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Clustering of Translocation Breakpoints

Mark R. Segal and Joseph L. Wiemels

Department of Epidemiology and Biostatistics,

University of California, San Francisco, CA 94143-0560

email: mark@biostat.ucsf.edu

Abstract

Translocation, a physical movement of genetic material from one chromosome to another, can

aberrantly juxtapose portions of two cellular genes. This type of fusion may disrupt cellular

function by producing novel, biologically-active fused genes, or by the activation of normally

quiescent growth-associated genes. Either of these mechanisms provides a putative oncogenic

stimulus and, indeed, several gene fusions from translocations have been identi�ed in leukemias,

lymphomas, and sarcomas. While the biological activity of the oncogenic e�ects of genes

involved in translocations are under intensive study, little is known regarding the formation of

translocation fusions themselves. The locations of these fusions are typically independent of the

resultant oncogenic protein as long as they take place within certain bounded regions within

the genes. Because of this independence a patterned, in particular clustered, distribution of

fusion breakpoints within a given region will potentially yield relevant information about the

etiology of the fusion.

The statistical analysis of translocation breakpoints has, accordingly, focussed on the extent

to which they cluster. Somewhat questionable methods have been employed in this regard.

After highlighting these shortcomings, we introduce a variety of approaches including scan

statistics, smoothed bootstrap, and gap statistics, that provide a comprehensive means for

appraising clustering. We apply this battery to TEL-AML1 translocations, the most common

translocation in childhood acute lymphoblastic leukemia. Results obtained indicate generally

weaker evidence for clustering than previously reported, and also highlight di�erences between

the statistical approaches.

KEY WORDS: Gene fusion; Gap statistic; Scan statistic; Smoothed bootstrap.



1 Introduction

Translocation is de�ned as the physical movement of genetic material between two non-

homologous chromosomes. In the simplest case, the formation of a translocation involves

double-strand breaks on two chromosomes followed by the aberrant fusion of the DNA free ends

to the wrong partner chromosome. The resulting two derivative chromosomes with swapped

arms can be viewed on a glass slide preparation of chromosomes, or karyotype, of a patient's

cells. At the level of the DNA sequence, speci�c genes may be cut in half, resulting in the fu-

sion of two genes not normally associated with each other. This resultant juxtaposition of two

cellular genes can generate chimeric protein products in which the functional domains of two

separate genes are fused together, and/or alter regulation of gene expression (Rabbitts, 1994).

Dozens of translocations have been described in the leukemias, lymphomas and sarcomas. A

given translocation between two cellular genes is consistently associated with a speci�c tumor

type. This permits the development of diagnostics and/or therapeutics based on the particular

gene fusion products.

Translocations in the leukemias, which are our focus, usually result in the formation of a

chimeric protein, in which the proximal end of one protein is fused to the terminal end of

the other. These proteins are usually transcription factors { proteins present in the nucleus

that control the expression of other genes involved in growth and development of blood cells.

When the normal development program of the blood stem cells is interrupted by the aberrant

fusion transcription factor, leukemia may result. Genes are structured in such a manner so

as to have protein coding regions, or exons, interspersed with noncoding regions, or introns.

Translocations which produce chimeric oncoproteins are constrained to occur within speci�c

introns to preserve the ordering of exons necessary to generate an oncoprotein. However, within

susceptible introns there is great latitude as to where the DNA may be broken and re-fused on

either chromosome. This breakage/re-fusion site is called a \breakpoint" and is unique to each

individual patient diagnosed with a particular translocation. The \clustering" of breakpoints

in a speci�c region indicates that the region is fragile and may be susceptible to cleavage

by chemicals or DNA-modifying enzymes. The localization of such putative clusters requires
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breakpoints from multiple patients and appropriate statistical validation. The identi�cation

and characterization of breakpoint clusters will ultimately aid etiologic, epidemiologic, and

diagnostic studies of leukemia.

One of the most common translocations in leukemia is the fusion of the TEL gene on chromo-

some 12 to the AML1 gene on chromosome 21 which occurs in one-quarter of childhood acute

lymphoblastic leukemia (ALL), the most common cancer of childhood. We have shown that

the TEL-AML1 fusion occurs prenatally in most children who develop this form of leukemia,

even up to the age of 14 (Wiemels et al., 1999a,b). Despite this knowledge of the temporal

origin of the translocation, little is understood regarding the process of formation of the fu-

sion. The translocation results in a chimeric oncogene with the �rst �ve exons of TEL fused

to nearly the entire AML1 protein coding region. AML1 is considered to be a \master" tran-

scription factor, and is a critical conductor of the development of nearly all blood cells. Blood

cells develop from embryonic precursor cells, or stem cells, into functional types, such as red

blood cells, T-cells and B-cells. The TEL-AML1 protein is thought to result in the aberrant

repression of genes that are normally induced by AML1 during the process of di�erentiation, or

development of blood stem cells into functional types (Guidez et al., 2000). With the process

of di�erentiation \frozen" the blood stem cells may gain a form of immortality, one component

of the leukemic cell phenotype. The fusion occurs within the 14000 base pair (bp) intron 5

of TEL and comparatively large 160000 bp intron 1-2 of AML1. Both TEL and AML1 are

involved in a variety of other translocations in other lymphoid and myeloid leukemia subtypes

in children and adults (Greaves, 1999), making the study of translocations involving these

genes applicable to a wide swathe of the disease.

The elucidation of some common translocation breakpoint sequences in the lymphomas has

resulted in a clear causal mechanism. Very tight clustering has been observed which implicates

the involvement of \recombination site sequences" (RSS) in the formation of such transloca-

tions (Jager et al., 2000; Tsujimoto et al., 1985). These are short, sixteen base-pair motifs,

whose orientation allows them to be recognized by select cellular enzymes. These enzymes

normally rearrange genes of the immune system in order to produce the antibody repertoire.

This gene rearrangement process is critical for formation of the estimated 107 di�erent anti-
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bodies (and corresponding genes) necessary for immune system function in a given individual.

However, the aberrant recognition of RSS in other cellular genes can have the unfortunate con-

sequence of producing translocations. The fact that the cells from which lymphomas originate

normally express these same enzymes serves to implicate RSS in the genesis of translocation.

The situation with the leukemias is very di�erent in that breakpoint distributions tend to be far

more di�use, resulting in a poor understanding of their etiology. Recombination site sequences

are not involved in leukemia translocations. This is because the translocations occur at a very

early progenitor stage in blood cell development which precedes the expression of the enzymes

that manipulate RSS. Only recently were methods developed to sequence these leukemia fusions

(Reichel et al., 1999; Wiemels and Greaves, 1999), spawning attendant need for applying

statistical methods to analyze breakpoint distributions. The existence of clusters in particular

regions suggests that features of the intrinsic DNA sequence and/or chromatin are critical

to translocation. Accordingly, to the extent that the location of translocation breakpoints

has been subject to any statistical treatment, the analyses have focussed on evaluating and

localizing putative clusters.

The purpose of the present paper is to identify some shortcomings in the limited approaches

to appraising clustering that have been taken to date. These are reviewed in section 2 where a

variety of improvements, drawing on recent statistical work, are also described. These meth-

ods include scan statistics with attendant distributional approximations, Silverman's (1981)

smoothed bootstrap procedure, and gap statistics (Tibshirani et al., 2000). As illustrated,

these methods di�er according to whether the emphasis is on appraising a speci�c cluster or

determining the number of clusters. Section 3 presents a reanalysis of the particular TEL-

AML1 fusion described above while section 4 describes some possible extensions and o�ers

concluding discussion.
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2 Approaches to Appraising Clustering

As mentioned, very little in the way of formal assessment of clustering is pursued in evaluating

translocation breakpoint distributions. Indeed, van der Reijden et al., (1999) assert (in the

title itself!) that acute myeloid leukemia-associated inv(16)(p13q22) breakpoints are tightly

clustered without undertaking any related analysis. The only formal approach to date is that

of Wiemels et al., (2000) and it is on both their data and methods that we subsequently focus.

A preview is provided by Figures 1 and 2.

The data itself is displayed in Figure 1, with the top panel depicting TEL breakpoints and the

bottom panel AML1 breakpoints. The shaded boxes represent exons of the respective genes,

with the breakpoints (primarily) occurring in the intervening introns. In both panels the scale

is in base pairs; note the much greater range for AML1 than for TEL. Each numeral above

the arrow showing breakpoint location is a patient identi�er { for each of the 24 patients the

location of breakpoints for both derived chromosomes being determined.

Figure 2 is taken from Wiemels et al., (2000) and depicts breakpoint density estimates using

(gaussian) kernel density estimation with prescribed bandwidths. The bandwidths used are

1000 bp and 2000 bp for TEL and AML1 respectively. Later, we show that these are much too

small. Regions were the kernel density estimate exceeds a 95% con�dence envelope obtained via

simulation (described in section 2.2) are designated as clusters, this process yielding the three

(four) numbered clusters for TEL (AML1) that we reevaluate via scan statistic approximations

as described next.

2.1 Existence: Nearest Neighbor and Scan Statistics

Wiemels et al., (2000) use k nearest neighbor (kNN) distances averaged over all breakpoints to

establish the existence of clustering and, subsequently, kernel density estimation to localize the

clusters (regarded as equivalent to modes). We now focus on kNN distances and then discuss

density estimation approaches in section 2.2.1. Consider a situation where we have c�1 tightly
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clustered points and one outlying point well separated from the cluster. Now consider an al-

ternate con�guration with c points equispaced on an interval of length equal to the distance

between the cluster and the outlier. These two arrangements will have essentially the same

average �rst nearest neighbor distance despite being diametrically opposite with regard the ex-

tent of clustering. The salient feature of this example is that the use of average (global) nearest

neighbor distances can be insensitive to the presence of clustering because of the inuence of

(a few) isolated points. Conversely, the use of minimum kNN distances is not so a�ected.

Indeed, the use of the scan statistics, which is equivalent to the minimum kNN distance, is well

established for assessing clustering and has been applied in many settings (see e.g., Wallenstein

and Ne� (1987), Karlin and Macken (1991)). The motivation for using average kNN distances

derives from Cuzick and Edwards (1990), however, they were dealing with a di�erent (case-

control) context wherein averaging over all case-control distances was appropriate. While it is

the case that average kNN distances are distributionally more tractable than minimum kNN

distances, there are a variety of accurate and readily computable approximations for the latter.

We next outline two such approximations which are among those employed for a more formal

evaluation of TEL-AML1 clustering in Section 3.

Without loss of generality, for the purposes of clustering, we can rescale the intronic region

where breakpoints arise to the unit interval (0; 1). Let X1; X2; : : : ; Xn be independent and

identically drawn from U(0; 1), the uniform distribution on the unit interval, with X(i) the

corresponding order statistics. Let Nx;x+d = #fXi : Xi 2 (x; x + d)g be the number of points

contained in the interval (x; x + d). Then the scan statistic for prescribed interval length d is

de�ned as Nd = supxNx;x+d, the maximum number of points in such an interval. If we also

de�ne Lk to be the length of smallest subinterval of (0; 1) containing k points, then Lk is the

minimum kNN statistic and we have

PrfNd � kg = PrfLk � dg (1)

so that tests based on the scan and minimum kNN statistics are equivalent.

The exact distribution corresponding to (1) is exceedingly complex (see Huntington and Naus,

1975) and computationally impractical. This had led to a variety of approximations. Instead

of working directly with scan or minimum kNN statistics, Hu�er and Lin (1997) reformulate
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in terms of clumps. In particular, a k : d clump exists if there are k consecutive points in an

interval of length d. Let Yk:d � Y be the number of k : d clumps:

Y = �n�k+1
i=1 IfX(i+k�1) �X(i) � dg: (2)

Since Y � 1 if and only if Nd � k we have

PrfNd � kg = PrfY � 1g (3)

so we can e�ect approximation to the distribution of the scan statistic by approximating

PrfY � 1g.

Hu�er and Lin (1997) pursue this by �nding (in di�erent ways) discrete distributions that

match the moments of Y . Here we expand on just one of the simplest approaches, based on

Markov chain approximations, which utilizes only the �rst two moments of Y . We later use

both this and another approximation based on matching moments to a compound Poisson

distribution { the two methods yield very similar results. Explicit formulae for the �rst two

moments of Y are obtained using properties of spacingswhich are distances between consecutive

order statistics. The resultant formulae involve the sample size n, number of points k, interval

width d, and cumulative binomial and trinomial probabilities; see Hu�er and Lin (1997, section

3.2). While quite general, these formulae do not hold for k � 3 and n < 2(k� 1), a restriction

we address in section 3.

From (2) we see that Y is de�ned as sum of w = n � k + 1 indicators. The Markov chain

approximation is based on the hope that this sequence of indicators behaves like a two state

(f0; 1g) Markov chain. Consider a two state Markov chain whose transition matrix P has

o�-diagonal entries p01 = a and p10 = b. The stationary distribution for this chain is �0 =

b=(a + b) and �1 = a=(a + b). Let Z1; Z2; : : : be a Markov chain started from this stationary

distribution having transition matrix P and de�ne ~Y =
Pw

i=1 Zi. For notational simplicity

write s = 1=(a+ b) and � = �1. Then we have

Prf ~Y � 1g = 1� (1� �)(1� �=s)w�1 (4)

E~Y = w� (5)

Var( ~Y ) � �(1� �)(w + 2(s� 1)(w � s)): (6)

6



Matching (5) and (6) to the �rst two moments of Y yields closed form solutions for � and s, and

whence for Prf ~Y � 1g by (4). The latter then constitutes the Markov chain approximation for

the scan statistic p-value in accord with (3). As demonstrated by Hu�er and Lin (1997), this

approximation is remarkably accurate considering its crudeness. However, their demonstration

(by way of simulation) was limited to appreciably larger sample sizes (n = 100; 1000) than

are typically encountered with translocation breakpoint studies. In the present circumstance

for TEL-AML1 we have n = 24 and w � 21 (since k > 3), so there is less basis for appealing

to Markov chain stationarity. While limited simulations for this sample size again indicate

that the Markov chain (and compound gamma) approximations are very accurate, in order

not to rely solely on moment-based approaches we next consider alternative large-deviation

approximations for PrfNd � kg.

Loader (1991) considers both one and two dimensional scan statistics as well as distinguishing

between d known and unknown. Here, we briey summarize results for the known d case.

While details of the more complicated unknown d case are deferred to Loader (1991), we do

apply the corresponding approximations in section 3.

The �rst large-deviation approximation, which is computationally easy and accurate in the

upper tail for a range of sample sizes, n, and interval lengths, d, is as follows.

PrfNd � kg = n � b (k;n; d)(1 + o(1)) (7)

where � = (k�nd)=nd and b(k;n; d) is the binomial probability mass function. We require � > 0

and so need k > nd, the expected number of points in an interval of length d under uniformity.

In evaluating TEL and AML1 breakpoint clustering we employ an endpoint corrected version

of (7). The resultant approximation (Loader 1991, equation 11) is

PrfNd � kg � n � b (k;n; d) +
nX

j=k

b (j;n; d) +
k�1X
j=0

 
1� d� �d

1 + �� d� �d

!2(k�j)

b (j;n; d) (8)

where � and b(k;n; d) are as above. In our one-dimensional applications where d is small, the

correction a�orded by (8) is slight. This contrasts with the example considered by Loader

(1991) and the two-dimensional examples below where, with d large, corrections are apprecia-

ble.
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2.2 Multiplicity: Number of Clusters / Modes

The use of average k nearest neighbor distances for k = 1; : : : ; 5 provided an overall assessment

as to whether there is signi�cant clustering. If so, it does not provide an indication of cluster

location or multiplicity. To remedy this, Wiemels et al., (2000) turn to kernel density estimates.

The location of signi�cant modes (clusters) is then established by simulation: repeated break-

point samples of equal size to the original are independently drawn from a uniform distribution

over the intronic breakpoint region, kernel density estimates are computed for each sample and

a pointwise 95% envelope obtained from the 95th percentile of the density estimates at each

base pair (position) within the region. The results of this procedure are reproduced in Figure

2. The approach uses a priori �xed bandwidths. This is a serious shortcoming since the ar-

bitrarily prescribed bandwidths will have a profound e�ect on the identi�cation of signi�cant

modes, as evident from considering the implications of very large or very small bandwidth

selections.

By way of contrast, Figure 3 displays kernel density estimates for TEL and AML1 breakpoints

using so-called `second generation' (Venables and Ripley, 1999) bandwidth selection rules due to

Sheather and Jones (1991). For TEL, bandwidths from either their `solve-the-equation' (STE)

(8099 bp) or `direct plug-in' (DPI) (8080 bp) rules are su�ciently close that the resultant

densities almost coincide. This density (Figure 3(a)) is clearly unimodal. The bandwidths

are more than 8 times larger than the bandwidth of 1000 bp used by Wiemels et al., (2000).

However, for AML1, we obtain respective bandwidths of 56792 (STE) and 82829 (DPI) with the

former supporting 3 modes and the latter only 2. Viewing the number of modes as a function of

bandwidth is central to Silverman's smoothed bootstrap approach, which is described in Section

2.2.1. Irrespective of which bandwidth selection rule is adopted, the estimated bandwidth is

appreciably greater than the bandwidth of 2000 bp prescribed by Wiemels et al., (2000).

The question of determining how many modes a density possesses has received considerable

attention, with Silverman (1981) providing an easy and compelling prescription for answering

it. Perhaps more subtle is whether detecting clusters in data coincides with detecting modes

in underlying densities with Silverman (1986) asserting that these are \somewhat indistinct
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notions with a slight di�erence in emphasis", while the Panel on Clustering (1989) contends

that we can \test for the presence of clustering by testing for multimodality". This latter

equivalence is implicit in some of the theoretic results of Tibshirani et al., (2000) described in

section 2.2.2.

2.2.1 Silverman's Smoothed Bootstrap

We provide a brief overview of Silverman's smoothed bootstrap procedure for determining

the number of modes; see Izenman and Somner (1988) and Efron and Tibshirani (1993) for

additional description and applications.

Let N(f) be the number of modes of a density f . Consider a series of hypotheses such that the

jth null hypothesis, Hj
0 , is that f has at most j modes (Hj

0 : N(f) � j) while the jth alternative,

Hj
1 is that f has more than j modes (Hj

1 : N(f) > j). Let f̂h be a kernel density estimate with

bandwidth h. De�ne h�j = inffh : N(f̂h) � jg. Silverman (1981) shows that, for Gaussian

kernels, N(f̂h) is a right-continuous, decreasing function of h so that N(f̂h) > j , h < h�j .

Thus, h�j is a natural test statistic for testing H
j
0 vs: H

j
1 . To determine h�j we count the modes

in density estimates f̂h for varying h. When h = h�j , f̂h�j will have j modes plus a noticeable

shoulder (cf the shoulder in Figure 3(b)). We have that

Prffh
�
j > hg = PrfN(f̂h) > jjX1; : : : ; Xn � fg: (9)

By using bootstrap resampling we can readily evaluate the right hand side of (9) since there

is no need to recalculate h�j for each bootstrap replicate.

The prescription for e�ecting bootstrap testing is as follows:

1. Draw a bootstrap sample X�
1 ; X

�
2 ; : : : ; X

�
n from the breakpoint data X1; X2; : : : ; Xn.

2. Obtain a smooth bootstrap sample Y �
1 ; Y

�
2 ; : : : ; Y

�
n by

Y �
i = cj(X

�
i + h�j�i) i = 1; 2; : : : ; n (10)
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where �i iid N (0; 1) and cj = 1=
q
1 + (h�j=Var(X))2 is a scale factor employed so that

Var(Y �) = Var(X).

3. From Y �
1 ; Y

�
2 ; : : : ; Y

�
n compute a kernel density estimate f̂ � using bandwidth h�j .

4. Repeat steps 1-3 B times yielding f̂ �b; b = 1; 2; : : :B.

5. The achieved signi�cance level for testing Hj
0 versus Hj

1 is (1=B)�B
b=1IfN(f̂ �b) > jg.

Step 2 corresponds to sampling from f̂h�
j
, the (scaled) convolution of the empiric distribution

function and a standard normal distribution function. This is appropriate for testing Hj
0

versus Hj
1 since f̂h�

j
represents a plausible j mode density that is closest to j + 1 modal.

The procedure is computationally straightforward. As described by Silverman (1983) and

Izenman and Somner (1988) it is also conservative. For this reason, and additionally because

the smoothed bootstrap procedure does not readily generalize to more than one dimensional

data (see section 4), we consider next an alternative approach to determining the number of

clusters.

2.2.2 Gap Statistic

Tibshirani, Walther and Hastie (2000) develop the gap statistic as an adjunct to a clustering

algorithm in order to formalize the `elbow' heuristic: in graphs plotting a (pooled) within

cluster error measure versus the number of clusters there is (often) a characteristic kink or

elbow, the location of which represents the appropriate number of clusters. For applications

of the heuristic see Segal (1988) and Sugar et al., (1999). As documented by Tibshirani et

al., (2000) the merits of the gap statistic are numerous: (i) strong theoretic underpinnings

in one dimension (pertinent to translocation breakpoints), (ii) applicable with any clustering

algorithm in arbitrary dimensions, (iii) easily implemented, and (iv) excellent performance in

extensive simulations.

Let dii0 be the distance between observations i and i0. In both our one and two dimen-

sional applications we use just the (Euclidean) distance between the breakpoints. Suppose our
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clustering algorithm has generated m clusters, C1; C2; : : : ; Cm, with Cr denoting the indices

of the observations in cluster r and nr = jCrj the cluster size. Let Dr =
P

i;i02Cr
dii0 and

Wm =
Pm

r=1Dr=2nr. If d is squared Euclidean distance then Wm is the pooled within cluster

sum of squares around cluster means. The central idea of Tibshirani et al., (2000) is to compare

log(Wm) to its expectation under an appropriate null referent distribution. They show that,

in one dimension, U(0; 1) is most likely to produce spurious clusters (operationalized as single

component log-concave densities which is analogous to equating clusters with modes as above)

and so constitutes an appropriate (\least favorable") null referent distribution. Relatedly,

Hartigan and Hartigan (1985) utilize the uniform as the least favorable unimodal distribution

for assessing the power of their dip statistic of unimodality. Tibshirani et al., (2000) further

describe choices for the more ambiguous higher dimensional setting which we present in section

2.3.

The gap statistic is then de�ned as

Gapn(m) = E�
n(log(Wm))� log(Wm) (11)

where E�
n denotes expectation under a sample size of n from the null referent distribution; it

is necessary to prescribe the sample size in view of the adaptive nature of many clustering

algorithms. Motivation for the de�nition (11) is provided by Tibshirani et al., (2000). The

optimal number of clusters m̂ is determined by maximizing Gapn(m) after accounting for

sampling variation by using a \one standard error rule" akin to that employed in CART

(Breiman et al., 1984). The computational procedure is as follows:

1. Using the chosen clustering algorithm, cluster the observed data varying the total number

of clusters (m = 1; 2; : : : ;M) giving within dispersion measures Wm.

2. Generate B reference datasets using the uniform prescription. Repeat step 1 on each,

giving within dispersion measures W �
mb; m = 1; 2; : : : ;M; b = 1; 2; : : : ; B.

3. For each m, compute the estimated gap statistic

Gap(m) = (1=B)
X
b

log(W �
mb)� log(Wm): (12)
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4. Let �l = (1=B)
P

b log(W
�
mb). Compute the standard deviation of log(W �

m)'s as sdm =

[(1=B)
P

b(log(W
�
mb)� �l)2]1=2, and de�ne sm = sdm

q
1 + 1=B.

5. Choose the number of clusters via

m̂ = min
m
fGap(m) � Gap(m + 1)� sm+1g: (13)

2.3 Two-Dimensional Clustering

Breakpoint data are, in fact, paired { here each patient has breakpoints within both the TEL

and AML1 intronic regions. Wiemels et al., (2000) examine whether there is corresponding

two-dimensional clustering by extending their averaged nearest neighbor methods. They also

are concerned with independence of TEL and AML1 breakpoints. This is pursued by discretiz-

ing �fth nearest neighbor distances and using contingency table methods which is seemingly

both oblique and ine�cient. We directly evaluate breakpoint correlation with attendant non-

parametric BCa 95% bootstrap con�dence intervals (Efron and Tibshirani, 1993).

With regard clustering, some of the above approaches generalize to two dimensions whereas

others do not. The gap statistic readily handles arbitrary dimensions, although there are issues

surrounding choice of an appropriate referent distribution. As demonstrated by Theorem 2

of Tibshirani et al., (2000), unlike the one-dimensional case, there is no longer a generally

applicable, least favorable referent distribution. This reects the need to accommodate the

\shape" (covariance structure) of the data at hand. As an ad hoc means of achieving this they

propose, for step 2 of the procedure given in section 2.2.2, generating independent uniform

margins over the principal components of the data. This is e�ected using the singular value

decomposition. In our setting of n patients contributing paired breakpoint data this works

as follows. Designate the n � 2 matrix of breakpoints X. Sweep out the column means and

compute the singular value decomposition X = UDV T . Then transform via X? = XV and

draw independent uniform margins Z? over the column ranges of X?. Finally create reference

data by backtransformation Z = Z?V T . By way of contrast, we also investigate ignoring shape

information and obtaining reference data by simply generating independent uniform margins
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for each dimension.

Extending Silverman's smooth bootstrap procedure is problematic since the absence of order

in R2
+ precludes relating N(f̂h) to bivariate kernels with bandwidth h = (h1; h2). In the related

setting of testing unimodality, Hartigan and Hartigan (1985) propose using minimal spanning

trees to impose order in two or more dimensions. It is unclear whether such an approach is

practicable for the smoothed bootstrap.

The scan statistic itself is readily generalized to two dimensions, albeit with the constraint that

the cluster regions evaluated are rectangles. Let Xi = (Xi1; Xi2); x = (x1; x2) and d = (d1; d2)

and de�ne Nx;x+d as the number of Xi in the region (x1; x1+d1)� (x2; x2+d2). Then the scan

statistic is

Nd1;d2 = sup
x1;x2

Nx;x+d (14)

By de�ning a convenient ordering, Loader (1991) obtains two-dimensional distributional ap-

proximations. The main result is

PrfNd1;d2 � kg =
n2 d1 d2 (1� d1)(1� d2)�

3

(1� d1d2)3(1 + �)
b (k;n; d1d2)(1 + o(1)) (15)

where now � = (k�n d1 d2)=n d1 d2 and b is the binomial probability mass function as previously.

Again, requiring � > 0 restricts to k > n d1 d2, the expectation under uniformity. Loader

(1991) also provides (i) edge corrections that improve accuracy, at least for select d1; d2 and

(ii) generalization to the unknown d1; d2 case. Both these extensions are applied in evaluating

clustering of paired TEL-AML1 breakpoints in the next section.

3 Results

3.1 One Dimensional Clustering: Univariate Breakpoints

Considering TEL and AML1 breakpoints separately, and using average kNN statistics for

k = 1; : : : ; 5, Wiemels et al., (2000) obtain (via Monte Carlo simulation) signi�cant indications
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of clustering for k = 3; 4 (TEL) and k = 2; 4; 5 (AML1) (see their Table 1). The fact that

the most signi�cant results obtained with k = 3 (TEL) and k = 2 (AML1) is used to infer

that multiple clusters exist. In both cases, combining over k and correcting for multiple

comparisons was used to declare the presence of signi�cant overall clustering. The locations of

the clusters, along with accompanying claims of signi�cance, were then determined via kernel

density estimation as per Figure 2.

For the reasons presented in section 2.1 we reevaluate these clusters using scan or minimum

kNN statistics. The identi�ed clusters furnish the quantities d and k, permitting approximate

p-value determination using large deviations (8) or the Hu�er and Lin (1997) moment match-

ing schemes in conjunction with (3) as described in section 2.1. The results are presented in

Table 1. The cluster index (�rst column) for TEL and AML1 corresponds to the respective

clusters identi�ed and labeled in Figure 2. We see that only the second AML1 cluster emerges

as signi�cant with marginal results for the second TEL cluster and third AML1 cluster. For

the moment approximations, evaluation of the third and fourth AML1 clusters made recourse

to simulation based on the minimum kNN formulation, since, as previously mentioned, the

approximations are not available for such small clusters. Similarly, the large deviation approx-

imation breaks down for the fourth cluster. The agreement among the approximations is good,

especially for small tail probabilities. This is consistent with the simulation results of both

Hu�er and Lin (1997) and Loader (1991).

In applying the scan statistic in this fashion it is important to note that the parameter d has

been speci�ed so as to correspond exactly to the respective clusters as identi�ed by Wiemels

et al., (2000). If instead we treat d as unknown and optimize using the likelihood ratio test

prescription of Loader (1991) (Theorem 2.2) we obtain the following results. For TEL break-

points, the most signi�cant cluster consists of the �ve breakpoints labeled 13 through 17 in the

top panel of Figure 1 and Figure 2A, with large-deviation p-value of 0.12. That this exceeds

the p-value for the overlapping 2nd TEL cluster in Table 1(a) is due to accommodating the

adaptation involved in �nding the optimal d. For AML1 the optimal cluster consists of the

eight breakpoints labeled 14, 9, 2, 15, 17, 1, 12, 20 in Figure 2B, with p-value 0.0095. By

combining clusters 2 and 3 from Table 1(b) a much more signi�cant result is obtained, despite

14



allowing for the optimization.

Results from applying Silverman's smoothed bootstrap method for determining the number of

modes are presented in Table 2. For TEL, the critical bandwidth for testing H1
0 (at most one

mode) versus H1
1 (two or more modes) is h�1 = 6401 with a corresponding p-value of 0.4, so

we terminate the series of hypothesis tests and conclude that the data is unimodal, consistent

with Figure 3(a). For AML1 however, we reject H1
0 in favor of H1

1 { the critical bandwidth

h�1 = 151383 being comparable to the range of the AML1 breakpoints (167611) { and proceed

to evaluating H2
0 (at most two modes) versus H2

1 (three or more modes). Here we obtain

a marginal result (p = 0.073) and so, in accord with the recommendations of Izenman and

Somner (1988), continue testing. Note that the critical bandwidth h�2 = 64752 interpolates

the Sheather-Jones bandwidths (56792 - STE; 82829 - DPI) as is apparent from the densities

in Figure 3(b): the density corresponding to h�2 has a shoulder which on further decrease in

bandwidth would give rise to a (third) mode as exempli�ed by the STE density.

Gap statistics results for m = 1; : : : ; 5 are presented in Figure 4. The m̂ values obtained for

TEL and AML1 are m̂ = 1 and m̂ = 3 respectively. Thus, the gap statistic suggests that a

single cluster/mode is indicated for TEL breakpoints, while 3 clusters are indicated for AML1

breakpoints.

So, synthesizing results from the various approaches to appraising one-dimensional clustering,

we see consistency with regard TEL breakpoints: a single cluster/mode is all that is supported.

The situation is less clear with regard AML1 breakpoints with the scan statistic only a�rming

one of the four clusters identi�ed by Wiemels et al., (2000), Silverman's smoothed bootstrap

suggesting 2 (possibly 3) clusters, and the gap statistic indicating three clusters. The latter

disparity is perhaps attributable to the cited conservatism of the smoothed bootstrap proce-

dure. We thought further reconciliation of these results could be obtained by re-evaluating the

scan statistic for the clusters identi�ed by the other approaches. This is because most of the

clusters identi�ed by Wiemels et al., (2000) kernel density estimation were small due to the

small prescribed bandwidths and hence potentially specious. However, this re-evaluation did

not change the picture (irrespective of the scan statistic approximation method used): only
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the eight breakpoints previously itemized as yielding the best cluster when optimizing over d

emerged as a signi�cant cluster. We further discuss these discrepancies between approaches in

more general terms in section 4.

3.2 Two-Dimensional Clustering: Bivariate Breakpoints

Interestingly, TEL and AML1 breakpoints are not correlated: � = �0:036, 95% nonparametric

bootstrap BCa interval (-0.72, 0.31). However, this obviously does not imply an absence

of bivariate clustering. We commence evaluation of two dimensional clustering by applying

the gap statistic. Whether we use referent data based on uniform margins with or without

transforming according to the singular value decomposition, we obtain the same result as to

the optimal number of clusters: m̂ = 3. This equivalence is not surprising in view of the above

lack of dependence. Furthermore, the resultant three clusters (as determined using a variety of

clustering algorithms with Euclidean distances) coincide with clusters based on AML1 alone;

see Figure 5 and note the extensive range of within cluster TEL breakpoints.

The 3 clusters so identi�ed were used as a basis for prescribing interval lengths (d1; d2) for

the two-dimensional scan statistic (14), the signi�cance of which was assessed using the edge

corrected re�nement of (15). None of the clusters attained signi�cance with respective p-values

of 0.24, 0.22 and 0.72. As described in section 4, this disparity likely reects the global nature

of the gap statistic. It remains possible that optimizing the choice of (d1; d2) would detect a

signi�cant cluster. Using the result in Theorem 3.2 of Loader (1991) we obtain a p-value of

0.005 for optimized (d1; d2) corresponding to the 4 boxed breakpoints in Figure 5. The very

small size of this and the closest sub-optimal clusters (k = 3) makes their biological meaning

questionable.
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4 Discussion

As delineated in section 2, the three methods employed di�er with respect to establishing

existence of a cluster (scan statistic) versus determining the number of clusters (smoothed

bootstrap, gap statistic). This is reected in the extent to which the methods are global

(i.e., utilize all the data) or local (i.e., e�ectively condition on individual clusters). The gap

statistic is the most global approach as it is based on an exhaustive and exclusive clustering

all breakpoints, implicit in step 1 of the algorithm outlined in section 2.2.2. Thus, the gap

statistic estimates m̂ = 3 AML1 clusters, despite only one of these being signi�cant according

to the scan statistic, since this provides the optimal number of groups for partitioning all the

breakpoints. The gap statistic is not designed to extract individual clusters.

Conversely, the scan statistic which is so designed, is the most local approach. Given an optimal

cluster (in either the d known or unknown case), it is only the number, and not the distribution

of points, outside that cluster that a�ects signi�cance. Silverman's smoothed bootstrap testing

is an intermediary approach. While a more local version would seemingly result from use

of variable bandwidth smoothing, this would complicate the one-to-one relationship between

bandwidth and number of modes, upon which the methodology relies. implementing such an

approach is prohibitive.

In light of these distinctions, we view the scan statistic as the frontline method for evaluating

clustering of translocation breakpoints. This is because the underlying biologic interest is in

identifying (and subsequently validating/testing) local regions susceptible to breakage. The

exhaustive clustering of all breakpoints is not an objective in this context. Nonetheless, the gap

statistic and smoothed bootstrap provide useful complements. By identifying the collection

of modes, the smoothed bootstrap procedure can pinpoint suboptimal clusters (secondary

modes) for evaluation via the scan statistic. In two dimensions, where the smoothed bootstrap

is unavailable and the scan statistic is limited to appraising rectangular regions (Loader, 1991),

the gap statistic is useful for initial extraction of potential clusters.

As illustrated, the utility of the scan statistic is greatly enhanced by the availability of accurate
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approximations. It is the case, however, that because of the typically small sample sizes

encountered with translocation breakpoint studies coupled with the fact that data is at most

two dimensional, evaluation of signi�cance by recourse to simulation is straightforward. This is

especially pertinent with respect to the Hu�er and Lin (1997) moment based approximations,

which are reliant on the symbolic mathematics package MAPLE.

In settings where an exhaustive clustering of all objects is desired we believe the gap statistic

has merit in view of the properties previously itemized. The analysis of cDNA microarray

data has made extensive use of a variety of such clustering algorithms. A number of ad hoc

procedures for determining the number of clusters have emerged; see e.g., Bittner et al., (2000).

The easily implemented gap statistic provides a compelling addition.

Extensions to be investigated for studying translocation breakpoints include (a) devising meth-

ods for appraising whether there is common breakpoint clustering across di�ering patient

groups, and (b) utilizing sequence database search methods (e.g., Altschul et al., 1997) for

assessing whether characteristic breakpoint motifs are elsewhere associated with translocation

and gene fusion.
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Table 1: Scan Statistic P-Values

(a) TEL Breakpoints

Approximation Method

Cluster Markov Compound Large
Chain Poisson Deviation

1 0.585 0.588 0.716

2 0.097 0.097 0.097

3 0.325 0.327 0.347

(b) AML1 Breakpoints

Approximation Method

Cluster Markov Compound Large
Chain Poisson Deviation

1 0.423 0.424 0.480

2 0.021 0.021 0.021

3 0.126y 0.126y 0.195

4 0.526y 0.526y 0.526y

y: obtained via simulation (see text).



Table 2: Smooth Bootstrap Results

TEL Breakpoints

Number Critical P-value
of Modes Bandwidth

1 6401 0.405

AML1 Breakpoints

Number Critical P-value
of Modes Bandwidth

1 151383 0.001

2 64752 0.073

3 35207 0.395



Figure Captions

Figure 1: Breakpoint locations within the TEL and AML1 genes. The shaded boxes represent

exons of the respective genes. In both panels the scale is in base pairs. The data are

paired with the numerals above each arrow showing breakpoint location being a patient

identi�er.

Figure 2: A: TEL breakpoint locations with corresponding gaussian kernel density estimate

and 95% pointwise con�dence envelope (see text). Starred numerals designate the puta-

tive clusters re-evaluated in Table 1. B: Same for AML1.

Figure 3: Breakpoint density estimates using Sheather-Jones bandwidths: (a) TEL break-

points: the densities using either the direct plug-in (DPI) rule or solve-the-equation

(STE) rule coincide; (b) AML1 breakpoints: in addition to the DPI and STE estimates,

the density corresponding to h�2 = 64752 is displayed.

Figure 4: Gap statistic estimates and standard errors: (a) TEL breakpoints; (b) AML1 break-

points.

Figure 5: Bivariate breakpoint clustering. Breakpoints are plotted as numerals, designating

which of the 3 gap statistic derived clusters they belong to. The dashed box contains

the cluster deemed optimal by using the two-dimensional scan statistic with unknown

(d1; d2) (see text).
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