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Abstract

A Partial Characterization of �κ for Plus-One Premice

by

Andreas Stewart Voellmer

Doctor of Philosophy in Logic and Methodology of Science

University of California, Berkeley

Professor John R. Steel, Chair

We develop and refine the theory of plus-one premice, first introduced
by Neeman and Steel in [2] and [3]. This culminates in a Condensation
Lemma for iterable plus-one premice. We then apply Condensation to the
construction of �κ sequences in these premice; this is similar to Schimmer-
ling and Zeman’s �κ construction in [5], but the presence of long extenders
complicates both the techniques and the results. Our main result is that for
plus-one premice with finitely many long generators, �κ,2 holds exactly when
κ is neither subcompact nor the successor of a 1-subcompact cardinal.
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1 Introduction

A long-standing goal of inner model theory has been the construction of ex-
tender models L[E] which include long extenders on their sequences. There
are a number of technical challenges that arise when one moves from short ex-
tenders to long extenders; many basic facts, such as the Comparison Lemma
for premice with short extenders, seem to fail in the more general long ex-
tender context. Neeman and Steel discovered a partial solution to these
problems with their theory of plus-one premice, first presented in [2] and [3].
In the present document we develop the fine structure theory of plus-one
premice in detail. Section 2 includes the basic definitions and lemmas about
preservation of premousehood under various embeddings. Sections 3, 4, and
5 develop the theory of iteration trees and comparison needed for the Con-
densation Lemma, which constitutes the entirety of Section 6. The remaining
sections constitute a partial characterization of the combinatorial principle
�κ in plus-one premice (see Section 7 for the definition of �κ).

The importance of �κ in fine structural inner models lies partly in its
applications to determining the consistency strength of various set-theoretic
hypotheses; in many cases a principle, such as a forcing axiom, is known to
imply failures of �κ. Understanding the extent of �κ in inner models can
then help us gauge the “distance” between those inner models and the outer
universe in which the principle holds. Additionally, characterization of �κ in
inner models is often viewed as a “test question” for how well set theorists
understand these models.

Schimmerling and Zeman proved in [5] that for extender models con-
structed with short extenders, �κ holds at exactly those κ which are not
subcompact (see Section 7 for the definition of subcompactness). Our main
result is that for iterable plus-one premice with finitely many long generators,
�κ,2 holds at exactly those κ which are neither subcompact nor the successor
of a 1-subcompact cardinal.

The construction we give is in the general context of plus-one premice
with arbitrarily many long generators, but at certain points we require the
assumption that the largest generator of one of our long extenders is a succes-
sor generator; new techniques are needed for limit generators. It is our hope
that the present proof can serve as the “successor case” in a fully general �κ
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construction for plus-one premice, in addition to being a complete proof in
the finite-generator context, where the “successor case” is the only case.

It also follows from our techniques that �κ holds for all κ < µ in a plus-
one premouse M , where µ is the least measurable cardinal of M ; this is
because there are no pluripotent levels below µ, so no protomice arise in the
construction (see Section 7), and one can essentially repeat the well-known
proof of �κ for all κ in L, due to Jensen.

2 Preliminaries

In this section we will present the basic finestructural notions used through-
out the proof. We then define potential premice and describe the (easy)
conditions under which potential premousehood is preserved by embeddings.
Finally we will define premice simpliciter, and describe the (rather complex)
conditions under which premousehood is preserved.

2.1 Fine Structure

We begin by establishing some notation. P(X) is the powerset of X, and
|X| is the cardinality of X. ON is the class of ordinal numbers, and o(M) =
ON∩M for any set M . We assume familiarity with the fine structure theory
for short extender premice, as presented in, e.g., [9] and [6].

We define extenders as in [6].

Definition 2.1. For an acceptable J-structure M , E = 〈Ea | a ∈ [ν]<ω〉 is
a (κ, ν)-extender over M with critical points 〈µa | a ∈ [ν]<ω〉 if the following
conditions hold:

(1) (Ultrafilter property) For each a ∈ [ν]<ω we have that Ea is an ultra-
filter on the set P([µa]

|a|) ∩M which is κ-complete w.r.t. sequences in M ;
moreover, µa is the least µ such that [µ]|a| ∈ Ea.
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(2) (Coherency) For a, b ∈ [ν]<ω with a ⊆ b and for X ∈ P([µa]
|a|) ∩M

we have that X ∈ Ea ⇔ Xab ∈ Eb. (Xab is defined below.)

(3) (Uniformity) µ{κ} = κ.

(4) (Normality) Let a ∈ [ν]<ω and f : [µa]
|a| −→ µa with f ∈M . If

{u ∈ [µa]
|a| | f(u) < max(u)} ∈ Ea

then there is some β < max(a) such that

{u ∈ [µa]
|a∪{β}| | fa,a∪{β}(u) = u

a∪{β}
β } ∈ Ea∪{β} .

We say that the space of E is sup({µa | a ∈ [ν]<ω}. E is called short
if space(E) = κ; otherwise E is long. The domain of E, or dom(E), is
P(space(E))M . We will also have to consider extenders which are not to-
tal over their models, i.e., not all subsets of space(E) are measured by the
ultrafilters Ea. In this case dom(E) is just the collection of subsets which
are measured by the Ea’s. (Note that if µa = µb, then Ea and Eb measure
exactly the same subsets of it.)

Let b = {β1 < ... < βn}, and let a = {βj1 < ... < βjm} ⊆ b. If
u = {ξ1 < ... < ξn} then we write uba for {ξj1 < ... < ξjm}; we also write
ubβi for ξi. If X ∈ P([µa]

|a|), then we write Xab for {u ∈ [µb]
|b| | uba ∈ X}.

Finally, if f has domain [µa]
|a| then we write fa,b for that g with domain

[µb]
|b| such that g(u) = f(uba).

iE is the ultrapower embedding associated with E (see, e.g., [6]). We
write “x = [a, f ]ME ” to denote that x is the object in the ultrapower with
representing function [a, f ]. Let κE = crit(iE) and λE = iE(κE). For ξ < ν,
E � ξ is the (κE, ξ)-extender which is the restriction of E to ordinals < ξ,
that is, (E � ξ)a = Ea whenever a ∈ [ξ]<ω.

Generally we will use ~E for the extender-sequence used to build our J-
structures, and G for the top extender.

We will follow the conventions of [8] to describe the finestructure of the
J-structures we work with. JAα is the J-structure of height α constructed rel-
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ative to the predicate A, as in [6]. We define the first projectum %1(M) and
standard parameter p1(M) of an acceptable J-structure M as usual (see [6]).
If M is n-sound, we can form the n-th reduct, and then define %n+1(M) and
pn+1(M) as the first projectum & standard parameter of the nth reduct. We
will adopt a convention whereby every premouse M has k(M) ≤ ω associated
with it; this is M ’s degree of soundness. More explicitly: for a J-structure
M with degree of soundness k(M), we have that M is k-sound, %(M) is
the k + 1th projectum of M , and p(M) is the k + 1th standard parameter.
M |〈µ, l〉 is M cut at µ (keeping the last extender predicate at µ), considered
as an l-sound premouse (i.e., k(M |〈µ, l〉) = l). M ||〈µ, l〉 is the same, but
considered as a structure with no top extender predicate.

A Q-property is one which is preserved by embeddings which are Σ1-
elementary and cofinal. In other words, Q-properties can be expressed by a
formula of the form ∀x ∈ ON ∃y ∈ ON (y > x & φ(y)), where φ is Σ1. Such
a formula is called a Q-formula.

A Σ
(n)
1 (M)-formula is a Σ1-formula over the n-th standard reduct of M .

(This is equivalent to the notion of an rΣn+1(M)-formula; see [9] for more

details.) Similarly, Σ
(n)
0 (M) and Q(n)(M) formulas are Σ0- or Q-formulas

over the n-th standard reduct.

HullMn+1(X) is the unique substructure of M with universe = the set of
all a such that a = unique b such that M |= φ[b, s] for some s ∈ X<ω and

some Σ
(n)
1 -formula φ in the language of M (which will usually be the language

of premice defined below, but will on occasion be the language of coherent
structures– this will always be clear from the context).

HM
n+1(X) = transitive collapse of HullMn+1(X).

Definition 2.2. Let M be a J-structure (in the language of premice or co-
herent structures– see below), and pn+1(M) = 〈α0...αk〉; then

a) M is n+ 1-solid at αi iff ThMn+1(αi ∪ {α0...αi−1}) ∈M ,

b) M is n+1-universal iff P(%n+1(M))∩M ⊆ HM
n+1(%n+1(M)∪pn+1(M)).

Our official definition of solidity is the existence of a certain Σn+1 theory
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in the model. This is easily seen to be equivalent to the presence of the
corresponding Σn+1-hull in the model; and this latter characterization is our
official definition of a solidity witness.

Definition 2.3. Let M be a J-structure (in the language of premice or co-
herent structures– see below), and p = pn+1(M) = 〈α0...αk〉; fix αi and let
q = α0...αi−1. Then

a) The standard solidity witness for αi is WM
αi,p

= HM
n+1(αi ∪ {α0...αi−1};

note that, for ξ1...ξ` < αi and q̄ = the collapse of q in this hull, we have

M |= φ(ξ1...ξ`, q) ⇔ WM
αi,p
|= φ(ξ1...ξ`, q̄) .

b) A generalized solidity witness for αi is a pair 〈Q, r〉, where Q ⊃ αi is an
acceptable J-structure, r ∈ Q is a finite set of ordinals, and for ξ1...ξ` < αi
we have

M |= Φn(i, ξ1...ξ`, q) → Q |= Φ(i, ξ1...ξ`, r) .

The following well-known lemma explains the importance of solidity wit-
nesses:

Lemma 2.4. (from [9])
Suppose M is solid, p ∈M is a finite set of ordinals such that p ∩ α = ∅

and M = hMn+1(α ∪ p) for some n ∈ ω. If every ν ∈ p has a generalized
solidity witness with respect to M and p, that is, an element of M , then
p = p(M)− α.

The following lemma shows that generalized solidity witnesses are pre-
served under embeddings, and their existence is equivalent to the existence
of standard witnesses.

Lemma 2.5. (from [9])
M contains the standard solidity witness WM

αi,p
for αi if and only if M

contains some generalized solidity witness 〈Q, r〉 for αi. Furthermore, the
statement “〈Q, r〉 is a generalized solidity witness for αi with respect to M

and p” is Π
(n)
1 .
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Hence, the property of being a generalized solidity witness is preserved
upwards under Σ

(n)
1 -maps and downward under Σ

(n)
0 -maps. Thus solidity is

the key to proving that the standard parameter of M is preserved under ul-
trapower embeddings.

Definition 2.6. Let M and N be J-structures with n = k(M) = k(N), and
π : M −→ N ; then π is weakly elementary iff

(1) π is Σ
(n)
1 elementary on some set X cofinal in %n(M),

(2) π(pk(M)) = pk(N) for all k ≤ n,

(3) π(%k(M)) = %k(N) for k < n, and sup(π“%n(M)) ≤ %n(N) ≤
π(%n(M)).

We say that π is elementary iff π is weakly elementary and fully Σ
(n)
1

elementary.

If k(M) 6= k(N), then we say π : M −→ N is (weakly) elementary iff it
is a (weak) near n-embedding, where n = min(k(M), k(N)). In this sense,
the natural map from the core of M to M is elementary. So are the maps
along branches of iteration trees, and copy maps.

Letting n = k(M), the core of M is the transitive collapse Cn+1(M) of
HullMn+1(%(M) ∪ {p(M), q}), where q is as above, with k(Cn+1(M)) set to
n + 1. We say the core exists if it behaves well in the sense that it agrees
with M up to their common value for %(M)+, and pn+1(Cn+1(M)) is solid.
For the plus-one premice we work with, the 1-core requires a slightly different
definition; see Definition 2.19 below.

Definition 2.7. If P and Q are J-structures, then P EQ iff there are µ and
l such that P = Q|〈µ, l〉. Also, P CQ iff P EQ and P 6= Q.

Thus if P and Q have the same universe, but k(P ) < k(Q), then P CQ.
Also, if P is passive and Q is active at o(P ), then it is not the case that
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P E Q. So for example, if Q is active, then Q||o(Q) 5 Q, where Q||o(Q) is
Q with its last extender predicate removed.

2.2 Potential Plus-One Premice

Our definitions of potential plus-one premouse and of plus-one premouse are
very close to those in [2] and [3], but with one small difference in each def-
inition. For potential plus-one premice we have replaced Steel’s ‘weak ISC’
with the yet weaker ‘short ISC’. (For full plus-one premice the weak ISC is
still demanded, just as in [2].) This is because the weak ISC may not be pre-
served by embeddings which are Σ0 and cofinal, while short ISC is preserved
by these embeddings; thankfully, the short ISC is all we need to carry out
elementary computations with these structures. For plus-one premice, our
definition goes beyond Steel’s by adding a constant symbol γ̇ for the largest
whole initial segment in the type long-B case. This is needed when taking
Σ1 hulls of plus-one premice, if we wish for the resulting structure to be a
plus-one premouse.

Definition 2.8. A potential plus-one premouse (or simply ‘potential pre-

mouse’) is a J-structure N constructed from a sequence ~E of extenders such
that if (M,G) is a level of N , and G 6= 0, then either:

(1) G is a short extender over M , and (M,G) satisfies the Jensen con-
ditions for short extender premice as in [9], Chapter 9 (for instance, M =
Ult(M,G)|(λ+

G)Ult(M,G)),

(2) G is long, and

(a) M = Ult(M,G)|(λ+
G)Ult(M,G) (coherency),

(b) G � λG ∈M (short initial segment condition),

(c) G has a largest long generator νG = νM ,

(d) Ġ is the symbol for an amenable predicate over M as described
below (weak amenability):
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For each ξ < (κ++
G )M , let

Gξ = {(a,X) | a ∈ [λG ∪ {νG}]<ω ∧X ∈ (M |ξ) ∧ a ∈ iMG (X)} .

Then let γξ be the least ordinal such that Gξ ∈ (M |γξ). We define our
official predicate Ġ as

ĠM def
= {(γ, a,X) | γ < o(M) ∧ ∃ξ(γξ ≤ γ ∧ (a,X) ∈ Gξ} .

Note that the γξ’s in c) above all exist, and are cofinal in o(M) =
(λ+

G)Ult0(M,G): for any ξ < (κ++
G )M , (M |ξ) can be put in ordertype (κ+

G)M

inside M ; call this enumeration Y = 〈Yα | α < κ+
G〉. Now in Ult(M,G), we

can apply Comprehension to iG(Y ) to learn which of its coordinates contain
which finite sets of generators a. Then we must pull back this set by the short
part of G in order to get our desired extender-fragment Gξ. (This is why we
demanded b) in the definition of potential premouse. With short extenders
this pullback is not needed, but with long extenders we often need to know
how ordinals < κ+ are stretched in order to carry out routine computations.)
A standard coherency argument then gives Gξ ∈ M . Also, the Gξ’s of this
form are cofinal in o(M), since any A ⊆ ν + 1 in M can be computed from
some Gξ. (By coherency, A = [a, f ]ME for some [a, f ], and A is rudimentary

in any Gξ such that f ∈ J ~E
ξ .)

Potential premousehood is almost a Q-property (that is, preserved under
Σ0 cofinal embeddings); the only clause which may not be preserved is total-
ity of the top extender.

Lemma 2.9. If M is a potential premouse, and i : M −→ N is Σ0-
elementary and cofinal, and furthermore N is passive or has total top ex-
tender H, then N is a potential premouse. Also, if G = ĠM is long, then
i(νG) = νH .

Proof: The Lemma for short top extenders is proved in [9], so we focus on
long extenders. It is routine to express 2(a) and 2(b) of 2.8 as Q-properties.
For 2(c), recall that being a generator is Π1, so i(νG) is a generator of H.
Now if νG < ξ < o(M), there is a wellorder W of λG of ordertype ξ. It is
then represented in the ultrapower as W = [a ∪ {ν}, f ]MG , for a ⊆ λG. Then
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i(W ) = iH(i(f))(i(a), i(νG))

will uniformly witness that there are no H-generators between i(νG) and
i(ξ). Because i is cofinal, we have that i(νG) is the largest generator of H.

For 2(d), the fact that all ξ < (κ++
G )N are measured by fragments of H is

actually Π2; we are assuming totality of H, though, so this is not a problem.
�

Remark: Note that Σ2 elementarity is sufficient for preservation of po-
tential premousehood, since the Π2 fact that the top extender is total will be
preserved. Also, if our embedding i is continuous at κ+

G if G is short, or κ++
G

if G is long, totality of the top extender (and hence potential premousehood)
are preserved.

2.3 Plus-One Premice

Definition 2.10. A potential plus-one premouse satisfies the weak initial
segment condition (weak ISC) if ∀ξ < νG(G � ξ ∈M).

A complicating feature of plus-one premice is that we do not demand the
full initial segment condition for G; in particular, the longest initial segment
G � νG can be missing from the model. (Because our premice will satisfy
weak ISC, this will only occur when νG is a limit of generators.) In this case,
however, we demand that the missing initial segment is definable over the
premouse in a canonical way; we call such premice ‘type Z1’.

Definition 2.11. A potential plus-one premouse (M,G) is type Z1 iff G is
long, (M,G) satisfies the weak ISC, and there is a short extender F indexed
at νG satisfying:

1) λG = λF ,
2) κG < κF ,
3) (κ+

F )M is not the space of an extender on the M-sequence,
4) for cofinally many γ < (κ+

F )M , iF (EM
γ ) ⊆ G,

5) (ν+
G)Ult(M,F ) = (ν+

G)Ult(M,G�νG) def
= η, and Ult(M,F )|η = Ult(M,G �

νG)|η.
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If (M,G) is type Z1, as witnessed by F = EM
νG

, then we can define a long
extender Ḡ over M as follows:

For γ < (κ+
F )M , EM

γ ⊆ Ḡ⇐⇒ iMF (EM
γ ) ⊆ G .

Lemma 2.12. If M is a type Z1 premouse, then G � νG /∈M .

Proof: First note that M and Ult(M, Ḡ) agree up to their common value
of κ++

F . This is because iF sends κ++
F cofinally into (ν+

G)Ult(M,F ) = η, and
condition (5) of Z1-ness guarantees that this is the same as Ult(M,G � νG)|η.
This agreement pulls down by i−1

F to imply that Ult(M, Ḡ) agrees with M
up to their common κ++

F = δ. Now, note that Ḡ collapses δ, since Ḡ only
has generators below (κ+

F )M , and so defines a surjection from (κ+
F )M onto δ.

Therefore Ḡ /∈M . But if G � νG were in M , we could define Ḡ within a level
of M , exactly as we defined it above. So Ḡ would be in M as well. This
proves the Lemma. �

So Ḡ and G � νG are both missing from M , but definable over (M,G).

Definition 2.13. We say that Ḡ is pseudo-indexed at α in L[E] if there is a
Z1 level (M,G) with stretching-extender F such that Ḡ is the long extender
described above (namely, for γ < (κ+

F )M , EM
γ ⊆ Ḡ iff iMF (EM

γ ) ⊆ G) and
α = (κF )++.

There is a parallel between the type Z1 levels of long extender construc-
tions and type Z short extenders. Recall that a short extender E over M
is type Z iff E has a largest generator ν which is a limit of generators, and
(ν+)Ult(M,E) = (ν+)Ult(M,E�ν). This leads to a conflict in which both E and
E � ν “should” be indexed at the same spot on the sequence. More specifi-
cally, E � ν is put on our sequence, and its presence on the sequence prevents
E from being put on afterwards, since E � ν collapses (ν+)Ult(M,E�ν) and so
cannot be in Ult(M,E). The standard way to resolve this is by giving pref-
erence to E � ν, and adding the condition that no type Z extenders occur on
our sequences. Analogously, in the type Z1 case described above, the pres-
ence of F on the M -sequence prevents G � ν from being put on afterwards,
because Ult(M,G � ν) |= “ν is a cardinal”, while F collapses ν. We resolve
this by giving preference to F and adding a condition that extenders of the

10



form G � ν do not occur on our sequence.

The reason this conflict between F and G � ν arose in the first place was
that we neglected to put Ḡ on our sequence, when it perhaps “should” have
been added at (κ++

F )M . (If Ḡ were in the model already, then G � ν would
be added to the model along with F .) More explicitly, Ult(M, Ḡ) agrees
with M up to their common value for κ++

F , but Ḡ collapses (κ++
F )M . So that

would be the natural place for Ḡ to be indexed. (Hence the terminology that
Ḡ is “pseudo-indexed” there.) We declined to do so, however, because it

is important for long extender comparison that active levels of L[ ~E] always
project to their λ (the image of the critical point of their top extender). The
details of this can be seen in the Comparison Lemma presented below, but in
brief, the issue is that iteration trees with long extenders can have generators
moved along the branches. However, the only moving generators will be the
long generators, above λ of their models. If we know that all our mice project
to their λ, this effectively gives the ordinals below λ (which are not moving
along iteration tree branches) a measure of control over the less-well-behaved
parts of the mice.

Any long extender mouse (M,G) where G has a largest long generator
ν which is below λ+

G will necessarily project to λG. By only putting long
extenders with largest generators onto the sequence, we guarantee that com-
parison will work as desired. However, this comes at the price of neglecting
our initial segments which have no largest generators. The way out of this
difficulty is to notice that these neglected initial segments still canonically
find their way into the model of their own accord, as the Ḡ of a Z1 level.

We must also consider a different kind of initial segment, whole initial
segments, and demand that all of these are in our model:

Definition 2.14. Let (M,G) be a potential plus-one premouse, η < λG, and

H = G � η, if G is short,

H = G � (η ∪ {νG}), if G is long.

We say that H is whole iff iH(κH) = η. The η of a whole initial segment
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will be called a cutpoint of G. We say that (M,G) has the Jensen Initial
Segment Condition (JISC) iff whenever H is a whole initial segment of G,
then H ∈M .

Definition 2.15. Let M be a potential plus-one premouse; we say that M
has projectum-free spaces (PFS) iff whenever G is a long extender on the
M-sequence,

1) if G is total on M and there is k such that %k(M) ≤ (κ+
G)M , then for

the least such k, we have %k(M) ≤ κG,

2) if G is total on M , and M is active with short last extender H such
that κH = κG, then %1(M) > (κ+

G)M .

Definition 2.16. For (M,G) with G long, we say that (M,G) is Dodd-solid
iff (G � νG) ∈M .

We are finally ready for the definition of premouse.

Definition 2.17. Let M be a potential plus-one premouse; then M is a plus-
one premouse with k(M) = 0 iff:

1) every proper initial segment of M is fully sound, and has projectum-
free spaces,

2) every initial segment of M satisfies the Jensen ISC,

3) M has projectum-free spaces,

4) if (N,G) is an initial segment of M with G long, then either (N,G) is
Dodd-solid, or (N,G) is of type Z1.

A plus-one premouse M with k(M) > 0 must in addition be k-sound, and
we follow the conventions described above when dealing with such structures.

Remark: Every plus-one premouse satisfies the weak ISC, because both
possibilities in clause 4) imply weak ISC.
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Definition 2.18. The Σ0-code of a plus-one premouse M is a J-structure
M as above, in the language L0 consisting of predicates Ė for the extender
sequence and Ġ for the top extender, as well as constant symbols ν̇ for the
largest generator νG in the case where G is long (we have ν̇ refer to the empty
set otherwise), and γ̇ for the index of the longest whole initial segment, if
there is one (again γ̇ refers to the empty set otherwise).

There is a technical problem we must now consider, that requires a differ-
ent definition of the 1-core for certain plus-one premice. If M = (|M |, G) is
a 1-sound type Z1 plus-one premouse with F = EνG the stretching-extender,
it is important for all ultrapowers of M to be continuous at κ+

F = µ. (If
an ultrapower map were discontinuous at µ, the type Z1 conditions would
be violated in the resulting ultrapower, and we would no longer have the
weak initial segment condition.) In the definition of type Z1 premice, Def-
inition 2.11, we demanded that κ+

F is not the space of an extender on the
M -sequence; this was intended to address this problem, by ensuring that we
never take ultrapowers of M that are discontinuous at µ. However, we may
still be forced to consider such ultrapowers if µ has ΣM

1 -cofinality equal to
τ < µ, where τ is measurable in M . Then Ult1(M,H) will be discontinuous
at µ if H is a measure on τ . It turns out, though, that in this case we can
encode the entire Σ1-theory of M as an amenable predicate on M |µ. This is
because µ is regular in M , but we are assuming there is a Σ1-definable cofinal
map f : τ −→ µ. For ξ < τ , let αξ be least such that the value f(ξ) = ζ is
witnessed by (M ||αξ, G � αξ). Since f is Σ1-definable but missing from M ,
it must be that 〈αξ | ξ < τ〉 is cofinal in o(M). So o(M) has Σ1-cofinality
τ , as does µ. This means we can define the 1-core of M as (M |µ,A) for an
appropriate amenable predicate A. Then 1-ultrapowers of this core will lift
µ pointwise to its image, and preserve premousehood.

Definition 2.19. Let M = (|M |, G) be a 1-sound type Z1 plus-one premouse
with F = EνG and µ = (κ+

F )M . Suppose µ has ΣM
1 -cofinality τ < µ, where τ

is measurable in M , and let f be a ΣM
1 -cofinal map f : τ −→ µ. For ξ < τ ,

let αξ be least such that the value f(ξ) = ζ is witnessed by (M ||αξ, G � αξ).
Let φn be the n-th Σ1-formula in the language of premice, according to some
standard enumeration. Then we define C1(M) = (M |µ,A), where A is the
amenable predicate given by
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(∀ξ < τ)(∀β < %1(M)) A(f(ξ), β, n) iff (M |αξ, G � αξ) |= φn(β, p1(N)) .

By the above discussion, A is an amenable predicate which encodes the
Σ1-theory of M into a structure of height µ, thereby resolving our disconti-
nuity problem.

Remark: In the context of L[E]-constructions with plus-one premice,
we will first need to prove solidity and universality for the “naive 1-core” of
M given by h1(%1(M) ∪ p1(M)). Once this has been done we can move to
the definition of C1(M) as above.

Neeman and Steel developed the fine structure theory of plus-one premice
in [3], culminating in a proof that the standard parameter must be solid or
“type Zp”.

Definition 2.20. Let M be a plus-one premouse; then M is of type Zp iff
pn+1(M) 6= ∅, and letting α be least in pn+1(M), and r = pn+1(M)− (α+ 1),
we have

1) M is solid at all β ∈ r,

2) M is weakly solid at α, and

3) Letting E = ĖM
α and κ = κE,

a) E is short,

b) %n+1(M) = (κ+)M , and

c) Letting H = HM
n+1(iE“((κ+)M)∪ r), and π : H −→M be the

uncollapse map,

i) M ||o(H) = H||o(H),

ii) π � (κ+)H = iE � (κ+)M , and
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iii) π−1(r) = pn+1(H), and pn+1(H) is solid.

In this case we call H the generalized core of M .

Generalized cores will arise in our construction when we reach a model
violating projectum-free spaces. We remove the PFS violation by taking the
ultrapower by the minimal extender witnessing this violation; the result will
be a Zp level.

Lemma 2.21. (Solidity Theorem, from [3]) Let M be a k-sound, (ω1 +
1)-iterable plus-one premouse satisfying long extender condensation; then

a) pk+1(M) is either solid at all α ∈ pk+1(M), or of type Zp,

b) pk+1(M) is k + 1-universal.

Let us elaborate briefly on the fine-structural classifications of short ex-
tender mice. We use Jensen’s fine structure as presented in [5]. For (M,G)
with G short, we demand that all whole initial segments are elements of the
model. We divide active short mice into three types: type A mice have no
cutpoints, type B mice have a largest cutpoint λ∗, and type C mice have un-
boundedly many cutpoints below λG. In the type B case, we need a constant
symbol in our language for the largest cutpoint. In fact it can be shown in
this case that the largest cutpoint is on the M -sequence, so we add a constant
symbol γ̇ to the language for premice, with the interpretation that for any
type B premouse, γ̇ refers to the index of the largest cutpoint. In the type
A or C cases, we just have γ̇ refer to the empty set.

For long extender mice, the main classification is the distinction between
Z1 and Dodd-solid structures. However, we must subdivide each of these
types depending on the distribution of their whole initial segments. In par-
ticular, mice with a longest whole initial segment (and therefore a nontrivial
γ̇ constant) will be called ‘long type B’, by analogy with the short type B
case. Long types A and C are defined analogously: they have no whole ini-
tial segments or unbounded whole initial segments in λG, respectively. In
total, then, we have six types of long extender mice, corresponding to every
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permutation of Z1 or Dodd-solid on the one hand, and long type A, B, or C
on the other.

Lemma 2.22. If M is a plus-one premouse of short type C or long type C
(either Z1 or Dodd-solid), then %1(M) = λM .

Proof: Clearly %1(M) ≤ λM (this is true for all premice). So suppose
%1(M) = α < λM . Since there are unboundedly many whole initial segments
below λM , the natural factor-maps from these whole initial segments into M
form a direct limit system with M as direct limit, and are Σ1-elementary (see
[5] section 1.4 for details). So we can choose a whole initial segment M ′ such
that the factor-map σ : M ′ −→ M has crit(σ) > α and p1(M) ⊂ range(σ).
But then ThN1 (α ∪ p1(M)) = ThM

′
1 (α ∪ σ−1(p(M ′))), and this latter set is

computable from M ′, hence is an element of M , contradiction. �

We will also have to consider the language for coherent structures, which
is identical to the language for premice but without the constant symbol γ.
Sometimes we will have to consider premice as objects in this language, which
will lead to different standard parameters and notions of soundness. (The
reason for this, which will emerge later in the square-construction, is that
in coherent structure language we have an equivalence between the standard
parameter of the structure and the Dodd parameter of the extender; in other
words, the finestructure of the mouse involves no more than the generators of
its extender, so taking the ultrapower by that extender “preserves informa-
tion about the mouse’s finestructure”. When we introduce the γ constant,
this equivalence is disrupted: the mouse’s finestructure now outstrips its ex-
tender’s Dodd parameter.)

Definition 2.23. Let M be an active premouse, or a J-structure satisfying
all conditions of active premousehood except that GM is not a total extender
on M , and such that crit(GM) < %1(M). The Dodd parameter d(M) is the
<lex-least finite set of ordinals d such that M = h∗(%1(M) ∪ d), if defined.
Here h∗ is the canonical Σ1-Skolem function for M computed in the language
of coherent structures.

See [5] for more discussion of the Dodd parameter.
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The following lemma gives conditions under which premousehood is up-
ward preserved by embeddings. The way to think about its various clauses
is: for short extender premice, a) is the “brute force” clause, because we have
Σ2 elementarity. b) is a slightly different “brute force” clause also– it requires
a little additional brute force than in a), but in practice we will always have
that little extra. Then c), d), and e) are the careful detailed clauses, that
require some cofinality considerations, but very little elementarity. Finally,
f) is the long extender “brute force” clause. Now in practice, we will apply
this lemma by saying: if we’re taking a 0-ultrapower, we have very little
brute force, but lots of control over the cofinalities, so we use c), d), or e).
And if we’re taking a k-ultrapower for k ≥ 1, we lose track of the cofinalities
but we have more brute force, so we apply a), b), or f).

Also note that the lemma assumes that the ultrapower is already known
to satisfy projectum-free spaces. Different contexts will require rather differ-
ent techniques to verify PFS, and we have found it more convenient to defer
the responsibility of proving PFS to those specific contexts.

Lemma 2.24. Suppose M is a premouse with top extender G and σ :
(M,G) −→ (N,H) is an embedding in the language of coherent structures
(with degree of elementarity specified below). Assume (N,H) satisfies projectum-
free spaces. Suppose further that one of the following holds:

a) M is of short type A or B and σ is Σ2-elementary;

b) M is of short type C and σ is Q(1)-preserving;

c) G is short, H is total on N , and σ is Σ0-elementary and cofinal, and
maps λG cofinally into λH ;

d) G is long with M Dodd-solid, H is total on N , and σ is Σ0-elementary
and cofinal, and maps λG cofinally into λH ;

e) G is long with M type Z1, H is total on N , and σ is Σ0-elementary
and cofinal, maps νG cofinally into its image, and maps λG cofinally into λH .

f) G is long and σ is Σ2-elementary.
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Then N is a premouse of the same type as M . Furthermore, if G is long,
then i(ν(G)) = ν(H).

Proof: a), b), and c) are proven in [9] (Lemma 9.1.5); there is, however,
one additional clause in our definition of premouse which is not a require-
ment for the premice in [9], namely projectum-free spaces. We have added
it as a hypothesis in this lemma. Its verification in particular cases requires
additional work.

For the remainder of the proof we focus only on the new cases d), e), and
f), where the top extenders are long.

By Lemma 2.9, N is a potential premouse and i(ν(G)) = ν(H). There
are four clauses in the definition of premouse (Definition 2.17) which we must
now verify. Clearly 1) is preserved by any Σ0 cofinal embedding. For 2), we
need to check that all whole initial segments of H are elements of N . Being
a cutpoint is Π1, so if η is a cutpoint in M , then σ(η) is a cutpoint in N .
The corresponding whole initial segments will likewise be carried upward by
σ. This, combined with the fact that σ is cofinal in λ, is enough to preserve
Jensen ISC for N : if M had unboundedly many cutpoints below λG, their
whole initial segments will be carried upward into an unbounded set of whole
initial segments of H; if M had a largest cutpoint, its whole initial segment
will be preserved, as will the fact that nothing larger is a cutpoint; and if M
had no cutpoints, we again have enough elementarity (and cofinality in λH)
to preserve this fact.

The verification of 3) is the same as in the short case. This leaves us only
with 4). If M is Dodd-solid, then G � νG ∈ M , and σ(G � νG) = H � νH , so
N is Dodd-solid. And if M is type Z1, then we are in case e) of the current
lemma, so we are assuming σ maps νG cofinally into νH . Now since M is
a Z1 premouse, it has a short ‘stretching-extender’ F indexed at νG, and F
witnesses that κ+

F maps cofinally into νG. Since σ is continuous at νG, it
must also then be continuous at κ+

F . This is enough to see that σ preserves
type Z1-ness of M : for cofinally many η < κ+

F ,

iMF (EM
η ) ⊆ G

and hence
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iNσ(F )(E
N
σ(η)) ⊆ H .

This finishes the proof that N is a premouse of the same type as M . �

We must introduce one final property which all our premice will satisfy.

Let M be a plus-one premouse; then M has long extender condensation
iff whenever α < o(M), and γ is least such that ĠM |γ is long with domain
M |α, then %1(M |γ) ≤ α and p1(M |γ) ⊆ α.

This notion plays an important role in the Closeness proof in the next
section.

2.4 Premousehood-Preservation by Hulls

Lemma 2.25. Suppose M is a premouse and σ : M̄ −→M is the uncollapse
embedding arising from a Σ

(n)
1 -hull over M . Also suppose that M̄ satisfies

projectum-free spaces, and that one of the following holds:

a) n ≥ 0 and M is short type A or B,

b) n > 0 and M is short type C,

c) n ≥ 0 and M is long type A or B (either Z1 or Dodd-solid),

d) n > 0 and M is long type C (either Z1 or Dodd-solid).

Then M̄ is a premouse of the same type as M ; moreover, σ(γM̄) = γM .

Proof: a) and b) are proven in [9] (Lemma 9.1.7), with the only addi-
tional condition for premousehood in the present context being projectum-
free spaces (Clause 3 of Definition 1.7); and we are assuming this holds for M̄ .

For c), note that M̄ is a potential premouse, since ppm-hood is a Π2 fact
and so is downward preserved by Σ1 hulls. Also note that M̄ satisfies the
Jensen ISC, because in the long type A case the nonexistence of cutpoints
is a Π2 fact that is downward preserved, and in the long type B case the
largest cutpoint γ is in σ“(M̄), and the nonexistence of any larger cutpoint
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is a Π2 fact in the parameter γ that is downward preserved. Additionally,
observe that cof(νM̄) is not the space of a total extender on the M̄ -sequence,
by elementarity of σ and the fact that this holds in M . We can now apply
Lemma 7 of [2] to conclude that M̄ is a plus-one premouse.

For d), the embedding is Σ2-preserving, which is enough elementarity to
guarantee that M̄ is a premouse of the same type as M . �

3 Closeness

In this section we introduce iteration trees, and describe the property of
closeness of extenders in these trees. This will enable us to prove that all
models produced in iteration trees are premice.

3.1 Iteration Trees & Closeness Definition

A k-maximal plus-one iteration tree T on M is an iteration tree on a plus-
one premouse M , with T − pred(α + 1) = β, where β is least such that
κEα < λEβ , and Mα+1 = Ultn(M∗

α+1, Eα), where M∗
α+1 = Mβ|τ , for τ least

such that λEβ ≤ τ and either τ = o(Mβ) or %ω(Mβ|τ) ≤ space(Eα), and n is
least such that %n+1(M∗

α+1) ≤ space(Eα), or n = k if there was no dropping
in model or degree in [0, α + 1]T .

When discussing iteration trees on a premouse M , we write κα for κEα
and λα for λEα .

Closeness is a key property of the extenders applied in a plus-one itera-
tion tree:

LetM be a potential plus-one premouse, and E an extender with dom(E) =
(M |α) for some cardinal α of M . We say E is close to M iff:

1) E is short, and for all finite a ⊆ λE, Ea is ΣM
1 (this is called Σ1-

amenability), and Ea ∩ (M |ξ) ∈ M , for all ξ < (κ+
E)M (this is called weak

amenability);
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2) E is long, and for ν = νE,
a) for a ∈ [λG∪{ν}]<ω, Ea (which may now measure subsets of κ+

E) is
ΣM

1 (this is called Σ1-amenability), and Ea∩ (M |ξ) ∈M , for all ξ < (κ++
E )M

(this is called weak amenability);
b) (κ+

E)M is the space of a total extender from the M -sequence (this
is called space agreement).

The following lemma explains the importance of the Σ1-amenability clause
of closeness:

Lemma 3.1. If E is short and Σ1-amenable to M , then all Σ1-definable
subsets of P(κE) in Ult(M,E) are Σ1 in M . If E is long and Σ1-amenable
to M and E � λE = F is a set in Ult(M,E), then all Σ1-definable subsets of
P(κ+

E) in Ult(M,E) are Σ1 in M .

Proof: First we suppose E is short. Let A ∈ Σ
Ult(M,E)
1 be a sub-

set of P(κE) definable from parameter x ∈ Ult(M,E), via the formula
y ∈ A⇐⇒ ∃zΦ(x, y, z), with Φ a Σ0 formula. Then x = [a, f ]ME for some a, f .
Assume WLOG that κ ∈ a, and since [{κ}, idκ] is a representing function for
κ, by “padding its coordinates” we get a representing function [a, g]ME = κ;
more explicitly, g : κ|a| −→ κ is the projection onto the first coordinate
(which is the position occupied by κ ∈ a, since it is the least element of a).

Also notice that the witness z to Φ can WLOG be taken to be Ult(M,E)|α
for some α. Recall that the levels of M are mapped by iE cofinally into the
levels of Ult(M,E), so in fact we can assume our witness z is iE(M |α) for
some α. A is now definable over M as follows:

y ∈ A⇐⇒ ∃α ({d ∈ κ|a| | Φ(f(d), y ∩ g(d),M |α)} ∈ Ea) .

(By Σ1-amenability, Ea is Σ1-definable over M , so the above formula is
Σ1.)

Now suppose E is long. In the short proof above, we were able to easily
relate subsets of κ in M with their counterparts in Ult(M,E), by stretching
them & cutting down to length κ. In the long case, it is harder to relate a
given y ⊆ κ+ with that same y in the ultrapower; it is not generally true
that y = iE(y) ∩ κ+. However, in the context of plus-one premice, we have
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F = (short part of E) as an element of the ultrapower, and we can use F to
relate y ∈M to y ∈ Ult(M,E) as follows.

We consider F as a function that maps ordinals < κ+
E to their images

in Ult(M,E). (This is easily interdefinable with our official coding of short
extenders, at least when the entire extender is an element of the model.)
Since F is an element in the ultrapower, it has a representing function in
M , say [b, f ]ME = F . Let A ∈ Σ

Ult(M,E)
1 be a subset of P(κ+

E) definable from
parameter x ∈ Ult(M,E), via the formula y ∈ A⇐⇒ ∃zΦ(x, y, z), with Φ a
Σ0 formula. x has some representing function [a, h]ME = x, and WLOG we can
have b ⊆ a. Also WLOG we have κ ∈ a. κ+ is represented in the ultrapower
as [{κ}, g′], where g′ : κ −→ κ is given by g(α) = cardinal successor of α in
M . By “padding parameters”, we get a representing function [a, g]ME = κ+,
where g(d) = g′(d0) for d ∈ (κ+)|a| (where d0 is the first coordinate of d,
corresponding to κ ∈ a). Note that f(d) will be a function mapping g(d)
into κ+, with critical point d0. So we can build a representing function
[a, k]ME = y uniformly for y ⊆ κ+ by setting k(d) = f(d)−1(y). Then A is
definable over M as follows:

y ∈ A⇐⇒ ∃α ({d ∈ (κ+)|a| | Φ(h(d), k(d),M |α)} ∈ Ea) .

(By Σ1-amenability, Ea is Σ1-definable over M , so the above formula is
Σ1.) �

Lemma 3.2. If M is a premouse and E is weakly amenable to M (either in
the short or long sense), then letting i : M −→ Ult(M,E) be the ultrapower
map, we have (P(κE))Ult(M,E) ⊆ M if E is short, and (P(κ+

E))Ult(M,E) ⊆ M
if E is long.

Proof: This is a standard argument. �

We can now track where the projectum of a premouse is sent by a close
ultrapower. This will be important for checking that the ultrapower is still
a premouse; specifically, it is needed to verify projectum-free spaces.

Lemma 3.3. If M is an n-sound premouse and E is close to M , and fur-
thermore %Mn+1 ≤ κE, then %Mn+1 = %

Ultn(M,E)
n+1 .
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Proof: Let i : M −→ Ultn(M,E) be the ultrapower map. Then the
canonical missing subset of %Mn+1 is still definable over Ultn(M,E) by elemen-
tarity of i. And it is still missing, by the above lemma on weak amenability.
Thus %

Ult(M,E)
n+1 ≤ %Mn+1. For the other inequality, note that Σ1-amenability

tells us that any definable subset of an ordinal < %Mn+1 in Ultn(M,E) would
also be definable over M , contradiction. �

Next, note that if M is a premouse and E is long and close to M , then
%Mn+1 6= (κ+

E)M by Clause 3) in the definition of premouse (projectum-free
spaces) together with clause 2b) in the definition of closeness (space agree-
ment).

Lemma 3.4. Suppose M is a premouse with top extender G, E is an exten-
der over M which is close to M , and (N,H) = Ultn((M,G), E) for largest
possible n. Suppose further that %Mn+1 ≤ κE. Let i : (M,G) −→ (N,H) be the
ultrapower embedding. Then

a) (N,H) is a premouse of the same type as (M,G),

b) if G is long, then i(ν(G)) = ν(H).

Proof: Potential-premouse-hood is preserved upward by Σ0 cofinal em-
beddings if the target structure has total top extender (Claim 1.2), which is
indeed the case here:

Claim 1: H is total on N .

Proof: The claim will follow if we can show that i is continuous at
height(dom(G)). If E is short, then i is only discontinuous at points of
M -cofinality κE, a limit cardinal in M , but height(dom(G)) is always a suc-
cessor cardinal in M . So suppose E is long; by hypothesis there is a long
E ′ on the M -sequence with the same space (clause b) of closeness). If G
is long, then again there is no problem, since height(dom(G)) is a double
successor and i is necessarily continuous there (the long extenders we work
with can only be discontinuous at limit cardinals and single successors in
M). So the only problematic case is when G is short and κG = κE′ . But
then by clause 2) of projectum-free spaces (Definition 1.5), we must have
%M1 > (κ+

G)M . This means that the degree n of our ultrapower is ≥ 1. So i is
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at least Σ2 elementary; and this is enough to guarantee totality of H on N . �

We also have that i(%Mn+1) = %Nn+1, by a previous Lemma. And since i is
an n-embedding, we have that

i(%k(M)) = %k(N) for k < n, and

sup(i“%n(M)) = %n(N) ≤ i(%n(M)).

The former fact, together with elementarity of i, implies that %k(N) is
not the space of a long extender on the N -sequence for k < n. To see this
for k = n, note that if i is continuous at %n(M) then the same considerations
as for k < n apply. But if i is discontinuous there, then %n(M) must be
Σn-singular in M , which implies that it must be a limit cardinal in M . But
then sup(i“%n(M)) = %n(N) is a limit cardinal in N , so it cannot be the
space of a long extender on the N -sequence.

Now we can apply Lemma 1.10. If G is short, then the hypotheses of c)
of Lemma 1.10 are satisfied, since we certainly have that i is continuous at
λG. (We have dom(E) is a cardinal of M , so it must be < height(M).) If G
is long and Dodd-solid, the hypotheses of d) are satisfied. And if G is long
and Z1, then i is continuous at νG by the space agreement clause of closeness.
Hence the hypotheses of e) are satisfied.

In all cases we get that (N,H) is a premouse of the same type as (M,G).
�

3.2 Closeness Proof

Lemma 3.5. All extenders used in a k-maximal plus-one iteration tree are
close to the models they’re applied to.

Proof: We go by induction on the length of iteration trees. Let T on
M be a counterexample of minimal length. Let Mi be the final model of T ,
so that F = Ei chosen from the Mi-sequence is not close to M∗

i+1 = Mj|β for
some β. Verifying the weak amenability clause (in the short or long case) is
easy: the relevant fragment of F is in Mi, and it must be constructed below
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λj, since this is a limit cardinal of Mi above κi. Thus it is also in Mj, since
the models agree up to λj.

Now for the Σ1-amenability clause: Suppose that some fragment Fa fails
to be Σ1 over Mj|β.

Claim: j < i. (Because extenders are trivially close to the models they
came from.)

Claim: F is the top extender of Mi.

Proof: If F were an element of Mi, indexed at α, then Fa would be
a Σ1-definable subset of Mi|α, hence an element of Mi. But Fa is a subset
of κ+

F in the short case or κ++
F in the long case; either way it must be con-

structed below λj, since this is a limit cardinal of Mi above κi. Thus it is
also in Mj, since the models agree up to λj. �

Now we consider a slightly different induction hypothesis. Let h be
least such that Mh is active and, setting H = ĠMh , there is a ΣMh

1 sub-
set of P(space(H)) which is not Σ1 over Mg, where g is least such that
λg > dom(H). Call this set X, and the parameter in its definition b. In
other words: Mh is the least model such that IF we had chosen its top ex-
tender as Eh, there would have been a Σ1subset of the powerset of its space
which fails to be Σ1 over the model we apply Eh to. Clearly h ≤ i, since
our failure of closeness exemplifies this situation. We show that for any h
satisfying this condition, there must be a smaller ordinal which also satisfies
the condition. Hence our hypothesized failure of closeness at i is impossible.

Claim: h is a successor ordinal, say h = e+ 1.

Proof: If h were limit, we’d have Mh as the direct limit of a sequence
of lower models in the tree, cofinal in h. We must have a tail-end of this
direct limit sequence with κH below the crit of the branch-tail (and no drops
along the branch-tail), since otherwise κH would be lifted above all λ’s of ex-
tenders in the tree below it, and could not be applied to a lower model Mg.
Choose Mk sufficiently high in the direct limit chain so that the parameter
b is in the range of the Mk −→Mi embedding, and the critical point of this
embedding is above space(H). Then the Σ1 definition of X over Mh pulls
back to a Σ1 definition of X over Mk. But then k < h satisfies the above

25



condition, contradicting minimality of h. �

Claim: κH < κe.

Proof: Say m = T -pred(h), so that Mh = Ultn(Mm|γ,Ee) for largest
possible γ. Now if κH ≥ κe, it would also have to be ≥ λe, since it is a de-
finable point in Mh and hence in the range of the Ee-embedding. But then
κF < λg would be impossible, since the λ’s in an iteration tree are increasing,
so λg ≤ λe. �

Claim: X is Σ
(Mm|γ)
1 .

Proof: By induction, we may assume Ee is close to Mm|γ. X is a
Σ1-definable subset of P(κF ) or P(κ+

F ) in Mh, a fortiori a subset of P(κe).
By our preceding Lemma, then, X is Σ1 over Mm|γ. �

This finishes the Σ1-amenability clause of the closeness proof, in the short
and long cases. Finally we address the space agreement clause in the long
case. Assume towards contradiction that F is applied to Mj|β, but there is
no extender on the Mj|β sequence with the same space as F .

Claim: F is the top extender of Mi.

Proof: If F were an element of Mi indexed at some α, then we have
that Mi|α is a premouse satisfying long extender condensation. For the first
extender G on the Mi|α sequence with domain equal to dom(F ), we then
have that G is constructed before (κ+++

F )Mi|α, hence before λMj
. But Mi and

Mj agree in this region, so G is on the Mj|β sequence, contradiction. �

Claim: i is a successor ordinal, say i = e+ 1.

Proof: Just like before, if i were limit then the direct limit sequence
approaching it must have κi below the branch-tail crit at some point, or else
κi would be lifted above all the lower λ’s in the tree and F could only be ap-
plied to Mi. But then any model sufficiently high in the direct limit sequence
would also cause a failure of space agreement if we chose its top extender to
apply. By induction, this is a contradiction. �
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Claim: κG < κe. (The proof is exactly the same as before.)

Let m = T -pred(i). We now have that M∗
i is an initial segment of Mm

whose top extender has the same domain as F . But then we could build a
shorter tree with a failure of space agreement, by choosing that extender as
Em. Contradiction.

This finishes the Closeness Proof. �

4 Comparison

4.1 The Comparison Lemma

A centrally important fact about plus-one premice is

Theorem 4.1. Let M and N be iterable plus-one premice; then there are
iterates P of M and Q of N such that P EQ or QE P .

Proof: As a representative special case, let M and N be countable,
and let Σ and Γ be ω1 + 1 iteration strategies for them. Let T on M and
U on N be plays of Σ and Γ, where at successor steps player I has chosen
least disagreements ET

α in MT
α and EU

α in MU
α , and applied ET

α to MT
ξ ,

where ξ is least such that crit(ET
α ) < λET

ξ
, and similarly for EU

α . Write

Mα = MT
α , and Nα = MU

α . Suppose toward contradiction that the process
does not terminate, so that Mω1 and Nω1 exist. Let

π : X −→ Vθ

with X countable transitive, θ large, and everything relevant in ran(π).
Let π(T̄ ) = T , etc. Let α = ωP1 = crit(π), with π(α) = ω1.

We have M T̄
α = MT

α and N T̄
α = NT

α . Thus Mα, Nα ∈ X. Moreover

π �Mα = iTα,ω1
, π � Nα = iUα,ω1

.

Let γ + 1 be least in (α, ω1)T and η + 1 least in (α, ω1)U , and G = ET
γ ,

H = EU
η the first extenders applied after α on their respective branches.
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Let

P = (Mγ|lh(G), G) , Q = (Nη|lh(H), H) .

We can stretch out P and Q by the short parts of their respective branch-
tail extenders:

P ∗ = Ult0(P,EiTγ+1,ω1
� ω1) , Q∗ = Ult0(Q,EiUη+1,ω1

� ω1) .

Let i0 : P −→ P ∗ and j0 : Q −→ Q∗ be the canonical embeddings.
Thus i0 = iTγ+1,ω1

� (Mγ|lh(G) (note Mγ|lh(G) EMγ+1 ), and j0 = iUη+1,ω1
�

(Nη|lh(H). Let G∗ and H∗ be the last extender predicates of P ∗ and Q∗, i.e.,

G∗ = i0(G) , H∗ = j0(H)

where we are really applying i0 and j0 to fragments of G and H.

Claim: G∗ and H∗ are initial segments of the extender Eπ from π.

Proof: Clearly, G and G∗ measure the same sets, i.e., dom(G) =
dom(G∗). For x ∈ dom(G),

π(x) = iTα,ω1
(x) = iTγ+1,ω1

(iG(x)) .

We would like to write

iγ+1,ω1(iG(x)) = iγ+1,ω1(iG)(iγ+1,ω1(x)) = iγ+1,ω1(iG)(x) = iG∗(x)

but it is only i0 that can move iG fragment-wise as an amenable predicate
of (Mγ|lh(G), G), not the full iγ+1,ω1 . (If iγ+1,ω1 is a short extender, this is
not a problem.) So let

σ : Ult0(Mγ+1, EiTγ+1,ω1
� ω1) −→Mω1 = Ult(Mγ+1, EiTγ+1,ω1

)

be the canonical embedding. σ � ω1 + 1 = identity, and so crit(σ)
is at least (ωV1 )+ of the smaller ultrapower. But P = (Mγ|lh(G), G) =
(Mγ+1|lh(G), G), and lh(G) = λ+

G in Mγ+1, so

P ∗ = (Mω1 � lh(G∗), G∗) ,

28



where lh(G∗) ≤ crit(σ). Taking x ∈ dom(G) = dom(G∗), we may assume
x ⊆ (κ+

G)Mα , and we then get

π(x) = iTγ+1,ω1
(iG(x))

= σ(i0(iG(x)))

= σ(i0(iG)(i0(x)))

= σ(iG∗(x)) .

Since crit(σ) ≥ lh(G∗), this gives G∗ = Eπ ∩ (MT
α × [lh(G∗)]<ω). �

Claim: At least one of G and H is long.

Proof: Assume not. Then G∗ = H∗ = Eπ ∩ (Mω1 × [ω1]<ω). But
G = G∗ � λG, and G /∈ Mω1 , so we see that the Jensen ISC fails for G∗. It
held for (Mγ|lh(G), G), by our “short extender rules” for iteration. It follows
that

λG = least η such that G∗ � η is whole and G∗ � η /∈Mω1

= least η such that H∗ � η is whole and H∗ � η /∈ Nω1

= λH .

So H = H∗ � λH = G∗ � λG = G, contrary to G being part of a disagree-
ment. �

Claim: Both G and H are long.

Proof: Suppose G is short and H is long. Then by the weak ISC,
H � λH is on the sequence of Nη|lh(H), and hence j0(H � λH) = H∗ � ω1 is
on the sequence of Nω1 |lh(H∗). But H∗ � ω1 = G∗, and so by Nω1 |lh(H∗) |=
Jensen ISC, G∗ � λG = G ∈ Nω1 . Since lh(G) is a cardinal of Nω1 , this is a
contradiction. �

Claim: It is not the case that both G and H are long.

Proof: Otherwise, let ν + 1 = ν(H), and ξ + 1 = ν(G). We have

i0 : (Mγ|lh(G), G) −→ (Mω1|lh(G∗), G∗) ,
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j0 : (Nη|lh(H), H) −→ (Nω1 |lh(H∗), H∗) ,

moreover G∗ and H∗ are compatible.

Subclaim: i0(ξ) is the largest generator of G∗, and ∀µ < i0(ξ), G∗ � µ ∈
Mω1|lh(G∗).

Proof: If G � ξ ∈ Mγ|lh(G), then i0(G � ξ) = G∗ � i0(ξ) ∈
Mω1|lh(G∗), so of course ∀µ < i0(ξ), G∗ � µ ∈ Mω1 |lh(G∗). But if G � ξ /∈
Mγ|lh(G), then since (Mγ|lh(G), G) is a premouse, Mγ|lh(G) |= cof(ξ) = τ+,
for some τ < λG. But i0 comes from a short extender with critical point λG,
so we get i0(ξ) = sup(i0“ξ). This again shows ∀µ < ξ (G∗ � µ ∈Mω1|lh(G∗)).

We need to see that i0(ξ) is the largest generator of G∗. Being a gener-
ator is Π1, so by elementarity i0(ξ) is still a generator. Now for any η > ξ
in (Mγ|lh(G), G), there is a wellorder W ∈ Mγ|lh(G) of λG of ordertype η,
and W = iG(f)(a, ξ) for a ⊆ λG and f some representing function. By cut-
ting this wellorder down to an initial segment, we can obtain representing
functions for all ordinals ≤ η, so none of them can be generators. This same
reasoning applied to i0(W ) shows that no ordinals ≤ i0(η) can be generators
of G∗, since the representation of W in iG is carried upwards to a represen-
tation of i0(W ) in iG∗ . Since i0 is cofinal in Mω1 |lh(G∗), we see that nothing
above i0(ξ) can be a generator. �

Subclaim: j0(ν) is the largest generator of H∗, and ∀µ < j0(ν), H∗ �
µ ∈ Nω1|lh(H∗).

Proof: The same. �

Subclaim: i0(ξ) = j0(ν).

Proof: Suppose e.g. that i0(ξ) < j0(ν). By the last subclaim,
H∗ � (ω1 ∪ {i0(ξ)}) ∈ Nω1|lh(H∗). That is, G∗ ∈ Nω1 . But then G = G �
(λG∪{ξ}) = G∗ � (λG∪{i0(ξ)}) ∈ Nω1 , contrary to G collapsing λ+

G of Nω1 . �

Subclaim: G = H.
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Proof: We have that

λG = least η such that G∗ � (η ∪ {i0(ξ)}) is a whole extender that is not in Mω1

= least η such that H∗ � (η ∪ {j0(ν)}) is a whole extender that is not in Nω1

= λH .

But then G = G∗ � (λG∪{i0(ξ)}) = H∗ � (λH ∪{j0(ν)}) = H, as desired.
�

Clearly G 6= H, because they were used in disagreements. So we have
proved our last claim. �

These three claims add up to a contradiction, thereby proving the Com-
parison Lemma. �

5 Phalanxes and Copy Maps

5.1 Phalanxes

In addition to iteration trees on premice, we must consider phalanx iterations.

A phalanx 〈M,H,α〉 with embedding σ consists of a triple where H and
M are plus-one premice and α is an ordinal, with σ : H −→M an embedding
with critical point ≥ α which is Σ0-elementary and cardinal-preserving.

An iteration tree T on a phalanx 〈M,H,α〉 is an iteration tree con-
structed according to the usual rules, except that we set M0 = M , M1 = H,
λ0 = α, and E0 is undefined. That is, for each β < length(T ), Eβ is an ex-
tender on the Mβ-sequence, κβ is the critical point of Eβ, and λβ is the image
of κβ by iEβ . We set M∗

β+1 = (Mγ|δ) for γ least such that dom(Eβ) ⊆ (Mγ|λγ)
and δ largest such that Eβ is a total extender on (Mγ|δ).

Lemma 5.1. Let T be an iteration tree on a phalanx 〈M,H,α〉 with models
Mη. Recall M0 = M and M1 = H. Then for all η < length(T ),

a) If T − pred(η + 1) 6= 0, then Eη is close to M∗
η+1;

31



b) If Mη is above H in T , i.e., 1 <T η, then Mη is a plus-one premouse;

c) If 0 <T γ <T η and Mγ is a plus-one premouse, then so is Mη.

The proof of a) is essentially the same as the closeness proof for pre-
mouse iterations given above. However, that proof will break down when we
are considering applications of Eη to M0 = M for which dom(Eη) = (M |α).
This is the reason for the qualifications in this lemma, which we will now
explain in more detail.

There are several points in the closeness proof where we need to know
that when Eη is applied to Mj, then λj is a limit cardinal of Mη which is
above dom(Eη). In phalanx iterations, this fact remains true except in the
case just described– for in that case we have declared λj = λ0 = α, and this
is the exact height of dom(Eη). So, for instance, the fragments of Eη which
are relevant for Σ1-amenability can be coded as subsets of dom(Mη). In the
original closeness proof, we could argue that if such a fragment is an element
of Mη, it is also an element of Mj. But this can break down in a phalanx
iteration when j = 0. Similarly, the space agreement clause of closeness relies
for its proof on an application of long extender condensation that may fail
here.

b) and c) follow easily from Lemma 4 of [2], which shows that ultrapow-
ers of plus-one premice by close extenders are plus-one premice (in fact, only
the space agreement clause of closeness is needed). The proof given there
focuses on premice with active long extenders, but the standard proof of
premousehood-preservation for short extenders goes through verbatim; see,
e.g., Lemma 1.5 of [5].

The foregoing discussion also explains the following fact ([3], Theorem
10, Claim 3):

Lemma 5.2. For a phalanx iteration as above, let T −pred(η+ 1) = 0, and
suppose dom(Eη) = (M |β) where β < α; then M∗

η+1 = M , and Eη is close
to M . Thus Mη+1 is a plus-one premouse.

We also have ([3], Theorem 10, Claim 4):
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Lemma 5.3. For a phalanx iteration as above, let T −pred(η+ 1) = 0, and
suppose dom(Eη) = (M |α), and that α is a cardinal of M ; then M∗

η+1 = M ,
and Eη is close to M . Thus Mη+1 is a plus-one premouse.

Proof: Since α is a cardinal of M , we immediately get that M∗
η+1 =

M . Now note that the standard closeness argument can easily establish that
Eη is close to H. But we have an embedding σ : H −→ M as part of our
phalanx, which can be used to transfer the requisite closeness properties to
M . (Unlike in [3], we are only assuming σ is Σ0-elementary and cardinal-
preserving. However, this is still enough to transfer closeness.) �

5.2 Lifting Trees

We will prove iterability of the phalanxes that arise in our construction by
lifting the double-rooted iteration tree T on the phalanx 〈M,H,α〉 to a
single-rooted iteration tree T ∗ on M . Then we can use an iteration strategy
on the lifted tree T ∗ to choose branches through the double-rooted T . This
will work because, given an embedding π : M −→ N , with T an iteration
tree on M , we can copy it to a tree πT on N . Given an iteration strategy Σ
for N , we can then define the “pullback strategy” Σπ(T ) = Σ(πT ), which
will give us choices for wellfounded branches through T . The situation with
phananx iterations is essentially the same, but with a little extra complica-
tion due to the two roots.

The following lemma is used to extend T ∗ at successor steps.

Lemma 5.4. (Shift Lemma) Let M̄ and N̄ be premice, let κ̄ = crit(Ḟ N̄),
and let

ψ : C0(N̄) −→ C0(N)

be a weak 0-embedding, and

π : C0(M̄) −→ C0(M)

be a weak n-embedding. Suppose that M̄ and N̄ agree below (κ̄+)M̄ and
(κ̄+)M̄ ≤ (κ̄+)N̄ , while M and N agree below (κ+)M and (κ+)M ≤ (κ+)N ,
where κ = ψ(κ̄). Suppose also
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π � (κ̄+)M̄ = ψ � (κ̄+)N̄ .

Let κ̄ < %n(M̄), so that Ultn(C0(M̄), Ḟ N̄) and Ultn(C0(M), ḞN) make
sense, and suppose the latter ultrapower is wellfounded. Then the former
ultrapower is wellfounded; moreover, there is a unique embedding

σ : Ultn(C0(M̄), Ḟ N̄) −→ Ultn(C0(M), ḞN)

satisfying the conditions:

1. σ is a weak n-embedding,

2. Ultn(C0(M̄), Ḟ N̄) agrees with N̄ below %0(N̄), and Ultn(C0(M), ḞN)
agrees with N below %0(N),

3. σ � (%0(N̄)) = ψ � (%0(N̄)),

4. the diagram

Ultn(C0(M̄), Ḟ N̄) Ultn(C0(M), ḞN)

C0(M̄) C0(M)

σ

i

π

j

commutes, where i and j are the canonical ultrapower embeddings.

The standard arguments (see [7]) allow us to establish a weak Dodd-
Jensen lemma:

A near k-embedding between premice is a weak k-embedding which is
rΣk+1-elementary.

Let M and P be premice; then we say that P is (M,k)-large iff there is
a near k-embedding from M to an initial segment of P .

Let ~e = 〈ei | i < ω〉 enumerate the universe of a countable premouse M ,
and π : M −→ P be a near k-embedding; then we say π is (k, e)-minimal
iff whenever σ is a near k-embedding from M to an initial segment N of P ,
then N = P and either σ = π, or σ(ei) >L π(ei), where i is least such that
σ(ei) 6= π(ei).
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Notice that if P is (M,k)-large but no proper initial segment of P is
(M,k)-large, then there is a (k,~e)-minimal embedding from M to P ; this
embedding will be the leftmost branch through a certain tree.

Let Σ be an iteration strategy for a countable premouse M , and let ~e =
〈ei | i < ω〉 enumerate the universe of M in order type ω; then we say
Σ has the weak Dodd-Jensen property (relative to ~e) iff whenever T is an
iteration tree on M played according to Σ, and β < lh(T ) is such that MT

β

is (M,k)-large, then iT0,β exists and is (k,~e)-minimal.

Theorem 5.5. (The Weak Dodd-Jensen Lemma)
(from [1]) Suppose M is iterable, and that ~e enumerates the universe of M
in order type ω; then there is a unique iteration strategy for M which has the
weak Dodd-Jensen property relative to ~e.

6 Condensation

With these preliminaries, we are ready to prove one of our main results. The
idea behind the Condensation Lemma is to use a phalanx to compare H and
M , while ensuring that the critical point of the branch-embeddings is large
enough to get our desired conclusions. In the course of this proof we must
consider four anomalous cases, which correspond to different ways that the
iteration tree on our phalanx could break down. Unfortunately, we have been
unable to resolve these difficulties in Anomalous Case 4, so the Condensation
Lemma is stated with the hypothesis that Anomalous Case 4 does not apply.
Thankfully, this form of the Lemma suffices for all the applications which
follow. The case which we are avoiding is

Anomalous Case 4: α is not a cardinal of M , and letting 〈η, k〉 be
lexicographically least such that %k+1(M |η) < α, we have that F = ḞM |η

is short, α = (κ++
F )M |η, k = 0, and there are total long extenders on the

M -sequence with critical point κF .

Theorem 6.1. (Condensation Lemma) Let 〈M,H,α〉 be a phalanx where
M is an (n, ω1, ω1 + 1)-iterable premouse, and suppose the associated map

σ : H −→ M is an embedding with critical point = α and which is Σ
(n)
0 -

elementary and cardinal-preserving. Suppose H and M have the same type
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(A, B, C, Z1 or Dodd-solid). Suppose further that M and H are both (n+1)-
sound, and that α ≥ %Hn+1. Finally, assume that Anomalous Case 4 does not
hold. Then one of the following conclusions is true:

a) H = M and σ = id.

b) H is a proper initial segment of M .

c) H is an initial segment of Ultn(M,EM
α ).

d) H is an initial segment of Ultn(M,F ), where F is pseudo-indexed at
α on the M-sequence.

Proof: The proof is similar to the Solidity proof of [3]. We first iso-
late several anomalous cases.

Anomalous Case 1: There is an extender indexed at α on the M -
sequence.

Anomalous Case 2: There is an extender pseudo-indexed at α on the
M -sequence.

Anomalous Case 3: α is not a cardinal of M , and letting 〈η, k〉 be
lexicographically least such that %k+1(M |η) < α, we have that pk+1(M |η) is
type Zp, and for γ least in pk+1(M |η) and F = (Ėγ)

M , α = (κ++
F )M |η.

We have already mentioned Anomalous Case 4, which we are assuming
does not apply.

6.1 Non-Anomalous Case

We begin by proving the theorem under the assumption that none of the
anomalous cases apply.

We coiterate the phalanx 〈M,H,α〉 against M , iterating away least dis-
agreements. Let T with models Pβ be the tree produced on the phalanx,
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and U with models Qβ be the tree produced on M . We have already seen
that all models of U are plus-one premice. For T the situation is more
complicated. By our Lemma above, all models in T are plus-one premice
(and all extenders are close to their models) with the possible exception of
extenders Eη with domain = M |α, which may not be close to P ∗η+1 and
may produce models Pη+1 which fail to be plus-one premice. By our other
Lemma above, these problems can only occur when α is not a cardinal of M .
For such an extender Eη, let ξ be the collapsing-level for α in M , so that
P ∗η+1 = (M |ξ). Note that if Eη is short, we have α = (κ+

Eη
)Pη , and if Eη is

long, then α = (κ++
Eη

)Pη .

Claim: Let T − pred(η + 1) = 0, E = Eη, and P ∗η+1 = (M |ξ), where
ξ < height(M). Let k = degT (η + 1) be least such that %k+1(M |ξ) < α.
Suppose E is short; then

a) Ultk(M |ξ, E) is a plus-one premouse,

b) the ultrapower map i : (M |ξ) −→ Ultk(M |ξ, E) is a k-embedding, with

%
M |ξ
k+1 = %

Ult(M |ξ,E)
k+1 = κE and i(p

M |ξ
k+1) = p

Ultk(M |ξ,E)
k+1 .

Proof: Note that ξ > α because we are not in Anomalous Case 1.
Moreover, ξ < π(α).

Subclaim: For all finite a ⊆ λE, Ea ∈M .

Proof: If E is not the last extender of Pη, or the branch ending at Pη
drops somewhere, then Ea ∈ H, because Ea is coded by a subset of α. But
then Ea = π(Ea) ∩ (M |α) ∈M .

If E = Ḟ Pη and the branch to η did not drop, then 1Tη. (Since if 0Tη,
then crit(iT0,η) ≤ κE because α = (κ+

E)M |α, so κE cannot be in the range of
iT0,η, contradicting that Pη has top extender with crit = κE.) In this case,

we consider T ∗. We have E = Ḟ Pη , and πη(E) = Ḟ P ∗η . Ea ⊆ H|α, and
πη � α = π0 � α, so

Ea = (Ḟ P ∗η )πη(a) ∩ P ∗η |α.
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But κ = πη(κ) < α < πη(α) = (κ+)P
∗
η , so Ea ∈ P ∗η by weak amenability.

Thus Ea ∈ P ∗0 = M . �

We also have that each Ea is weakly amenable to M |ξ. For if β < α, then
Ea ∩M |β = Ea ∩H|β ∈ H, since E is close to H. So Ea ∩M |β ∈M |ξ.

Subclaim: Ultk(M |ξ, E) is a plus-one premouse.

Proof: If k > 1, the ultrapower is sufficiently elementary. If k = 1
then by the discussion preceding Definition 2.19, we have defined the 1-core in
such a way that 1-ultrapowers of this core will be continuous at µ, and thereby
preserve premousehood, while still preserving all Σ1-information from M |ξ.
We omit further detail. So assume k = 0. If M |ξ is not type Z1, there is no
problem, so assume that it is. This is where we use the assumption that we
are not in Anomalous Case 1; in AC1 we would get a violation of Jensen ISC
when we take this ultrapower. Let i : M |ξ −→ Ult0(M |ξ, E) be the canon-
ical embedding. We have that M |ξ |= (cof(ν̇)is a successor cardinal), and
thus i is continuous at ν̇M |ξ, since we are ultrapowering by a short extender,
which is only discontinuous at points of cofinality κE. It follows easily that
Ult0(M |ξ, E) is a type Z1 premouse, with ν̇Ult(M |ξ,E) = i(ν̇M |ξ). �

Subclaim: %
Ult(M |ξ,E)
k+1 = %

M |ξ
k+1 = κE.

Proof: If A is a bounded subset of κE, and A is Σ
Ultk(M |ξ,E)
k+1 in the

parameter [a, f ]
M |ξ
E , then since Ea ∈ M , A ∈ M . Thus A ∈ M |ξ. So

%
Ultk(M |ξ,E)
k+1 ≥ κ. That %

Ultk(M |ξ,E)
k+1 ≤ κ follows from Ea being weakly amenable

to M |ξ. �

Subclaim: Let i : M |ξ −→ Ultk(M |ξ, E) be the canonical embedding;
then i is a (k + 1)-embedding.

Proof: We consider just whether i(pk+1(M |ξ)) = pk+1(Ultk(M |ξ, E)).
We have

pk+1(M |ξ) = 〈r0, u〉,

where u collects the solidity witnesses for pk−1(M |ξ). i is sufficiently ele-
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mentary that if b is a solidity witness for γ at level k−1, i.e., b = Th
M |ξ
k−1(γ∪s),

then i(b) is a solidity witness for i(γ) in Ultk(M |ξ, E). So if pk−1(M |ξ) is not
of type Zp, then i(pk−1(M |ξ)) = pk−1(Ultk(M |ξ, E)), with solidity witnesses
in i(u). Suppose now pk−1(M |ξ) is type Zp, with least element γ. Then let

F = (Ėγ)
M |ξ be the stretching extender, so that (κ+

F )M |ξ = %
M |ξ
k .

We have κE < %
M |ξ
k . Moreover, there can be no Σ

M|ξ
k function from κF

cofinally into (κ+
F )M |ξ, because otherwise %

M |ξ
k ≤ κF . Thus i is continuous at

(κ+
F )M |ξ. It follows that i(F ) still witnesses the type Zp property for i(γ). So

again, pk−1(Ult(M |ξ, E)) = i(pk−1(M |ξ)).

The argument that i(r) is the (k + 1)st standard parameter over i(u) for
Ultk(M |ξ, E) is similar. If b is a solidity witness for γ ∈ r0, then some initial
segment of i(b), in its natural prewellorder, is a solidity witness for i(γ) over
Ultk(M |ξ, E). If r0 is type Zp, with least element γ and stretching extender

F = Ė
M |ξ
γ , then we have %k+1(M |ξ) = κ+

F . But we are in the case that
%k+1(M |ξ) = κE, which is a limit cardinal of M , so this is impossible. �

Next we consider the case where E is long.

Claim: Let T − pred(η + 1) = 0, E = Eη, and (M∗
η+1)T = M |ξ, where

ξ < o(M). Suppose k = degT (η + 1) is least such that %k+1(M |ξ) < α.
Suppose E is long; then

a) E is the first long extender on the Pη-sequence having domain Pη|α =
M |α;

b) E has exactly one long generator, call it γ;

c) Ultk(M |ξ, E) is a k + 1-sound plus-one premouse, with

%
Ultk(M |ξ,E)
k+1 = %

M |ξ
k+1 = (κ+)M |ξ and pk+1(Ultk(M |ξ, E)) = iE(pk+1(M |ξ))∪

{γ},

d) pk+1(Ultk(M |ξ, E)) is of type Zp.

Proof: Let κ = κE. We have α = (κ++)M |ξ. We write “κ+” for

39



(κ+)M |ξ = (κ+)H = (κ+)Pη . We have that κ+ = %k+1(M |ξ), because κ+ is a
cardinal of M and so no level M |ξ can project below it for ξ > κ+. Since
%k+1(M |ξ) < α, the only candidate for this projectum is κ+.

Let ν = ν(E)− 1 = ν̇Pη .

Subclaim: For any finite a ⊆ λE ∪ {ν}, E � (κ+ ∪ a) ∈M .

Proof: The same as in the case that E is short. If E is not the top
extender of Pη or Pη comes after a drop, then E � (κ+ ∪ a) can be coded
as a subset of α that must be in H, therefore in M . If there are no drops
on the branch to Pη and E is its top extender, then this branch must occur
above H in the phalanx. Lifting Pη by πη, we have the desired fragment in
P ∗η by weak amenability, since α < (κ++

E )P
∗
η . But any subset of α in P ∗η is in

P ∗0 = M . �

Subclaim: E is the first long extender on the Pη-sequence with domain
H|α.

Proof: Let G = Ḟ Pη |γ be the first such extender. By Long Extender
Condensation, %1(Pη|γ) = α. Assume that G 6= E; then γ < o(Pη). Thus
γ < (α+)Pη .

Suppose first η ≥ 2. Then lh(E1) is a cardinal in Pη, and lh(E1) >
α, and H||lh(E1) = Pη||lh(E1). Thus G is on the sequence of H, with
lh(G) < lh(E1). It follows that G is on the sequence of M , and of M |ξ.
But %k+1(M |ξ) = κ+ = space(G), so this violates the projectum-free spaces
property of M |ξ.

If η = 1, then since G 6= E1, we again have that G is on the sequence of
M |ξ, contradiction. �

Subclaim: Ultk(M |ξ, E) is a plus-one premouse.

Proof: If k > 1, there is enough elementarity. In the case k = 1 we
must consider additional details related to Definition 2.19; briefly, the idea
is that we have defined the 1-core in such a way that 1-ultrapowers of this
core will be continuous at µ, and thereby preserve premousehood, while still
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preserving all Σ1-information from M |ξ. We omit further detail. Suppose
then that k = 0.

The proof that works when E is close to M |ξ will work here. First, notice
that we are not in Anomalous Case 2. Thus if M |ξ is type Z1, then ν̇M |ξ has
cofinality in M |ξ different from κ+, and thus iE is continuous at ν̇M |ξ, and
thus iE(ν̇M |ξ) = ν̇Ult0(M |ξ,E), and (Ėν̇)

Ult0(M |ξ,E) witnesses the type Z1-ness of
Ult0(M |ξ, E).

Second, notice that we are not in the situation that would lead to Ult0(M |ξ, E)
being merely a protomouse, by the fact that we are not in Anomalous Case 4.

We omit the remaining calculations. �

Subclaim: Let i : M |ξ −→ Ultk(M |ξ, E) be the canonical embed-
ding. Let N = Ultk(M |ξ, E); then pk+1(N) is of type Zp, with pk+1(N) =
i(pk+1(M |ξ)) ∪ {ν}.

Proof: Because we are not in Anomalous Case 3, pk+1(M |ξ) is solid.

Let t = pk+1(M |ξ), and A = Th
M |ξ
k+1(κ+ ∪ t), recalling here that κ+ =

%k+1(M |ξ).

We have that κ+ ≤ %k+1(N), and that A /∈ N , as in the proof of the
above Subclaim that E is first long extender with its domain. But A is ΣN

k+1

in the parameters i(t) and i � κ+, and i � κ+ is essentially ĖN
ν . This gives

%k+1(N) = κ+.

By solidity of t, and the fact that for all β < κ+, ThNk+1(i(β)∪ i(t)) ∈ N ,
we get that pk+1(N) = i(t) ∪ {ν}, as desired. The stretching extender wit-
nessing the type Zp property is of course (Ėν)

N . The generalized core of N
is M |ξ, so its parameter is solid. �

This completes the proof of our claim. �

Now that we know our phalanx iteration produces mice at all stages, we
can argue that the coiteration terminates, with the standard argument es-
tablishing that one branch does not drop. Actually this latter part requires
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some extra care, because we have seen that in the case of long extenders
applied to M with domain α, the standard parameter of M |ξ can undergo
some change. However, we can still establish the following, as in [3]:

Claim: The comparison of 〈M,H,α〉 vs. M terminates. Moreover, let-
ting P be the final model of T and Q be the final model of U ,

a) If P CQ, then the branch to P does not drop,

b) If QC P , then the branch to Q does not drop,

c) It is not the case that both the branch to P and the branch to Q drop.

Let P = Pγ and Q = Qδ. Applying weak Dodd-Jensen, we also get the
following two claims as in [3]:

Claim: 1 <T γ; that is, P is above H in T .

Claim: P EQ, and [1, γ]T does not drop.

At this point, our Condensation proof diverges from the Solidity proof of
[3].

Claim:

a) No extenders are applied on the H −→ P branch of T ; that is,
H = P .

b) No extenders are applied on the M −→ Q branch of U ; that is,
M = Q.

Proof: Suppose a) fails, and let E be the first extender applied to H
on the branch to P . Notice that dom(E) = (H|β) for β > α, since otherwise
E would be applied to M in the phalanx. If E is short, this implies κE ≥ α.
But %H1 ≤ α, so this is a drop in degree on H −→ P , contradiction. Now
suppose E is long. If κE ≥ α, or more generally if %H1 ≤ κE, we have a
contradiction exactly as in the short case. So we are left with the possibility
that κE is the cardinal predecessor of α and H projects exactly to α, i.e.,
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α = (κ+
E)H = %H1 . But then since E is close to H, there is an extender

F on the H-sequence with the same space as E; and this is a violation of
projectum-free spaces for H, contradicting the fact that H is a plus-one pre-
mouse. This proves a).

Now suppose b) fails, and let E be the first extender applied to M |ξ
for some ξ on the branch to Q. Then lh(E) is a cardinal of Q. Recall that
lh(E) < α is impossible, since we are iterating away disagreements and H, M
agree below α. Also lh(E) = α is impossible because we are not in Anoma-
lous Case 1. So lh(E) > α. We must also have lh(E) < height(H), since
otherwise it would not be a disagreement in need of removal. Now P CQ is
impossible, since P = H projects to α, and would therefore collapse lh(E) in
Q. So we have P = Q. But then %Q1 = %P1 ≤ α, so %Q1 ≤ κE, since otherwise
it would have been lifted above lh(E) by iE. (The case where E is long and

%
M |ξ
1 = κ+

E is ruled out by projectum-free spaces and closeness of E.) And
now we are iterating above the projectum on the branch to Q, so Q is not
sound. This contradicts soundness of H, since H = P = Q. �

Thus, in the non-anomalous case we have H E M ; that is, a) or b) of
Condensation.

6.2 Anomalous Case 1

We have that EM
α 6= ∅. Let G = EM

α .

Again, we compare 〈M,H,α〉 with M , with T and U being the two
trees, and T ∗ the lift of T under (id, π) = (π0, π1). The rules for T and
U are as before, and we adopt our previous notation. That is, Pξ = MT

ξ ,

Qξ = MU
ξ , P ∗ξ = MT ∗

ξ , πξ : Pξ −→ P ∗ξ , etc.

We have α = (λ+
G)H , so if Eξ has critical point λG, then if Eξ is short,

T − pred(ξ + 1) = 0, while if Eξ is long, then T − pred(ξ + 1) = 1. (Note
λE1 > λG, since lh(E1) > α.)

One new problem here is that the models of T may fail to satisfy the
Jensen ISC. Our computations involving closeness of models in a phalanx
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still go through as before, so the only possible failure of Jensen ISC occurs
when Eξ is short and crit(Eξ) = λG. Our rules for T then require that

Pξ+1 = Ult0(M |α,Eξ).

Here G = ḞM |α, and iEξ(G) = Ḟ Pξ+1. G is a missing whole initial seg-
ment of iEξ(G), and so Pξ+1 does not satisfy the Jensen ISC.

We deal with this problem as in [3]. Notice first that o(Pξ+1) = lh(Eξ) =
lh(iEξ(G)), so iEξ(G) is going to be part of the least disagreement between
Pξ+1 and the current model of U . (All models of U are plus-one premice.)
So T − pred(ξ + 2) = 0, and

Pξ+2 = Ult0(M, iEξ(G)).

(Since λG is a cardinal of H, it is a cardinal of M , so iEξ(G) is an extender
over M .) Moreover, λT

ξ = λT
ξ+1, so there are no models above Pξ+1 in T . It

is a dead node. We then have

Claim: All models of T except those of the form Pξ+1 = Ult0(M |α,Eξ)
with crit(Eξ) = λG, Eξ short, are plus-one premice. Moreover, except for
the iT0,ξ+1 of this form, the maps of T preserve parameters and cores.

We get that comparison terminates as before. Let P = PT
γ and Q = QU

δ

be the last models. We need more argument now to show

Claim: 1Tγ; that is, P is above H in T .

Proof: Suppose P is above M .

Subclaim:

a) P = Q;

b) neither [0, γ]T nor [0, δ]U drops;

c) iT0,γ = iU0,δ.
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Proof: The same weak Dodd-Jensen argument. �

Now let K = ET
η and L = EU

ρ be the first extenders used in [0, γ]T and
[0, δ]U respectively. Let

(P ∗, K∗) = Ult0(Pη|lh(K), F0), and (Q∗, L∗) = Ult0(Qρ|lh(L), F1),

where F0 is the short part of the branch tail extender of iTη+1,γ and F1

the short part of the branch tail extender of iUρ+1,δ. As before, K∗ = L∗, and
both are long. Since L had the Jensen ISC, letting ν∗ be the largest long
generator of L∗,

λL = least θ such that L∗ � (θ ∪ {ν∗}) is a missing whole initial segment,

and L = L∗ � (λL ∪ {ν∗}).

If K had the Jensen ISC, this would give K = L, contradiction. So as-
sume K does not have the Jensen ISC. This implies that K = iTEξ(G), where

crit(Eξ) = λG, and L is the least whole initial segment of K, that is, L = G.
(Note G = EU

0 .) So ρ = 0, and 1 ∈ [0, δ]U . We have

iT0,γ(κK) = iTη+1,γ(λK)

= iU0,δ(κG)

= iU1,δ(λG).

But λG = κEξ < λK , so crit(iU1,δ) = λG. Let F be the first extender used

in (1, δ]U , say F = EU
β , and let F ∗ be the stretch of F by the short part of

the branch tail extender of iUβ+1,δ.

Subclaim: Eξ � λEξ = F ∗ � λEξ .

Proof: λEξ = λK . Both extenders have critical point λG, and mea-
sure subsets of λG in M |lh(G). Let A ⊆ λG and A ∈M |lh(G). We can write

A = [a, f ]G = iG(f)(a),
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where f : [κG]|a| −→ P(κG), f ∈M |(κ+
G)M , and a ⊆ λG. But then

iEξ(A) = [a, f ]K = iK(f)(a).

But also

iF ∗(A) = iU1,δ(iG(f)(a))

= iU1,δ(iG(f))(iU1,δ(a))

= iU0,δ(f)(a)

= iT0,γ(f)(a)

= iTη+1,γ(iK(f))(a)

= iTη+1,γ(iK(f)(a)).

So iTη+1,γ(iEξ(A)) = iF ∗(A). Since crit(iTη+1,γ) = λK , we have proved the
subclaim. �

But then if F is short, we have that Eξ is the least missing whole initial
segment of F ∗, and so is F , so that Eξ = F , a contradiction. If F is long,
then Eξ is the least missing whole initial segment of F ∗ � λF ∗ , so Eξ ∈ Qδ,
again a contradiction. This proves the claim. �

Here again we diverge from the solidity proof of [3].

Claim:

a) No extenders are applied on the H −→ P branch of T ; that is,
H = P .

b) Exactly one extender, namely G, is applied on the M −→ Q branch
of U ; that is, Q = Ult(M,G).
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Proof: The proof of a) is exactly like in the non-anomalous case. For
b), we know that EU

0 = G, because α is necessarily the least disagreement
with the current model of T (namely, H). Now suppose toward contradic-
tion that EU

1 = E is defined. (Recall that, in our notation, E will be applied
to Q∗2, the longest possible initial segment of Q1.)

Then lh(E) is a cardinal of Q, and lh(E) > α. We must also have
lh(E) < height(H), since otherwise it would not be a disagreement in need
of removal. Now P CQ is impossible, since P = H projects to α, and would
therefore collapse lh(E) in Q. So we have P = Q. But then %Q1 = %P1 ≤ α, so
%Q1 ≤ κE, since otherwise it would have been lifted above lh(E) by iE. (The

case where E is long and %
Q∗2
1 = κ+

E is ruled out by projectum-free spaces and
closeness of E.) And now we are iterating above the projectum on the branch
to Q, so Q is not sound. This contradicts soundness of H, since H = P = Q.
�

Thus, in Anomalous Case 1 we have HEUltn(M,Eα) for largest possible
n; that is, c) of Condensation.

6.3 Anomalous Case 2

In this case we have that α is a pseudo-index of some Ḡ; that is, there is
a least ξ > α such that %1(M |ξ) < α, and this M |ξ is type Z1, with last

extender G and stretching extender F = Ė
M |ξ
ν̇ ; moreover,

M |ξ |= α = κ++
F .

Let
Ḡ =

⋃
η<ν̇M|ξ

i−1
F “G � η

be the extender pseudo-indexed at α. So ν(Ḡ) = (κ+
F )M = (κ+

F )H , and
(ν(Ḡ)+)Ult(M,G) = α.

The proof is similar to the non-anomalous case, but instead of comparing
〈M,H,α〉 with M , we compare 〈M,H,α〉 with
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Φ = 〈M,Ult(M, Ḡ), κ+
F 〉.

We let T be the tree on

Ψ = 〈M,H,α〉

that is produced, and U the tree on Φ. The rules for forming T are
similar to those in Anomalous Case 1. Again, let Pη = MT

η , with P0 = M
and P1 = H. Let Eη = ET

η . Let λT
η = λET

η
for η ≥ 1, and λT

0 = α. We have

T − pred(η + 1) = least β such that dom(Eη) ⊆ Pβ|λβ.

Eη then gets applied to the longest initial segment of Pβ possible, but
with the following exception. Suppose that crit(Eη) = κF , and Eη is long.
As in the proof of the non-anomalous case, we can show that Eη has exactly
one long generator. We shall set

Pη+1 = (Ult0(M |α,Eη), K)

where K is the extender of length lh(Eη) determined by iEη ◦ iḠ, in this
case.

Claim: Let crit(Eη) = κF , and suppose that Eη is long; then

1) Eη has exactly one long generator,

2) if K is the extender of length lh(Eη) over M generated by iEη ◦iḠ, then

a) (Ult0(M |α,Eη), K) is a type Z1 premouse, with stretching extender
Eη � ν̇(Pη |lh(Eη), and

b) (Ult0(M |α,Eη), K) adds Ḡ.

The proof of this claim is similar to the proof of the corresponding claim
in the non-anomalous case, so we omit it.

We shall show that if Pη+1 = (Ult0(M |α,Eη), K) as above, then
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Eη+1 = K,

and then of course

Pη+2 = Ult0(M,K).

Moreover, since λK = λEη , there are no models in T above Pη+1 – it is a
dead node. To show this, we have to look at U .

We set Qη = MU
η , with Q0 = M and Q1 = Ult(M, Ḡ). We let λU

η = λEη ,
where Fη = EU

η , for η ≥ 1. We set λU
0 = κ+

F by fiat. The rules for U are

U − pred(η + 1) = least β such that dom(Fη) ⊆ Qβ|λU
β .

There are no exceptions, and Fη always gets applied to the longest possible
initial segment of Qβ, for β = U − pred(η + 1). Note λU

1 > α. So if
crit(Fη) = κF , and Fη is short, then U − pred(η + 1) = 0, and

Qη+1 = Ult0(M,Fη),

while if crit(Fη) = κF and Fη is long, then U − pred(η + 1) = 1, and

Qη+1 = Ult0(Q1, Fη).

Claim: Let η ≥ 1; then no Qη|γ adds Ḡ.

Proof: Ḡ /∈ Qη for η ≥ 1, because Qη |= “α is a cardinal”, when η ≥ 1.
It follows that if Qη|γ adds Ḡ, and η ≥ 1, then Qη|γ = Qη, and the branch
of U ending at Qη does not drop. So assume this. Let

F ∗ = (Ėν̇)
Qη

be the stretching extender involved in adding Ḡ. Thus κF ∗ = κF . Now
let

j =

{
iU0,η if 0U η

iU1,η ◦ iḠ if 1U η or 1 = η.

Thus j : M −→ Qη. Since κF ∗ ∈ ran(j), and j(crit(j)) > α, we
get κF < crit(j). But then crit(j) > α, while the rules of U guarantee
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crit(j) ≤ κF , contradiction. �

This last claim implies that if Pη+1 = (Ult0(M |α,Eη), K) as in the pre-
vious claim, then Eη+1 = K, because Pη+1 does add Ḡ, so it is not lined up
with the current model of U .

We choose branches for T and U at limit stages by lifting them to trees
on M , and using Σ. For T , let T ∗ be the lift of T under (π0, π1), where
π0 = id and π1 : H −→ M is the uncollapse. π0 � λT

0 = π1 � λT
0 , which is

what we need. Let P ∗η = MT ∗
η , and

πη : Pη −→ P ∗η

be the natural map, but with the following exception related to our special
case in the definition of T .

Namely, suppose crit(Eη) = κF , and Eη is long. By a previous claim,
Eη has a unique long generator ν. We have set Pη+1 = (Ult0(M |α,Eη), K),
where K is the extender of iEη ◦ iḠ over Pη+1. By that claim, Pη+1 is type
Z1, and ν = ν̇Pη+1 . Let E = Eη, and E∗ = πη(E). Note that dom(E∗) =
πη(H|α) = π1(H|α) = M |π1(α), so E∗ is an extender over all of M . We set

P ∗η+1 = Ult0(M,E∗)

and more importantly

G∗ = iE∗(G).

Since κ++
G < κF , κG∗ = κG, and G∗ is total on M . We shall leave πη+1

undefined. All we need is

Subclaim: There is a γ such that K = G∗ � (πη“λE ∪ {γ}).

Remark: Note λE = λK . A better way of saying it might be: K �
(λK ∪ {ν}) = G∗ � (πη“λE ∪ {γ}).

The subclaim is enough to go on and get πη+2 : Pη+2 −→ P ∗η+2. We don’t
need πη+1 as a map on all of Pη+1, because we are never going to take an
ultrapower of Pη+1 in forming T .
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Proof of Subclaim: Let

i
M |ξ
E : M |ξ −→ Ult0(M |ξ, E) = R

be the canonical embedding. i
M |ξ
E is discontinuous at κ+

F , so R is not

a plus-one premouse. (E is not close to M |ξ.) Let F1 = i
M |ξ
E (F ), and

ν∗ = iF1(ν).

We claim that

K � (λK ∪ {ν}) = i
M |ξ
E (G) � (λK ∪ {ν∗}).

Both extenders have space (κ+
G)M . Let b ∈ [λK ]<ω and A ∈ M |(κ++

G )M ;

we need to see that (b, ν) ∈ iK(A) iff (b, ν∗) ∈ iG1(A), where G1 = i
M |ξ
E (G).

But note that iF (Ḡ) ⊆ G, so

(M |ξ,G) |= ∀u ∈ [κE]<ω ∀ξ < κ+
E((u, ξ) ∈ iḠ(A)⇐⇒ (u, iF (ξ)) ∈ iG(A)).

The formula on the right is of the form ψ(κE, iḠ(A), F, A). That is, those

are the parameters. Applying i
M |ξ
E , we get

Ult0((M |ξ,G), E) |= ∀u ∈ [λE]<ω ∀ξ < λ+
E((u, ξ) ∈ iE(iḠ(A)⇐⇒ (u, iF1(ξ)) ∈ iE(iG(A))).

But iE(iḠ(A)) = iK(A), iE(iG(A)) = iG1(iE(A)) = iG1(A), and b ∈ [λE]<ω

and ν < λ+
E. So

(b, ν) ∈ iK(A)⇐⇒ (b, ν∗) ∈ iG1(A),

as desired. Thus K � (λK ∪ {ν}) = iE(G) � (λK ∪ {ν∗}).

But now let σ : Ult0((M |ξ,G), E) −→ iE∗((M |ξ,G)) be the natural map,
given by the shift lemma:

σ([a ∪ {ν}, f ]
M |ξ
E ) = [πη(a) ∪ {γ}, f ]ME∗

for a ⊆ λE. Then σ � λE = πη � λE, and we define σ(ν∗) = γ. Then
iE(G) is a subextender of iE∗(G) under σ, finishing the proof of the subclaim.
�
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We can now define

P ∗η+2 = Ult0(M,G∗).

Recalling that Pη+2 = Ult0(M,K), we set

πη+2([a ∪ {ν}, f ]MK ) = [a ∪ {γ}, f ]MG∗

where γ is as in the subclaim. We then have πη+2 � λK = πη � λK , as
desired.

We have shown

Claim: 〈M,H,α〉 is iterable by the rules described; moreover T is lifted
to a tree T ∗ according to Σ.

We turn now to the iterability of 〈M,Ult0(M, Ḡ), κ+
F 〉.

We lift U to a tree U ∗ on M as follows. The first two models of U ∗ are

Q∗0 = M and Q∗1 = Ult0(M,G).

(Note κ++
G < κF is a cardinal of M .) We define maps

ση : Qη −→ Q∗η

with

σ0 = id

and

σ1([a, f ]MḠ ) = [iF (a), f ]MG

for a ⊆ ν(Ḡ) = κ+
F finite. Since Ḡ is a subextender of G under iF , this

makes sense. Suppose now we are given ση : Qη −→ Q∗η, and suppose by
induction that we have

(†) for 0 < γ ≤ η, Q∗γ agrees with Q∗η below λU ∗

γ , and σγ � λ
U
γ = ση � λ

U
γ .
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Note that we don’t have this for γ = 0, because σ0 and σ1 only agree up
to κF , while λU

0 = κ+
F . If U − pred(η + 1) 6= 0, or crit(Fη) 6= κF , then we

get Q∗η+1 and F ∗η and ση+1 by the Shift Lemma, in the usual way:

F ∗η = ση(Fη),

Q∗η+1 = Ultk(P, F
∗
η ),

where γ = U − pred(η + 1), P = σγ((M
∗
η+1)U ), and k = degU (η + 1),

and

ση+1([a, f ]
(M∗η+1)U

Fη
) = [ση(a), σγ(f)]PF ∗η .

One can easily check that (†) remains true.

Remark: In fact, for 0 < γ < η, Q∗η agrees with Q∗γ below lh(F ∗γ ), and
σγ � lh(Fγ) = ση � lh(Fη). But we only use agreement up to λFγ , because
our trees are (generally) formed with short extender rules, as they must be
because our background extenders in a plus-one construction are short.

We tend to record the agreement between models and lifting maps in an
iteration using the λFγ rather than the lh(Fγ). This reminds us that trying
to use the additional agreement we might have to apply an extender E with
crit(E) = λFγ to Qγ (say) could lead to problems with iterability.

Now suppose U − pred(η + 1) = 0, crit(Fη) = κF , and Fη is short. So

Qη+1 = Ult0(M,Fη) .

We cannot set Q∗η+1 = Ult0(Q∗0, ση(Fη)) now, because although the latter
ultrapower makes sense (by the agreement of Q∗0 with Q∗η up to lh(G)), ση
and σ0 do not agree far enough that we could define ση+1 properly. Instead,
let

j : Q∗η −→ Ult0(Q∗η, ση(Fη))

be the canonical embedding. Note that F is on the Q∗1-sequence (though
not on the Q1-sequence), and hence F is on the Q∗η-sequence. We have

crit(j) = ση(κF ) = σ1(κF ) = λF .

Set
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Q∗η+1 = Ult0(Q∗0, j(F )) ,

and

ση+1([a, f ]Q0

Fη
) = [ση(a), f ]

Q∗0
j(F ) .

(Recall that Q∗0 = Q0 = M .) Since κF = κj(F ), Q
∗
η+1 makes sense.

Moreover, lh(F ) < (λ+
F )Q

∗
η , so lh(j(F )) < j((λ+

F )Q
+
η ), so j(F ) is on the Q∗η-

sequence by coherence of ση(Fη) with that sequence. Also, κj(F ) = κF < λG.
Thus Q∗η+1 is a legitimate next model for U ∗.

We must see that ση+1 is well-defined and elementary. Let E = Fη. E
is short, and κE = κF = κj(F ). Let a ⊆ λE be finite and X ⊆ [κE]|a| with
X ∈M . It is enough to show that

(a,X) ∈ E iff (ση(a), X) ∈ j(F ) .

But we have

(a,X) ∈ E iff a ∈ iE(X)

iff ση(a) ∈ ση(iE(X))

iff ση(a) ∈ ση(iE)(ση(X))

iff ση(a) ∈ j(iF (X))

iff ση(a) ∈ j(iF )(X)

iff ση(a) ∈ ij(F )(X)

iff (ση(a), X) ∈ j(F ).

For the fourth line, notice that ση(X) = σ1(X) = iF (X), because X ⊆
[κF ]|a|. For the fifth line, note j(X) = X.

Clearly ση+1 � λFη = ση � λFη , since ση+1([{τ}, id]MFη) = [{ση(τ)}, id]Mj(F ).

This completes the successor step in the formation of U ∗. At limit stages,
we use Σ to choose a branch of U ∗, and then choose the same branch for U .
We have shown

Claim: 〈M,Ult(M, Ḡ), κ+
F 〉 is iterable via the strategy described above.
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Claim: The comparison of 〈M,H,α〉 with 〈M,Ult(M, Ḡ), κ+
F 〉 termi-

nates.

Proof: As before. �

Now let P = Pγ and Q = Qδ be the last models on the two sides.

Claim: It is not the case that both P and Q are above M in their re-
spective trees.

Proof: Suppose they were, i.e., suppose 0T γ and 0U δ.

Subclaim: P = Q, neither [0, γ]T nor [0, δ]U drops, and iT0,γ = iU0,δ.

Proof: We use T ∗, U ∗, and the weak Dodd-Jensen property of Σ. �

Now let K and L be the first extenders used in [0, γ]T and [0, δ]U , and
let K∗ and L∗ be their stretches by the short parts of their respective branch
tails. We may assume both K∗ and L∗ are long. Both K and L had the
Jensen ISC, so this gives K = L. That is a contradiction.

Remark: There is the case that K is the extender of iEη ◦ iḠ. But then
K adds Ḡ, and we showed that no Fτ adds Ḡ, so K 6= L. �

Claim: It is not the case that P is above M and Q is above Ult(M, Ḡ).

Proof: Suppose they were, i.e., 0T γ and 1U δ.

Subclaim: P = Q, neither [0, γ]T nor [1, δ]U drops, and iT0,γ = iU1,δ ◦ iḠ.

Proof: Again, we use T ∗, U ∗, and the weak Dodd-Jensen property of
Σ. �

Subclaim: crit(iU1,δ) = λḠ.

Proof: If not, then

iT0,γ(κG) = iU0,δ(κG) = iU1,δ(iḠ(κG)) = iḠ(κG) = λḠ .
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But it is easy to see that λT
η > α for all η ≥ 1. So iT0,γ(κG) > α > λḠ. �

Now let K = Eη be the first extender used in [0, γ]T , and let

(P ∗, K∗) = Ult0((Pη|lh(K), K),W0) and (Q∗, G∗) = Ult0((M |κ+
F , Ḡ),W1) ,

where W0 is the short part of the extender of iTη+1,γ, and W1 is the short
part of the extender of iU1,δ. As in comparison, we have that P ∗ and Q∗ are

initial segments of Pγ = Qδ, below iT0,γ(κ
+
G)Pγ . Moreover, K∗ and G∗ are

initial segments of the extender of iT0,γ = iU1,δ ◦ iḠ.

Note K∗ /∈ Pγ, because K /∈ Pγ. Every proper initial segment of G∗ is
in Q∗, so K∗ is not an initial segment of G∗. K∗ 6= G∗, because (P ∗, K∗)
is a plus-one premouse, and G∗ has no largest generator. It follows that
G∗ = K∗ � ν∗, where ν∗ is the largest generator of K∗. Thus (P ∗, K∗) is type
Z1, with stretching extender

F = ĖP ∗

ν∗ = Ė
Pγ
ν∗ = ĖQδ

ν∗ ,

and satisfying

K∗ � ν∗ = G∗ .

Now let τ + 1 be least in (1, δ]U , so that crit(Fτ ) = λḠ by previous
subclaim, and Fτ is long by our rules for U . Let

H = least long initial segment of Fτ on the Qτ -sequence.

(We shall show shortly that H = Fτ .) Let

(R∗, H∗) = Ult0((Qτ |lh(H), H),W2) ,

where W2 is the short part of the branch-tail extender of iUτ+1,δ. Let also

L∗ = extender of iH∗ ◦ iḠ � (M |α) .

Subclaim:

1) K∗ = L∗,
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2) E
Pγ
ν∗ = H∗ � ν∗ = W1, and

3) (P ∗, K∗) adds Ḡ.

Proof: The extender of iH∗ ◦ iḠ is just the extender of iU1,δ ◦ iḠ, restricted
to the first of its generators that is ≥ sup i1,δ“(ν(Ḡ)), plus one. But

sup i1,δ“(ν(Ḡ) = iW1(ν(Ḡ)) = ν∗ .

So

L∗ = trivial completion of EiU1,δ◦iḠ � (ν∗ + 1)

= trivial completion of K∗ � (ν∗ + 1)

= K∗.

The branch tail W2 stretches H � λH into W1, by calculations we have
done before. Moreover, sup i1,δ“(ν(Ḡ)) is where the superstrong part of H∗

is indexed in Ult0(Ult0(M, Ḡ), H∗). This gives us 2).
Finally, H∗ � ν∗ stretches Ḡ into G∗, by the way we have defined G∗.

This gives 3). �

Recall that K = ET
η , where T -pred (η + 1) = 0. We also have λK > α.

Since (P ∗, K∗) adds Ḡ, we must then have our special case

K = extender of iEσ ◦ iḠ � (M |α) ,

where crit(Eσ) = λḠ and Eσ has exactly one long generator.

Subclaim: Eσ = H.

Proof: Let

E∗σ = last extender of Ult0(Pη,W0)

= extender with exactly one long generator determined by iTη+1,γ ◦ iEσ � (M |α) .

It is not hard to show that E∗σ = H∗. For both have critical point λḠ,
and measure subsets of ν(Ḡ) = (λ+

Ḡ
)M that belong to M |α, or equivalently,

belong to Ult(M, Ḡ). Let
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X = iḠ(f)(a) ∈M |α .

We then have that

E∗σ � ν
∗ = E

Pγ
ν∗ = H∗ � ν∗ .

The second equality we have already shown, and the first comes from
Eσ � (sup iEσ“ν(Ḡ)) being the stretching extender in the type Z1 structure
Pη, and the fact that iW0 preserves this. So

iE∗σ � ν(Ḡ) = iH∗ � ν(Ḡ) .

But then

iE∗σ(X) ∩ (ν∗ + 1) = iE∗σ(iḠ(f)(a)) ∩ (ν∗ + 1)

= iE∗σ(iḠ(f))(iE∗σ(a)) ∩ (ν∗ + 1)

= iTσ+1,γ(iEσ(iḠ(f)))(iE∗σ(a)) ∩ (ν∗ + 1)

= iT0,γ(f)(iE∗σ(a)) ∩ (ν∗ + 1)

= iU1,δ ◦ iḠ(f)(iH∗(a)) ∩ (ν∗ + 1)

= iH∗(iḠ(f))(iH∗(a)) ∩ (ν∗ + 1)

= iH∗(iḠ(f)(a)) ∩ (ν∗ + 1)

= iH∗(X) ∩ (ν∗ + 1) .

The third equality from the bottom comes from iḠ(f) being essentially a
subset of ν(Ḡ), and for z ⊆ ν(Ḡ) in M |α,

iU1,δ(z) = iτ+1,δ(i1,τ+1(z))

so that

iU1,δ(z) ∩ (ν∗ + 1) = iτ+1,δ ◦ iH(z) ∩ (ν∗ + 1)

= iH∗(z) ∩ (ν∗ + 1) .

Thus E∗σ = H∗. The Jensen ISC then leads to Eσ = H. This proves the
subclaim. �
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This subclaim contradicts the fact that we were hitting disagreements.
This proves the claim. �

By the previous two claims, P = Pγ is above H in T .

Now we diverge from solidity proof in [3].

Claim: P EQ.

Proof: If QCP then the branch to Q does not drop. If Q is above M in
U then Dodd-Jensen gives us a contradiction. If Q is above Ult(M, Ḡ) then
we get the same contradiction by first embedding M into Ult(M, Ḡ). �

Claim:

a) No extenders are applied on the H −→ P branch of T ; that is,
H = P .

b) No extenders are applied in U , so it has final model Q = Ult(M, Ḡ).

Proof: a) is proved exactly as in the non-anomalous case. Now sup-
pose b) fails, and let EU

1 = E be the extender chosen from Ult(M, Ḡ) as the
least disagreement with H. Then lh(E) is a cardinal of Q, and of course
lh(E) > α. We must also have lh(E) < height(H), since otherwise it would
not be a disagreement in need of removal. Now P C Q is impossible, since
P = H projects to α, and would therefore collapse lh(E) in Q. So we have
P = Q. But then %Q1 = %P1 ≤ α, so %Q1 ≤ κE, since otherwise it would have

been lifted above lh(E) by iE. (The case where E is long and %
Ult(M,Ḡ)
1 = κ+

E

is ruled out by projectum-free spaces and closeness of E.) And now we are
iterating above the projectum on the branch to Q, so Q is not sound. This
contradicts soundness of H, since H = P = Q. �

Thus, in the non-anomalous case we have H E Ultn(M, Ḡ) for largest
possible n; that is, d) of Condensation.
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6.4 Anomalous Case 3

In this case we have 〈ξ, k〉 least such that α ≤ ξ and %k(M |ξ) < α, with
α < ξ. Moreover, %k(M |ξ) is of type Zp.

Let

γ0 = least element of pn+1(M |ξ) ,
t0 = pn+1(M |ξ)− (γ0 + 1) ,

F = ĖM
γ0
,

N = H
M |ξ
n+1(iF“(κ+

F ∪ t0) .

So F is the stretching extender, and N is the generalized core of M |ξ.
We have that pn+1(N) = σ−1(t0), where σ : N −→ (M |ξ) is the uncollapse,
and that α = (κ++

F )M |ξ = (κ++
F )H = (κ++

F )N , moreover M |α = N |α = H|α.
Our goal is to reach a contradiction.

In this case we compare 〈M,H,α〉 with 〈M,N, κ+
F 〉. Let T be the tree

on 〈M,H,α〉 and U the tree on 〈M,N, κ+
F 〉 produced. The rules for forming

T are similar to those in the other anomalous cases. Let Pη = MT
η , with

P0 = M and P1 = H. Let Eη = ET
η , and λT

0 = α. Again

T -pred(η + 1) = least β s.t. dom(Eη) ⊆ Pβ|λT
β .

Again, Eη then gets applied to the longest initial segment of Pβ possible,
except when crit(Eη) = κF , and Eη is long. Here β = 0, and Pβ = M .
Again, we can show Eη has exactly one long generator in this case. We then
set

Pη+1 = Ultn(N,Eη) .

Claim: Let crit(Eη) = κF , and suppose Eη is long; then

1) Eη has exactly one long generator,

2) Ultn(N,Eη) is a plus-one premouse of type Zp, with first standard
parameter iEη(p1(N)) ∪ {ν}, where ν = ν̇Pη |lh(Eη), and stretching extender
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Eη � ν,

3) N is the generalized core of Ultn(N,Eη).

Remark: The solidity of pn+1(N) is used in proving 2).

We omit the proof of the claim.

In contrast to our first two anomalous cases, we cannot predict what Pη+2

will be. Moreover, Pη+1 is not dead, in that T may have models above Pη+1.
We choose branches for T by lifting it to T ∗ on M , with models P ∗β =

MT ∗

β . We have copy maps

πβ : Pβ −→ P ∗β

with π0 = id, and π1 : H −→M the uncollapse. We have πβ � λT
β = πγ �

λT
β for all γ ≥ β. Again, we must take some care in our special case.

So suppose crit(Eη) = κF , and Eη has ν = ν̇Pη |lh(E) as its unique long
generator. Let E = Eη, and E∗ = πη(E). We have that λT

1 > α, and
πη � λT

1 = π1 � λT
1 , so dom(E∗) = M |π1(α), so E∗ is an extender over all of

M . Let

iME∗ : M −→ Ultn(M,E∗)

be the canonical embedding, and set

P ∗η+1 = iME∗(M |ξ) .

We have the diagram

iME∗(N)

Ultn(N,E) iME∗(M |ξ) Ultn(M,E∗)

N M |ξ M

iM
E∗ (σ)

πη+1

σ

where
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πη+1([a, f ]NE ) = iME∗(σ)([πη(a), f ]ME∗) ,

for a ∈ [λE ∪ {ν}]<ω and f : [κ+
E]|a| −→ N with f ∈ N . Since crit(σ) =

κE = κE∗ , crit(i
M
E∗(σ)) = λE∗ , and thus πη+1 � λE = πη � λE. So we have the

agreement of copy maps required to continue.
This completes our proof sketch for

Claim: 〈M,H,α〉 is iterable by the rules described; moreover, T is lifted
to a tree T ∗ according to Σ.

We now turn to U . Set

Qη = MU
η ,

with Q0 = M and Q1 = N . Let

λU
0 = κ+

F and λU
η = λEU

η

for η ≥ 1. The rules for U are

U -pred(η + 1) = least β s.t. dom(EU
η ) ⊆ Qβ � λ

U
β .

So short extenders with critical point κF get applied to M , while long
extenders with critical point κF get applied to N . (The latter because
λU

1 > α = (κ++
F )Qη , for all η ≥ 1.)

We lift U to a tree U ∗ on M as follows. The first two models of U ∗ are

Q∗0 = M and Q∗1 = M |ξ .

We define maps ση : Qη −→ Q∗η with

σ0 = id and σ1 = σ ,

where σ : N −→ M |ξ is the uncoring map. Suppose now by induction
that we have ση : Qη −→ Q∗η, and

(†) for 0 < γ ≤ η, Q∗γ agrees with Q∗η below λU ∗

γ , and σγ � λ
U
γ = ση � λ

U
γ .
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Again, we do not have this for γ = 0, because σ0 and σ1 agree only to κF ,
and λU

0 = κ+
F . We then define Q∗η+1 and ση+1 so that (†) remains true. This

is done using the shift lemma, except when, for Fη = EU
η , crit(Fη) = κF and

Fη is short.
So assume that. We have U -pred(η + 1) = 0, and Qη+1 = Ultn(M,Fη).

Let

j : Q∗η −→ Ultn(Q∗η, ση(Fη))

be the canonical embedding. Note that the stretching extender F for
pn+1(M |ξ) is on the sequence of Q∗1 = M |ξ, so that F is on the Q∗η-sequence

(because α < λU
1 , so that σ1(α) = (λ++

F )M |ξ < λU ∗
1 ). We have

crit(j) = ση(κF ) = σ1(κF ) = λF .

Set

Q∗η+1 = Ult0(M, j(F )) and ση+1([a, f ]MFη) = [ση(a), f ]Mj(F ) .

Since κF = κj(F ), Q
∗
η+1 makes sense. We omit further detail.

This leads to

Claim: 〈M,N, κ+
F 〉 is iterable via the strategy just described.

Claim: The comparison of 〈M,H,α〉 with 〈M,N, κ+
F 〉 terminates.

Now let P = Pγ and Q = Qδ be the last models on the two sides.

Claim: It is not the case that both P and Q are above M in their re-
spective trees.

Proof: Suppose they were.

Subclaim: It cannot be that both [0, γ]T and [0, δ]U drop.

This takes a little more argument than usual, because the branch to P
might have dropped to N . But note
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Subclaim: There is no η such that 0U η and N is a generalized core of
some Qη|γ.

Proof: N collapses α definably to κ+
F , so we would have [0, η] does not

drop, and Qη � γ = Qη. Let F ∗ be the stretching extender of Qη, so that
κF = κ∗F and F ∗ ∈ ran(iU0,η). Then crit(iU0,η) ≤ κF , and iU0,η(crit(i

U
0,η)) > α,

so κF ∗ /∈ ran(iU0,δ), contradiction. �

Proof of first subclaim: Suppose not. Let R be the last model to
which we drop in model or degree along [0, γ]T , so that we have

R = (M∗
τ+1)T

with

j = iTτ+1,γ ◦ (i∗τ+1)T : R −→ P

being a k-embedding with crit(j) ≥ %Rk+1, for some k such that R is
(k + 1)-sound. Similarly, let S be the last model to which we drop in model
or degree along [0, δ]U , so that

S = (M∗
θ+1)U

with

` = iUθ+1,δ ◦ (i∗θ+1)U : S −→ Q

being an m-embedding, with crit(`) ≥ %Sm+1, and S being (m+ 1)-sound.

We have that Q is not (m + 1)-sound, so P E Q. By the subclaim, N
is not a generalized core of Q, so N 6= R, so P is not (k + 1)-sound. Thus
P = Q, and m = k. Moreover,

R = S = Ck+1(P ) = Ck+1(Q) ,

and

j = ` = uncoring embedding .

We want to show that ET
τ = EU

θ . Let E = ET
τ and G = EU

θ . We assume
that both E and G are long, and leave the other cases to the reader. Let
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ν = ν(E)− 1 and µ = ν(G)− 1

be the largest generators. Let

κ = crit(j) = κE = κG and λ = j(κ) .

So

iTτ+1,γ(λE) = iUθ+1,δ(λG) = λ .

Let W0 = EiTτ+1,γ
� λ and W1 = EiUθ+1,δ

� λ be the two short parts of the

branch tails. Let

(P ||η0, E
∗) = Ult0((Pτ ||lh(E), E),W0)

and

(P ||η1, G
∗) = Ult0((Qθ||lh(G), G),W1) .

As in the comparison arguments, E∗ and G∗ are initial segments of the
extender of j, so by our initial segment conditions, η0 = η1 and E∗ = G∗. But
then E = G, because these are the first whole initial segments of E∗ = G∗

that do not belong to P = Q. �

Subclaim: Neither [0, γ]T nor [0, δ]U drops; moreover, P = Q and
iT0,γ = iU0,δ.

Proof: If [0, δ]U drops, then Q is unsound, so P E Q and [0, γ]T does
not drop. But then σδ ◦ iT0,γ maps M to Q∗δ , a dropping iterate of M via Σ,
contrary to weak Dodd-Jensen.

If [0, δ]T drops, then QEP . This is clear if P is unsound. The alternative
is that we have T -pred(η + 1) = 0 with η + 1 ∈ [0, γ]T and Eη long and
crit(Eη) = κF , so that Pη+1 = Ult0(N,Eη) is sound, and there is no further
dropping on [0, γ]T . But then N is a generalized core of P , so P 5 Q by
previous subclaim.

So if [0, γ]T drops, then [0, δ]U does not, and QE P . But then πγ ◦ iU0,δ :
M −→ P ∗γ contradicts weak Dodd-Jensen.

65



The proof that P = Q and iT0,γ = iU0,δ is similar. �

We can now prove the claim in just the same way that we finished the
analogous proof in AC2. �

Claim: It is not the case that P is above M and Q is above N .

Proof: Suppose otherwise, i.e., 0T γ and 1U δ.

Subclaim: [1, δ]U does not drop, in model or degree.

Proof: Otherwise PEQ and [0, γ]T does not drop. (Note here that in the
situation where η+ 1 ∈ [0, γ]T , crit(Eη) = κF , and thus Pη+1 = Ult0(N,Eη),
and this is the only drop on [0, γ]T , then P 5 Q. For then N ∈ Qβ, for some
β ≥ 1, because N -to-Q dropped.) But then πδ ◦ iT0,γ : M −→ Q∗δ contradicts
the weak Dodd-Jensen property of Σ. �

Subclaim: P = Q.

Proof: If P C Q, then [0, γ]T does not drop. This is because P would
be unsound, unless there were exactly one “special drop” to N on [0, γ]T ,
and P = Ult0(N,Eγ−1). But then N ∈ Q, whereas N definably collapses α.
Thus QE P , by weak Dodd-Jensen.

IfQCP , then ThN1 (κ+
F∪p1(N)) belongs to P . This is clear if crit(iU1,δ) > α,

and it holds if crit(iU1,δ) ≤ α, for then the first extender used in [1, δ]U is long,
with critical point κF , and we can use its superstrong part as usual to define
ThN1 (κ+

F ∪ p1(N)) over the ultrapower. But ThN1 (κ+
F ∪ p1(N)) /∈ P , because

it collapses α. �

Now let η + 1 ∈ [0, γ]T be such that T -pred(η + 1) = 0.

Subclaim:

(a) %1(Q) = κ+
F ,

(b) crit(Eη) = κF .
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Proof: We already argued (a) in the proof of the previous subclaim. For
(b), we otherwise have crit(Eη) < κF . But then %1(P ) = %1(Q) = α is in the
interval (crit(Eη), i

T
Eη

(crit(Eη))), which is impossible.

Subclaim: [η + 1, γ]T does not drop.

Proof: Otherwise N ∈ Pβ for some β ≥ 1. �

Since %1(P ) = κ+
F and crit(Eη) ≤ κF , it must be that crit(Eη) = κF and

Eη is long; moreover, Eη has exactly one long generator because P has no
long extenders with space κ+

F on its sequence. Thus P is of type Zp, and the
first core of P is

C1(P ) = Pη+1

and Pη+1 is of type Zp. The generalized core of P is N , because the
branch N -to-Q did not drop, so that N is the generalized core of Q. So

Pη+1 = Ult0(N,Eη) ,

and for τ + 1 least in (1, δ]U ,

Qτ+1 = Ult0(N,Fτ ) .

Again, Fτ has exactly one long generator. We have

iTη+1,γ ◦ iEη = iUτ+1,δ ◦ iFτ
because both are the uncoring map from N into P = Q. We then proceed

as in the argument that comparison terminates to show that Eη = Fτ . This
is a contradiction. �

By the previous two claims, P is above H in T . If Q is above M in
U , then repeating the argument given at the end of the non-anomalous
case yields that P = H and Q = M , since there are no extenders indexed
at α in our present case; so we have HEM , that is, a) or b) of Condensation.

If Q is above N in U , we can similarly argue that no extenders were
applied on the branch N -to-Q, so Q = N . This means H E N . But H is a
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plus-one premouse, and N violates projectum-free spaces, so H 6= N . This
means H CN . But N agrees with M |ξ on all proper initial segments, so we
have that b) of Condensation holds.

This proves the Condensation Lemma in all cases. �

7 Preliminaries for the �Λ Construction

For this and all future sections, we will work inside an iterable premouse W
such that W |= ZFC.

7.1 Subcompactness

Given a cardinal κ, we say that 〈Cα;κ < α < κ+ ∧ lim(α)〉 is a �κ-sequence
if and only if

a) Each Cα is a closed unbounded subset of α;

b) Cβ = Cα ∩ β whenever β ∈ lim(Cα);

c) otp(Cα) ≤ κ.

�κ is the statement “There is a �κ-sequence.”

A cardinal κ is subcompact if and only if given any A ⊆ κ+, there are
µ < κ, Ā ⊆ µ+ and an elementary embedding

σ : 〈Hµ+ , Ā〉 −→ 〈Hκ+ , A〉

with critical point equal to µ.

Lemma 7.1. (Jensen, refining Solovay) If κ is subcompact, then �κ
fails.

Proof: Suppose C = 〈Cα;κ < α < κ+ ∧ lim(α)〉 is a �κ-sequence.
We can think of C as a subset of κ+. Now by subcompactness, we have an
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embedding

σ : 〈Hµ+ , C̄ 〉 −→ 〈Hκ+ ,C 〉

witnessing subcompactness of κ relative to C . Note C̄ is a �µ-sequence.
Now let ν = sup(σ“(µ+)). Cν is a closed unbounded subset of ν, which has
cofinality µ+. However, we will show that all initial segments of Cν must
have ordertype < µ, which is a contradiction.

Notice that there are cofinally many γ̄ < µ+ such that cof(γ̄) = ω and
σ is continuous at γ̄ and σ(γ̄) ∈ Cν . This follows from the standard clo-
sure argument and the fact that σ is continuous at limits of cofinality < µ.
Now for any such γ̄, we have that γ = σ(γ̄) has a club Cγ = Cν ∩ γ. And
cof(γ) = cof(γ̄) = ω, so otp(C̄γ̄) < µ, and by elementarity of σ (which has
critical point µ) we also have otp(Cγ) < µ. �

A cardinal κ is 1-subcompact if and only if given any A ⊆ κ++, there are
µ < κ, Ā ⊆ µ++ and an elementary embedding

σ : 〈Hµ++ , Ā〉 −→ 〈Hκ++ , A〉

with critical point equal to µ.

Lemma 7.2. If κ is 1-subcompact, then �κ+ fails.

Proof: We give a slightly different proof than above. (The current
proof style can be adapted to the above subcompact case as well.)

Suppose C = 〈Cα;κ+ < α < κ++ ∧ lim(α)〉 is a �κ+-sequence. We can
think of C as a subset of κ++. Now by 1-subcompactness, we have an em-
bedding

σ : 〈Hµ++ , C̄ 〉 −→ 〈Hκ++ ,C 〉

witnessing 1-subcompactness for C . Note C̄ is a �µ+-sequence. Now let
ν = sup(σ“(µ++)). Cν is a closed unbounded subset of ν. Notice that there
are cofinally many γ̄ < µ++ such that cof(γ̄) = ω and σ is continuous at γ̄
and σ(γ̄) ∈ Cν . This follows from the standard closure argument and the fact
that σ is continuous at limits of cofinality < µ. Now for any such γ̄, we have
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that γ = σ(γ̄) has a club Cγ = Cν ∩ γ. Thus, for γ̄′ < γ̄ two such ordinals,
we have Cγ′ = Cγ ∩ γ′. By elementarity this agreement will transfer down
to C̄ , so we have an unbounded set of limit ordinals in µ++ whose clubs in
C̄ are strict extensions of each other. But then they must eventually have
otp > µ+, so C̄ is not a �µ+-sequence, contradiction. �

Remark: The above argument in fact shows that Π2
1 1-subcompactness

implies failure of �(κ+). (Recall that �(κ+) is the statement “every coher-
ent sequence of clubs of length = κ++ can be threaded”.) Similarly, if κ
is Π2

1-subcompact, then �(κ) fails. (See [4] for more details on �(κ) and
Π2

1-subcompactness.)

The above arguments can be trivially modified to prove that �κ,2 or �κ+,2

also fail when κ is subcompact or 1-subcompact, respectively. (�κ,2 is a well-
known weakening of �κ; an official definition is given at the beginning of
Section 10.)

Remark: If κ is 1-subcompact then κ is Π2
1-subcompact.

We also have a characterization of subcompactness in terms of extenders
on the sequence of L[E]:

Lemma 7.3. (from [5]) In L[E], suppose κ is a cardinal such that

{α | κ < α < κ+ ∧ (L[E]|α) is active}

is stationary in κ+. (In other words, there are stationarily many extenders–
short or long– indexed below κ+.) Then κ is subcompact.

Proof: Assume κ is not subcompact; let A be the <L[E]-least subset
of τ = κ+ witnessing this. Notice that A ∈ JEτ+ and that the set |JEτ |
(with no top predicate) is exactly Hτ . Also notice that any elementary
embedding σ : (Hµ+ , Ā) −→ (Hτ , A) with µ < κ can be coded as a bounded
subset of Hτ , and hence can be considered an element of Hτ . Thus, the fact
that A witnesses the failure of subcompactness for κ can be expressed as
M |= φ(A, τ), where M = L[E] || τ+ and φ(A, τ) is the Σ1-statement
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(∃H)(H = |JEτ |) and ¬(∃H̄, Ā, σ ∈ H)

(σ : (H̄, Ā) −→(H,A) witnesses subcompactness for κ with A) .

A standard closure argument shows that the set of all ordinals ν < τ
satisfying τ ∩ hM(ν ∪ {τ}) = ν is closed and unbounded in τ . Since we
assume that Eν 6= ∅ for stationarily many ν, we can pick a ν satisfying both

τ ∩ hM(ν ∪ {τ}) = ν and Eν 6= ∅ .

Let M ′ be the transitive collapse of hM(ν ∪ {τ}) and let σ′ be the as-
sociated uncollapsing map. Then M ′ is a passive premouse, %1(M ′) ≤ ν =
crit(σ′) and σ′(ν) = τ . A further closure argument allows us to assume
%1(M ′) = ν; this is because the set of ν < τ satisfying

(∀α < ν)ThM1 (α ∪ {τ}) ∈ (M |ν)

is a club in τ . If we require ν to be in this club, clearly %1(M ′) ≥ ν. Thus
we have ν = (κ+)M

′
= %1(M ′).

By the Solidity lemma of [3], M ′ is solid and its standard parameter is
universal, so M̃ = coreν(M

′) = transitive collapse of hM(ν ∪ p(M ′)) exists.

Let σ̃ : M̃ −→ M be the associated core map. Notice that ν = (κ+)M̃ ,
as any surjection g : α −→ ν such that g ∈ M̃ and α < ν would give
rise to the surjection σ̃(g) � α : α −→ ν, which would be an element of
M ′. Consequently, the critical point of σ̃, being at least ν, must be > ν,
as every ordinal between κ and σ̃(ν) has M ′-cardinality equal to κ. Letting
σ = σ′ ◦ σ̃ : M̃ −→M , the above discussion can be summarized as follows:

• %1(M̃) = ν and M̃ is sound;

• crit(σ) = ν and σ(ν) = τ ;

• σ is Σ1-preserving.

These conclusions enable us to apply the Condensation lemma to M , M̃ ,
and σ, so one of the conclusions a) − d) of Condensation holds. (Notice
that Anomalous Case 4 does not apply, since the critical point ν is a local
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successor of a limit cardinal, and AC4 requires it to be a local double succes-
sor.) a) and b) are impossible, since M has an extender indexed at ν but M̃
does not. d) is impossible because ν is a local successor of a limit cardinal,
and pseudoindices must be local double successors. This leaves only c). Set
N = Ult(M ||ν, Eν). Then M̃ CN . Set µ = crit(Eν) and θ = (µ+)M . Since
M̃ projects to ν, we in fact have M̃ C Ult(M ||(θ+)M , Eν) = P .

Observe that since σ is Σ1-preserving and σ(ν) = τ , there is a set B ∈ M̃
such that M̃ |= φ(B, ν). Let Ã be the <M̃ -least such B. Then Ã must
be σ−1(A), since otherwise A <M σ(Ã) and the preservation properties of
σ would force the existence of some Ã∗ <M̃ Ã for which φ(Ã∗, ν) holds in
M̃ , a contradiction. Also notice that since M C P , Ã is the <P -least set
such that P |= φ(Ã, ν). This means that Ã is Σ1-definable over P from
the single parameter ν; it follows that Ã is in the range of the ultrapower
map iEν : M ||(θ+)M −→ P . Set Ā = i−1

Eν
(Ã) and π = σ ◦ iEν . Then

π((Hθ, Ā)) = (Hτ , A), which witnesses subcompactness of κ for A; contra-
diction. �

Lemma 7.4. In L[E], suppose κ is a cardinal such that

{α | κ+ < α < κ++ ∧ (∃β > α (L[E]|β is type Z1 ∧ α = (κ++
F )L[E]|β))

is stationary in κ++. (In other words, there are stationarily many exten-
ders pseudo-indexed below κ++.) Then κ is 1-subcompact.

Proof: Assume κ is not 1-subcompact; let A be the <L[E]-least subset
of τ = κ++ witnessing this. Notice that A ∈ JEτ+ and that the set |JEτ |
(with no top predicate) is exactly Hτ . Also notice that any elementary
embedding σ : (Hµ++ , Ā) −→ (Hτ , A) with µ < κ can be coded as a bounded
subset of Hτ , and hence can be considered an element of Hτ . Thus, the fact
that A witnesses the failure of 1-subcompactness for κ can be expressed as
M |= φ(A, τ), where M = L[E] || τ+ and φ(A, τ) is the Σ1-statement

(∃H)(H = |JEτ |) and ¬(∃H̄, Ā, σ ∈ H)

(σ : (H̄, Ā) −→(H,A) witnesses 1-subcompactness for κ with A) .
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A standard closure argument shows that the set of all ordinals ν < τ
satisfying τ∩hM(ν∪{τ}) = ν is closed and unbounded in τ . Since we assume
that stationarily many ν are pseudoindices, we can pick a ν satisfying both

τ ∩ hM(ν ∪ {τ}) = ν and ν is a pseudoindex.

Let M ′ be the transitive collapse of hM(ν ∪ {τ}) and let σ′ be the as-
sociated uncollapsing map. Then M ′ is a passive premouse, %1(M ′) ≤ ν =
crit(σ′) and σ′(ν) = τ . Thus ν = (κ++)M

′
. As in the above Lemma, a

further closure condition on ν allows us to assume without loss of generality
that in fact %1(M ′) = ν. By the Solidity lemma of [3], M ′ is solid and its
standard parameter is universal, so M̃ = coreν(M

′) = transitive collapse of
hM(ν ∪ p(M ′)) exists. Let σ̃ : M̃ −→M be the associated core map. Notice

that ν = (κ++)M̃ , as any surjection g : α −→ ν such that g ∈ M̃ and α < ν
would give rise to the surjection σ̃(g) � α : α −→ ν, which would be an
element of M ′. Consequently, the critical point of σ̃, being at least ν, must
be > ν, as every ordinal between κ+ and σ̃(ν) has M ′-cardinality equal to
κ+. Letting σ = σ′ ◦ σ̃ : M̃ −→M , the above discussion can be summarized
as follows:

• %1(M̃) = ν and M̃ is sound;

• crit(σ) = ν and σ(ν) = τ ;

• σ is Σ1-preserving.

These conclusions enable us to apply the Condensation lemma to M , M̃ ,
and σ, so one of the conclusions a)− d) of Condensation holds. (Notice that
Anomalous Case 4 does not apply, since cofinally many levels of M project
to κ+; so if there were a total long extender G = EM

γ with critical point κ, as
required by AC4, then any level of M above γ which projected to κ+ would
cause a violation of projectum-free spaces, so M would not be a premouse.)

a) of Condensation is impossible, because ν is a cardinal in M̃ but is
collapsed in M . c) is impossible because ν is a local double successor of a
limit cardinal, and extenders can only be indexed at local single-successors.
If b) holds, then M̃ C Q, where Q is the Z1 level at which ν is witnessed to
be a pseudoindex (that is, Q is the collapsing-level for ν).
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So we have that either d) of Condensation holds, or else b) holds and
M̃ C Q. Set E = the extender pseudoindexed at ν, and N = Ult(M ||ν, E).
Then in either of the above cases, M̃ CN . Set µ = crit(E) and θ = (µ++)M .
Since M̃ projects to ν, we in fact have M̃ C Ult(M ||(θ+)M , E) = P .

Observe that since σ is Σ1-preserving and σ(ν) = τ , there is a set B ∈ M̃
such that M̃ |= φ(B, ν). Let Ã be the <M̃ -least such B. Then Ã must
be σ−1(A), since otherwise A <M σ(Ã) and the preservation properties of
σ would force the existence of some Ã∗ <M̃ Ã for which φ(Ã∗, ν) holds
in M̃ , a contradiction. Also notice that since M C P , Ã is the <P -least
set such that P |= φ(Ã, ν). This means that Ã is Σ1-definable over P
from the single parameter ν; it follows that Ã is in the range of the ul-
trapower map iE : M ||(θ+)M −→ P . Set Ā = i−1

E (Ã) and π = σ ◦ iE. Then
π((Hθ, Ā)) = (Hτ , A), which witnesses 1-subcompactness of κ for A; contra-
diction. �

One of the goals of our main construction below is to show that the con-
verses of the above two lemmas hold as well: if κ is subcompact in L[E]
then there must be stationarily many extenders indexed below κ+, and if
κ is 1-subcompact in L[E] then there must be stationarily many extenders
pseudo-indexed below κ++. We will discuss these implications more later.

7.2 Interpolation

Now we begin our actual construction of �-sequences. Recall that we are
working in a fixed iterable premouse W such that W |= ZFC, and all state-

ments should be understood as internal to W . Let E = ~EW , the extender
sequence of W , so that JEα = W |α.

The goal which we are working towards is the construction of a �Λ se-
quence in W for any Λ which is neither subcompact, nor the successor of a
1-subcompact cardinal. We have shown above that �Λ fails for such Λ, so if
this goal were attained it would be a complete characterization of � in W .
However, there seem to be substantial technical obstacles to achieving this
goal. One of these obstacles has the effect that our sequences will in fact
be �(Λ,2)-sequences instead of the optimal �(Λ,1)-sequences; this is the prob-
lem of “unstable” W -levels described below in 9.6. We are hopeful that this
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problem can be resolved without too much difficulty; in particular, Steel has
sketched a possible solution involving the concept of “V-divisors”. At present,
however, the construction described below results in �(Λ,2)-sequences.

The most difficult technical obstacle we have encountered, though, arises
from levels N of W which are active with top extender G, where G has a
largest generator νG which is a limit of generators. In the course of our con-
struction, we will need to identify the short part G � λG of this extender just
from the ordinal ν. (The recovery of G � λG from ν needs to be possible even
over some different level of W , which may be passive, or have a top exten-
der which is unrelated to G.) It is unclear how to make this identification
when νG is a limit of generators, because in this case there is not enough
information indexed at νG itself to uniquely identify G. However, if νG is
a successor generator of G (here we consider the first long generator to be
a successor generator), then there is an initial segment of G indexed at νG,
namely, G � (νG − 1) = EνG . From here it is easy to identify G � λG as the
short part of EνG .

Because of this, some key parts of our construction require the assump-
tion that the long active levels N which we encounter have a largest generator
ν which is a successor generator. On the one hand, this assumption will al-
ways be met if all long extenders in W have finitely many long generators.
Thus one of our main results is a �Λ,2 construction for Λ as above, under the
“smallness assumption” that the extenders of W have < ω long generators.
On the other hand, our construction can be considered as dealing with the
successor-generator cases of a complete �Λ construction for plus-one premice.
Because of this, we do not assume at the outset that all long extenders of
W have < ω long generators. Instead, we will go as far as possible without
any smallness assumption on W , and then explicitly highlight the points at
which we assume νG is a successor generator.

Now we embark on the actual construction. Fix a cardinal Λ which is not
subcompact and which is not the successor of a 1-subcompact cardinal. So
there are nonstationarily many extenders indexed between Λ and Λ+, and
nonstationarily many extenders pseudo-indexed between Λ and Λ+. We at-
tempt to construct a �Λ-sequence.

We start by forming a closed unbounded set S in Λ+ of levels which are
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‘local successors’ of Λ, i.e., fully elementary substructures of JEΛ+ . Closing
upwards by an appropriate Skolem function, we can easily obtain a club of
such substructures of JEΛ+ ; however, in general the structures obtained in this
way will condense to levels of W only if that level of W does not have a top
extender. Because of our assumption that there are nonstationarily many
extenders indexed below Λ+, however, we can work inside a club where no
levels have top extenders. Likewise, our assumption that there are nonsta-
tionarily many pseudoindices lets us work inside a club where no levels are
pseudoindices. Therefore we have S a club in Λ+ such that all τ ∈ S satisfy:

a) Λ is the largest cardinal in JEτ ;

b) JEτ is a fully elementary substructure of JEΛ+ ;

c) Eτ = ∅;

d) τ is not a pseudoindex.

Remark: Our “smallness assumption” that the long extenders of W have
< ω long generators will have the consequence that there are no type Z1 lev-
els in W , hence no pseudoindices, and so condition d) above is superfluous
in that context. As promised, though, we go as far as possible in the full
generality of arbitrary plus-one premice.

For τ ∈ S, set Nτ = the collapsing-level for τ in W , and k(τ) = the least
k such that %k+1(Nτ ) = Λ, so that Nτ = W |〈β, k(τ)〉 for β = o(Nτ ). So τ is

a cardinal in Nτ but is collapsed by a Σ
(k)
1 -definable function over Nτ . Note

that no levels above Λ can project below Λ because it is a W -cardinal, and
the first level collapsing τ must project to Λ because there are no cardinals
between Λ and τ in JEτ or any higher level.

Lemma 7.5. For Nτ as above, cof(o(N
(k)
τ )) = cof(τ) (recall that N

(k)
τ is the

k-th standard reduct of Nτ).

Proof: Since N
(k)
τ collapses τ to Λ, it has a Σ1 bijection f : Λ −→ τ .

Each value f(α) = β of this bijection is witnessed by some point xβ in N
(k)
τ ,

for β < τ . Now observe that if cof(N
(k)
τ ) > cof(τ), we could take the
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supremum of the levels at which the xβ’s appear, and this level would be an

element of N
(k)
τ . But then the entire bijection f would be an element of N

(k)
τ ,

contradicting that τ is a cardinal of N
(k)
τ .

If cof(τ) > cof(N
(k)
τ ), there would be a particular level of N

(k)
τ which

contained xβ’s for cofinally many β’s in τ . But this would be enough to get
a bijection from Λ to τ , because each ordinal β < τ has cardinality Λ (as

witnessed within JEτ ). So again τ cannot be a cardinal in N
(k)
τ , contradiction.

�

We would like to define canonical club subsets of each τ by taking certain
hulls of Nτ and applying Condensation to show that these hulls are levels
of W below τ . We will define an interpolant of Nτ to be a structure with
a certain weak embedding into Nτ , and ideally we can show that there is
a club in τ of levels which are interpolants of Nτ . This is essentially how
Jensen first proved �Λ for all Λ in L. However, the presence of short and
long extenders on our sequence derails this proof at certain points. One ma-
jor problem is that if Nτ is pluripotent (see below), the interpolants of Nτ

will not be premice at all, so they certainly do not condense to lower levels
of W .

Definition 7.6. For Nτ a level of W as above, we say Nτ is short pluripotent
if and only if Nτ is active with short top extender G, κG < Λ, and k(τ) = 0.

Definition 7.7. For Nτ a level of W as above, we say Nτ is long pluripotent
if and only if Nτ is active with long top extender G, κ+

G < Λ (note that
κ+
G 6= Λ by projectum-free spaces), and k(τ) = 0.

Pluripotent levels of both varieties will lead to protomice when we try to
shrink them down via interpolations. We now give the description of this
interpolation process:

Definition 7.8. Let M = (|M |, G) be a sound coherent structure; then a J-
structure M̃ = (|M̃ |, G̃) is an interpolant of M if there is a map σ : M̃ −→M

that is Σ
k(N)
0 -preserving with respect to the language of coherent structures

and such that σ(p(M̃) = p(M), and for every α ∈ p(M), there is a generalized

solidity witness W
M,p(M)
α in the range of σ, and %(M̃) = %(M). In this case

we call σ the interpolation embedding.
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We will use the following Lemma for interpolations of pluripotent levels
and protomice, in addition to non-pluripotent levels of W . In the former
cases, we will always have k = 0.

Lemma 7.9. Let M = (|M |, G) be a coherent structure with k = k(M) and
%(M) = %k+1(M) = Λ, where Λ is a cardinal of W . Assume M is (k + 1)-
sound and (k+ 1)-solid and that %k(M) > Λ. Further, assume (Λ+)M = τ is
an ordinal in M and that τ has uncountable cofinality (in W ). Then for any
β < τ , there is an interpolant M̄ of M with interpolation embedding σ such
that crit(σ) = (Λ+)M̄ = τ̄ > β, and σ(τ̄) = τ .

Proof: We take a fully elementary countable hull X ′ ≺Σω M such that
{β} ∈ X ′. Let X be the transitive collapse of X ′ with π : X −→ M the
uncollapse map, and F the extender of length Λ derived from π. Now take
M̄ = Ultk(X,F ). We claim M̄ is an interpolant of M with the desired prop-
erties, and the interpolation embedding of M̄ into M is the natural factor
map σ : M̄ −→M given by σ(iXF (f)(a)) = π(f)(a) for f ∈ X(k) and a ∈ Λ<ω.

Σ
(k)
0 -elementarity of σ follows easily from the basic properties of ultra-

powers (see [6]). To see that the critical point is τ̄ , note that the embedding
is id on Λ ∪ {Λ}, so the critical point is ≥ τ̄ ; and also, cof(τ̄) = ω, since
π−1(τ) has countable cofinality and is regular in X(k), so Ultk(X,F ) is con-
tinuous there. But τ itself has uncountable cofinality, so the critical point is
≤ τ̄ . Now we need to see that σ(p(M̄) = p(M). But p(X) = π−1“(p(M)) by
Σω elementarity of this hull, and iF (p(X)) = p(M̄) by a standard argument,
which we give in the paragraph below. It then follows that σ(p(M̄) = p(M),
because σ ◦ iF = π. Finally note that there are solidity witnesses for every
α ∈ p(M) in the range of π, and hence in the range of σ, by elementarity of π.

The proof will be complete once we show that iF (p(X)) = p(M̄). First
observe that Λ ≤ %k+1(M̄), because Λ is a cardinal of W . And because M̄
is generated by iF“(X) ∪ Λ = iF“(%k+1(X) ∪ p(X)) ∪ Λ = i′′F (p(X)) ∪ Λ, we
can see that iF (p(X)) is a good parameter for p(M̄). Finally, notice that
X is solid (by elementarity, since M was solid), and therefore iF ({p(X)}) is
a top segment of p(M̄). But it is a good parameter, so it is the standard
parameter. �
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For the remainder of this subsection we shall use the notation of the above
definition, and in addition we let i = iF : X −→ H be the ultrapower map.

In the proof above, we form interpolants of M by first taking a countable
hull X, then “fattening it up” by taking an ultrapower of length Λ. Note
that if M is a premouse, there is no difference between interpolants formed
using the language of premice and those formed using language of coherent
structures, because the constant symbols which are present in the premouse
language but not CS-language all refer to objects which are automatically in
the hulls we take. In particular, γ̇ and ν̇, if they are defined for M , will be
put into X because it is fully elementary (in either language).

Note that o(H(k)) will have countable cofinality, since it is an ultrapower
of the countable set X.

Now we consider interpolants of our collapsing-levels Nτ .

Lemma 7.10. Suppose H is an interpolant of Nτ formed as in the proof of
7.9 with interpolation embedding σ, and letting crit(σ) = τ̄ , suppose τ̄ is not
an index or pseudoindex in W . Suppose further that Nτ is not pluripotent
(short or long). Then H is a level of W .

Proof: We will show that H is a plus-one premouse of the same type as
Nτ . Then we can apply Condensation to H. Notice that Anomalous Case
4 does not apply, since if there were a total long extender G = ENτ

γ on the
Nτ -sequence such that κ++

G = τ̄ , we would have Λ = (κ+
G)Nτ . But then Nτ

violates projectum-free spaces, contradiction.

Clauses c) and d) of Condensation are impossible, since they require
crit(σ) to be an index or pseudoindex, respectively; so we have a) or b),
so the conclusion holds.

So the proof reduces to the problem of showing that H is a premouse of
the same type as Nτ . Obviously the fully elementary hull X is a premouse
of the same type as Nτ , because all conditions of premousehood are express-
ible by some first-order formulas. So we want to show that the ultrapower
embedding iE : X −→ H preserves premousehood. For this we will apply
Lemma 1.10, so we must verify that its hypotheses hold. We will first check
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the various assumptions of clauses a)-f), and save the verification that H
has projectum-free spaces for last. Recall that i is an ultrapower map by an
extender of length Λ.

First note that i is Σ
(k)
0 -elementary and cofinal. Now if Nτ is passive

then so is X, and H is trivially a premouse; so assume Nτ is active with
top extender G. Also if k > 0 then i is Σ2-preserving– in fact it is Q(1)-
preserving. This is enough to verify a), b), or f) of Lemma 1.10, except for
the projectum-free spaces clause for H, which we defer for the moment.

Now suppose k = 0. Because Nτ is not pluripotent, we have that κG ≥ Λ
if G is short, and (κ+

G)Nτ ≥ Λ if G is long (this can be concisely written as
“dom(G) > Λ”). These facts transfer down to X: letting Λ̄ be the preimage
of Λ in X, and Ḡ the top extender of X, dom(Ḡ) > Λ̄, and dom(Ḡ) is a
successor cardinal of X. Now since k(Nτ ) = 0, i is a 0-ultrapower map, and
its only discontinuities are at points whose X-cofinality is < Λ̄. In this case
i is continuous at dom(Ḡ), so H has a total top extender. Also λḠ > Λ̄,
so i will map λḠ continuously into its image. Finally, if X is type Z1, νḠ
has X-cofinality equal to (κ+

F )X > κ+
Ḡ
≥ Λ̄ (because of non-pluripotence), so

again i is continuous at νḠ. This verifies all the hypotheses for c), d), or e)
of Lemma 1.10, except for the projectum-free spaces assumption.

The proof will be complete if we can show that H has projectum-free
spaces. First we consider 1) of 2.15. Note that %k+1(H) = %ω(H) = Λ,
because there is a definable Σk+1 surjection from Λ ∪ i(p(X)) onto H (so
%k+1(H) ≤ Λ), and Λ is an L[E]-cardinal, where our construction takes
place (so %ω(H) ≥ Λ). If Λ were the space of a long extender on the H-
sequence, then letting σ : H −→ Nτ be the interpolation embedding, note
that crit(σ) > Λ, so σ would send this long extender to an extender on
the Nτ sequence with space = Λ. But Λ was %k+1(Nτ ), so this would vi-
olate projectum-free spaces for Nτ . All that remains is to show that the
%m(H) for m ≤ k do not violate projectum-free spaces. But note that
i : X −→ H is a k-embedding, so we can follow the proof of projectum-free
spaces preservation that we used in Lemma 2.7. In particular, for m < k,
i(%m(X)) = %m(H), so the absence of PFS violations at those projecta in
H follows by Σ1-elementarity of iE; and for m = k, if i is continuous at
%k(X) the same argument applies, whereas if i is discontinuous at %k(X)
then %k(X) must be Σk-singular in X and therefore a limit cardinal of X.
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Then %k(H) = sup(i“%k(X)) is a limit cardinal of H and therefore cannot
cause a violation of 1) of PFS.

It is easy to see that H satisfies 2) of PFS, because X satisfies it: if k > 0
this follows from elementarity, and if k = 0 then X does not have a short
top extender Ḡ such that there is a long F on the X-sequence with κḠ = κF
and %1(X) ≤ κ+

Ḡ
. This is a Π1-statement about X, so it holds in H as well. �

8 Short Protomice

We now describe the (much more complicated) situation that arises when Nτ

is short or long pluripotent. The interpolants of Nτ will then fail to be pre-
mice; instead they will be protomice, and we must invoke a procedure to turn
them into levels of W before we can use them in the definition of Cτ . We will
refer to the interpolated protomouse as M , and its associated premouse as N .

8.1 Fine Structure for Short Protomice

Definition 8.1. A short protomouse M = (|M |, G̃) is a J-structure, consid-
ered in the language of coherent structures, such that

a) |M | is a passive premouse with k(|M |) = 0,

b) G̃ is a short extender over |M | that it is not total on |M |; more pre-
cisely, there is an ordinal θ < κ+

G̃
such that G̃ measures exactly the subsets

of κG̃ in M |θ, and θ = (κ+

G̃
)M |(θ);

c) M satisfies the coherency condition Ultn(M ||θ, G̃) = |M |,

d) %1(M) is not the space of a long extender on the sequence of Ultn(N∗, G̃),
where 〈N∗, n〉 is the collapsing-level for θ in M .

Remark: b) and c) imply that iG̃“(θ) will be cofinal in o(M).

81



In all our dealings with protomice, we will use the language of coher-
ent structures. This means we will be working with their Dodd parameters
d(M), and %1(M) in the above definition is the Dodd projectum. Also, we
only need to consider Σ1-definability for protomice (in the language of coher-

ent structures), and never need to talk about Σ
(n)
1 -definability over protomice

for n > 0.

Definition 8.2. Given a short protomouse M with top extender G̃, let θM =
dom(G̃). (Note θM < (κ+

G̃
)M .) Also, let (N∗)M be the collapsing-level for θ

in M ; so (N∗)M = 〈N∗, n〉 where n is such that κG̃ = %n+1(N∗) < %n(N∗).

We will see later that pluripotent levels of W interpolate to yield pro-
tomice; this is a major problem for our � construction. Schimmerling and
Zeman solved this problem in [5] by showing that these protomice can nev-
ertheless be canonically associated with levels of W , and the associations
are sufficiently uniform that we can translate the finestructural properties of
protomice back and forth with the levels of W .

Schimmerling and Zeman’s basic idea is that given a protomouse (M, G̃)
which is an interpolant of a level of W , we should apply G̃ to the longest
initial segment of M which it measures. In our notation, the structure pro-
duced will be N = Ult((N∗)M , G̃), and we will call it the “associated ppm”
of M . N can then be shown to be a premouse, and in fact with a bit of
diagram-chasing we can show that if (M, G̃) was derived from a level of W ,
then N is a level of W . This will, hopefully, be the level of W canonically
associated with our protomouse M . It is of critical importance, though, that
the process of transforming (M, G̃) into N is canonically reversible: that is,
the level N , viewed on its own, must “know that it is a transformed proto-
mouse”, and must provide us with a recipe for reversing the transformation
and reconstructing that protomouse. Fortunately, the process is reversible–
there is a simple procedure by which N can reconstruct the protomouse
(M, G̃). Unfortunately, there may be many different protomice which N can
‘reconstruct’. The different recipes which a level of W can use to reconstruct
protomice are called divisors. Our task, then, is to find canonical divisors for
levels of W , and at the same time to refine our interpolation process in such
a way that the protomice it produces are exactly those which correspond to
the canonical divisors. This is all successfully accomplished in Schimmerling
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and Zeman’s paper [5].

In the context of plus-one premice, matters are complicated by the exis-
tence of both short protomice and long protomice that can arise in interpo-
lations. We begin by reproducing the treatment of short protomice from [5],
but in the richer context of plus-one premice.

Definition 8.3. Given a short protomouse M with top extender G̃ and
(N∗)M = 〈N∗, n〉, we define the associated ppm of M to be Ultn(N∗, G̃),
and we call iG̃ the associated ppm embedding.

Remark: It is easy to see, using 2.9, that the associated ppm of a short
protomouse M is in fact a potential premouse. This is because the ultra-
power map iG̃ is only discontinuous at κG̃, which is a limit cardinal of N∗; so
by the remark following 2.9, if the associated ppm has a top extender then
it must be total.

Remark: There is, unfortunately, a very technical case-splitting which
we must consider. If N∗ = (N∗)M is passive or has a top extender H such
that λH > κG̃, then 2.24 can be used to show that N = Ultn(N∗, G̃) is a
premouse of the same type as N∗. However, if N∗ has a top extender H
such that λH = κG̃, then iG̃ will be discontinuous at λH = λ(N∗). This
disrupts the application of 2.24, which essentially relies on the embedding
being continuous at λ(N∗). We will see in 8.23 that it is still possible in this
case to show that N is a premouse; however, it may not be of the same type
as N∗. Because of this, iG̃ will not be an n-embedding in the language of pre-
mice when λH = κG̃, but merely an n-embedding in the language of coherent
structures. Many of the lemmas that follow have two parts, corresponding
to this case-splitting.

Now we describe the finestructural relations between a protomouse M
and its associated ppm N .

Lemma 8.4. (Parameter-Less Simulation of Definable Singletons
of N from within Protomouse)
(from [5])
Let M = (|M |, G̃) be a short protomouse. Let κ = κG̃, λ = λG̃, and
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N∗ = (N∗)M . Let i : N∗ −→ N be the associated ppm embedding. Let
ζ < λ, b ⊂ λ be finite, and r = i(p(N∗)), so min(r) ≥ λ if r is nonempty.

Then {ζ} is (Σ
(n)
1 )N -definable from r, b, and an ordinal ξ < κ if and only

if there is an f : κ −→ κ in N∗ such that ζ = i(f)(b). Likewise, y ⊂ λ is

(Σ
(n)
1 )N -definable from r, b, and an ordinal ξ < κ if and only if there is an

f : κ −→ P(κ) in N∗ such that y = i(f)(b).

Here (Σ
(n)
1 )N -definability is in the language of premice if i is an n-embedding

in the language of premice, and in the language of coherent structures if i is
an n-embedding in that language.

The proof is the same whether i is in the language of premice or coherent
structures; the difference arises only in which version of  Loś’s Theorem ap-
plies to i. In what follows we prove both versions at once. We focus on the
case with a single ordinal ζ; the proof for y ⊂ λ is similar.

We begin with the forward implication. Suppose ζ is the unique object
such that N |= (∃z)ψ(z, ζ, r, b) where ψ is a Σ

(n)
0 -formula. Fix a δ∗ < %N

∗
n

large enough such that, setting δ = i(δ∗), there is a z ∈ N (n)|δ witnessing
this existential statement; such a δ∗ exists since i is cofinal in N (n). Define a
partial map f : [κ]|b| −→ κ as follows:

f(x) = the unique ξ < κ such that N∗ |= (∃z ∈ (N∗)(n)|δ∗)ψ(z, ξ, p(N∗), x) .

Then f , being a (Σ
(n)
0 )N subset of κ < %n(N∗), is an element of N∗.

Applying i, it follows that i(f)(x), if defined, is the unique ordinal ξ < λ
such that we have (∃z ∈ N (n)|δ)ψ(z, ξ, r, x) in N . But for x = b, we know
that i(f)(x) is defined, so i(f)(b) = ζ. Obviously, f can be turned into a
total function on [κ]|b| by setting f(x) = 0 whenever f(x) is undefined by the
above definition.

To see the converse implication, suppose ζ = i(f)(b) for f , b as above;
since N∗ is sound, there is a ξ < κ such that f = hN

∗
n+1(ξ, p(N∗)). The

preservation properties of i then give i(f) = hNn+1(ξ, r), so ζ can be defined

in a Σ
(n)
1 -fashion over N as follows:

(∃g)(g = hNn+1(ξ, r) & ζ = g(b)) .
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The following lemma shows that definable subsets of λ in N are also
definable in M ; thus it is a stronger version of the above lemma, since it
applies to arbitrary definable subsets instead of just singletons. However, it
requires θ as a parameter in the definition over M . It will turn out that the
embeddings we consider between different protomice do not preserve θ, so
we will have to make do with 8.4 in those contexts. We will primarily need
8.5 in showing that the projectum of a protomouse is the same as that of its
associated premouse.

Lemma 8.5. (Simulation of Definable Classes of N from within
Protomouse, in Parameter θ)
(from [5])
Let (M, G̃) be a short protomouse. Let N∗ be the longest initial segment of M
on which G̃ is total. Let κ = κG̃, λ = λG̃, and i : N∗ −→ Ultn(N∗, G̃) = N
be the largest possible fine ultrapower map. Let r = i(p(N∗)), so min(r) ≥ λ
if r is nonempty. Then we have:

a) If i is an n-embedding in the language of premice, then for any Σ
(n)
1 -

formula φ(v0...v`) in the language of premice, there is a Σ1-formula φ∗(v0...v`)
in the language of coherent structures such that for every tuple x1...x` ∈ JEλ ,
we have

N |= φ(r, x1...x`) if and only if M |= φ∗(θ, x1...x`) .

b) If i is an n-embedding in the language of coherent structures, then

for any Σ
(n)
1 -formula φ(v0...v`) in the language of coherent structures, there

is a Σ1-formula φ∗(v0...v`) in the language of coherent structures such that
for every tuple x1...x` ∈ JEλ , we have

N |= φ(r, x1...x`) if and only if M |= φ∗(θ, x1...x`) .

Proof: First we consider a). We may assume x1...x` are all ordinals
< λ, since each x ∈ JEλ is Σ1-definable from an ordinal < λ.

Suppose φ is of the form (∃z)ψ(z, vo...v`) where ψ is Σ
(n)
0 . Then N |=

φ(r, x1...x`) if and only if (∃u ∈ (N∗)(n))[N |= (∃z ∈ π(u))ψ(z, r, x1...x`)].
Using  Loś’s Theorem, this can be expressed in a Σ1-fashion over M as
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(∃Q, p∗, κ, a, y, u,m)φ∗0(Q, p∗, κ, a, y, u,m, θ, x1...x`)

where φ∗0(Q, p∗, κ, a, y, u,m, θ, x1...x`) is the conjunction of the following
statements:

• Q is an initial segment of M and m ∈ ω,

• θ = (κ+)Q, %m+1(Q) = κ < %m(Q), p∗ = p(Q) and u ∈ Q(n),

• a = {〈η1...η`〉 ∈ κ | Q |= (∃z ∈ u)ψ(z, p∗, η1...η`)},

• y = F (a) and 〈x1...x`〉 ∈ y.

The proof for b) is the same, but only allows translations in the language
of coherent structures because this is the version of  Loś’s Theorem that ap-
plies in that case. �

The next lemma shows how the associated ppm of M can still “see” M to
some extent. This allows us to translate back and forth between protomice
and their associated ppm, which is necessary for the finestructural computa-
tions which follow.

Lemma 8.6. (Simulation of Short Protomouse From its Associ-
ated Premouse) (from [5]) Let M be a short protomouse with associated
ppm N , and i = iG̃ : N∗ −→ N the ultrapower map. Let φ(v1...v`) be a
Σ1-formula in the language of coherent structures. Then we have

a) If i is an n-embedding in the language of premice, then there is a

Σ
(n)
1 -formula ψ(v, v′, v0...v`) in the language of premice and an ordinal ξ0 < κ

such that for every x1...x` ∈M ,

M |= φ(x1...x`) if and only if N |= ψ(r, ξ0, κ, x1...x`) .

b) If i is an n-embedding in the language of coherent structures, then

there is a Σ
(n)
1 -formula ψ(v0...v`) in the language of coherent structures such

that for every x1...x` ∈M ,

M |= φ(x1...x`) if and only if N |= ψ(κ, x1...x`) .
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Proof: First we focus on a). Since φ is a Σ1-formula, M |= φ(x1...x`)
if and only if there is an ordinal ζ < o(M) such that 〈JEζ , G∩JEζ 〉 |= φ(x1...x`).
Fixing an ordinal ξ0 < κ such that hNn+1(ξ0, r) = λ(κ, q), this can be expressed
over N in the parameters r, κ, ξ0 as

(∃ζ, λ, β1, β2, f, G,Q) ψ(ζ, λ, β1, β2, f, G,Q, r, ξ0, κ, x1...x`)

where ψ is the conjunction of the following statements:

• β1, β2 < κ and ζ < λ+ ;

• ζ = hNn+1(β1, r) , f = hNn+1(β2, r) , and λ = hNn+1(ξ0, r) ;

• f : λ
onto−−→ P(λ) ∩ JEζ ;

• G = {〈f(α) ∩ κ, f(α)〉|α < κ} and Q = 〈JEζ , G〉 ;

• Q |= φ(x1...x`) .

In other words, ψ asserts that there is a level JEζ and a surjection f :

λ(κ, q)
onto−−→ P(λ) ∩ JEζ which are both in the range of i (so that their col-

lapses in N∗ will be, respectively, a level of N∗ and a surjection from κ onto
that level’s P(κ)). From here we can describe a fragment of the protomouse-
extender, called G, as the set of ordered pairs of subsets of κ in this level of
N∗ and the subsets of λ(κ, q) which they stretch to by i. (This is trivially
equivalent to our official description of extender-predicates.) The resulting
structure Q is a level of M .

The proof of b) is almost identical, but ψ now requires fewer parameters;
recall that in this case, we must have λ(κ, q) = λN , so r is empty, and also we
can talk about λ(κ, q) in the formula ψ without requiring ξ0 as a parameter.
�

We can now relate the finestructural properties of M and N . Recall
that for a protomouse M , WM

α,s = HM
1 (α ∪ {s}); and for a premouse 〈N, n〉,

WN
α,s = HN

n+1(α ∪ {s}).
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Lemma 8.7. (from [5]) Let (|M |, G̃) be a short protomouse and N the
associated premouse, with ultrapower embedding i, and let n be the degree of
soundness of N∗ = (N∗)M (so i is an n-ultrapower map). Set o(M) = η,
κ = κG̃, λ = λG̃, and r = i(p(N∗)) (so min(r) ≥ λ if r is nonempty). Then

a) %1(M) = %n+1(N).

Denote this common value by %. Granting that κ < %, the following holds:

b) pn+1(N) ∩ λ = d(M).

c) M is 1-sound if and only if N is (n+ 1)-sound.

d) Let s be a finite subset of λ and θ ≤ α < λ. Then WN
α,s∪r = Ultn(N∗, G),

where G is the top extender of WM
α,s (so G has the same ultrapower as

G̃ � (coordinates in α ∪ s)). Moreover, the associated ultrapower embedding

is precisely the uncollapsing map associated with the Σ
(n)
1 (WN

α )-hull of κ∪ r̄,
where r̄ is the preimage of r under the canonical witness map.

e) M is 1-solid if and only if N is (n+ 1)-solid.

Proof: Note first that neither %1(M) nor %n+1(N) is larger than λ. First

we show a). If A is a Σ1(M)-relation in p1(M) then by 8.6 there is a Σ
(n)
1 (N)-

relation A∗ in d(M), r, and θ such that A∗ agrees with A up to %1(M). Choose
A such that A ∩ %1(M) /∈ M . Then A∗ ∩ %1(M) is not a member of JEo(M)

and therefore of N ; this follows from the fact that o(M) is a cardinal in N .
Thus, %n+1(N) ≤ %1(M). The dual argument using 8.5 yields the converse,
which proves a).

From now on suppose that κ < %. We now prove b). The ordinal %, being
smaller than λ, is a cardinal in both M and N . It follows that θ < %. Given A
as above, by 8.6 there is a Σ

(n)
1 -relation A∗ such that A(ξ)↔ A∗(d(M), r, θ, ξ)

whenever ξ < λ. From A∗ we obtain a new subset of % which is Σ
(n)
1 (N) in

d(M) ∪ r, so r ∪ (pn+1(N) ∩ λ) = pn+1(N) ≤lex r ∪ d(M) and, consequently,
pn+1(N) ∩ λ ≤lex d(M). As before, the dual argument yields the converse,
which proves b).
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If M is 1-sound, then every ξ < λ is Σ1(M)-definable from d(M) =

pn+1(N) ∩ λ and a parameter less than %. Thus, every ξ < λ is Σ
(n)
1 (N)-

definable from r ∪ (pn+1(N) ∩ λ) = pn+1(N) and parameters less than %. In
other words, N = HullNn+1(% ∪ {pn+1(N)}). Thus, pn+1(N) ∈ Rn+1(N), so
N is (n+ 1)-sound. The converse follows again by the dual argument, which
proves c).

Next we prove e) from d). To see that the 1-solidity of M implies the
(n + 1)-solidity of N , notice that WM

α = HM
1 (α ∪ {d(M)}) can be encoded

into a Σ1(M) subset A of α. Such an A is in JEη by acceptability, and WM
α

can be reconstructed from A inside JEη . But then also WN
α is in JEη by d).

For the converse use again the dual argument.

Finally we show d). Let σ̄ : WM
α,s −→ M be the canonical witness map,

λ̄ = λG and η̄ = o(WM
α,s). Since σ̄ is Σ1-preserving, dom(G) = P(κ) ∩ JEθ ,

so G can be applied to N∗ (notice that N∗ is an initial segment of WM
α,s).

Let W = Ultn(N∗, G) and π̄ : N∗ −→ W the associated ultrapower map.

Clearly π̄ is Σ
(n)
0 -preserving and cofinal, and W = HullWn+1(λ̄ ∪ {r̄}), where

r̄ = σ̄(p(N∗)). We can also define a natural factor-map σ : W −→ N by

σ(π̄(f)(a)) = i(f)(σ̄(a)) for a ∈ [λ̄]<ω. It is easy to see that σ is Σ
(n)
0 -

preserving and cofinal, by  Loś’s Theorem for Σ
(n)
0 -formulas together with

the cofinality of σ̄ and i. Also, i = σ ◦ σ̄ and crit(σ) ≥ η̄. It follows that
σ(r̄) = r, σ � α = id, and, letting s̄ be the σ̄-preimage of s − (α + 1), also
σ(s̄) = σ̄(s̄) = s − (α + 1). As each ζ < λ̄ is Σ1(WM

α,s)-definable from s̄ and
parameters below α, 8.6 allows us to conclude that W = HullWn+1(α∪{r̄∪s̄}),
so HullNn+1(α∪{r∪s−(α+1)}) = range(σ). But this means that W = WN

α,r∪s
and σ is the associated witness map. �

8.2 Short Divisors

We now look at how the ppm N associated to M = (|M |, G̃) can recover

M . We want to see that N∗ can be identified as a Σ
(n)
1 -hull in N , using

the standard parameter of N to help identify it. If we can do this, the
protomouse-extender G̃ can be recovered as the extender of the correspond-
ing uncollapse map.
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Definition 8.8. Let N = Nτ̄ be the collapsing-level for τ̄ in W , with %n+1(N) =
Λ < %n(N) and τ̄ = (Λ+)N . Then a pair (κ, q) is a short divisor of N if κ
is a cardinal < Λ, and there is an ordinal λ(κ, q) with Λ < λ(κ, q) < %n(N)
such that, letting r = p(N)− q, the following conditions hold:

a) q = p(N) ∩ λ(κ, q),

b) HN
n+1(κ ∪ r) ∩ %n(N) is cofinal in %Nn ,

c) λ(κ, q) is the least ordinal in HN
n+1(κ ∪ r)− κ.

In addition, we say (κ, q) is a strong short divisor if it satisfies:

d) P(κ) ∩HN
n+1(κ ∪ r) = P(κ) ∩HN

n+1(κ ∪ p(N)).

We refer to HN
n+1(κ∪r) as the divisor-hull associated with a short divisor

(κ, q). Conditions a), b), and c) above constitute the definition of divisor
in [5]. However, the authors of [5] exclusively consider “strong divisors” in
their �Λ construction, which have the additional clause d). Thus our “strong
short divisors” are the “strong divisors” of [5]. We only need to consider the
notion of non-strong short divisors in order to develop the theory of strong
short divisors in this subsection; after this subsection we will only be using
strong short divisors.

Note that the uncollapse map π from a divisor-hull HN
n+1(κ ∪ r) into N

is Σ
(n)
0 -elementary and cofinal.

Lemma 8.9. If N is a level of W and (κ, q) is a short divisor of N with
divisor-hull N∗, then κ is a limit cardinal of W , and is inaccessible in N∗.

Proof: First we show that κ is a limit cardinal in N∗. Clearly it is a
cardinal. If κ = (η+)N

∗
, then N∗ |= “η is the largest cardinal in JEκ ”. Let-

ting π : N∗ −→ N be the uncollapse map, N |= “η is the largest cardinal in
JEπ(κ)”. But π(κ) = λ(κ, q), and there are certainly cardinals greater than η
below it, e.g., Λ; contradiction.

It is now immediate that κ is a limit cardinal in W , because π is Σ1-
elementary with critical point κ, and so the cofinal sequence of N∗-cardinals
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below κ are all preserved as cardinals < Λ in N , and N agrees with W below
Λ. Finally we note that κ must be regular in N∗, hence inaccessible, because
it is the critical point of π. �

Lemma 8.10. If N is a level of W and (κ, q) is a short divisor of N with
divisor-hull N∗, then N∗ is a proper initial segment of N .

Proof: Let π : N∗ −→ N be the uncollapse map associated with the
divisor-hull. Thus crit(π) = κ and π(κ) = λ(κ, q) = λ. Set s = π−1(r)
(recall r is a top segment of p(N), namely, the part above λ). Then N∗ =
HullN

∗
n+1(κ ∪ s); combining this with the previous lemma, we conclude that

%ω(N∗) = %n+1(N∗) = κ < %n(N∗) ,

and also that s is a very good parameter for N∗.

We would like to see that N∗ is a premouse of the same type as N by
applying Lemma 1.12. First we show that N∗ satisfies projectum-free spaces.
Clearly for m > n, %m(N∗) is not a space, since we have just seen that it is
a limit cardinal, namely κ. For m ≤ n, we know that π is an n-embedding,
so we can follow the argument given in Lemma 2.7 to show that %m does not
cause a PFS violation.

Now if N is type A or B (short or long varieties), then clauses a) or
c) of Lemma 1.12 can be applied immediately. If N is type C (short or
long), we need to verify that n > 0. But if n = 0, then Λ = %1(N), and
%1 of any type C premouse is always the largest cardinal of that premouse
(by 2.22). This contradicts the fact that Λ < λ in the definition of a divi-
sor, since λ is a cardinal of N . Thus N∗ is a premouse of the same type as N .

Claim: N∗ is sound.

Proof: If (κ+)N
∗

does not exist, then N∗ is easily seen to be sound: if
s is empty then N∗ is trivially sound, because in this case N∗ = HullN

∗
n+1(κ)

and we know that κ = %n+1(N∗). If s is nonempty and t < s is the standard
parameter for N∗ then by universality t generates s, since they are both be-
low κ+. But then t is a very good parameter, so N∗ is sound.
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Now assume (κ+)N
∗

exists. Recall that π sends its critical point κ to λ,
and that N = HullNn+1(λ ∪ r) = HullNn+1(λ ∪ π“(N∗)). Letting G be the
extender of length λ derived from π, it follows that π = iG. (That is, the
short extender derived from π is sufficient to capture the full embedding.)
This implies that π is only discontinuous at points of cofinality κ in (N∗)(n).
In particular, it is continuous at θ = (κ+)N

∗
.

We want to see that s is the standard parameter of N∗. Suppose t <lex s
were the standard parameter; by the Solidity theorem of [3], we have that t
is universal. That is, N∗|θ ⊆ HullN

∗
n+1(κ∪ t). But then HullNn+1(κ∪ π(t)) is

cofinal in λ+ (using the fact that π is continuous at θ). However, π(t) <lex r,
so ThNn+1(π(t) ∪ λ) ∈ N , by solidity of r. This theory codes a collapse of
(λ+)N , which is a contradiction. �

We have shown that π : N∗ −→ N is a Σ
(n)
0 -elementary and cofinal em-

bedding, with critical point κ = %n+1(N∗), and that N∗ is a sound premouse
of the same type as N . This is all we need in order to apply Condensation.
(Notice that Anomalous Case 4 does not apply, since the critical point κ is
a limit cardinal, and AC4 requires it to be a local double successor.)

Clause a) of Condensation is obviously impossible, since N∗ projects to
κ while N does not. Clauses c) and d) require κ to be a successor cardinal
in N , which it is not. Thus clause b) must hold. This proves the Lemma. �

We are finally ready to describe the protomouse associated with this di-
visor (κ, q). Because N∗ projects to κ, it must be the collapsing-level in L[E]
for θ = (κ+)N

∗
. (It is possible that κ is the largest cardinal in N∗, in which

case θ = height(N∗).)

Definition 8.11. For N a level of W and (κ, q) a short divisor of N with π :
N∗ −→ N the uncollapse map associated with the divisor-hull, let θ = (κ+)N

∗

and η = ((λ(κ, q))+)N = π(θ). (If θ = height(N∗) then η = height(N).) We
define N(κ, q) = (JEη , G), where G is the extender of length λ(κ, q) derived
from π, and call N(κ, q) the protomouse associated with the divisor (κ, q).

Note that crit(G) = κ and dom(G) = θ. Thus N(κ, q) is a short proto-
mouse, since θ < (κ+)L[E].
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Lemma 8.12. If N is a level of W and N(κ, q) is the protomouse associated
with a divisor of N , then the associated ppm of N(κ, q) is N .

Proof: The associated ppm of N(κ, q) is given by HullNn+1(κ ∪ {r} ∪
λ(κ, q)), because the associated ppm map is the ultrapower map by a short
extender of length λ. But this hull is the full premouse N , since N is sound
and %n+1(N) = Λ < λ(κ, q) and pn+1(N) = r ∪ q with q ⊂ λ(κ, q). �

Remark: Lemma 8.12 implies that in the situation described, d(N(κ, q)) =
q. This is because Lemma 8.7 clause b) tells us that p(N) ∩ λ = d(N(κ, q)).

Remark: It follows from 8.12 and 8.7 that any protomouse N(κ, q) as-
sociated with a divisor of a level of W must be a sound short protomouse.

There is another important fact about short divisors which we will need
in our �Λ construction. We say that two short divisors of a given W -level
N overlap if neither one’s divisor-hull is contained in the other’s divisor-hull.
The point of our definition of strong short divisors is to guarantee that there
can never be two overlapping divisors of our W -levels N ; thus, we can order
the strong short divisors of N by the inclusion ordering on their divisor-hulls.
We turn now towards proving this fact.

Lemma 8.13. (From [5]) Let N be a level of W and (κ, q) a short divisor
of N . Let r = p(N) − q. Let N∗ = HN

n+1(κ ∪ r) and P = HN
n+1(κ ∪ p(N)).

Then the following are equivalent:

a) (κ, q) is a strong short divisor; that is, P(κ) ∩N∗ = P(κ) ∩ P .

b) N∗ = HP
n+1(%(P ) ∪ p(P )).

c) |p(P )| = |p(N∗)| = |r|.

Proof: Recall that κ < Λ by Definition 8.8. Now let π : N∗ −→ N
and π′ : P −→ N be the associated uncollapsing maps, and π∗ = π′−1 ◦ π :
N∗ −→ P . Both π′ and π∗ are Σ

(n)
0 -preserving and cofinal, and N∗ and P

have the same (n+ 1)-st projectum κ. The map π′ is sufficiently preserving
to guarantee that P is a premouse. By the Solidity Theorem of [3], P is
solid and its standard parameter is universal. (Since κ is a limit cardinal, P
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cannot be type Zp, because Zp levels always project to a successor cardinal.)

Setting p′ = π∗(pN∗), solidity implies that the parameter p′ is a top seg-
ment of pP . To see that a) implies b), notice first that p′ is a good parameter

for P . This follows by the standard argument: pick a set A that is Σ
(n)
1 over

N∗ in parameter pN∗ , such that A ∩ κ /∈ N∗. Letting A′ be Σ
(n)
1 over P in

parameter p′ by the same definition, we have A′ ∩ κ = A ∩ κ, so A′ ∩ κ /∈ P
by a). Hence p′ ≤ p(P ), and p′ ≥ p(P ) follows from Solidity.

Clause c) is an immediate consequence of b), so it remains only to derive
a) from c). We have seen that p(P ) is a lengthening of p′; clause c) then
implies that they are equal. So N∗ is HP

n+1(κ∪p(P ), and a) follows from the
universality of p(P ). �

The authors of [5] showed that strongness of a short divisor can be char-
acterized over the associated protomouse N(κ, q) in a simple way, which we
now describe.

Definition 8.14. Let M = (|M |, G) be a short protomouse or short pluripo-
tent level of W ; we say that an ordinal θ < θM is closed in M relative to
d(M) if and only if for every f : κ −→ P(κ) from M ||θ and every ξ < κ, we
have iG(f)(d(M), ξ) ∩ κ ∈ (M ||θ).

Notice that if θ < θ(M) is a limit of ordinals that are closed in M , then
θ itself is closed in M . Thus, the set of all θ < θ(M) which are closed in
M is a closed set. Notice also that if M is a pluripotent level of W then
θM = (κ+)M is trivially closed in M .

Lemma 8.15. (From [5]) Let N be a level of W and (κ, q) a short divisor
of N . Then (κ, q) is strong (that is, it satisfies d) of Definition 8.8) if and
only if θ(κ, q) is closed in N(κ, q).

Proof: Lemma 8.4 implies that for each x ⊂ λ we have x ∈ HullNn+1(κ∪
p(N)) just in case x is of the form iG(f)(q, ξ) for some ξ < κ and f : κ −→
P(κ) from dom(G), where G is the top extender of N(κ, q). So (κ, q) satisfies
d) if and only if x∩κ ∈ N∗(κ, q) for each such x which, in turn, is equivalent
to the requirement that iG(f)(q, ξ) ∩ µ ∈ (M ||θ). �
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Definition 8.16. Let N = Nτ be the collapsing-level for τ in W , as described
at the beginning of 7.2, and let q be a bottom segment of p(N). Then D∗q(N) =
{κ < Λ|(κ, q) is a strong short divisor of N}.

Lemma 8.17. (From [5]) D∗q(N) is closed and bounded in Λ.

Proof: First we show that it is closed. Given a limit point κ of D∗q(N),
the pair (κ, q) is clearly a short divisor of N . Suppose for contradiction that
(κ, q) is not strong. Let π : N∗ −→ N be the uncollapse map associated
with the divisor-hull of (κ, q), π′ : N ′ −→ N the uncollapse associated with
N ′ = HN

n+1(κ ∪ p(N)), and π∗ = (π′)−1 ◦ π. Let further r′ and p′ be the
π′-preimage of r and p(N), respectively. Then both N∗ and N ′ are premice,
as in 8.13. Also as before, we observe that p(N ′) is a lengthening of r′.

Granting that (κ, q) is not strong, p(N ′) is a proper lengthening of r′, by
8.13. Let α = max(p(N ′) − r′). As N ′ is solid or type Zp (by the Solidity
Theorem of [3]), Wα ∈ N ′, where Wα is the standard solidity witness for α
with respect toN ′ and p(N ′). Let r′α be the preimage of r′ under the canonical
witness map σ′α : Wα −→ N ′. Pick ξ < κ such that 〈α,Wα, r

′
α〉 = hN

′
n+1(ξ, p′);

this is possible since p′ is a very good parameter for N ′. Pick further a strong
divisor (κ̄, q) for N such that ξ < κ̄ < κ. Let N ′(κ̄) = HN

n+1(κ̄ ∪ p(N)). Let
π̄′ : N ′(κ̄) −→ N be the uncollapsing map, and p̄′ = (π̄′)−1(p(N)). Notice

that σ = (π′)−1◦ π̄′ is a Σ
(n)
1 -preserving embedding of N ′(κ̄) into N ′(κ) which

sends p̄′ to p′. By our choice of κ̄, the range of σ contains α, W , and r′α. Let

φ(x1...x`) be a Σ
(n)
1 -formula. Since W is the standard solidity witness for α

with respect to N ′ and p(N ′), the premouse N ′ satisfies the Π
(n)
2 -statement

(∀ξ1...ξ` < α)(φ(ξ1...ξ`, r
′) ↔ Wα |= φ(ξ1...ξ`, r

′
α)) .

Since Π
(n)
2 -statements are downward preserved under σ, the same is true

of ᾱ, r̄′, Q̄ and r̄′α in N ′(κ̄), where ᾱ, Q̄ and r̄′α are the σ-preimage of α, W ,

and p′α, respectively. Thus, if A is any set of ordinals which is Σ
(n)
1 -definable

over N ′(κ̄) in parameter r̄′ then A∩ κ̄, being Σ
(n)
1 -definable over Q̄ in param-

eter r̄′α, is an element of N ′(κ̄). It follows that r̄′ 6= p(N ′(κ̄)). By 8.13, (κ̄, q)
is not strong after all, contradiction.

Now we show that D∗q(N) is bounded in Λ. Suppose it was unbounded;
then by the above argument, (Λ, q) would satisfy all the conditions of a
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strong short divisor of N , except for the clause in Definition 8.8 that κ < Λ.
In particular, letting N∗ = HN

n+1(Λ ∪ r) and N ′ = HN
n+1(Λ ∪ p(N)), we

would have P(Λ) ∩ N∗ = P(κ) ∩ N ′. But N ′ = N by soundness of N , so
P(Λ) ∩ N = P(Λ) ∩ N∗. In the remainder of this proof, we will reach a
contradiction by showing that N∗ must be missing a subset of Λ which is in
N .

First we show that q is nonempty. Suppose q were empty; thenHullNn+1(Λ∪
r) = N by soundness, but this contradicts c) in Definition 8.8. So let
x = max(q). Then the ΣN

n+1-theory of N∗ = HN
n+1(Λ∪r) can be computed in

N from the solidity witness for x, since N is solid or Zp; and this theory will
therefore be an element of N . (If N is Zp and x = min(p(N)), recall that
N still satisfies weak solidity at x. Note that x > Λ, and taking any α with
Λ < α < x, we can still compute the ΣN

n+1-theory of N∗ = HN
n+1(Λ∪ r) from

the weak solidity witness for α.) But N∗ projects to Λ, so there is A ⊂ Λ
which is missing from N∗ but definable over N∗, and therefore an element of
N . This is the desired contradiction. �

The reason Schimmerling and Zeman introduced strong short divisors in
[5] is the following fact:

Lemma 8.18. (From [5]) Let (κ, q) be a strong short divisor of N and q̄
be a proper bottom segment of q. Then there is no κ̄ < κ such that (κ̄, q̄) is
a short divisor of N .

Proof: Suppose otherwise; let this be witnessed by (κ̄, q̄). Let r̄ =
p(N)− q̄; clearly r̄ is a proper lengthening of r and α = max(q) is an element
of r̄ − q̄. Now letting π(κ̄, q̄) be the uncollapse associated to the divisor-hull
of (κ̄, q̄), observe that hNn+1(κ̄ ∪ r̄) = range(π(κ̄, q̄)) contains a generalized
witness 〈Q, t〉 for α with respect to N and p(N), so 〈Q, t〉 must be in the
range of the larger embedding π′ : N ′ −→ N , where N ′ = HN

n+1(κ ∪ p(N)).
Notice that 〈Q, t〉 is a generalized solidity witness for α with respect to N
and r = p(N)− q. Then 〈Q′, t′〉 = (π′)−1(〈Q, t〉) is a generalized witness for
(π′)−1(α) ≥ κ with respect to N ′ and r′ = (π′)−1(r). It follows that p(N ′)
must be a proper lengthening of r′, which contradicts strongness by Lemma
8.13. �
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We can now show that there is a particular strong short divisor of N
which has a strictly larger divisor-hull than any other strong short divisor of
N .

Definition 8.19. Let N = Nτ be the collapsing-level for τ in W , and suppose
there is at least one strong short divisor of N . Let q be the smallest bottom
segment of p(N) such that D∗q(N) is nonempty. Let κ be the maximal element
of D∗q(N) (there is a maximal element, by Lemma 8.17). Then we say (κ, q)
is the canonical strong short divisor of N .

Remark: We will discuss the significance of canonical strong short divi-
sors for our �Λ construction in 9.6. For now we record an important feature
of these divisors in the following lemma.

Lemma 8.20. If (κ, q) is the canonical strong short divisor of N , then any
other strong short divisor (κ′, q′) of N must have q ⊆ q′ and κ′ ≤ κ; in other
words, the divisor-hull corresponding to (κ′, q′) is a subset of the divisor-hull
corresponding to (κ, q).

Proof: Clearly q ⊆ q′, because Definition 8.19 took the smallest q for
which there are any strong short divisors of N . Now if q = q′ then κ′ < κ,
again because Definition 8.19 took the largest κ for which (κ, q) is a strong
short divisor. On the other hand, if q ⊂ q′ then we must have κ′ ≤ κ, because
otherwise Lemma 8.18 gives a contradiction. �

8.3 Short Protomouse Condensation

The following lemma shows how short protomice arise from interpolations of
short pluripotent levels.

Lemma 8.21. If Nτ is short pluripotent and M is an interpolant of Nτ , then
M is a sound short protomouse.

Proof: Let X be the fully elementary countable hull from the interpola-
tion procedure. The ultrapower embedding iE : X −→ M is Σ0-elementary
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and cofinal, which is enough to verify a) and c) of 8.1. To see that the top ex-
tender G̃ of M is not total, note that because (Nτ , G) was short pluripotent,
κG < Λ. So (κ+

G)Nτ = (κ+
G)M , because these models agree up to Λ (indeed

slightly beyond it). However, in Nτ the amenable predicate coding G is split
into fragments which are cofinal in the height of Nτ ; specifically, letting Gξ

be the fragment measuring P(κG)∩(Nτ |ξ) for ξ < κ+
G, we have that {Gξ | ξ <

κ+
G} is cofinal in the height of Nτ . But G̃ =

⋃
η<κ+

G
iE(π−1(Gη)), and since π

is not cofinal in o(Nτ ), letting α = sup(π“(X)) and θ = sup({ξ | Gξ < α}),
we have θ < κ+

G and G̃ =
⋃
η<θ iE(π−1(Gη)). This shows that G̃ is not total

on M , and verifies all conditions of short protomousehood except for d) of
8.1; and this last clause follows from the fact that %1(M) = Λ, since Λ is not
the space of an extender in Nτ by PFS, and this fact is preserved by σ. The
fact that M is sound also follows easily from the preservation properties of
interpolation embeddings. �

Lemma 8.22. If Nτ is the collapsing-level for τ in W (following the conven-
tions set at the beginning of Section 7.2), and (κ, q) is a short divisor of Nτ

with associated protomouse Mτ = Nτ (κ, q), then any interpolant M of Mτ is
a short protomouse.

Proof: The proof is similar to the one we just gave for 8.21, but now
the target structure is a short protomouse Mτ instead of a short pluripotent
level of W , which in fact makes things easier. As before, let X be the fully
elementary countable hull from the interpolation procedure. The ultrapower
embedding iE : X −→ M is Σ0-elementary and cofinal, which is enough to
verify a) and c) of 8.1. b) follows easily from the fact that (κ+

G)M = (κ+
G)Mτ

and the fact that b) holds in Mτ . The rest of the lemma follows exactly as in
8.21. (Note that Mτ is sound and solid, by 8.7 and the fact that Mτ is the
protomouse associated with a sound and solid level of W .) �

Lemma 8.23. (Short Protomouse Condensation) Let Mτ = (|Mτ |, G)
be either a short pluripotent level of W , or the protomouse associated with
a divisor (κ, q) of Nτ , where Nτ is the collapsing-level for τ in W . Let
M = (|M |, G̃) be an interpolant of Mτ such that the interpolation embedding
has critical point τ̄ ∈ S (see Section 7.2), and let N be the associated ppm
of M . Then N is a level of W .
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Remark: The cases listed above are not exclusive– that is, pluripotent
levels can have divisors. In our construction we will take interpolants of
protomice associated with divisors (short or long) whenever there are such
divisors; pluripotent levels can be thought of as a “limiting case” of divisors
when there are no divisors proper, since the interpolants of a pluripotent
level are similar to the interpolants of protomice.

Proof of 8.23: By either 8.21 or 8.22, we have that M is a short
protomouse with %1(M) = Λ. Let σ : M −→ Mτ be the interpolation em-
bedding. Now we describe how N can be embedded into an L[E]-level. If Mτ

is a protomouse then let iG : (N∗)Mτ −→ Nτ be the associated ppm embed-
ding. Similarly, if Mτ is a short pluripotent level then Ultm(Mτ |κ+

G, G) =
(Mτ ||o(Mτ )), where m is largest possible so that this ultrapower is de-
fined; this is a basic property of coherent structures. In this case we set
(N∗)Mτ = Mτ |κ+

G, and again we have iG : (N∗)Mτ −→ Nτ .

There is a natural embedding π : iG̃(N∗) −→ iG(N∗), given by

π(iG̃(f)(α)) = iG(f)(σ(α)) .

Thus we have the diagram
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(Mτ , G)

5

(N∗)Mτ Ult((N∗)Mτ , G) = Nτ

5

(M, G̃) iG(N∗)

5

N∗ N

iGσ

iG̃

π

Note that iG(N∗) is a level of W , and π is Σn+1-elementary. Also,
crit(π) = crit(σ) = τ̃ .

We would like to see that N is a plus-one premouse, by applying Lemma
1.10.

Claim: N satisfies projectum-free spaces.

Proof: For k < n, iG̃(%k(N
∗)) = %k(N), and by elementarity we can

conclude that none of these projecta cause a failure of PFS. For k = n, if
iG̃ is continuous at %n(N∗) the same argument applies, whereas if iG̃ is dis-
continuous at %n(N∗) then %n(N∗) must be Σn-singular in N∗ and therefore
a limit cardinal of N∗. Then %n(N) = sup(iG̃“%n(N∗)) is a limit cardinal of
N and therefore cannot cause a violation of PFS. Finally, we have by the
previous lemma that %n+1(N) = %ω(N) = Λ. But Λ cannot be the space
of an extender on the N -sequence, since π(Λ) = Λ would then be the space
of an extender on the iḠ(N∗)-sequence, that is, on the L[E]-sequence; and
iḠ(N∗)CNτ , which projects to Λ, so we would then have a PFS violation in
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Nτ . Clause b) of projectum-free spaces follows easily by elementarity of iG̃: if
N has a short top extender F such that κF = κH for a total long extender H
on the N -sequence, and %1(N) ≤ κF , then i−1

G̃
(κF ) has these same properties

in N∗, contradicting that N∗ is a premouse. �

If n ≥ 1 then iG̃ is Q(1)-preserving, a fortiori Σ2-preserving, so we can
apply clauses a), b), or f) of Lemma 1.10, depending on the mouse-type of
N∗, to conclude that N is a plus-one premouse of the same type as N∗.

If n = 0 we would like to apply c), d), or e) of Lemma 1.10. If N∗ is
passive this is trivial, so assume it is active with top extender H∗. Also, if
N∗ is type Z1 with stretching-extender F , then κG̃ 6= (κ+

F )N
∗
, because κG̃ is

a limit cardinal in N∗. For the remainder of the proof we must consider two
cases.

Case 1: κG̃ 6= λH∗ . In this case iG̃ is continuous at λH∗ , since we are
taking a coarse ultrapower and λH∗ is a regular cardinal in N∗, while iG̃ is
only discontinuous at points of N∗-cofinality κG̃. Similarly, iG̃ is continuous
at νN∗ in the Z1 case, because νN∗ has cofinality (κ+

F )N
∗
, and iG̃ is continuous

there. This verifies all the hypotheses of c), d), or e) of Lemma 1.10.

Case 2: κG̃ = λH∗ . In this case iG̃ is discontinuous at λH∗ and we can-
not apply Lemma 1.10. It is still clear that N is a potential premouse, by
Claim 1.2. Let iG̃(H∗) = H be the top extender of N . If N∗ is long and
Dodd-solid then so is N , by an easy elementarity argument. Similarly, if
N∗ is long and type Z1 then so is N , by elementarity combined with the
fact that iG̃ is continuous at νN∗ . The only remaining clause we need to
verify for N to be a premouse is the Jensen initial segment condition (JISC).
The fact that iG̃ is discontinuous at λH∗ disrupts our attempt to push the
Jensen initial segments of N∗ upwards to N ; in fact, N might have a different
ABC-mousetype than N∗. We must instead look at an upward embedding
π′ : N −→ N ′, where N ′ is an L[E]-level or Jensen initial segment thereof,
and draw the JISC downward from there. For this we will need to know that
π′ is continuous at λH .

If π : N −→ iG(N∗) sends λH cofinally to λ(iG(N∗)), set N ′ = iG(N∗),
H ′ = top extender of iG(N∗), and π′ = π. Otherwise, set H̃ = top extender
of iG(N∗), and λ′ = sup(π“(λH)) < λH̃ . (In this case N ′, H ′, and π′ are
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defined after the following Claim.)

Claim: λ′ is a cutpoint of H̃.

Proof: For any f : κn
H̃
−→ κH̃ with f ∈ iG(N∗), and any a ∈ (λ′)<ω if H

is short, or a ∈ (λ′ ∪ νH)<ω if H is long, we need to see that iH̃(f)(a) < λ′.
WLOG assume f is monotonically increasing (on all n of its coordinates).
Note that f ∈ N as well, since crit(π) > Λ ≥ dom(H). And because
λ′ = sup(π“(λH)), there is b ∈ range(π) such that b(i) > a(i) for i < n.
Thus iH̃(f)(a) ≤ iH̃(f)(b) = β ∈ range(π). And β < λ′ because it is in
range(π). This proves that λ′ is a cutpoint. �

Then set H ′ = H̃ � λ′ and N ′ = the coherent structure associated with
H ′ (specifically, N ′ = (iG(N∗)||(λ′)+, H ′)). Letting j : N ′ −→ iG(N∗) be
the natural factor-map corresponding to the whole initial segment, note that
range(π) ⊆ range(j) (because the projectum and standard parameter of N
are ≤ λH), so we can define π′ : N −→ N ′ by setting π′ = j−1 ◦ π. In either
case, we now have π′ : N −→ N ′ sending λH cofinally into its image.

Claim: N is not type C (short or long).

Proof: We know that N = hN1 (Λ ∪ p(N)), and that λH > Λ. If any
α > sup(Λ ∪ p(N)) was a cutpoint of H, we would have hN1 (Λ ∪ p(N)) ⊆ α,
contradiction. �

Being a cutpoint is a Π1-fact about an ordinal α. Furthermore, for
any cutpoint α of N ′, (π′)−1“(α) is a cutpoint of N ; this is because for
any f : κnH −→ κH with f ∈ N , and any a ∈ ((π′)−1“(α))<ω, we have
iH′(f)(π(a)) = β < α because α is a cutpoint. By elementarity, β ∈ range(π)
and iH(f)(a) = π−1(β) < (π′)−1“(α).

It follows from the above discussion, along with the λ-cofinality of π′,
that N has no cutpoints if and only if N ′ has no cutpoints, and that N has a
largest cutpoint α if and only if N ′ has a largest cutpoint. In the latter case
we need to see that (H � α) ∈ N . Note that π′(α) = α′ is a cutpoint of H ′,
by elementarity.

Claim: π′((α+)Ult(N,H�α)) = (α′+)Ult(N
′,H′�α′).
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Proof: π′ is continuous at the point in question, because it has cofinality
= (κ+

H)N = (κ+
H′)

N ′ < crit(π′). �

By the JISC for N ′, we know that H ′ � α′ is indexed on the N ′-sequence
at (α′+)Ult(N

′,H′�α′). But we have just seen that this is in the range of π′, so
H ′ � α′ is in the range as well. But then π−1(H ′ � α′) = H � α by elementar-
ity (being an initial segment of the model’s top extender is a Π1-property).
This finishes the proof that N satisfies the JISC, and therefore is a premouse.

We are finally ready to apply Condensation to the π′ : N −→ N ′ embed-
ding. We know that N ′ is an iterable premouse of the same type as N (N ′ is
iterable because it is either an L[E]-level or embeddable into one), that N is
sound, and that %(N) < crit(π). This allows us to apply the Condensation
Lemma to π : N −→ iG(N∗). Notice that Anomalous Case 4 does not apply,
since if there were a total long extender R on the Nτ -sequence such that
Λ = (κ+

R)Nτ , then Nτ violates projectum-free spaces, contradiction. (And
clearly if there are no such extenders on the Nτ sequence, there are none on
the iG(N∗)-sequence.)

Also recall that crit(π) = τ̄ ∈ S, so τ̄ is not an index or pseudoindex. It
follows that c) and d) of the Condensation Lemma are impossible. Because
π has a critical point τ̄ , it is not the identity, so a) of Condensation is im-
possible. This leaves b), and thereby proves the lemma. �

9 Long Protomice

We have a similar situation with long pluripotent levels Nτ , in which their
interpolants turn out to be long protomice.

9.1 Fine Structure for Long Protomice

Definition 9.1. A long protomouse M = (|M |, G̃) is a J-structure, consid-
ered in the language of coherent structures, such that
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a) |M | is a passive premouse with k(|M |) = 0,

b) G̃ is a long extender over |M | that is not total on |M |; more precisely,
there is an ordinal θ with κ+

G̃
< θ < κ++

G̃
such that G̃ measures exactly the

subsets of κ+

G̃
in M |θ, and θ = (κ++

G̃
)M |θ;

c) M satisfies the coherency condition (Ultn(M ||θ, G̃))|o(M) = |M |,

d) κ+

G̃
< %1(M),

e) %1(M) is not the space of an extender on the sequence of Ultn(N∗, G̃),
where 〈N∗, n〉 is the collapsing-level for θ in M ;

f) G̃ has a largest generator ν = νM ,

g) G̃ � λG̃ is on the M-sequence (short initial segment condition).

Remark: Note that the short initial segment condition g) demands that
our long protomice still have the total short part of G̃ on their sequence.
Also, it is a basic fact about plus-one premice that this short extender must
be indexed at the first long generator of G̃. Also note that b) and c) imply
that iG̃“(θ) will be cofinal in o(M).

Again, we will use the language of coherent structures to deal with long
protomice. This means we will be working with their Dodd parameters d(M),
and %1(M) in the above definition is the Dodd projectum. Also, as in the
short case, we only need to consider Σ1-definability for long protomice (in

the language of coherent structures), and never need to talk about Σ
(n)
1 -

definability over long protomice for n > 0.

Remark: The Dodd parameter of a long protomouse always has largest
element νM , since this is the largest generator of G̃. Since νM has cardinality
λG̃, all other elements of the Dodd parameter will be < λG̃.

Definition 9.2. Given a long protomouse M = (|M |, G̃), let θM = dom(G̃).
(Note κ+

G̃
< θM < (κ++

G̃
)M .) Also, let (N∗)M be the collapsing-level for θ in

M ; so (N∗)M = 〈N∗, n〉 where n is such that κG̃+ = %n+1(N∗) < %n(N∗).
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Definition 9.3. Given a long protomouse M = (|M |, G̃), let µM be the least
long generator of G̃.

Remark: Condition g) of 9.1 implies that the short extender G̃ � λG̃ is
indexed at µM on the M -sequence.

One new problem which arises for long protomice is that Ultn(N∗, G̃) will
not always be a potential premouse– it may be a short protomouse. This will
happen exactly when M is type 2, as defined below:

Definition 9.4. We say a long protomouse M = (|M |, G̃) is type 2 if
(N∗)M = 〈N∗, n〉 is active with short top extender D, n = 0, and κD = κG̃.
Otherwise we say M is type 1.

We will deal with long protomice of type 2 in the next subsection. For
now we prove some general finestructural lemmas, which will be applicable
in both the type 1 and type 2 cases. In the type 1 case the associated em-
bedding will be elementary in the language of premice, while in the type 2
case we will need to consider N∗ in the language of coherent structures, and
will consider its Dodd parameter instead.

Definition 9.5. Given a long protomouse M of type 1 with top extender G̃
and (N∗)M = 〈N∗, n〉, we define the associated ppm of M to be Ultn(N∗, G̃),
and we call iG̃ the associated embedding.

Lemma 9.6. The associated ppm N of a type 1 long protomouse M is a
potential premouse.

Proof: By the remark following 2.9, it suffices to show that if N has a top
extender, it is total on N . This is immediate if n > 0 or N∗ is passive; and if
n = 0 and N∗ has top extender E then we need to know that the associated
ppm embedding iG̃ is continuous at dom(E). But iG̃ is only discontinuous at
κG̃, which is a limit cardinal of N∗ and hence not the domain of E, and κ+

G̃
,

which can only be the domain of E if E is short and κE = κG̃. But this is
exactly the situation where M is of type 2. �

Remark: Fortunately, the technical case-splitting which we had to con-
sider in the Remarks following 8.3 in the short protomouse case does not
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arise with long protomice. Recall that this problem arose because the asso-
ciated ppm embedding i : N∗ −→ N was discontinuous at λ(N∗). In the
long protomouse case, however, if N∗ is active then λ(N∗) is a limit cardinal
in N∗ and also the largest cardinal in N∗, hence it must be > κ+

G̃
, and i is

continuous there.

We now prove analogues of the finestructure translation lemmas 8.4, 8.5,
and 8.6 from the short case.

Lemma 9.7. (Parameter-Less Simulation of Definable Singletons
of N from within Long Protomouse)

Let M = (|M |, G̃) be a long protomouse. Let κ = κG̃, ν = νG̃, and
N∗ = (N∗)M . Let i : N∗ −→ N be the associated embedding. Let ζ < ν + 1,
b ⊂ (ν+1) be finite, and r = i(p(N∗)), so min(r) ≥ λ+ > ν if r is nonempty.

Then {ζ} is (Σ
(n)
1 )N -definable from r, b, and some finite c ⊂ i“(κ+) if and

only if there is an f : κ+ −→ κ+ in N∗ such that ζ = i(f)(b).

Here we consider all parameters and definability relations to be in the
language of premice if M is type 1, and in the language of coherent structures
if M is type 2.

Proof: We begin with the forward implication. Suppose ζ is the unique
object such that N |= (∃z)ψ(z, ζ, r, c, b) where ψ is a Σ

(n)
0 -formula. Fix a

δ∗ < %N
∗

n large enough such that, setting δ = i(δ∗), there is a z ∈ JEδ
witnessing this existential statement; such a δ∗ exists since i is cofinal in
N (n). Let c∗ = i−1(c). Define a partial map f : κ+ −→ κ+ as follows:

f(x) = the unique ξ < κ+ such that N |= (∃z ∈ JEδ∗)ψ(z, ξ, p(N∗), c∗, x) .

Then f , being a (Σ
(n)
0 )N subset of κ+ < %n(N∗), is an element of N∗.

Applying i, it follows that i(f)(x), if defined, is the unique ordinal ξ < λ
such that we have (∃z ∈ JEδ )ψ(z, ξ, r, c, x) in N . But for x = b, we know that
i(f)(x) is defined, so i(f)(b) = ζ. Obviously, f can be turned into a total
function on κ+ by setting f(x) = 0 whenever f(x) is undefined by the above
definition.
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To see the converse implication, suppose ζ = i(f)(b) for f , b as above;
since N∗ is sound, there is a finite c∗ ⊂ κ+ such that f = hN

∗
n+1(c∗, p(N∗)).

The preservation properties of i then give i(f) = hNn+1(i(c∗), r), so ζ can be

defined in a Σ
(n)
1 -fashion over N as follows:

(∃g)(g = hNn+1(i(c∗), r) & ζ = g(b)) .

�

Lemma 9.8. (Simulation of Definable Classes of N from within
Long Protomouse, in Parameter θ)

Let M = (|M |, G̃) be a long protomouse. Let ν = νG̃ and i : N∗ −→ N
be the associated ppm embedding. Let r = i(p(N∗)), so min(r) ≥ λ+ if r is

nonempty. Then for any Σ
(n)
1 -formula φ(v0...v`) in the language of premice,

there is a Σ1-formula φ∗(v0...v`) in the language of coherent structures such
that for every tuple x1...x` ∈M |(ν + 1), we have

N |= φ(r, x1...x`) if and only if M |= φ∗(θ, x1...x`) .

Here we consider all parameters and definability relations to be in the
language of premice if M is type 1, and in the language of coherent structures
if M is type 2.

Proof: We may assume x1...x` are all ordinals < (ν + 1). Suppose

φ is of the form (∃z)ψ(z, vo...v`) where ψ is Σ
(n)
0 . Then N |= φ(r, x1...x`)

if and only if (∃u ∈ (N∗)(n))[N |= (∃z ∈ π(u))ψ(z, r, x1...x`)]. Using  Loś’s
Theorem, this can be expressed in a Σ1-fashion over M as

(∃Q, p∗, κ, a, y, u,m)φ∗0(Q, p∗, κ, a, y, u,m, θ, x1...x`)

where φ∗0(Q, p∗, κ, a, y, u,m, θ, x1...x`) is the conjunction of the following
statements:

• Q is an initial segment of M and m ∈ ω,

• θ = (κ++)Q, %m+1(Q) = κ < %m(Q), p∗ = p(Q) and u ∈ Q(n),

• a = {〈η1...η`〉 ∈ κ+ | Q |= (∃z ∈ u)ψ(z, p∗, η1...η`)},
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• y = iG̃(a) � (ν + 1) and 〈x1...x`〉 ∈ y.

This proves the lemma. �

Lemma 9.9. (Simulation of Long Protomouse From its Associated
Premouse)

Let M = (|M |, G̃) be a long protomouse. Let κ = κG̃, λ = λG̃, ν = νG̃,
µ = µG̃, and i : N∗ −→ N be the associated ppm embedding. Further, let
Z = the image of κ+ under iEµ; that is, since µ indexes the short part of

G̃, Z = i“(κ+). Finally let r = i(p(N∗)), so min(r) ≥ λ+ if r is nonempty.
Then if φ(v1...v`) is a Σ1-formula in the language of coherent structures, there

is a Σ
(n)
1 -formula ψ(v, v′, v∗, v0...v`) in the language of premice and an ordinal

ξ0 ∈ Z such that for every x1...x` ∈M ,

M |= φ(x1...x`) if and only if N |= ψ(r, ξ0, µ, ν, x1...x`) .

Here we consider all parameters and definability relations to be in the
language of premice if M is type 1, and in the language of coherent structures
if M is type 2.

Proof: Since φ is a Σ1-formula, M |= φ(x1...x`) if and only if there is
an ordinal ζ < o(M) = λ+ such that 〈M ||ζ,G∩ (M ||ζ)〉 |= φ(x1...x`). Fixing
an ordinal ξ0 ∈ Z such that hNn+1(ξ0, r) = λ+, this can be expressed over N
in the parameters r, µ, ν, ξ0 as

(∃Z, ζ, λ+, β1, β2, f, G,Q) ψ(Z, ζ, λ+, β1, β2, f, G,Q, r, ξ0, µ, ν, x1...x`)

where ψ is the conjunction of the following statements:

• Z = iEµ“(crit(Eµ)+) ;

• β1, β2 ∈ Z and ζ < λ+ ;

• ζ = hNn+1(β1, r) , f = hNn+1(β2, r) , and λ+ = hNn+1(ξ0, r) ;

• f : λ+ onto−−→ P(λ+) ∩ (N ||ζ) ;
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• G = {〈transitive collapse of (f(α) ∩ Z), f(α) � (ν + 1)〉|α < κ+} and
Q = 〈N ||ζ,G〉 ;

• Q |= φ(x1...x`) .

In other words, ψ asserts that there is a level N ||ζ and a surjection

f : λ+ onto−−→ P(λ+) ∩ (N ||ζ) which are both in the range of i (so that their
collapses in N∗ will be, respectively, a level of N∗ and a surjection from
κ+ onto that level’s P(κ+)). From here we can describe a fragment of the
protomouse-extender, here called G, as the set of ordered pairs of subsets
of κ+ in this level of N∗ and the subsets of λ+ which they stretch to by i,
chopped down to length ν + 1. (This is trivially equivalent to our official
description of long extender predicates.) The resulting structure Q is a level
of M . There is an additional detail here which did not occur in the short
extender case; namely, to recover a subset X of κ+ from the subset Y of λ+

which it stretches to, we must take the transitive collapse of Y ∩Z, where Z
is as defined at the beginning of the proof. �

We can now relate the finestructural properties of M and N , analogously
to Lemma 8.7 from the short case. Recall that for a long protomouse M ,
WM
α,s = HM

1 (α ∪ {s}); and for a premouse 〈N, n〉, WN
α,s = HN

n+1(α ∪ {s}).

Remark: Recall from the discussion at the beginning of 7.2 that at cer-
tain points in our construction we will require an assumption that the largest
generator ν of our long plus-one premice is a successor generator, and there-
fore that it indexes an initial segment of the top extender. We will explicitly
mention this assumption wherever it is used.

Lemma 9.10. Let M = (|M |, G̃) be a long protomouse. Let κ = κG̃, λ = λG̃,
ν = νG̃, µ = µG̃, and let the associated ppm embedding i : N∗ −→ N be an
n-embedding (that is, k(N∗) = n). Further, let Z = the image of κ+ under
iEµ; that is, since µ indexes the short part of G̃, Z = i“(κ+). Finally let
r = i(p(N∗)), so min(r) ≥ λ+ if r is nonempty, and set η = o(M) = (λ+)N .
Then

a) %1(M) = %n+1(N).
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Denote this common value by %. Granting that κ+ < % and that ν is a
successor generator of G̃, the following holds:

b) pn+1(N) ∩ λ+ = d(M).

c) M is 1-sound if and only if N is (n+ 1)-sound.

d) Let s be a finite subset of ν+1 and α be an ordinal with θ ≤ α ≤ (ν+1).
Then WN

α,s∪r = Ultn(N∗, G), where G is the top extender of WM
α,s (so G has

the same ultrapower as G̃ � (coordinates in α∪ s)). Moreover, the associated
ultrapower embedding is precisely the uncollapsing map associated with the
Σ

(n)
1 (WN

α )-hull of Z ∪ r̄, where r̄ is the preimage of r under the canonical
witness map.

e) M is 1-solid if and only if N is (n+ 1)-solid.

Here we consider all parameters and definability relations to be in the
language of premice if M is type 1, and in the language of coherent structures
if M is type 2.

Proof: Note that N is generated by (ν + 1) ∪ i“(N∗) = (ν + 1) ∪ r ∪ Z.
Because r is finite and Z ⊂ µ, it follows that %n+1(N) ≤ µ, and in fact
%n+1(N) ≤ λ, since µ has N -cardinality λ. Also note %1(M) ≤ λ, because G̃
gives a ΣM

1 -surjection from λ onto M .

First we show a). If A is a Σ1(M)-relation in p1(M) then by 8.6 there is a

Σ
(n)
1 (N)-relation A∗ in p1(M), r, µ, ν, and some ξ0 ∈ Z such that A∗ agrees

with A up to (ν + 1) > %1(M). Choose A such that A ∩ %1(M) /∈ M . Then
A∗ ∩ %1(M) is not an element of N ; this follows from the fact that η = o(M)
is a cardinal in N . Thus, %n+1(N) ≤ %1(M). The dual argument using 8.5
yields the converse, which proves a).

From now on suppose that κ+ < % and that ν is a successor generator.
We now prove b). The ordinal %, being ≤ λ, is a cardinal in both M and N .

It follows that θ < %. Given A as above, by 8.6 there is a Σ
(n)
1 -relation A∗ and

some ξ0 ∈ Z such that A(ξ)↔ A∗(d(M), r, µ, ν, ξ0, ξ) whenever ξ < λ. From

A∗ we obtain a new subset of % which is Σ
(n)
1 (N) in d(M)∪r∪{µ}∪{ν}∪{ξ0}.

But note that ν ∈ d(M), and that µ is Σ
(n)
1 (N)-definable from ν because of
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our assumption that ν is a successor generator and therefore indexes a total
fragment of G̃. We also have that ξ0 ∈ Z is Σ

(n)
1 (N)-definable from µ ∪ %,

because all elements of Z are definable from µ∪κ+ (recall that Z = iEµ“(κ+))
and we are supposing that κ+ < %. It follows that the parameters µ, ν, and ξ0

were not really needed in the above definition, so that in fact our new subset
of % is Σ

(n)
1 (N) in d(M)∪r. We have shown that pn+1(N) ≤lex r∪d(M) and,

consequently, pn+1(N) ∩ λ+ ≤lex d(M). As before, the dual argument yields
the converse, which proves b).

If M is 1-sound, then every ξ < (ν + 1) is Σ1(M)-definable from d(M) =
pn+1(N) ∩ λ+ and a parameter less than %. Thus, every ξ < (ν + 1) is

Σ
(n)
1 (N)-definable from r ∪ (pn+1(N) ∩ λ+) = pn+1(N) and parameters less

than %. But recall that N is generated by (ν + 1) ∪ r ∪ Z = (ν + 1) ∪ r. In
other words, N = HullNn+1(% ∪ {pn+1(N)}). Thus, pn+1(N) ∈ Rn+1(N), so
N is (n+ 1)-sound. The converse follows again by the dual argument, which
proves c).

Next we prove e) from d). To see that the 1-solidity of M implies the
(n + 1)-solidity of N , notice that WM

α = HM
1 (α ∪ {d(M)}) can be encoded

into a Σ1(M) subset A of α. Such an A is in JEη by acceptability, and WM
α

can be reconstructed from A inside JEη . But then also WN
α is in JEη by d).

For the converse use again the dual argument.

Finally we show d). Let σ̄ : WM
α,s −→ M be the canonical witness map,

ν̄ = νG and η̄ = o(WM
α,s). Since σ̄ is Σ1-preserving, dom(G) = P(κ+)∩(M |θ),

so G can be applied to N∗ (notice that N∗ is an initial segment of WM
α,s).

Let W = Ultn(N∗, G) and π̄ : N∗ −→ W the associated ultrapower map.

Clearly π̄ is Σ
(n)
0 -preserving and cofinal, and W = HullWn+1((ν̄ + 1) ∪ {r̄}),

where r̄ = σ̄(p(N∗)). We can also define a natural factor-map σ : W −→ N

by σ(π̄(f)(a)) = i(f)(σ̄(a)) for a ∈ [ν̄ + 1]<ω. It is easy to see that σ is Σ
(n)
0 -

preserving and cofinal, by  Loś’s Theorem for Σ
(n)
0 -formulas together with

the cofinality of σ̄ and i. Also, i = σ ◦ π̄ and crit(σ) ≥ η̄. It follows that
σ(r̄) = r, σ � α = id, and, letting s̄ be the σ̄-preimage of s − (α + 1), also
σ(s̄) = σ̄(s̄) = s−(α+1). As each ζ < (ν̄+1) is Σ1(WM

α,s)-definable from s̄ and
parameters below α, 8.6 allows us to conclude that W = HullWn+1(α∪{r̄∪s̄}),
so HullNn+1(α∪{r∪s−(α+1)}) = range(σ). But this means that W = WN

α,r∪s
and σ is the associated witness map.
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There is a difficulty which might arise in the above argument: if N∗ is
a type Zp premouse and k(N∗) = 0, then iG̃ will be discontinuous at κ+,
and Ult0(N∗, G̃) may not be weakly solid. We can solve this problem in the
same way we dealt with Anomalous Case 2 in the Condensation Lemma. In
particular, an argument similar to that given in Section 6.3 shows that G̃ has
only a single long generator νG̃. Now instead of applying G̃ to N∗ we will
apply it to the generalized core of N∗. More precisely, letting H be the gen-
eralized core of N∗ as described in Definition 2.21, we form N = Ult0(H, G̃).
Again following the argument of Section 6.3, we conclude that N is a type
Zp premouse with stretching-extender G̃ � λG̃. Thus, even in this case we
have the requisite solidity for N . We omit further detail.

�

9.2 Long Protomice of Type 2

The procedure for dealing with long protomice of type 2 is more complex
than that for type 1. The problem is that P = Ult(N∗, G̃) is not a premouse
in this case, because it has non-total top extender F . Thus we must take a
second ultrapower of the longest measured initial segment by this partial top
extender; and this time we can show that the ultrapower is a premouse.

Recall that when M is a of type 2, it has a long top extender G̃ with
domain θ, where θ is a local κ++, and the collapsing-level for θ is N∗, where
N∗ has short top extender D with κD = κG̃ = κ, and k(N∗) = 0.

Lemma 9.11. If M = (|M |, G̃) is a long protomouse of type 2, then P =
Ult0(N∗, G̃) satisfies all the conditions for short protomousehood in Defini-
tion 8.1, except possibly d).

Proof: Since n = 0 in this case, clearly k(P ) = 0. Let i = iG̃ be the
ultrapower map; then the top extender F of P is given by F = i“(D), where
i“(D) is the pointwise image of the fragments of D. Since dom(D) = κ+, we
have dom(F ) = sup(i“(κ+)) = µG̃, where µG̃ is the least long generator of
G̃. But i is discontinuous at κ+, so µG̃ < i(κ+) = (κ+

F )P . Hence F is not
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total on P .

The remaining conditions of short protomousehood, other than d), follow
easily by Σ1-elementarity of i. �

Definition 9.12. For M a long protomouse of type 2, the associated short
quasi-protomouse of M is Ult0(N∗, G̃).

Lemma 9.13. Let M = (|M |, G̃) be a long protomouse of type 2 with asso-
ciated short quasi-protomouse P = (|P |, F ). Let κ = κG̃ and λ = λG̃. Then
P |(λ+)P = |M |, dom(F ) = µG̃, and EP

µG̃
= G̃ � λ. Thus the collapsing-level

for µ in P is P |µ itself, and %1(P |µ) = λ.

Proof: The fact that P |(λ+)P = |M | is an immediate consequence of the
coherency condition for M , that is, c) of 9.1. We saw in the proof of 9.11
that dom(F ) = µG̃. The fact that EP

µG̃
= G̃ � λ, and therefore that P |µ

collapses its own height in a Σ1-way, follows from the Remark after 9.1. �

We now apply F to the longest initial segment of P which it measures;
we have just seen that this initial segment is Q = P |µ = (P ||µ, G̃ � λ), and
that k(Q) = 0.

Definition 9.14. Let M = (|M |, G̃) be a long protomouse of type 2 with
associated short quasi-protomouse P = (|P |, F ), and let Q = P |µ be the
collapsing-level in P for dom(F ). Then the associated ppm of M is Ult0((P |µ), F ).

Lemma 9.15. Let M = (|M |, G̃) be a long protomouse of type 2 and N its
associated ppm. Then N is a potential premouse.

Proof: We apply 2.9 to the embedding iF : Q −→ N . Note that N
has a total top extender H, since Q has top extender G̃ � λ with domain
= κ+ < crit(F ) = λ. So H has domain (κ+)Q = (κ+)N . The rest follows
immediately. �

Note that iF : Q −→ N is discontinuous at λ = λG̃, so we cannot apply
Lemma 2.24 to see that N is a premouse. We will have to verify the ISC
for N , and thereby show that it is a premouse, by considering its upward
embedding into a level of W .
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Lemma 9.16. Let M = (|M |, G̃) be a long protomouse of type 2, P =
(|P |, F ) its associated short quasi-protomouse, and N = (|N |, H) its associ-
ated ppm. Then |P | = |N |, and F is Σ1-definable over N in the parameter
µ, where µ is the least long generator of G̃.

Proof: The fact that |P | = |N | is an easy consequence of the coherency of
F , which was proved in 9.11, together with the fact that o(Q) = dom(F ) = µ.
To see that F is Σ1-definable over N from µ, we observe that H is the stretch
of G̃ � λ by F , and that G̃ � λ is still indexed at µ on the N -sequence, by
coherency. Therefore N can define F by factoring its top extender H into
the part up to λ, which corresponds to G̃ � λ, and the part up to λH , which
corresponds to F . More formally, we define the relation R(X, Y ) over N , in
parameter µ, as follows (recall that Eµ = G̃ � λ):

N |= R(X, Y ) iff (∃ξ < κ+
H) [(iEµ(N |ξ) = X) & iH((N |ξ) = Y )] .

Then N |= R(X, Y ) if and only if X ∈ iEµ“({(N |ξ) | ξ < κ+
H}) and

iF (X) = Y . Since iEµ“({(N |ξ) | ξ < κ+
H}) is a cofinal subset of dom(F ), the

relation R is easily seen to be equivalent to the predicate F . �

We also need to track the parameters and projecta of the models under
consideration.

Lemma 9.17. Let M = (|M |, G̃) be a long protomouse of type 2, with κ = κG̃
and λ = λG̃, and let N = (|N |, H) be its associated ppm. Then %1(N) =
%1(M), and p(N) = d(M) ∪ r, where, letting i : N∗ −→ P be the associated
embedding, r = i(d(N∗)).

Remark: In this case H is a type C premouse, so d(N) = p(N).

Proof: Recall that %1(P ) = %1(M) and d(P ) = d(M) ∪ r, by Lemma
9.10. Letting Q = P |µ be the collapsing-level in P for dom(F ), recall that
%1(Q) = λ (in fact %ω(Q) = λ, because λ is a cardinal in P ). It follows that
p(Q) is empty, because λ = λG̃�λ, and Q has top extender G̃ � λ.

The same argument that we used in Lemma 9.10 for clause d) implies that
N has solidity witnesses for all elements of d(P ), which implies d(P ) ≤lex
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p(N). Also, the canonical missing subset of P , ThP1 (%1(P ) ∪ d(P )), is Σ1-
definable over N , because of our previous lemma that F is Σ1-definable over
N , and |P | = |N |. Finally note that %1(N) ≥ %1(P ), because any definition
of a subset of some α < %1(P ) in N can easily be pulled back to a definition
of that same subset of α over P (recall here that N = Ult0((P |µ), F ), and
the critical point of this ultrapower map = λ > %1(P )), and P(α)P = P(α)N .
This implies d(P ) ≥lex p(N).

We have shown that %1(N) = %1(M) and p(N) = d(M)∪ r, as desired. �

Lemma 9.18. Let M = (|M |, G̃) be a long protomouse of type 2, P =
(|P |, F ) its associated short quasi-protomouse, and N = (|N |, H) its as-

sociated ppm. Then N∗ = Hull
(|P |,F )
1 (Z ∪ r), where Z = iEµ“(κ+

H) and
r = p(N)− (λ+

µ ).

Proof: We know that N∗ = HullP1 (Z∪iG̃(d(N∗))), and that iG̃(d(N∗)) =
p(N)− (λ+

µ ) = r. The lemma follows immediately. �

Essentially, what the above lemmata allow us to do is recover the original
type 2 protomouse M from its associated ppm N , via a similar process to
the type 1 case. Within N , we first define the predicate F , which is the top
extender of P = Ult0(N∗, G̃). Then N∗ can be recovered as a Σ1-hull in this
language, and G̃ recovered as the uncollapse map; thus we can get back to
the protomouse M = (|M |, G̃) = (N ||iG̃(κ+), G̃). This will be the key to our
description of type 2 long divisors in a later subsection. First, though, we
turn to the more basic description of long divisors which yield type 1 long
protomice.

9.3 Long Divisors

Remark: The following definition is crucial to our �Λ construction, and it
is only appropriate under the “smallness assumption” described at the be-
ginning of 7.2. For the fully general �Λ construction, some different notion
of long divisor is presumably needed as well.
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Definition 9.19. Let N = Nτ̄ be the collapsing-level for τ̄ in W , with
%n+1(N) = Λ < %n(N) and τ̄ = (Λ+)N . Then an ordinal ν ∈ p(N) is a
long divisor of N if the following conditions hold:

a) There is an extender Eν on the N-sequence such that, letting κ =
κEν and λ = λEν , we have κ+ < Λ < λ, and λ+ = (λ+)N < %n(N),

Letting r = p(N)− (ν + 1), Eµ = Eν � λ be the short part of Eν (indexed
at µ on the N-sequence), and Z = iEν“(κ+) = iEµ“(κ+), we have:

b) HullNn+1(Z ∪ r) ∩ %n(N) is cofinal in %Nn ,

c) HullNn+1(Z ∪ r) ∩ λ+ = Z,

d) λ+ is not the space of an extender on the N-sequence,

We refer toHN
n+1(Z∪r) as the divisor-hull associated with a long divisor ν.

Our long divisors are in fact quite similar to the short divisors consid-
ered in [5], except that they are of course designed to correspond to long
protomice. The key difference between long protomice and short protomice
is that long protomice have a collapsing-level N∗ for θ which projects to κ+

G̃
,

and their θ is a local κ++ instead of a local κ+. Thus when we form the asso-
ciated ppm N = Ultn(N∗, G̃) of a long protomouse, with embedding i, and
we want to recover N∗ as a hull in N , our job is more complex than in the
short protomouse case. We need to take the Σ

(n)
1 -hull of i“(κ+) ∪ i(p(N∗)),

and it is quite difficult to make “guesses” at i“(κ+) from the perspective of
N . However, the task becomes much more manageable if we assume that G̃
had a largest generator νG̃ which was a successor generator; for then there
must be a “total fragment” of G̃ indexed at ν (that is, a total long extender
which agrees with G̃ � ν on their common domain), and from this we can
easily identify i“(κ+), since G̃ agrees with this fragment on κ+. In addition,
νG̃ is the largest element of the Dodd parameter of our long protomouse M ,
so νG̃ will be an element of the standard parameter of N . Thus our task
reduces to the problem of guessing an element of the standard parameter to
serve as our candidate for νG̃; we have seen that it determines i“(κ+), and
it also determines i(p(N∗)) as the top part of p(N), that is, p(N)− (ν + 1).
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Our candidate long divisors, then, are the elements of the standard param-
eter of N such that we can treat them as candidates for νG̃ in the way just
described. In the above definition, our guess at i“(κ+) is called Z, and our
guess at i(p(N∗)) is called r.

Remark: Note that the uncollapse map π from a divisor-hull N∗ =
HN
n+1(Z ∪ r) into N is Σ

(n)
0 -elementary and cofinal. Also note that N∗ =

HN∗
n+1(κ+ ∪ π−1(r)), so %n+1(N∗) ≤ κ+.

Remark: One could define a notion of “strong long divisors”, by analogy
with strong short divisors. In the present work, however, we have not found
any need for this concept, because as we will see, long divisors cannot overlap
in the way that short divisors could (recall that the point of the ‘strongness’
condition for short divisors was to rule out overlaps).

Lemma 9.20. If N is a level of W and ν is a long divisor of N with κ = κEν ,
then (κ+)N is a cardinal of W .

Proof: Recall that Λ is a cardinal of W , and by a) of Definition 9.19,
(κ+)N < Λ. The conclusion is immediate. �

Lemma 9.21. If N is a level of W and ν is a long divisor of N with N∗ the
transitive collapse of the divisor-hull associated with ν, then N∗ is a proper
initial segment of N , and p(N∗) = π−1(r), where r = p(N)− q and π is the
associated uncollapse map.

Proof: Let π : N∗ −→ N be the uncollapse map associated with the
divisor-hull. Thus crit(π) = κEν = κ, π(κ) = λEν = λ, π“(κ+) = Z, and
π(κ+) = λ+. Set s = π−1(r) (recall r is a top segment of p(N), namely, the
part above ν). Then N∗ = HullN

∗
n+1(κ+ ∪ s); combining this with the fact

that κ+ is a W -cardinal, we conclude that

%ω(N∗) = %n+1(N∗) = κ+ < %n(N∗) ,

and also that s is a very good parameter for N∗.

We would like to see that N∗ is a premouse of the same type as N by
applying Lemma 2.25. First we show that N∗ satisfies projectum-free spaces.
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For m > n, %m(N∗) = κ+ is not a space, since clause d) of Definition
9.19 guarantees that λ+ is not a space in N , and this fact transfers down to
N∗. For m ≤ n, we know that π is an n-embedding, so we can follow the
argument given in Lemma 2.7 to show that %m does not cause a PFS violation.

Now if N is type A or B (short or long varieties), then clauses a) or c) of
Lemma 2.25 can be applied immediately. If N is type C (short or long), we
need to verify that n > 0. But if n = 0, then Λ = %1(N), and %1 of any type
C premouse is always the largest cardinal of that premouse (by 2.22). This
contradicts the fact that Λ < λ in clause a) of Definition 9.19, since λ is a
cardinal of N . Thus N∗ is a premouse of the same type as N .

Claim: N∗ is sound.

Proof: If (κ++)N
∗

does not exist, then N∗ is easily seen to be sound: if s
is empty then N∗ is trivially sound, because in this case N∗ = HullN

∗
n+1(κ+)

and we know that κ+ = %n+1(N∗). If s is nonempty and t < s is the stan-
dard parameter for N∗ then by universality t generates s, since they are both
below κ++. But then t is a very good parameter, so N∗ is sound.

Now assume (κ++)N
∗

exists. Recall that π sends κ+ to λ+, and that
N = HullNn+1(λ+ ∪ r) = HullNn+1(λ+ ∪ π“(N∗)). Letting G be the extender
of length λ+ derived from π, it follows that π = iG. (That is, the long exten-
der of length λ+ derived from π is sufficient to capture the full embedding.)
This implies that π is only discontinuous at points of cofinality κ and κ+

in (N∗)(n), since this is the space of G. In particular, it follows that π is

continuous at θ = (κ++)N
∗
, since θ is Σ

(n)
1 -regular in N∗.

We want to see that s is the standard parameter of N∗. Suppose t <lex s
were the standard parameter; by the Solidity theorem of [3], we have that t is
universal. That is, N∗|θ ⊆ HullN

∗
n+1(κ+ ∪ t). But then HullNn+1(Z ∪ π(t)) is

cofinal in λ++ (using the fact that π is continuous at θ). However, π(t) <lex r,
so ThNn+1(π(t) ∪ λ+) ∈ N , by solidity of r. This theory codes a collapse of
(λ++)N , which is a contradiction. �

We have shown that π : N∗ −→ N is a Σ
(n)
0 -elementary and cofinal em-

bedding, and that N∗ is a sound premouse of the same type as N . However,

118



we cannot immediately apply the condensation lemma, because crit(π) = κ,
but N∗ projects to κ+. Instead, we must look at the model

Q = HN
n+1(µ ∪ {r}) .

Claim: Q is a sound premouse of the same type as N .

Proof: We have already seen that N∗ is a sound premouse of the same
type as N . But notice that Q = Ultn(N∗, F ), where F is the extender of
length µ derived from π. (This follows immediately from the definition of Q
as the collapse of a certain hull in N .) Further, notice that F has no long
generators, because its length µ is equal to sup(π“(κ+)). In other words, F
is a short extender, so it is only discontinuous at points of cofinality = κ in
N∗. This means we can apply Lemma 2.24 to iF : N∗ −→ Q to conclude
that Q is a plus-one premouse of the same type as N∗. Let us verify that
the hypotheses of the lemma are met. Since κ is the only discontinuity of
iF , and κ is not the largest cardinal of N∗ (recall κ+ ∈ N∗), certainly iF is
continuous at λN∗ if N∗ is active. Also, if νN∗ is defined then its cofinality is
a successor cardinal of N∗; since κ is a limit cardinal, iF is continuous here
too. Finally we need to check projectum-free spaces for Q, and for this we
will first need to prove that

%n+1(Q) = µ .

The fact that %n+1(Q) ≤ µ follows immediately from the definition of Q
as a hull of µ ∪ {r}. To see that %n+1(Q) ≥ µ, recall that for any α < κ+,
ThN

∗
n+1(α∪r) ∈ N∗, because κ+ = %n+1(N∗). Then ThQn+1(iF (α)∪iF (r)) ∈ Q,

because it can easily be recovered from iF (ThN
∗

n+1(α ∪ r)). Since iF maps κ+

cofinally into µ, this proves that no ordinal α < µ can be the projectum of
Q, as desired.

Projectum-free spaces for Q now follows immediately from the fact that
N∗ satisfied projectum-free spaces, and iF is continuous at %n+1(N∗) = κ+.
So we have shown that Q is a plus-one premouse of the same type as N .

Now we apply the Condensation Lemma to the uncollapse map σ : Q −→
N . It is easy to see that crit(σ) = µ, and also that EN

µ /∈ Q, since this ex-
tender would collapse µ. It follows that clause c) of Condensation must hold,
that is, Q is an initial segment of Ult(N,Eµ) = R. (Notice that Anomalous
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Case 4 does not apply, since the critical point µ is a local successor of a limit
cardinal, and AC4 requires it to be a local double successor.)

Now recall that θ is the κ++ of N∗, and because it is Σn+1-regular in N∗

we have that iF is continuous at θ. Let θ′ = iF (θ). Then θ′ = (µ+)Q, but Q
collapses θ′; therefore Q is the collapsing-level in R for θ′. Also notice that
F = iEµ , since both are short extenders with critical point κ which map κ+

to Z. (It is true that the extender of π : N∗ −→ N could not be applied
to N because it is only partial on (κ++)N , but F is the short part of this
extender, which is total on κ+.) By elementarity of the full ultrapower map
iEµ = iF : W −→ Ult(W,Eµ), we can conclude that whatever level of W
was the collapsing-level for i−1

F (θ′) = θ is mapped via iF to Q. But we know
exactly what structure is mapped to Q via iF : it is N∗. Therefore N∗ is the
collapsing-level for θ in W , and hence N∗ is a proper initial segment of N .
�

We now describe the long protomouse associated with a long divisor
ν. Because N∗ projects to κ+, it must be the collapsing-level in W for
θ = (κ++)N

∗
. (It is possible that κ+ is the largest cardinal in N∗, in which

case θ = o(N∗).)

Definition 9.22. For N a level of W and ν a long divisor of N with π :
N∗ −→ N the uncollapse map associated with the divisor-hull, let κ = κEν
and λ = λEν . Let θ = (κ++)N

∗
and η = (λ+)N = π(κ+). We define N(ν) =

(JEη , Ġ), where Ġ is the long extender of length λ+ derived from π, considered
as an amenable predicate as described in 2.8; that is, for each ξ < θ, let

Gξ = {(a,X) | a ∈ [λ ∪ {ν}]<ω & X ∈ (N∗|ξ) & a ∈ π(X)} .

Then let γξ be the least ordinal such that Gξ ∈ (N |γξ). We define our
official predicate Ġ as

Ġ
def
= {(γ, a,X) | γ < η & ∃ξ (γξ ≤ γ & (a,X) ∈ Gξ} .

We call N(ν) the long protomouse associated with the divisor ν.

Lemma 9.23. For N a level of W and ν a long divisor of N with associated
long protomouse N(ν) = (JEη , G̃), we have that N(ν) is a long protomouse
of type 1.
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Proof: Let π : N∗ −→ N be the uncollapse map associated with the
divisor-hull. We must verify the clauses of Definition 9.1. a) is trivial. b)
follows from the fact that N∗ is a level of N projecting to κ+. c) follows from
the definition of N(ν) as a level of N with top predicate G̃; this guarantees
that the ultrapower of N∗ by G̃ coheres with N(ν), since G̃ is the extender
derived from π, and certainly π(N∗) coheres with N(ν).

d) follows immediately from Definition 9.19 clause a), together with the
fact that %1(N(ν)) = %n+1(N) = Λ; to see this latter fact, note that %1(N(ν)) ≥
Λ because Λ is a cardinal in W ; to see that %1(N(ν)) ≤ Λ, observe that any
subset of Λ which was definable over N is still definable over N(ν), by the
exact same argument used to prove Lemma 9.8. (We cannot literally apply
Lemma 9.8 here, because we do not yet know that N(ν) is a long protomouse;
however, we know enough about N(ν) to run this argument.)

e) also follows immediately from the fact that %1(N(ν)) = %n+1(N) = Λ,
and the fact that Ultn(N∗, G̃) = N , which of course satisfies projectum-free
spaces; to see that Ultn(N∗, G̃) = N , note that Ultn(N∗, G̃) = HN

n+1(Z ∪
{r} ∪ λ+). But this hull is the full premouse N , since N is sound and
%n+1(N) = Λ < λ+ and pn+1(N) = r ∪ {ν} ∪ q with ({ν} ∪ q) ⊂ λ+.

f) follows from the fact that p(N) = r ∪ {ν} ∪ q; this tells us that
Ultn(N∗, G̃ � (ν+1)) = HN

n+1(Z∪{r}∪ (ν+1)) = N , since this hull contains

the projectum and parameter of N . But also we know that Ultn(N∗, G̃ �
ν) = HN

n+1(Z ∪ {r} ∪ ν) does not contain the ordinal ν, because ν ∈ p(N).
(In fact HullNn+1(Z ∪{r}∪ν) cannot contain any ordinals between ν and λ+,
since then it would also contain ν.) This is exactly the definition of ν being
the largest generator of G̃.

Finally, g) follows immediately from the fact that G̃ � λG̃ = Eν � λEν ,
and this latter extender is indexed on the N -sequence below η, and therefore
is on the M -sequence.

To see that N(ν) is type 1, we can simply observe that if it were type
2 then Ultn(N∗, G̃) would have a non-total top extender predicate; but we
know that Ultn(N∗, G̃) = N , which is a premouse. �
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Lemma 9.24. If N is a level of W and N(ν) is the protomouse associated
with a long divisor ν of N , then the associated ppm of N(ν) is N .

Proof: The ideas of this proof were already presented in the above
Lemma, but we repeat it here for convenience. Letting Z = the image of
κ+ under the associated ppm embedding, recall that the associated ppm of
N(ν) is given by HullNn+1(Z ∪ {r} ∪ λ+). But this hull is the full premouse
N , since N is sound and %n+1(N) = Λ < λ+ and pn+1(N) = r ∪ {ν} ∪ q with
({ν} ∪ q) ⊂ λ+. �

Remark: It follows from 9.24 and 9.10 that any protomouse N(ν) as-
sociated with a long divisor of a level of W must be a sound long protomouse.

9.4 Type 2 Long Divisors

We now consider how to recover long protomice of type 2 from their associ-
ated ppms. Recall that the associated ppm N of a type 2 long protomouse
necessarily has k = 0, and has a short top extender H with κH < %1(N);
thus, in fact, N will be a short pluripotent level of W (although this obser-
vation does not seem to be highly relevant).

In Lemma 9.16 and 9.18 we described how the associated ppm of a long
type 2 protomouse M can Σ1-define the Σ1-definability relation of M ’s asso-
ciated short quasi-protomouse in parameter µ, and thereby recover N∗ and
M . We will define ν to be a long divisor of a W -level N when this situation
holds.

Definition 9.25. Let N = Nτ̄ = (|N |, H) be the collapsing-level for τ̄ in W ,
with %1(N) = Λ and τ̄ = (Λ+)N . Then an ordinal ν ∈ p(N) is a type 2 long
divisor of N if the following conditions hold:

a) There is an extender Eν indexed at ν on the N-sequence such that,
letting κ = κEν and λ = λEν , we have κ+ < Λ < λ, λ+ = (λ+)N < %n(N),
and κ = κH ,

Now let r = p(N)−(ν+1), q = p(N)∩ν, and Eµ = Eν � λ be the short part
of Eν (indexed at µ on the N-sequence), and let Z = iEν“(κ+) = iEµ“(κ+).
Furthermore let R be the ΣN

1 -relation given by
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N |= R(X, Y ) iff (∃ξ < κ+) [(iEµ(N |ξ) = X) & (iH(N |ξ) = Y )] .

and let P = (|N |, R). (Since R is ΣN
1 , any ΣP

1 relation is ΣN
1 as well.)

Then we have:

b) HullPn+1(Z ∪ r) ∩ %n(N) is cofinal in %Nn ,

c) HullPn+1(Z ∪ r) ∩ λ+ = Z,

d) λ+ is not the space of an extender on the N-sequence.

We refer to HullPn+1(Z ∪ r) as the divisor-hull associated with a long di-
visor ν.

Remark: In the above definition we are simply carrying out the process
described in Lemma 9.18, the only difference being that now we are dealing
with an arbitrary W -level N , and cannot assume that it came from a type 2
long protomouse as we did in Lemma 9.18. Notice that the above definition
is very close to Definition 9.19, except that our divisor-hull is now a hull of
P instead of N .

Remark: The above definition relies on the fact that ΣP
1 relations are

ΣN
1 in the parameter µ. Note that the converse holds as well: ΣN

1 relations
are ΣP

1 in the parameter µ, because the top extender of N can be defined
over P by the relation

P |= H(X, Y ) iff (∃ξ < µ) [(iEµ(X) = (P |ξ)) & (iR(P |ξ) = Y )] .

So N and P are interdefinable, using the parameter µ in either direction.

Lemma 9.26. Let ν be a type 2 long divisor of N = (|N |, H) and let G̃ be
the long extender of length (λ+

Eν
)N = λ+ derived from the uncollapse map

associated with the divisor-hull, considered as an amenable predicate (see
9.22). Then N(ν) = ((N ||λ+), G̃) is a type 2 long protomouse; we call it the
type 2 long protomouse associated with the divisor ν.
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Proof: Let π : N∗ −→ P be the uncollapse map associated with the
divisor-hull. We must verify the clauses of Definition 9.1, and further ver-
ify that this long protomouse is type 2. a) of Definition 9.1 is trivial.
b) follows from the fact that N∗ is a level of N projecting to κ+, as in
Lemma 9.21. To verify the remaining clauses we will first need to see that
Ultn(N∗, G̃) = P . Note that Ultn(N∗, G̃) = HP

n+1(Z ∪ {r} ∪ λ+). But this
hull is the full P , since µ < λ+ is in the hull, so by the above Remark we
have HP

n+1(Z ∪ {r} ∪ λ+) = HN
n+1(Z ∪ {r} ∪ λ+). Since N is sound and

%n+1(N) = Λ < λ+ and pn+1(N) = r∪{ν}∪ q with ({ν}∪ q) ⊂ λ+, it follows
that every element of |N | = |P | is in this hull.

c) follows from the definition of N(ν) as a level of N with top predicate G̃;
this guarantees that the ultrapower of N∗ by G̃ coheres with N(ν), since G̃
is the extender derived from π, and certainly π(N∗) = P coheres with N(ν).
d) follows immediately from Definition 9.25 clause a), together with the fact
that %1(N(ν)) = %n+1(N) = Λ; to see this latter fact, note that %1(N(ν)) ≥ Λ
because Λ is a cardinal in W ; to see that %1(N(ν)) ≤ Λ, observe that any
subset of Λ which was definable over N is still definable over N(ν), by the
exact same argument used to prove Lemma 9.8. (We cannot literally apply
Lemma 9.8 here, because we do not yet know that N(ν) is a long proto-
mouse; however, we know enough about N(ν) to run this argument. Also,
the definition may require ν as a parameter, since the top extender of P and
the top extender of N are interdefinable in parameter ν.)

e) also follows immediately from the fact that %1(N(ν)) = %n+1(N) = Λ,
and the fact that Ultn(N∗, G̃) = P , which has the same extender-sequence as
N , except for its top extender, and therefore satisfies projectum-free spaces.
(Since its top extender has critical point λ > Λ, this top extender does not
violate e).)

f) follows from the fact that p(N) − λ = d(P ) − λ = r ∪ {ν}; this tells
us that Ultn(N∗, G̃ � (ν + 1)) = HP

n+1(Z ∪ {r} ∪ (ν + 1)) = P , since this
hull contains the projectum and parameter of P . But also we know that
Ultn(N∗, G̃ � ν) = HP

n+1(Z ∪{r}∪ν) does not contain the ordinal ν, because
ν ∈ d(P ). (In fact HullPn+1(Z∪{r}∪ν) cannot contain any ordinals between
ν and λ+, since then it would also contain ν.) This is exactly the definition
of ν being the largest generator of G̃.
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Finally, g) follows immediately from the fact that G̃ � λG̃ = Eν � λEν ,
and this latter extender is indexed on the N -sequence below η, and therefore
is on the M -sequence.

To see that N(ν) is type 2, recall that k(N) = 0, so k(P ) = k(N∗) = 0.
Since P has top extender R with critical point λ = λG̃, clearly π−1“(R) =
(top extender of N∗ ) will have critical point κG̃. This verifies that N(ν) is
a type 2 long protomouse. �

Lemma 9.27. Let N have a type 2 long divisor ν, and let M be the type 2
long protomouse associated with ν. Then the associated ppm of M is N .

Proof: Many of the ideas of this proof were already presented in the
above Lemma, but we repeat them here for convenience. Letting Z = the
image of κ+ under the associated short quasi-protomouse embedding, recall
that the associated short quasi-protomouse of N(ν) is given by HullPn+1(Z ∪
{r} ∪ λ+). By the Remark following 9.25 and the fact that ν < λ+, this hull
is the full model P (here we use also that N is sound, %n+1(N) = Λ < λ+,
and pn+1(N) = r ∪ {ν} ∪ q with ({ν} ∪ q) ⊂ λ+.) Finally, the associated
ppm of M is Ult0((P |µ), R), and we would like to see that this ultrapower is
equal to N . It is easy to see that the ultrapower has the same ordinals and
indeed the same underlying set as P , by coherency of R; all that remains is
to show that its top extender H is the same as GN , the top extender of N .
Note that H is given by iR“(Eµ), so iH = iR ◦ iEµ . But R was defined such
that iR ◦ iEµ = iGN . This shows that Ult0((P |µ), R) = N and completes the
proof. �

9.5 Long Protomouse Condensation

Lemma 9.28. If Nτ is long pluripotent and M is an interpolant of Nτ , then
M is a long protomouse (possibly of type 2), with %n+1(M) = Λ. Further,
the interpolation embedding σ : M −→ Nτ sends the Dodd parameter d(M)
to the Dodd parameter of Nτ .

Proof: Almost exactly the same as in the short pluripotent case,
Lemma 8.21. All properties of potential premousehood are upward preserved
by π : X −→ M , except for totality of the top extender G̃, which will fail.
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This is because Nτ has top extender G with dom(G) = (κ+
G+)Nτ ≤ Λ by long

pluripotence; and since M agrees with Nτ up to a little past Λ, that entire
domain needs to be measured by G̃ in order for it to be total. But M is a
non-cofinal hull in Nτ , so there is some bound on the subsets of κ+

G which
are measured by G̃.

The remaining properties of long protomice follow easily by elementarity
of the embedding σ. �

We also have

Lemma 9.29. If Nτ is the collapsing-level for τ in W (following the con-
ventions set at the beginning of 7.2), and ν is a long divisor or type 2 long
divisor of Nτ with associated protomouse Mτ = Nτ (ν), then any interpolant
M of Mτ is a long protomouse (possibly of type 2) with %1(M) = Λ.

Proof: The proof is similar to the one we just gave for Lemma 9.28, but
now the target structure is a long protomouse Mτ instead of a long pluripo-
tent level of W , which in fact makes things easier; it is a straightforward
verification of the clauses of Definition 9.1, which follow by elementarity of
σ. We omit further detail. �

Remark: Recall that whether a long protomouse M is type 2 depends on
whether its collapsing-level N∗ for its θ has a top extender satisfying certain
conditions (and also whether k(M) = 0). Because N∗ is not preserved under
interpolation embeddings, type 2-ness of M will not be preserved either. In
other words, a type 1 long protomouse could have type 2 interpolants, and
vice versa.

Finally we prove the analogue of Lemma 8.23 for long protomice.

Lemma 9.30. (Long Protomouse Condensation) Let Mτ = (|Mτ |, G)
be either a long pluripotent level of W , or the protomouse associated with
a long divisor or type 2 long divisor ν of Nτ , where Nτ is the collapsing-
level for τ in W . Let M = (|M |, G̃) be an interpolant of Mτ such that the
interpolation embedding has critical point τ̄ ∈ S (see Section 7.2), and let N
be the associated ppm of M . Then N is a level of W .
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Proof: By either 9.28 or 9.29, we have that M is a long protomouse
(possibly of type 2) with %1(M) = Λ. Let σ : M −→ Mτ be the interpola-
tion embedding. Now we describe how N can be embedded into a level of
W . First we consider the case where Mτ is either long pluripotent, or the
protomouse associated with a long divisor. (Afterwards we will consider the
case where Mτ is the type 2 long protomouse associated with a type 2 long
divisor.)

If Mτ is a type 1 long protomouse then let iG : (N∗)Mτ −→ Nτ be the
associated ppm embedding. Similarly, if Mτ is a long pluripotent level then
(Ultn(Mτ |κ++

G , G)|λ+
G) = (Mτ ||o(Mτ )), where n is largest possible so that

this ultrapower is defined. In this case we set (N∗)Mτ = Mτ |κ++
G , and we

have iG : (N∗)Mτ −→ Ult((N∗)Mτ , G). By coherency of G, this ultrapower
agrees with our pluripotent level Mτ up through o(Mτ ).

There is a natural embedding π : iG̃(N∗) −→ iG(N∗), given by

π(iG̃(f)(α)) = iG(f)(σ(α)) .

Thus we have essentially the same diagram as in the short case:
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(Mτ , G)

5

(N∗)Mτ Ult((N∗)Mτ , G)

5

(M, G̃) iG(N∗)

5

N∗ N

iGσ

iG̃

π

In the case where Mτ is a long protomouse, we have by hypothesis that
Ult((N∗)Mτ , G) = Nτ is a level of W . If Mτ is a pluripotent level of W ,
then Ult((N∗)Mτ , G) is not a level of W , but it agrees with W up through
o(Mτ ) = (λ+

G)Ult((N
∗)Mτ ,G). Note that iG(N∗) is a level of Ult((N∗)Mτ , G),

and π is Σn+1-elementary. Also, crit(π) = crit(σ) = τ̃ .

We would like to see that N is a plus-one premouse, by applying Lemma
2.24. If M is a type 2 long protomouse, then following the remark after
Lemma 9.15, we can argue that N satisfies the Jensen ISC by an argument
just like that given in Lemma 8.23 when iG̃ is discontinuous at λN∗ . We omit
further detail. So assume M is a type 1 long protomouse. The verification
that N satisfies projectum-free spaces goes exactly as in the Short Proto-
mouse Condensation Lemma 8.23.

If n ≥ 1 then iG̃ is Q(1)-preserving, a fortiori Σ2-preserving, so we can
apply clauses a), b), or f) of Lemma 2.24, depending on the mouse-type of
N∗, to conclude that N is a plus-one premouse of the same type as N∗.
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If n = 0 we would like to apply c), d), or e) of Lemma 2.24. If N∗ is
passive this is trivial, so assume it is active with top extender H∗. Notice
λH∗ > κ+

G̃
, because λH∗ is the largest cardinal in N∗ and a limit cardinal.

This means iG̃ is continuous at λH∗ , since its only discontinuities are at points
of N∗-cofinality κG̃ and κ+

G̃
. Also notice that N has a total top extender, be-

cause we are assuming M is a long protomouse of type 1.

The final condition of Lemma 2.24 to check is that iG̃ is continuous at
νH∗ in the case where N∗ is a type Z1 premouse. So consider the case where
κ+

G̃
= κ+

F , where F = EνH∗ is the stretching-extender for the type Z1 pre-
mouse N∗ as described in Definition 2.11. We will treat this case similarly
to Anomalous Case 2 in the Condensation Lemma. In particular, a similar
argument to the one given in Section 6.3 shows that G̃ has only a single
long generator νG̃. Now instead of applying G̃ to N∗ we will apply it to the
“extender being added” by the Z1 level N∗. More precisely, letting H̄∗ be
as in Definition 2.11, we form N = Ult0(((N∗|θ), H̄∗), G̃). Again, following
the argument of Section 6.3, we conclude that N is a type Z1 premouse with
stretching-extender G̃ � λG̃. Thus, even in this case we have that N is a
plus-one premouse with a natural factor-map π : N −→ iG(N∗).

It now follows from Lemma 9.10 that N is sound and that %n+1(N) = Λ.
This allows us to apply the Condensation Lemma to π : N −→ iG(N∗).
Notice that Anomalous Case 4 does not apply, since if there were a total
long extender R on the Nτ -sequence such that Λ = (κ+

R)Nτ , then Nτ violates
projectum-free spaces, contradiction. (And clearly if there are no such ex-
tenders on the Nτ sequence, there are none on the iG(N∗)-sequence.)

Recall that crit(π) = τ̄ ∈ S, so τ̄ is not an index or pseudoindex. It
follows that c) and d) of the Condensation Lemma are impossible. Because
π has a critical point τ̄ , it is not the identity, so a) of Condensation is im-
possible. This leaves b). We have shown that N C iG(N∗)EUlt((N∗)Mτ , G).
In the case where Mτ is a long protomouse, Ult((N∗)Mτ , G) is a level of W ,
and we have proved the lemma. In the case where Mτ is long pluripotent,
Ult((N∗)Mτ , G) agrees with W up to its λ+

G̃
. But notice that in this case N is

a proper initial segment of Ult((N∗)Mτ , G) which projects to Λ, and Λ < λ+

G̃
.

So N is in the region where we have agreement with W , and again N is a
level of W . We have now proved the lemma in the cases where Mτ is either
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long pluripotent, or the protomouse associated with a long divisor.

As promised, we now consider the case where Mτ is the type 2 long pro-
tomouse associated with a type 2 long divisor. In this case P = (|P |, R) =
Ult((N∗)Mτ , G) is not a level of W , but rather the short quasi-protomouse
associated with Mτ , and by hypothesis we have Nτ = (the associated ppm
of Mτ ) is a level of W . Recall that in this case |P | = |Nτ |, so any proper
initial segment of P is a level of W . Now we can repeat the above proof
exactly, with the only difference being that iG(N∗) C P in the above dia-
gram, instead of iG(N∗) C Ult((N∗)Mτ , G). (In fact, strictly speaking it is
still the case that P = Ult((N∗)Mτ , G), but we want to highlight the fact that
P is not a premouse in this case, and that no problem is caused by this.)
Thus π is an embedding from N into a proper initial segment of P , hence
a level of W , and we can apply the Condensation Lemma exactly as before. �

9.6 Canonical Divisors

We now move towards the definition of the Cτ sequences and the proof of
�Λ. Recall the conventions fixed at the beginning of 7 and 7.2; in particular,
we are working in a fixed iterable premouse W such that W |= ZFC, and
all statements should be understood as internal to W . Also we have fixed
a cardinal Λ which is not subcompact and which is not the successor of a
1-subcompact cardinal. Finally, we have S a club in Λ+ such that all τ ∈ S
satisfy:

a) Λ is the largest cardinal in JEτ ;

b) JEτ is a fully elementary substructure of JEΛ+ ;

c) Eτ = ∅;

d) τ is not a pseudoindex.

For τ ∈ S, set Nτ = the collapsing-level for τ in W , and k(τ) = the least
k such that %k+1(Nτ ) = Λ, so that Nτ = W |〈β, k(τ)〉 for β = o(Nτ ).
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We would like to associate a canonical divisor, and its associated proto-
mouse, to each of our levels Nτ by choosing the divisor of Nτ with the largest
divisor-hull out of all the candidate divisors. Essentially the reason for this
choice is that protomice corresponding to larger divisor-hulls are “visible”
from the perspective of protomice corresponding to smaller divisor-hulls; this
fact will be the key to our proof that the interpolants we consider in the �Λ

construction are the canonical protomice associated with their local successor
cardinals. We will go into more detail shortly, but in brief, the form of the
argument is as follows: We start with a canonical protomouse Mτ at some
level τ , and consider its interpolated protomice, which correspond to lower
levels τ̄ . We need to see that a tail-end of these interpolants are the canonical
protomice associated with their τ̄ ’s. Suppose not; then there are cofinally
many τ̄ < τ such that the canonical protomouse Mτ̄ has a larger divisor-hull
than the one corresponding to our interpolant. But these larger-hull Mτ̄ ’s are
“visible” from within our interpolants, and we can use the embedding-chain
through our interpolants to push the existence of a larger-divisor-hull proto-
mouse up the chain and show that our original protomouse Mτ can likewise
“see” the existence of a larger divisor-hull of Nτ . But then Mτ was not the
canonical divisor of Nτ after all, contradiction.

It is essential in the above argument that there is a largest divisor-hull of
each Nτ̄ , because a protomouse can only “see” other protomice if they corre-
spond to strictly larger divisor-hulls. If a level Nτ̄ has no largest divisor-hull,
but merely a collection of incomparable ones, then there is no way to guaran-
tee that our interpolated protomouse corresponding to τ̄ is the canonical Mτ̄ .
(The supposition that it is not the canonical Mτ̄ would no longer imply that
it can “see” the true Mτ̄ , so we have nothing to push up the chain to Nτ .) We
will show that in most cases there is a divisor with strictly largest divisor-hull
in this sense, but there will be some cases in which the largest-hull short di-
visor and the largest-hull long divisor have “overlapping” divisor-hulls; such
levels are called unstable. Thus we will have to content ourselves with not
one but two canonical protomice for unstable levels Nτ , and our proof will in
fact yield a �Λ,2-sequence instead of a full �Λ-sequence. We will also treat
levels where a type 2 long divisor ν has ν = max(q) for the canonical short
divisor (κ, q) as unstable levels.

Lemma 9.31. If ν is a type 2 long divisor of N , then ν is not a long divisor
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of N .

Proof: Any type 2 long divisor ν has an extender Eν with the same
critical point κEν as the top extender of N . This means that any Σ1-hull of
N must include the point {κEν}, since it is definable over N . But then ν
cannot be a long divisor, since clause c) of Definition 9.19 implies that {κEν}
is not in the corresponding divisor-hull. �

So the long divisors of N and the type 2 long divisors of N are disjoint
subsets of p(N).

Definition 9.32. Let N be a level of W with a canonical short divisor (κ, q)
and one or more long or type 2 long divisors. Let ν ∈ p(N) be least such
that ν is a long or type 2 long divisor. We say N is unstable if and only if
ν = max(q) and, if ν is a long divisor, κEν < κ.

We are finally ready to define the canonical divisor associated with a level
of W .

Definition 9.33. Let N be a level of W with at least one strong short divi-
sor, long divisor, or type 2 long divisor, and suppose N is not unstable. Let
(κ, q) be the canonical strong short divisor if there is one, and ν ∈ p(N) be
the least long or type 2 long divisor if there is one. (At least one of these is
defined.) Then

a) If ν is undefined or if max(q) < ν, we say the short divisor (κ, q) is
the canonical divisor of N .

b) If (κ, q) is undefined or if ν ≤ max(q), we say the long or type 2 long
divisor ν is the canonical divisor of N .

Likewise we define the canonical protomouse:

Definition 9.34. Let N be a level of W with at least one strong short divi-
sor, long divisor, or type 2 long divisor, and suppose N is not unstable. Then
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a) If the canonical divisor of N is a strong short divisor (κ, q), we say the
short protomouse associated with (κ, q) is the canonical protomouse associ-
ated with N .

b) If the canonical divisor of N is a long divisor or type 2 long divisor ν,
we say the long protomouse (type 1 or 2) associated with ν is the canonical
protomouse associated with N .

For Nτ the collapsing-level for τ in W , we want to define Mτ to be the
associated canonical protomouse. However, we also need to treat pluripotent
levels as a “limiting case” of protomice in which the top extenders are in fact
total.

Definition 9.35. Let Nτ be the collapsing-level for τ in W , and suppose N
is not unstable. Then

a) If Nτ has an associated canonical protomouse, we define this proto-
mouse to be Mτ .

b) If Nτ does not have an associated canonical protomouse but Nτ is
pluripotent (short or long), we define Mτ = Nτ .

c) If Nτ does not have an associated canonical protomouse and Nτ is not
pluripotent, we say that Mτ is undefined.

For unstable levels we have two associated canonical protomice:

Definition 9.36. Let Nτ be the collapsing-level for τ in W , and suppose N
is unstable, with canonical short divisor (κ, q) and ν = max(q) a long or type
2 long divisor. Then we set

• M short
τ = N(κ, q); this is called the canonical short protomouse associ-

ated with Nτ ;

• M long
τ = N(ν); this is called the canonical long protomouse associated

with Nτ if ν is a long divisor, and the canonical type 2 long protomouse
associated with Nτ if ν is a type 2 long divisor.

133



Another important fact about the distribution of divisors of a premouse
is that a type 2 long divisor will never be the canonical divisor, unless it
is the only divisor or we are in the unstable case. In other words, type 2
long divisors can never “beat” other divisors; the other divisor will always be
canonically chosen (or, in the unstable case, they might be “tied” as canon-
ical divisors).

Lemma 9.37. Let ν be a type 2 long divisor of N ; then there are no long
divisors or type 2 long divisors ν ′ ∈ p(N)− (ν + 1), and there are no strong
short divisors (κ′, q′) with ν < max(q′).

Proof: Let κ = κEν = κGN , as demanded in clause a) of Definition 9.25.
Because κ is the critical point of GN , it will automatically be in all Σ1-hulls
of N . Now suppose ν ′ ∈ p(N) − (ν + 1) were a long divisor of N ; then the
divisor-hull associated with ν ′ must contain no ordinals between κν′ and Λ,
by clause c) of Definition 9.19. Since we have just shown κ must be in this
hull, it follows that κ < κν′ . Now recall that the divisor-hull associated with
ν is HullPn+1(Z ∪ r), using the notation of Definition 9.25; and this hull does
not contain any ordinals between κ and Λ, hence does not contain κ′. But
ν ′ ∈ r, and κ′ is definable from ν ′ as the critical point of Eν′ ; contradiction.

The argument for long type 2 ν ′ is similar: suppose ν ′ ∈ p(N)−(ν+1) = r
were long type 2. Then the extender Eν′ has critical point κ. Now the divisor-
hull associated with ν is HullPn+1(Z∪r), using the notation of Definition 9.25;
and this hull does not contain any ordinals between κ and Λ. But Eν′ is still
indexed at ν ′ ∈ r, so κ is definable and therefore in the divisor-hull, contra-
diction.

Finally, suppose (κ′, q′) is a strong short divisor of N such that ν <
max(q′). As before, it must be that κ′ > κ, since κ is automatically in the
divisor-hull of (κ′, q′). Let α = max(q′). Let N ′ = HN

n+1(κ′ ∪ p(N)), with
σ′ the associated uncollapse map. By Lemma 8.13, p(N ′) = (σ′)−1(r′); in
particular, there is no solidity witness for α ∈ p(N) in HullNn+1(κ′∪p(N)), for
this would transfer downwards to a generalized solidity witness for α ∈ p(N ′).
But the divisor-hull associated with ν, namely HullPn+1(Z ∪ r) in the nota-
tion of Definition 9.25, does contain a solidity witness for α ∈ p(P ), since
α ∈ r. This solidity witness is the ΣP

n+1-theory of α ∪ r′. Also note that
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HullPn+1(Z ∪ r) ⊂ HullNn+1(κ′ ∪ p(N)), because the top extender of P is Σ1-
definable from the top extender of N together with the parameter ν (see
Definition 9.25), and ν ∈ p(N). In other words, although P and N have
different top extenders, they are interdefinable using the parameter ν; so a
Σn+1-hull over P is contained in a Σn+1-hull of the same set over N , as-
suming ν is one of the points in the N -hull. Now we would like to reach
a contradiction from the fact that a solidity witness for α is in the smaller
HullPn+1(Z ∪ r) but no such witness is in the larger HullNn+1(κ′ ∪ p(N)). Un-
fortunately, the meaning of “solidity witness” is slightly different in these
two contexts, because one is a theory in P and the other is a theory in N .
This can be easily remedied by again using the fact that P and N have top
extenders which are interdefinable using the parameter ν, and ν < α so it is
a point in the solidity witness ThPn+1(α ∪ r′). In other words, ThNn+1(α ∪ r′)
can be easily computed from ThPn+1(α ∪ r′), so this latter solidity witness is
in N ′, contradiction. �

Finally, we show that strong short divisors cannot “overlap” long or type
2 long divisors, except in the unstable case.

Lemma 9.38. Let (κ, q) be a strong short divisor of N , and let r = p(N)−q.
Then any long or type 2 long divisor ν with ν ∈ r must have κEν < κ. Also,
if ν ∈ q is a long divisor of N , then either ν = max(q) or else κEν ≥ κ.

Proof: First suppose ν ∈ r is a long or type 2 long divisor. Then the
divisor-hull associated with (κ, q) contains the ordinal ν, hence the extender
Eν , hence its critical point κEν . But there are no points in this divisor-hull
between κ and Λ, so we must have κEν < κ.

Now suppose ν ∈ q is a long divisor with ν < max(q). Suppose towards
contradiction that κEν < κ; the argument is similar to the one just given
in Lemma 9.37. Let α = max(q′). Let N ′ = HN

n+1(κ ∪ p(N)), with σ′ the
associated uncollapse map. By Lemma 8.13, p(N ′) = (σ′)−1(r); in particular,
there is no solidity witness for α ∈ p(N) in HullNn+1(κ∪p(N)), for this would
transfer downwards to a generalized solidity witness for α ∈ p(N ′). But
the divisor-hull associated with ν, namely HullNn+1(Z ∪ (p(N) − (ν + 1))),
where Z = iEν“(κ+

Eν
), does contain a solidity witness for α ∈ p(N), by

Lemma 9.21. We have shown that a solidity witness for α ∈ p(N) is in the
smaller HullNn+1(Z ∪ (p(N) − (ν + 1))) but no such witness is in the larger
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HullNn+1(κ ∪ p(N)). Contradiction. �

10 Main �Λ Construction

10.1 Defining the Sequence

Recall the description of S at the beginning of 9.6. Under the “smallness
assumption” described at the beginning of 7.2, we construct a �Λ,2-sequence
from S.

Theorem 10.1. There is a sequence C = 〈Cτ |τ ∈ S〉 such that each Cτ con-
tains either one or two sets Cτ ∈ Cτ , satisfying:

a) Cτ ⊆ (S ∩ τ) is closed;

b) Cτ is unbounded in τ whenever τ is a limit point of S and cof(τ) > ω;

c) Cτ ∩ τ̄ ∈ Cτ̄ whenever τ̄ ∈ Cτ (this is called coherency);

d) otp(Cτ ) ≤ κ.

Let

S0 = S − S1 ;

S1 = {τ ∈ S | Mτ is defined } .

A sequence of this form is technically called a �′(Λ,2)-sequence, because b)
is phrased only for τ of uncountable cofinality; it is typical for square con-
structions in inner models to produce such �′-sequences, which can easily be
turned into �-sequences by combinatorial manipulations. See [5] for details.

Many of the definitions and explanations in what follows are taken from
[5], with some mild adaptations to the context of plus-one premice; we re-
iterate these parts for the sake of completeness, and because the broader
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plus-one premice context requires additional consideration at certain points.
The reader familiar with [5] can focus attention on the parts of the construc-
tion that involve long divisors and long protomice.

Definition 10.2. Given τ ∈ S0, Bτ is the set of all τ̄ ∈ S0 ∩ τ satisfying:

• Nτ̄ is a premouse of the same type as Nτ ;

• n(τ) = n(τ̄);

• There is a map στ̄ τ : Nτ̄ −→ Nτ that is Σ
n(τ)
0 -preserving with respect to

the language of premice and such that

a) τ̄ = crit(στ̄ τ ) and στ̄ τ (τ̄) = τ ;

b) στ̄ τ (p(Nτ̄ ) = p(Nτ );

c) for each α ∈ p(Nτ ) there is a generalized solidity witness Qτ (α) for
α with respect to Nτ and p(Nτ ) such that Qτ (α) ∈ range(στ̄ τ ).

We say that B = 〈Bτ | τ ∈ S〉.

In other words, Bτ is the set of all τ̄ ∈ S0 ∩ τ such that Nτ̄ is an inter-
polant of Nτ , and the interpolation map sends τ̄ to τ .

Solidity witnesses in clause c) are, of course, computed with respect to
the language of premice. The map στ̄ τ always has a critical point since, by
the restrictions imposed on the elements of S, each Nτ is strictly longer than
W |τ . Notice that στ̄ τ is uniquely determined; this follows from soundness
of Nτ̄ . Given any x ∈ Nτ̄ , there is a ξ < Λ such that x = hNτ̄n+1(ξ, p(Nτ̄ ));

as Σ
(n)
1 -statements are upward preserved under Σ

(n)
0 -embeddings and Skolem

functions have absolute definitions, σ(x) = hNτn+1(ξ, p(Nτ )) for any map σ
satisfying the above definition. Notice also that clause c) does not have any
influence on the uniqueness of στ̄ τ . One further important fact about στ̄ τ is
that στ̄ τ is not Σ

(n(Nτ )
1 -preserving, hence

στ̄ τ is non-cofinal at the n(Nτ )-th level.
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Otherwise, στ̄ τ would be Σ
(n(Nτ )
1 -preserving, so hNτ̄n+1(ξ, p(Nτ̄ )) would be

defined if and only if hNτn+1(ξ, p(Nτ )) would. By the soundness of Nτ , we
would have range(στ̄ τ ) = Nτ , and from this the obviously false conclusion
Nτ̄ = Nτ . Finally we note that clause c) in the above definition will be used
only once in the entire construction, namely in the proof that Cτ is closed,
to make sure certain direct limits are sound. The condition in c) cannot be
strengthened to a requirement that standard solidity witnesses be members
of the corresponding ranges; this follows from the fact that we are forced to
deal with embeddings with very weak preservation properties which typically
do not map standard witnesses to standard witnesses.

Definition 10.3. Given τ ∈ S1, if the canonical divisor of Nτ is a short
divisor (κ, q), then Bτ is the set of all τ̄ ∈ S1 ∩ τ satisfying:

• One of the canonical divisors of Nτ̄ is a short divisor (κ̄, q̄) such that
κ = κ̄ and |q| = |q̄|;

• There is a map στ̄ τ : Mτ̄ −→ Mτ (or στ̄ τ : M short
τ̄ −→ Mτ) that is

Σ0-preserving with respect to the language of coherent structures and
such that

a) τ̄ = crit(στ̄ τ ) and στ̄ τ (τ̄) = τ ;

b) στ̄ τ (q̄) = q;

c) for each α ∈ q̄ there is a generalized solidity witness Qτ (α) for α
with respect to Mτ and q such that Qτ (α) ∈ range(στ̄ τ ).

If Nτ is unstable, then we define Bshort
τ as above, with M short

τ in place of
Mτ .

In other words, Bτ for τ such that Mτ is a short protomouse is the set of
all τ̄ ∈ S1∩ τ such that (one of the two) Mτ̄ is an interpolant of Mτ , and the
interpolation map sends τ̄ to τ . If Nτ is unstable then we use this definition
for one of the canonical Bτ sequences.

Definition 10.4. Given τ ∈ S1, if the canonical divisor of Nτ is a long
divisor or type 2 long divisor ν, then Bτ is the set of all τ̄ ∈ S1∩τ satisfying:
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• One of the canonical divisors of Nτ̄ is a long or type 2 long divisor ν̄
such that |p(Nτ ) ∩ ν| = |p(Nτ̄ ∩ ν̄)|;

• There is a map στ̄ τ : Mτ̄ −→ Mτ (or στ̄ τ : M long
τ̄ −→ Mτ) that is

Σ0-preserving with respect to the language of coherent structures and
such that

a) τ̄ = crit(στ̄ τ ) and στ̄ τ (τ̄) = τ ;

b) στ̄ τ (ν̄) = ν;

c) for each α ∈ d(Mτ̄ ) there is a generalized solidity witness Qτ (α) for
α with respect to Mτ and d(Mτ ) such that Qτ (α) ∈ range(στ̄ τ ).

If Nτ is unstable, then we define Blong
τ as above, with M long

τ in place of
Mτ .

In other words, Bτ for τ such that Mτ is a long protomouse is the set of
all τ̄ ∈ S1∩ τ such that (one of the two) Mτ̄ is an interpolant of Mτ , and the
interpolation map sends τ̄ to τ . If Nτ is unstable then we use this definition
for one of the canonical Bτ sequences.

Notice also that in the definitions of our canonical sequences, we treat
type 1 long protomice and type 2 long protomice together. They will be
related to levels of W in slightly different ways, but we do not distinguish
between them while constructing elementary chains of protomice.

Lemma 10.5. Let τ ∈ S i for i ∈ {0, 1} and let τ ∗ < τ̄ satisfy all the
requirements of the definition of Bτ , Bshort

τ , or Blong
τ , except possibly clause

c). Then range(στ∗τ ) ⊂ range(στ̄ τ ).

Proof: It follows from the elementarity of our maps that if hNτ∗n+1(ξ, p(Nτ∗))
is defined then also hNτ̄n+1(ξ, p(Nτ̄ )) is defined, whenever ξ < Λ. (To be more
precise, we need to see that sup((στ∗τ )“%n(Nτ∗)) < sup((στ̄ τ )“%n(Nτ̄ )); see
Lemma 3.2 of [5] for details.)

It follows that στ∗τ (h
Nτ∗
n+1(ξ, p(τ ∗))) = hNτn+1(ξ, p(Nτ )) = στ̄ τ (h

Nτ
n+1(ξ, p(τ̄)))

whenever hNτ∗n+1(ξ, p(τ ∗)) is defined. Since Nτ∗ is sound, this completes the
proof. �
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Lemma 10.6. Let τ ∈ S i for i ∈ {0, 1} and τ̄ ∈ Bτ , Bshort
τ , or Blong

τ . Then
Bτ ∩ τ̄ = Bτ̄ − min(Bτ ), and the corresponding statements hold for Bshort

τ

and Blong
τ .

Proof: We treat the case τ̄ ∈ Bτ , since the other cases will be iden-
tical. Suppose τ ∈ S0 (the proof for τ ∈ S1 is the exact same). Pick a
τ ∗ ∈ Bτ ∩ τ̄ . We first show that τ ∗ ∈ Bτ̄ . By the previous lemmata,
range(στ∗τ ) ⊂ range(στ̄ τ ), so we can define a map σ : Nτ∗ −→ Nτ̄ by
σ = (στ̄ τ )

−1 ◦ στ∗τ . It is routine to verify that σ satisfies all requirements on
στ∗τ̄ except possibly clause c), which we verify now.

Given ᾱ ∈ pτ̄ , let α = στ̄ τ (ᾱ) and στ∗τ̄ (α
∗) = ᾱ. The definition of Bτ

guarantees that we have a generalized witness Qτ (α) for α with respect to
Nτ and pτ in the range of στ∗τ , and we know that the στ̄ τ -preimage Q̄(ᾱ)
of Qτ (α) is in the range of σ. But “Q is a generalized witness for α with

respect to N and p” is a Π
(n)
1 -statement, so it is downward preserved under

Σ
(n)
0 -maps. It follows that Q̄(ᾱ) is a generalized witness for ᾱ with respect

to Nτ̄ and pτ̄ . This proves that τ ∗ ∈ Bτ̄ and thus the inclusion ⊂.

Let τ ′ = min(Bτ ). Pick a τ ∗ ∈ Bτ̄ − τ ′ that is larger than τ ′. Define an
embedding σ : Nτ∗ −→ Nτ by σ = στ̄ τ ◦στ∗τ̄ . Again, σ meets all requirements
in the above definition except possibly clause c), which suffices to conclude
that σ = στ∗τ . Regarding c), if Q(α) ∈ range(στ ′τ ) is a generalized witness
for α ∈ pτ with respect to Nτ and pτ , then Q(α) is in the range of στ∗τ by
the previous lemma, so τ ∗ ∈ Bτ . This proves the inclusion ⊃. �

By the above Lemma, the sequence B is almost coherent; the only defi-
ciency of B is that the initial segments of Bτ , B

short
τ , or Blong

τ might grow
as τ decreases. This can be fixed by adding all potential initial segments to
each Bτ . For τ ∈ S we set

• τ(0) = τ ;

• τ(i+ 1) = min(Bτ(i)) if there is a unique Bτ(i), min(Bshort
τ(i) ) if τ had a

single canonical short divisor, and min(Blong
τ(i) ) if τ had a single canonical

long divisor;

• `τ = the least i such that Bτ(i) = ∅.
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Likewise, if Nτ is unstable, we define τ(i)short and τ(i)long exactly as
above, but with the short or long canonical divisor respectively in place of
the single canonical divisor of Nτ .

The number `τ (or the pair `shortτ and `longτ ) is defined for every τ ∈ S,
otherwise we would have an infinite decreasing sequence of ordinals. We are
now ready to define a fully coherent sequence B∗ = 〈B∗τ | τ ∈ S〉. Given any
τ ∈ S,

• B∗τ = Bτ(0) ∪ ... ∪Bτ(`τ−1);

• σ∗τ̄ τ = στ(1)τ(0) ◦ ... ◦ στ(j)τ(j−1) ◦ στ̄ τ(j) whenever τ̄ ∈ B∗τ and j is such
that τ̄ ∈ Bτ(j).

We also define (Bshort
τ )∗ and (Blong

τ )∗ in the obvious way, with τ(i)short or
τ(i)long in place of τ(i).

Lemma 10.7. B∗ is a coherent sequence.

Proof: Pick a τ ∈ S and a τ̄ ∈ B∗τ . Suppose for simplicity that neither τ
nor τ̄ is unstable. (If they are, the proof is exactly the same, with superscripts
in the appropriate places.) Assume without loss of generality that τ̄ > τ(`τ−
1) = min(B∗τ ). We first observe

min(Bτ̄ ) ∈ B∗τ and Bτ̄ = B∗τ ∩ [min(Bτ̄ ), τ̄) .

This follows from Lemma 10.6. Let j be such that τ̄ ∈ Bτ(j). Then
τ(j + 1) ∈ Bτ̄ , and either τ(j + 1) = min(Bτ̄ ) or else Bτ̄ ∩ τ(j + 1) is a
tail-end of Bτ(j+1) ⊂ B∗τ . This proves that min(Bτ̄ ) ∈ B∗τ . To see that
Bτ̄ = B∗τ ∩ [min(Bτ̄ ), τ̄), we observe that Bτ̄ agrees with Bτ(j) on [τ(j+1), τ̄)
and Bτ̄ agrees with Bτ(j+1) on [min(Bτ̄ ), τ(j + 1)).

Define τ̄(i) from τ̄ the same way τ(i) was defined from τ . Let ¯̀ = `τ̄ .
Using the facts we just proved, we inductively show that Bτ̄(i) is a segment of
B∗τ for all i < ¯̀. It follows that B∗τ̄ is a (not necessarily initial) segment of B∗τ .
But B∗τ̄ must be in fact an initial segment of B∗τ ; otherwise τ̄(¯̀−1) > τ(`τ−1)
which would mean that Bτ̄(¯̀−1) is nonempty. Contradiction. �
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Since each σ∗τ̄ τ is the unique Σ
(n)
0 -preserving map from Nτ̄ to Nτ with

critical point τ̄ sending pτ̄ to pτ , Lemma 10.5 guarantees that range(σ∗τ∗τ ) ⊂
range(σ∗τ̄ τ ) whenever τ ∗ < τ̄ are in S0. On S1, the situation is analogous.
Thus we can define σ∗τ∗τ̄ by σ∗τ∗τ̄ = (σ∗τ̄ τ )

−1◦σ∗τ∗τ for any τ ∗ ≤ τ̄ from B∗τ∪{τ}.
It follows immediately that σ∗τ∗τ̄ : Nτ∗ −→ Nτ̄ is the unique map that is Σ

(n)
0 -

preserving with respect to the language for premice, has critical point τ ∗,
and sends τ ∗ to τ̄ and pτ∗ to pτ̄ whenever τ ∈ S0 and τ ∗ ≤ τ̄ are in B∗τ ∪{τ}.
Also, σ∗τ∗τ̄ : Mτ∗ −→Mτ̄ is the unique map that is Σ0-preserving with respect
to the language for coherent structures, has critical point τ ∗, and sends τ ∗

to τ̄ and qτ∗ to qτ̄ whenever τ ∈ S1 and τ ∗ ≤ τ̄ are in B∗τ ∪ {τ}.

To complete the definition of the square sequence, we will make use of
the following crucial lemma, whose proof will constitute the next subsection.

Lemma 10.8. For every τ ∈ S of uncountable cofinality, Bτ , Bshort
τ , and

Blong
τ are closed unbounded subsets of τ on a tail-end (if they are defined).

In other words, there is a τ̄ < τ such that Bτ − τ̄ is closed and unbounded in
τ ; likewise for Bshort

τ and Blong
τ .

To each τ ∈ S, let βτ be the least β ∈ B∗τ ∪{τ} such that B∗τ −β is closed
in τ . Define βshortτ and βlongτ analogously. The ordinal βτ (or βshortτ and βlongτ ,
if τ is unstable) is always defined, and if cof(τ) > ω, then βτ < τ , as follows
from the previous lemma and the fact that Bτ is a tail-end of B∗τ . Set

C∗τ = B∗τ − βτ ,
(Cshort

τ )∗ = (Bshort
τ )∗ − βshortτ ,

(C long
τ )∗ = (Blong

τ )∗ − βlongτ

and then define C∗τ = {C∗τ } if τ has a single canonical divisor, else C∗τ =
{(Cshort

τ )∗, (C long
τ )∗} if τ is unstable. Finally we set

C∗ = 〈C∗τ | τ ∈ S〉 .
Given τ̄ ∈ C∗τ , we know that τ̄ ∈ B∗τ , τ̄ ≥ βτ and that B∗τ , B

∗
τ̄ cohere. It

follows that βτ̄ = βτ . Consequently, C∗τ̄ = B∗τ̄ − βτ̄ = B∗τ ∩ τ̄ − βτ = C∗τ ∩ τ̄ ;
likewise for (Cshort

τ )∗ and (C long
τ )∗. The sequence C∗ thus satisfies all require-

ments on a �′Λ,2-sequence with the only exception that the sets C∗τ , (Cshort
τ )∗

and (C long
τ )∗ might have large order type.
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We now observe that for τ ∈ S1, the order type of C∗τ , (Cshort
τ )∗ and

(C long
τ )∗ are always small. Consider C∗τ without loss of generality. To each

τ ∗ < τ̄ from C∗τ we have the map σ∗τ∗τ̄ : Mτ∗ −→ Mτ̄ which is the unique
map with the preservation properties considered above. It is easy to see that
dom(Fτ∗) ⊂ dom(Fτ̄ ) and this inclusion is strict, since σ∗τ∗τ̄ is non-cofinal.
Hence θτ∗ < θτ̄ . It follows that θτ̄ −→ τ̄ is a strictly monotonic enumeration
of C∗τ with domain contained in θτ . But θτ ≤ κ+ ≤ Λ for short protomice,
and θτ ≤ κ++ ≤ Λ for long protomice (of type 1 or 2), so in all cases we have
otp(C∗τ ) ≤ otp(θτ ) ≤ Λ.

The above discussion shows that for τ ∈ S1, our construction already
yields a �′Λ-sequence. For τ ∈ S0 this is not obvious, and to arrange that the
order types are small, we will replace the sets C∗τ by suitably chosen subsets.

Let Xτ (ξ) be the Σ
(n)
1 -hull of {ξ, pτ} in Nτ . We define sequences 〈τι〉, 〈ξτι 〉

in the following way:

• τ0 = min(C∗τ ∪ {τ});

• ξτι = the least ξ < Λ such that Xτ (ξ) is not contained in range(σ∗τιτ );

• τι+1 = the least τ̄ ∈ C∗τ∪{τ} such thatXτ (ξ
τ
ι ) is contained in range(σ∗τ̄ τ );

• τγ = sup{τι | ι < γ} for limit γ;

• ιτ = the least ι such that τι = τ .

If τι < τ , then ξτι is always defined; just choose a ξ < Λ such that
τι = hτ (ξ, pτ ) and observe that Xτ (ξ) is not contained in range(σ∗τιτ ), as
τι = crit(σ∗τιτ ). Set

C ′τ = {τι | ι < ιτ} .

Lemma 10.9. 〈C ′τ | τ ∈ S0〉 is a �′Λ-sequence on S0.

Proof: Given ι < ιτ , the above definition immediately yields that τι+1 >
τι, and it is easy to see that C ′τ is closed. Furthermore, if τ does not have
cofinality ω, C ′τ is unbounded, since each Xτ (ξ

τ
ι ) is countable and there-

fore contained in range(σ∗τ̄ τ ) for sufficiently large τ̄ ∈ C∗τ (recall that C∗τ
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is closed unbounded in τ in this case). We next observe that if ῑ < ι,
then Xτ (ξ

τ
ι ) is not contained in range(σ∗τῑτ ), as range(σ∗τῑτ ) ⊂ range(σ∗τιτ ).

So ξτι < ξτῑ would contradict the minimality of ξτῑ . Furthermore, since
Xτ (ξ

τ
ῑ ) ⊂ range(σ∗τῑ+1τ

) ⊂ range(σ∗τιτ ), the ordinals ξτι and ξτῑ must be dis-
tinct. This proves that 〈ξτι | ι < ιτ 〉 is a strictly increasing sequence of
ordinals smaller than Λ. As an immediate consequence we have ιτ ≤ Λ and
that ι −→ τι is a strictly monotonic enumeration of C ′τ . So otp(C ′τ ) ≤ Λ
for each of the possibly two C ′τ sequences. It only remains to prove that the
sequence 〈C ′τ | τ ∈ S0〉 is coherent.

Pick a τ̄ ∈ C ′τ . Assume that τ̄ > min(C ′τ ); otherwise there is nothing to
prove. Since τ̄ ∈ C∗τ , we know that C∗τ̄ = C∗τ ∩ τ̄ . By induction on ι we show
that τ̄ι = τι whenever ι < ιτ̄ . For ι = 0, this follows immediately, and the
same applies to limit ι.

It remains to prove that τ̄ι+1 = τι+1, granted that this equality holds with
ι in place of ι+ 1. Here we use the following fact.

Claim: If Xτ (ξ) ⊂ range(σ∗τ̄ τ ), then Xτ (ξ) = (σ∗τ̄ τ )“Xτ̄ (ξ).

Proof: The inclusion ⊃ follows immediately, as Σ
(n)
1 -statements are up-

ward preserved under σ∗τ̄ τ . Now suppose y ∈ Xτ (ξ). This means that there is
an i ∈ ω and ζ < %τ such that (∃u ∈ SEζ )Hτ (u, y, 〈i, ξ〉, pτ ); take ζ to be the

least such. Then ζ is uniquely characterized by the following Σ
(n)
0 -statement:

(∃u ∈ SEζ )Hτ (u, y, 〈i, ξ〉, pτ ) and

(∀ν ∈ SEζ )(SEζ = S(ν)) −→ (∀u ∈ ν)¬Hτ (u, y, 〈i, ξ〉, pτ ) .

Since y = hτ (〈i, ξ〉, pτ ), substituting hτ (〈i, ξ〉, pτ ) for y yields that ζ is

Σ
(n)
1 -definable over Nτ from ξ and pτ , so ζ ∈ Xτ (ξ). By our assumption

that Xτ (ξ) ⊂ range(σ∗τ̄ τ ), there are ȳ, ζ̄ ∈ Nτ̄ such that y = σ∗τ̄ τ (ȳ) and
ζ = σ∗τ̄ τ (ζ̄). Then the above formula holds in Nτ̄ with τ̄ , ζ̄, ȳ and pτ̄ in
place of τ , ζ, y, and pτ ; this witnesses that (∃u)Hτ̄ (u, ȳ, 〈i, ξ〉, pτ̄ ), i.e., that
ȳ = hτ̄ (〈i, ξ〉, pτ̄ ) ∈ Xτ̄ (ξ). This proves the ⊂ inclusion and therefore the
Claim. �
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Now suppose τι = τ̄ι < τ̄ . Recall that σ∗τ ′τ = σ∗τ̄ τ ◦σ∗τ ′τ̄ for any τ ′ < τ̄ . By
the ⊃ direction of the above Claim, for any ξ < Λ we have

Xτ (ξ) ⊂ range(σ∗τιτ ) −→ Xτ̄ (ξ) ⊂ range(σ∗τιτ̄ ) .

It follows that ξ τ̄ι ≥ ξτι . Since we are assuming that τ̄ ∈ C ′τ and τι < τ̄ ,
we have τι+1 ≤ τ̄ , so Xτ (ξ

τ
ι ) ⊂ range(σ∗τ̄ τ ). Using the full strength of the

Claim, we obtain

Xτ (ξ
τ
ι ) = (σ∗τ̄ τ )“Xτ̄ (ξ

τ
ι ) ,

so Xτ̄ (ξ
τ
ι ) 6⊂ range(σ∗τ̄ιτ̄ ). It follows that ξ τ̄ι = ξτι . Letting ξι be this

common value, the above formula guarantees that for every τ ′ ∈ [τ̄ι, τ̄ ] ∩C∗τ ,

Xτ (ξι) ⊂ range(σ∗τ ′τ ) ↔ Xτ̄ (ξι) ⊂ range(σ∗τ ′τ̄ ) ,

which in turn implies that τ̄ι+1 = τι+1. �

It is now obvious that if we define C = 〈Cτ | τ ∈ S〉 by

Cτ =

{
{C ′τ}, if τ ∈ S0

C∗τ , if τ ∈ S1

then C is a �′Λ,2-sequence on S. To complete the construction, we have
to give the proof of Lemma 10.8. The next two subsections are devoted to
this task.

10.2 Proof of Lemma 10.8 for τ ∈ S0

Let τ ∈ S0 be a limit point of S with uncountable cofinality. We first define
an approximation D to Bτ . The set D is the set of all τ̄ ∈ S ∩ τ satisfying:

• Nτ̄ is a premouse of the same type as Nτ ;

• n(τ) = n(τ̄);

• There is a map στ̄ τ : Nτ̄ −→ Nτ that is Σ
n(τ)
0 -preserving with respect

to the language of premice and such that
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a) τ̄ = crit(στ̄ τ ) and στ̄ τ (τ̄) = τ ;

b) στ̄ τ (p(Nτ̄ )) = p(Nτ );

c) for each α ∈ p(Nτ ) there is a generalized solidity witness Qτ (α) for
α with respect to Nτ and p(Nτ ) such that Qτ (α) ∈ range(στ̄ τ ).

The only difference between D and Bτ is that we also allow ordinals from
S1 to be elements of D; that is, our interpolant might not be canonical. Later
we prove that there are only boundedly many such ordinals in τ . Obviously,
Bτ ⊂ D.

Lemma 10.10. D is unbounded in τ .

Proof: Recall that τ ∈ S0, so Nτ is not pluripotent (short or long). By
Lemma 7.10, any interpolant of Nτ such that the interpolation embedding
has critical point τ̄ ∈ S will be a level of W ; this is because all points in S
are neither indices nor pseudoindices, so the hypotheses of Lemma 7.10 hold.
Now by Lemma 7.9, there are cofinally many of these interpolated W -levels
below τ . This proves the Lemma. �

Lemma 10.11. D is closed in τ .

Proof: Let τ̃ be a limit point of D. So τ̃ ∈ S, as S is closed. Form the
direct limit 〈Ñ , στ̄ τ̃ | τ̄ ∈ D ∩ τ̃〉 of the diagram 〈Nτ̄ , στ∗τ̄ | τ ∗ ≤ τ̄ & τ ∗, τ̄ ∈
D ∩ τ̃〉. This direct limit is well-founded, as there is a Σ0-preserving em-
bedding σ : Ñ −→ Nτ defined by σ : στ̄ τ̃ (x) −→ στ̄ τ (x). From now on
consider Ñ to be transitive. Notice that σ ◦ στ̄ τ̃ = στ̄ τ . For ξ < τ̃ we have
στ̃ τ (ξ) = στ̄ τ (ξ) = ξ where τ̄ is such that ξ < τ̄ < τ̃ , so στ̃ τ � τ̃ = id. Also,
the thread 〈τ̄ | τ̄ ∈ D ∩ τ̃〉 clearly represents τ̃ in Ñ , so τ̃ = στ̄ τ̃ (τ̄) and

στ̃ τ (τ̄) = τ . It follows that τ̃ = (Λ+)Ñ and τ̃ = crit(στ̃ τ ). It is easy to see

that the maps στ̄ τ̃ are Σ
(n)
0 -preserving, where n = nτ . These preservation

properties hold with respect to the language of coherent structures, as it is
not clear that Ñ is a premouse of the same type as Nτ and the constant γ̇
is correctly interpreted in Ñ . Our aim is to show that Ñ = Nτ̃ , and again
we intend to use the condensation lemma. Thus, we have to show that its
hypotheses are met.
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The first step towards this is the verification that Ñ is a premouse of
the same type as Nτ . To see that Ñ is a potential premouse, notice that
Π2-properties which hold on a tail-end are upward preserved under direct
limit maps. We know that each Nτ̄ is of the same type as Nτ . If they are
type A, then so is Ñ , as the statement

(∀λ̄ < λN)(λ̄ is not a cutpoint of N ’s top extender)

is Π2(N) for anyN . IfNτ is typeB, then στ∗τ̄ (γNτ∗ ) = γNτ̄ , so στ∗τ̄ (λ
∗
Nτ∗

) =

λ∗Nτ̄ , as λ∗N is the largest cardinal in JE
N

γN for anyN . Set (γ̃, λ̃∗) = στ̄ τ̃ (γNτ̄ , λ
∗
Nτ̄

);

the preservation properties of the direct limit maps then guarantee that λ̃∗

is a cutpoint of Ñ ’s top extender F and F � λ̃∗ = EÑ
γ̃ . Now, exactly as in

the case of type A premice, we can show there are no cutpoints of F larger
than λ̃∗. Hence Ñ is type B as well, λ̃∗ = λ∗

Ñ
and γ̃ = γÑ . It remains to

discuss the case where Nτ is type C. Then %1(Nτ̄ ) = λNτ̄ > Λ, as both Nτ

and all Nτ̄ are in S. It follows that n > 0, so Π
(1)
2 -statements which hold

on a tail-end of D ∩ τ̃ are upwards preserved under the direct limit maps.
Notice also that %1(Ñ) =

⋃
{σ“τ̄ τ̃ (%1(Nτ̄ )) | τ̄ ∈ D ∩ τ̃} = λN̄ . That Ñ is of

type C can be expressed by the Q(1)-statement

(∀ζ)(∃λ̄ ≥ ζ)(λ̄ is a cutpoint of Ñ ’s top extender) ,

so it is true in Ñ by the preservation properties of the direct limit maps.
Now given any λ̄ < λÑ , and letting F be the top extender of Ñ ,

F � λ̄ = {〈x, y〉 | (∃y′)(〈x, y′〉 ∈ F & y = y′ ∩ λ̄} ,
so F � λ̄ is Σ1(N)-definable in λ̄. But we have seen that λ̄ < %1(Ñ) = λÑ ,

so F � λ̄, being a bounded subset of λÑ , must be in Ñ . This proves that Ñ is
a type C premouse. From now on we know that the preservation properties
of all maps στ̄ τ̃ and σ hold with respect to the language for premice.

Let p̃ = στ̄ τ̃ (pτ̄ ) for τ̄ ∈ D ∩ τ̃ . Given an x ∈ Ñ , there is a τ̄ ∈ D ∩ τ̃ and
an x̄ ∈ Nτ̄ such that x = στ̄ τ̃ (x̄). By the soundness of Nτ̄ , there is a ξ < Λ

satisfying x̄ = hτ̄ (ξ, pτ̄ ). This statement, being Σ
(n)
1 , is upward preserved by

στ̄ τ̃ , so x = hÑn+1(ξ, p̃). Since x was arbitrary, Ñ = hÑn+1(Λ∪{p̃}). This shows

that %ω(Ñ) = %n+1(Ñ) = Λ and p̃ is a very good parameter for Ñ . Now no-
tice that στ̃ τ (p̃) = pτ and that for any α ∈ pNτ , there is a generalized witness
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for α with respect to Nτ and pτ in range(σ). The latter follows from the fact
that range(σ) ⊃ range(στ̄ τ ) and that range(στ̄ τ ) contains such witnesses,
as is ensured by c) in the definition of D. But being a generalized solidity

witness is a Π
(n)
1 -property, so it is downward preserved by σ; this means Ñ

has generalized solidity witnesses for p̃. It now follows that Ñ is sound and
p̃ = pÑ , and consequently that Ñ = Nτ̃ , nτ̃ = n and σ = στ̃ τ . Thus τ̃ ∈ D. �

The following lemma contains the crucial combinatorial details which are
needed for proofs of � in fine-structural inner models. The main obstacle in
these proofs seems to be the following: Many of our interpolated levels will
be protomice of various sorts, and it is generally not too difficult to prove
that these protomice correspond to levels of W , that is, there is a divisor of
a level of W which reproduces the protomouse. The hard part is defining
canonical divisors of these levels of W , in such a way that we can ensure our
interpolated protomice correspond to the canonical divisors. The following
lemma includes the key step in this argument: if cofinally many interpolated
protomice were not the canonical ones, then there are “better” divisors of
all the corresponding levels of W . By pigeonholing, we want to turn these
better divisors into something like a thread through the chain of interpolants,
and prove that the image of this thread at the top of the chain will likewise
be a better divisor than the one we used to form the interpolation-chain.
Therefore we should not have been using that divisor to form our chain in
the first place.

Lemma 10.12. D is a subset of S0 on a tail-end, i.e., there is a τ̄ < τ such
that D − τ̄ ⊂ S0.

Proof: Suppose the contrary, i.e., let 〈τι | ι < δ〉 be an increasing se-
quence cofinal in τ such that each τι is in S1. By the pigeonhole principle,
we may assume that one of the following holds:

i) Every Nτι has a canonical short divisor (κτι , qτι) and (by further ap-
plication of the pigeonhole principle) for all ι < δ, |qτι| = m for some fixed
m ∈ ω;

ii) Every Nτι has a canonical long divisor νι and for all ι < δ, |pτι ∩ νι| =
m for some fixed m ∈ ω;
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iii) Every Nτι has a canonical type 2 long divisor νι and for all ι < δ,
|pτι ∩ νι| = m for some fixed m ∈ ω.

In each of these three cases, we will show that the cofinal sequence of
divisors can be “pushed up the elementary chain” given by D, and prove
that a divisor of the corresponding type is present in Nτ as well. This will
contradict the fact that τ ∈ S0, and thereby prove the lemma.

First we consider the case i), in which there are cofinally many Nτι with
canonical strong short divisors. We can assume that the sequence 〈κτι | ι <
δ〉 is monotone (not necessarily strictly), as we can always replace it by a
monotonic subsequence 〈κτι(ξ) | ξ < δ′〉, where ι(ξ) is inductively defined by

ι∗(ξ) = sup{ι(ξ̄) + 1 | ξ̄ < ξ} ;

ι(ξ) = the least ι such that ι∗(ξ) ≤ ι < δ and κτι = min{κτη | ι∗(ξ) ≤ η < δ} ,

where sup(∅) = 0. Let µ = sup{κτι | ι < δ}, let q be the bottom segment
of pτ with exactly m elements and let r = pτ − q. Notice that κ ≤ Λ and
that q = στιτ (qτι) and r = στιτ (rτι) for all ι < δ.

We show that (κ, q) is a divisor of Nτ by verifying all clauses in the
definition of a divisor. From the proof of the previous lemma we know that
〈Nτ , στιτ | ι < δ〉 is the direct limit of the diagram 〈Nτ , στῑτι | ῑ ≤ ι < δ〉.
Notice first that

(∗) %τ =
⋃
ι<δ

σ“τιτ (%τι) .

We further observe that

(†) hτ (κ ∪ {r}) =
⋃
ι<δ

σ“τιτhτι(κτι ∪ {rτι}) .

The inclusion ⊃ follows from the fact that Σ
(n)
1 -statements are upward

preserved under στιτ , so if y = hτι(ξ, rτι) for some ξ < κτι then στιτ (y) =

hτ (ξ, r). The converse follows from the property of direct limits that Σ
(n)
1 -

statements are downward preserved on a tail-end. So if y = hτ (ξ, r), then for
a sufficiently large ι < δ, the value yι = hτι(ξ, rτι) is defined and στιτ (yι) = y.
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This proves (†). Now as (κτι , qτι) is a divisor for Nτι for any ι < δ, each hull
hτι(κτι ∪ {rτι}) is cofinal in %τι . This together with (∗) and (†) yields that
hτ (κ ∪ {r}) is cofinal in %τ , which proves b) in the definition of short divisor
(Definition 8.8).

To verify c) of Definition 8.8, we show

hτ (κ ∪ {r}) ∩ (max(q) + 1) ⊂ κ .

By convention we set max(∅) = Λ + 1 here. Fix a ζ ≤ max(q) such that
ζ = hτ (ξ, r) for some ξ < κ. Pick an ι < δ such that ῑ = hτι(ξ, rτι) is defined
and so ζ = στιτ (ζ̄). Hence ζ̄ ≤ max(qτι). As (κτι , qτι) is a divisor, ζ̄ < κτι .
So ζ = στιτ (ζ̄) = ζ̄ < κτι ≤ κ, which proves the above formula. Thus, setting
λ to be the least ordinal in hτ (κ, r)− κ, we have λ > max(qτ ). On the other
hand, λ ≤ στιτ (λτι) < %τ ; the former inequality is a consequence of the fact
that στιτ (λτι) is obviously in hτ (κ ∪ {r}). This verifies that (κ, q) is a short
divisor of Nτ .

It must be that (κ, q) is not strong, as no τ ∈ S0 admits a strong
short divisor (or else it would have a canonical divisor and hence be in
S1). By Lemma 8.13, pN ′τ is a proper lengthening of r′ = (π′)−1(r) where

π′ : N ′τ −→ Nτ is the uncollapsing embedding associated with the Σ
(n)
1 -hull

hτ (κτ ∪ {pτ}). Let β′ be the largest element of pN ′τ − r′. Then W β′,r′

N ′τ
∈ N ′τ ,

as the preservation properties of π′ combined with the solidity theorem guar-
antee that N ′τ is solid. Letting Q = π′(W β′,r′

N ′τ
) and t = π′(t′) where t′

is the preimage of r′ under the associated canonical witness map, 〈Q, t〉
is a generalized witness for β = π′(β′) with respect to Nτ and r. Let
ξ, η < κ be such that 〈Q, t〉 = hτ (ξ, pτ ) and β = hτ (η, pτ ); such ordinals
exist, as range(π′) = hτ (κτ ∪ {pτ}). Let ι < δ be sufficiently large so that
η, ξ < κτι and both β̄ = hτι(η, pτι) and T̄ = hτι(ξ, pτι) are defined. Then
στιτ (β̄, T̄ ) = (β, 〈Q, t〉), so T̄ is of the form 〈Q̄, t̄〉 and is a generalized witness
for β̄ with respect to Nτι and rτι ; to see this, recall that being a general-

ized witness is a Π
(n)
1 -property, and therefore is downward preserved under

the Σ
(n)
0 -preserving map στιτ . Moreover, both β̄ and 〈Q̄, t̄〉 are in the range

of π′τι = hτι(κι ∪ {pι}) by our choice of η, ξ, and ι. Finally β̄ ≥ κτι , as
β ≥ κ (this follows easily from the definition of β) and κι ≤ κ. Thus, if
(β̄, 〈Q̄, t̄〉) = π′τι(β̄

′, 〈Q̄′, t̄′〉), then β̄′ ≥ κτι and 〈Q̄′, t̄′〉 is a generalized wit-
ness for β̄′ with respect to N ′τι(κτι) and r′τι , that is, an element of N ′τι(κτι).
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Then the standard witness W ′ = W
β̄′,r′τι
N ′τι (κτι )

is an element of N ′τι(κτι) as well.

Let t′τι be the preimage of r′τι under the associated canonical witness map.

Since this map is Σ
(n)
1 -preserving, for any set A which is Σ

(n)
1 (N ′τι(κτι)) in

the parameter r′τι we can find some A′ which is Σ
(n)
1 (W ′)-definable in the

parameter t′τι such that A ∩ β̄′ = A′ ∩ β̄′ ∈ N ′τι(κτι). Then r′τι is not a good
parameter for Nτι , as β̄′ ≥ κτι . In other words, pN ′τι (κτι ) is a proper length-
ening of r′τι . By Lemma 8.13, the divisor (κτι , qτι) is not strong, contradiction.

We have shown that i) is impossible: only boundedly many of the Nτι ’s
can have canonical short divisors. We now give a similar argument to rule
out ii). The argument is similar, but in fact simpler. Because we are as-
suming |pτι ∩ νι| = m for some fixed m ∈ ω, and the embedding-chain
〈Nτ , στῑτι | ῑ ≤ ι < δ〉 preserves standard parameters, it follows that the
long divisors νι are a thread through this direct limit system. Since each νι
indexes an extender Eνι with crit(Eνι) = κι < Λ, and the critical points of

the maps στῑτι are all > Λ, we have by Σ
(n)
0 -elementarity of στῑτι that all κι

are the same ordinal; call it κ. Likewise, for α < κ+, α is below the critical
points of all στῑτι , and is therefore a thread; and it follows that the short
extenders Eνι have the property that iEνι (α) is a thread, for every such α
(that is, iEν (α) = στιτ (iEνι (α)) for all α < κ+ and ι < δ).

We want to verify that ν = στιτ (νι) is a long divisor of Nτ , so we must
check that the clauses of 9.19 hold. a) follows trivially by elementarity. Be-
cause iEν (α) = στιτ (iEνι (α)) for all α < κ+ and ι < δ, it is easy to see that
b) holds as well. To prove c), we suppose ξ ∈ HullNτn+1(iEν“(κ+)), so for
some α < κ+ we have ξ = hNτn+1(iEν (α), r). But then for sufficiently large ι,

h
Nτι
n+1(iEνι (α), rι) = ξι is defined, and since νι is a long divisor of Nτι we must

have ξι ∈ HullNτιn+1(iEνι“(κ+)). By elementarity, the same is true for ξ; this
verifies c). Finally, d) follows by a similar argument: if λ+ were the space
of an extender on the Nτ -sequence, then for sufficiently large ι, the same is
true for Nτι , contradicting the fact that all νι are long divisors. (Here we are
using the fact that 〈λ+

Eνι
| ι < δ〉 form a thread in our direct limit system,

which is an easy consequence of elementarity.) This finishes the verification
that ν is a long divisor of Nτ , contradiction.

Finally we must deal with the case iii), in which a cofinal set of Nτι ’s
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have canonical type 2 long divisors. As in case ii) above, the ordinals νι
form a thread through 〈Nτ , στῑτι | ῑ ≤ ι < δ〉. We want to verify that
ν = στιτ (νι) is a type 2 long divisor of Nτ , so we must check that the clauses
of Definition 9.25 hold. As before, a) follows trivially by elementarity, and
iEν (α) = στιτ (iEνι (α)) for all α < κ+ and ι < δ. That is, using the notation
of Definition 9.25, the points in Z are all threads through the direct limit
system. Also note that the ordinals µι = sup(iEνι“(κ+)) form a thread. Since
all νι’s are type 2 long divisors of their respective Nτι ’s, and the relations Rι

of Definition 9.25 for type 2 long divisors are uniformly definable from µι,
we can argue exactly as before that Hull

(|Nτ |,R)
n+1 (Z ∪ r) (the divisor-hull cor-

responding to ν) satisfies b) and c) of Definition 9.25. Clause d) also follows
by elementarity exactly as before.

In all three cases, we have shown that cofinally many divisors in the
embedding-chain would induce the existence of a divisor at the top, contra-
dicting that τ ∈ S0. This proves the Lemma. �

Let τ̄ be minimal with the property that D − τ̄ ⊂ S0. By the previous
lemmata, τ̄ < τ and Bτ − τ̄ = D − τ̄ is closed and unbounded in τ . This
completes the proof of Lemma 10.8 for τ ∈ S0.

10.3 Proof of Lemma 10.8 for τ ∈ S1

Here we adopt the same strategy as for τ ∈ S0. We again assume that τ
is a limit point of S, of uncountable cofinality, but now, of course, τ ∈ S1.
This means Mτ , or M short

τ and M long
τ , are defined. For the remainder of this

subsection we fix one of these models and simply call it Mτ . There are five
cases for what Mτ might look like:

Case 1) Mτ = Nτ is a short pluripotent level of W ;

Case 2) Mτ is the strong short protomouse associated with a canonical
short divisor (κ, q) of Nτ ;

Case 3) Mτ = Nτ is a long pluripotent level of W ;
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Case 4) Mτ is the long protomouse associated with a canonical long di-
visor ν of Nτ ;

Case 5) Mτ is the type 2 long protomouse associated with a canonical
type 2 long divisor ν of Nτ .

In all five of these cases, our approach will be the same. We first define
D to be the set of all τ̄ ∈ S1 ∩ τ such that there is an interpolant M∗

τ̄ of
Mτ satisfying the conditions for τ̄ ∈ Bτ (in particular, M∗

τ̄ is the protomouse
associated with a divisor of Nτ̄ ), except that M∗

τ̄ may not be a canonical
protomouse associated with Nτ̄ . We would like to prove that on a tail-end,
these interpolants are in fact canonical protomice; so we suppose that cofi-
nally many of our M∗

τ̄ ’s are ‘beaten’ by some other divisor of Nτ̄ with a larger
divisor-hull. The heart of the entire �Λ proof is the fact that this cofinal set
of larger-hull divisors can be pushed up the elementary chain of M∗

τ̄ ’s to in-
duce the existence of a larger divisor-hull of Nτ as well, which contradicts
the fact that Mτ was the canonical divisor.

The basic structure of this proof is therefore similar to the proof given
in the previous subsection for when τ ∈ S0. However, in that proof we were
given an embedding-chain through our set of interpolants D which were all
levels of W , and had to ‘push up the existence of a divisor’ through this
chain of W -levels. In the current context, the embedding-chain is through a
set of interpolants D which are all protomice associated with W -levels, and
our goal is to ‘push up the existence of a divisor with larger divisor-hull’
through this chain. We must therefore make heavy use of the finestructural
translation lemmas between protomice and their associated ppm’s, because
our embeddings are between protomice M∗

τ̄ , but the divisors we want to push
up are divisors of the associated ppm’s Nτ̄ .

Recall that we can treat short pluripotent levels as a limiting case of
short protomice in which the top extender is in fact total, and similarly for
long protomice. In what follows we will treat Cases 1) and 2) together, and
afterwards treat Cases 3), 4), and 5) together.

Proof of Lemma 10.8 in Cases 1) and 2):

Recall that in Case 1), we set (κτ , qτ ) = (κGNτ , d(Nτ )), where GNτ is the
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top extender of Nτ . In Case 2), (κτ , qτ ) is the canonical short divisor of Nτ .

Let D be the set of all τ̄ ∈ S1 ∩ τ satisfying:

• Setting qτ̄∗ to be the bottom segment of pτ̄ of length = |qτ |, the pair
(κτ , q

∗
τ̄ ) is a strong short divisor of Nτ̄ ;

• Setting M∗
τ̄ = Nτ̄ (κτ , q

∗
τ̄ ), there is a map στ̄ τ : M∗

τ̄ −→ Mτ that is
Σ0-preserving with respect to the language of coherent structures and
such that

a) τ̄ = crit(στ̄ τ ) and στ̄ τ (τ̄) = τ ;

b) στ̄ τ (q̄
∗
τ̄ ) = qτ ;

c) for each α ∈ qτ there is a generalized solidity witness Qτ (α) for α
with respect to Mτ and qτ such that Qτ (α) ∈ range(στ̄ τ ).

Generalized witnesses in clause c) are, of course, computed in the lan-
guage for coherent structures. Notice that M∗

τ̄ is never a pluripotent level of
W , even if Mτ is, as its top extender cannot measure all subsets of κτ . This
follows from the fact that στ̄ τ is not cofinal. We first prove that D is closed
and unbounded in τ , and then that (κτ , q

∗
τ̄ ) = (κτ̄ , qτ̄ ) on a tail-end of D.

Lemma 10.13. D is unbounded in τ .

Proof: By Lemma 7.9, there are cofinally many τ̄ < τ such that there
is an interpolant M∗

τ̄ of Mτ with the interpolation embedding mapping its
critical point τ̄ to τ . By 8.21 for Case 1) or 8.22 for Case 2), M∗

τ̄ is a short
protomouse. By 8.23, the associated ppm of M∗

τ̄ is Nτ̄ , the collapsing-level
for τ̄ in W ; this means (κτ , q

∗
τ̄ ) is a short divisor of Nτ̄ , with associated pro-

tomouse M∗
τ̄ . Now we must show that without loss of generality (κτ , q

∗
τ̄ ) is a

strong short divisor of Nτ̄ : this will follow from Lemma 8.15, which tells us
that (κτ , q

∗
τ̄ ) is strong if and only if θτ̄ is closed in M∗

τ̄ relative to d(M∗
τ̄ ).

Recall that θτ is closed in Mτ relative to d(Mτ ); if Mτ is a short proto-
mouse this is immediate from our demand that the canonical short divisor
of Nτ must be strong, and if Mτ is short pluripotent then θτ = κ+

τ and
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the conclusion is trivial. It follows by a simple closure argument that there
are unboundedly many θ∗ < θτ in Mτ which are closed in Mτ relative to
d(Mτ ) (see [5] Lemma 3.10 for further details). Now when we form inter-
polants of Mτ using the construction of Lemma 7.9, we first take a countable
fully elementary hull X ′ ≺Σω Mτ , which will also have unboundedly many
θ∗ < θτ which are closed in X ′ relative to d(X ′). Then we have a cofinal map
i : X −→ M∗

τ̄ as given in Lemma 7.9, where π : X −→ X ′ is the uncollapse.
Note that π maps θ̄ = dom(GX) = π−1(θτ ) cofinally into θτ̄ = dom(GMτ̄ ).
But then the cofinally many closure-points below θ̄ are mapped to cofinally
many θ∗ < θτ̄ which are closed in M∗

τ̄ relative to d(M∗
τ̄ ). Therefore θ∗ is so

closed as well, which shows that it corresponds to a strong short divisor. �

Lemma 10.14. D is closed in τ .

Proof: We shall closely follow the proof of Lemma 10.11. Let τ̃ < τ be
a limit point of D. Then τ̃ ∈ S. Form the direct limit 〈M̃, στ̄ τ̃ | τ̄ ∈ D ∩ τ̃〉
of the diagram 〈M∗

τ̄ , στ∗τ̄ | τ ∗ ≤ τ̄ & τ ∗, τ̄ ∈ D ∩ τ̃〉. As before we have
the Σ0-preserving map σ : M̃ −→ M defined by στ̄ τ̃ (x) −→ στ̄ τ (x), so M̃ is
well-founded and we can consider it to be transitive. The arguments from
the proof of Lemma 10.11 can be modified in a straightforward way to obtain
the following properties of M̃ and σ. In the clauses below, τ̄ is an arbitrary
element of D ∩ τ̃ .

• M̃ is a coherent structure.

• στ̄ τ̃ (τ̄) = τ̃ and σ ◦ στ̄ τ̃ = στ̄ τ .

• crit(σ) = τ̃ and σ(τ̃) = τ .

• hM̃(Λ∪{q̃}) = M̃ , where q̃ = στ̄ τ̃ (q
∗
τ̄ ), so %ω(M̃) = %1(M̃) = Λ and q̃ is

a very good parameter for M̃ .

• σ(q̃) = qτ .

• Let α̃ ∈ q̃ and σ(α̃) = α. So α ∈ qτ . If 〈Q(α), t(α)〉 is a generalized wit-
ness for α with respect to Mτ and qτ and 〈Q(α), t(α)〉 ∈ range(στ̄ τ ) for
some τ̄ ∈ D ∩ τ then 〈Q(α̃), t(α̃)〉 = σ−1(〈Q(α), t(α)〉) is a generalized
witness for α̃ with respect to M̃ and q̃.

• q̃ = p(M̃).
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• M̃ is sound and solid.

The very first clause follows from the fact that the direct limit M̃ satisfies
Π2-statements which hold on a tail-end of D∩ τ̃ ; the rest is clear. By Lemma
8.23, M̃ = Nτ̃ (κτ , q̃).
To complete the proof, we have to show that (κτ , q̃) is a strong divisor of
M̃ . We again show that θ̃ = θ(M̃) is closed in M̃ relative to q̃. So pick an
f ∈ JE

θ̃
and ξ < κτ , and fix some τ̄ ∈ D ∩ τ̃ such that F̃ (f) ∈ range(στ̄ τ̃ ),

where F̃ is the top extender of M̃ . Letting F̄ be the top extender of M∗
τ̄ , we

have

F̃ (f)(q̃), ξ) ∩ κτ = στ̄ τ̃ (F̄ (f)(q∗τ̄ , ξ) ∩ κτ ) = F̄ (f)(q∗τ̄ , ξ) ∩ κτ ∈ JEθτ̄ ⊂ JE
θ̃
.

The second equality is a consequence of the fact that στ̄ τ̃ (κτ ) = κτ , and
the membership relation follows from the assumption that (κτ , q

∗
τ̄ ) is a strong

divisor of Nτ̄ . �

Lemma 10.15. There is a τ̄ < τ such that for every τ ′ ∈ D − τ̄ we have
(κτ , q

∗
τ ′) = (κτ̄ , qτ̄ ). (That is, our interpolant is one of the canonical divisors

of Nτ̄ .) Consequently, D − τ̄ = Bτ − τ̄ .

Proof: We will again follow the proof of the corresponding Lemma 10.12.
Suppose for a contradiction that 〈τι | ι < δ〉 is an increasing sequence cofinal
in τ such that (κτ , q

∗
τι) is not a canonical divisor of Nτι . This means each

Nτι either has a strong short divisor (κτι , qτι) with qτι a bottom part of q∗τι
and κτι > κτ , or else it has a long or type 2 long divisor νι with νι ∈ q∗τι and
κνι ≥ κτ .

By the pigeonhole principle, we may assume that one of the following
holds:

i) Every Nτι has a canonical short divisor (κτι , qτι) with qτι a bottom part
of q∗τι and κτι > κτ , and also (by further application of the pigeonhole prin-
ciple) for all ι < δ, |qτι | = m for some fixed m ∈ ω;

ii) Every Nτι has a canonical long divisor νι with νι ∈ q∗τι , and for all
ι < δ, |pτι ∩ νι| = m for some fixed m ∈ ω;

156



iii) Every Nτι has a canonical type 2 long divisor νι with νι ∈ q∗τι , and for
all ι < δ, |pτι ∩ νι| = m for some fixed m ∈ ω.

In cases i) and ii), we will show that the cofinal sequence of divisors can
be “pushed up the elementary chain” given by D, and prove that a divisor of
the corresponding type is present in Nτ as well. This will contradict the fact
that (κτ , qτ ) was the canonical divisor of Nτ , and thereby prove the lemma.
In case iii) we will reach a contradiction, using the fact that type 2 long
divisors can never “beat” our interpolated divisor (κτ , q

∗
τι).

First we consider case i). We have that each qτι is a bottom part of q∗τι ,
say q∗τι = qτι∪sτι . Moreover, κτι > κτ for every ι < δ. Arguing as in the proof
of Lemma 10.12, we can assume without loss of generality that 〈κτι | ι < δ〉
is a monotonic sequence, and we have already arranged that qτι have a fixed
size m. Then στῑτι(qτῑ , sτῑ) = (qτι , sτι) whenever ῑ ≤ ι ≤ δ, and we can set

q = στιτ (qτι);

s = στιτ (sτι);

r = rτ ;

κ = supι<δ(κτι).

The former two values clearly do not depend on ι. Also, s might be
empty, in which case q = qτ . We first observe that (κ, q) is a short divisor
of Nτ . As q is a bottom part of qτ and κ > κτ , this short divisor cannot
be strong by the definition of (κτ , qτ ). Using a reflection argument we then
derive a contradiction to the fact that all (κτι , qτι) are strong.

Recall that Mτ = Nτ (κτ , qτ ). To see that (κ, q) is a short divisor of Nτ , we
first verify clause b) from Definition 8.8. But hτ (κ∪ {r ∪ s}) ⊃ hτ (κτ ∪ {r}),
and the latter hull is cofinal in %τ , so the former is as well. Now we need
to see that hτ (κ ∪ {r ∪ s}) ∩ (max(q) + 1) = κ; this will verify the rest of
the properties of short divisors. Pick a ζ from the above intersection. Let
Fτ and Fτι be the top extenders of Mτ and M∗

τι , respectively. By Lemma
8.4, ζ is of the form Fτ (f)(ξ, s) for some f : [κτ ]

<ω −→ κτ and ξ < κ. For ι
sufficiently large such that f ∈ dom(Fτι) and ξ < κτι , set ζι = Fτι(f)(sτι , ξ),
then clearly στιτ (ζι) = ζ. Since ζ ≤ max(q), we have ζι ≤ max(qτι). Again
by Lemma 8.4, ζι ∈ hτι(κτι ∪ {rτι}). Hence ζι < κτι and, consequently,
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ζ = στιτ (ζι) < κτι ≤ κ. This completes the proof that (κ, q) is a short divisor.

Recall that for a strong short divisor (κ, q), π′ : N ′τ (κ) −→ Nτ is the
uncollapsing map associated with the hull hτ (κ∪{pτ}). Let π′(r′, s′) = (r, s).
As we have already mentioned, the short divisor (κ, q) cannot be strong. This
means that for some β′ such that κ ≤ β′ < min(s′) we have

W β′r′∪s′
N ′τ (κ) ∈ N

′
τ (κ) .

This follows from Lemma 8.13.

Le π′ι : N ′τι(κτι) −→ Nτι be the associated uncollapsing map and let

(β′ι, r
′
τι , Q

′
ι, t
′
ι) = (π′ι)

−1(βι, rτι ,W
βι,rτι∪sτι
Nτι

, tι) .

Then 〈Q′ι, t′ι〉 is a generalized witness for β′ι with respect to N ′τι(κτι) and
r′τι . Notice also that β′ι ≥ κτι , as βι ≥ κτι and π′ι � κτι = id. Now we can
proceed exactly as in the proof of Lemma 10.12. First of all, once 〈Q′ι, t′ι〉
is in N ′τι(κτι), we know that also the standard witness W ′

ι for β′ι with re-
spect to N ′τι(κτι) and r′τι is in N ′τι . Then every subset of β′ι ≥ κτι which is

Σ
(nτι )
1 (N ′τι(κτι)) in r′τι is Σ

(nτι )
1 (W ′

ι ), and therefore is an element of N ′τι(κτι).
Thus, pN ′τι (κτι ) must be a proper lengthening of r′τι . By Lemma 8.13, this
means (κτι , qτι) cannot be strong, contradiction. This completes the proof of
Lemma 10.15 under the assumption i).

Next we consider assumption ii): Suppose for a contradiction that 〈τι | ι <
δ〉 is an increasing sequence cofinal in τ such that for all ι < δ, (κτ , q

∗
τι) is

not the canonical divisor of Nτι because Nτι has a canonical long divisor νι
with νι ∈ q∗τι . (Recall also that unstable levels have two canonical divisors,
and our current assumption is that (κτ , q

∗
τι) is not one of them.) We have

also arranged that for all ι < δ, |pτι ∩ νι| = m for some fixed m ∈ ω.

As before, the ordinals νι form a thread through the direct limit system
〈Nτι , στῑτι | ῑ, ι < δ〉. It follows that the critical points of the extenders Eνι
also form a thread; and since the critical points of the embeddings στῑτι are
all > Λ > κEνι , it follows that for all ι, κEνι is the same ordinal; call it κν .

If κν < κτ , then all the levels Nτι are unstable. But then (κτ , q
∗
τι) is a

canonical divisor for Nτι after all (it is one of the two canonical divisors con-
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sidered in the unstable case), contradiction. So we have that κνι ≥ κτ . We
wish to show that ν = στιτ (ντ ) is a long divisor for Nτ , with κν = κEν (so we
are not in the unstable case with (κτ , qτ ) and ν as the two canonical divisors
of Nτ ). This will contradict our assumption that (κτ , qτ ) is a canonical divi-
sor of Nτ .

We need to verify that the properties of long divisors from Definition
9.19 hold for ν over Nτ . a) follows from what we have already said. b)
and c) follow from arguments just like those used in the proof of i) above:
for b), we know that the short divisor-hull HullNτn+1(κτ ∪ rτ ) is cofinal in
%n(Nτ ), so certainly the strictly larger long divisor-hull HullNτn+1(Z ∪ rτ ),
where Z = iEν“(κ+

ν ), is cofinal as well. For c), we again use Lemma 8.4:
Pick a ζ from HullNτn+1(Z ∪ rτ ) ∩ λ+. Let Fτ and Fτι be the top extenders
of Mτ and M∗

τι , respectively. By Lemma 8.4, ζ is of the form Fτ (f)(ξ, s)
for some f : [κτ ]

<ω −→ κτ and ξ ∈ Z. For ι sufficiently large such that
f ∈ dom(Fτι), set ζι = Fτι(f)(sτι , σ

−1
τιτ (ξ)). Then ζι ∈ Zι = iEνι“(κ+

ν ). Also
we have στιτ (ζι) = ζ, because all relevant points in the foregoing definition
are threads through our direct limit system. It follows that ζ ∈ Z, which
verifies c) of Definition 9.19.

Finally, to see d), note that λν is a thread in our direct limit system, and
if there is a total extender in Nτ with critical point λν , it must be στιτ (F ),
where F is a total extender in Nτι with critical point λνι ; but this violates d)
of long divisorhood for νι in Nτι . This completes the verification that ν is a
long divisor, and hence proves Lemma 10.15 under the assumption ii).

At last we prove the lemma under assumption iii). This time we have
that 〈τι | ι < δ〉 is an increasing sequence cofinal in τ such that for all ι < δ,
(κτ , q

∗
τι) is not a canonical divisor of Nτι because Nτι has a canonical type 2

long divisor νι with νι ∈ q∗τι . As before, recall also that unstable levels have
two canonical divisors, and our current assumption is that (κτ , q

∗
τι) is not one

of them. But this contradicts Lemma 9.37.

We have proved the Lemma in Cases 1) and 2). �

Proof of Lemma 10.8 in Cases 3), 4) and 5):

Let ν be νNτ if Nτ = Mτ is long pluripotent (Case 3)), and ν be the
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canonical long or type 2 long divisor of Nτ in Cases 4) or 5). As before, we
first define D to be the set of all τ̄ ∈ S1 ∩ τ satisfying:

• ν̄ is a long or type 2 long divisor of Nτ̄ , where ν̄ ∈ p(Nτ̄ ) is such that
|p(Nτ ) ∩ ν| = |p(Nτ̄ ∩ ν̄)|;

• There is a map στ̄ τ : Nτ̄ (ν̄) −→ Mτ that is Σ0-preserving with respect
to the language of coherent structures and such that

a) τ̄ = crit(στ̄ τ ) and στ̄ τ (τ̄) = τ ;

b) στ̄ τ (ν̄) = ν;

c) for each α ∈ d(Mτ̄ ) there is a generalized solidity witness Qτ (α) for
α with respect to Mτ and d(Mτ ) such that Qτ (α) ∈ range(στ̄ τ ).

In other words, D is the set of τ̄ corresponding to interpolants of Mτ such
that the interpolation embedding maps τ̄ to τ . We want to see that D is club
in τ , and that on a tail-end of τ̄ , the interpolants witnessing membership in
D are the canonical protomice corresponding to Nτ̄ .

Lemma 10.16. D is unbounded in τ .

Proof: By Lemma 7.9, there are cofinally many τ̄ < τ such that there
is an interpolant M∗

τ̄ of Mτ with the interpolation embedding mapping its
critical point τ̄ to τ . By 9.28 for Case 3), or 9.29 for Cases 4) and 5), these
interpolants are long protomice; and by 9.30, their associated ppm’s are lev-
els Nτ̄ of W , so they witness τ̄ ∈ D. �

Lemma 10.17. D is closed in τ .

Proof: We shall closely follow the proof of Lemma 10.14. Let τ̃ < τ be
a limit point of D. Then τ̃ ∈ S. Form the direct limit 〈M̃, στ̄ τ̃ | τ̄ ∈ D ∩ τ̃〉
of the diagram 〈M∗

τ̄ , στ∗τ̄ | τ ∗ ≤ τ̄ & τ ∗, τ̄ ∈ D ∩ τ̃〉. As before we have
the Σ0-preserving map σ : M̃ −→ M defined by στ̄ τ̃ (x) −→ στ̄ τ (x), so M̃ is
well-founded and we can consider it to be transitive. The arguments from
the proof of Lemma 10.11 can be modified in a straightforward way to obtain
the following properties of M̃ and σ. In the clauses below, τ̄ is an arbitrary
element of D ∩ τ̃ .
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• M̃ is a coherent structure.

• στ̄ τ̃ (τ̄) = τ̃ and σ ◦ στ̄ τ̃ = στ̄ τ .

• crit(σ) = τ̃ and σ(τ̃) = τ .

• hM̃(Λ∪{q̃}) = M̃ , where q̃ = στ̄ τ̃ (q
∗
τ̄ ), so %ω(M̃) = %1(M̃) = Λ and q̃ is

a very good parameter for M̃ .

• σ(q̃) = qτ .

• Let α̃ ∈ q̃ and σ(α̃) = α. So α ∈ qτ . If 〈Q(α), t(α)〉 is a generalized wit-
ness for α with respect to Mτ and qτ and 〈Q(α), t(α)〉 ∈ range(στ̄ τ ) for
some τ̄ ∈ D ∩ τ then 〈Q(α̃), t(α̃)〉 = σ−1(〈Q(α), t(α)〉) is a generalized
witness for α̃ with respect to M̃ and q̃.

• q̃ = p(M̃).

• M̃ is sound and solid.

The very first clause follows from the fact that the direct limit M̃ satisfies
Π2-statements which hold on a tail-end of D∩ τ̃ ; the rest is clear. By Lemma
9.30, M̃ = Nτ̃ (ν̃), where ν̃ = σ−1(ν). �

Finally we show

Lemma 10.18. There is a τ̄ < τ such that for every τ̃ ∈ D− τ̄ we have that
ν̃ is a canonical divisor of Nτ̃ , where ν̃ ∈ p(Nτ̃ ) is such that |p(Nτ ) ∩ ν| =
|p(Nτ̃ ∩ ν̃)|. (That is, our interpolant is one of the canonical divisors of Nτ̃ .)
Consequently, D − τ̄ = Bτ − τ̄ .

Proof: We will again follow the proof of the corresponding Lemma 10.12.
Suppose for a contradiction that 〈τι | ι < δ〉 is an increasing sequence cofinal
in τ such that our interpolated divisor ν̃ι is not a canonical divisor of Nτι .
This means each Nτι either has a canonical long or type 2 long divisor νι < ν̃ι,
or a strong short divisor (κτι , qτι) with max(qτι) < ν̃ι.

By the pigeonhole principle, we may assume that one of the following
holds:
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i) Every Nτι has a canonical strong short divisor (κτι , qτι) with max(qτι) <
ν̃ι, and also (by further application of the pigeonhole principle) for all ι < δ,
|qτι| = m for some fixed m ∈ ω;

ii) Every Nτι has a canonical long divisor νι with νι < ν̃ι, and for all
ι < δ, |pτι ∩ νι| = m for some fixed m ∈ ω;

iii) Every Nτι has a canonical type 2 long divisor νι with νι < ν̃ι, and for
all ι < δ, |pτι ∩ νι| = m for some fixed m ∈ ω.

In cases i) and ii), we will show that the cofinal sequence of divisors can
be “pushed up the elementary chain” given by D, and prove that a divisor of
the corresponding type is present in Nτ as well. This will contradict the fact
that (κτ , qτ ) was the canonical divisor of Nτ , and thereby prove the lemma.
Case iii) is in fact impossible, using the fact that type 2 long divisors can
never “beat” our interpolated divisor ν̃ι; this is an easy application of Lemma
9.37.

First we consider case i). We have that each qτι satisfies max(qτι) < ν̃ι.
Moreover, κτι > κν̃ι for every ι < δ, because the divisor-hull corresponding
to (κτι , qτι) contains ν and hence contains κν̃ι . Arguing as in the proof of
Lemma 10.12, we can assume without loss of generality that 〈κτι | ι < δ〉 is a
monotonic sequence, and we have already arranged that all qτι have a fixed
size m. Exactly as in Lemma 10.15, we set

q = στιτ (qτι);

r = p(Nτ )− q;
s = r ∩ (ν + 1);

κ = supι<δ(κτι).

We first observe that (κ, q) is a short divisor of Nτ . Recall that Mτ =
Nτ (ν) is a long protomouse, and the divisor-hull corresponding to ν is hτ (Z∪
p(Nτ ) − (ν + 1)), where Z = iEν“(κ+

ν ). To see that (κ, q) is a short divisor
of Nτ , we first verify clause b) from Definition 8.8. Notice that hτ (κ ∪ r) ⊃
hτ (Z ∪ p(Nτ )− (ν + 1)), because ν ∈ r and κ > κν , so in fact κ > κ+

ν and all
points in Z are definable from ν and ordinals ξ < κ+

ν < κ. The divisor-hull
corresponding to ν is cofinal in %τ , so the hull corresponding to (κ, q) is as
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well.

Now we need to see that hτ (κ∪ r)∩ (max(q) + 1) = κ; this will verify the
rest of the properties of short divisors. Pick a ζ from the above intersection.
Let Fτ and Fτι be the top extenders of Mτ and M∗

τι , respectively. By Lemma
9.7, ζ is of the form Fτ (f)(ξ, s) for some f : [κ+

ν ]<ω −→ κ+
ν and ξ < κ; this is

because ν ∈ s and κ+
ν < κ, so all points in Z are definable from s and ordi-

nals < κ. Thus Lemma 9.7 tells us that the points in the short divisor-hull
hτ (κ ∪ r) are exactly the ones of this form.

For ι sufficiently large such that f ∈ dom(Fτι) and ξ < κτι , set ζι =
Fτι(f)(ξ, sτι). Then clearly στιτ (ζι) = ζ. Since ζ ≤ max(q), we have
ζι ≤ max(qτι). Again by Lemma 9.7, ζι ∈ hτι(κτι ∪ rτι). Hence ζι < κτι
and, consequently, ζ = στιτ (ζι) < κτι ≤ κ. This completes the proof that
(κ, q) is a short divisor.

The verification that (κ, q) is strong goes exactly like in the proof of
Lemma 10.15. Thus (κ, q) should have been chosen as the canonical divisor
of Nτ instead of ν, which is a contradiction. This completes the proof of
Lemma 10.18 under the assumption i).

Next we consider assumption ii): Suppose for a contradiction that 〈τι | ι <
δ〉 is an increasing sequence cofinal in τ such that for all ι < δ, ν̃ι is not the
canonical divisor of Nτι because Nτι has a canonical long divisor νι with
νι < ν̃ι. We have also arranged that for all ι < δ, |pτι ∩ νι| = m for some
fixed m ∈ ω.

As before, the ordinals νι form a thread through the direct limit system
〈M∗

τι , στῑτι | ῑ, ι < δ〉. Let ν ′ = στιτ (νι) be the image of this thread in Mτ .
It follows that the critical points of the extenders Eνι also form a thread;
and since the critical points of the embeddings στῑτι are all > Λ > κEνι , we
have that for all ι, κEνι is the same ordinal; call it κ′. Notice that κ′ > κEν ,
because this is true in every Nτι ; whenever we have two long divisors ν1 < ν2

of a premouse N , it is immediate that κν1 > κν2 because the divisor-hull
corresponding to ν1 contains the ordinal ν2 and thus contains κν2 . Addi-
tionally, notice that because κ+

Eν
< κ′ and ν is a point in the divisor-hull

corresponding to ν ′, in fact every element of Z = iEν“(κ+
Eν

) is in the divisor-
hull corresponding to ν ′. Thus ν ′ has a strictly greater divisor-hull than ν.
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We need to verify that the properties of long divisors from Definition 9.19
hold for ν ′ over Nτ . a) follows from what we have already said. b) and c)
follow from arguments just like those used in the proof of i) above: for b), we
know that the divisor-hull associated with ν is cofinal in %n(Nτ ), so certainly
the strictly larger divisor-hull associated with ν ′ is cofinal as well. For c), we
again use Lemma 9.7:

Pick a ζ from HullNτn+1(Z ′ ∪ rτ ) ∩ λ+, where Z ′ = iν′“((κ′)+). Let Fτ
and Fτι be the top extenders of Mτ and M∗

τι , respectively. By Lemma 9.7,
ζ is of the form Fτ (f)(ξ, s) for some f : [κ+

ν ]<ω −→ κ+
ν and ξ ∈ Z ′; here

s = rτ − (p(Nτ )− (ν + 1)), that is, the part of the parameter between ν ′ and
ν. Because the points in Z ′ correspond to threads through the direct limit
system, there is M∗

τι such that σ−1
τιτ (ζ) is defined. Then because νι is a long

divisor, σ−1
τιτ (ζ) ∈ iνι“((κ′)+). Pushing this fact up to Mτ proves c).

Finally, to see d), note that λν′ is a thread in our direct limit system, and
if there is a total extender in Nτ with critical point λν′ , it must be στιτ (F ),
where F is a total extender in Nτι with critical point λνι ; but this violates d)
of long divisorhood for νι in Nτι . This completes the verification that ν ′ is a
long divisor, and hence proves Lemma 10.18 under the assumption ii).

We have proved the Lemma in Cases 3), 4), and 5). This completes the
proof of Lemma 10.8 for τ ∈ S1, and the construction of our�Λ,2-sequence. �
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