part
queuing became important in our analysis as overall
machine tool availability was reduced. When a machine tool
was removed from a cell that was highly utilized, the queue
length grows at a potentially unstable rate; this occurred
with cases 4, 6, and 7. Although cases 6 and 7 had lower
energy consumption, parts spent a longer period of time in
the facility. Thus, if additional criteria were used in the
energy assessment, such as HVAC and lighting, these
cases may not in fact be ideal scenarios since the time
spent to produce parts will increase and the factory would
have to operate for a longer period of time. The energy
consumption of production equipment varied significantly
with savings of up to 8.5% relative to the baseline case.
Taking into consideration the stability of the cell queues,
case 5 was the most promising design with a stable queue
and energy reduction potential of 6.4%.
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2 g 0.20 555
TR 0[O e, ... R — il — —_
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Figure 5: Change in process energy relative to case 1.
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Figure 6: Change in idle energy relative to case 1.

The methodology for energy consumption optimization that
utilizes DES was presented for a manufacturing facility with
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high product variability and relatively low production
volume. However, the simulation of a facility with a low mix,
high volume of parts can be accomplished as well by
increasing the interarrival rate and reducing the number of
part types produced.

4 IMPACT TO OTHER LIFE CYCLE STAGES

Aside from characterizing and reducing energy during the
manufacturing phase, changes to the manufacturing phase
will also inevitably impact other life cycle stages, particularly
the product’s use phase [6]. We now conclude our paper
with an analysis of how green machining strategies can
impact the overall product life cycle.

4.1 Direct Impacts: Achieved Surface Quality

[18] investigated the effect of process time reduction and
dry machining on both the machining process and achieved
surface quality of titanium alloy (Ti-6Al-4V) parts.
Experiments were conducted on a 4-axis horizontal
machining center using uncoated carbide inserts to turn a
test part from an initial diameter of 25 mm to a final
diameter of 16 mm with cuts of length 80 mm. These
experiments utilized separate inserts to rough and finish,
and new inserts were used for each test part. A “baseline”
part was created first from the tool manufacturer’s
recommended process parameters.

411 Process time reduction

Process time reduction was explored by increasing the
MRR by individually varying the cutting speed, feed rate,
and depth of cut for both the rough and finish cuts to study
the effect of each parameter [18]. Helu et al., [18] found that
the specific electrical energy decreased as the process time
decreased. These results agreed with the literature (e.g.,
Dahmus et al. [19]; Diaz et al. [9]-[10]; Kara et al. [11]).
Furthermore, the specific electrical energy varied at the
same rate for each parameter, which indicates that energy
requirements are directly tied to the process time (see
Figure 7).

% 80 -
§ E = 20,44 + §10/MRR
270 / R?=0.9517
>
g 60 4 ®ve
i 5 | ¥ (ough)
g &1 (finish)y :
§ 40 { ©d (rough) o ﬁ\m\__
& tid (fnish) .

30 . .

5 15 25 35 45

Avg. Material Removal Rate over Rough and Finish Cuts (cm®min)

Figure 7: Total specific energy consumed to create one test
part for varied cutting speed, v,, feed, f, and depth of cut, d;
the specific energy for the baseline case is marked with an
“x” [18].

While process time reduction improved energy efficiency, it
also created tool wear and service cost issues. Flank wear
on the tool increased with increased cutting speed and feed
rate and in several cases far exceeded the tool
manufacturer’'s recommendation. The service costs per part
also substantially varied due to unexpected breakdowns;
this variation increased for the most aggressive strategies

© 2012 The Proceedings of MTTRF 2012 Annual Meeting



on the spindle, such as increasing the depth of cut, where
the authors found the highest service costs per part. When
unexpected breakdowns were excluded, production loss
and service technician costs primarily drove service costs,
and process time reduction strategies reduced service
costs per part because of increased production volume. So,
while process time reduction can improve energy efficiency,
the potentially detrimental effects on tool wear and machine
tool maintenance may not allow process time reduction to
viable green titanium machining.

The viability of any green machining strategy also depends
on its ability to produce parts of sufficient quality. Helu et al.
studied two measures of surface quality: surface roughness
and local strain hardening [18]. They measured the average
height surface roughness, R,, in the feed direction after
both the final rough and finish cuts. Even though the
experiments varied the cutting speed and depth of cut, the
surface roughness was primarily influenced by the feed
rate, which agreed with expectations since the surface
roughness was primarily caused by feed marks. More
importantly, though, the finish cut most strongly affected the
final achieved surface roughness (see Figure 8). So,
process time reduction may be implemented best during
any rough cuts since it would not negatively impact the final
achieved quality of a part. Furthermore, these results also
may support any strategy that relies on aggressive rough
cuts, such as the use of a “sleep mode” where roughing
should occur while the machine re-stabilizes itself back to
production conditions.

8.00 - -
6.00 / it (rough)
e “#f (finish)
g z

2 4.00 - € (rough)
200 4 j{ Ed (firish)

£ . . S -
0.00 e

5 15 25 35 45

Avg. MRR over Rough and Finish Cuts {cm®min)

Figure 8: Final measured surface roughness for varied feed
rate, f, cutting speed, v, and depth of cut, d, during either
the rough or finish cuts as indicated; the baseline case is
marked with an “x” [18].
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Figure 9: Measured full width at half maximum on the
finished surface for varied feed rate, f, cutting speed, v,,
and depth of cut, d, during either the rough or finish cuts as
indicated; the baseline case is marked with an “x” [18].

To measure the local strain hardening, [18] conducted x-ray
diffraction analyses after the final finish cut to measure the
full width at half maximum (FWHM) of the resultant x-ray
interference patterns. The FWHM correlates to the degree
of cold working since it increases as dislocation density

© 2012 The Proceedings of MTTRF 2012 Annual Meeting

increases. The feed rate had the largest impact on local
strain hardening due to the increased elastic-plastic
deformation that occurs in the shear zone and is driven by
increased tool wear and surface roughness (see Figure 9).
So, despite its negative consequences, increased feed rate
increases work hardening, which may improve fatigue
performance and overall resource efficiency by extending
service life. In addition, the finish cut had the strongest
influence on the FWHM just as it did with surface
roughness. These results further support green machining
strategies that target roughing operations.

41.2 Dry machining

[18] implemented dry machining by running the baseline
case without any coolant. The largest impact occurred for
specific electrical energy since dry machining required less
energy than the baseline case because none of the coolant
pumps in the machine tool demanded power. Thus, the
effect of dry machining on specific electrical energy was to
essentially lower the curve shown in Figure 7 by a constant
amount. However, this does not take into account the
embodied energy of the coolant, which would further
improve energy efficiency. Dry machining also affected
flank tool wear. This agreed with expectations since a lack
of coolant increases thermal gradients, friction, and cutting
forces, which all increase tool wear. Aside from these
effects, though, dry machining did not significantly affect the
manufacturing process or achieved surface quality; the
resulting service costs per part, surface roughness, and
local strain hardening were all comparable to the baseline
case.

4.2 Indirect Impacts: Operational Efficiency

Because the precision and quality of a part influences the
part's operational efficiency in addition to its salability, it is
important to ensure that any change to the manufacturing
process does not offset environmental impacts to the part’s
use phase. [7] investigated the effect of reduced surface
roughness of automotive drivetrain components on their
environmental impacts during use. The study focused on
the manufacture and use of a final drive reduction unit.
Recent research suggests that the gear mesh efficiency of
these components is directly influenced by the RMS surface
roughness, R, and inlet lubricant temperatures among
other factors [20]. While the inlet lubricant temperature is a
function of the drivetrain design, the RMS surface
roughness of the gear mesh can be directly controlled by
the gear finishing processes.

To study the effect of changing the gear finishing process to
improve the surface roughness of the final drive reduction,
[7] studied a drivetrain and vehicle modeled after a Honda
Civic, which was identified as a representative fuel-efficient
sedan on the market. They found that decreasing the R, by
20-60% of that achieved for a standard automotive gear
finish can be accomplished for less than 0.5 MMBtu PE per
final drive reduction. While this may be a significant
additional resource expenditure for a manufacturer, the
savings potential during the use of the final drive reduction
is quite great: decreasing R, over the range of values
expected for a final drive reduction can save 2 to 5 MMBtu
PE in gasoline alone over the life of the part. Even though
the surface roughness measures used in both analyses are
different by necessity, this comparison shows how small
investments in the manufacturing phase can actually be
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leveraged into large overall resource reductions over the
entire life cycle of a product.

5 SUMMARY

This paper first presented a method for estimating the
energy consumption of a milling machine tool for the
production of a part with a varied MRR toolpath. The model
showed an average accuracy of 97.4%, validating the use
of the model to estimate the energy required to machine a
part. Overall accuracy of the energy model is hypothesized
to improve with higher MRR’s, longer process times, and
large machine tools — instances when more stabilized
power demand is achieved.

In addition, a methodology for energy consumption
optimization utilizing DES modeling was studied for a
manufacturing facility with high product variability and a
relatively low volume of production. Additional types of
facilities may be simulated by changing parameters such as
the interarrival rate, the number of part types produced, and
the type and number of available machine tools.

Lastly, Helu et al. [7] and [18] both display how changes to
the manufacturing phase can have far reaching impacts on
a product’'s overall resource efficiency. Often, engineers
may adjust a manufacturing process to reduce resource
consumption without realizing that these strategies may
have deleterious effects on part quality that can ruin a
product’s value or decrease its operational efficiency and/or
service life. Ultimately, a holistic perspective is required
when considering any change to manufacturing phrase. All
resources should be considered, and improved resource
efficiency (i.e., minimum resource consumption for
maximum value-added, efficiency, etc.) should be the
primary goal instead of simple resource consumption
reduction. In this way, manufacturers can meet the
increasing challenge of providing customers with truly green
products.
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