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ABSTRACT
Working memory (WM) plays a crucial role in human cognition. Previous candidate and genome-wide association studies have 
reported many genetic variations associated with WM. However, little research has examined genetic basis of WM by using 
transcriptome, even though it reflects gene function more directly than does the genome. Here we propose a new approach to 
exploring the genetic mechanisms of WM by integrating connectome, transcriptome, and genome data in a high-quality dataset 
comprising 481 Chinese healthy adults. First, relevance vector regression was used to define WM-related brain regions. Second, 
genes differentially expressed within these regions were identified using the Allen Human Brain Atlas (AHBA) dataset. Finally, 
two independent datasets were used to validate these genes' contributions to WM. With this method, we identified 24 novel genes 
and 20 of them were confirmed in the large-scale datasets of ABCD and UK Biobank. These novel genes were enriched in the 
cellular component of collagen-containing extracellular matrix and the CCL18 signaling pathway. Our method offers an effective 
approach to integrating multimodal gene discovery and demonstrates the superiority of expression data. This new method and 
the newly identified genes deserve more attention in the future.

1   |   Introduction

Working memory (WM) is a neurocognitive system dedicated 
to the maintenance and storage of short-term information 
(Baddeley 2003; Ma, Husain, and Bays 2014), in the absence of 
sensory input (Eriksson et  al.  2015). WM is the basis for suc-
cessful execution of complex behaviors in various cognitive 
domains, which makes it vital for daily activities (D'Esposito 
and Postle 2015). The importance of WM functioning becomes 

apparent when taking an individual differences perspective: 
Research has demonstrated that WM capacity is a strong predictor 
of educational attainment (Alloway and Alloway 2010; Lee and 
Bull  2016; Mulder, Pitchford, and Marlow  2010). Furthermore, 
impairments in WM are symptomatic of several psychiatric and 
neurological disorders, such as Alzheimer's disease (Kumar 
et  al. 2017), attention-deficit hyperactivity disorder (Patros 
et al. 2015), schizophrenia (Becske et al. 2022), and bipolar dis-
order (Peckham, Johnson, and Swerdlow 2019). Understanding 
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the origins of individual differences in WM is therefore of pivotal 
interest. Previous research has attempted to explain these differ-
ences from both genetic and neural perspectives. In the present 
work, we build upon this foundation to further explore the ge-
netic and neural underpinnings of individual variability in WM.

WM shows a moderate to high degree of heritability and many 
associated genes have been identified (He et  al.  2021; Vogler 
et  al.  2014). For example, ZNF804A (Nicodemus et  al.  2014), 
BIN1(X. Zhang et al. 2015), SLC12A5 (Gregory et al. 2019), and 
an interaction of SPON1 and APOE (Liu et al. 2018) have been 
reported to contribute to WM performance as well as brain ac-
tivation during WM tasks. Genome-Wide Association Studies 
(GWAS) have also identified many other genes such as SCN1A 
(Papassotiropoulos et al. 2011) and EPHX2 (Zhang et al. 2022). 
An earlier review of GWAS on WM concluded that, although 
each study emphasized different genes, all of them are neuronal 
excitability-related genes, either related to ion-gated channels or 
to prefrontal dopamine activity (Knowles et al. 2014).

The neural mechanisms responsible for individual differences 
in WM have been extensively researched. Despite the consider-
able body of research reporting brain regions activated during 
WM tasks, which primarily include the frontal and parietal cor-
tex, insula, premotor and supplementary motor areas, and basal 
ganglia (Christophel et  al.  2017; Eriksson et  al.  2015; Miller, 
Lundqvist, and Bastos 2018; Van Ede and Nobre 2023), the dis-
covery of neuroimaging biomarkers is shifting away from tradi-
tional univariate brain mapping methods toward the adoption 
of multivariate predictive models. This shift provides an excit-
ing opportunity to elucidate the intricacies of the human brain 
at the individual subject level (Sui et al. 2020). Connectomes, 
representing the whole brain's functional connectivity, are con-
sidered as “fingerprint” of the brain (Finn et al. 2015). Despite 
the fact that previous research has mostly used resting-state 
functional connectomes (Avery et  al.  2020; Jiang et  al.  2020; 
Pläschke et al. 2020; Zhang et al. 2020), a series of studies in-
dicated that using task-based FCs or the integration of multiple 
modalities may confer greater predictive power and resting-
state data may not be the best choice to predict cognitive traits 
(Finn 2017; Greene et al. 2018; Jiang et al. 2020), providing a 
better view in discovery of biomarkers (Finn 2017).

Despite the discovery of some possible mechanisms for indi-
vidual differences in WM from the perspectives of brain and 
genetics, there is still a huge gap in our understanding of the 
relation between genotype and phenotype (here WM). That 
is, how do differences in genotype contribute to differences 
in phenotype, which in turn affect the brain, leading to vari-
ations in WM performance? Gene transcriptome and brain 
connectome have been proposed to help fill this gap (Fornito, 
Arnatkevičiūtė, and Fulcher  2019). Transcriptome, which 
reflects gene expression levels, is more directly connected to 
phenotype as compared to genotype. The Allen Human Brain 
Atlas (AHBA), a publicly available expression dataset for more 
than 20,000 genes across 3702 distinct brain tissues taken 
from six donors (Arnatkevic ̆iūtė, Fulcher, and Fornito 2019; 
Markello et al. 2021), has been used successfully to reveal tran-
scriptome–brain connectome associations (Arnatkeviciute 
et al. 2021; Park et al. 2021; Shafiei et al. 2022; Xie et al. 2022; 
Xu et al. 2022). It is very likely that using transcriptome may 

identify WM-related genes that previous genotype association 
studies had missed.

The current study aimed to explore the underlying neural bio-
markers of WM by examining individual differences in WM per-
formance and identifying related genes. The study first identified 
activity and connectivity features that predicted individual differ-
ences in WM performance and mapped these features back onto 
brain regions to distinguish WM-related regions from non-WM-
related regions. Next, transcriptome analysis was used to find dif-
ferentially expressed genes, which were then validated in datasets 
from the Adolescent Brain Cognitive Development (ABCD) and 
UKB studies to confirm their roles in individual differences in 
WM performance and executive control. By leveraging individual 
differences, this approach not only aids in more precisely identi-
fying the neural signatures and genes associated with WM but 
also elucidates how gene expression influences brain function 
and, consequently, WM performance. This method offers advan-
tages over traditional WM network identification techniques, as it 
more directly links genes to individual WM performance.

We proposed to identify novel WM-related genes with transcrip-
tome and connectome using the following three-step procedure 
(Figure  1). First, we identified WM-related brain networks by 
combining task-based connectivity and task activation using a 
machine learning method based on relevance vector regression 
(RVR) (Tipping 2001). Second, we identified genes differentially 
expressed in these regions with AHBA transcriptome data. 
Finally, we confirmed the genes' effects by genotype–phenotype 
association in two independent samples.

2   |   Method

2.1   |   Step 1. Identifying WM-Related Brain 
Networks

2.1.1   |   Participants

Participants were 481 healthy Chinese college students recruited 
from Beijing, China. Fifteen of them were excluded from analy-
sis due to head movement of more than 3 mm during scanning 
and 20 were excluded due to poor-quality structural scans. This 
resulted in a final sample of 446 for brain imaging analysis (220 
males and 226 females, mean age = 21.5 years, and SD = 2.3 years). 
All participants reported no history of psychiatric diseases, head 
injury, stroke, or seizure. This experiment was approved by the 
Institutional Review Board (IRB) of the State Key Laboratory 
of Cognitive Neuroscience and Learning at Beijing Normal 
University. Written informed consent was obtained from each 
participant after a complete description of the study procedures.

2.1.2   |   WM Measurement

Participants performed an n-back task in the scanner. In this task, 
a sequence of numbers was presented one by one on the screen 
center. Each number was shown for 0.5 s followed by a 1.5 s blank. 
The experiment included two runs of the same four conditions. In 
the 0-back condition, participants were asked to judge whether the 
current number was 7. In the 1/2/3-back conditions, participants 
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were required to decide whether the current number was the same 
as the one presented 1/2/3 items earlier. Each condition included 4 
blocks, presented in a Latin square order, resulting in 16 blocks per 
run. For each block, a 4-s instruction was shown first, followed by 
a sequence of 12 numbers. Participants had to respond according 
to the instructions by pressing keys. The overall accuracy of the 
1/2/3-back conditions was used as the index of WM performance. 
Before the experiment, subjects practiced the task to make sure 
they understood the task requirements.

2.1.3   |   MRI Data Acquisition

Neuroimage data were collected on a 3.0 T Siemens MRI 
Trio scanner at the Brain Imaging Center of Beijing Normal 
University. A single-shot T2*-weighted gradient-echo EPI se-
quence was used for functional imaging acquisition with the fol-
lowing parameters: TR = 2000 ms; TE = 25 ms; flip angle = 90°; 
FOV = 192 × 192 mm; 64 × 64 matrix size; 41 transversal slices; 
slice thickness = 3 mm. Functional images were scanned for the 
two runs of the n-back task (described above).

Anatomical MRI was acquired for normalization purpose using a 
T1-weighted, three-dimensional, gradient-echo pulse sequence. 
Parameters for this sequence were as follows: TR = 2530 ms; 
TE = 3.39 ms; flip angle = 7°, field of view = 256 × 256 mm, ma-
trix = 256 × 256, and slice thickness = 1.33 mm. One hundred 
and forty-four sagittal slices were acquired to provide a high-
resolution structural image of the whole brain.

2.1.4   |   MRI Data Analysis

Functional imaging data were preprocessed using SPM12 
(Statistical Parametric Mapping, Wellcome Trust Centre for 
Neuroimaging; http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​) implemented 

in MATLAB R2018b (MathWorks). Images were first slice-time 
corrected to the middle slice of acquisition and realigned to the 
first volume of each run. A mean image was generated from the re-
aligned series and coregistered to the structural image. Structural 
images were segmented using DARTEL and a population-specific 
template was created. This template was used to normalize func-
tional and structural images to the MNI template. The functional 
images were smoothed with an isotropic 8 mm full-width-half-
maximum (FWHM) Gaussian filter. Intrinsic autocorrelations 
were accounted for by AR (1) and low-frequency drifts were re-
moved via high-pass filter (time constant 128 s).

The task fMRI data were used to generate WM-related brain ac-
tivation map using GLM. Volumes of the 0-back condition were 
not explicitly modeled and therefore were considered as the im-
plicit baseline. Volumes of the 1-/2-/3-back conditions and the 
instructions were separately modeled using boxcar reference 
waveform convolved with a canonical hemodynamic response 
function. The six head movement variables were used as co-
variates. Contrast was specified as the 1-/2−-/3-back conditions 
in contrast to the baseline (0-back). This contrast was used for 
group analysis, and activation regions were identified with a 
voxel-level FWE correction of p < 0.05.

The fMRI data were also used to construct FC. The whole brain 
was parcellated into 210 cortical regions and 36 subcortical re-
gions based on the Human Brainnetome Atlas (Fan et al. 2016). 
For each region, the time series was calculated by averaging the 
blood oxygenation level-dependent (BOLD) time courses of all 
the voxels in it. The 1/2/3-back blocks were concatenated for task 
fMRI (i.e., excluding the 0-back and instruction blocks), and the 
time course was shifted forward by three TRs (6 s) to account for 
hemodynamic lag (Eryilmaz et al. 2020; Kardan et al. 2022). For 
each participant, a 246 × 246 Pearson's correlation matrix between 
the time courses of all regions was computed for task fMRI, and 
the correlations were then Fisher transformed to z scores.

FIGURE 1    |    Flowchart of this study.

http://www.fil.ion.ucl.ac.uk/spm/
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2.1.5   |   RVR-Based Predictive Modeling

We used RVR to identify WM-related brain regions. Both task-
evoked brain activation and FC matrix were used as features 
since integrating multiple data modalities can improve RVR 
prediction (Jiang et  al.  2020; Kardan et  al.  2022) (Figure  S1). 
To make task-activated brain regions consistent with FC brain 
regions, the significantly activated regions were overlaid to 
Human Brainnetome Atlas, and regions in the atlas with more 
than 50% overlap were defined as WM-related regions.

We used 10-fold cross-validation RVR as used by He 
et  al.  (2021). First, participants were randomly divided into 
10 subsets, 9 of which were for training and the remaining 
one for testing. Second, each brain feature was correlated with 
performance on the n-back task (accuracy), and a threshold 
was set to identify significantly correlated features. In order 
to find the optimal threshold, six commonly used thresh-
olds (p < 0.05, p < 0.01, p < 0.005, p < 0.001, p < 0.0005, and 
p < 0.0001) were tested and the one with best prediction was 
selected. Third, a regression model was constructed utilizing 
RVR to align the chosen functional connectivity with WM 
performance within the training dataset. Then the model was 
applied to the testing set. These steps were repeated 10 times, 
with each subset used as testing set and yielding a predictive 
score for each participant. The whole procedure was repeated 
20 times, and the resulting prediction scores were averaged 
as final prediction. The Pearson correlation (r) between this 
averaged prediction and actual n-back accuracy was used as 
prediction accuracy. Lastly, statistical significance of the pre-
diction accuracy was estimated by 1000 times permutation 
(shuffling n-back accuracy across participants). The empirical 
p values were calculated as the proportion of permutated r val-
ues that were equal to or larger than the true r value.

RVR-identified features were used to define WM-related regions, 
that is, brain regions either connected by identified FC or acti-
vated by the WM task. Across the 20 times of the 10-fold cross-
validation (200 models in total), the features selected by each 
RVR model differed a little bit. To construct a consensus net-
work, features appeared in most of the 200 models were retained 
(Shen et al. 2017). Results of the retained features that appeared 
in 190/180/170/160 models were compared. To better describe the 
network, we estimated enrichment fold of the regions within the 
subnetworks defined by (Yeo et al. 2011) as in previous studies 
(Feng et al. 2022). The enrichment fold was the ratio of the num-
ber of observed edges in the subnetwork to the expected number 
of edges. The expected number of edges was the total number of 
selected edges in the whole brain multiplied by the proportion of 
the total number of edges in the subnetwork to the total number 
of edges in the whole brain. The significance of enrichment fold 
was estimated by 10,000 permutations, that is, randomly draw-
ing the same number of selected edges to form a null distribution.

2.2   |   Step 2. Identifying Differentially 
Expressed Genes

AHBA gene expression data (https://​human.​brain​-​map.​
org; Hawrylycz et  al. 2012), which included brain-wide gene-
expression data from 6 post-mortem brains (1 female, ages 

24.0~57.0, 42.50 +/− 13.38), was downloaded and processed 
using abagen toolbox (version 0.1.3; https://​github.​com/​rmark​
ello/​abagen; Markello et al. 2021; Arnatkevic ̆iūtė, Fulcher, and 
Fornito 2019). We used the 246-region Brainnetome atlas to de-
fine brain regions and selected the “centroids” option to deal with 
brain regions that were not assigned any sample from any donor. 
For all other settings, we used the default (Markello et al. 2021). 
Specifically, the probe sequences were first mapped to their 
corresponding genes to verify probe-to-gene annotations. Next, 
probes that fell below background levels in a significant propor-
tion of samples were filtered out. For genes with multiple probes, 
a representative probe was selected. Tissue samples were then as-
signed to specific parcellated brain regions. Normalization was 
performed to account for inter-donor differences in gene expres-
sion, ensuring that samples no longer segregated by donor in the 
principal component space. Finally, the most relevant genes were 
selected based on consistent expression patterns across donor 
brains. The processed data were then organized into a region-
by-gene matrix for further analyses. Specific parameters can be 
found in the Supporting Information. This resulted in a matrix of 
expression levels of 15,633 genes within 246 brain regions.

The 246 brain regions were divided into two groups. The first 
group included 88 regions that were related to WM based on 
RVR results, that is, the regions appeared in more than 95% of 
all 200 models (See details above). The second group included 
the remaining 158 regions that were not related to WM based 
on the RVR results. A two-sample T test was then used to 
compare the expression levels of each gene between these two 
groups of regions. Genes with significant expression differ-
ences were identified as over- or under-expressed genes within 
the WM network. Permutation procedure was used to control 
multiple comparisons. To do the permutation, we first shuffled 
the labels of WM-related and WM-unrelated among brain re-
gions and then ran the two-sample T-tests. This procedure was 
repeated 10,000 times to form a null distribution for over- or 
under-expression. The p value was calculated as the proportion 
of t-values in the positive (or negative) t-value distribution that 
were larger (or smaller) than the actual t-value. Genes with per-
mutation p < 0.05 were identified as WM-related genes. To see 
how robust the results were, we repeated the analyses under 
different selection thresholds to define WM-related regions 
(90%, 85%, 80%, i.e., features identified by RVR as WM related 
in more than 180, 170, and 160 times of the 200 models). Genes 
consistently identified in different models were used as candi-
date WM-related genes for further confirmation in Step 3.

2.3   |   Step 3. Confirming the Associations Between 
Identified Genes and WM

We used two independent samples (the ABCD Project and the 
UK Biobank) to confirm the genes identified in Step 2.

We first estimated the expression level of each gene for each par-
ticipant in the ABCD project using MetaXcan (https://​github.​com/​
hakyi​mlab/​MetaX​can.​git), and then associated the genes' expres-
sion levels with WM performance by conducting transcriptome-
wide association studies (Gamazon et al. 2015). Since it is impossible 
to take brain tissue from these participants to test the transcription 
level, MetaXcan takes two steps to estimate the transcription level. 

https://human.brain-map.org
https://human.brain-map.org
https://github.com/rmarkello/abagen
https://github.com/rmarkello/abagen
https://github.com/hakyimlab/MetaXcan.git
https://github.com/hakyimlab/MetaXcan.git
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First, genotype-transcription relationship was set up using other 
datasets. MetaXcan provided genotype-transcription relation-
ships for all genes with 13 brain tissues from GTEX v8 database 
(Barbeira et  al.  2021), calculated with MASHR-based method 
since it was biologically informed and performed better than other 
methods (Araujo et al. 2023). Second, genotype and WM perfor-
mance data (NIH toolbox List Sorting WM task) were downloaded 
from the ABCD project under the permission of 13,109. Stringent 
quality control was applied to the genotype data: R2 > 0.8, MAF 
> 0.05, HWE > 10E-7, and less than 10% missing, resulting in 
8,546,049 SNPs. The genotype–transcription relationships from 
the first step were applied to ABCD genotype data to estimate gene 
expression levels of ABCD participants. The expression levels of 
all genes were then correlated to WM performance using Pearson 
correlation controlling for age and sex. This correlation of the iden-
tified genes was checked. Subjects without behavior data were ex-
cluded from the analysis. The analysis was repeated for each of 
the 13 GTEX brain tissue genotype–transcription relationships. 
We then compared genes identified in step 2 with published WM 
GWAS results. We examined a recent study that analyzed GWAS 
results for a common executive function (cEF) factor score derived 
from multiple tasks, including WM tasks such as pairs matching 
and backward digit span, among 427,037 individuals from the UK 
Biobank (Hatoum et al. 2023). The study provided MAGMA anal-
ysis results at the gene level. We cross-referenced our identified 
genes with all cEF-related gene-level MAGMA analysis results 
from their study to determine whether our genes exhibited sig-
nificant associations. For validation, we employed a significance 
threshold of 0.05.

Finally, to gain deeper insights into the WM-related genes, we used 
the GENE2FUNC module in FUMA (https://​fuma.​ctglab.​nl/​) for 
gene ontology and gene set enrichment analysis. FUMA integrates 
data from various biological resources for functional annotation of 
GWAS results (Watanabe et al. 2017). We analyzed 24 WM-related 

genes in the FUMA platform, selecting all genes as background 
genes and setting the threshold for “Minimum overlapping genes 
with gene-sets” to greater than 2. Multiple comparison correction 
was performed using the Benjamini–Hochberg (FDR) method.

3   |   Results

3.1   |   WM Brain Networks

The N-back task activated vast brain regions in the bilateral 
frontal-parietal network, including superior frontal, middle fron-
tal, precentral, supplementary motor area, insula, cingulate and 
paracingulate, putamen, superior parietal, supramarginal gyrus, 
and angular gyrus (Figure 2), consistent with the literature (Braun 
et al. 2015; Braunlich, Gomez-Lavin, and Seger 2015; Darki and 
Klingberg  2015; Marek and Dosenbach  2018). Overlaying these 
activation areas onto the Human Brainnetome Atlas resulted in 
48 regions. Mean activation for each subject at each region was 
extracted and combined with FC for the following RVR analysis.

The RVR analyses revealed that for each of the feature-selecting 
thresholds, brain measurements were significantly associated 
with WM performance, r ranging from 0.172 to 0.198, with the 
strongest prediction achieved at the feature-selecting threshold 
of 0.001 (Table 1, Figure 3A).

The consensus brain network (features retained in 190 out of 200 
models) from RVR consisted of 127 edges connecting 88 widely 
distributed cortical and subcortical areas (Figure 3B). The high-
degree nodes were mainly located in the superior temporal gyrus, 
lateral occipital cortex, basal ganglia, parahippocampal gyrus, 
hippocampus, and insular gyrus. Enrichment fold of the regions 
within the subnetworks showed that these edges were enriched 
in the connections between the Ventral Attention Network and 

FIGURE 2    |    Brain activation during the n-back task that survived FWE correction (p < 0.05 corrected).

https://fuma.ctglab.nl/
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the Limbic Network (4.978 folds, p < 0.0001), between the Visual 
Network and the Limbic Network (1.879 folds, p < 0.05), and be-
tween the Visual Network and the Dorsal Attention Network 
(1.628 folds, p = 0.0513) (Figure 3C). Since the threshold influ-
enced the consensus network (i.e., lower threshold resulted in 
more regions), we also tested lower thresholds (i.e., 180, 170, 160 
out of 200 models), the results are similar (Figure S2).

3.2   |   Differentially Expressed Genes

The AHBA gene expression levels of 15,633 genes were compared 
between brain regions in and out of the consensus brain networks 
identified above. With all four consensus networks (retained in 
190/180/170/160 out of 200 models), 146 unique genes were iden-
tified as over- or underexpressed in the WM network (Table S1). 
Of them, two (COL18A1 and SPINK8) were identified by all four 
networks, and 22 were identified by three networks (Table  S1). 
We considered these 24 genes as candidate genes to be confirmed 
by independent samples (Table 2). The results of the FUMA en-
richment analysis showed that these genes are enriched in the 
collagen-containing extracellular matrix (p < 0.05, FDR correc-
tion). The extracellular matrix (ECM) surrounds brain cells, pro-
viding structural and functional support, and plays an important 
role in brain development and brain health (Soles et  al.  2023). 
Additionally, these genes were also enriched in the CCL18 sig-
naling pathway. Studies had found that CCL18 is a biomarker of 
inflammation and neurodegeneration in MS patients and may be 
associated with brain diseases (Ziliotto et al. 2018).

3.3   |   Genes Confirmed by Significant Association 
With WM Performance in Independent Samples

In the ABCD dataset, 18 out of the 24 genes showed significant 
associations between WM performance and the estimated gene 
expression level in at least one tissue (Table 2). After exclud-
ing brain tissues that were not involved in our WM network, 
validation results still included 17 genes (Table 2). Of note, the 
most robust genes identified above (COL18A1 and SPINK8) 
also showed strong effects with expression level of multiple tis-
sues. In the UK Biobank large sample GWAS, CCL19, COL1A2, 
ELOVL7, IFI27, MAP7, and SLC2A1 showed significant asso-
ciations with WM performance. Taken together, 20 of these 
genes were replicated in at least one of the two samples.

4   |   Discussion

The current study used a novel approach to identify WM-related 
genes with gene expression data. We employed machine learning 
methods to identify features that might cause individual differ-
ences in WM performance. These features helped us define brain 
regions related to WM. By comparing the gene expression data of 
WM-related and unrelated brain regions in the AHBA, we iden-
tified 24 differentially expressed genes and confirmed that 20 of 
these genes were associated with WM performance in at least one 
of two independent samples. These results suggest that it may be 
productive to combine connectome, transcriptome, and genome to 
help identify novel genes related to a given phenotype.

First, as a confirmation, the brain regions our approach identified 
as supporting WM have often been reported in the WM literature. 
For example, the basal ganglia plays a crucial role in facilitating 
the selective filtering of pertinent information into WM (McNab 
and Klingberg 2008); the parahippocampal cortex functions as a 
WM buffer by actively preserving new information in a capacity-
dependent manner (Schon et al. 2016); the superior temporal gyrus 
plays a crucial role in WM maintenance (Park et al. 2011) and the 
repetition suppression effects caused by the repeated presenta-
tions of stimuli (Woodward et al. 2013); and the occipitoparietal 
network supports WM with the retention of stimuli in sensory 
and higher cortical regions (Johnson et al. 2017). The visual net-
work is often involved in visual WM task (Lawrence et al. 2018); 
the ventral attention network is usually involved in differentiating 
WM load (Eryilmaz et al. 2020); and the dorsal attention network 

TABLE 1    |    Prediction accuracy under the six different thresholds.

Threshold r pa ppermu
b

0.05 0.174 0.00022 0.002

0.01 0.172 0.00025 0.001

0.005 0.182 0.00011 0.004

0.001 0.198 0.00003 0.000

0.0005 0.180 0.00013 0.001

0.0001 0.181 0.00012 0.002
aOriginal p values of the prediction.
bp values obtained by the permutation tests.

FIGURE 3    |    WM brain network identified by RVR. (A) Prediction accuracy; (B) selected connectivity by RVR; (C) selected connectivity was en-
riched in the connections among the Ventral Attention-Limbic-Visual-Dorsal Attention Networks.
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is linked to task-related, top-down attention control (Majerus 
et al. 2018). With increasing short-term memory load, the dorsal 
attention network is activated while the ventral attention network 
is deactivated (Majerus et al. 2012). Alzheimer's disease patients 
have been found to maintain ventral attention network activation 
under high cognitive load (Kurth et al. 2019). In sum, our results 
are consistent with the previously discovered WM network.

Second, by comparing expression levels of genes between brain 
regions in and out of the consensus WM network, we identified 
a number of over-/underexpressed genes. Because the threshold 
used to define the consensus network may influence the number of 
brain regions to be included in subsequent analyses, we tested four 
thresholds. Twenty-four genes were consistently identified. These 
results per se cannot lead to the conclusion that these genes are 
involved in WM, but they can serve as good WM candidate genes.

Finally, we confirmed that 20 of the genes were associated with 
WM in two independent datasets, showing that either their 

genotype or estimated expression was significantly associated 
with WM performance. Compared to the UK Biobank dataset, the 
ABCD dataset demonstrated better replication performance de-
spite its smaller sample size. This could be attributed to two factors. 
First, the ABCD data used expression data, which may provide a 
more direct approach on elucidating the role of genes in pheno-
types. Additionally, although cEF and WM were closely related, 
there were still certain differences in their genetics. The specificity 
and commonality of genes among different cognitive components 
have been a worthwhile research topic, and further exploration in 
this area can be conducted in future studies. Although the func-
tions of most of these genes are still unclear, some of them have 
been reported to be associated with cognition or diseases that are 
related to WM. We found that COL18A1 and SPINK8 were consis-
tently related to WM under all four thresholds. COL18A1 is associ-
ated with a rare condition known as Knobloch's syndrome, whose 
key characteristic is developmental abnormalities in the brain, 
particularly defects in the occipital region (Caglayan et al. 2014). 
Research has also suggested a connection between COL18A1 

TABLE 2    |    Confirmation of genes' effect on WM in independent samples.

AHBA identified ABCD replicateda ABCD replicated (WM network only)b UKB replicated

COL18A1 COL18A1 (9) COL18A1 (5) —

SPINK8 SPINK8 (10) SPINK8 (8) —

A2M A2M (6) A2M (5) —

APOL3 APOL3 (12) APOL3 (7) —

CAPS CAPS (4) CAPS (1) —

CARD10 CARD10 (8) CARD10 (5) —

CCL19 CCL19 (8) CCL19 (4) CCL19

CLDN5 CLDN5 (4) CLDN5 (4) —

CLEC14A — — —

COL1A2 COL1A2 (2) COL1A2 (2) COL1A2

ELOVL7 ELOVL7 (9) ELOVL7 (5) ELOVL7

FAM234A FAM234A (9) FAM234A (5) —

GCN1 GCN1 (7) GCN1 (5) —

IFI27 — — IFI27

IL4R IL4R (3) IL4R (1) —

KCNMB1 KCNMB1 (4) KCNMB1 (3) —

LATS2 LATS2 (3) LATS2 (2) —

MAP7 — — MAP7

MFAP4 MFAP4 (1) MFAP4 (1) —

PECAM1 — — —

PRX PRX (12) PRX (7) —

SLC2A1 SLC2A1 (1) — SLC2A1

SNHG17 — — —

ZEB2 — — —

Note: All confirmed at p < 0.05.
aThe number of replicated tissues are shown in brackets.
bThese genes' effects on WM were replicated when we used expression data from brain tissues located in WM network only.
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and early-onset cognitive impairments (Najmabadi et  al.  2011). 
Additionally, it is also associated with hippocampal volume, which 
is key to memory and serves as a biomarker for Alzheimer's dis-
ease (Melville et al. 2012). Similarly, studies in mice have found 
that Spink8 is specifically expressed in the pyramidal cells of the 
hippocampus (Zeisel et  al.  2015), linking SPINK8 to memory. 
Interestingly, a large-scale GWAS study has identified two SNPs 
of SPINK8 that are associated with educational attainment (Okbay 
et al. 2016, 2022). Considering the predictive role of WM in aca-
demic performance (Alloway and Alloway  2010; Nyroos and 
Wiklund-Hörnqvist 2012), this evidence may indirectly suggest a 
correlation between SPINK8 and WM.

Some other genes identified in our study have also been implicated 
in WM. For instance, a previous study found a significant rela-
tionship between methylation of the CLDN5 locus and changes in 
cognitive function, especially related to episodic and WM (Hüls 
et al. 2022). In a GWAS focusing on executive function, the ELOVL7 
gene was found to be related to WM (Donati, Dumontheil, and 
Meaburn 2019). The variations in CARD10 have been correlated 
with the rate of hippocampal volume loss, suggesting its potential 
involvement in the neurodegenerative processes associated with 
Alzheimer's disease (Nho et  al.  2013). A2M has been linked to 
early neural damage and disease progression in Alzheimer's dis-
ease (Dong et al. 2022; Varma et al. 2017). Furthermore, compared 
to healthy controls, the expression of COL1A2 is downregulated in 
Alzheimer's disease patients (Vastrad and Vastrad 2021).

Some of the remaining genes identified in our study are closely 
linked to the functioning of the nervous system more generally. 
For instance, genetic variations in the IL4R gene may be re-
lated to the normal progression of childhood neurodevelopment 
(Clark et al. 2010). The SLC2A1 gene encodes glucose transporter 
type 1, which is a crucial transporter protein involved in cellular 
glucose uptake across various tissues and is highly expressed in 
the brain (Vulturar et al. 2022). Mutations in the SLC2A1 gene 
have been implicated in a wide range of neurological disorders 
(Wolking et al. 2014).

To summarize, we proposed a new three-step approach to explor-
ing gene–phenotype association (i.e., defining a brain network, 
identifying differentially expressed genes, and confirming gene-
phenotype association), and successfully identified some novel 
genes that are associated with WM. We used both genotype and 
gene expression data. Because gene expression can better reflect 
gene function, we believe that genes identified by expression 
data should have higher gene-based interpretability and tissue 
specificity for understanding the mechanisms than should those 
identified via GWAS (Mai et  al.  2023). Indeed, we found that 
the identified novel genes were more likely to be confirmed by 
estimated gene expression (the ABCD replication sample) than 
the GWAS (the UK Biobank sample), suggesting that expression 
data can confirm novel genes that may have been missed by pre-
vious GWASs.

This study has several limitations. First, we used the AHBA 
dataset to identify differentially expressed genes in the brain. 
It is currently the best available database, but it has only six 
European donors, with only two providing data for the right 
hemisphere, which may limit their generalizability. However, 

by estimating gene expression for each participant in the large 
ABCD sample and running TWAS analysis, we validated most 
of the genes identified by AHBA. Second, there are differences 
in sample characteristics such as ethnicity, age, and sex between 
our Chinese sample and the AHBA/ABCD/UKB samples, which 
may introduce population bias in the results. Further replication 
studies are needed for each type or subtype of population. Third, 
our confirmation datasets are limited and the gene–WM asso-
ciation we found is rather moderate. More studies are needed 
to confirm the contributions of these genes to WM and investi-
gate the underlying biological mechanisms. Last but not least, 
the observed region-specific differences in gene expression may 
be influenced by other factors than WM. To mitigate these po-
tential confounding effects, we employed a permutation test to 
control for potential confounding effects and verify the specific-
ity of our results. Our TWAS analysis supports the relevance of 
differentially expressed genes to WM performance, reinforcing 
their functional significance in a separate population (ABCD 
cohort). Additionally, the GWAS-based validation in the UK 
Biobank based on Hatoum et al. (2023) lends further support to 
the role of these genes in cognitive performance. It is important 
to note that not all initially identified differentially expressed 
genes could be validated. This limitation could stem from inher-
ent differences in gene function related to brain function, which 
may not directly translate to observable variations in WM per-
formance. Alternatively, it may reflect the possibility that some 
genes identified in the differential gene expression analysis were 
nonspecific which warrants further investigation.
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