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The number of individuals experiencing age-related cognitive decline will 

increase as the population of older adults continues to rise, with the fastest growing 

segment being oldest-old adults aged 85+ years. These cognitive deficits can be at least 

partly attributed to age-related declines in the underlying neural substrates (e.g., white 

matter microstructure), which can be measured in living individuals using magnetic 

resonance imaging (MRI). However, MRI studies examining the association between 

cognitive and brain aging across the older adult lifespan rarely use samples that extend 

into advanced age. To address this limitation, this dissertation studied neurocognitive 

aging within oldest-old adults using diffusion MRI and integrative review methodologies. 

Chapter 1 used traditional single tensor diffusion imaging to examine the linearity of age-

related declines in white matter microstructure across 108 adults ages 65-98 years. 

Results indicated accelerated brain-wide white matter microstructure degradation into 

advanced age, with medial temporal white matter microstructure mediating the negative 

effect of age on episodic memory performance. Chapter 2 used more advanced 

multicompartment diffusion imaging to assess relations between white matter 
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microstructure and associative learning performance within a subset of 22 oldest-old 

adults from Chapter 1. Results indicated preserved associative learning abilities into the 

10
th

 decade of life that were supported by better microstructure of white matter 

connections between the prefrontal cortex and dorsal striatum. Findings from Chapters 1 

and 2 were independent of diagnoses of cognitive impairment no dementia in oldest-old 

adults, suggesting that they were not driven by advanced age-related cognitive 

dysfunction. Finally, Chapter 3 examined whether these findings align with those from 

other MRI studies of oldest-old adults as well as predictions of select neurocognitive 

aging theories. Despite there being some continuity across the older adult lifespan, results 

indicated that older adults also have unique cognitive and neural profiles during the 

eighth through tenth decades of life. Together, this collection of findings (1) supports the 

notion that advanced age affects white matter microstructure and in turn cognitive ability 

and (2) highlights the importance of considering oldest-old adults in modern 

neurocognitive aging research. 
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General Introduction 

 The number of individuals over age 65 will double over the next 30 years (United 

Nations, 2010), which will result in an increase in the number of individuals suffering 

from Alzheimer’s disease and related dementias. But declines in cognitive abilities are 

also a hallmark feature of normal aging and are evident even in older adults without 

clinical evidence of cognitive impairment or dementia. Across cognitive domains, some 

of the largest deficits are seen for learning and memory processes (Park and Reuter-

Lorenz, 2009), which have been attributed to age-related declines in brain structure and 

function using magnetic resonance imaging (MRI) techniques (Hartel and Buckner, 2006; 

Tromp et al., 2015; Young et al., 2020). These types of MRI studies are critical for 

identifying neural biomarkers that can be used for the early detection of cognitive 

impairment and predicting the trajectory of age-related cognitive decline.  

Despite representing the fastest growing segment of the population (He and 

Muenchrath, 2011; Houser, A., Fox-Grage, W., and Ujvari, 2012), however, oldest-old 

aged ~80+ years are rarely included in MRI studies examining neurocognitive aging. Of 

the handful of MRI studies using samples extending into advanced age, most have 

focused on the disease-related neural changes seen in oldest-old adults with cognitive 

impairment or dementia (Corrada et al., 2010, 2008; Yang et al., 2013). Even less is 

known about oldest-old adults without dementia, 50% of whom have no evidence of 

brain pathologies (Kawas et al., 2015). Consequently, much remains to be discovered 

about neurocognitive aging in this advanced age group, which is a primary goal of this 

dissertation.  
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 One neural substrate contributing to cognitive performance across the lifespan is 

the microstructural composition of white matter tissue, which is comprised of fiber 

bundles of myelinated axons that connect gray matter regions (e.g., neuronal cell bodies, 

dendrites). Healthy white matter contributes to efficient neurotransmission by 

propagating action potentials between neurons in a rapid and synchronous manner, which 

ultimately benefits cognitive functioning (Salat, 2011). In older adults, however, the 

cortical disconnection hypothesis proposes that age-related degradation of white matter 

interferes with the transmission of neural signals between brain regions, thereby resulting 

in cognitive dysfunction (Bartzokis, 2004; O’Sullivan et al., 2001). Nonetheless, white 

matter is relatively less studied than its gray matter counterpart, despite constituting 

~50% of neural tissue (Fields, 2010) and being relatively more affected by age (e.g., 

Giorgio et al., 2010). As such, additional studies examining white matter microstructure 

and its relation to cognition are necessary to obtain a more holistic understanding of 

neurocognitive aging, especially within the oldest-old. 

One of the specific aims of this dissertation is to further our understanding of 

neurocognitive aging in the oldest-old using diffusion-weighted imaging (DWI), which is 

an MRI technique that assesses the microstructural composition of white matter in vivo. 

In healthy white matter, the movement of water is restricted by microstructures like 

axonal membranes and myelin, which causes water to move freely along the length of a 

white matter pathway rather than perpendicular to it (Beaulieu, 2002; Jones, 2008; Jones 

et al., 2013; Mori and Zhang, 2006). DWI capitalizes on these properties to provide 

estimates of the rate and degree of restricted water movement along these white matter 
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pathways (Beaulieu, 2002; Jones, 2008; Mori and Zhang, 2006). Here, DWI was used to 

assess the linearity of age-related differences in white matter microstructure and its 

relation to episodic memory across the entire older adult lifespan (Chapter 1) as well as 

the contribution of white matter microstructure to associative learning performance 

within oldest-old adults (Chapter 2). Chapter 3 then integrates these findings with those 

reported by other MRI studies using advanced age groups and examines whether they 

would be predicted by modern theories of neurocognitive aging.  

Chapter 1 assessed white matter aging across the brain within older adults ages 

65-98 years, including oldest-old adults diagnosed with cognitive impairment no 

dementia. This study used traditional single tensor diffusion imaging (DTI), which fits a 

single tensor (stick) to each voxel to estimate the degree of restricted water diffusion or 

the rate of diffusion (Beaulieu, 2002; Jones, 2008; Jones et al., 2013; Mori and Zhang, 

2006). In contrast to earlier DTI work examining age effects on white matter 

microstructure separately within younger-old (ages 65-80 years) or oldest-old (ages 80+ 

years) adults, a simultaneous investigation of these effects across both age groups may 

reveal more accelerated effects of normal aging in the oldest-old. Larger age effects on 

microstructure in the 10
th

 decade of life may also reflect the higher prevalence of 

cognitive impairment and dementia-related pathologies in advanced age. The chapter 

concludes by testing whether white matter microstructure predicts episodic memory 

performance, which was measured using a standard neuropsychological list learning task. 

Results are expected to demonstrate that advanced age has widespread and nonlinear 
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effects on white matter microstructure that accounts for episodic memory declines across 

the older adult lifespan. 

Chapter 2 used a more advanced multicompartment diffusion imaging approach 

called Neurite Orientation Density and Dispersion Index (NODDI; Zhang et al., 2012) to 

assess the relation between white matter microstructure and performance on a laboratory-

based measure of associative learning within a subset of 22 oldest-old adults from 

Chapter 1. Associative learning refers to the ability to extract predictable relationships 

among events in the environment, such as meeting new people or learning a new 

technology (Lieberman, 2000; Seger, 1994). Studies using NODDI within younger-old 

adults have previously demonstrated greater sensitivity to cognitive performance than 

traditional DTI (Radhakrishnan et al., 2020; Venkatesh et al., 2020), which may be due to 

the way that NODDI provides separate estimates of intracellular (restricted), extracellular 

(dispersed), and free (unrestricted) water diffusion within a single voxel. This study 

focuses on the fornix and internal capsule as white matter regions of interest because they 

connect gray matter regions shown to be active while younger age groups engage in 

associative learning (i.e., hippocampus, striatum, prefrontal cortex). In support of the 

notion that these regions are critical to associative learning across the lifespan, results are 

expected to demonstrate that oldest-old adults with lower microstructure in these regions 

show minimal evidence of associative learning, whereas individuals with higher 

microstructure have better associative learning performance.  

Chapter 3 examines how other MRI studies in oldest-old adults have contributed 

to our understanding of brain and cognitive aging in the oldest-old by reviewing their 
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findings within the context several theories of neurocognitive aging. Because these 

theoretical predictions were derived from cohorts of younger-old adults, it is possible that 

they may not generalize into advanced age, particularly because oldest-old adults have 

more advanced brain aging and an increased prevalence of cognitive impairment and 

dementia-related pathologies. It is also possible that cognitively normal oldest-old adults 

represent a unique group of individuals who are aging more successfully than the general 

older adult population. This integrative literature review is expected to demonstrate that 

older adults exhibit different cognitive and neural profiles during the eighth through 10
th

 

decades of life. If so, modern neurocognitive aging theories may need to be modified to 

account for the heterogeneity in brain and cognitive aging that occurs in the oldest-old.  

Taken together, this body of work lays the groundwork for future MRI studies 

examining advanced neurocognitive aging by furthering our understanding about the 

aging of white matter microstructure and its utility in predicting memory and learning 

performance in oldest-old adults. The findings from this dissertation, along with those 

from future MRI studies in the oldest-old, will ultimately inform effective interventions 

designed to delay and prevent normal age-related cognitive decline. Moreover, given the 

increased prevalence of cognitive impairment in this advanced age group (Brookmeyer et 

al., 2017; Corrada et al., 2008), this collection of studies will also contribute to the early 

identification of older individuals at risk for Alzheimer’s disease and related dementias. 
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Chapter 1: Age Affects White Matter Microstructure and Episodic Memory Across 

the Older Adult Lifespan 
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Abstract 

Diffusion imaging studies have observed age-related degradation of white matter that 

contributes to cognitive deficits separately in younger-old (ages 65-89) and oldest-old 

(ages 90+) adults. But it remains unclear whether these age effects are magnified in 

advanced age groups, which may reflect disease-related pathology. Here, we tested 

whether age-related differences in white matter microstructure followed linear or 

nonlinear patterns across the entire older adult lifespan (65-98 years), these patterns were 

influenced by oldest-old adults at increased risk of dementia (cognitive impairment no 

dementia, CIND), and they explained age effects on episodic memory. Results revealed 

nonlinear microstructure declines across fiber classes (medial temporal, callosal, 

association, projection/thalamic) that were largest for medial temporal fibers. These 

patterns remained after excluding oldest-old participants with CIND, indicating that 

aging of white matter microstructure cannot solely be explained by pathology associated 

with early cognitive impairment. Moreover, finding that the effect of age on episodic 

memory was mediated by medial temporal fiber microstructure suggests it is essential for 

facilitating memory-related neural signals across the older adult lifespan. 
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Introduction 

White matter plays a crucial role in the transmission and coordination of neural 

impulses between gray matter regions (Salat, 2011). Significant and widespread white 

matter deterioration observed in normal aging results from demyelination, axonal 

shrinkage, decreased fiber density, and gliosis (Bartzokis, 2004; Bowley et al., 2010; 

Peters, 2019, 2002; Peters et al., 2010). Increases in the magnitude and extent of this 

white matter damage in advanced age (> 90 years old) is thought to reflect pathological 

processes associated with a higher prevalence of dementia and white matter disease in 

this age group (Corrada et al., 2010, 2008; Kawas et al., 2015; Wardlaw et al., 2015; 

Yang et al., 2013). However, few studies have assessed white matter aging across the 

older adult lifespan and whether these age effects are driven by individuals with or at risk 

for dementia through the tenth decade of life. 

 The microstructural composition of white matter can be assessed in vivo using 

diffusion tensor imaging (DTI), which measures the jitter (diffusion) of water molecules 

(Beaulieu, 2002; Jones, 2008; Mori and Zhang, 2006). In healthy white matter, 

microstructures such as axonal membranes and myelin restrict the diffusion of water, 

which causes the primary diffusion direction to occur along the length of these structures 

rather than perpendicular to them. DTI measures these diffusion properties to provide 

estimates of the degree of restricted diffusion (fractional anisotropy; FA) and the average 

rate of diffusion parallel (axial diffusivity; AD) or perpendicular (radial diffusivity; RD) 

to the primary diffusion direction (Beaulieu, 2002; Jones, 2008; Jones et al., 2013; Mori 

and Zhang, 2006).  
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DTI studies in healthy younger-old adults without dementia (i.e., ages 60-89) 

report a relatively consistent pattern of linear age-related decreases in FA and increases in 

both AD and RD, with the magnitude of these effects varying by fiber class. That is, the 

largest age-related differences are seen in the fornix (de Groot et al., 2016; Kochunov et 

al., 2007; Lövdén et al., 2013), a medial temporal region that connects the hippocampus 

to cortical regions, and the genu of the corpus callosum (Barrick et al., 2010; Lövdén et 

al., 2013), a callosal region that connects frontal cortex in the left and right hemispheres. 

Large age effects are also observed within association fibers that connect cortical gray 

matter regions within the same hemisphere (e.g., external capsule)(Cox et al., 2016; 

Lövdén et al., 2013). However, projection and thalamic fibers that connect cortical gray 

matter regions to the spinal cord (e.g., corona radiata) and thalamus (e.g., thalamic 

radiations), respectively, show minimal age effects (Cox et al., 2016; de Groot et al., 

2016; Lövdén et al., 2013). These regional variations have also been observed in DTI 

aging studies across the lifespan (Bendlin et al., 2010; Cox et al., 2016; Giorgio et al., 

2010; Hsu et al., 2010; Hugenschmidt et al., 2008; Isaac Tseng et al., 2020; Kennedy and 

Raz, 2009; Kochunov et al., 2012; Lebel et al., 2012; Malykhin et al., 2011; Michielse et 

al., 2010; Mooij et al., 2018; Stadlbauer et al., 2008a, 2008b; Westlye et al., 2010; Xie et 

al., 2016). 

Of note, very few DTI studies of healthy older adults without dementia have 

included a sizeable number of individuals beyond 90 years of age (c.f., Beck et al., 2021; 

de Groot et al., 2016), where the high prevalence of dementia-related cognitive 

impairment and white matter disease may magnify the effect of aging on microstructure 
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(Yang et al., 2013). We focused on nonagenarians in a previous study (n = 94; Bennett et 

al., 2017), finding the largest age-related microstructure differences (decreased FA, 

increased diffusivity) in medial temporal (fornix) and callosal (splenium) regions, 

comparable to what is seen in younger-old adults, except that it was the splenium and not 

genu of the corpus callosum that was affected within the oldest-old. Importantly, these 

age-microstructure relationships did not differ between cognitively normal oldest-old 

adults and those diagnosed with cognitive impairment no dementia (CIND). However, 

because this earlier study did not include a younger-old comparison group, it remains 

unknown whether age is linearly related to white matter microstructure across the full 

extent of the older adult lifespan or whether there are nonlinear age effects on 

microstructure that may reflect disproportionate increases in normal age or disease-

related pathology in advanced age.  

To address this gap, the current study recruited 108 individuals across the older 

adult lifespan (65-98 years), including nonagenarians from The 90+ Study (Kawas and 

Corrada, 2006), who underwent diffusion imaging and completed an episodic memory 

task. Our first aim tested whether the effect of age on white matter microstructure was 

better explained by linear or nonlinear models. We hypothesized that more extensive 

white matter damage in advanced age would be seen as nonlinear effects of age on white 

matter microstructure, with the largest age-related differences in medial temporal and 

callosal fiber classes. Our second aim tested whether these relationships were affected by 

oldest-old adults diagnosed with CIND. We hypothesized that the age-microstructure 

relationships would not differ after excluding oldest-old adults diagnosed with CIND, 
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consistent with our previous work in nonagenarians (Bennett et al., 2017), suggesting that 

these microstructure measures are capturing normal aging processes rather than 

pathology associated with early cognitive impairment. Our third aim was to assess the 

functional relevance of white matter aging, focusing on relationships between medial 

temporal microstructure and episodic memory given our interest in early cognitive 

impairment (Bastin and Salmon, 2014; Jahn, 2013).   

Method 

Participants 

We recruited a total of 110 older adults (65-98 years, 64 female). Seventy-nine 

younger-old adults (65-92 years, 46 female) from the Riverside community voluntarily 

responded to online and print advertisements. Thirty-one oldest-old adults (90-98 years, 

18 female) were a subset selected from current participants in The 90+ Study, a 

longitudinal study of aging and dementia in the oldest-old (see Kawas and Corrada, 2006 

for additional details), who had not previously received a diagnosis of dementia. All 

participants were screened for conditions that would prevent them from being able to 

enter the magnetic resonance imaging (MRI) scanner (e.g., having ferrous metal 

implants). Younger-old participants were further screened for self-reporting major 

neurological (e.g., mild cognitive impairment, dementia, stroke), mental health (e.g., 

depression, schizophrenia), or medical (e.g., diabetes, emphysema) conditions. Oldest-old 

participants underwent a thorough neurological, physical, and neuropsychological 

evaluation by trained examiners. One younger-old adult with whole-brain microstructure 

measures > 4 standard deviations from the mean of their age group and one oldest-old 
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adult with a cortical mass that covered large portions of parietal white matter were 

excluded from all analyses. Demographic and neuropsychological data for the final 

sample of 108 participants can be found in Table 1.  

This study was conducted in compliance with the Institutional Review Boards for 

the University of California, Riverside and Irvine. Each participant provided informed 

consent and was compensated for their participation.  

Cognitive Status 

For the oldest-old only, diagnoses of cognitively normal (n = 20) and cognitive 

impairment no dementia (CIND; n = 9) were made by a trained clinician based on 

cognitive or functional losses that were not of sufficient severity to meet the Diagnostic 

and Statistical Manual of Mental Disorders, 4th edition criteria for dementia (American 

Psychiatric Association, 1994; Graham et al., 1997). The clinical evaluation was missing 

for one oldest-old participant who was included in the CIND group because they scored 

25 on the Mini Mental State Examination (MMSE; Folstein et al., 1975). These data are 

presented in Table 1. 

General cognitive status was assessed in the younger-old sample using the 

Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005), although no 

participant was excluded based on these scores because of our interest in early cognitive 

impairment. 

Episodic Memory Task 

Episodic memory was assessed using the Rey Auditory Verbal Learning Task 

(RAVLT; Rey, 1941). Participants listened to and recalled a list of 15 words (List A) 
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across five separate trials followed by a second list of 15 words (List B) for a single trial. 

Delayed recall was measured as the number of words correctly recalled from List A after 

30 minutes. Finally, participants listened to a list of words containing all items from Lists 

A and B (n = 30) and words that are phonetically or semantically similar (n = 20) and 

were asked to indicate whether a word was previously presented on List A. Recognition 

memory performance was measured as the difference between the number of words 

correctly (Hits) and incorrectly (False Alarms) classified as being present on List A. 

Recognition data was not obtained from one younger-old participant due to time 

constraints.  

Structural Image Acquisition 

Structural imaging data were acquired using a 3T Siemens Prisma MRI scanner 

fitted with a 32-channel head coil at the University of California, Riverside (younger-old 

sample) or the University of California, Irvine (oldest-old sample).  

A single high-resolution T1-weighted image (magnetization-prepared rapid 

gradient-echo sequence, MPRAGE) was acquired with the following parameters: echo 

time (TE) / repetition time (TR) = 2.72 / 2400 ms, field of view (FOV) = 256 × 256 × 208 

mm, matrix size of 320 x 320 x 260, voxel size = 0.8 mm
3
, a Generalized Autocalibrating 

Partially Parallel Acquisitions (GRAPPA) acceleration factor of 2, 208 axial slices, scan 

time = 6:28.  

Whole brain diffusion-weighted MRI data were acquired with a diffusion-

weighted single-shot spin-echo, echo planar imaging (EPI) sequence with the following 

parameters: TE / TR = 102 / 3500 ms, FOV = 212 × 182 mm
2
, matrix size of 128 × 110, 
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voxel size = 1.7mm
3
, multiband factor = 4, 64 slices with no gap, scan time = 16:12. 

Bipolar diffusion-weighting gradients were applied in 64 directions with b values of 1500 

s/mm
2
 and 3000 s/mm

2
 with 3 b = 0 images. The multiband factor used here was based 

on the Human Connectome Project (HCP) protocol (Glasser et al., 2016; Harms et al., 

2018), with any potential reductions in the signal to noise ratio offset by increasing the 

voxel size.  

Diffusion Imaging Data 

Preprocessing. For each participant, diffusion data were preprocessed using 

AFNI (Analysis of Functional NeuroImages; Cox, 1996) to remove non-brain tissue and 

generate a whole-brain mask and FSL (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl) to correct for head movement and eddy-current induced 

distortions. FSL’s DTIFIT was then used to estimate a single diffusion tensor for each 

voxel, using data from both b values, with the whole-brain mask limiting tensor fitting to 

brain tissue. The output included voxel-wise images for FA, AD (λ1), and RD (λ2 + λ3 / 

2). 

Diffusion data from the full sample (78 younger-old, 30 oldest-old) is reported 

here without correction for EPI distortions. In a subset of primarily younger-old 

participants (78 younger-old, 8 oldest-old), a second diffusion sequence was acquired 

with phase-encoding directions of opposite polarity, which allowed for EPI distortion 

correction (FSL’s TOPUP). To assess the impact of this preprocessing step, 

microstructure measures (FA, AD, and RD) were separately extracted from both the non-

EPI-corrected and EPI-corrected data within a white matter mask (the mean FA skeleton) 
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for this subset of participants. We then computed a traditional Pearson R value between 

these datasets, separately for each diffusion metric. Importantly, we observed strong 

correlations between the non-EPI-corrected and EPI-corrected data for each metric (R ≥ 

0.88, p ≤ 0.0001), providing confidence that the results reported here would be 

comparable to those found with EPI-corrected data. 

Region Segmentation. We used Tract Based Spatial Statistics (TBSS; Smith et 

al., 2006) to identify the locally maximal FA values within white matter common to all 

participants (mean FA skeleton). Each individual’s FA map was first nonlinearly aligned 

to the FMRIB58_FA template in Montreal Neurological Institute 152 standard space. The 

mean of all aligned FA volumes was then used to create an average white matter skeleton 

specific to this sample, using a threshold of 0.2 to exclude voxels that contained minimal 

white matter. The aligned and thresholded FA images from each participant were 

projected onto the mean FA skeleton. The mean skeleton was then multiplied by a 

binarized standard white matter atlas to limit analyses to regions contained within the 

JHU ICBM-DTI-81 white matter labels atlas in FSL (Mori et al., 2008). Finally, the 

TBSS non-FA pipeline was used to register each participant's AD and RD images to the 

mean FA skeleton in FMRIB58_FA 1mm
3
 space. 

This approach resulted in 15 skeletonized standard regions of interest (excluding 

brainstem and cerebellar regions) from the following fiber classes: medial temporal 

(fornix body, fornix cres, hippocampal cingulum, uncinate fasciculus), corpus callosum 

(genu, body, splenium), association (superior cingulum, external capsule, inferior sagittal 

stratum, superior longitudinal and fronto-occipital fasciculi) and projection/thalamic 
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(corona radiata, internal capsule, posterior thalamic radiations). These classes were based 

on anatomical standards (Wakana et al., 2004; Wycoco et al., 2013).   

 Microstructure measures. Measures of white matter microstructure were 

extracted from standard regions of interest for each participant by binarizing each 

skeletonized standard region and multiplying it by the corresponding microstructure map 

(FA, AD, RD). Mean microstructure values were converted to z-scores for each region 

and then averaged across regions within the same fiber class (medial temporal, callosal, 

association, projection/thalamic) for each participant. Analyses of individual regions are 

provided in Supplementary Table 1 (Appendix A). 

Controlling for hyperintense white matter. To assess the potential effect of 

white matter hyperintensities, we replicated all analyses using microstructure measures 

that were limited to normal appearing white matter within the white matter skeleton. A 

white matter mask that excludes hyperintense tissue was generated on each participant’s 

MPRAGE image via FSL’s FAST (Zhang et al., 2001), which classifies white matter 

hyperintensities as either grey matter or cerebrospinal fluid due to their low-intensity 

values (Melazzini et al., 2021). We then thresholded each participant’s white matter mask 

(partial volume estimate > 0.5), aligned it to diffusion space using a linear boundary-

based registration with 12 degrees of freedom, and multiplied it by the voxel-wise images 

for each diffusion metric. These microstructure maps were input into the TBSS non-FA 

pipeline to register each participant's diffusion images to the mean FA skeleton in 

FMRIB58_FA 1mm
3
 space. Normal appearing white matter microstructure measures 
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were then extracted from the standard regions of interest for each participant and 

averaged across regions within the same fiber class as discussed above. 

Statistical Analyses 

Analyses were conducted using a combination of SPSS Version 26, Prism 

Version 9, and R-Studio Version 1.1.442. All analyses controlled for sex and education.  

To assess age-related differences in white matter microstructure, linear 

regressions were conducted between chronological age and white matter microstructure, 

separately for each fiber class (medial temporal, callosal, association, 

projection/thalamic) and diffusion metric (FA, AD, RD). Significant effects (coefficients 

of determination, R
2
) survived Bonferroni correction for comparisons across four fiber 

classes, p-values (ps) < 0.013.  

To test whether a nonlinear model better explained the relationship between 

chronological age and white matter microstructure, linear regressions were conducted 

between chronological age squared and white matter microstructure, separately for each 

fiber class and diffusion metric. We then compared model fit between linear (age) and 

nonlinear (age and age squared) models, with better fit indicated by smaller corrected 

Akaike Information Criterion (AICc) and significant likelihood ratio tests (Akaike, 1974; 

Spiess and Neumeyer, 2010; Wagenmakers and Farrell, 2004). To assess the regional 

specificity of these age effects, we also used likelihood ratio tests to compare model fit 

between regions and microstructure measures best fit by a linear or nonlinear model. To 

assess the impact of pathology associated with early cognitive impairment or white 

matter hyperintensities, we then repeated the linear versus nonlinear regression analyses 
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and model comparisons after excluding oldest-old adults with CIND or using 

microstructure measures from normal appearing white matter (i.e., excluding 

hyperintense white matter). 

Finally, we sought to assess the functional relevance of age-related differences in 

white matter microstructure by testing whether medial temporal microstructure mediated 

the effect of age on episodic memory performance. First, separate linear regressions 

related chronological age or age squared to each memory measure (recognition, delayed 

recall) to medial temporal microstructure, separately for each diffusion metric 

(Bonferroni corrected for comparisons across three microstructure measures, p < 0.017). 

As above, model fit was assess using AICc values and likelihood ratio tests. Next, for 

each medial temporal diffusion metric that exhibited significant relationships to memory 

performance, separate mediation analyses conducted using the PROCESS macro for 

SPSS (Hayes and Rockwood, 2017) assessed the indirect effect of age (linear 

relationships) or age squared (nonlinear relationships) on memory performance via white 

matter microstructure using a 95% confidence interval (CI) based on bootstrapping with 

5000 replacements. CIs that did not include zero were considered to be statistically 

significant. These analyses were then repeated to the explore the potential mediating 

effect of other fiber classes. 

Results 

Linear Effects of Age on White Matter Microstructure 

First, we conducted linear regressions to assess the effect of chronological age on 

white matter microstructure (Bonferroni corrected, p < 0.013), separately for each fiber 
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class and diffusion metric. Results revealed that older age was linearly associated with 

decreased FA and increased AD and RD in each fiber class, R2
 > 0.14, ps ≤ 0.001, except 

for AD in the medial temporal fiber class, p = 0.048 (Table 2 and Figure 1; see 

Supplementary Table 1 for individual regions). Importantly, this pattern of results 

remained unchanged when the linear regressions were repeated after excluding oldest-old 

adults with CIND (Table 3) and when using microstructure measures from normal 

appearing white matter (Table 4).  

Nonlinear Effects of Age on White Matter Microstructure 

Next, we conducted linear regressions to assess the effect of chronological age 

squared on white matter microstructure, separately for each fiber class and diffusion 

metric. Results revealed that older age was nonlinearly associated with decreased FA and 

increased AD and RD in each fiber class, R2
 > 0.15, ps ≤ 0.001, except for AD in the 

medial temporal fiber class, p = 0.054 (Table 2 and Figure 1; see Supplementary Table 1 

for individual regions). A similar pattern of results was observed when the linear 

regressions were repeated after excluding oldest-old adults with CIND (Table 3) and 

when using microstructure measures from normal appearing white matter (Table 4). 

A comparison of the linear and nonlinear models for each fiber class revealed 

smaller AICc values for nonlinear models and significant likelihood ratio tests, χ2
 > 3.77, 

ps < 0.05, for medial temporal (FA, RD), association (FA, RD), callosal (FA, RD), and 

projection/thalamic (FA) fiber classes (Table 2 and Figure 1), indicating that age-related 

differences in white matter microstructure from these regions were magnified in 

advanced age. In contrast, smaller AICc values for linear models and non-significant 
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likelihood ratio tests for AD in all fiber classes and for RD in the projection/thalamic 

fiber class, ps > 0.16, suggests that the AD metric and RD in this fiber class were better 

captured by linear age-related differences in white matter microstructure across the older 

adult lifespan. Importantly, this pattern of results remained unchanged when analyses 

were repeated after excluding oldest-old adults with CIND, except that now a nonlinear 

model better explained age-related differences for projection/thalamic RD (Table 3 and 

Figure 1). Moreover, when using microstructure measures from normal appearing white 

matter, the nonlinear model remained a significantly better fit for medial temporal and 

association FA, and callosal RD (Table 4).  

Regional Specificity of Age Effects on White Matter Microstructure 

For each region and diffusion metric better fit by a nonlinear or linear model, we 

then assessed whether the relationship with age differed across fiber classes using 

separate likelihood ratio tests. For FA, results revealed that a nonlinear model was a 

significantly better fit for the medial temporal fiber class relative to all three other fiber 

classes, χ2
 > 47.71, ps < 0.001, for the association and projection/thalamic fiber classes 

relative to callosal fiber class, χ2
 > 19.03, ps < 0.001, and for the association relative to 

projection/thalamic fiber class, χ2
 = 16.18, p < 0.001. Similarly, for RD, results revealed 

that a nonlinear model was a significantly better fit for the medial temporal fiber class 

relative to the association and callosal fiber classes, χ2
 > 45.51, ps < 0.001, and for the 

association relative to the callosal fiber class, χ2
 = 22.71, p < 0.001. For AD, results 

further revealed that the linear model was a significantly better fit for all other fiber 

classes relative to medial temporal fiber class, χ2
 > 7.19, ps < 0.001, for the association 
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relative to callosal and projection/thalamic fiber classes, χ2
 > 9.98, ps < 0.001, and for the 

projection/thalamic relative to callosal fiber class, χ2
 = 21.82, p < 0.001.  

Medial Temporal Microstructure Mediates Age-Memory Relationships 

 Having established a wide-spread effect of age on white matter microstructure, we 

then sought to assess its functional relevance by testing whether it mediated the effect of 

age on episodic memory performance, focusing on medial temporal microstructure. First, 

separate linear regressions were conducted between chronological age and each memory 

measure, controlling for sex and education. As expected, results revealed that older age 

was significantly related to worse recognition, β = -0.43, p < 0.001, and recall, β = -0.28, 

p = 0.001, performance (Figure 2). Smaller AICc values were observed for the nonlinear 

relative to linear model for recognition (linear = 369.6, nonlinear = 367.6) and delayed 

recall (linear = 238.5, nonlinear = 237.8), and the nonlinear model was a significantly 

better fit for explaining age-related differences in recognition memory, χ2
 = 4.56, p = 

0.033. 

Next, linear regressions were conducted between medial temporal microstructure 

and each memory measure (Bonferroni corrected, p < 0.017). For recognition, results 

revealed that better performance was significantly related to higher medial temporal FA, 

β = 0.36, p < 0.001, and lower RD, β = -0.31, p < 0.001, with a nonlinear model better 

explaining the relationship between recognition and medial temporal FA (linear = -55.62, 

nonlinear = -58.90, χ2
 = 4.27, p = 0.039). For delayed recall, results revealed that better 

performance was significantly related to higher medial temporal FA, β = 0.26, p = 0.008, 

and AD, β = 0.23, p = 0.017. Smaller AICc values were observed for the nonlinear 
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relative to linear model for medial temporal FA (linear = -46.55, nonlinear = -46.94), but 

the nonlinear model did not significantly better explain age-related differences in delayed 

recall, p = 0.137. 

 Finally, for each medial temporal diffusion metric that was significantly related to 

memory performance, we tested whether white matter microstructure mediated the linear 

(recall) or nonlinear (recognition) effect of age on that memory measure (Figure 3 and 

Table 5). Results revealed that only AD in the medial temporal fiber class significantly 

mediated the linear relationship between age and delayed recall. Of note, a similar pattern 

of results was observed after excluding oldest-old adults with CIND, except that medial 

temporal FA also mediated the nonlinear relationship between age and recognition 

memory. Similar results were observed when analyses using microstructure measures 

from normal appearing white matter and effects were comparable in the left and right 

hemispheres. When these analyses were conducted for the other fiber classes, there was 

no significant evidence of mediation for recall, suggesting these effects are specific to the 

medial temporal white matter, but there was an additional mediation effect of 

projection/thalamic FA on recognition after excluding oldest-old adults with CIND (data 

not shown). 

Effect of Age on White Matter Hyperintensity Volume 

For descriptive purposes, we conducted a linear regression to assess the effect of 

chronological age on white matter hyperintensity volume, calculated as the difference in 

the number of voxels between the original all FA skeleton and the all FA skeleton limited 

to normal appearing white matter for each participant. As expected, results revealed that 
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older age was associated with higher hyperintensity volume, R2
 = 0.11, p = 0.004 

(younger-old: 166.95 ± 282.08; oldest-old: 825.00 ± 1847.35, including two participants 

with hyperintense volumes > 4 standard deviations above the mean).  

Discussion 

The current study examined how age affects white matter microstructure of four 

major fiber classes within an older adult lifespan sample that included a sizeable number 

of nonagenarians from The 90+ Study. Results revealed significant nonlinear age-related 

declines in microstructure (decreased FA, increased RD) of the medial temporal, 

association, callosal, and projection/thalamic fiber classes. Importantly, these effects of 

age on microstructure remained significant even after excluding oldest-old adults 

diagnosed with CIND and when limiting analyses to microstructure measures from 

normal appearing white matter (i.e., excluding white matter hyperintensities), suggesting 

that they primarily reflect normal aging processes rather than pathology associated with 

early cognitive impairment or white matter disease. When assessing the functional 

relevance of these declines, we found that medial temporal microstructure mediated the 

effects of age on episodic memory performance. Together, these findings indicate 

widespread age-related degradation of white matter that is exacerbated across the older 

adult lifespan, with disruption of neural signals in medial temporal white matter 

contributing to age-related memory differences.  

To our knowledge, this is the first study to assess the linearity of white matter 

microstructure declines in older adults spanning the seventh through tenth decades of life. 

Finding that age effects on microstructure were better explained by nonlinear, compared 



 24 

to linear, models suggests that age-related degradation of white matter is accelerated in 

advanced age. This pattern of results extends what was previously known about white 

matter aging in younger-old adults (between ages 55-90) who primarily exhibit linear 

age-related declines in white matter microstructure (Barrick et al., 2010; de Groot et al., 

2016; Kochunov et al., 2007; Lövdén et al., 2013). Although nonlinear effects of age on 

microstructure had previously been reported in lifespan studies that assess individuals 

ranging from childhood or young adulthood up to age 90 (Bendlin et al., 2010; Cox et al., 

2016; Hsu et al., 2008; Kennedy and Raz, 2009; Lebel et al., 2012; Malykhin et al., 2011; 

Mooij et al., 2018; Westlye et al., 2010), white matter aging across the older adult 

lifespan is likely driven by different neural substrates. For example, whereas early life 

stages are characterized by development of white matter (e.g., increased myelination and 

axonal sprouting that continues through midlife; Walhovd et al., 2014; Yeatman et al., 

2014), older adults, and particularly oldest-old adults, are vulnerable to 

neurodegenerative processes. Relative to younger-old adults, cognitively normal oldest-

old adults have a high prevalence of white matter disease among numerous other 

subclinical neural pathologies (e.g., neurofibrillary tangles, microinfarcts, 

amyloidosis)(Jacobs et al., 2018; Kawas et al., 2015; Pereira et al., 2019), which would 

contribute to decreases in white matter microstructure (decreased FA, increased AD/RD). 

Of note, these pathological processes may not have been fully captured by previous white 

matter aging studies that focused only on younger-old adults, which may explain the 

difference between their observations of linear age effects and the current findings of 

nonlinear age effects.  
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Importantly, the nonlinear effects of age on white matter microstructure remained 

significant after excluding oldest-old adults diagnosed with CIND, consistent with our 

prior work within nonagenarians (Bennett et al., 2017). Because these individuals are at a 

heightened risk of developing dementia (Peltz et al., 2011), we speculated that the 

presence of dementia-related pathology (e.g., amyloid plaques, neurofibrillary tangles; 

Arfanakis et al., 2020) may contribute to larger age effects on white matter in advanced 

age. Our finding of similar patterns of results after excluding participants with CIND 

supports the notion that white matter in oldest-old adults may be more vulnerable to 

processes associated with normal aging of white matter (e.g., demyelination, myelin 

ballooning; Peters, 2002).  

This interpretation is further supported by nonlinear age effects in medial 

temporal FA, association FA, and callosal RD that remained significant when using 

microstructure measures that were limited to normal appearing white matter. Given that 

oldest-old participants were only excluded if they met criteria for dementia, it remains 

possible that other chronic conditions contribute to the observed widespread nonlinear 

effects of age on white matter microstructure. For example, age-related cardiovascular 

diseases (including hypertension and diabetes) and small vessel disease (Wardlaw et al., 

2015) are known to negatively affect white matter (e.g., gross and microscopic infarcts, 

arteriolosclerosis; Arfanakis et al., 2020). However, by excluding participants with CIND 

and white matter hyperintensities, our control analyses demonstrate that aging of white 

matter that is more pronounced toward the end of the older adult lifespan is not solely due 

to pathology associated with early cognitive impairment or white matter hyperintensities. 
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This conclusion is further strengthened by our observation that the nonlinear age effects 

on white matter microstructure did not vary after excluding after excluding 13 

participants who meet the definition for “superager” (i.e., 80+ years, RAVLT delayed 

recall ≥ 9; data not shown; (Harrison et al., 2012; Rogalski et al., 2019). 

Comparisons between fiber classes revealed that the magnitude of nonlinear age 

effects were largest for the medial temporal fiber class and smallest for the callosal fiber 

class (FA, RD), which was reflective of the individual regions within each class (see 

Supplementary Table 1). For example, there were larger effects for the fornix compared 

to the body and splenium of the corpus callosum (callosal), sagittal stratum (association), 

and internal capsule or corona radiata (projection). Studies of younger-old adults have 

similarly found that medial temporal microstructure is especially vulnerable to aging 

(Bennett and Stark, 2016; Hoagey et al., 2019; Rieckmann et al., 2016; A. C. Yang et al., 

2016), consistent with studies of medial temporal (hippocampal) gray matter 

microstructure and volume (Langnes et al., 2020; Raz et al., 2010; Venkatesh et al., 

2020). Aging of medial temporal microstructure has been attributed to these regions 

containing smaller diameter axons and lower oligodendrocyte-to-axon ratios (Stebbins 

and Murphy, 2009), as well as being relatively late to myelinate (Bartzokis, 2004). Of 

note, because this result was not driven by oldest-old adults diagnosed with CIND, who 

presumably have dementia-related pathology accumulating in medial temporal white 

matter (Braak and Braak, 1997), it further supports the notion that vulnerability of medial 

temporal white matter is primarily attributed to the aforementioned normal aging 

processes. In contrast, relatively smaller age effects for the callosal fiber class suggest 
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that these fibers are somewhat preserved across the older adult lifespan. Whereas the 

genu of the corpus callosum is noted for being more vulnerable to aging in younger-old 

adults (Bennett et al., 2010; Burzynska et al., 2010), it is minimally affected in oldest-old 

adults (Bennett et al., 2017), and the opposite pattern holds true for the splenium of the 

corpus callosum. The interaction of these age and regional differences likely results in the 

net minimal effect of aging on callosal fibers. 

We further found that age indirectly affected memory performance via medial 

temporal white matter microstructure, even after excluding oldest-old adults diagnosed 

with CIND. Independent of age, higher medial temporal FA predicted better memory 

recognition performance, and higher AD predicted better recognition and delayed recall 

performance, with additional effects observed between recognition and 

projection/thalamic FA. These findings replicate and extend previous studies that found 

relationships between medial temporal white matter microstructure (i.e., fornix, uncinate 

fasciculus, hippocampal cingulum) and episodic memory in younger-old or lifespan 

samples (Bennett et al., 2015; Bennett and Stark, 2016; Foster et al., 2019; Ly et al., 

2016; Metzler-Baddeley et al., 2019) and suggest that these memory processes are 

primarily dependent on the medial temporal lobe (Yonelinas et al., 2010). They also 

provide compelling support for the cortical disconnection hypothesis of cognitive aging 

(Bartzokis, 2004; Bennett and Madden, 2014; O’Sullivan et al., 2001), which proposes 

that degradation of white matter interferes with the transmission of neural signals and 

ultimately contributes to cognitive dysfunction in older adults. Of note, whereas previous 

studies in cognitively normal younger-old adults find that aging uniquely affects free 
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recall (Bennett et al., 2015; Stark et al., 2013; Toner et al., 2009; Yassa et al., 2011), our 

observation of age-related declines in both recognition and free recall are more consistent 

with previous reports in cognitively impaired younger-old (Chen and Chang, 2016; Clark 

et al., 2012; Stark et al., 2013). This may indicate that impairments in both forms of 

memory and their medial temporal substrates are characteristic of normal cognition in 

advanced age, although this claim would benefit from future studies that can further test 

the specificity of these results by comparing multiple forms of cognition.  

The present study is strengthened by our large sample with age ranges spanning 

the older adult lifespan, examination of diffusion imaging data across the whole brain, 

and assessment of the functional relevance of white matter declines in aging to episodic 

memory. A potential limitation is that our younger-old and oldest-old adults were 

recruited and tested at separate locations, which presents a potential confound with the 

age effects of interest. Importantly, however, we used identical MRI scanners and 

imaging sequences across sites, which has previously been shown to attenuate inter-site 

variability (Venkatraman et al., 2015). Although TBSS performs superior registration of 

major white matter pathways across participants, which is especially important in 

advanced aging populations that experience significant atrophy, it can lack anatomical 

specificity for regions with multiple fiber populations (e.g., superior cingulum) or in 

close proximity to the ventricles (e.g., fornix)(Bach et al., 2014). To avoid overstating the 

tract-based specificity of our results, TBSS was primarily used to identify robust and 

common white matter pathways that were then subject to a standard atlas and collapsed 

across fiber class. Finally, we did not perform clinical assessments for CIND within the 
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younger-old cohort, although general cognitive status for these participants was assessed 

using the MoCA. Our interpretations will be strengthened by future studies replicating 

and extending the current effects of age and cognitive impairment on white matter 

microstructure across the older adult lifespan, especially those focusing on older adults 

with direct measures of known dementia-related pathology, including amyloid-beta and 

tau neurofibrillary tangles (Janelidze et al., 2020; Thijssen et al., 2020). 

In closing, this study revealed widespread age-related differences in white matter 

microstructure between the seventh and tenth decades of life that were better fit by a 

nonlinear relationship, with the largest effects seen in the medial temporal fiber class, and 

that were not solely driven by oldest-old adults with cognitive impairment or by white 

matter hyperintensities. Moreover, age-related differences in the microstructure of medial 

temporal fibers mediated the effect of age on both delayed recall and recognition memory 

performance. Furthering our understanding of white matter aging and its impact on 

episodic memory in this way is timely given global trends of growth in the older adult 

population, and in particular of oldest-old adults (He and Muenchrath, 2011). 
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Table 1. Demographic and neuropsychological data. 

Mean ± SD Whole sample Younger-old Oldest-old t / χ2 (p) 

N 108 78 30 na 

Age, years  79.1 ± 10.3 73.7 ± 6.3 93.2 ± 1.9 16.7 (< 0.001) 

N female (%) 63 (58.3%)  45 (57.7%) 18 (60%) 0.05 (0.83) 

N CIND (%) - - 10 (33%) na 

N Hispanic (%) 7 (6%) 6 (8%) 1 (3%) 0.68 (0.41) 

Education, years 15.4 ± 3.0 15.5 ± 3.0 15.2 ± 3.1 0.64 (0.52) 

MoCA - 26.4 ± 2.4 - na 

MMSE - - 25.7 ± 2.9 na 

RAVLT Delayed 

Recall 

7.1 ± 3.4 7.7 ± 3.3 5.5 ± 3.4 3.1 (0.002) 

RAVLT Recognition
 

8.1 ± 6.4 10.0 ± 4.2 3.0 ± 8.0 5.9 (< 0.001) 

Note. Demographic and neuropsychological test data are presented as mean ± standard 

deviation (SD), separately for younger- and oldest-old adults. Significant group 

differences at p < 0.05 are indicated by bolded t or χ2
 (% female, N Hispanic) statistics. 

MoCA = Montreal Cognitive Assessment, MMSE = Mini-Mental State Exam, RAVLT = 

Rey Auditory Verbal Learning Task, CIND = cognitive impairment no dementia. 
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Table 2. Linear and nonlinear model comparisons of age effects on all white matter. 

 Whole sample (linear / nonlinear) 

Fiber class FA AD RD 

Medial temporal    R
2
 0.38 / 0.39 0.04 / 0.03 0.47 / 0.48 

                           AICc -89.58 / -94.88 -48.67 / -49.96 -104.9 / -107.7 

                            χ2 
(p) 8.05 (0.005) 0.90 (0.34) 5.45 (0.02) 

Association           R
2
 0.19 / 0.20 0.38 / 0.37 0.34 / 0.35 

                           AICc -44.95 / -47.50 -88.26 / -89.48 -61.66 / -62.99 

                           χ2 
(p) 5.11 (0.02) 1.01 (0.32) 3.77 (0.05) 

Callosal                 R
2
 0.14 / 0.15 0.22 / 0.22 0.25 / 0.25 

                           AICc -26.28 / -28.50 -56.59 / -57.04 -38.73 / -40.25 

                           χ2 
(p) 4.28 (0.04) 1.82 (0.18) 3.96 (0.05) 

Projection/thalamic R
2
 0.17 / 0.18 0.37 / 0.36 0.31 / 0.31 

                           AICc -28.90 / -29.24 -78.90 / -77.63 -44.55 / -44.86 

                           χ2 
(p) 5.40 (0.02) 0.94 (0.33) 2.01 (0.16) 

Note. Analyses testing the effect of age on white matter microstructure, controlling for 

sex and education, are presented separately for each diffusion metric (fractional 

anisotropy, FA; axial diffusivity, AD; radial diffusivity, RD) and fiber class. Coefficients 

of determination (R
2
) are presented from regression analyses between age (linear) or age 

squared (nonlinear). Significant effects Bonferroni corrected at p < 0.013 are bolded. 

Akaike Information Criterion (AICc) values and χ2 
(p) values from likelihood ratio tests 

are reported for regression models of age (linear) or age and age and age squared 

(nonlinear). Significantly better fits (significant χ2
, smaller AIC) for the nonlinear relative 

to the linear model are bolded.  
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Table 3. Linear and nonlinear model comparisons on all white matter without CIND. 

 Without CIND (linear / nonlinear) 

Fiber class FA AD RD 

Medial temporal    R
2
 0.31 / 0.32 0.04 / 0.04 0.42 / 0.43 

                           AICc -79.11 / -83.45 -41.86 / -40.39 -96.96 / -99.43 

                            χ2 
(p) 6.91 (0.009) 0.82 (0.37) 4.72 (0.03) 

Association           R
2
 0.20 / 0.21 0.34 / 0.34 0.34 / 0.35 

                           AICc -43.09 / -47.85 -81.58 / -82.42 -57.03 / -59.87 

                           χ2 
(p) 7.93 (0.005) 1.32 (0.25) 5.85 (0.02) 

Callosal                 R
2
 0.13 / 0.13 0.20 / 0.19 0.22 / 0.25 

                           AICc -33.08 / -34.78 -55.12 / -55.40 -41.38 / -42.44 

                           χ2 
(p) 4.68 (0.03) 2.89 (0.09) 3.93 (0.05) 

Projection/thalamic R
2
 0.19 / 0.20 0.33 / 0.32 0.31 / 0.32 

                           AICc -27.79 / -30.12 -74.19 / -73.73 -40.40 / -41.25 

                           χ2 
(p) 5.44 (0.02) 1.54 (0.21) 3.86 (0.05) 

Note. Analyses testing the effect of age on white matter microstructure, controlling for 

sex and education, are presented separately for each diffusion metric (fractional 

anisotropy, FA; axial diffusivity, AD; radial diffusivity, RD) and fiber class. Coefficients 

of determination (R
2
) are presented from regression analyses between age (linear) or age 

squared (nonlinear). Significant effects Bonferroni corrected at p < 0.013 are bolded. 

Akaike Information Criterion (AICc) values and χ2 
(p) values from likelihood ratio tests 

are reported for regression models of age (linear) or age and age and age squared 

(nonlinear). Significantly better fits (significant χ2
, smaller AIC) for the nonlinear relative 

to the linear model are bolded. 
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Table 4. Linear and nonlinear model comparisons on the white matter-masked data. 

 Whole sample (linear / nonlinear) 

Fiber class FA AD RD 

Medial temporal    R
2
 0.42 / 0.43 0.00 / 0.00 0.28 / 0.29 

                           AICc -95.65 / -103.50 -52.65 / -53.53 -100.8 / -102.8 

                            χ2 
(p) 10.84 (<0.001) 3.24 (0.07) 0.23 (0.63) 

Association           R
2
 0.22 / 0.23 0.27 / 0.27 0.31 / 0.32 

                           AICc -51.93 / -55.02 -84.15 / -83.49 -57.18 / -57.91 

                           χ2 
(p) 5.69 (0.02) 1.59 (0.21) 3.15 (0.08) 

Callosal                 R
2
 0.20 / 0.20 0.09 / 0.09 0.21 / 0.21 

                           AICc -65.05 / -64.90 -77.66 / -76.30 -34.53 / -36.31 

                           χ2 
(p) 2.14 (0.14) 0.84 (0.36) 4.26 (0.04) 

Projection/thalamic R
2
 0.21 / 0.21 0.26 / 0.26 0.26 / 0.27 

                           AICc -35.02 / -35.71 -69.71 / -69.36 -39.42 / -38.57 

                           χ2 
(p) 3.07 (0.08) 1.91 (0.17) 1.42 (0.23) 

Note. Analyses testing the effect of age on white matter microstructure, controlling for 

sex and education, are presented separately for each diffusion metric (fractional 

anisotropy, FA; axial diffusivity, AD; radial diffusivity, RD) and fiber class. Coefficients 

of determination (R
2
) are presented from regression analyses between age (linear) or age 

squared (nonlinear). Significant effects Bonferroni corrected at p < 0.013 are bolded. 

Akaike Information Criterion (AICc) values and χ2 
(p) values from likelihood ratio tests 

are reported for regression models of age (linear) or age and age and age squared 

(nonlinear). Significantly better fits (significant χ2
, smaller AIC) for the nonlinear relative 

to the linear model are bolded.  
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Table 5. Mediating effects of medial temporal microstructure on episodic memory. 

 Whole Sample Without CIND 

Mediator Indirect effect (LLCI, ULCI) Indirect effect (LLCI, ULCI) 

Delayed recall   

   Medial temporal FA -0.024 (-0.064, 0.013) -0.019 (-0.060, 0.016) 

   Medial temporal AD 0.018 (0.001, 0.038) 0.018 (0.0009, 0.039) 

Recognition   

   Medial temporal FA -0.002 (-0.006, 0.002) -0.004 (-0.008, -0.0001) 

   Medial temporal RD 0.0005 (-0.003, 0.006) -0.0009 (-0.004, 0.002) 

Note. For each memory measure that was independently related to both age and medial 

temporal matter microstructure, indirect effects and their corresponding lower-level (LL) 

and upper-level (UL) confidence intervals (CI) are presented for analyses testing whether 

microstructure mediated the effect of age (delayed recall) or age squared (recognition) on 

that memory measure (controlling for sex and education), conducted with (left) or 

without (right) oldest-old adults diagnosed with cognitive impairment no dementia 

(CIND). Significant effects are indicated by confidence intervals that did not contain zero 

(bolded). 
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Figure 1. Scatterplots display relationships between age and white matter microstructure 

(FA, AD, RD) across the sample, separately for each fiber class (medial temporal, 

callosal, association, projection/thalamic). The regression line and coefficients of 

determination (R
2
) reflect whether the linear (straight line) or nonlinear (curved line) 

analysis were a better fit (smaller AICc, significant likelihood ratio test). All relationships 

remained the same after excluding oldest-old adults diagnosed with cognitive impairment 

no dementia (CIND; gray circles, dotted lines), except that projection/thalamic FA/RD 

were better fit by a nonlinear model. 
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Figure 2. Scatterplots show significant linear (straight) or nonlinear (curved) regression 

lines and coefficients of determination (R
2
) from the regression analyses across the entire 

sample between age and RAVLT recognition (left) and delayed recall (right), 

independent of sex and education. Oldest-old adults diagnosed with cognitive impairment 

no dementia (CIND) are displayed as gray circles.  
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Figure 3. Scatterplots display significant (bolded) relationships between medial temporal 

fractional anisotropy (FA; left) or axial diffusivity (AD; right) and memory performance 

(recognition, recall), independent of age, sex, and education, as well as age squared 

(medial temporal FA versus recognition). Separate linear regression lines and coefficients 

of determination (R
2
) are shown for analyses conducted with (solid black line; top 

statistics) or without (black dotted line; bottom statistics) oldest-old adults diagnosed 

with cognitive impairment no dementia (CIND; gray circles).  
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Chapter 2: White Matter Microstructural Correlates of Associative Learning in the 

Oldest-Old 
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Abstract 

Younger-old adults (ages 65-85 years) exhibit declines in the ability to learn associations 

between events, which has been attributed to structural degradation of white matter 

pathways connecting the prefrontal cortex to the hippocampus (e.g., fornix) and striatum 

(e.g., internal capsule). However, deficits in associative learning abilities may increase in 

oldest-old adults (ages 90+ years) because advanced age is accompanied by (1) 

accelerated structural degradation of these white matter pathways and (2) increased 

prevalence of cognitive impairment. Here, we acquired multicompartment diffusion-

weighted magnetic resonance imaging data from 22 oldest-old adults with normal 

cognition (n = 15; 92.73 ± 1.67 years) or a diagnosis of cognitive impairment no 

dementia (CIND; n = 7; 93.29 ± 0.76 years) who also completed an associative learning 

task. Behavioral results revealed significantly better performance during later task stages, 

as expected if participants incidentally learned the cue-cue-target associations for 

frequently occurring event triplets. Moreover, better learning performance was 

significantly predicted by better microstructure of the internal capsule. There was no 

significant effect of cognitive status on learning performance or white matter 

microstructure. Thus, associative learning abilities are preserved into the 10
th

 decade of 

life and can be attributed to individual differences in the microstructure of white matter 

pathways connecting the prefrontal cortex to the striatum. 
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Introduction 

The ability to form associations between events, even when their relationship 

cannot be described, is crucial for learning higher-order skills ranging from using new 

technology to communicating using nonverbal cues (Lieberman, 2000; Seger, 1994). In 

the laboratory, behavioral evidence of implicit associative learning (IAL) is seen as faster 

and/or more accurate responses to stimuli that can be predicted based on their 

relationship to prior events, such as frequently occurring cue-cue-target associations in 

the Triplet Learning Task (TLT; Howard et al., 2008). IAL has been established in adults 

across the lifespan, albeit with smaller learning effects in younger-old (65-85 years) 

relative to young (20-30 years) adults (Bennett et al., 2007; Curran, 1997; Howard et al., 

2013, 2008, 2004; Seaman et al., 2013; Simon et al., 2012; Stillman et al., 2016a, 2016c). 

But IAL has not yet been demonstrated in oldest-old adults (90+ years) in spite of 

extensive characterization of their impairments across other cognitive domains (Melikyan 

et al., 2019). Given that IAL is sometimes significant or larger for one dependent 

measure (reaction time, accuracy) relative to the other in younger age groups (e.g., 

Bennett et al., 2011; Simon et al., 2012; Stillman et al., 2016a), approaches that take both 

dependent measures into account, such as rank-ordering binning metrics (Draheim et al., 

2016; Hughes et al., 2014), may be more sensitive to subtle learning effects within the 

oldest-old.  

Individual differences in IAL within oldest-old adults may be due to degradation 

of white matter that connects brain regions involved in learning, which can be measured 

using diffusion-weighted magnetic resonance imaging (MRI). Previous diffusion work 
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from our group found that IAL deficits in healthy younger-old adults were associated 

with age-related declines in the microstructure of white matter tracts connecting the 

hippocampus and dorsal striatum to the prefrontal cortex (Bennett et al., 2011). These 

same fronto-hippocampal (e.g., fornix) and fronto-striatal (e.g., internal capsule) white 

matter tracts exhibit accelerated microstructural declines in advanced age (Merenstein et 

al., 2021a). Thus, whereas oldest-old adults with lower microstructure in these regions 

may show minimal evidence of IAL, individuals with higher microstructure should 

exhibit better IAL performance. 

Individual differences in IAL within oldest-old adults may additionally be due to 

the increased prevalence of cognitive impairment in this advanced age group (Corrada et 

al., 2008). We previously demonstrated that effects of age on white matter 

microstructure, as well as relationships between memory performance and 

microstructure, did not differ significantly between oldest-old adults with normal 

cognition and those diagnosed with cognitive impairment no dementia (CIND; Bennett et 

al., 2017; Merenstein et al., 2021a). If similar findings are observed in the current study, 

it would support the notion that individual differences in IAL in oldest-old adults are 

attributed to the effects of normal aging, rather than pathological aging. Importantly, 

assessing these learning effects across participants with normal cognition or CIND 

increases the generalizability of these findings to the broader oldest-old population, who 

are often inaccessible for MRI studies of brain aging. 

Here, we assessed IAL in nonagenarians for the first time and tested whether IAL 

performance was related to individual differences in its microstructural substrates and 
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whether cognitive status affected these associations. Oldest-old adults without dementia, 

including cognitively normal individuals and those diagnosed with CIND, performed a 

version of the TLT task. Diffusion-weighted MRI data was also acquired and 

multicompartment diffusion metrics (i.e., neurite orientation density and dispersion 

imaging, NODDI; Zhang et al., 2012) were extracted from the fornix and internal 

capsule. Analyses examined whether oldest-old adults exhibited behavioral evidence of 

IAL using a rank-ordering binning learning metric that combined their accuracy and 

reaction time performance (Draheim et al., 2016; Hughes et al., 2014); individual 

differences in white matter microstructure predicted IAL performance; and cognitive 

status (cognitively normal versus CIND) affected IAL performance and its relation to 

white matter microstructure.  

Method 

Participants 

We recruited 28 oldest-old adults (90-98 years, 11 male) that were current 

participants in The 90+ Study, a longitudinal study of aging and dementia in the oldest-

old (see Kawas and Corrada, 2006 for additional details), who had not previously 

received a diagnosis of dementia. This included individuals clinically diagnosed as 

cognitively normal (n = 19) or cognitively impaired no dementia (CIND; n = 9), the latter 

of which captures individuals with cognitive or functional losses that were not of 

sufficient severity to meet the Diagnostic and Statistical Manual of Mental Disorders, 4th 

edition criteria for dementia (American Psychiatric Association, 1994; Graham et al., 

1997). The clinical evaluation was missing for one oldest-old participant who was 
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included in the CIND group because they scored 25 on the Mini Mental State 

Examination (MMSE; Folstein et al., 1975). 

Participants were screened for conditions that would prevent them from being 

able to enter the MRI scanner (e.g., having ferrous metal implants) and underwent a 

thorough neurological, physical, and neuropsychological evaluation by trained 

examiners. We excluded one cognitively normal participant for having a cortical mass 

that covered large portions of white matter. Using a cutoff of four standard deviations 

below the mean of the sample, four additional participants (n = 3 cognitively normal, n = 

1 CIND) were excluded for responding to too few trials (< 42.7% of all trials) and one 

participant with CIND was excluded for poor task performance (accuracy < 42.6%). 

Demographic and neuropsychological data for the final sample of 22 participants (n = 15 

cognitively normal, n = 7 CIND) can be found in Table 6, which demonstrates that the 

subgroups differed in MMSE performance but not age, ethnicity, sex, or years of 

education completed.  

This study was conducted in compliance with the Institutional Review Boards for 

the University of California, Irvine and Riverside. Each participant provided informed 

consent and was compensated for their participation.  

Triplet Learning Task 

General procedure. Participants completed an abbreviated, deterministic version 

of an implicit associative learning task (triplet learning task, TLT; Franco et al., 2021; 

Merenstein et al., 2021b) at their personal residences on a Surface Pro tablet. Completion 
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of the TLT occurred on average 22.3 ± 15.7 (range 8 – 81 days) days after participants 

underwent MRI scanning.  

Task design. In the TLT, participants viewed four open circles presented in a row 

on a white background. Each trial, or “triplet”, consisted of a cue-cue-target sequence 

(2850 ms) in which two “cue” circles filled in red (260 ms each) followed by one “target” 

circle filling in green (1000 ms), with inter-stimulus intervals of 340 ms and inter-trial 

intervals of 650 ms. Relative to our previous work using this version of the TLT, stimuli 

were presented at a slower rate for this advanced age group. Participants passively 

viewed the red cues and were told to respond as quickly and accurately as possible to the 

location of the green target via the corresponding keyboard response.  

Critically, the associations to be learned were between the two cue locations and 

the green target location of frequently occurring triplets. Twelve unique triplet 

combinations were randomly selected from the 64 possible cue-cue-target combinations, 

after excluding 40 triplets that had any two events in the same location (e.g., 111, 112, 

121; where the number corresponds to the location of the four circles on the screen from 

left to right) as their performance reflects pre-existing response tendencies (Boyer et al., 

2005; Howard et al., 2008), and after counterbalancing to ensure that cues and targets 

occurred in each location equally often. Within each block, four triplets were each 

presented six times (high frequency, HF; 75% of trials) and eight triplets were each 

presented once (low frequency, LF; 25% of trials). All participants completed a total of 

15 32-trial blocks, which were equally divided into five task stages. To prevent fatigue, a 

self-paced break was provided after each block.   
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Associative learning measure. Accuracy and reaction times were recorded on 

each trial for each triplet type (HF, LF). To obtain a measure of IAL, we calculated a 

rank-ordering binning learning metric that combined the accuracy and reaction time 

measures (Draheim et al., 2016; Hughes et al., 2014). The first step, which was 

performed across all task stages but separately within each participant, involved 

calculating the average reaction time to all accurate LF triplets and subtracting that value 

from their reaction time to each accurate HF triplet. This yielded difference scores in 

which lower values indicate that participants responded faster to HF than LF triplets (i.e., 

better learning). If a participant responded inaccurately to a HF triplet, that specific trial 

was given a value of 20 as a penalty, regardless of their reaction time (Draheim et al., 

2016). Trials that presented a LF triplet or received no response were not given a value. 

The next step, which was performed across all task stages and all participants, involved 

compiling the difference and penalty scores for each trial and each participant into one 

dataset. The combined dataset was then rank ordered into deciles and each score was 

assigned a bin value ranging from 1 (best performance) to 10 (worst performance). 

Finally, a single bin score was computed for each task stage by summing all the 

respective bin values within that task stage, separately for each participant.  

Recognition task. A subset of participants (n = 12 cognitively normal, n = 5 

CIND) also completed a subsequent computer-based recognition task to test for 

awareness of the frequently occurring cue-cue-target associations (Franco et al., 2021; 

Merenstein et al., 2021b). Participants indicated via keyboard responses whether a series 

of HF, LF, or never presented (no frequency, NF) triplets occurred “frequently”, 
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“infrequently”, or “not at all” during the previously completed version of the TLT. Mean 

accuracy to each triplet type was calculated separately for each participant. 

Imaging Data  

Acquisition. Prior to behavioral testing, participants underwent a structural 

imaging protocol at the University of California, Irvine Facility for Imaging and Brain 

Research. Imaging data were acquired using a 3T Siemens Prisma MRI scanner fitted 

with a 32-channel head coil. 

A single high-resolution T1-weighted image (magnetization-prepared rapid 

gradient-echo sequence, MP-RAGE) was acquired with the following parameters: echo 

time (TE) / repetition time (TR) = 2.72 / 2400 ms, field of view (FOV) = 256 × 256 × 192 

mm, matrix size = 320 x 320 x 240, voxel size = 0.8 mm
3
, Generalized Autocalibrating 

Partially Parallel Acquisitions (GRAPPA) acceleration factor = 2, 208 axial slices, and 

scan time = 6:28.  

A single diffusion-weighted single-shot spin-echo, echo planar imaging image 

was acquired with the following parameters: TE / TR = 102 / 3500 ms, FOV = 212 × 182 

mm
2
, matrix size = 128 × 110, voxel size = 1.7 mm

3
, multiband factor = 4, 64 slices with 

no gap, and scan time = 16:12. Bipolar diffusion-weighting gradients were applied in 64 

directions with b values of 1500 s/mm
2
 and 3000 s/mm

2
 with 3 b = 0 images. 

Processing. For each participant, diffusion data were preprocessed using AFNI 

(Analysis of Functional NeuroImages; Cox, 1996) to remove non-brain tissue and 

generate a whole-brain mask, FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) 

to correct for head movement and eddy-current induced distortions (EDDY), and the 
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NODDI MATLAB toolbox (https://www.nitrc.org/projects/noddi_toolbox) to obtain 

diffusion estimates. NODDI provides measures of free diffusion (also known as fraction 

of isotropic diffusion, FISO), intracellular diffusion (also known as intracellular volume 

fraction, FICVF, or neurite density index, NDI), and dispersed diffusion (also known as 

orientation dispersion index, ODI) modeled as an isotropic sphere, sticks, and dispersion 

of the sticks, respectively (Zhang et al., 2012).  

Regions of interest. Based on known anatomical connections from the 

hippocampus and dorsal striatum to prefrontal cortex (Wakana et al., 2004; Wycoco et 

al., 2013), we created standard masks of the fornix body and bilateral anterior and 

posterior limbs of the internal capsule from the JHU ICBM-DTI-81 white matter labels 

atlas in FSL (Mori et al., 2008). For each participant, these three standard white matter 

masks were aligned to native diffusion space using the following registration steps: (1) 

alignment of the MP-RAGE image to the Montreal Neurological Institute (MNI) 152 

1mm resolution standard image using an affine transformation with 12 degrees of 

freedom, (2) alignment of the diffusion image with no diffusion weighting applied (i.e., 

dtifit_s0) to the MP-RAGE image using a boundary-based registration with six degrees of 

freedom, (3) concatenation of the diffusion to MP-RAGE and MP-RAGE to MNI 

transformations, (4) inverting this concatenated transformation, and (5) applying the 

inverted transformation to align the standard JHU ICBM white matter masks to native 

diffusion space. The boundary-based registration is based on white matter boundaries that 

exhibit more reliable age-related changes in signal intensity than gray matter tissue and is 

therefore fairly robust to pathologies and artifacts seen in diffusion images (Greve and 
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Fischl, 2009), which is especially important in advanced age. In addition, a trained 

researcher that was blinded to cognitive status visually inspected the quality of 

alignments and mask coverage for all three regions of interest, confirming that all masks 

were of usable quality. 

Each region of interest was limited to normal appearing white matter. For each 

participant, a white matter mask that excludes hyperintense tissue was generated on their 

MP-RAGE image via FSL’s Automated Segmentation Tool (FAST; Zhang et al., 2001), 

which classifies white matter hyperintensities as either gray matter or cerebrospinal fluid 

due to their low-intensity values (Melazzini et al., 2021). The partial volume estimate of 

this white matter mask was thresholded at 0.5, aligned to diffusion space by applying the 

inversion of the diffusion to MP-RAGE transformation described above, and multiplied 

by each region of interest mask.  

Prior to extracting diffusion metrics, the region of interest masks were further 

limited to voxels with restricted diffusion below 0.99 to account for artifactual, 

mathematical errors in regions with insufficient signal (Emmenegger et al., 2021). For 

each participant, the resulting masks were then separately multiplied by each diffusion 

metric image (free, intracellular, and dispersed) and values were averaged across voxels 

within each mask.  

Results 

Associative Learning Performance 

Evidence of IAL was assessed using a repeated measures analysis of variance 

(ANOVA) with Task Stage (1-5) as a within-person variable and bin scores as the 
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dependent variable. Results revealed a significant main effect of Task Stage, F(4, 84) = 

9.99, p < 0.001, with significantly higher bin scores for Task Stage 1 (mean = 720.50 ± 

204.12) relative to Task Stage 2 (mean = 594.86 ± 112.50; difference = 125.64 ± 153.68), 

Stage 3 (mean = 589.68 ± 111.26; difference = 130.82 ± 166.02), Stage 4 (mean = 586.82 

± 109.14; difference = 133.68 ± 169.73), and Stage 5 (mean = 599.96 ± 125.76; 

difference = 120.55 ± 183.81), ps < 0.001 (Figure 4). There were no significant 

differences observed among the latter four stages, ps > 0.271. Results for the traditional 

accuracy and reaction time measures are provided in the Supplementary Material 

(Appendix B), where similar evidence of IAL was seen for accuracy.  

Effect of demographic variables. When repeating this ANOVA with sex and 

years of education as covariates, the main effect of Task Stage remained significant, F(4, 

76) = 11.24, p < 0.001, and there were no significant main effects of or interactions with 

sex and education, ps > 0.383. 

Effect of cognitive status. To test whether cognitive status influenced IAL 

performance, we repeated the above ANOVA with Cognitive Status (cognitively normal, 

CIND) as a covariate. The main effect of Task Stage remained significant, F(4, 80) = 

5.43, p = 0.001, and there was no significant main effect of or interaction with Cognitive 

Status, ps > 0.718.  

Awareness of the regularity. To assess whether participants could accurately 

indicate whether some triplets occurred more often, separate one-sample t-tests compared 

mean recognition accuracy to each Triplet Type (HF, LF, NF) to chance (0.33). Results 

revealed that accuracy to HF (0.47 ± 0.33), LF (0.27 ± 0.23), and NF (0.40 ± 0.30) 
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triplets did not differ from chance, ps > 0.097. These results provide confidence that 

participants were not aware of the regularities learned here.  

Associative Learning Relates to White Matter Microstructure  

 Separate linear regressions then tested whether white matter microstructure (free, 

intracellular, and dispersed diffusion) from each region of interest (fornix body, anterior 

limb of the internal capsule, posterior limb of the internal capsule) predicted IAL 

performance. Because IAL performance did not differ among Stages 2 through 5, we 

used average bin scores across these four task stages as the outcome variable. Significant 

effects survived Bonferroni correction for comparisons across three diffusion metrics, p < 

0.017. 

Results revealed that worse learning performance (higher bin scores) was 

significantly associated with higher free, R
2
 = 0.327, p = 0.005, and dispersed, R

2
 = 

0.307, p = 0.007, diffusion in the posterior limb of the internal capsule, with a similar 

trend seen for dispersed diffusion in the fornix body, R
2
 = 0.249, p = 0.019 (Figure 5 and 

Table 7). No other effects were significant, ps > 0.069 (Table 7). 

Effect of demographic variables. When repeating these regressions with the 

addition of sex and years of education as predictors, the above pattern of results did not 

change, ps < 0.018.  

 Effect of cognitive status. To test whether cognitive status influenced the 

associations between IAL performance and white matter microstructure, we repeated the 

above regressions with the addition of Cognitive Status (cognitively normal, CIND) as a 

predictor. The above pattern of results did not change (Table 7).  
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Discussion 

To our knowledge, this study is the first to examine IAL and its underlying white 

matter microstructural correlates in nonagenarians. We found that the ability to learn 

associations between cue-cue-target events is preserved into the 10
th

 decade of life and is 

supported by better microstructure of the posterior limb of the internal capsule. Results 

were independent of cognitive status, suggesting that individual differences in IAL and 

its relation to microstructure were not driven by individuals with early cognitive 

impairment. Instead, maintaining better microstructure of fronto-striatal pathways may be 

especially important for IAL abilities in advanced normal aging. 

Consistent with behavioral evidence of IAL, oldest-old adults had better learning 

performance during later (Stages 2 through 5) than earlier (Stage 1) task stages. Finding 

that learning performance increased across task stages, despite participants being unable 

to describe the regularity between the cues and targets, is in line with previous studies 

using the TLT in younger-old adults (Franco et al., 2021; Howard et al., 2008; 

Merenstein et al., 2021b; Seaman et al., 2013; Stillman et al., 2016b, 2016a). Our 

observation of preserved IAL in the oldest-old may have been facilitated by specific 

parameters of the TLT version used here, including the use of a deterministic regularity, 

fewer unique triplets, longer presentation times, and increased response time window. 

Thus, future studies using the TLT parameters in younger-old and oldest-old adults will 

be needed to determine differences in the magnitude of learning across the older adult 

lifespan. We also used a rank-ordering binning learning metric with the intention of 

capturing smaller learning effects that may have been distributed across the dependent 
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measures. Of note, comparable evidence of IAL was seen in the traditional accuracy data 

(Supplementary Material; Appendix B) and the binning metric was robust to large 

variability in the traditional reaction time data, possibly resulting from the high 

prevalence of arthritis in advanced age (Duncan et al., 2011).  

In line with our predictions, individual differences in IAL within oldest-old adults 

were related to difference in microstructure of fronto-striatal and, to some degree, fronto-

hippocampal white matter. Specifically, better learning performance (i.e., lower bin 

scores) was associated with better microstructure (i.e., decreased free and dispersed 

diffusion) of the posterior limb of the internal capsule. This collection of white matter 

fibers may be especially important to IAL performance because it relays neural signals 

between the cortex and basal ganglia regions (putamen, globus pallidum) that have 

previously been implicated in both earlier and later stages of IAL, including our own 

functional MRI studies using the TLT (Merenstein et al., 2021b; Simon et al., 2012). 

Similarly, the trending association between IAL performance and dispersed diffusion in 

the fornix body may reflect the role of this tract in transmitting neural signals between the 

prefrontal cortex and hippocampus, which have also been implicated in earlier stages of 

IAL tasks by functional MRI studies (Dennis and Cabeza, 2011; Merenstein et al., 2021b; 

Rieckmann et al., 2010; Simon et al., 2012). These results extend prior work using single-

tensor diffusion models in younger-old adults (Bennett et al., 2011) by identifying 

relationships between IAL performance and white matter microstructure in an advanced 

age group and using multicompartment diffusion modelling. Nonetheless, our 

interpretations will benefit from future studies assessing these effects within larger 
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samples of nonagenarians. More broadly, our finding that poorer white matter 

microstructure predicts poorer IAL performance in a sample of very old adults suggests 

that age-related white matter degradation interferes with efficient neurotransmission and 

ultimately contributes to cognitive dysfunction, as predicted by the cortical disconnection 

hypothesis (Bennett and Madden, 2014; O’Sullivan et al., 2001).  

Our results further revealed no significant effect of cognitive status on either the 

behavioral evidence of IAL or the microstructure-IAL associations. Others have similarly 

found that IAL in younger-old adults (Boespflug et al., 2014; Moustafa et al., 2012) and 

that associations between white matter microstructure and age and/or memory 

performance in larger samples of oldest-old adults (Bennett et al., 2017; Merenstein et al., 

2021a) were independent of cognitive status. Together, these findings suggest that 

individual differences in IAL and its white matter microstructural correlates are unlikely 

to be attributed to pathologies associated with early cognitive impairment. This 

interpretation is further supported by our focus on normal appearing white matter at the 

exclusion of hyperintense tissue, which likely reflects cardiovascular damage and white 

matter disease (Wardlaw et al., 2015).  

 In closing, the ability to learn associations between events is spared in oldest-old 

adults without dementia and can be attributed to individual differences in microstructural 

properties of fronto-striatal white matter tracts. Because these results were not influenced 

by diagnoses of CIND, individual differences in IAL and its white matter microstructural 

correlates likely result from normal aging processes. Given that oldest-old adults 

represent the fastest growing segment of the population (He and Muenchrath, 2011), the 
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current investigation lays important groundwork for future MRI studies of brain and 

neurocognitive aging in this advanced age group.  
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Table 6. Demographic and neuropsychological test data. 

Mean (SD) Whole Sample CIND Normal t / χ2
 

N 22 7 15 n/a 

Age 92.91 (1.44) 93.29 (0.76) 92.73 (1.67) 0.83 

N Female (%) 14 (64%) 4 (57%) 10 (67%) 0.19 

N Hispanic (%) 2 (9%) 1 (14%) 1 (7%) 0.34 

Education (years) 15.55 (2.89) 16.00 (3.0) 15.33 (3.2) 0.50 

MMSE 26.18 (2.86) 24.0 (3.1) 27.2 (2.0) 2.83 

Notes. Data are presented as mean (standard deviation, SD), separately for participants 

with cognitive impairment no dementia (CIND) or normal cognition. Significant group 

differences at p < 0.05 are indicated by bolded t or χ2
 (N female, N Hispanic) statistics. 

MMSE = Mini Mental State Examination. 
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Table 7. Associations between IAL and white matter microstructure.  

 Whole sample (R
2
) Controlling for CIND (R

2
) 

Region Restricted Hindered Free Restricted Hindered Free 

Fornix body 

0.082 

(0.197) 

0.246 

(0.019) 

0.156 

(0.069) 

0.112 

(0.147) 

0.249 

(0.023) 

0.166 

(0.071) 

Anterior limb of 

internal capsule 

0.014 

(0.606) 

0.006 

(0.722) 

0.115 

(0.122) 

0.023 

(0.559) 

0.009 

(0.776) 

0.117 

(0.137) 

Posterior limb 

of internal 

capsule 

0.010 

(0.656) 

0.307 

(0.007) 

0.327 

(0.005) 

0.015 

(0.656) 

0.255 

(0.005) 

0.343 

(0.006) 

Notes. Significant (bolded, Bonferroni corrected p < 0.017) and trending (italics, p < 

0.05) relationships [R
2
 (p)] between learning performance and white matter 

microstructure are presented separately for each diffusion metric (restricted, hindered, 

free) and region of interest. 
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Figure 4. Behavioral results are displayed as a function of Task Stage, separately for 

oldest-old adults with normal cognition (normal; black) or cognitive impairment no 

dementia (CIND; gray). Significant evidence of IAL was seen as significantly lower bin 

scores for Stages 2 through 5 when compared to Stage 1. Error bars represent standard 

error of the mean.  
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Figure 5. Scatterplots show the significant (bolded, p < 0.017) and trending (italics, p < 

0.05) regression lines and coefficients of determination (R
2
) from the analyses between 

free (top) or dispersed (bottom) diffusion and average bin scores, separately for each 

region of interest. Results revealed that better microstructure (i.e., decreased free and 

dispersed diffusion) of the posterior limb of the internal capsule predicted significantly 

better learning (i.e., lower bin scores). A similar trend was seen for dispersed diffusion in 

the fornix body. Oldest-old adults with normal cognition or cognitive impairment no 

dementia (CIND) are displayed as black or gray circles, respectively. The shaded gray 

area represents 95% confidence intervals. 
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Chapter 3: Bridging Patterns of Neurocognitive Aging Across the Older Adult 

Lifespan 
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Abstract 

Magnetic resonance imaging (MRI) studies of brain and neurocognitive aging rarely 

include oldest-old adults (ages 80+). But predictions of neurocognitive aging theories 

derived from MRI findings in younger-old adults (ages ~55-80) may not generalize into 

advanced age, particularly given the increased prevalence of cognitive 

impairment/dementia in the oldest-old. Here, we reviewed the MRI literature in oldest-

old adults and interpreted findings within the context of regional variation, compensation, 

brain maintenance, and reserve theories. Structural MRI studies revealed regional 

variation in brain aging as larger age effects on medial temporal and posterior regions for 

oldest-old than younger-old adults. They also revealed that brain maintenance explained 

preserved cognitive functioning into the tenth decade of life. Very few functional MRI 

studies examined compensatory activity in oldest-old adults who perform as well as 

younger groups, although there was evidence that higher brain reserve in oldest-old 

adults may mediate effects of brain aging on cognition. Despite some continuity, different 

cognitive and neural profiles across the older adult lifespan should be addressed in 

modern neurocognitive aging theories. 
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1. Introduction 

Oldest-old adults beyond 80 years of age represent the fastest growing segment of 

the population in most developed countries (He and Muenchrath, 2011). However, 

previous neuroimaging studies have primarily related measures of brain aging to 

cognitive performance in younger-old adults aged ~55-80 years. Numerous impactful 

theories of neurocognitive aging have been derived from these earlier studies, but their 

predictions based on younger-old cohorts may not generalize to oldest-old cohorts. The 

few studies extending into advanced age primarily focus on disease-related brain and 

neurocognitive changes seen in oldest-old adults with cognitive impairment (Corrada et 

al., 2010, 2008; Yang et al., 2013). Even less is known about cognitively normal oldest-

old adults, ~50% of whom have no evidence of brain pathologies (Kawas et al., 2015). 

Furthermore, the large heterogeneity of normal brain aging across the older adult lifespan 

(Eavani et al., 2018; Poulakis et al., 2021) may differentially affect cognitive and neural 

measures in oldest-old compared to younger-old adults. It is therefore important to 

consider the degree to which extant neurocognitive aging theories account for findings 

reported in advanced age.  

Magnetic resonance imaging (MRI) is a neuroimaging technique that is well 

suited for examining age-related differences in brain structure and function in advanced 

age and determining whether such neural differences are predictive of cognitive deficits 

(Hartel and Buckner, 2006; Young et al., 2020). Advantages of MRI include it being 

readily available, cost-effective, and non-invasive relative to other neuroimaging 

techniques, such as positron emission tomography (PET), computerized tomography 
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(CT), near infrared spectroscopy (NIRS), and electro- and magneto-encephalography 

(EEG/MEG). Individual MRI scans are relatively short (3-8 minutes), with structural 

scans requiring nothing more than having participants lie still for the duration of the scan 

session (15-45 minutes). Padding and other accommodations (e.g., blankets, nonferrous 

glasses, ear buds) can make the experience more comfortable (e.g., for those with spine 

curvature), not just more accessible, for individuals with various physical issues (e.g., 

vision problems, arthritis).  

Multiple MRI modalities can also be acquired from participants during a single 

scanning session, which allows studies to obtain varied measures of brain structure and 

function. For example, one common MRI modality is high-resolution T1-weighted 

images, which can reveal age-related differences in the degree of atrophy (volume, 

morphometry) of gray and white matter (Anderson et al., 2005). Diffusion tensor imaging 

(DTI) provides more detailed estimations of microstructural tissue properties by 

measuring the jitter (diffusion) of molecular water (Beaulieu, 2002; Jones, 2008; Mori 

and Zhang, 2006). Damage to white matter tissue can be further probed by estimating the 

volume of white matter hyperintensities (WMH) using fluid attenuated inversion 

recovery (FLAIR) sequences (Lockhart and DeCarli, 2014). On the other hand, age-

related differences in brain activity can be inferred using functional MRI (fMRI), which 

provides estimates of the blood-oxygen-level-dependent (BOLD) signal that can either be 

acquired during performance of a cognitive task (i.e., task-based fMRI; Logothetis, 2008) 

or during rest (i.e., resting state fMRI; Cole et al., 2010). In addition to the advantages 

noted above, this array of modalities makes MRI an ideal tool to examine the neural 
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mechanisms affected by advanced age and whether their contributions to cognition differ 

across the older adult lifespan. 

Other reviews on the oldest-old have focused on broader neuroimaging findings 

(i.e., including both CT and PET studies; Woodworth et al., 2021), problems related to 

frailty and cardiovascular disease (Rosa et al., 2020), risk factors of dementia (Gardner et 

al., 2013; Paolacci et al., 2017; Pierce and Kawas, 2017), methodological considerations 

(Poon et al., 2007), and the epidemiology and pathology of dementia (Gardner et al., 

2013; Kawas et al., 2021; Von Gunten et al., 2010; Yang et al., 2013). The current review 

will add to this literature by (1) reviewing neuroimaging studies of brain and 

neurocognitive aging in the oldest-old, (2) evaluating whether these findings align with 

select neurocognitive aging theories and findings in younger-old adults, and (3) providing 

methodological considerations and ideas for future neuroimaging research in the oldest-

old. Ultimately, this review will demonstrate that the extant literature is sufficient large to 

identify areas of convergence and call for areas that will benefit from further study, with 

particular attention to the methodological concerns discussed here.  

2. Scope of Review 

We conducted our review between May and July 2021 with PubMed searches 

using both an age (“oldest old”, “old old”, “very old”, “centenarians”, “nonagenarians”, 

“octogenarians”, “ag*ing”, “80 and over”) and MRI (“magnetic resonance imaging”, 

“MRI”, “brain”) term, with these searches repeated after adding a cognition term 

(“dementia”, “cognition”, “cognitive performance”). We selected studies that met the 

following criteria: (1) English language publications up to 2021, (2) involved human 
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subjects, (3) original research reports, (4) included adults over 80 years old, and (5) 

examined effects of age on an MRI measure of brain structure or function and/or 

relationships between chronological age and cognitive performance. Studies were further 

limited to those assessing these effects within older age groups (e.g., ages 55+ years old), 

with lifespan studies (e.g., ages 20-80+ years) only included when their results were 

disaggregated by an oldest-old adult subgroup (e.g., conducting analyses with and 

without oldest-old adults or examining effects separately within oldest-old adults).  

2.1 Defining the “oldest-old” 

The definition of oldest-old adults varies across research groups, with the Sydney 

Memory and Aging Study (Piguet et al., 2003; Z. Yang et al., 2016b) and Health, Aging, 

and Body Composition Study (Rosano et al., 2005a, 2005b; Simonsick et al., 2001) 

including individuals greater than 80 years old, whereas The 90+ Study (Kawas and 

Corrada, 2006) is limited to individuals greater than 90 years of age. Because normal 

aging (e.g., neurodegeneration, small vessel disease) and dementia-related (e.g., amyloid-

beta plaques, neurofibrillary tangles; Braak and Braak, 1997) pathology are both less 

prevalent in octogenarians (80-89 years) than nonagenarians (90-99 years)(Kawas et al., 

2015; Yang et al., 2013), one could argue that the latter group represents a more stringent 

definition of the oldest-old. Nonetheless, to better integrate findings across these cohorts, 

the current review defined oldest-old adults as individuals beyond 80 years of age. 

Studying the oldest-old provides an opportunity to assess how their increased 

prevalence of cognitive impairment no dementia (CIND) affects MRI measures of brain 

aging (Brookmeyer et al., 2017; Corrada et al., 2010, 2008). Relative to oldest-old adults 



 65 

with normal cognition, those with CIND are at increased risk of progressing to dementia 

(Peltz et al., 2011), which we assume reflects a relatively greater accumulation of 

dementia-related pathology contributing to their clinical expression of cognitive deficits. 

To disentangle these distinct but related constructs, however, we suggest that future MRI 

studies examining cognitive status subgroup differences in this age group simultaneously 

assess Alzheimer’s disease risk factors (e.g., e4 allele combination on the apolipoprotein 

[APOE] gene) and pathology (e.g., amyloid-beta).  

2.2 Overview of neurocognitive aging theories 

The body of this review is divided into four sections covering studies that 

assessed gray matter volumetry and morphometry (Section 3), white matter 

hyperintensities and microstructure (Section 4), fMRI activity (Section 5), or other MRI 

modalities (Section 6) in the oldest-old. Each section separately reviews the literature 

examining brain aging (Table 1), neurocognitive aging (Table 2), and cognitive status 

subgroups (Table 3) in the oldest-old using the corresponding MRI modality. Findings 

within each subsection are then discussed in relation to the following four theories, the 

latter of which is only discussed in the fMRI section (Table 4): regional variation of brain 

aging (Raz et al., 2010; West, 1996), brain maintenance (Nyberg et al., 2012), brain 

reserve (Barulli and Stern, 2013), and compensation (Cabeza, 2002; Cabeza et al., 2018; 

Grady, 2008; Reuter-Lorenz and Cappell, 2008). These neurocognitive aging theories 

were selected for their ability to make specific predictions that could be applied to MRI 

data in the oldest-old. Each theory is briefly introduced below. 

2.2.1 Regional variation of brain aging 
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Numerous theories in younger-old adults propose that the magnitude of age 

effects varies across the brain, particularly in frontal and medial temporal regions. One 

influential theory, the frontal lobe hypothesis, proposed that healthy aging 

disproportionately affects anterior brain regions, resulting in worse performance on 

cognitive processes supported by the prefrontal cortex (e.g., executive functioning; West, 

1996). An extension of this view proposes an anterior-to-posterior gradient in normal 

brain aging such that age effects in younger-old adults are largest and appear earliest in 

frontal regions, with parietal and occipital regions being relatively preserved until 

advanced age (Cabeza and Dennis, 2014; Davis et al., 2009; Head et al., 2004; Hedden 

and Gabrieli, 2004; Madden et al., 2009; Pfefferbaum et al., 2005). However, others 

report similarly large age-related differences in medial temporal regions such as the 

hippocampus and entorhinal cortex in younger-old adults, which have been associated 

with episodic memory deficits (for reviews, see Craik and Rose, 2012; Jagust, 2013; 

Tromp et al., 2015).  

An important question, particularly when applying these theories to the oldest-old, 

is whether frontal lobe atrophy occurs in both normal aging and dementia, whereas 

medial temporal lobe atrophy primarily occurs in individuals with dementia (Head et al., 

2005; Hedden and Gabrieli, 2005; Resnick et al., 2003). This distinction arose from the 

latter regions being among the first to accumulate dementia-related pathologies (e.g., 

amyloid-beta plaques, neurofibrillary tangles; Braak and Braak, 1997). Yet other work 

suggests that frontal and medial temporal regions are similarly affected by normal aging 

(Fjell et al., 2014; Raz et al., 2010, 2005), as both regions have smaller diameter axons 
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and lower oligodendrocyte-to-axon ratios making them more vulnerable to degeneration 

(Stebbins and Murphy, 2009), as well as a delayed time course for myelination 

(Bartzokis, 2004). The MRI literature in oldest-old adults may contribute to this debate 

by comparing medial temporal regions in individuals at low versus high risk for 

dementia, the latter of which includes those diagnosed with CIND. 

Regional variation in brain aging within oldest-old adults may present as frontal 

and medial temporal vulnerability similar to younger-old adults, consistent with the 

notion that these regions decline across the older adult lifespan. Relative to younger-old 

adults, larger age effects in medial temporal regions may reflect an accumulation of 

dementia-related pathology in both cognitively normal and CIND oldest-old adults. 

However, an open question is whether additional regions that are relatively preserved in 

younger-old adults, such as parietal and primary sensory areas, are vulnerable in 

advanced age.  

2.2.2 Brain maintenance 

Brain maintenance is a theory proposing that younger-old adults with cognitive 

abilities similar to younger adults (e.g., 20-30 years) or better than age-expected norms 

experience minimal age-related brain changes and a relative lack of brain pathology 

(Nyberg et al., 2012; Nyberg and Pudas, 2018). In other words, these cognitively normal 

older adults have “maintained” a young-like brain, which is comparable to the term 

“resistance” often used in Alzheimer’s disease biomarker research (Montine et al., 2019). 

For example, one study found similar prefrontal recruitment when comparing younger-

old adults who performed well on a memory task to younger and middle-aged (e.g., 30-
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55 years) adults (Vidal-Piñeiro et al., 2018). These same top-performing younger-old 

adults also had no significant decline in memory performance and slower rates of 

entorhinal cortical atrophy measured over eight years, suggesting that these substrates 

helped preserve memory function. However, very few studies have interpreted similar 

effects in light of brain maintenance in advanced age.   

Brain maintenance may generalize to oldest-old adults. Support for this view 

would include structural MRI studies finding that oldest-old adults with the best cognitive 

performance also have the largest brain volumes, intact tissue microstructure, and fewer 

WMH, especially longitudinally. It might also include fMRI studies finding that top-

performing oldest-old adults with little structural degradation recruit similar brain 

networks to a comparable degree as younger age groups, as noted above.  

2.2.3 Brain reserve 

Brain reserve has been proposed as a mechanism to account for individual 

differences in cognitive aging in younger-old adults and is similar to the term “resilience” 

used in Alzheimer’s disease biomarker research (Montine et al., 2019). The idea is that 

cognitive impairment will not be observable until changes in the brain, like those 

associated with aging and dementia, exceed some threshold that varies across individuals 

depending on their “brain reserve”, such as their brain size, neurite density, or synaptic 

connections (Barulli and Stern, 2013). Thus, older individuals with high brain reserve 

may be cognitively normal despite having a large amount of age-related degradation or 

accumulation of pathology. This differs from brain maintenance, which proposes that 
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individuals with normal cognition should have an absence of age-related brain changes or 

disease-related pathologies.  

In the oldest-old, brain reserve theories may explain structural MRI studies 

finding that a given level of neural degradation (e.g., atrophy, WMH burden) results in 

cognitive impairment for individuals with low brain reserve, whereas those with high 

brain reserve will continue to present as cognitively normal (Barulli and Stern, 2013; 

Tucker and Stern, 2011). It may also be used to interpret fMRI studies finding that oldest-

old adults with similar cognitive performance relative to younger age groups have similar 

or even reduced BOLD activity in the face of marked structural degradation. This pattern 

has previously been interpreted as a form of functional reserve against age-related brain 

changes, potentially reflecting more efficient use of the spared brain tissue in pre-existing 

networks (Barulli and Stern, 2013; Stern, 2006).  

2.2.4 Compensation  

As defined in a recent consensus paper (Cabeza et al., 2018), compensation 

theories propose that younger-old adults may compensate for the negative effects of brain 

aging by increasing activity in the same and/or additional brain regions relative to 

younger adults, allowing them to perform well on the cognitive tasks (Cabeza et al., 

2018; Davis et al., 2008; Grady, 2008). One of the earliest compensation theories is 

Hemispheric Asymmetry Reduction in Older Adults (HAROLD; Cabeza, 2002), which 

described the finding that high performing older adults recruited bilateral prefrontal 

regions relative to younger adults and low performing older adults who recruited 

unilateral regions during memory performance (Cabeza et al., 1997). Compensation-
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Related Utilization of Neural Circuits Hypothesis (CRUNCH; Reuter-Lorenz and 

Cappell, 2008) further proposes that older adults show compensatory activity when task 

demands are low and they can perform well, but fail to show compensatory activity when 

task demands are high and they perform worse than younger adults. This is thought to 

result from older adults reaching a ceiling of neural resources that can be recruited when 

tasks are more difficult. As with regional variation theories, compensatory activity is 

often seen in frontal brain regions. 

Compensatory neural activity in the oldest-old should look similar to patterns 

seen in younger-old adults, with more BOLD activity in individuals whose cognitive 

performance is comparable to younger age groups. However, it is possible that 

compensatory activity may not be seen in oldest-old adults if their performance is always 

worse than younger age groups. Such a finding would be consistent with CRUNCH if it 

reflects task demands being higher in advanced age. 

3. Gray matter volumetry and morphometry  

3.1 Brain aging in the oldest-old  

Because the literature on white matter volume in the oldest-old consists of too few 

studies to draw consistent conclusions (Salat et al., 1999; Stickel et al., 2018; Z. Yang et 

al., 2016a), this section instead focused on studies assessing the effect of advanced age on 

gray matter volume and morphometry (cortical thickness, sulcal width). These studies 

have revealed three key findings: (1) negative effects of age on volume were consistently 

seen for the hippocampus, (2) less consistent and possibly weaker age effects on volume 

and mophometry were seen in other medial temporal and frontal regions, and (3) the 
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negative effects of age were comparable in oldest-old adults with normal and superior 

cognitive status. The literature supporting these findings is described below and 

summarized in Table 8.  

Most studies reported that advanced age was accompanied by smaller volume of 

the hippocampus (Mueller et al., 1998; van Bergen et al., 2018; Z. Yang et al., 2016a), a 

medial temporal structure commonly linked to memory ability, with this negative effect 

of age on hippocampal volume being significantly greater than in the prefrontal cortex 

(Yang et al., 2016a). Together, this suggests that there are consistent and large effects of 

advanced age on hippocampal volume relative to younger-old adults, similar to lifespan 

studies extending into advanced age (Jernigan et al., 2001; Langnes et al., 2020).   

As in the hippocampus, advanced age-related degradation has been observed in 

other medial temporal and brain-wide structures. Relative to younger-old adults, oldest-

old adults have significantly smaller volumes (Brickman et al., 2008) and greater thinning 

(Z. Yang et al., 2016a) of the entorhinal cortex, as well as smaller temporal lobe volumes 

(Mueller et al., 1998). There are also longitudinal decreases in temporal (and frontal) 

cortical thickness when following oldest-old adults over a four-year period (Li et al., 

2020). Although at least one study found no significant effect of age on entorhinal 

volume within older adults (van Bergen et al., 2018). Beyond medial temporal structures, 

the sulcal width of both anterior (e.g., anterior cingulate, superior frontal) and posterior 

(e.g., intraparietal, posterior cingulate) regions was greater for oldest-old than younger-

old adults (Tang et al., 2021). Indeed, effects of advanced normal aging on anterior neural 

tissue appears to be distinct from disease, as one study observed significantly greater 
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volume loss in the prefrontal cortex for cognitively normal oldest-old adults than 

younger-old adults with normal cognition or those with Alzheimer’s disease (Salat et al., 

1999). Together, these findings suggest brain-wide effects of advanced age on gray 

matter volume and morphometry.  

When examining these age effects across cognitive status subgroups, one study 

observed that even older adults with superior cognitive status experienced whole brain 

volume loss and cortical thinning, with the largest age effects in the hippocampus and 

entorhinal cortex (Z. Yang et al., 2016a). This finding suggests that some degree of 

advanced age-related degeneration in the hippocampus, among other brain regions, may 

be characteristic of normal aging. However, additional research with oldest-old adults 

across cognitive status subgroups is needed to better understand the extent to which 

volume and morphometry differences reflect normal aging or preclinical dementia, 

especially those that can also assess Alzheimer’s disease risk factors and pathology (e.g., 

APOE genotype, amyloid-beta).  

In summary, the current findings suggest a more brain-wide vulnerability in 

advanced age that is especially marked in the hippocampus. This pattern of results is not 

inconsistent with neurocognitive aging theories in younger-old adults, such as the 

anterior-to-posterior gradient (Davis et al., 2009; Head et al., 2004; Hedden and Gabrieli, 

2004; Madden et al., 2009), in that advanced age effects on volume and morphometry 

also extended to anterior and posterior cortical regions (Li et al., 2020; Tang et al., 2021; 

Z. Yang et al., 2016a). Yet this view does not account for the predominant pattern of 

hippocampal degradation seen in advanced aging (Z. Yang et al., 2016a). Instead, the 
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findings reviewed here suggest that an anterior-to-posterior gradient may be more 

common in early aging. Future studies examining age effects using the same structural 

imaging modality across the older adult lifespan are needed to better understand the time 

course of degradation in anterior (frontal cortex), medial temporal (hippocampus), and 

posterior (parietal cortex) regions. In turn, extant theories of regional variation in brain 

aging may need to account for the increased hippocampal-specific and brain-wide 

susceptibility to advanced age. 

3.2 Neurocognitive aging in the oldest-old 

Studies examining the effect of brain volume and morphometry on cognition in 

advanced age have primarily focused on episodic memory and processing speed 

performance. Their results have predominantly revealed positive associations with 

hippocampal volume or medial temporal cortical thickness using a variety of study 

designs (cross-sectional, longitudinal) and age groups (entire lifespan, older adult 

lifespan, oldest-old only). The literature supporting these findings is described below and 

summarized in Table 9. 

Slower rates of episodic memory decline assessed longitudinally have been 

reported within oldest-old adults with fewer changes in hippocampal volume (Legdeur et 

al., 2019) and higher baseline medial temporal and anterior cingulate cortical thickness 

(Pelkmans et al., 2021). Slower rates of memory decline have also been associated with 

larger baseline whole brain volume across the older adult lifespan (Carmichael et al., 

2012). Cross-sectional studies similarly report that oldest-old adults with larger 

hippocampus volumes have better episodic memory performance (Eguchi et al., 2019) 
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and faster processing speeds (Legdeur et al., 2020; Pelkmans et al., 2021), comparable to 

what has been reported in younger-old adults (Carr et al., 2017; Gorbach et al., 2017; 

O’Shea et al., 2016). Larger volume of the hippocampus was also found to predict better 

memory performance in individuals across the lifespan (ages 4-93 years; Langnes et al., 

2020). However, the effects in anterior hippocampus were driven by individuals aged 80+ 

years, suggesting that this subregion of the hippocampus may be especially important for 

memory function in advanced age.  

In summary, larger gray matter volumes and morphometry, primarily of the 

hippocampus and medial temporal lobe, relate to better performance on episodic memory 

and processing speed tasks across the lifespan and into advanced age. Because these 

studies revealed better cognitive performance in oldest-old adults with either minimal 

age-related brain changes assessed longitudinally or minimal structural degradation 

assessed cross-sectionally (e.g., larger volume, thicker cortex), their findings are 

consistent with the brain maintenance theory (Nyberg et al., 2012). Specifically, as in 

younger-old adults, maintenance of a young-like brain in advanced age may prevent 

cognitive aging. Future work extending beyond medial temporal regions and episodic 

memory processes can help test the functional role of frontal and posterior brain aging 

(e.g., using executive function or attention-based paradigms) in oldest-old relative to 

younger-old adults, especially those using longitudinal designs.  

3.3 Cognitive status subgroups in the oldest-old 

Several studies have compared volumetry and morphometry measures between 

subgroups of oldest-old adults that differ in cognitive status, defined as normal cognition, 
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cognitive impairment, or dementia. These studies have revealed similar effects of 

cognitive status across the older adult lifespan in medial temporal regions (hippocampus, 

entorhinal cortex, parahippocampal gyrus), although the effect of cognitive status on 

volume and morphometry in cortex (temporal, parietal) may be smaller in oldest-old than 

younger-old adults. The literature supporting these findings is described below and 

summarized in Table 10. 

Larger hippocampal volumes are consistently seen for oldest-old adults with 

normal cognition relative to those with cognitive impairment or dementia (Barkhof et al., 

2007; Gosche et al., 2002; Holland et al., 2012; Lopez et al., 2014; Z. Yang et al., 2016b), 

similar to findings in younger-old adults (Apostolova et al., 2012; Z. Yang et al., 2016b). 

Larger volumes of the hippocampus, as well as entorhinal cortex and parahippocampus 

gyrus, have also been seen for oldest-old adults with preserved general cognitive 

performance over 10 years than those who declined, with comparable effects in younger-

old adults (Rosano et al., 2012). However, at least one study found that brain regions 

showing a volumetric effect for normal versus impaired cognitive status differed in 

oldest-old (hippocampus, inferior frontal gyrus, temporal pole) relative to younger-old 

(putamen, parahippocampal gyrus, cortex) adults (Z. Yang et al., 2016b). Smaller 

differences between cognitively normal and dementia subgroups have also been reported 

for thickness (Stricker et al., 2011) and volume (Holland et al., 2012) of temporal-parietal 

regions for oldest-old relative to younger-old adults. A more complete picture of the 

structural signatures of normal aging versus dementia will require future studies that 
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compare cognitive status subgroups in younger-old and oldest-old populations using the 

same MRI metrics. 

In summary, these findings are generally in line with brain reserve, which would 

expect cognitively normal individuals to have higher brain reserve (e.g., larger brain 

volumes) than those with cognitive impairment or dementia. Whereas some degree of 

atrophy may be characteristic of normal aging (Z. Yang et al., 2016a), more accelerated 

degradation as a function of cognitive status, particularly in the medial temporal lobe, is 

consistent with its role in dementia across the older adult lifespan. However, these 

findings further suggest that levels of reserve are not uniform across the brain and that 

regional differences may be exacerbated in advanced age, which warrants further 

investigation.  

4. White matter hyperintensities and microstructure  

4.1 Brain aging in the oldest-old 

Effects of advanced age on WMH and microstructure have been assessed across 

the older adult lifespan and within the oldest-old only, using a variety of cognitive status 

subgroups (superior, normal, impaired). These studies have revealed three key findings: 

(1) WMH accumulate more in oldest-old relative to younger-old adults predominantly in 

posterior brain regions, (2) worse tissue microstructure (i.e., lower fractional anisotropy, 

FA; higher diffusivity) is seen in oldest-old relative to younger-old adults that is most 

prominent in medial temporal regions, and (3) these effects of age on WMH and 

microstructure do not vary between oldest-old adults with normal or impaired cognitive 
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status. The literature supporting these findings is described below and summarized in 

Table 8. 

One study examining WMH across the older adult lifespan found quadratic age-

related differences for all four cortical lobes (Z. Yang et al., 2016a), indicating an 

accelerated accumulation of WMH in advanced age. Specific vulnerability of the frontal 

lobe was supported by one study limited to this region finding significantly higher WMH 

burden for oldest-old adults > 91 years than those < 90 years old (Polvikoski et al., 2010). 

However, when examining WMH across the brain within oldest-old adults, there was 

significantly higher WMH burden in the parietal than the frontal lobe (Piguet et al., 

2003). Thus, whereas there are larger brain-wide WMH differences in advanced age 

relative to younger adults, parietal regions may be most sensitive to age-related WMH 

accumulation in the ninth and tenth decades.  

Studies examining white matter microstructure have reported negative age effects 

on frontal, temporal, and parietal regions across the older adult lifespan (Lövdén et al., 

2013), as well as within oldest-old adults over a two-year period (Lövdén et al., 2014). 

Our own work in younger-old and oldest-old adults revealed quadratic age-related 

differences in white matter microstructure across the brain that were more pronounced in 

advanced age, with the largest effects seen for the medial temporal lobe (Merenstein et 

al., 2021a). These findings extended earlier work in which we found the largest age 

effects for medial temporal (fornix) and posterior (splenium) white matter tracts within 

oldest-old adults (Bennett et al., 2017). As such, there are consistently large effects of 
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advanced age on medial temporal white matter relative to younger-old adults and even 

amongst only oldest-old adults.   

There is some evidence that advanced age-related WMH accumulation and 

microstructural degeneration is not driven by oldest-old with cognitive impairment or 

dementia. For example, the previously mentioned age-related increases in brain-wide 

WMH were observed even in older adults with superior cognition (Z. Yang et al., 2016a), 

and the larger age effect on parietal than frontal WMH was independent of APOE 

genotype (Piguet et al., 2003). Moreover, our findings of brain-wide age effects on 

microstructure across the older adult lifespan (Merenstein et al., 2021a) and within only 

oldest-old adults (Bennett et al., 2017) did not change after excluding oldest-old adults 

diagnosed with CIND. Thus, brain-wide microstructural degradation seen in advanced 

age cannot solely be attributed to cognitive dysfunction or increased dementia risk in this 

age group.  

In summary, finding greater age effects on posterior regions differs from the 

predominantly frontal findings in younger-old adults, but together they support an 

anterior-to-posterior gradient to white matter aging (Head et al., 2004; Hedden and 

Gabrieli, 2004; Madden et al., 2009). Importantly, there was nonlinear white matter 

degradation in medial temporal and posterior regions within oldest-old adults regardless 

of CIND or superior cognitive status, which might reflect an acceleration of normal aging 

processes in advanced age (e.g., demyelination, myelin ballooning, cardiovascular 

damage; Peters, 2002; Wardlaw et al., 2015). These findings are consistent with the gray 

matter volumetry and morphometry studies reviewed in Section 3.1, thereby providing 
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converging evidence for a brain-wide vulnerability in advanced age that spans multiple 

neural substrates captured by these different MRI modalities. Because most studies 

examining WMH and microstructure in the oldest-old have used cross-sectional designs 

(c.f., Lövdén et al., 2014), this line of work could be progressed by future longitudinal 

studies that can track these brain aging effects over time into advanced age.    

4.2 Neurocognitive aging in the oldest-old 

Numerous cross-sectional and longitudinal studies have shown that fewer WMH 

and better microstructure (e.g., higher FA, lower diffusivity) relates to better cognitive 

performance into advanced age, with the most studied cognitive domains being episodic 

memory, executive functions, and processing speed. The literature supporting these 

findings is described below and summarized in Table 9. 

For episodic memory, oldest-old adults with slower rates of memory decline had 

fewer baseline WMH across the brain (Pelkmans et al., 2021), with this association being 

particularly strong within the frontal lobe (Piguet et al., 2003). Better episodic memory 

performance has also been related specifically to better medial temporal white matter 

microstructure (Merenstein et al., 2021a), as well as better hippocampal gray matter 

microstructure (Reas et al., 2021), across the older adult lifespan. For executive 

functions, older adults who accumulated fewer brain-wide WMH over time had smaller 

declines in performance (Carmichael et al., 2012), although the association between 

WMH burden and executive functions may be weaker in oldest-old adults (Legdeur et al., 

2019). For processing speed, faster performance within oldest-old adults has been 

associated with fewer brain-wide WMH (Pelkmans et al., 2021) and better microstructure 
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of the corticospinal tract (Lövdén et al., 2014), uncinate and superior longitudinal 

fasciculi (Rosano et al., 2015), and whole brain white matter (Venkatraman et al., 2011). 

Associations between microstructure and processing speed in individuals across the older 

adult lifespan remained significant after accounting for the future development of 

dementia (Haynes et al., 2017) or excluding individuals meeting criteria for preclinical 

dementia (Laukka et al., 2013), suggesting that these effects are not solely driven by early 

cognitive impairment.  

Altogether, these patterns would be predicted by brain maintenance theory, where 

preserved cognitive functioning should be observed among older adults with minimal 

changes in markers of brain aging. One interesting finding that requires further 

investigation is reports of race (Liu et al., 2015) and sex (Reas et al., 2021) differences in 

relationships between performance and WMH or microstructure. Findings such as 

smaller WMH volumes relating to faster processing speeds for Black but not White 

younger-old and oldest-old adults (Liu et al., 2015) may be due to the larger WMH 

volumes seen among Black (and Hispanic) relative to White individuals across the older 

lifespan (Brickman et al., 2008). Future studies using more diverse oldest-old samples are 

needed to determine whether race and sex moderate the association between the 

previously reported MRI markers and cognition in advanced age. 

4.3 Cognitive status subgroups in the oldest-old 

Studies comparing WMH and microstructure measures between subgroups of 

oldest-old adults that differ in cognitive status (normal cognition, cognitive impairment, 

dementia) report a weakened ability of these measures to differentiate these subgroups in 
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the oldest-old. The literature supporting this finding is described below and summarized 

in Table 10. 

 A handful of studies have shown that whole brain WMH volumes do not 

significantly differ between cognitively normal and impaired subgroups within oldest-old 

adults (Tanskanen et al., 2013; Zamboni et al., 2019) or across younger-old and oldest-

old adults (Z. Yang et al., 2016b). Longitudinally, baseline whole brain WMH burden in 

individuals across the older adult lifespan was comparable for those who had preserved 

and declining general cognitive performance over a 10-year period (Rosano et al., 2012). 

Comparable effects have been reported for whole brain white matter microstructure, 

which differed between cognitively normal and impaired subgroups of younger-old, but 

not oldest-old, adults (Zamboni et al., 2019). However, region-specific differences 

between oldest-old adults with normal and impaired cognition may have been obscured 

by the use of whole brain WMH measures as one study limited to the frontal lobe 

observed fewer WMH for oldest-old adults with normal cognition than those diagnosed 

with Alzheimer’s disease (Polvikoski et al., 2010). 

Thus, although individual differences in WMH or microstructure significantly 

relate to cognitive performance in both cognitively normal and impaired oldest-old adults 

(see Section 4.2), these white matter metrics do not differentiate cognitive status 

subgroups in advanced age. This pattern may indicate that the contribution of white 

matter to cognitive dysfunction in clinically impaired oldest-old adults is somewhat 

modest or that the cognitive status subgroups are defined by additional factors not 

captured by the measures of cognitive performance (e.g., impaired activities of daily 
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living). Regardless, finding comparable WMH accumulation (De Leeuw et al., 2001; 

Kawas et al., 2015) and microstructural degradation (Bennett et al., 2017; Merenstein et 

al., 2021a) in oldest-old adults with normal and impaired cognition may reflect higher 

brain reserve in the former group as they show preserved cognition in spite of white 

matter degradation. This interpretation would benefit from future work testing whether 

neural substrates beyond WMH and microstructure (e.g., functional activity and 

connectivity, larger brain volumes, low levels of amyloid-beta plaques) capture similar 

patterns of brain reserve that differ between these cognitive status subgroups in advanced 

age.  

5. Functional MRI studies 

5.1 Brain and neurocognitive aging in the oldest-old  

Beyond the large number of structural studies whose samples extend into 

advanced age, there are also eight fMRI studies that have been conducted in oldest-old 

adults. Most task-related fMRI studies report decreased BOLD activity into advanced age 

that is independent of preserved or impaired performance, whereas resting-state fMRI 

studies find a mixture of age-related decreases (default mode) and increases 

(frontoparietal, motor) in functional connectivity. The literature supporting these findings 

is described below and summarized in Table 11.  

Two studies compared BOLD activity between younger-old and oldest-old adults 

during recognition memory performance, with both controlling for age-related 

differences in whole brain volume (Beeri et al., 2011; Wang et al., 2009). When oldest-

old adults had poorer memory performance than younger-old adults, it was accompanied 
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by less activity in hippocampal, temporal, and parietal regions, but comparable activity in 

frontal cortex (Beeri et al., 2011). When matching younger-old and oldest-old adults on 

memory performance, results similarly revealed age-related decreases in medial parietal 

activity but comparable activity in frontal and lateral parietal regions (Wang et al., 2009).  

Other studies have examined BOLD activity across age groups as a function of 

task demands. One study compared oldest-old to younger adults who performed an 

executive control task, in which participants executed a motor response to a target 

stimulus that was preceded by a congruent (low load) or incongruent (high load) cue 

(Rosano et al., 2005a). Across load conditions, the oldest-old had similarly high accuracy 

levels as younger adults, but lower activity in the dorsolateral prefrontal and posterior 

parietal cortices. However, both age groups showed increased recruitment of these same 

regions for the high versus low load condition, and oldest-old adults with the greatest 

load-related parietal activity had the best performance. Another study compared adults 

across the lifespan (ages 20-89 years) during performance of a semantic judgment task, 

where participants made “living” versus “nonliving” judgments to words that were more 

(high load) or less (low load) ambiguous (Kennedy et al., 2015). Results also revealed 

similarly high accuracy levels across age groups, but performance was instead 

accompanied by decreased recruitment of frontal, temporal, and parietal regions at higher 

versus lower task loads, especially within the oldest-old subgroup (ages 80+ years).  

Whereas the aforementioned fMRI studies focused on BOLD activity during 

performance of a task, at least two studies examined patterns of synchronous activity 

between regions while participants rested (i.e., functional connectivity). Across the older 
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adult lifespan, age-related differences were seen in connectivity of the default mode 

network, such that older adults had lower connectivity between regions such as the 

medial prefrontal cortex, posterior cingulate, and precuneus (Jiang et al., 2020; Li et al., 

2020). The cross-sectional study also found greater bilateral frontoparietal connectivity 

that predicted better visuospatial performance for the oldest-old (Jiang et al., 2020), 

whereas the longitudinal study observed age-related increases in connectivity between the 

insula and supplementary motor area, with precuneus connectivity relating to changes in 

general cognitive performance (Li et al., 2020). Results of both studies were independent 

of whole brain volume and comparable to findings within younger-old and oldest-old 

adults with Alzheimer’s disease (e.g., in the default mode network; Prawiroharjo et al., 

2020), suggesting that they are not driven by cognitive dysfunction. 

In summary, the task-related findings differ from the age-related increases in 

BOLD activity typically seen in high-performing younger-old adults, as well as the 

relatively consistent increases in BOLD activity as a function of task demands in younger 

age groups, and therefore contrast with compensation theories (Cabeza et al., 2018; 

Grady, 2008). They also differ from brain maintenance, which would have instead 

predicted similar BOLD activity and comparable cognitive performance in oldest-old and 

younger groups. To some degree, these interpretations depend on the reference group, as 

differences in the oldest-old were more widespread when compared to younger adults 

(Kennedy et al., 2015; Rosano et al., 2005a) than younger-old adults (Beeri et al., 2011; 

Wang et al., 2009). Whereas compensatory fMRI activity is commonly attributed to an 

increase in neural activity in younger-old adults who perform as well as younger adults, 
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some have proposed that compensatory activity follows an inverted U-shaped pattern 

across the entire adult lifespan (Cabeza and Dennis, 2014; Scheller et al., 2014). Such a 

pattern could be roughly approximated using both younger and younger-old comparison 

groups, which may reveal comparable neural activity in younger and high performing 

oldest-old adults, both of which differ from the increased activity seen in high performing 

younger-old adults. However, a fuller characterization of this U-shaped function will 

require a lifespan sample. 

Given the relatively smaller fMRI literature, it remains somewhat unclear whether 

decreased BOLD activity reflects a maximization of neural resources in oldest-old adults 

(Reuter-Lorenz and Cappell, 2008) or whether they have higher brain reserve that 

protects against the effects of atrophy (Barulli and Stern, 2013). The latter would allow 

for efficient engagement of neural networks, which was supported by resting state studies 

finding stronger connectivity in the oldest-old (Jiang et al., 2020; Li et al., 2020). 

Ultimately, additional fMRI studies across the entire lifespan are needed to tease apart 

these possibilities, especially those using tasks with varied cognitive demands to prevent 

ceiling (younger adults) and floor (oldest-old adults) effects or allow age groups to be 

matched on performance (Wang et al., 2009). 

5.2 Cognitive status subgroups in the oldest-old 

Only one study examined BOLD activity between cognitive status subgroups in 

advanced age, which is summarized in Table 11. During performance of the same 

executive control task described above (Rosano et al., 2005b), greater activity was seen in 

dorsolateral prefrontal and posterior parietal cortices for oldest-old adults with impaired 
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versus normal cognition. Because there were no group differences in performance, it 

suggests that this response was compensatory. Thus, relative to cognitively normal 

younger-old and oldest-old adults, cognitively impaired oldest-old adults appear to show 

compensatory activity in parietal, not just frontal, regions. 

6. Other MRI modalities 

Beyond the select MRI modalities reviewed above, at least two studies examined 

the extent to which certain genotypes contributed to brain or neurocognitive aging in 

younger-old and oldest-old adults (Papenberg et al., 2015; Stickel et al., 2018). Two 

genes of particular interest are COMT (Catechol-O-Methyltransferase), which is 

implicated in neuromodulation of the prefrontal cortex and executive functions, and 

KIBRA, which is named for its role in producing proteins expressed in the kidneys and 

brain and has been implicated in episodic memory. Across studies, only oldest-old adults 

with the more favorable allele combination for COMT (Papenberg et al., 2015) or 

KIBRA (Strickel et al, 2018) had better prefrontal white matter microstructure or greater 

frontal and occipital volume, respectively. Having desirable allele combinations may 

therefore be a mechanism by which cognitively normal oldest-old adults maintain brain 

structure in advanced age.  

Susceptibility-weighted imaging is another MRI modality of interest given its 

sensitivity to iron, which is known to accumulation with age and is thought to contribute 

to neurodegeneration via inflammation (Venkatesh et al., 2021; Zecca et al., 2004). Age-

related increases in iron have been observed in oldest-old adults within the putamen (van 

Bergen et al., 2018), a subcortical structure known to gradually accumulate iron across 
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the younger adult lifespan (Hallgren and Sourander, 1958). However, this same study 

reported significantly less iron accumulation for oldest-old than younger-old cognitively 

normal adults in frontal, parietal, and temporal cortices (van Bergen et al., 2018). 

Intriguingly, because cortical iron loads are relatively low up until midlife and then 

increase across older adulthood (Acosta-Cabronero et al., 2016; Zecca et al., 2004), this 

cannot explain why a sample limited to older adults would paradoxically find age-related 

decreases in iron for cognitively normal oldest-old adults (van Bergen et al., 2018). 

Instead, minimal cortical iron accumulation may be a marker of sustained cognitive 

functioning in the ninth and tenth decades of life, which has implications for brain 

maintenance theory.  

7. Methodological Considerations 

General methodological constraints when conducting research on the oldest-old 

have been reviewed elsewhere. For example, the oldest-old are often extremely frail, 

making it difficult for them to travel to and navigate university testing sites (Rosa et al., 

2020). There is also a strong sampling bias for oldest-old adults that are female, Non-

Hispanic Whites, and have high educational attainment (Gardner et al., 2013; Poon et al., 

2007). Here, we will discuss five additional methodological considerations specific to 

conducting neuroimaging research in the oldest-old: feasibility, vascular disease, iron 

accumulation, the presence of multiple pathologies, and the choice of reference group.  

7.1 Feasibility 

A potential limitation to obtaining MRI data in the oldest-old is their heightened 

frailty and the need for participants to lay in the supine position for an extended period. 
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Comfort can be maximized by using head padding, blankets, and leg cushions, and one 

study indeed reported similar overall comfort levels during MRI scanning (up to 1 hour) 

for younger-old and oldest-old participants (Wollman et al., 2004). However, the same 

study did find that the oldest-old were more bothered by MRI scanner noise, long scan 

times, and laying down. Researchers therefore need to weight the benefits of a shorter 

scan time (e.g., participant satisfaction, better data quality from less motion) with the cost 

of potentially reducing the number or resolution of scans. They might also wish to 

consider splitting higher-resolution acquisition sequences into multiple sessions, although 

this introduces the potential cost of losing data due to attrition.  

Assuming researchers have access to well-characterized oldest-old populations 

that are interested and able to participate in research, feasibility then shifts to decisions 

about which MRI modalities to acquire. Structural MRI scans place minimal demands on 

participants beyond those for safely being scanned (e.g., not home bound, no metal, 

ability to lay supine). In contrast, task-related fMRI scans may be hampered by cognitive 

and physical (e.g., arthritis, vision and/or hearing problems) conditions that makes it 

difficult to understand task instructions and respond to stimuli via MR-compatible 

button-box. Researchers might therefore consider using extensive practice trials before 

entering the scanner and increasing the response time windows when asking oldest-old 

adults to perform cognitive tasks in the scanner. Functional MRI data also requires longer 

scan times as there are several structural images that are also needed for preprocessing 

(e.g., registration, region of interest, tissue segmentation). Nonetheless, these types of 

studies are crucial for understanding brain aging in the oldest-old and could be made 
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possible via large-scale, open access datasets, such as the Lifespan Human Connectome 

Project Aging (Bookheimer et al., 2019).   

An alternative neuroimaging approach to study brain activity in the oldest-old is 

functional near-infrared spectroscopy (fNIRS), which uses near-infrared light to assess 

hemodynamic activity. One previous study used a portable fNIRS device to study a 

community-based sample of oldest-old adults at their personal residences, finding 

significant frontal activity during executive function performance that positively 

correlated with age (Huppert et al., 2017). This approach cannot fully replace fMRI, 

however, because it is limited to recording signals from cortical regions near the skull 

and cannot detect signals from deeper brain regions that are especially affected by 

advanced age, such as the hippocampus.  

7.2 Effects of vascular disease 

Another notable consideration when conducting MRI research on the oldest-old is 

the increased prevalence of vascular disease in advanced age, which accounts for some 

variance in cognitive decline (Rosa et al., 2020). Cardiovascular damage caused by small 

vessel disease and (micro)infarcts appears as hyperintensities on MR images (Wardlaw et 

al., 2015), thereby resulting in a decreased gray to white matter intensity ratio as age 

increases (Salat et al., 2009). This lack of differentiation between tissue types may lead to 

decreased precision of automated segmentation algorithms and registration pipelines used 

in MRI studies, affecting regional estimates for oldest-old relative to younger-old adults. 

Registration procedures based on white, rather than gray, matter boundaries may be more 

robust to pathologies and artifacts in MRI data of the oldest-old (Greve and Fischl, 2009).   
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Because the BOLD response indirectly measures neural activity as the ratio of  

oxygenated to deoxygenated blood, age-related vascular damage to the capillary beds 

feeding neural systems should also be considered when acquiring and interpreting fMRI 

data in the oldest-old (Kannurpatti et al., 2010; West et al., 2019). This vascular damage 

leads to a decreased ability to regulate neuronal homeostasis and energy demands, known 

as neurovascular coupling (Tarantini et al., 2017). Although the effects of age on 

neurovascular coupling do not appear to directly affect BOLD activity in younger-old 

adults (e.g., Grinband et al., 2017), this has not yet been tested in oldest-old adults. Future 

studies could estimate cardiovascular contributions to BOLD activity in advanced age 

(e.g., a breath holding task), although this will come at the expense of a slightly longer 

scanning protocol (Kannurpatti et al., 2010). 

7.3 Accumulation of iron 

Iron accumulation in the aging brain should also be considered as it may have a 

larger effect on the MR signal in oldest-old than younger-old adults. Specifically, the 

presence of iron can attenuate the MR signal at acquisition (Haacke et al., 2005) and 

influence measures of brain structure and function across regions that differentially 

accumulate iron across the lifespan (Hallgren and Sourander, 1958). Neuroimaging 

studies comparing younger-old and oldest-old adults may therefore be more accurate in 

regions that exhibit minimal (e.g., hippocampus) or gradual accumulation of moderate 

amounts of iron throughout the lifespan (e.g., caudate, putamen) compared to regions that 

accumulate large amounts of iron by early adulthood (e.g., globus pallidum). Importantly, 

quantitative susceptibility mapping sequences can be used to estimate iron burden so that 
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the effect of iron on the MR signal can be statistically accounted for (Ruetten et al., 

2019).   

7.4 Multiple pathologies 

Another consideration is that the oldest-old may represent a distinct 

pathophysiological population, leading to multiple or even different neurobiological 

substrates contributing to a given MRI measure. Specifically, numerous dementia-related 

pathologies (e.g., amyloid-beta plaques, neurofibrillary tangles) are common in advanced 

age, even in individuals with normal cognition (Kawas et al., 2015; Yang et al., 2013). 

Because the high prevalence of dementia-related pathology in the oldest-old does not 

always manifest as observable cognitive impairment, the distinction between normal and 

disease-related brain aging is less clear compared to younger-old adults. To ensure 

generalizability of future studies to this entire population, special care should be taken to 

recruit well-characterized oldest-old adults both with and without cognitive impairment 

or dementia, as well as to include measures of Alzheimer’s disease risk factors (e.g., 

APOE genotype) and pathology (e.g., amyloid-beta) when possible. 

7.5 Reference group 

 Finally, an open question is whether the reference group for the oldest-old (80+) 

should be younger (20-30s) or younger-old (~55-80) adults. Younger adults would be 

analogous to the reference group used in studies of younger-old adults and could 

therefore detect comparable age effects, but could miss age effects that are unique to 

oldest-old relative to younger-old adults. In contrast, because younger-old adults have 

already experienced some of the deleterious effects of brain aging, comparisons would 



 92 

only be sensitive to advanced age effects of sufficient magnitude, which may be 

underestimated. As such, future MRI studies disaggregating their results across each of 

these age groups will be fundamental to obtaining a more holistic view of advanced brain 

and cognitive aging (e.g., testing the proposed U-shaped function of compensatory 

activity in relation to age; Cabeza and Dennis, 2014).  

8. Future Directions 

8.1 Beyond brain macrostructure 

Prior MRI studies in the oldest-old have largely focused on volumetry, WMH, 

and traditional DTI-derived measures of microstructure, which may be due in part to the 

ease of acquiring these data using clinical scanners. Going forward, theories of 

neurocognitive aging will benefit from studies assessing the effect of advanced age on 

other neural substrates. For example, future work using more advanced multi-shell 

diffusion imaging data acquisition and analyses (e.g., neurite orientation, density, and 

dispersion index, NODDI; Zhang et al., 2012) may better capture the multifaceted effects 

of brain aging in the oldest-old (Reas et al., 2021). Future studies might also consider 

prioritizing the collection of task-related fMRI data in this age group, as less is known 

about the functional substrates supporting cognitive performance in advanced age.  

8.2 Multimodal imaging 

Extant neurocognitive aging theories would also benefit from studies assessing 

interactions among multiple neuroimaging markers in advanced age as the majority of the 

literature reviewed here focused on a single imaging modality. One multimodal study 

found hippocampus atrophy, brain-wide WMH, and beta-amyloid accumulation in oldest-
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old adults, but these measures were not correlated with each other (Lopez et al., 2014). 

Further evidence that they may be sensitive to different neural substrates is that each MRI 

measure was uniquely associated with cognitive status (Lopez et al., 2014) and individual 

differences in cognitive performance (Legdeur et al., 2020) in the oldest-old. Yet this 

interpretation would benefit from replication across age groups and brain regions. Other 

multi-modal approaches could examine relationships between brain structure and 

function in advanced age. To this end, the fMRI studies reviewed above were able to 

demonstrate that patterns of neural activity were independent of whole brain volume 

(Beeri et al., 2011; Jiang et al., 2020; Li et al., 2020; Wang et al., 2009). Future work 

combining DTI and fMRI could test whether decreased BOLD activity in oldest-old 

adults is instead driven by microstructural degradation of the white matter pathways 

connecting gray matter regions (Salat, 2011).  

8.3 Neuroimaging-neuropathology associations 

Given their advanced age, the oldest-old present a unique opportunity to acquire 

in vivo neuroimaging data and ex vivo pathological data in the same individuals. Several 

efforts are already underway to collect these data in advanced age, including The 90+ 

Study (Kawas and Corrada, 2006). Such datasets will be invaluable for validating 

neuroimaging markers (e.g., tissue volume, WMH, iron content, myelin content) against 

underlying neural substrates (e.g., loss or shrinkage of neurons or their processes, 

demyelination, perivascular space expansion, white matter disease, vascular damage). 

These data will also be vital for differentiating normal from pathological brain aging, 

such as whether the effects of advanced age on medial temporal and posterior brain 
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structure are driven by different amounts or types of pathologies in individuals across 

cognitive status subgroups.  

9. Conclusion 

Determining whether advanced age differentially affects MRI markers of brain 

and neurocognitive aging is crucial because previous neuroimaging research in younger-

old adults may not generalize to individuals across the older adult lifespan. The current 

review supports the notion that there is regional variation in the magnitude of brain aging, 

such that frontal regions remain vulnerable across the older adult lifespan, whereas 

medial temporal and posterior regions become more vulnerable in the oldest-old. This 

review also found little support for compensation theories in the oldest-old, which differs 

from the large literature in younger-old adults, although this conclusion was based on 

very few fMRI studies. Nonetheless, our review did reveal strong support for the notion 

that both brain maintenance and brain reserve can explain sustained cognitive functioning 

in advanced age. In summary, older adults who reach the eighth through tenth decades of 

life exhibit different cognitive and neural profiles than the 60- or 70-year-olds 

represented in most previous MRI aging research (Figure 1) and these advanced age-

related differences should be reflected in re-evaluations of current neurocognitive 

theories of aging. 
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Figure 6. Neuroimaging patterns relevant to each neurocognitive aging theory reviewed 

here (left) are presented separately for younger-old (ages < 80 years) and oldest-old (80+ 

years) adults. Brain maintenance captures similar effects across the older adult lifespan, 

whereas oldest-old adults exhibit different patterns of regional variation, brain reserve, 

and functional compensation. WMH = white matter hyperintensities, BOLD = blood-

oxygenation-level-dependent.  
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60 70 80 90 100

Increased BOLD activity Decreased BOLD activity

Hippocampal atrophy

Brain maintenance: 
Better performance 
associated with… 

Brain reserve: 
Cognitive status 
differentiated by… 

Compensation: 
Better (or preserved) 
performance 
associated with…

Age (years)



 

 

Table 8. Summary of structural studies examining brain aging.  

 Sample Structural Age Effect(s) 

Author (year)  age (n) Modality Frontal MTL Posterior Whole brain 

Volumetry & Morphometry 

  Yang et al. (2016a) 71-103 (277) Volume - - - - - 

  Cortical thickness - - - -  

  Tang et al. (2021) 76-103 (290) Sulcal width - - -  

  Li et al. (2020) M=82 (34) Cortical thickness -  -   

  Van Bergen et al. (2018) 55-96 (80) Volume  o, - -  

  Mueller et al. (1998) 65-95 (46) Volume o - o - 

  Brickman et al. (2008) M=80 (769) Volume  -  - 

  Salat et al. (1999) 65-95 (66) Volume -    

White matter hyperintensities & Microstructure 

  Brickman et al. (2008) M=80 (769) WMH    - 

  Bennett et al. (2017) 90-103 (94) FA, MD, AD, RD o - - -  

  Piguet et al. (2003) 81-97 (114) WMH - - - -  

  Yang et al. (2016a) 71-103 (277) WMH - - - - 

  Lövdén et al. (2013) 60-87 (260) FA, MD - - -  

  Merenstein et al. (2021) 65-98 (108) FA, AD, RD - - - -  

  Lövdén et al. (2014) 81-103 (563) Δ FA, Δ MD -  -  

  Polvikoski et al. (2010) 85-104 (132) WMH -    

Notes. For each structural modality and brain region, symbols indicate observations of worse brain structure with age (-; i.e., 

smaller volume, more white matter hyperintensities [WMH], higher diffusivity), a larger negative effect of age in one region 

relative to other regions (- -), or no significant effect of age (o). Volumetry and morphometry studies are sorted by age effects 

in the medial temporal lobe (MTL). WMH and microstructure studies are sorted by age effects in the frontal lobe. FA = 

fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, Δ = longitudinal change with 

age. 
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Table 9. Summary of structural MRI studies examining neurocognitive aging.  
Author (year)  Sample age (n) Structural modality Cognitive domain(s) Relationship to Cognition 

Frontal MTL Posterior Whole brain 
Volumetry & Morphometry 
  Carmichael et al. (2012) 60-95 (307) Volume Δ Episodic memory    - 
  Legdeur et al. (2019) M=94.3 (171) Δ Volume Δ Episodic memory  -   
  Pelkmans et al. (2021) 88-102 (57) Volume Δ Episodic memory  -   
  Pelkmans et al. (2021) 88-102 (57) Cortical thickness Δ Episodic memory - -   
  Eguchi et al. (2019) 96-99 (10) Volume Episodic memory  +   
  Langnes et al. (2020) 4-93 (1,790) Volume Episodic memory  +   
  Legdeur et al. (2020) M=92.4 (122) Volume Episodic memory  +   
  Pelkmans et al. (2021) 88-102 (57) Volume Processing speed  +   
  Legdeur et al. (2020) M=92.4 (122) Volume Processing speed  +   
  Legdeur et al. (2019) M=94.3 (171) Δ Volume Δ General cognition   -   
White matter hyperintensities & Microstructure 
  Pelkmans et al. (2021) 88-102 (57) WMH Δ Episodic memory    - 
  Legdeur et al. (2020) M=92.4 (122) WMH Episodic memory    + 
  Langnes et al. (2020) 4-93 (1,790) MD Episodic memory  +   
  Merenstein et al. (2021) 65-98 (108) FA, AD Episodic memory  +   
  Reas et al. (2021) 56-99 (147) MDI Episodic memory + + +  
  Piguet et al. (2003) 81-97 (114) WMH Episodic memory +    
  Pelkmans et al. (2021) 88-102 (57) WMH Processing speed    + 
  Liu et al. (2015) 79-89 (283) WMH, MD Processing speed    + 
  Venkatraman et al. (2011) M=83 (272) FA, MD Processing speed    + 
  Legdeur et al. (2020) M=92.4 (122) WMH Processing speed    + 
  Laukka et al. (2013) 60-87 (253) FA, MD Processing speed + + +  
  Rosano et al. (2015) M=83 (311) WMH, FA Processing speed +  +  
  Haynes et al. (2017) 70-90 (526) WMH Processing speed +    
  Lövdén et al. (2014) 81-103 (563) Δ FA, Δ MD Δ Processing speed -    
  Legdeur et al. (2019) M=94.3 (171) Δ WMH Δ General cognition    - 
  Carmichael et al. (2012) 60-95 (307) WMH Δ Semantic memory    - 
  Carmichael et al. (2012) 60-95 (307) WMH Δ Executive function    - 
Notes. For each structural modality and brain region, symbols indicate positive (+) or negative (-) associations between brain structure (i.e., smaller 
volume, more white matter hyperintensities [WMH], higher diffusivity) and cognitive performance. Processing speed was reverse coded with higher 
values representing better performance. All studies are sorted by the cognitive domain examined. FA = fractional anisotropy, MD = mean diffusivity, 
AD = axial diffusivity, Δ = longitudinal change, MTL = medial temporal lobe, MDI = multicompartment diffusion imaging.  
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Table 10. Summary of structural MRI studies examining cognitive status subgroups.  

Author (year)  Sample age (n) Structural modality Effect of Cognitive Status 

Frontal MTL Posterior Whole brain 

   YO OO YO OO YO OO YO OO 

Volumetry & Morphometry 
  Stricker et al. (2011) 60-91 (230) Cortical thickness   + o + o   

  Barkhof et al. (2007) 85-105 (132) Volume    +     

  Gosche et al. (2002) 87-93 (56) Volume    +     

  Lopez et al. (2014) 72-96 (183) Volume   + +     

  Yang et al. (2016b) 71-103 (244) Volume + + + + + +   

  Holland et al. (2012) 65-90 (723) Volume   + + + o + o 

  Rosano et al. (2012) M=83 (258) Δ Volume    -     

White matter hyperintensities & Microstructure 
  Rosano et al. (2012) M=83 (258) Δ MD  -    -   

  Zamboni et al. (2019) 20-102 (566) WMH, FA, MD + o     + o 

  Polvikoski et al. (2010) 85-104 (132) WMH  +       

  Tanskanen et al. (2013) 85-105 (123) WMH        o 

  Yang et al. (2016b) 71-103 (244) WMH       o o 

  Rosano et al. (2012) M=83 (258) Δ WMH        o 

Notes. For each structural modality and brain region, symbols indicate observations of better (+), fewer changes (-), or no 

difference (o) in brain structure (i.e., smaller volume, more white matter hyperintensities [WMH], higher diffusivity for 

cognitively normal younger-old (YO) and/or oldest-old (OO) age groups relative to those with cognitive impairment or 

Alzheimer’s disease and other dementias. Volumetry and morphometry studies are sorted by age effects in the medial temporal 

lobe (MTL). WMH and microstructure studies are sorted by age effects in the frontal lobe followed by the whole brain. FA = 

fractional anisotropy, MD = mean diffusivity, Δ = longitudinal change.  
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Table 11. Summary of functional MRI studies. 

Author (year) Sample age (n) Cognitive domain Effect of Age on BOLD Activity 

Frontal MTL Posterior 

Task-related fMRI      

   Beeri et al. (2011) 70-90+ (29) Recognition memory o - - 

   Wang et al. (2009) 64-96 (34) Recognition memory o o - 

   Rosano et al. (2005a) 12-82+ (28) Executive control -  - 

   Rosano et al. (2005b) M=80-82 (16) Executive control +CI > CN  +CI > CN 

   Kennedy et al. (2015) 20-89 (316) Semantic judgments - - - 

      

Resting state fMRI   Default mode Frontoparietal Motor 

   Prawiroharjo et al. (2020) 65-80+ (44) Recall memory +  + 

   Jiang et al. (2020) 76-103 (104) Visuospatial task - + + 

   Li et al. (2020) M=82 (34) Δ General cognition +  + 

Notes. For each functional modality and brain region (task-related) or network (resting state), symbols indicate positive (+), 

negative (-), or non-significant (o) associations between age and BOLD activity. All studies are sorted by the cognitive domain 

examined. Superscripts indicate that the effect was seen for cognitively impaired (CI) versus normal (CN) subgroups. Δ = 

longitudinal change.
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General Conclusion 

 This dissertation furthered our understanding of neurocognitive aging across the 

older adult lifespan by examining the effects of advanced age on MRI markers of brain 

aging and their relation to cognition. Two studies using diffusion-weighted imaging 

demonstrated that advanced age negatively affects white matter microstructure (Chapter 

1) and that this in turn negatively affects episodic memory (Chapter 1) and associative 

learning (Chapter 2) abilities into the 10th decade of life. An integrative review of the 

literature (Chapter 3) then summarized extant MRI studies in this advanced age group 

and interpreted their findings within the context of modern neurocognitive aging theories. 

Together, this body of work supports the notion that age-related differences in white 

matter microstructure (among other neural substrates) affect cognitive functioning across 

the entire older adult lifespan and suggests that modern theoretical accounts may need to 

consider the impact of oldest-old adults on the accuracy of their predictions.  

Using traditional DTI, Chapter 1 found that age effects on white matter 

microstructure (e.g., demyelination, axonal shrinkage, decreased fiber density) and 

episodic memory are magnified in oldest-old (ages 90+) relative to younger-old (ages 65-

89) adults. The largest age effects were observed in medial temporal memory-related 

white matter regions, and all results were independent of cognitive impairment no 

dementia (CIND) diagnoses in the oldest-old. Thus, exacerbated white matter degradation 

cannot solely be explained by the increased risk of developing dementia in this advanced 

age group. Moreover, in support of the cortical disconnection hypothesis (Bartzokis, 
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2004; O’Sullivan et al., 2001), the microstructure of medial temporal memory-related 

white matter regions mediated the negative effect of age on two different measures of 

memory performance. Together, these findings indicate that white matter deteriorates in a 

more accelerated manner towards the end of the older adult lifespan and remains crucial 

for facilitating memory-related neural signals. Relative to traditional diffusion tensor 

approaches, however, more advanced multicompartment diffusion imaging techniques 

may better capture the multifaceted effects of advanced brain aging. Because this study 

assessed memory using a more standard list learning neuropsychological test, it is also 

important to demonstrate the specificity of advanced white matter aging to more precise 

cognitive measures. 

These limitations inspired the follow-up study presented in Chapter 2, which 

examined the relation between multicompartment diffusion imaging measures of 

microstructure and performance on a laboratory-based associative learning task within 

oldest-old adults. Results indicated significant behavioral evidence of associative 

learning, with better performance seen during later stages of the task. Oldest-old adults 

with the best learning performance also had better microstructure of the anatomical 

pathways connecting prefrontal and striatal regions, which have been implicated in 

associative learning by functional MRI studies of younger age groups (Merenstein et al., 

2021b; Persson et al., 2020; Simon et al., 2012). Similar to Chapter 1, results were 

independent of CIND diagnoses, suggesting that associative learning abilities are 

preserved into the 10th decade of life and can be attributed to normal age- and individual-

related differences in the microstructure of fronto-striatal pathways. Because this was the 
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first study to examine associative learning abilities and its white matter correlates in 

advanced age, future studies are needed to replicate these effects within larger samples of 

nonagenarians and across younger-old and oldest-old adults. 

 Toward the broader goal of identifying robust patterns of brain and cognitive 

aging in the oldest-old, Chapter 3 reviewed the findings from prior MRI studies 

examining advanced neurocognitive aging and whether they are comparable to findings 

reported within younger-old adults, as would be predicted by theories of neurocognitive 

aging. Results revealed that oldest-old adults exhibit different regional patterns of brain 

aging and minimal evidence of compensatory neural activity than is typically seen in 

younger-old adults, although there was strong support for brain maintenance and reserve 

theories in advanced age. Thus, while some theoretical accounts accurately capture 

patterns of neurocognitive aging across the entire older adult lifespan, others may need to 

be adapted to account for the more heterogenous cognitive and neural profiles seen 

during the eighth through 10th decades of life.  

 In closing, this dissertation provided one of the initial characterizations of 

advanced neurocognitive aging, thereby laying important groundwork for future MRI 

studies examining brain and cognitive aging within the oldest-old. Finding that poorer 

white matter microstructure predicted poorer cognitive performance (episodic memory, 

associative learning) in a sample of very old adults suggests that age-related white matter 

degradation interferes with efficient neurotransmission and ultimately contributes to 

cognitive dysfunction, as predicted by the cortical disconnection hypothesis (Bennett and 

Madden, 2014; O’Sullivan et al., 2001). However, other theoretical accounts may need to 
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be modified to account for the unique signatures of neurocognitive aging observed 

toward the end of the lifespan. Furthering our understanding of the relation between 

cognitive aging and brain aging in this advanced age group is timely as nearly 1 in 20 

individuals will reach age 85 by the year 2050 (Ortman et al., 2014). 
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Appendix A 

Supplementary Table 1. Linear and nonlinear relationships between age and white 

matter microstructure. 

 Linear / nonlinear R2 

White matter region FA AD RD 

Medial temporal fibers    

   Fornix body 0.30 / 0.30 0.01 / 0.01 0.34 / 0.34 
   Fornix cres 0.30 / 0.31 0.01 / 0.01 0.34 / 0.35 
   Hippocampal cingulum 0.27 / 0.28 0.09 / 0.09 0.33 / 0.34 
   Uncinate fasc. 0.17 / 0.17 0.09 / 0.09 0.29 / 0.29 
Callosal fibers    
   Genu 0.15 / 0.15 0.41 / 0.41 0.30 / 0.30 
   Body 0.13 / 0.13 0.13 / 0.12 0.22 / 0.23 

   Splenium 0.10 / 0.10 0.05 / 0.05 0.15 / 0.16 
Association fibers    
   Superior cingulum 0.24 / 0.25 0.09 / 0.08 0.36 / 0.37 
   Sagittal stratum 0.14 / 0.15 0.29 / 0.29 0.28 / 0.29 
   External capsule 0.24 / 0.24 0.20 / 0.19 0.35 / 0.35 
   Superior fronto-occipito fasc. 0.08 / 0.08 0.41 / 0.42 0.21 / 0.22 
   Superior longitudinal fasc. 0.09 / 0.09 0.37 / 0.38 0.23 / 0.24 
Projection/thalamic fibers    
   Internal capsule 0.10 / 0.10 0.19 / 0.19 0.20 / 0.20 
   Posterior thalamic radiations 0.24 / 0.24 0.17 / 0.16 0.30 / 0.31 
   Corona radiata 0.14 / 0.14 0.50 / 0.50 0.36 / 0.36 
Notes: Significant (bolded, Bonferroni corrected p < 0.003 for comparisons across 15 

regions) or trending (italics, p < 0.05) coefficients of determination (R2) values from 

linear regressions of age (linear) or age squared (nonlinear) on white matter 

microstructure, controlling for sex and education, are presented separately for each 

diffusion metric (fractional anisotropy, FA; axial diffusivity, AD; radial diffusivity, RD) 

and white matter region.  
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Appendix B 

Associative Learning Performance 

Evidence of IAL was assessed using separate repeated measures analyses of 

variance (ANOVAs) with Triplet Type (HF, LF) and Task Stage (1-5) modeled as within-

person variables and mean accuracy or logarithmically transformed mean of median 

reaction time (to control for age-related slowing; Franco et al., 2021; Simon et al., 2010) 

as the dependent variable.  

For accuracy, IAL was seen as a significant main effect of Triplet Type, F(1, 21) 

= 5.35, p = 0.031, indicating that participants were significantly more accurate to HF than 

LF triplets (Supplementary Figure 1 and Supplementary Table 2). General skill learning 

was seen as a significant main effect of Task Stage, F(4, 84) = 12.34, p < 0.001, with 

more accurate responses during Task Stages 2-5 than Task Stage 1 (Supplementary 

Figure 1 and Supplementary Table 2). The interaction was not significant, p = 0.201.  

For reaction time, there were no significant effects, p = 0.062 (Supplementary 

Figure 1 and Supplementary Table 2). 

When repeating the above ANOVAs with Cognitive Status (cognitively normal, 

CIND) as a covariate, results revealed no significant main effect of or interaction with 

Cognitive Status for either behavioral metric, ps > 0.231.  
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Supplementary Table 2. Associative learning performance.  

 Accuracy Mean of median reaction time 

 HF LF Difference HF LF Difference 

Stage 1 
0.712  

(0.203) 

0.695 

(0.203) 

0.017 

(0.094) 

2.793 

(0.081) 

2.812 

(0.084) 

0.019 

(0.062) 

Stage 2 
0.850  

(0.106) 

0.845 

(0.096) 

0.005 

(0.097) 

2.797 

(0.076) 

2.801 

(0.081) 

0.004 

(0.027) 

Stage 3 
0.850  

(0.118) 

0.837 

(0.122) 

0.013 

(0.066) 

2.804 

(0.075) 

2.803 

(0.070) 

0.001 

(0.024) 

Stage 4 
0.864  

(0.105) 

0.807 

(0.131) 

0.057 

(0.085) 

2.801 

(0.077) 

2.800 

(0.080) 

0.001 

(0.018) 

Stage 5 
0.848  

(0.122) 

0.837 

(0.107) 

0.011 

(0.060) 

2.799 

(0.076) 

2.818 

(0.070) 

0.018 

(0.027) 

Average 
0.845  

(0.109) 

0.824 

(0.010) 

0.021 

(0.041) 

2.799 

(0.074) 

2.805 

(0.071) 

0.006 

(0.015) 

Notes. All scores are presented as mean (standard deviation). Reaction times are 

logarithmically transformed. 
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Supplementary Figure 1. Behavioral results are displayed as a function of Task Stage 

and high (HF, black) or low (LF, gray) frequency Triplet Type (tt), separately for 

accuracy (left) and logarithmically transformed mean of median reaction times (right). 

Error bars represent standard error of the mean. 
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