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ABSTRACT OF THE DISSERTATION

Routing Dynamics: Optimization, Measurement, and Applications

By

Vahid Nourbakhsh

Doctor of Philosophy in Management

University of California, Irvine, 2018

Associate Professor John G. Turner, Chair

We study the problem of routing jobs in multi-class multi-server queueing systems, where

the service rate depends both on the job type and the server type. This queueing setting

arises in different applications. For example, in transportation systems, a vehicle’s travel

time depends on the job’s location (e.g., a fire incident’s location) and the vehicle’s location

(e.g., a fire station). In call centers, an agent’s service time depends on her skills and the

call type that is routed to her.

Chapter I focuses on maximizing the service level of jobs defined as the probability that a

job is served within an acceptable waiting time. Service level is an important performance

measure for queueing systems. For example, emergency vehicle networks should make sure

that the selected server (e.g., a fire engine) arrives at the requester’s location within the

specified acceptable waiting time. We employ a mathematical programming approach which

is desirable since it can easily be embedded within larger planning problems such as deter-

mining the optimal location of vehicle hubs and finding the minimum number of vehicles for

the desired coverage level. We show that the expected waiting time is convex with respect to

its variables, namely, arrival rate and workload. For this reason, the expected waiting time

objective is more common in the literature, even though in many applications it is the service

level function which is more practical. The service level function, however, is non-convex

x



and requires more advanced methods to solve for optimal or near-optimal solutions. We

develop one such advanced method, the Fixed-ratio Shifting Envelopes (FSE) method. Our

extensive numerical experiments indicate that FSE outperforms other benchmark algorithms

as well as the global solver BARON. In Chapter I, we end our treatment of the subject with

the static policy developed for this novel math programming formulation.

Chapter II seeks online (or, real-time) routing policies that answer two questions: (i) Upon

a job arrival, to which server group should we assign that job? and (ii) When a server

becomes free, which job should the server begin to serve? We point out that the optimal

dynamic policy for minimizing the expected waiting time or maximizing the service level is

not characterized in the literature. In Chapter II we focus on designing a dynamic policy

for the widely-used measure of minimizing the expected waiting time. We develop a math

program to model a static variant of our routing problem. Then, we use the solution from

our math program to build novel dynamic policies. Our experiments show that one of our

proposed overflow dynamic routing policies, which we call FSFOptXOverflowBlock, outper-

forms Fastest-Server-First, a well-known routing policy for such problems in practice and in

the literature. To showcase our methodology, we apply our proposed policy to the problem

of assigning fire incidents in Irvine, CA, to fire stations. Methodologically, one could extend

this so-called dynamization technique to also construct dynamic policies for the service level

maximization problem of Chapter I. We leave the details for future research.

xi



Chapter 1

Maximizing the Service Level of Jobs

in Multi-Class Multi-Server Queueing

Systems: An Iterative Heuristic

Approach

1.1 Introduction

We consider a routing problem for a multi-class multi-server system with Poisson arrivals and

service rates that depend on both the job and the server. Each group of servers has a single

queue, and servers within a group are homogeneous and have exponentially distributed ser-

vice times that depend on the job type. We call these service times job-and-server dependent

rates.

This routing problem arises in different applications including allocating vehicles to re-

questers in Transportation-On-Demand (TOD) systems, routing calls to agent groups at

1



call centers, and allocating user tasks to distributed processors (also known as load balanc-

ing).

In TOD systems such as emergency systems (i.e., ambulances, fire trucks, police patrols,

etc.), courier services and taxi networks, the system randomly receives service requests.

For each request, a server (i.e., an ambulance, fire truck, police patrol, courier or taxi) is

dispatched to the requester’s location, serves the requester, finishes the service, returns to its

base, becomes available and waits for the next request. In this setting both requesters and

vehicles are geographically distributed. This in turn gives rise to job-and-server dependent

service rates where the service rate depends on the distance between the vehicle base and the

requester (c.f., Cho et al. 2014). For an excellent survey on TOD, please refer to Cordeau

et al. (2007).

In a call center, calls of different types arrive randomly and a specialized switch called an

Automatic Call Distributor (ACD) routes them to agents. Agents within different groups

have different skill sets and consequently different service rates for serving a job, which makes

the router’s decision challenging. There is a plethora of research on skill-based routing for

call centers (for an excellent survey see Gans et al. 2003).

In computer systems, a dispatcher distributes jobs generated by users over a set of processors.

Load balancing has been well studied in the literature (c.f., Combé & Boxma 1994). Job-

and-server dependent service times can occur for two different reasons, i) the processors

are geographically distributed and the service time is the sum of transferring the job to a

processor and the processing time spent on the processor, ii) when the processors are of

different speeds and jobs are of different types.

One of the most important performance measures for evaluating the aforementioned queueing

systems is Service Level (SL), i.e., the probability that a server begins the job’s service within

an Acceptable Waiting Time (AWT). In TOD systems, there is an acceptable waiting time

2



which is the time that a vehicle arrives at the requester’s location or the time it takes to

arrive at the requester’s location, pick her up and drop her off at the destination. In North

America, reaching 90% of urgent urban emergency medical services (EMS) calls in 9 minutes

is a common target (Fitch, 2005). The National Health Service in the United Kingdom

mandates ambulances to reach 75% of life-threatening calls in 8 minutes and 95% of all

calls in 19 minutes (Department of Health, 2015). Similarly, the National Fire Protection

Association (2004) in the United States recommends that with a probability of at least 90%

a fire engine must arrive at a building on fire within 4 minutes. At call centers, policy-makers

decide on a target for the acceptable waiting time to make sure that customers do not wait

too long for agents to answer their calls. Typically the target is to answer 80% of calls in

20 seconds (Gans et al., 2003; Cheong et al., 2008; Pot et al., 2008). SL as defined below

captures these objectives, which are important in practice,

SL := Pr[Waiting Time ≤ Accepable Waiting Time]

Other performance measures include expected waiting time, i.e., the expected time in the

queue, expected sojourn time, i.e., the expected time in the system including queue waiting

time and service time, and expected throughput, i.e., the expected number of jobs that are

not blocked and are served. Service level, which is commonly what decision makers actually

want to measure, is seldom optimized due to its non-convexity; whereas expected waiting

time, expected system time and expected throughput are convex and so more widely studied

and used in practice.

Our main contributions are as follows. We formulate a general math program to optimize

key routing variables that apply when maximizing SL. Then, we investigate the convexity

of this math program and show that it is neither convex nor pseudo-convex. Borrowing key

concepts from the Shifting Quadratic Envelopes algorithm (SQE) of Cho et al. (2014), we

3



develop a tailored algorithm called Fixed-ratio Shifting Envelopes (FSE) to solve our non-

convex SL-maximizing math program to near-optimality. FSE is a heuristic which exploits

key structures inherent in our SL maximization problem. Moreover, we prove that in theory

the underlying math program can approximate the original non-convex one to arbitrary

precision. In our numerical experiments we show that FSE significantly outperforms SQE.

In particular, our boundary generation heuristic, which is significantly more advanced than

that of SQE, leads to FSE significantly outperforming SQE on SL-maximization problems.

We conduct a comprehensive set of numerical experiments and show that FSE outperforms

not only SQE, but also the commercial solvers BARON and KNITRO, as well as other

FSE-related algorithms that we introduce to illustrate the importance of FSE’s key features.

The rest of this paper is organized as follows. Section 1.2 reviews related literature. In

Section 1.3, we describe the model and examine problem convexity. Section 1.4 describes

the solution algorithms FSE and SQE. In Section 1.5 we conduct computational experiments

to assess our solution algorithms. Section 1.6 introduces extensions to our model and FSE

algorithm that apply to SL constraints rather than a SL objective. We conclude in Section

1.7.

1.2 Literature Review

There are two categories of routing policies in the literature: static and dynamic. Static

policies use characteristics of the system such as the arrival/service rate and distribution.

Dynamic policies consider the system status when each job arrives (e.g., the number of jobs in

the system/queues and whether particular servers are busy). By design, our model assumes

exponential arrival and service rates with known parameters, and produces a static policy.

It is clear that, in general, dynamic policies perform better than static policies. However,

4



static policies are also of considerable interest. First, unlike dynamic policies, static policies

do not depend on real-time information about the system’s state, which may be costly or

impractical to track in some applications.

Second, static policies are useful tools for designing a queueing system. Static policies

are generally faster to compute and optimize whereas dynamic policies are often hard to

analyze, and for this reason their performance under a given arrival rate and workload is

often estimated via time-consuming methods such as simulation. Design problems that static

policies can be used for include, among others, location of vehicle bases in TOD systems (c.f.

the location-allocation problem in Louwers et al. 1999) and the queue design problem for

determining the number of servers for each group, also known as the staffing problem for

call center planning (c.f., Atlason et al. 2008 and Cezik & L’Ecuyer 2008).

Third, while most of the research on dynamic policies concerns a single job type, the optimal

dynamic policy for routing jobs of heterogeneous types to heterogeneous server groups is not

known (Mehrotra et al., 2012). Armony (2005) has shown that the Fastest-Server-First

(FSF) dynamic policy asymptotically minimizes the steady-state expected waiting time in

the Halfin-Whitt many-server heavy-traffic regime also known as the Quality and Efficiency

Driven (QED) regime. Upon a job arrival or service completion, FSF routes the job at

the head of the queue to the fastest server available. However, the result is limited to a

single job type and the optimality of FSF has not been shown for a multi-class multi-server

system with heterogeneous job types and heterogeneous server groups. Dai & Tezcan (2008)

provide some insight into the challenge of proving such a result, which suggest that FSF is

not optimal in this general setting.

There is a body of research that focuses on finding optimal routing policies and we review

some of the most relevant ones. Ephremides et al. (1980) consider a simple model in which,

as jobs arrive, they are routed to one of two similar exponential servers. They show that if

the queue lengths at both servers are observed then the optimal decision is to route jobs to

5



the shorter queue, whereas if the queue lengths are not observed then it is best to alternate

between queues, provided the initial distribution of the two queue sizes is the same. The

optimality of these routing strategies is independent of the distribution of the job arrivals.

Hordijk & Koole (1990) generalize the model introduced by Ephremides et al. (1980) to the

case with multiple servers. Arriving customers choose between multiple parallel servers, each

with its own queue. For general arrival streams, they prove that the policy which assigns

customers to the shortest queue is stochastically optimal for models with finite buffers and

batch arrivals. Their result is limited to one job type and homogeneous server groups that

each have exactly one server.

Liu & Towsley (1994) consider the problem of routing customers to identical servers, each

with its own infinite-capacity queue. Under the assumptions that (i) the service times form a

sequence of independent and identically distributed random variables with increasing failure

rate distribution and (ii) state information is not available, they establish that the round-

robin policy minimizes the customer response times and the numbers of customers in the

queues.

Combé & Boxma (1994) study static routing policies for single-class multi-server systems,

where jobs arrive according to a Poisson process and the service times are independent

random variables with known first and second moments. They build two classes of static

policies, namely, probabilistic assignment and allocation according to a fixed pattern, by

solving a convex mathematical program, which optimizes performance measures such as

expected waiting time and expected queue length. For servers with exponential service

times, we extend their results to the multi-class multi-server case.

Koole (1999) studies the static assignment to parallel, exponential, heterogeneous servers.

Blocked customers are lost, and the objective is to minimize the expected number of blocked

customers. The problem is formulated as a stochastic control problem with partial observa-

6



tion, and an equivalent full observation problem is formulated.

Gans & Zhou (2003) study the routing of two job types (i.e., high priority and low priority)

to a pool of homogeneous servers. A system controller seeks to maximize the rate at which

low priority jobs are processed, subject to service quality constraints (i.e., service level or

expected waiting time) on high priority calls. They characterize optimal routing policies for

the special case where both call types have equal expected service times. They also show

that in the general case of jobs with different expected service times, the policies are optimal

within the class of priority policies.

Our problem which maximizes the non-concave SL objective for heterogeneous job types and

heterogeneous servers is more complex than much of the literature which considers expected

waiting time. The service level problem, although non-convex, is an important measure in

practice that fits many applications better than the expected waiting time measure, which

is convex (c.f., Pichitlamken et al., 2003; Gans et al., 2003, for the importance of the SL

measure in call centers). Our problem, due to its representation as a math program, can

be embedded into location-allocation problems to determine the location of hubs in TOD

systems, or can be embedded into staffing and scheduling problems such as those in call

centers. Finally we point out that the resultant static policy from solving our math program

can be translated into a dynamic policy. In particular, in Nourbakhsh & Turner (2018)

we show how to build several so-called “dynamized” policies from a static policy meant to

minimize expected waiting time, and through simulation experiments show that some such

dynamized policies beat the commonly-used dynamic policy Fastest-Server-First.

7



1.3 Model

Jobs of types i ∈ I arrive according to independent Poisson processes with rates di. Each

job must be routed to a server group j ∈ FJi, where FJi is the set of server groups that

are eligible to serve jobs of type i. For completeness, we will denote J as the full set of

server groups (henceforth known simply as groups) and FIj as the set of job types that can

be served by group j. In the call center literature, the terms job type and server group

are referred to as call type and agent group, respectively. The number of servers in each

group is a known parameter kj. We will call the model single-server if kj = 1, ∀j ∈ J ,

and multi-server otherwise. The model is schematically depicted in Figure 1.1 with notation

summarized in Table 1.1.

For each queue j, we assume that (i) we deploy static routing to route jobs from job types to

groups; (ii) service rates are independent, each exponentially distributed with mean service

time τij; (iii) the service discipline at each group is first-come, first-served; and (iv) the

system backlogs jobs at the groups until there are available servers to serve the jobs, i.e., no

abandonment or retrial.

The model preserves Poisson arrivals at each group, thus queues at groups are M/M/k and

the delay probability at group j is computed using the Erlang-C function (Cooper, 1981)

defined as (for simplicity we suppress group index j),

C(k, r) =
rk

(k − 1)!(k − r)
×
[ k−1∑
n=0

rn

n!
+

rk

(k − 1)!(k − r)

]−1

. (1.1)

We expect, however, that our model would also be useful in the context where service times

are not exponential since others (c.f., Kimura 2010) have shown the Erlang-C function tends

to be a good approximation for the delay of a M/G/k queue, which has no known closed-form

formula.
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Table 1.1: Model notation

Indices and Sets

i ∈ I Index for job types

j ∈ J Index for server groups

F Set of feasible job type-server group assignments (i→ j)

FJi The subset of groups that can serve jobs of type i

FIj The subset of job types that group j can serve

Parameters

di Expected arrival (demand) rate of job type i

τij Mean service time for a server at group j to serve a job of type i

kj Number of servers at group j

T Acceptable waiting time in the queue

Cf
A number between zero and one indicating the minimum fraction of jobs

that should be covered (routed)

Variables

xij Number of jobs of type i to be served by group j per unit time

λj Total number of jobs to be served by group j per unit time

rj Workload assigned to group j

τj Mean service time at group j

9



Figure 1.1: Schematic representation of the multi-class multi-server model.

The decision variable xij determines the number of jobs of type i to be served by group j

per unit time. The arrival rate to group j is the sum of all jobs of all types that it serves,

λj =
∑
i∈FIj

xij ∀j ∈ J. (1.2)

The workload of group j is

rj =
∑
i∈FIj

τijxij ∀j ∈ J. (1.3)

The mean service time at group j is defined as

τj :=
rj
λj

∀j ∈ J. (1.4)
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1.3.1 Objective Function: Service Level

We seek to determine the routings, i.e., the number of jobs of each type i to be served by

group j per unit time, and represented by the variables xij for each edge (i, j) in Figure 1.1,

such that the service level that jobs experience is maximized. The Service Level (SL), also

known as the Telephone Service Factor (TSF) for call centers, is the probability that a job

is served within an acceptable waiting time T ,

SL := P [W ≤ T ]

= 1− P [W > 0]P [W > T |W > 0],

(1.5)

where W is the random waiting time in the queue. The model assumptions allows us to use

the Erlang-C function defined in Equation 1.1 to compute the delay probability, P [W > 0].

Given the event that an arriving job must wait for a server, the conditional delay P [W >

T |W > 0] is exponentially distributed with mean
(
k − r/τ

)−1
=
(
λ(k − r)/r

)−1
(c.f. Abate

et al. 1995 and Gans et al. 2003). Thus from equation (1.5), SL becomes,

SL(λ, r, k, T ) = 1− C(k, r)e−
(
λ(k−r)

r

)
T . (1.6)

For representation conciseness we write the service level as a function of variables λ and r,

and omit parameters k and T , i.e., we denote SL(λ, r, k, T ) as SL(λ, r).

Figure 1.2 shows a service level function with three different acceptable waiting time values.

Notice the sensitivity of the SL function to workload r and acceptable waiting time T . It

is this difference between the functional form of SL and Erlang-C (i.e., SL with acceptable

waiting time of zero) that we exploit in our solution algorithm FSE. In Section 1.4 we explain

our FSE in detail and delineate how FSE takes advantage of the functional form of SL to

numerically outperform SQE, the original method introduced by Cho et al. (2014).
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Figure 1.2: Service Level as a function of workload with λ = 4 arrivals and k = 5 servers.
Note that the Service Level function with acceptable waiting time T = 0 reduces to the
Erlang-C function.
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The function in (1.6) computes the service level for a single group (or equivalently a single

queue before each group). For the queue in front of server group j, the service level is

SL(λj, rj), where λj and rj are the arrival rate to group j and the workload of group j,

respectively.

In the multi-class multi-server system which is the focus of this paper, we are interested in

aggregate measures that can help the decision maker evaluate the performance of the whole

system, not just a single group. For this purpose, we introduce two aggregate measures,

namely, the total service level and the average service level denoted by SLtot and SLavg,

respectively. We define SLtot across all groups as,

SLtot :=
∑
j∈J

λjSL(λj, rj), (1.7)

where SLtot measures the total number of jobs served within the desired acceptable waiting

time. We note that SLtot often has a useful application-specific interpretation.

An alternative to the total service level function, SLtot, is the average service level function,

SLavg, defined as the service level that a random arriving job of any type experiences,

SLavg :=

∑
j∈J

λjSL(λj, rj)∑
j∈J

λj
. (1.8)

In the following subsection we formally define the math program (P ) with the service level

objective, i.e., SLtot or SLavg.
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1.3.2 Math Program

The math program (P ) below determines routings xij’s such that the service level is maxi-

mized.

(P ) max SLtot or SLavg

s.t. Constraints (1.2) and (1.3),

rj ≤ kj ∀j ∈ J, (1.9)∑
j∈FJi

xij ≤ di ∀i ∈ I, (1.10)

Optional convex constraints, (1.11)

xij ≥ 0 ∀(i, j) ∈ F. (1.12)

Constraint (1.9) assures the workload at each group does not exceed the number of servers

at that group, and is required for the system to be in steady state. Constraint (1.10)

makes sure that for each job type i, the covered jobs are less than or equal to the arrival

rate (also called demand) at node i. Constraint (1.10) also indicates that not all jobs are

necessarily served and some are possibly blocked upon arrival, i.e., we determine allocation

and coverage simultaneously. To preserve Poisson arrivals at the group queues, this blocking

is done randomly proportional to {xij}. Constraint (1.11) indicates that one has the option

to impose convex constraints on xij’s, rj’s and λj’s. For example, we can make sure that the

workload is roughly balanced between groups by imposing lower and upper bounds on rj’s.

Or, we can easily embed (P ) into a much larger math program to link additional decisions.

Constraint (1.12) makes sure that xij’s are nonnegative.

When optimizing SLtot, there is an endogenous trade-off between an increase in the number

of served jobs (i.e., an increase in
∑

j∈J λj) and an increase in the queues’ congestion and

the resulting service delays that adversely affect the SLtot objective. Thus, coverage and
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routing can be simultaneously optimized. However, for SLavg this trade-off does not exist

and without enforcing a minimum coverage constraint, the optimal solution will be degen-

erate, have no congestion, and not serve any job. Thus, for SLavg we exogenously enforce a

minimum coverage level using the constraint,

∑
j∈J

λj ≥ Cf
∑
i∈I

di, (1.13)

where 0 ≤ Cf ≤ 1 is the minimum (or, desired) coverage factor.

Proposition 1.3.1 proves that constraint (1.13) is binding at optimality. Indeed, one cannot

improve SLavg or SLtot by increasing the coverage,
∑

j∈J λj, beyond the minimum required

coverage, Cf
∑

i∈I di.

Proposition 1.3.1. Assuming that problem (P ) with the coverage constraint (1.13) is fea-

sible, the coverage constraint (1.13) is binding for the SLavg objective.

Proof. See Appendix A.

Proposition 1.3.1 indicates that at optimality SLavg becomes

SLavg =

∑
j∈J

λjSL(λj, rj)∑
j∈J λj

=

∑
j∈J

λjSL(λj, rj)

Cf
∑

i∈I di
=

SLtot
Cf
∑

i∈I di
. (1.14)

Since Cf
∑

i∈I di is a constant, optimizing SLavg in Problem (P ) with Constraint (1.13) is

equivalent to optimizing SLtot in problem (P ) with Constraint (1.13). We will therefore

focus on the SLtot objective for the remainder of the paper.
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1.3.3 Lack of Concavity of SLtot

In this subsection we investigate the joint concavity of the objective function SLtot in λj and

rj. Proposition 1.3.2 below states the necessary and sufficient conditions for the special case

under which SLtot with Acceptable Waiting Time (AWT) of zero and single-server groups is

jointly concave in λj and rj.

Proposition 1.3.2. When each group has exactly one server, and the acceptable waiting

time is zero, then SLtot is jointly concave in {λj} and {rj} if and only if for each group

j ∈ J , τij = τj ∀i ∈ FIj, i.e., when the mean service time for jobs routed to group j is

independent of job type i.

Proof. See Appendix B.

The following proposition shows that SLtot is not even pseudo-concave in its variables.

Proposition 1.3.3. Even for the special case with one server per group with acceptable

waiting time of zero, SLtot is not jointly pseudo-concave in {λj} and {rj}.

Proof. See Appendix C.

Proposition 1.3.2 provides a special case for which SLtot is concave, namely, when the ser-

vice time is independent of the job type. But, Proposition 1.3.3 shows that in general the

service level function SLtot is not pseudo-concave. Notice that pseudo-concavity is a weaker

condition that concavity; that is, SLtot is neither concave nor pseudo-concave in the general

case. Our numerical experiments in Section 1.5 show that KNITRO, a commercial nonlinear

solver which can solve convex and pseudo-convex optimization problems to optimality, gets

stuck in an infeasible point when we attempt to solve Problem (P ) with the SLtot objective.

In the next section we introduce a tailored algorithm to solve this non-convex problem.
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1.4 Fixed-ratio Shifting Envelopes

and Shifting Quadratic Envelopes

We show that the Shifting Quadratic Envelopment (SQE) algorithm originally introduced in

Cho et al. (2014) to solve a special case of our problem (i.e., when the acceptable waiting time

is zero) can be extended to solve Problem (P ) to for the general case where the acceptable

waiting time is any non-negative number. In theory, the resulting convex math program can

be made to approximate the original non-convex math program with arbitrary precision.

We build on SQE and propose a more efficient solution algorithm, which we call Fixed-

ratio Shifting Envelopes (FSE). The FSE algorithm exploits the structure of the service

level function in Problem (P ) and achieves better performance than SQE. We explain the

difference between FSE and SQE in Section 1.4.3.

1.4.1 Overview

The key to the outer-approximation that underlies both SQE and FSE is to underestimate

the mean service time that a job (regardless of the job type) experiences at each group,

namely, τj = rj/λj. Fixing the mean service time τj = τFIXj , we let rj(λj|τFIXj ) = τFIXj λj

denote the workload rj solely as a function of λj. Then, we define the SL function with fixed

τj’s as

SLFIXtot :=
∑
j∈J

λjSL(λj, rj(λj|τFIXj )) =
∑
j∈J

λjSL(λj, τ
FIX
j λj), (1.15)

where τFIXj is any fixed mean service time less than or equal to the mean service time of

the optimal solution, i.e., τ ∗j = r∗j/λ
∗
j . Defining τMIN

j = min
i
τij and τMAX

j = max
i
τij, we can
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bound rj = τjλj as follows,

τMIN
j λj ≤ rj ≤ τMAX

j λj. (1.16)

Since before solving problem (P ) we know only that τ ∗j ∈ [τMIN
j , τMAX

j ], the best choice for

τFIXj that is always guaranteed to underestimate the optimal mean service time is τMIN
j .

Proposition 1.4.1 proves that SLRLtot defined as SLFIXtot with τFIXj = τMIN
j is a relaxation

of SLtot. That is, SLRLtot provides an upper bound for SLtot, which we seek to maximize.

Proposition 1.4.1 also proves that SLtot is concave in {λj}, when {τj} is fixed.

Proposition 1.4.1. Let τ ∗j = r∗j/λ
∗
j be the mean service time of the optimal solution

(λ∗j , r
∗
j ). For any fixed mean service time τFIXj such that τFIXj ≤ τ ∗j , the function SLFIXtot =∑

j∈J
λjSL(λj, τ

FIX
j λj) is (i) separable by group, (ii) concave in λj for each group j, and (iii)

an upper bound for SLtot =
∑

j∈J λjSL(λj, τ
∗
j λj).

Proof. See Appendix D.

Finally, since the constraints of the original problem (P ) are convex, the following relaxed

problem (RL) is a convex program,

(RL) max
∑
j∈J

λjSL(λj, τ
MIN
j λj)

s.t. (1.2), (1.3), (1.9), (1.10), (1.11), and (1.12).

Every feasible solution in (RL) is also feasible in the original problem (P ), because all

constraints in (P ) are present in (RL). To find a good solution for (P ), we evaluate the

solution found by (RL) by plugging it into the objective function of the original problem

(P ). The total optimality gap across all groups is the difference between the objective value
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of (RL) and the value of this solution evaluated in the original objective,

Gaptot :=
∑
j∈J

λjSL(λj, τ
MIN
j λj)−

∑
j∈J

λjSL(λj, rj) (1.17)

=
∑
j∈J

λj

[
SL(λj, τ

MIN
j λj)− SL(λj, rj)

]
.

Since (i) SL(λ, τλ) is decreasing in τ (see inequality (D.6) for Lemma D.1 in Appendix D),

and (ii) τMIN
j ≤ τj, then SL(λj, τ

MIN
j λj) ≥ SL(λj, rj) holds and the total optimality gap is

always non-negative. The solution might be globally optimal even if the optimality gap is

strictly positive. In other words, the optimality gap gives us a conservative (i.e., pessimistic)

indicator of how close we are to a global optimum.

We may now be interested in how to improve the solution produced by (RL). One method,

which we find fruitful and on which SQE and FSE is based, tightens the gap by introducing

successively better underestimates τFIXj in place of τMIN
j in (RL). We can achieve some

further progress by also solving a subproblem (SPr), in which we fix rj found by (RL) and

re-solve for the remaining variables, xij and λj (for details see Appendix E).

1.4.2 Shifting Algorithm

In Section 1.4.1 we explained how we find a feasible solution to the original problem (P )

by solving the relaxed problem (RL). In this section, we explain how the SQE and FSE

algorithms search for tighter relaxations (i.e., lower upper bounds for SLtot) to close the

optimality gap.

The contribution of group j to the objective function SLtot depends on the arrival rate λj

and the workload rj (i.e., λjSL(λj, rj) is a function of variables λj and rj). For each group

j, the feasible region is a cone starting from the origin with the x-axis being the arrival

rate λj and the y-axis being the workload rj as depicted in Figure 1.3. The mean service
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time τj = rj/λj is the slope of the ray that starts from the origin and goes through the

solution (λj, rj). As defined in Section 1.4.1, let τ ∗j = r∗j/λ
∗
j be the mean service time of the

optimal solution (λ∗j , r
∗
j ). Our goal is to pick a mean service time τFIXj that underestimates

the optimal mean service time τ ∗j as closely as possible. This will allow us to overestimate

the non-concave function λjSL(λj, rj) using the concave function λjSL(λj, τ
FIX
j λj) without

introducing much approximation error. Since before solving problem (P ) we know only that

τ ∗j ∈ [τMIN
j , τMAX

j ], the best choice for τFIXj that is always guaranteed to underestimate the

optimal mean service time is τMIN
j . This is why, in Section 1.4.1, we used the underestimate

τFIXj = τMIN
j to construct (RL).

We call our algorithm Fixed-ratio Shifting Envelopes rather than Shifting Quadratic En-

velopes developed by Cho et al. (2014) because the envelopes constituting the outer approx-

imation in our general setting are not quadratic as they are in the special case when there

is a single server at each group and the acceptable waiting time is zero as modeled by Cho

et al. (2014). That is, when AWT = 0 and kj = 1, the term λjSL(λj, τ
FIX
j λj) reduces to

the quadratic term τFIXj λ2
j , which was the focus of Cho et al. (2014).

We will now describe how we can use other estimates for τFIXj that lead to tighter relaxations.

As shown in Figure 1.4 we can subdivide the cone into mj slices of arbitrary size by splitting

the domain of τj into subdomains [τj,1, τj,2], [τj,2, τj,3], . . . , [τj,mj , τj,mj+1
], where τj,1 < τj,2 <

τj,3 < · · · < τj,mj < τj,mj+1
, τj,1 = τMIN

j and τj,mj+1
= τMAX

j . When the solution (λj, rj)

is in the n-th subdomain (i.e., in the slice defined by τj,nλj ≤ rj ≤ τj,n+1λj), we can use

τFIXj = τj,n as an underestimate for the mean service time τj at the point (λj, rj). To

keep track of which subdomain group j’s mean service time is in, we use binary variables

yjn for n ∈ Nj = {1, 2, . . . ,mj}, where yjn is 1 if group j’s mean service time is in the

subdomain [τj,n, τj,n+1], and is 0 otherwise. We use the constraint
∑

n∈Nj yjn = 1 to restrict

each group’s mean service time to exactly one subdomain. Whenever the solution is in the

n’th subdomain, we replace rj with its corresponding underestimate, rjn = τj,nλjn. The full
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Figure 1.3: Illustration of a feasible point (λj, rj) in the subspace for group j.

formulation of (RL2) for the SQE-relaxed (or, equivalently FSE-relaxed) problem (RL) is

as follows,

Figure 1.4: Illustration of the conic slices in SQE and FSE algorithms.
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(RL2) max
∑
j∈J

∑
n∈Nj

λjnSL(λjn, τj,nλjn) (1.18)

s.t. (1.2), (1.3), (1.9), (1.10), (1.11), (1.12),

λj =
∑
n∈Nj

λjn ∀j ∈ J, (1.19)

rj =
∑
n∈Nj

rjn ∀j ∈ J, (1.20)

∑
n∈Nj

yjn = 1 ∀j ∈ J, (1.21)

0 ≤ λjn ≤ λMAX
j yjn ∀j ∈ J,∀n ∈ Nj, (1.22)

0 ≤ rjn ≤ rMAX
j yjn ∀j ∈ J,∀n ∈ Nj, (1.23)

τj,nλjn ≤ rjn ≤ τj,n+1λjn ∀j ∈ J,∀n ∈ Nj, (1.24)

yjn ∈ {0, 1} ∀j ∈ J,∀n ∈ Nj, (1.25)

where λMAX
j and rMAX

j are sufficiently big numbers. In addition to the variables and con-

straints of (RL), problem (RL2) includes binary variables yjn that define subdomain mem-

bership, continuous variables λjn and rjn, and several logical constraints that link these

quantities. Constraints (1.19) and (1.20) define the arrival rates λj and the workloads rj for

each group j, respectively. Constraint (1.21) ensures that only one conic slice is active. For

inactive slices, i.e., when yjn = 0, constraints (1.22) and (1.23) ensure that the corresponding

arrival rate λjn and workload rjn are zero, respectively. For active slices, i.e., when yjn = 1,

constraints (1.22) and (1.23) limit the arrival rate λjn and the workload rj by their maximum

values, i.e., λMAX
j and rMAX

j , respectively. Constraint (1.24) connects rjn to λjn and τj,n.

Similar to (RL), (RL2) is also convex in the {λj} variables.

As we divide the domain of each τj into finer intervals, our relaxation (RL2) becomes tighter.

Moreover, in the (λj, rj)-space depicted in Figure 1.4, as the number of slices mj →∞ ∀j, the
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area of each slice collapses to zero and the optimal value of (RL2) converges to the optimal

value of (P ); that is, in theory we can approximate (P ) to any arbitrary precision by simply

slicing the subdomains of τj finely enough. However, as the number of slices increases, the

problem (RL2) becomes harder to solve because of the larger number of binary variables

{yjn}. Consequently, one would like to use an algorithm that uses a limited number of slices,

defined at just the right values to approximate τ ∗j both quickly and accurately. The SQE

and FSE algorithms begin with only one slice defined for each group; i.e., mj = 1, τj,1 =

τMIN
j , and τj,2 = τMAX

j ∀j. At each iteration we add new boundaries (or, equivalently

new slices), and remove some boundaries as needed to keep the number of the boundaries

and thus the computational expense of problem (RL2) in check. The net result of adding

and removing slice boundaries at each iteration can be thought of as shifting boundaries.

Table 1.2 formally defines the Shifting algorithm common for both the Fixed-ratio Shifting

Envelopes and the Shifting Quadratic Envelopes algorithms. In the following subsection

we answer two very important questions, (i) Adding boundaries: Where should we add a

new boundary? (ii) Removing boundaries: Which boundaries should we keep and which

ones should we remove? As explained in the Shifting algorithm, both SQE and FSE add

and remove boundaries. However, these algorithms differ in the way they add and remove

boundaries. Most importantly, our FSE method exploits the specific functional form of the

Service Level (SL) function to improve the performance of the shifting algorithm. Below, we

explain in detail the adding and removing subroutines of the Shifting algorithm.

1.4.3 Adding and Removing Boundaries

In this section we explain adding and removing boundaries for SQE and FSE algorithms.

For each group we start off by adding a new boundary to get closer to the optimal mean

service time, τ ∗j . Next, we remove boundaries to keep the total number of binary variables

(or, equivalently the total number of conic slices), i.e., yjn in Problem (RL2), in check.
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Table 1.2: Shifting Algorithm (for SQE and FSE)

1. Required Parameters.

- tol = the optimality gap target; once we get below this threshold, we terminate.

2. Initialization.

- Set iteration counter t ← 1; lower bound LB ← −∞; upper bound UB ← ∞;
optimality gap Gaptot ←∞; and best solution found thus far bestSol← 0.

- Initialize boundaries:

τj,1 ← τMIN
j ; τj,2 ← τMAX

j ; and Tj,1 ← {τj,1, τj,2} ∀j.

3. Main Algorithm

- Repeat until the Gaptot ≤ tol

• Solve the relaxed problem (RL2). Store the optimal value as zRL and the
optimal solution as Θ.

• Evaluate solution Θ in the original problem objective function to obtain a
feasible solution with the value of zEV AL.

• Update the best solution found thus far: If zEV AL > LB then, bestSol← Θ.

• Update the lower bound: LB ← max(LB, zEV AL)

• Update the upper bound: UB ← min(UB, zRL)

• Update the optimality gap percentage: Gaptot ← (LB − UB)/UB.

• If Gaptot < tol,

◦ Terminate and return bestSol, LB, UB, and Gaptot;

else,

◦ Add boundaries (For FSE, see subroutine FSEADD in section 1.4.3 and
Table F.1. For SQE, see section 1.4.3);

◦ Remove boundaries (For FSE, see subroutine FSEREM
gr in section 1.4.3

and Table F.2. For SQE, see section 1.4.3).

• Increment the iteration counter t← t+ 1, and repeat the loop.
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Adding Boundaries

At each iteration of Shifting, we solve (RL2) to get the (P )-feasible solution (λj, rj), which

lies in a particular slice, say the slice defined by τj,nCURRENTj
λj ≤ rj ≤ τj,nCURRENTj +1λj for

some nCURRENTj . We then subdivide this slice into two slices of arbitrary size, cutting it in

two along the ray rj(λj|τNEWj ) = τNEWj λj, where τNEWj = θτACTUALj,t + (1 − θ)τj,nCURRENTj

with θ ∈ [0, 1] is the weighted average of τj,nCURRENTj
, i.e., the current underestimate of the

mean service time at the point (λj, rj), and the actual mean service time τACTUALj,t = rj/λj

at the point (λj, rj).

SQE: Cho et al. (2014) chose a fixed θ = 0.5, which tended to work well for their problem

instance.

FSE: We dynamically generate the new boundary between τj,nCURRENTj
and τACTUALj,t based

on the difference between the value of the service level evaluated at the current solu-

tion (λj, rj), and the value of the service level evaluated at the lower boundary point

(λj, τj,nCURRENTj
λj), which is immediately below (λj, rj). Note that if we generate the new

boundary closer to the current solution (i.e., choosing θ close to 1), we increase the cost of

the current solution in the objective of (RL2) such that in the following iteration we are

less likely to generate solutions in the new slice, above τNEWj . Conversely, since the current

solution is not necessarily the optimal solution to the original problem (P ) and can change

in the following iteration, we may not want to spend many iterations only making small

changes to the lower boundary (i.e., choosing θ near 0).

As is shown in Figure 1.2, for ranges with relatively low workload (e.g., for r ≤ 1 which in

this example with k = 5 servers corresponds to utilization below 20%), the Erlang-C function

is relatively insensitive to changes in workload, but as workload increases, Erlang-C becomes

progressively more sensitive to changes in workload (i.e., its slope increases). In turn, since

the Service Level (SL) is a function of Erlang-C, it also exhibits this property. In addition to
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the SL function’s sensitivity to workload, it is also sensitive to the acceptable waiting time,

T , which is present in the exponent of the SL function, i.e., e−
(
λ(k−r)

r

)
T in (1.6). In fact, for

T = 5 and 20, the SL function is more sensitive to workload compared to when T = 0 (i.e.,

when SL reduces to Erlang-C). These two observations, namely, sensitivity to workload and

acceptable waiting time, motivated our development of the FSE algorithm for Problem (P ).

For small values of workload we can update the slice boundary more aggressively (i.e., set

θ closer to 1) to move quickly toward the current solution, knowing that the move does not

appreciably increase the cost of the boundary in the objective of (RL2). Conversely for large

values of workload, we move gradually toward the current solution (i.e., set θ closer to 0),

since the impact of the move on the objective function is significant and can make the new

boundary much more costly in the objective function.

For each group j, we compute SL evaluated at the current lower boundary, i.e.,

SL(λj, τj,nCURRENTj
λj), and the SL evaluated at the actual mean service time (λj, rj), using

the value of τACTUALj,t = λj/rj, i.e., SL(λj, τ
ACTUAL
j,t λj). Then, we define the normalized

difference between the Service Level evaluations as,

δ =
SL(λj, τj,nCURRENTj

λj)− SL(λj, τ
ACTUAL
j,t λj)

SL(λj, τMIN
j λj)− SL(λj, τMAX

j λj)
. (1.26)

When δ is large, we generate the new boundary closer to the current lower boundary through

choosing smaller values for θ; conversely when δ is small, we move rapidly toward the current

solution by choosing larger values for θ. Also, suggested by our experiments, we keep θ away

from the extreme values of zero and one by enforcing θMIN ≤ θ ≤ θMAX . Our formula for θ

is

θ = (1− δ)(θMAX − θMIN) + θMIN . (1.27)
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Figure 1.5: Choosing θ according to the difference between the Service Level evaluated at
the actual mean service time and the Service Level evaluated at the lower slice boundary.

We choose θMIN = 0.3 and θMAX = 0.7 in our FSE algorithm. Figure 1.5 illustrates how we

generate a new boundary according to equations (1.26) and (1.27) with acceptable waiting

time of zero for a group with 3 servers. We denote the set of boundaries at iteration t by

Tj,t and the set of boundaries after adding a new boundary, i.e., the output of the adding

boundaries subroutine, FSEADD, by T addj,t . Table F.1 in Appendix F formally defines the

adding boundaries subroutine, FSEADD, for the FSE algorithm.

Removing Boundaries

Knowing that the complexity of (RL2) increases by the total number of binary variables yjn,

i.e., the total number of slices, we limit the total number of slices that we keep. The algo-
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rithms SQE and FSE use different approaches to decide which boundaries to keep/remove.

SQE: Motivated by the desire to underestimate the optimal τj, Cho et al. (2014) keep three

boundaries below and one slice boundary above the actual boundary at iteration t, τACTUALj,t .

However, a boundary that is below the current solution τACTUALj,t produced in this iteration

may be above the τACTUALj,t in following iterations. In addition, we may decide to allocate

more boundaries to one group as opposed to others, since not all groups have the same

impact on the total gap defined in (1.17). FSE addresses both these aspects.

FSE: As opposed to SQE that keeps four boundaries for each group (i.e., one above and

three below), FSE maintains a total of ψtot boundaries across all groups, with no group

being allocated more than ψgr boundaries. We notice that ψtot is closely associated to the

computational complexity of the problem, i.e., the total number of binary variables, yjn’s.

To remove boundaries from groups, FSE addresses two questions, separately: (i) how many

boundaries do we remove from each group (subroutine FSEREM
gr )?; and (ii) for the group(s)

that were chosen to lose boundaries, which boundaries do we remove (subroutine FSEREM
bnd )?

Notice that FSEREM
bnd runs for each group, separately.

FSEREM
gr : For each group that ψgr is reached, we remove one boundary from that group

to maintain ψgr. One the other hand, if ψtot is reached, we remove boundaries from groups

that have less potential for closing the total gap, Gaptot, defined in (1.17). We compute the

contribution of each group to the total gap,

Gapj := λj

[
SL(λj, τj,nCURRENTj

λj)− SL(λj, rj)
]
∀j ∈ J, (1.28)

where τj,nCURRENTj
is the current underestimate for τj and Gaptot =

∑
j∈J Gapj. Note that

since SL(λj, τj,nCURRENTj
λj) ≥ SL(λj, rj) then Gapj is non-negative. In allocating boundary

budget across groups, we give groups with larger Gapj a higher priority.

28



In an ordered list called Sort, we sort groups from smallest to largest Gapj. We traverse this

list in order and remove boundaries from the groups to meet ψtot. We pick the group at the

top of the list, jtop, and remove it from Sort. If jtop has five or more boundaries (i.e., τMIN
j

and τMAX
j , and at least 3 boundaries in between), we remove two boundaries and if jtop has

exactly four boundaries, then we remove one boundary (see FSEREM
bnd explained below). If

jtop has three boundaries we do not remove any boundary. We pick the next group from the

top of Sort and continue. Table F.2 in Appendix F formally defines subroutine FSEREM
gr

which identifies boundaries to be removed from a specific group.

FSEREM
bnd : The main inputs to subroutine FSEREM

bnd are (i) ToRemove: the number of

boundaries to be removed from a specific group (see the output of FSEREM
gr in Table F.2

of Appendix F), and (ii) T addj,t : the ordered list of boundaries with the newly generated

boundary for iteration t (see the output of subroutine FSEADD in Table F.1 of Appendix

F). The subroutine FSEREM
bnd works as follows. We formally define FSEREM

bnd in Table F.3

of Appendix F.

For a group j that we want to remove a boundary from, we keep each existing boundary

proportional to the likelihood that τj falls in the corresponding slice. We use the actual mean

service times, τACTUALj,t ’s corresponding to the solution produced at the current iteration t,

and denote the set {Aj,t} = {τACTUALj,1 , . . . , τACTUALj,t } as the set of actual mean service times

from iteration 1 to t, the current iteration. For each boundary τj,n ∈ T addj,t \ τMAX
j , we

calculate its score, i.e., the number of actual solutions that are in the slice boundary defined

by τj,n (i.e., that fall above τj,n and below τj,n+1),

S(τj,n) =
∑
τ∈Aj,t

I(τj,n ≤ τ < τj,n+1) ∀τj,n ∈ T addj,t−1 \ τMAX
j , (1.29)

where I(.) is an indicator function. Note that we do not define a score for τMAX
j , since it

does not underestimate any actual mean service time. The higher the score of a boundary,
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the higher the chance that we keep that boundary. We always keep τMIN
j and τMAX

j to

cover all service times as well as τNEWj . After calculating the scores we produce the set

of boundaries that are eligible for removal, T tempj ← T addj,t \ {τMIN
j , τNEWj , τMAX

j }. Next, we

form a subset of T tempj for boundaries with a score of zero, T zeroj ← {τj,n ∈ T tempj |S(τj,n) = 0}.

If there are boundaries with a score of zero, we remove those boundaries first, removing as

many boundaries as we have decided to remove for this group, breaking ties randomly if

the number of boundaries with a score of zero exceeds the number of boundaries we must

remove. We drop the removed boundaries from the set T tempj . If at this point there is no

boundary with a score of zero left in T tempj and we need to remove more boundaries, we keep

boundaries probabilistically in proportion to their scores. We calculate the cumulative score

for each boundary left in the set T tempj as,

Scum(τj,n)←
∑

τ∈T tempj :τ≤τj,n

S(τ) ∀τj,n ∈ T tempj . (1.30)

We generate a random number, rand, from the following uniform distribution with support

spanned by zero and the cumulative score of the highest boundary in T tempj ,

U [0, Scum(τj,|T tempj |)]. (1.31)

We select the boundary τj,n ∈ T tempj , where Scum(τj,n−1) ≤ rand < Scum(τj,n) and keep the

selected boundary by transferring it from T tempj to a new set T keepj = {τMIN
j , τNEWj , τMAX

j }

(i.e., the set of boundaries that we keep),

T tempj ← {T tempj } \ τj,n and T keepj ← {T keepj }+ τj,n. (1.32)

While there are still more boundaries to be removed, we repeat this loop by updating bound-
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ary cumulative scores according to (1.30), generating new random numbers according to

(1.31), and transferring boundaries from T tempj to T keepj according to (1.32). The subroutine

FSEREM
bnd terminates by keeping the boundaries left in T keepj as well as τMIN

j , τNEWj , and

τMAX
j in the set of boundaries kept after removal,

Tj,t+1 ← T keepj .

In the following section we illustrate the progression of the FSE algorithm on a small example.

1.4.4 FSE: an illustrative example

Figure 1.6 illustrates the progression of the FSE algorithm on an example with 2 job types

and 2 groups. We keep at most a total of 8 boundaries, i.e., ψtot = 8, with a limit of 5

boundaries for each group, i.e., ψgr = 5.

At iteration 1, for each group we begin with a single slice bounded by τj,1 and τj,2, where

τj,1 = τMIN
j and τj,2 = τMAX

j . Assuming that we have not reached the target optimality gap

we apply FSEADD to add a new boundary between τj,1 and τj,2 (see Table F.1 in Appendix

F). We solve (RL2) and (SPr), and use the current iteration solution (λj, rj) to compute

the actual mean service time τACTUALj,1 = rj/λj (τACTUAL1,1 = 3.14 and τACTUAL2,1 = 1.64). The

actual mean service time, τACTUALj,1 , is the slope of the dotted blue ray in Figure 1.6. For

each group, we split the subdomain of [τj,1, τj,2] into two slices by introducing a new slice

boundary τNEWj , where τNEWj = θτACTUALj,1 + (1 − θ)τj,1. To simplify calculations, we set

θMIN to 0 and θMAX to 1, which simplifies (1.27) to θ = 1− δ. Using equations (1.26) and

θ = 1 − δ we calculate δ and θ; for both groups, δ and θ are 0.2 and 0.8, respectively. The

new boundary with slope τNEWj is depicted by the green dashed line in Figure 1.6. Now we

have a total of 6 boundaries, 3 for each group, which we use at iteration 2. Since we have not
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reached either ψtot or ψgr, we do not remove any boundary. After relabeling slice boundaries

τNEWj and τj,2 as τj,2 and τj,3, respectively, we proceed to iteration 2.

At iteration 2 we apply FSEADD to add new boundaries. We re-solve 1 (RL2) and sub-

problem (SPr) to get a new point (λj, rj) and its associated actual mean service time

τACTUALj,2 = rj/λj. Since for both groups the points (λj, rj) are in the bottom-most slices, we

proceed by splitting the bottom-most slices into two. For each group, we do this by creating

a new slice boundary with slope τNEWj = θτACTUALj,2 + (1 − θ)τj,1, where equation (1.27)

determines θ. At the end of iteration 2 there are a total of 8 boundaries (4 boundaries for

each group). We proceed to iteration 3 with these boundaries (see iteration 2 in Figure 1.6).

After applying FSEADD at iteration 3, although we do not exceed ψgr = 5 for any group, we

now have reached a total of 10 boundaries (5 boundaries for each group), i.e., 2 more than

our limit of ψtot = 8. To remove 2 boundaries before starting the following iteration, i.e.,

iteration 4, we apply FSEREM
gr (see Table F.2 in Appendix F). We sort groups according

to their gaps, Gapj. Since Gap2 < Gap1, we remove 2 boundaries from group 2 without

removing any boundary from group 1. To select 2 boundaries from group 2, we proceed as

follows. Using equation (1.29) we calculate the scores for group 2’s boundaries (The black

circles in Figure 1.6 are (λj, rj) points on which τACTUALj,t ’s are based),

S(τ2,1 = 1) = 0, S(τ2,2 = 1.51) = 0, S(τ2,3 = 1.56) = 2, and S(τ2,4 = 1.65) = 1.

Since we always keep the newly generated and the bottom-most boundaries, we don’t consider

τMIN
2 = τ2,1 or τNEW2 = τ2,3 for removal. Thus, the set of candidate boundaries for removing

is T temp2 = {1.51, 1.65}. We remove τ = 1.51 since its score is zero. Because we should

remove two boundaries, we also remove the only boundary left in T temp2 = {1.65}. The 2

boundaries that are removed are depicted as red rays in Figure 1.6. Iteration 4 does not use

1Upon solving the relaxed problem (RL2) and finding {xij}, {rj} and {λj}, we can seek a better solution
by solving a subproblem (SPr) (Check Appendix E for more details).
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these two removed boundaries.

After applying FSEADD at iteration 4, group 1 has 6 boundaries and group 2 has 4 bound-

aries. We remove one boundary from group 1, to satisfy the ψgr = 5 limit. Also, to meet

the ψtot = 8 limit we need to remove an additional boundary from either group 1 or 2 based

on their contribution to the total optimality gap.

To remove a boundary from group 1, we calculate the scores for its boundaries,

S(τ1,1 = 0.5) = 0, S(τ1,2 = 1.3) = 1, S(τ1,3 = 1.64) = 1, S(τ1,4 = 1.96) = 1, and

S(τ1,5 = 2.61) = 1.

Except for τMIN
1 = τ1,1, which we cannot remove, none of the scores are zero. Also, we cannot

remove the new boundary τNEW1 = τ1,3. After calculating cumulative scores (see equation

(1.30)) and generating a random number for boundaries in T temp1 = {1.3, 1.96, 2.61} (see

equation (1.31)) we remove τ1,5 = 2.61. Now we have a total of 9 boundaries and to meet

ψtot = 8, we need to remove another boundary. Since Gap2 < Gap1 we remove a boundary

from group 2. The scores for group 2 boundaries are,

S(τ2,1 = 1) = 0, S(τ2,2 = 1.56) = 3 and S(τ2,3 = 2.39) = 1.

Except for τMIN
2 = τ2,1, which we are not allowed to remove, none of the scores are zero.

Also, we cannot remove the new boundary τNEW2 = τ2,3. We therefore remove the only

boundary in T temp1 , which is τ2,2 = 1.56.

After applying FSEADD at iteration 5, group 1 has 6 boundaries, i.e., one more than ψgr = 5.

We remove one of its boundaries. Then, we reach a total of 9 boundaries, 1 more than

ψtot = 8. Since Gap1 < Gap2, we remove another boundary from group 1 boundaries and we

meet ψtot = 8. Our FSE algorithm repeats these steps until we reach the desired optimality
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gap.

1.5 Experiments

Note that although theoretically convergence is not guaranteed unless we continue to add

boundaries at each iteration without removing any, our experimental results show that FSE is

indeed able to find near-optimal solutions, and it does so faster than alternative benchmarks.

We now run a number of numerical experiments to evaluate the performance of our FSE

algorithm. In our instances, the acceptable waiting time is set at T = 10 time units.

1.5.1 Solvers for Problem Components

To run the FSE and SQE algorithms on our instances we need to invoke appropriate solvers

to solve the relaxed problem (RL2), a mixed-integer problem, and to solve the subproblem

(SPr), a nonlinear convex problem. We deploy KNITRO, a powerful solver for solving convex

optimization problems (Byrd et al., 2006), to solve (RL2) and (SPr) to optimality.

1.5.2 Benchmarks

We benchmark the performance of FSE against the following commercial solvers.

• KNITRO: Recall that in Section 1.3.3 we showed that the original problem (P ) is

non-convex. Since it can happen that a local nonlinear solver may still converge to a

local optimum which is quite good or even optimal, we run KNITRO 10.1 on (P ) as a

benchmark.

• BARON: BARON (Tawarmalani & Sahinidis, 2005; Sahinidis, 2014) is a global solver
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Figure 1.6: Illustration of our FSE algorithm.
Tj,t: ordered list of boundaries of group j at iteration t; dotted blue arrow : τACTUALj = rj/λj
for the current iteration solution (λj, rj); dashed green arrow : newly generated boundary to
be used in the following iteration; solid green arrow : new boundary used in this iteration
and generated in the previous iteration (In the previous iteration the green solid arrow was
dashed to show that it was not used.); solid red arrow : boundary removed for the following
iteration.
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for solving general non-convex optimization problems. We use BARON 17.01.02 to find

the global optimum for the original problem (P ). We compare FSE with BARON in

terms of solution quality and speed.

Alongside the above solvers, we compare FSE with the following algorithms.

• Shifting Quadratic Envelopes (SQE): We used the SQE algorithm in Cho et al.

(2014) to solve the service level problem (see Section 1.4 for details).

• Fixed-ratio envelopes with evenly-spaced boundaries (FE-even): In this algo-

rithm, we generate boundaries that are evenly-spaced between τMIN
j and τMAX

j . The

algorithm runs for one iteration and does not shift boundaries.

• Fixed-ratio envelopes with boundary adding (FE-add): In this algorithm, we

add boundaries iteratively and we stop when we reach the maximum number of bound-

aries. FE-add is FSE without removing any boundaries. By comparing FE-add with

FSE, we test the performance of the boundary shifting part of FSE.

In Section 1.5.3 we explain how we generate our test instances. We discuss results in Section

1.5.4.

1.5.3 Data

Since FSE has different applications, we generate two sets of instances, (i) a planar dataset

for transportation-on-demand systems and (ii) a non-planar dataset for call centers and load

balancing systems.

For our planar instances, we generate random points for job nodes and group nodes on a

two-dimensional plane. We define a coverage radius for each group to determine if a group
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can serve a job node. If job i is covered by group j, i.e., i ∈ FIj, the Euclidean distance

between i and j gives us the service time, τij.

For our non-planar instances, we generate τij’s randomly from a uniform distribution with

support on the interval [0.5, 3.5]. For each (i, j) combination, we generate a uniform random

number between zero and one; if it’s greater than a threshold we keep the link, otherwise we

remove it. After removing links we form the adjacency sets FJi and FIj.

For both datasets, we generate demands di of each type i and number of servers kj at each

group j randomly according to the uniform distribution between 1 and 10 and the discrete

uniform distribution between 1 and 10, respectively.

1.5.4 Results

We coded the algorithms in AMPL 2017.01.26 and used a Windows PC with 16 GB of RAM

and a quad core CPU with 3.1 GHz. We ran algorithms for a maximum of 12 hours and

only allowed our solvers and algorithms to go over 12 hours to finish running the current

iteration. We terminated our instances when they reached a percentage gap of 1% (or 5%)

defined as,

Gappct := 100× UB − LB
UB

, (1.33)

where LB and UB are the objective lower bound and upper bound, respectively. Note that

the lower bound (LB) is also the best feasible solution since we are maximizing SLtot. In Ta-

bles G.4 and G.6 in Appendix G, we list our results for solvers KNITRO and BARON, as well

as solution algorithms FSE, SQE, FE-add, and FE-even. FSE outperforms all benchmarks

by solving all twenty instances in the allotted time followed by SQE that solves thirteen

instances to within Gappct = 1 and sixteen instances to within Gappct = 5. FE-add solves
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(a) Target percentage gap of 1% (b) Target percentage gap of 5%

Figure 1.7: Number of instances (out of 20) solved to within the target percentage gap of
1% or 5%

eight instances to within Gappct = 1 and thirteen instances to within Gappct = 5, showing

that shifting boundaries is necessary for FSE to close the gap. The results for FE-even show

that evenly distributing the boundaries does not perform well. KNITRO gets stuck in a local

infeasible point for all instances. Finally, BARON converges slowly to a global optimum and

cannot close the gap in the allotted time for any of the 20 instances.

In Figure 1.7 we compare the performance of the FSE and SQE algorithms. As seen in both

Figures 1.7a and 1.7b, FSE solves more instances than SQE for every allotted solution time

budget, from 0.5 hour to 12.5 hours.

In Figure 1.8 we show how FSE and SQE close the gap over time. FSE quickly improves the

bounds over the first 2 hours and reaches the target percentage gap of 1% while for SQE it

takes longer to improve the bounds.

Our experiments show that an instance’s complexity (i.e., the solution time) increases by

the number of groups, |J |, which can be attributed to the number of binary variables yjn’s

in problem (RL2) (see Figure 1.9). However, this observation has exceptions. For example,

it takes less time for both FSE and SQE to solve instance 19 which has |J | = 8 server groups

than to solve instance 18 which has |J | = 7 server groups. We observe that an instance’s
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(a) Over the allotted time of 12 hours (b) Over the first 2 hours

Figure 1.8: Average percentage gap of 20 instances over time for FSE and SQE algorithms
(Target percentage gap is 1%).

complexity does not depend on the instance type (i.e., planar or non-planar) or instance

density (i.e., number of links |F |/(|I| × |J |)).

Figure 1.9: Instance complexity (solution time) vs. number of groups (|J |)
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1.6 Extensions

Problem (P ) has the Service Level in its objective. However, we may want to consider

planning models which instead have the SL in a constraint. For example, in (P2) below

we show the case where we seek to maximize the number of jobs covered and there is a

constraint on the service level that the jobs experience. For example, one might want to

maximize the number of covered jobs such that the average service level is above 80%.

(P2) max
∑
j∈J

λj

s.t. Constraints (1.2), (1.3), (1.9), (1.10), (1.11), (1.12),

SLavg ≥ αSLavg. (1.34)

FSE can be employed to deal with the inherent non-convexity of the service level constraint.

We reason as follows. Assuming that the coverage
∑

j∈J λj is strictly positive, according

to the definitions of SLavg and SLtot in equations (1.8) and (1.7) constraint (1.34) can be

written as,

SLtot ≥ αSLavg
∑
j∈J

λj. (1.35)

Proposition 1.3.2 proves that the left-hand-side of constraint (1.35) is not jointly concave in λj

and rj. However, Proposition 1.4.1 proves that the function SLtot is concave in λj when τj is

fixed. Thus, constraint (1.35) is convex in λj with fixed τj. To apply FSE to these constraints,

we notice that the relaxations of constraint (1.35) do not necessarily satisfy the corresponding

original constraint, i.e., since the relaxed total service level SLRLtot is greater than or equal

to the actual service level SLtot, satisfying the relaxed constraint SLRLtot ≥ αSLavg
∑

j∈J λj does

not guarantee satisfying the original constraint SLtot ≥ αSLavg
∑

j∈J λj. To overcome this, we

must additionally solve a new restricted problem (RS3) to find a feasible solution (this is
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a step not needed when the service level is in the objective). In (RS3), we overestimate

the workload by a boundary above the actual boundary. At each iteration, (RS3) yields a

feasible solution which is a lower bound for the coverage objective function since (P2) is a

maximization problem. To find an upper bound and the optimality gap we solve the relaxed

problem (RL3), which uses boundaries below the actual boundary just like we saw with

(RL2). Since problems (RS3) and (RL3) are solved independently we can apply different

computational budgets for solving them if one is more critical than another for closing the

gap for (P2). In our experience, we have found it beneficial to disproportionately spend

more computational effort solving (RS3). For example, we can solve (RL3) with maximum

number of three boundaries for a few iterations and solve (RS3) with maximum number of

ten boundaries for more iterations. For further details, as well as the math programs for

(RL3) and (RS3), see Appendix H.

1.7 Conclusions

Service level is an important performance measure for transportation networks and call

centers. We showed that for multi-class multi-server systems, this performance measure is

non-convex in the arrival rate and workload. Nevertheless, our experiments showed that our

method, Fixed-ratio Shifting Envelopes (FSE), can efficiently solve the non-convex math

program that plans the volume of flows from each job type to each server group. Our FSE

method outperforms a related yet less specialized method called Shifting Quadratic En-

velopes (SQE), which was originally developed by Cho et al. (2014) to solve the special case

of our problem where acceptable waiting time is zero and each group has only one server.

In contrast, we tailored our FSE method to accommodate (1) a more general performance

measure, namely service level, and (2) multiple servers at each group. Our numerical ex-

periments evaluate the performance of our FSE method for solving instances of this more
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general problem class, and show that in addition to outperforming the SQE method, FSE also

outperforms the commercial solvers KNITRO and BARON. Finally, we also tested simpler

versions of FSE to understand how slice boundary selection and slice deletion impacts the

performance of the algorithm. Our experiments confirm that FSE outperforms its simpler

versions.

We also showed that the service level performance measure can appear in constraints as

well as the objective function; for example, a limit for the average service level of a random

job. One can use FSE to solve problems that have service level constraints. However, in

this case the relaxed problem does not necessarily produce a feasible solution and we should

overestimate the workloads by using the upper boundaries for mean service times and solving

a restricted problem as well.

Our math programming model is useful for planning purposes and can be embedded in

larger optimization problems such as location-allocation and call center staffing problems. It

is also important to note that although our math program encodes a static allocation policy

other papers have shown how to construct dynamic routing policies using the solution from

(P ) (see for example Nourbakhsh & Turner (2018), where we have developed “dynamized”

routing policies for the (different) expected waiting time performance measure). In the same

manner, we can use the solution of problem (P ) (or, relaxed problems (RL) or (RL2) to

design routing policies for online settings.
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Chapter 2

Dynamized Routing Policies for

Minimizing Expected Waiting Time

in a Multi-Class Multi-Server System

2.1 Introduction

We study the problem of minimizing expected waiting times in a multi-class multi-server

queueing system, where the service times are both job-type and server-type dependent. For

this queueing system the service time that a job experiences depends on the routing decision

of the server to which the job is routed to. This endogeneity of the service time, i.e. the

dependency of the service time on the routing decision, complicates the routing problem. In

fact, the optimal dynamic policy for this queueing system is unknown (Mehrotra et al., 2012).

On the other hand, static policies derived from the solution of math programs have the added

benefit of matching supply and demand in a richer way than simple dynamic policies, and in

some cases such static policies can be “dynamized”, i.e., combined with some elements of a
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simpler dynamic policy to produce excellent results. We introduce a convex math program

which we use to produce an optimal static policy, and then show how this static policy

can be “dynamized” into a number of related dynamic policies which depend on the math

program’s solution. Using a comprehensive set of simulated instances, we then evaluate the

performance of our dynamized policies. In our context, the Fastest-Server-First (FSF) policy

is a dynamic policy that is known to be near-optimal for the single job-type special case (i.e.,

it is provably optimal in the Halfin-Whitt regime). We “dynamize” our static policy using

FSF as our guide, and empirically show that several of our “dynamized” policies outperform

FSF.

Specifically, we consider a routing problem for a multi-class multi-server system with Poisson

arrivals and service rates that depend on both the job type and the server type. Each

group of servers has a single queue, and servers within a group are homogeneous and have

exponentially distributed service times that depend on the job type. We seek to minimize

the jobs’ Expected queue Waiting time (EW).

This routing problem arises in different applications, including allocating vehicles to re-

questers in Transportation On Demand (TOD) systems, routing calls to agent groups at call

centers, and allocating user tasks to distributed processors (also known as load balancing).

In TOD systems such as emergency systems (i.e., ambulances, fire trucks, police patrols,

etc.), courier services and taxi networks, the system randomly receives service requests.

For each request, a server (i.e., an ambulance, fire truck, police patrol, courier or taxi) is

dispatched to the requester’s location, serves the requester, finishes the service, returns to its

base, becomes available and waits for the next request. In this setting, both requesters and

vehicles are geographically distributed. This in turn gives rise to job-and-server dependent

service rates where the service rate depends on the distance between the vehicle base and the

requester (c.f., Cho et al. 2014). For an excellent survey on TOD, please refer to Cordeau

et al. (2007).
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In a call center, calls of different types arrive randomly and a specialized switch called an

Automatic Call Distributor (ACD) routes calls to agents. Agents within different groups

have different skill sets and consequently different service rates for serving a job, which

makes the router’s decision challenging. For an excellent survey on skill-based routing for

call centers, see Gans et al. (2003).

In computer systems, a dispatcher distributes jobs generated by users over a set of processors;

for an excellent review of load balancing see Combé & Boxma (1994). In this context, job-

and-server dependent service times can occur for two different reasons, (i) the processors

are geographically distributed and the service time is the sum of transferring the job to a

processor and the processing time spent on the processor, and (ii) when the processors are

of different speeds and jobs are of different types.

In all aforementioned applications, the service time depends both on the jobs and the server.

This, in turn, makes the routing problem challenging (Dai & Tezcan, 2008). Thus, both in

the literature and in practice, routers commonly apply the FSF policy for this problem (c.f.,

Mehrotra et al., 2012). We explain FSF and our proposed routing policies in Section 2.4.

Our main contributions are as follows. Combé & Boxma (1994) used a math program to

design dynamic policies for a single class, multi-server problem. We take a similar approach

for multi-class multi-server systems, and formulate a math program to first compute an opti-

mal static policy. Then, we use the solution to our math program to build policies that take

into account the state of the system when routing jobs; we call this step “dynamizing” the

static policy. We prove that our math program is convex and thus can be solved efficiently.

Our simulation experiments show that our proposed dynamic policy, namely FSFOptXOver-

flowBlock, beats the well-known FSF policy. While the focus of this study is on designing

a dynamic policy, our proposed math program can be used for planning problems such as

determining the optimal number of servers for guaranteeing a desired expected waiting time

or determining the optimal location of server groups. In Section 2.7, we extend our results
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and show that similar dynamic policies can be easily devised for Expected Sojourn Time

(ES), i.e., the expected time in the system including queue waiting time and service time

and the Expected Throughput (ET), i.e., the expected number of jobs that are not blocked

upon arrival.

The rest of this paper is organized as follows. In Section 2.2, we review the related litera-

ture. In Section 2.3, we characterize the optimal static policy. In Section 2.4 we introduce

several dynamized routing policies, and in Section 2.5, we conduct computational experi-

ments to compare policies. Finally, we showcase the application of policies for routing fire

engines to incident locations in Irvine, California in Section 2.6. Extensions of our model

and conclusions follow in Sections 2.7 and 2.8, respectively.

2.2 Literature Review

While most of the research on dynamic policies concerns a single job type, the optimal

dynamic policy for routing heterogeneous jobs to heterogeneous servers when the service

time depends on the job type and the server group is not known (Mehrotra et al., 2012). In

fact, the time to serve a job depends on the routing decision, and we encounter endogenous

service times. In the following we review some of the most related papers.

For the special case with one single job type and multiple heterogeneous servers (i.e., single-

class multi-server setting), Armony (2005) has shown that the FSF dynamic policy asymp-

totically minimizes the steady-state expected waiting time in the Halfin-Whitt many-server

heavy-traffic regime also known as the Quality and Efficiency Driven regime. Upon a job

arrival, FSF routes the job to the fastest idle server, i.e., among server groups that has at

least one idle server, the FSF routes to the group with the minimum mean service time for

that particular job type. There is a queue for each job type. Upon a service completion,
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among all non-empty job queues, the server picks a job from the queue with the minimum

mean service time. We discuss all routing policies in Section 2.4. The optimality of FSF

has not been shown for a multi-class multi-server system with heterogeneous job types and

heterogeneous server groups. Further, our experiments show that FSF is not optimal for

the multi-class multi-server setting with heterogeneous job types and heterogeneous server

groups. In a seminal work, Mandelbaum & Stolyar (2004) showed that the generalized

cµ-rule (Gcµ-rule) asymptotically minimizes convex holding costs for the multi-class multi-

server settings. Roughly speaking, the Gcµ-rule is a routing policy that myopically tries to

maximize the rate of decrease of the immediate holding cost. However, this policy cannot be

applied to linear holding costs, such as expected waiting time. In fact, Dai & Tezcan (2008)

discuss that applying the Gcµ-rule to linear holding costs can lead to system load explosion.

In a single-class multi-server setting, Armony & Ward (2010) seek to minimize expected

waiting time while considering fairness among servers. They prove that a threshold policy

based on the total number of customers in the system is optimal in the Halfin-Whitt many-

server heavy-traffic limit regime. We will explain that our method is also capable of handling

fairness constraints such as limits on workloads or utilizations.

Under a many-server asymptotic regime, Tezcan & Dai (2010) have shown that the FSF

policy is asymptotically optimal for a system with two job types and two server groups,

where one group can serve only one job type and the other can serve both (also known

as the N-model). But, in their paper, service times are independent of job types (i.e., not

job-and-server dependent).

In the absence of an optimal routing policy for multi-class multi-server systems, FSF has

been used in the literature for minimizing expected waiting time (c.f., Mehrotra et al., 2012;

Chan et al., 2014; Gopalakrishnan et al., 2016). Dai & Tezcan (2008) provide some insight

into the challenge of finding the optimal dynamic policy for this problem. We show that

our proposed dynamic policies empirically outperform FSF on an extensive set of simulated
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instances.

2.3 Optimal Static Policy

In this section we characterize the optimal static policy that minimizes the expected waiting

time of an arbitrary job. First, in Section 2.3.1 we describe our multi-class multi-server

system. Then, in Section 2.3.2 we formulate a math program for determining the optimal

static routing policy. Finally, in Section 2.3.3 we introduce OptXRand, a static routing

policy constructed from the solution of our math program.

2.3.1 Framework: Multi-Class Multi-Server Queueing System

In our multi-class multi-server queueing system, jobs of types i ∈ I arrive according to

independent Poisson processes with rates di. When a job arrives, the router can either

accept or block it. If the job is accepted, it would stay in the system until it is served, i.e.,

there is no abandonment or retrial following the acceptance stage. Each accepted job must

be routed to a server group j ∈ FJi, where FJi is the set of server groups that are eligible

to serve jobs of type i. For completeness, we will denote J as the full set of server groups

(henceforth known simply as groups) and FIj as the set of job types that can be served by

group j. In the call center literature, the terms job type and server group are referred to as

call type and agent group, respectively. At each server group j, there are kj identical servers.

Service times are independent, each exponentially distributed with mean service time τij.

In this setting, we seek to minimize the expected queue waiting time of an arbitrary job, i.e.,

a random job of any type. A routing policy needs to decide, for each job that arrives and

has a certain type i, which server group j that job should be processed on, given the current

availability of the servers, and taking into account that the service time τij depends on both
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the job type i and the server group j.

2.3.2 A Math Program for Determining the Optimal Static Rout-

ing Policy

In our math program the decision variable xij determines the number of jobs of type i to

be served by group j per unit time. A job routed to group j which finds all servers in that

group busy waits in a queue in front of that server group. For each queue j we assume

that (i) the service discipline at each group is First-Come, First-Served (FCFS); and (ii) the

system backlogs jobs at the groups until there are available servers to serve the jobs, i.e.,

no abandonment or retrial exists once a job enters a group’s queue. Although jobs are not

blocked at the groups (i.e., after being routed to a group), jobs might be blocked upon arrival

to job nodes (i.e., before being routed to a group). This allows the routing policy to control

the workloads entering the queues. With job-server dependent service times, we notice that

the workload of each group is itself a function of the routing policy, i.e., a function of xij’s.

To construct a math program, we additionally assume static routing so that the model

preserves Poisson arrivals at each group. Thus, queues at groups are M/M/k and the delay

probability at group j, i.e., the probability that a randomly-chosen job of type i find all

servers in group j busy serving other jobs, is computed using the Erlang-C function (Cooper,

1981) defined as,

EC(kj, rj) =
r
kj
j

(kj − 1)(kj − rj)
×
[ kj−1∑
n=0

rnj
n!

+
r
kj
j

(kj − 1)!(kj − rj)

]−1

, (2.1)

where symbol (!) is the factorial function, rj denotes the workload of group j as defined

in (2.3), and kj is the number servers in group j regardless of their status, i.e., busy or

available. We expect, however, that our model would also be useful in the context where
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service times are not exponential since others (c.f., Kimura 2010) have shown the Erlang-C

function tends to be a good approximation for the delay of a M/G/k queue, which has no

known closed-form formula.

The arrival rate to group j is the sum of the rates at which we process jobs of the types that

this group serves,

λj =
∑
i∈FIj

xij ∀j ∈ J . (2.2)

The workload of group j is,

rj =
∑
i∈FIj

τijxij ∀j ∈ J . (2.3)

The mean service time at group j is defined as,

τj :=
rj
λj

∀j ∈ J . (2.4)

The model is schematically depicted in Figure 2.1 with the notation summarized in Table

2.1.

The Expected Waiting time (EW), also known as the Average Speed of Answer (ASA) for

call centers, is the expected time a job spends in the queue before being served. For M/M/k

queue at group j, EW is (Hokstad, 1978),

EW (λj, rj) = EC(kj, rj)
rj

λj(kj − rj)
, (2.5)

where the Erlang-C function EC(kj, rj) is defined in (2.1). While the above function mea-

sures the expected waiting time of jobs at a single group (or equally a single queue before
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Table 2.1: Model notation

Indices and Sets

i ∈ I Index for job types

j ∈ J Index for server groups

F Set of feasible job type-server group assignments (i→ j)

FJi The subset of groups that can serve jobs of type i

FIj The subset of job types that group j can serve

Parameters

di Expected arrival (demand) rate of job type i

τij Mean service time for a server at group j to serve a job of type i

kj Number of servers at group j

CF
A number between zero and one indicating the minimum fraction of jobs

that should be covered (routed)

Variables

xij Number of jobs of type i to be served by group j per unit time

λj Total number of jobs to be served by group j per unit time

rj Workload assigned to group j

τj Mean service time at group j
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Figure 2.1: Schematic representation of the multi-class multi-server routing system modeled
by our math program.

each group), we are interested in an aggregate measure that can help the decision-maker

evaluate the performance of the whole system. For this purpose, we define the expected

queue waiting time of a random job (or equivalently, an arriving job of any type) denoted

by EWavg as,

EWavg :=

∑
j∈J

λjEW (λj, rj)∑
j∈J

λj
, (2.6)

where the numerator is called the total expected waiting time, EWtot,

EWtot :=
∑
j∈J

λjEW (λj, rj). (2.7)

Consider minimizing EWavg in the math problem (P1) below, which determines xij’s, the
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number of jobs allocated to each group per unit time,

(P1) min EWavg

s.t. Constraints (2.2) and (2.3),

rj ≤ kj ∀j ∈ J, (2.8)∑
j∈FJi

xij ≤ di ∀i ∈ I, (2.9)

Optional convex constraints, (2.10)

xij ≥ 0 ∀(i, j) ∈ F. (2.11)

Constraint (2.8) assures the workload at each group does not exceed the number of servers

at that group, and is required for the system to be in steady state. If workload exceeds

the number of servers the queue would explode. Constraint (2.9) makes sure that for each

job type i, the covered jobs are less than or equal to the arrival rate (also called demand)

at node i. Because Constraint (2.9) is an inequality, it allows for the possibility that some

jobs are blocked upon arrival, i.e., (P1) determines allocation and coverage rate of each job

type simultaneously. To preserve Poisson arrivals at the group queues, this blocking is done

randomly proportional to xij’s. Constraint (2.10) indicates that one has the option to impose

convex constraints on xij’s, rj’s and λj’s. For example, we can make sure that the workload

is fairly distributed between groups by imposing lower and upper bounds on rj’s. Or, we can

easily embed (P1) into a much larger math program to link additional decisions. Constraint

(2.11) makes sure that each xij is nonnegative.

If we were to minimize EWavg in (P1), we would find that because we did not impose a

minimum coverage constraint, the optimal solution would not serve any job and have no

congestion. Thus, we add Constraint (2.12), which exogenously defines a global coverage
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level,

∑
j∈J

λj ≥ CF
∑
i∈I

di, (2.12)

where 0 ≤ CF ≤ 1 is the global coverage factor. A coverage factor of 1, i.e., CF = 1,

indicates a full coverage of all arriving jobs.

Given a feasible instance of (P1) with Constraint (2.12) in place, then Constraint (2.12) binds

at optimality (see Proposition 2.3.1). Indeed, one cannot improve EWavg by increasing the

coverage,
∑

j∈J λj, beyond the minimum required coverage, CF
∑

i∈I di.

Proposition 2.3.1. Assuming that problem (P1) with Constraint (2.12) is feasible, the

coverage Constraint (2.12) is binding.

Proof. See Appendix I.

Proposition 2.3.1 indicates that at optimality EWavg becomes,

EWavg =

∑
j∈J

λjEW (λj, rj)∑
j∈J λj

=

∑
j∈J

λjEW (λj, rj)

CF
∑

i∈I di
=

EWtot

CF
∑

i∈I di
. (2.13)

Since CF
∑

i∈I di is a constant, optimizing EWavg in Problem (P1) with Constraint (2.12) is

equivalent to optimizing EWtot with Constraint (2.12). Consequently, although we are most

interested in solving (P1) with the EWavg objective and Constraint (2.12), we will do this

by solving (P2), defined as

(P2) min EWtot

s.t. Constraints (2.2), (2.3), (2.8), (2.9), (2.10) and (2.11),∑
j∈J

λj = CF
∑
i∈I

di. (2.14)
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The following Proposition proves that EWtot is non-linear but convex in rj, which makes it

amenable to numerical optimization solvers. More specifically, since the objective function

EWtot is a convex function of the decision variables, and all constraints are linear, (P2) with

the EWtot objective is a convex math program, which can be solved by a commercial convex

solver such as KNITRO.

Proposition 2.3.2. EWtot =
∑
j∈J

λjEW (λj, rj) is convex in rj and independent of λj.

Proof. See Appendix J.

In a special case of problem (P2) when there is exactly one server at each group (i.e.,

kj = 1 ∀j ∈ J), the Erlang-C function EC(kj = 1, rj) simplifies to workload rj, and EWtot

becomes,

EWtot =
∑
j∈J

λjrj
rj

λj(1− rj)
=

r2
j

1− rj
.

Although EWtot is still nonlinear and non-quadratic, in this special case, EWtot is solely a

function of rj’s.

In the following, we introduce OptXRand, a static routing policy that uses the solution {xij}

that we obtain from solving problem (P2) to route jobs to servers in real-time.

2.3.3 OptXRand: The Optimal Static Policy

Given xij’s from solving problem (P2), the OptXRand policy works as follows. Upon arrival

of a job of type i, with probability C̄i/di the job is blocked, where C̄i = di −
∑

j∈J xij is

the number of un-covered jobs of type i. Each non-blocked job is randomly routed to group

j with probability xij/
∑

j′∈J xij′ . If the job finds all servers at group j busy, it waits in a

First-Come, First-Served (FCFS) queue in front of group j with no blocking or abandonment.
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Note that Mehrotra et al. (2012) implemented a similar policy they call OptXRand, where

they obtain routing probabilities xij’s from solving a slightly different mathematical program.

While we minimize EWtot in Problem (P2), Mehrotra et al. (2012) maximize total call

resolution rate. Since the spirit here is the same, we use the name of their policy. Figure 2.2

schematically illustrates the OptXRand policy.

Figure 2.2: Schematic representation of the OptXRand policy.

2.4 Dynamic Routing Policies

We now develop several dynamic routing policies that use the solution from our planning

problem (P2) to decide how to assign jobs of each type i to each server group j in real-time.

We also describe the Fastest-Server-First (FSF) dynamic policy, which is a well-known and

common dynamic policy for the multi-class multi-server setting and does not use the solution

to (P2) as input (Mehrotra et al., 2012; Armony, 2005). We begin with FSF, since it is both
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our benchmark and its logic is incorporated into some of our policies. Finally, in the following

section we will empirically compare the performance of all policies.

Recall that to construct the math program (P2) in Section 2.3.2, we assumed that queues

were at the servers. Putting the queues at the servers allowed us to model each group’s queue

as an M/M/k queue, which led to expressions that are amenable to convex programming.

However, our dynamic policies as well as the FSF policy flips things around, and instead

places the queues on the job type side of the graph (i.e., on the left side of the graph

depicted in Figure 2.1). This has the effect of postponing the routing decision until the

system’s status is realized (i.e., until a server becomes available or a job arrives), which

enhances the performance of dynamic policies.

2.4.1 FSF Policy

An intuitive solution to the routing problem is the so-called FSF overflow policy. When

a job of type i arrives, a job-to-group priority list for that job type determines the order

in which the groups are checked for a free server. The priority list is an ordered list of all

groups that can serve job i, i.e., j ∈ FJi, sorted from smallest to largest service times τij.

If there are more than one idle servers at the assigned group, we choose the server with the

longest idle time, i.e. Longest Idle Server, First (LISF). The policy is called FSF because

the fastest server has the highest priority in the list. There is one queue for each job type

i ∈ I. If job i finds all groups in FJi busy, it will stay in queue i, where it will be served in

First-Come, First-Served (FCFS) order. Similarly, when a server in group j becomes free,

a group-to-job list for that server group determines the order by which the server picks the

next job to serve. The group-to-job list for group j is a list of all job types that server group

j can serve, i.e., i ∈ FIj, sorted in increasing order by τij’s. If all queues in the list are

empty, then the server stays free. Figure 2.3 schematically illustrates the FSF policy.
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Figure 2.3: Schematic representation of the FSF policy.

2.4.2 FSFBlock Policy

Note that FSF may not perform well because the system accepts all jobs and the system

may get overloaded. To address this concern and to have a fair comparison between FSF

and other policies that block some jobs, we introduce a policy called FSFBlock that uses the

coverage factor CF to randomly block some jobs upon arrival. One should notice that here

the blocking probability (i.e., CF ) is homogeneous across job types, while in the OptXRand

policy the blocking probability is job type-specific (notice the index i in C̄i/di for OptXRand).

2.4.3 OptXOverflow Policy

Like the FSF policy, our OptXOverflow policy is also an overflow policy that uses priority

lists to determine routings. However, instead of determining priorities by rank-orders of

service time τij, OptXOverflow uses the rank-orders of the solution xij obtained from solving
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problem (P2) to sort the list, i.e., job-to-group and group-to-job lists are sorted from largest

to smallest xij. Figure 2.4 schematically illustrates the OptXOverflow policy.

Figure 2.4: Schematic representation of the OptXOverflow policy.

2.4.4 OptXOverflowBlock Policy

This policy is a combination of OptXRand and OptXOverflow. Similar to OptXRand, upon

arrival of a job of type i, with probability C̄i/di the job is blocked. Non-blocked jobs are

routed according to the priority lists defined by OptXOverflow. Figure 2.5 schematically

illustrates the OptXOverflowBlock policy.
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Figure 2.5: Schematic representation of the OptXOverflowBlock policy.

2.4.5 FSFOptXOverflow Policy

This policy is a combination of the FSF and OptXOverflow policies. First, we initialize

the priority lists so that they are the same as in the OptXOverflow policy, i.e., groups and

jobs are rank-ordered from highest to lowest xij. Then, we append additional groups (and

jobs) to the end of job-to-group (and group-to-job) lists in order of smallest to largest mean

service time τij, which is consistent with FSF. Thus, priority lists for the FSFOptXOverflow

policy are at least as long as lists in the OptXOverflow policy and the FSF policy.Figure 2.6

schematically illustrates the FSFOptXOverflow policy.

2.4.6 FSFOptXOverflowBlock Policy

FSFOptXOverflowBlock is a variant of the FSFOptXOverflow policy in which arrivals of

type i are blocked with probability C̄i/di. Non-blocked jobs are routed according to the
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Figure 2.6: Schematic representation of the FSFOptXOverflow policy.

priority lists defined by FSFOptXOverflow. Figure 2.7 schematically illustrates the FSFOp-

tXOverflowBlock policy.

2.5 Experiments

We coded problem (P2) in AMPL 2017.01.26 and used a Windows PC with 16 GB of RAM

and a quad core CPU with 3.1 GHz. We solve the convex problem (P2) using KNITRO

10.1, a commercial solver for convex programs. In Section 2.5.1 we explain how we generate

our test instances. Section 2.5.2 discusses the simulation platform and simulation details.

We discuss simulation results in Section 2.5.3.
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Figure 2.7: Schematic representation of the FSFOptXOverflowBlock policy.

2.5.1 Data

We generate a total of 20 instances in two sets, (i) a planar dataset of 6 instances for

transportation on demand systems, and (ii) a non-planar dataset of 14 instances for call

centers and load balancing systems.

For our non-planar instances, we generate τij’s randomly from a uniform distribution with

support on the interval [0.5, 3.5]. For each (i, j) combination, we generate a uniform random

number between zero and one; if it’s greater than a threshold we keep the link, otherwise we

remove it. After removing links we form the adjacency sets FJi and FIj.

For our planar instances, we generate random points for job nodes and group nodes on a

100 × 100 unit plane. We define a coverage radius of 10 units for each group to determine

if a group can serve a job node. If job i is covered by group j, i.e., i ∈ FIj, the Euclidean

distance between i and j gives us the service time, τij.
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For both datasets, we generate the expected arrival (demand) rate di of each job type i and

the number of servers kj at each group j randomly according to the uniform distribution

between 1 and 10 and the discrete uniform distribution between 1 and 10, respectively.

For many of our instances we consider several coverage factors. In summary, we solve

problem (P2) and simulate our policies for 42 test cases (i.e., 42 {instance, coverage factor}

combinations).

2.5.2 Simulation Platform

We measure the performance of our routing policies using simulation. Specifically, we employ

the ContactCenters Java library developed by Buist & L’Ecuyer (2005). In our simulation,

jobs arrive independently according to Poisson processes, each with arrival rate di. Service

rates are independent, each exponentially distributed with mean service time τij. We run a

14-month simulation and discard the results from the first warm-up month and the fourteenth

wrap-up period. We replicate the simulation 10 times and compute the average performance.

As the performance metric, we count the total expected waiting time of all admitted jobs,

EWtot, and average expected waiting time of a random admitted job, EWavg.

2.5.3 Results

In Tables L.8, L.9 and L.10 we list the results for 42 test cases. Overall, the results indicate

that FSFOptXOverflowBlock and OptXOverflowBlock are the best policies. FSFOptXOver-

flowBlock is the best-performing policy in 22 test cases compared to 19 test cases where

OptXOverflowBlock is the best policy. OptXRand is the best policy in 1 test case. In 2 test

cases where OptXOverflowBlock is the best policy, the coverage factor is 1, i.e., no blocking

occurs so that OptXOverflowBlock is the same as OptXOverflow.
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In all 42 test cases, the FSF and FSFBlock policies are dominated by other policies, partic-

ularly OptXRand, OptXOverflowBlock and FSFOptXOverflowBlock. This is because FSF

and FSFBlock are myopic and decentralized, i.e., each job chooses the fastest available server

without considering other jobs, while policies that use the solution to problem (P2) consider

the overall system congestion and may route a job to a server that is not the fastest avail-

able server, keeping the fastest available server for a future incoming job or even a job of a

different type. Indeed, these policies try to balance server workloads to benefit the whole

system, and are less greedy.

We also notice that blocking jobs upon arrival is crucial, as results suggest that policies that

limit the workload of servers, i.e., FSFBlock, OptXOverflowBlock, and FSFOptXOverflow-

Block perform better than similar policies without blocking, i.e., FSF, OptXOverflow, and

FSFOptXOverflow, respectively. One should note that finding the optimal blocking level

is not trivial because service rates are job-server dependent and servers’ workloads depend

on the routing. Recall that FSFBlock blocks jobs using the homogeneous coverage factor

(i.e., blocking probability) CF . However, OptXRand, OptXOverflowBlock, and, FSFOptX-

OverflowBlock use the solution to problem (P2) to block jobs, which allows the blocking

probability, C̄i/di, to be job type-specific. As our results show, job type-specific blocking

rates are important for producing quality solutions.

Our simulation results show that the solution to our math program (P2) is useful for build-

ing “dynamized” routing policies for online settings. Particularly, FSFOptXOverflowBlock

and OptXOverflowBlock are both well-performing policies. This suggests that there is a

strong benefit from hybridizing a static policy computed by solving a math program, which

effectively apportions aggregate workloads from heterogeneous jobs types to heterogeneous

servers, with a dynamic policy that is provably near-optimal for special cases (i.e., only one

job type) and takes into account real-time state information about the availability of servers.
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2.6 Fire Stations Case

To illustrate the applicability of our methodology, we now assign incidents to fire stations

in Irvine, CA. We describe the data in Section 2.6.1, introduce benchmark routing policies

in Section 2.4, illustrate key routing policies in Section 2.6.2, and finally compare routing

policies in Section 2.6.3.

2.6.1 Data

For emergency calls, the Orange County Fire Authority (OCFA) dispatches vehicles to inci-

dent locations. We applied our model to the 11 OCFA stations in Irvine, a 66-square-mile

city in Orange county with a population of 212,375 (US Department of Commerce: United

States Census Bureau, 2010a) and 13 dedicated fire trucks (Orange County Fire Authorities,

2014). In 2010, OCFA received 85,212 emergency calls; we allocate these to 1,822 census

block groups in Orange County (OC) proportional to their population according to the 2010

US census (US Department of Commerce: United States Census Bureau, 2010b). We assume

that the incidents occur at the centroid of census block groups depicted in Figure 2.8. Among

the 1,822 block groups in OC, 117 have centroids that fall in Irvine (see blue and orange block

groups in Figure 2.8), and 7 have centroids that do not fall in Irvine (see red block groups

in Figure 2.8). Since incident rates are low relative to station capacities, the performance of

different routing policies are similar. To compare routing policies, we create congestion in the

system by increasing incident rates by a factor of 20. It should be noted that in this paper

our goal is to compare the static OptXRand policy with the dynamic policies we developed

in Section 2.4 using non-synthetic data, not to provide policy recommendations for OCFA.

Indeed, several factors, including the need to cover commercial and industrial facilities with

diverse risk portfolios, as well as the need to protect against large-scale wildfires which may

encroach on entire subdivisions, may indeed require significant excess capacity compared to
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our rough estimates.

The service time τij is the time it takes for a vehicle to travel from its station j to the incident

location (i.e., the centroid of the block group i), serve the incident, return to its station j and

become ready for the following incident. The travel time is calculated based on the street

maps in Irvine using the mapping software ArcGIS 10. In computing the driving time, we

consider the speed limit of the streets, the traffic direction and other traffic flow constraints.

OCFA standards indicate that a fire engine should arrive at the incident’s location within

an acceptable waiting time of 8 minutes 45 seconds (Orange County Fire Authorities, 2014).

Using this acceptable waiting time, we build sets FJi and FIj, i.e., block group i is covered

by station j if centroid i is within 8 minutes 45 seconds driving distance of j. There are two

centroids that are not within the 8 minutes 45 seconds driving distance of any fire station

and thus are not considered in our experiment (see light red block groups in Figure 2.8).

2.6.2 Illustrations of Key Routing Policies

We illustrate job-to-group assignments for the FSF policy in Figure 2.9. To show the map

clearly, we only draw the first three assignment priorities in the priority lists, even though

there are up to seven. Note that the nearest station is not necessarily the station with the

minimum Euclidean distance. The lines in our maps show the assignment of the block groups

to the stations, not the minimum distance.

We depict the OptXRand policy in Figure 2.10. Recall that for the OptXRand policy, when

an incident in block group i occurs it is randomly routed to j ∈ FJi according to the

xij’s. In practice, such random assignments may be undesirable. However, we can build

an equivalent map that is not subject to randomization but corresponds to the OptXRand

policy by subdividing block groups into areas proportional to the xij’s. This is explained in

detail in Appendix K.

66



Figure 2.8: Irvine fire stations and the census block groups considered in the study
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Figure 2.9: Irvine Block groups assigned to stations based on the FSF policy
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Figure 2.10: Block groups assigned to stations based on the OptXRand policy
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Finally we depict FSFOptXOverflowBlock in Figure 2.11, which shows the first three prior-

ities for each block group. Other policies can be mapped similarly.

Figure 2.11: Block groups assigned to stations based on the FSFOptXOverflowBlock policy

2.6.3 Results

We simulate each of the dynamic policies mentioned in Section 2.4 as well as OptXRand.

The results listed in Table 2.2 show that the FSFOptXOverflowBlock policy is the best

routing policy, followed closely by OptXOverflowBlock. This result is consistent with our

simulation results in Section 2.5. Both FSFOptXOverflowBlock and OptXOverflowBlock

significantly outperform FSF and FSFBlock, which do not use the solution to problem (P2).

Also, FSFBlock performs slightly better than FSF because it blocks some jobs and thus
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controls the system’s load. Comparing OptXOverflowBlock and FSFBlock suggests that we

benefit from blocking according to xij’s from solving problem (P2) instead of the global

coverage factor, CF . We notice that OptXRand is dominated by all other policies except

for the FSF policy. This affirms the importance of constructing policies that use the state

of the system to route jobs to servers.

Table 2.2: Simulation results for Irvine fire stations case

Routing Policy Performance Measure
Coverage Factor

0.8 0.85 0.9

FSF
EWtot 6.331

EWavg 0.51

FSFBlock
EWtot 6.14 6.24 6.31

EWavg 0.49 0.50 0.50

OptXRand
EWtot 5.40 6.23 8.20

EWavg 0.45 0.51 0.74

OptXOverflow
EWtot 5.37 5.93 7.87

EWavg 0.44 0.49 0.75

FSFOptXOverflow
EWtot 5.35 5.68 6.16

EWavg 0.43 0.46 0.56

OptXOverflowBlock
EWtot 0.82 1.28 1.85

EWavg 0.08 0.13 0.17

FSFOptXOverflowBlock
EWtot 0.822 1.24 1.81

EWavg 0.08 0.12 0.16

1 FSF policy does not have a coverage factor (that is, it does not block jobs).
2 Bold face: Best routing policy in the respective coverage factor.

2.7 Extensions

Our methodology, which is based on solving a math program to produce an optimal static

policy {xij} and then “dynamizing” this policy using job-to-group and group-to-type overflow

lists can also be used in a number of other common practical settings. This involves a suitable

modification of the planning problem (P2), which we suggest for tractability should remain

a convex program. For example, our methodology can be extended to optimize Expected
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System time (ES), i.e., the sum of queue time and service time, and Expected Throughput

(ET), i.e., the expected number of jobs that are not blocked upon arrival. The remainder of

this section confirms that the mathematical expressions needed to optimize ES and ET are

indeed convex.

The aggregate measure EStot is defined as follows,

EStot :=
∑
j∈J

λjES(λj, rj)

=
∑
j∈J

λjEW (λj, rj) +
∑

(i,j)∈F

τijxij

= EWtot +
∑
j∈J

rj.

Notice that since EWtot is convex in {rj} (see Proposition 2.3.2), adding the linear term∑
j∈J

rj preserves the convexity for EStot.

Regarding ET, we keep all the assumptions stated in Section 2.3 except the backlogging

assumption. Indeed, jobs that find all k servers busy are blocked with no retrial and the

queues are M/M/k/k. This allows us to use the Erlang-B function to measure the blocking

probability,

EB(k, r) =
rk/k!
k∑

n=0

rn/n!

.

Expected throughput, the probability that an arbitrary job is not blocked, is defined as,

ET (r) := 1− EB(k, r).
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The aggregate measure ETtot is then defined as,

ETtot :=
∑
j∈J

λjET (rj).

Harel (1990) proved that λEB(k, r) is jointly convex in λ and r with fixed k. Thus, ETtot is

jointly convex in {λj} and {rj} and we can solve problem (P2) with the ETtot objective func-

tion. When optimizing ETtot, there is an endogenous trade-off between covering more jobs

(i.e., increasing
∑

j∈J λj) and improving the performance measure ETtot, and thus coverage

and routing can be simultaneously optimized. This indicates that one can solve problem

(P2) with ETtot without the coverage constraint defined in (2.14).

As well, one may want to consider using planning models which have the performance mea-

sure in a constraint rather than in the objective function. For example, in problem (P3)

below we seek to maximize the number of jobs covered subject to a performance measure

constraint. For example, one might want to maximize the number of covered jobs such that

the average expected waiting time does not exceed 10 minutes.

(P3) max
∑
j∈J

λj

s.t. Constraints (2.2), (2.3), (2.8), (2.9), (2.10), (2.11),

EWavg ≤ α,

where α is the acceptable threshold for the expected waiting time. Problem (P3) is a convex

math program and can be solved by commercial solvers (e.g., KNITRO).
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2.8 Conclusions

Expected waiting time is an important performance measure for transportation networks and

call centers. We showed that for multi-class multi-server systems, this performance measure

is convex in the arrival rate and workload. While our math programming model is useful for

planning purposes and can be embedded in larger optimization problems, we showed that its

solution can also be used to construct good routing policies for real-time routing. We used

the solution to our planning problem with expected waiting time objective function to build

static and dynamic routing policies. Our experiments and fire station case showed that we

can produce a well-performing dynamic policy, FSFOptXOverflowBlock, that outperforms

the popular Fastest-Server-First policy.

We showed that our method can be easily applied to other queue performance measures,

namely, expected system time and expected throughput. Moreover, performance measures

can appear in constraints as well as the objective function; for example, a limit for the queue

waiting time.

Our study is valuable because it designs dynamic policies that significantly outperform the

FSF policy, which is currently used in the literature and in practice. These dynamic policies

are overflow policies that are easy to implement in real-time. Future research directions based

on our work include (i) designing dynamic routing policies for other performance measures

and (ii) embedding our math program into larger planning problems such as staffing and

scheduling problems.
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Appendices

A Proof of Proposition 1.3.1: Binding Coverage for

SLtot

Proof. Proof by contradiction. Assume that for the optimal solution
{
x∗ij
}

with the corre-

sponding arrival rate
{
λ∗j
}

and workload
{
r∗j
}

the minimum coverage constraint (1.13) is

not binding, i.e.,

∑
j∈J

λ∗j > Cf
∑
i∈I

di.

Construct binding solution {x̄ij} with corresponding
{
λ̄j
}

and {r̄j} as follows,

x̄ij = βx∗ij ∀(i, j) ∈ F,

where,

β =
Cf
∑

i∈I di∑
j∈J λ

∗
j

.
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Note that 0 ≤ β < 1 and
∑

j∈J λ̄j = Cf
∑

i∈I di. Then,

λ̄j =
∑
i∈I

x̄ij =
∑
i∈I

βx∗ij = βλ∗j < λ∗j ∀j ∈ J, (A.1)

r̄j =
∑
i∈I

τijx̄ij =
∑
i∈I

τijβx
∗
ij = βr∗j < r∗j ∀j ∈ J, (A.2)

and

τ̄j =
r̄j
λ̄j

=
βr∗j
βλ∗j

= τ ∗j ∀j ∈ J.

Lemma A.1 proves that SL(λ, r) is strictly decreasing in r with fixed τ . Also, with fixed τ

and since r = τλ, SL(λ, r) is strictly decreasing in λ. Thus,

SL(λ̄j, r̄j) > SL(λ∗j , r̄j)

> SL(λ∗j , r
∗
j ) ∀j ∈ J

Denote SLavg corresponding to solutions
{
x∗ij
}

and {x̄ij} by SL∗avg and SLavg, respectively.

Using inequalities (A.1) and (A.2), the below inequality follows,

SLavg =

∑
j∈J λ̄jSL(λ̄j, r̄j)∑

j∈J λ̄j

=

∑
j∈J λ

∗
jSL(λ̄j, r̄j)∑
j∈J λ

∗
j

>

∑
j∈J λ

∗
jSL(λ∗j , r

∗
j )∑

j∈J λ
∗
j

= SL∗avg,

which contradicts the optimality assumption for solution
{
x∗ij
}

with objective value SL∗avg.

Lemma A.1. Service level function SL(λ, r) is strictly decreasing in workload r with fixed
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mean service time τ .

Proof. Lee & Cohen (1983) have proved that Erlang-C formula C(k, r) is strictly increasing

in workload r. Also, the conditional delay probability, e−( k−r
τ

)T , is positive and strictly

increasing in workload r with positive acceptable waiting time, i.e., T > 0, and fixed mean

service time τ . Thus, C(k, r)e−( k−r
τ

)T as a product of two positive increasing functions is

strictly increasing in workload r. Finally, SL(λ, r) = 1−C(k, r)e−( k−r
τ

)T is strictly decreasing

in workload r with fixed mean service time τ .

B Proof of Proposition 1.3.2: Concavity of SLtot

In an M/M/1 queue, the delay probability P [W > 0] = C(k, r) simplifies to workload

r, i.e., P [W > 0] = C(k, r) = C(1, r) = r. Also with acceptable waiting time of zero,

i.e., T = 0, the conditional delay probability P [W > T |W > 0] becomes one. Thus,

SL(λ, r) = 1− P [W > 0]P [W > T |W > 0] = 1− r and the objective SLtot simplifies to,

SLtot =
∑
j∈J

λjSL(λj, rj) (B.3)

=
∑
j∈J

λj −
∑
j∈J

λjrj (B.4)

=
∑
j∈J

λj −
∑
j∈J

wj, (B.5)

with bilinear terms wj = λjrj ∀j ∈ J . Since the first term
∑
j∈J

λj is linear in {λj}, to

investigate the joint convexity of SLtot in {λj} and {rj} it suffices to investigate the joint

convexity of each bilinear term wj. Generally, bilinear terms are non-convex (c.f. Floudas &

Pardalos 2011). Lemma B.1 proves that if τij = τj ∀i ∈ FIj the bilinear term wj is jointly

convex in λj and rj. Lemma B.2 proves that the same condition is necessary for convexity.

Regarding the pseudo-concavity of SLtot in {λj} and {rj}, again it suffices to investigate the
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pseudo-convexity of each bilinear term wj. Lemma C.1 shows that the bilinear term wj is

not pseudo-convex in λj and rj.

Lemma B.1. For a given group j, the bilinear term wj = λjrj is jointly convex in {λj} and

{rj} if τkj = τj ∀k ∈ FIj.

By performing the substitution for λj =
∑
i∈FIj

xij and rj =
∑
i∈FIj

τijxij, the bilinear term

becomes,

wj = λjrj =
∑
i∈FIj

xij
∑
i∈FIj

τijxij ∀j ∈ J.

For each group j ∈ J , since τkj = τj ∀k ∈ FIj, the bilinear is,

wj =
∑
i∈FIj

xij
∑
i∈FIj

τijxij = τj
∑
i∈FIj

xij
∑
i∈FIj

xij = τj[
∑
i∈FIj

xij]
2 = τjλ

2
j ,

which is a quadratic convex function.

Lemma B.2. For a given group j, if ∃k, l ∈ FIj such that τkj 6= τlj and τkj, τlj > 0, the

Hessian matrix of the bilinear term wj = λjrj =
∑
i∈FIj

xij
∑
i∈FIj

τijxij is indefinite and the wj

is non-convex in xij.

Proof. We suppress index j in wj and assume that the set FIj is of length n. Then, the

bilinear term w can be expanded as follows,

w =
n∑
i=1

xi

n∑
i=1

τixi = τ1x
2
1 +(τ1 + τ2)x1x2 + · · · +(τ1 + τn)x1xn

+(τ2 + τ3)x2x3 + · · · +(τ2 + τn)x2xn

+ · · ·

+τ 2
nx

2
n.
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The Hessian matrix of w is,

H =



τ1 + τ1 τ1 + τ2 · · · τ1 + τn−1 τ1 + τn

τ2 + τ1 τ2 + τ2 · · · τ2 + τn−1 τ2 + τn
...

...
. . .

...
...

τn−1 + τ1 τn−1 + τ2 · · · τn−1 + τn−1 τn−1 + τn

τn + τ1 τn + τ2 · · · τn + τn−1 τn + τn


.

We now check the eigenvalues of H. Let t and e be the column vectors (τ1, τ2, . . . , τn)T

and (1, 1, . . . , 1)T , respectively, both of length n. Then, each column of H is of the form

t + τie, where i is the column number. Each row i of H is also of the form (t + τie)
T as

H is symmetric. Since we have assumed that not all τi’s are equal, the vectors t and e are

independent and the column space of H is the span of t and e. As a result, H is of dimension

2, which indicates that H has exactly 2 non-zero eigenvalues.

If v is an eigenvector of H, then it is a linear combination of t and e. One can easily verify

that e is not an eigenvector, since we have assumed not all τi’s are equal (See Lemma B.3

for proof by contradiction). Therefore, we can write v = t+ ce for some scalar c.

According to the definition of eigenvector, the equation Hv = λv should hold, where λ is

the eigenvalue corresponding to the eigenvector v. Thus, for each row i ∈ {1, 2, 3, . . . , n} of

H the following equation holds,

(t+ τie)
T (t+ ce) = λ(τi + c).
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Solving for c yields the following equation,

c =

n∑
j=1

τ 2
j + τi

n∑
j=1

τj − λτi

λ−
n∑
j=1

τj − nτi
.

The above equation holds for every two rows k and l of matrix H, i.e.,

c =

n∑
j=1

τ 2
j + τk

n∑
j=1

τj − λτk

λ−
n∑
j=1

τj − nτk
and c =

n∑
j=1

τ 2
j + τl

n∑
j=1

τj − λτl

λ−
n∑
j=1

τj − nτl
.

Since c is a constant, we can equate the right-hand sides of the above equations for rows l

and k, where l 6= k,

c =

n∑
j=1

τ 2
j + τk

n∑
j=1

τj − λτk

λ−
n∑
j=1

τj − nτk
=

n∑
j=1

τ 2
j + τl

n∑
j=1

τj − λτl

λ−
n∑
j=1

τj − nτl
.

Solving for λ will result in,

−(τk − τl)λ2 + 2λ(τk − τl)
n∑
j=1

τj + n(τk − τl)
n∑
j=1

τ 2
j − (τk − τl)(

n∑
j=1

τj)
2 = 0,

and since we assumed not all τi’s are equal, the factor (τk − τl) is not zero for at least for

two columns,

−λ2 + 2λ
n∑
j=1

τj + n
n∑
j=1

τ 2
j − (

n∑
j=1

τj)
2 = 0.

Solving for λ we then get,

λ =
n∑
j=1

τj ±

√√√√n
n∑
j=1

τ 2
j = eT t±

√
n‖t‖,
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where ‖.‖ is the norm operator. Since eT t is nonnegative, the Cauchy-Schwarz inequality,

(eT t)2 ≤ ‖e‖2‖t‖2, reduces to,

eT t ≤
√
n‖t‖.

Knowing that the magnitude of e is
√
n and given the assumption that the magnitude of t is

greater than zero (we assumed that ∃i : τi > 0), the two sides are equal if and only if vectors

t and e are linearly dependent (i.e., they are parallel), which means that all τi’s are equal.

This contradicts our assumption. As a result, the smaller eigenvalue is always negative while

the bigger one is always positive. Consequently, the Hessian matrix is indefinite and the

bilinear term is non-convex.

Lemma B.3. Vector e = (1, 1, . . . , 1)T cannot be an eigenvector for

H =



τ1 + τ1 τ1 + τ2 · · · τ1 + τn−1 τ1 + τn

τ2 + τ1 τ2 + τ2 · · · τ2 + τn−1 τ2 + τn
...

...
. . .

...
...

τn−1 + τ1 τn−1 + τ2 · · · τn−1 + τn−1 τn−1 + τn

τn + τ1 τn + τ2 · · · τn + τn−1 τn + τn


.

Proof. Assume that e is an eigenvector for H and thus holds in He = λe. Substitute H and

e in the left hand-side of the equation,

He =



τ1 + τ1 τ1 + τ2 · · · τ1 + τn−1 τ1 + τn

τ2 + τ1 τ2 + τ2 · · · τ2 + τn−1 τ2 + τn
...

...
. . .

...
...

τn−1 + τ1 τn−1 + τ2 · · · τn−1 + τn−1 τn−1 + τn

τn + τ1 τn + τ2 · · · τn + τn−1 τn + τn





1

1

...

1


=



nτ1 +
∑n

j=1 τj

nτ2 +
∑n

j=1 τj
...

nτn +
∑n

j=1 τj


.
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There is no eigenvalue λ , for which the equality He = λe holds unless τk = τl ∀k, l ∈

{1, 2, . . . , n}. This contradicts our assumption.

C Proof of Proposition 1.3.3: Pseudo-Concavity of SLtot

Similar to the proof in Appendix B, to show the that SL(λ, r) is not jointly pseudo-concave

in {λj} and {rj} even in the special case with one single server at each group and an

acceptable waiting time of zero, it suffices to examine the pseudo-convexity of the bilinear

term wj = λjrj in Equation (B.3) in {xij}. Lemma C.1 proves by a counter example that

the bilinear term is not pseudo-convex in {xij}.

Lemma C.1. For a given group j, if ∃k, l ∈ FIj such that τkj 6= τlj and τkj, τlj > 0, the

bilinear term wj = λjrj =
∑
i∈FIj

xij
∑
i∈FIj

τijxij is not pseudo-convex in xij.

Proof. We suppress index j in wj and assume that the set FIj is of length n. Then, the

bilinear term can be expanded in as function of x = (x1, x2, . . . , xn) as follows,

w(x) =
n∑
i=1

xi

n∑
i=1

τixi = τ1x
2
1 +(τ1 + τ2)x1x2 + · · · +(τ1 + τn)x1xn

+(τ2 + τ3)x2x3 + · · · +(τ2 + τn)x2xn

+ · · ·

+τ 2
nx

2
n.

The first gradient of w(x) at x̄ = (x̄1, x̄2, . . . , x̄n) is,
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∇w(x̄) =



(τ1 + τ1)x̄1 + (τ1 + τ2)x̄2 + · · ·+ (τ1 + τn−1)x̄n−1 + (τ1 + τn)x̄n

(τ2 + τ1)x̄1 + (τ2 + τ2)x̄2 + · · ·+ (τ2 + τn−1)x̄n−1 + (τ2 + τn)x̄n
...

(τn−1 + τ1)x̄1 + (τn−1 + τ2)x̄2 + · · ·+ (τn−1 + τn−1)x̄n−1 + (τn−1 + τn)x̄n

(τn + τ1)x̄1 + (τn + τ2)x̄2 + · · ·+ (τn + τn−1)x̄n−1 + (τn + τn)x̄n



=



τ1

∑n
i=1 x̄i +

∑n
i=1 τix̄i

τ2

∑n
i=1 x̄i +

∑n
i=1 τix̄i

...

τn−1

∑n
i=1 x̄i +

∑n
i=1 τix̄i

τn
∑n

i=1 x̄i +
∑n

i=1 τix̄i


.

Let ȳ = (ȳ1, ȳ2, . . . , ȳn) be a vector similar to x̄ = (x̄1, x̄2, . . . , x̄n), then, for pseudo-convexity

one should prove that if∇w(x̄)(ȳ−x̄) ≥ 0, then w(ȳ) ≥ w(x̄). The condition∇w(x̄)(ȳ−x̄) ≥

0 becomes,

(ȳ1 − x̄1)(τ1

n∑
i=1

x̄i +
n∑
i=1

τix̄i) + (ȳ2 − x̄2)(τ2

n∑
i=1

x̄i +
n∑
i=1

τix̄i) + . . .

+ (ȳn−1 − x̄n−1)(τn−1

n∑
i=1

x̄i +
n∑
i=1

τix̄i) + (ȳn − x̄n)(τn

n∑
i=1

x̄i +
n∑
i=1

τix̄i)

=
n∑
i=1

τix̄i(
n∑
i=1

ȳi −
n∑
i=1

x̄i) +
n∑
i=1

x̄i

n∑
i=1

τi(ȳi − x̄i) ≥ 0.

Now, consider the following instance with (x̄1, x̄2) = (2, 1), (ȳ1, ȳ2) = (1, 3) and (τ1, τ2) =

(10, 1). The above condition becomes 21(4− 1) + 3(−12) = 27 ≥ 0. However, w(ȳ) = 52 ≤
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w(x̄) = 63.

D Proof of Proposition 1.4.1: Relaxed Problem Con-

vexity

Lemmas D.1 and D.2 prove that SLRLtot is an upper bound for SLtot and it is concave in λj,

respectively.

Lemma D.1. The function SLRLtot is an upper bound for SLtot.

Proof. Lee & Cohen (1983) have shown that Erlang-C formula C(k, r) is strictly increasing

in r. Since r = τλ and λ ≥ 0, C(k, τλ) is increasing in τ . Also, e−( k−r
τ

)T = e−( k
τ
−λ)T is

increasing in τ . Thus, SL(λ, τλ) = 1−C(k, τλ)e−( k
τ
−λ)T is decreasing in τ . Since we choose

τFIXj such that τFIXj ≤ τj, then,

SL(λj, τ
FIX
j λj) ≥ SL(λj, rj) ∀j ∈ J. (D.6)

Because λj ≥ 0 ∀j ∈ J ,

λjSL(λj, τ
FIX
j λj) ≥ λjSL(λj, rj) ∀j ∈ J.

Since sum preserves the monotonicity,

SLRLtot =
∑
j∈J

λjSL(λj, τ
FIX
j λj) ≥

∑
j∈J

λjSL(λj, rj) = SLtot.

Lemma D.2. The function SLRLtot is concave in λj with fixed τj.
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Proof. Lemma D.3 proves that Erlang-C function C(k, τλ) is nonnegative nondecreasing

convex in λ with fixed τ . Also, e−( k
τ
−λ)T is nonnegative nondecreasing convex in λ with fixed

τ . Thus, the product C(k, τλ)e−( k
τ
−λ)T is nonnegative nondecreasing convex in λ, and

SL(λ, τλ) = 1− C(k, τλ)e−( k
τ
−λ)T ,

is nonnegative nonincreasing concave in λ with fixed τ . The second derivative of the term

λjSL(λj, τjλj) with respect to λj is (for brevity we drop the index j),

∂2λSL(λ, τλ)

∂λ2
= 2

∂SL(λ, τλ)

∂λ
+ λ

∂2SL(λ, τλ)

∂λ2
,

which is non-positive since λ is nonnegative and SL(λ, τλ) is nonincreasing concave in λ.

Finally, since sum preserves concavity, SLRLtot =
∑
j∈J

λjSL(λj, τ
FIX
j λj) is concave in {λj} for

any fixed τj = τFIXj .

Lemma D.3. Erlang-C function C(k, τλ) is nonnegative nondecreasing convex in arrival

rate λ with fixed τ .

Proof. Lee & Cohen (1983) have proved that Erlang-C function C(k, r) is nonnegative non-

decreasing convex in r. Since λ ≥ 0, C(k, τλ) is nonnegative nondecreasing convex in λ with

fixed τ .

E Subproblem

After solving the relaxed problem, either (RL) or (RL2), and finding {xij}, {rj} and {λj},

we can seek a better solution by solving a subproblem (SPr).

Specifically, we fix the workloads
{
rRLj
}

obtained from the relaxed problem solution and

re-optimize {xij} and {λj}. Proposition E.1 proves that the corresponding subproblem is a
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convex program. Given the fixed values for a subset of variables, i.e.,
{
rRLj
}

, we optimize

over the remaining variables {xij} and {λj}. The subproblem (SPr) is as follows,

(SPr) max
∑
j∈J

λjSL(λj, r
RL
j ) (E.7)

s.t. (1.2), (1.3), (1.10) and (1.12). (E.8)

Note that since constraint (1.9) is satisfied in the relaxed problem, we don’t require it

in (SPr). After solving (SPr), the optimality gap between the relaxed problem and the

subproblem is calculated as,

Gapsp =
∑
j∈J

λSPj SL(λSPj , rRLj )−
∑
j∈J

λRLj SL(λRLj , rRLj ),

where we obtain
{
λSPj

}
from the subproblem solution and

{
rRLj
}

from the relaxed problem

solution. This gap is at least as good as the gap found by the relaxed problem.

One might want to skip solving the subproblem. Our experiments show that subproblem

can often find a better solution. Moreover, (SPr) is not an expensive problem since it is a

continuous convex problem with no integer or binary variable, while (RL2) is a mixed-integer

nonlinear problem.

Proposition E.1. The subproblem (SPr) is convex in {λj} and {xij} with {rRLj } being fixed.

Proof. The delay probability Erlang-C function C(kj, r
RL
j ) becomes a parameter with fixed

rRLj . Substituting for τj = rRLj /λj, the conditional delay formula can be reformulated as,

exp(−(
kj − rRLj

τj
)T ) = exp(

rRLj − kj
rRLj

Tλj),

which is nondecreasing convex in λj. Thus, SL(λj, r
RL
j ) as defined in (1.6) is nonincreasing
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concave in λj. Since sum preserves monotonicity and concavity, the objective function of

the subproblem (SPr) as defined in (E.7) is concave in {λj}. All the constraints of (SPr)

are linear in {xij} and {λj}. Thus, the subproblem (SPr) is a convex problem in {λj} and

{xij}.

F FSE Algorithm: Subroutines for Adding and Re-

moving Boundaries

In Table F.1 we explain the FSE subroutine for adding new boundaries. Tables F.2 and F.3

explain subroutines for choosing group to remove one or boundaries from as well as specific

boundary or boundaries to be removed, respectively.

G Experiment results

Tables G.4 and G.6 list the results of our experiments on a total of 20 instances (6 planar and

14 non-planar instances). The desired optimal percentage gap (see 1.33 for the definition of

Gappct) used to terminate the solution methods is 1% in Table G.4 and 5% in Table G.6. In

these tables we compare the performance of the solution methods in terms of their respective

solution quality measured by the percentage gap Gappct as well as the time they need to find

that solution.
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Table F.1: FSE: FSEADD

1. Inputs and Required Parameters

- θMAX and θMIN in equation (1.27).

- {Tj,t}= ordered list of slice boundaries at iteration t.

- {Aj,t−1}= set of actual service times generated from iteration 1 to iteration t−1.
(For t = 1, Aj,0 ← {} ∀j)

2. Output

- {T addj,t+1}= ordered list of boundaries with the newly generated boundary for iter-
ation t+ 1.

- {Aj,t}= set of actual service times generated from iteration 1 to iteration t+ 1.

3. Main Algorithm

- For each group j,

• If λj = 0,

◦ τACTUALj,t ← 0.

else,

◦ τACTUALj,t ← rj/λj.

◦ Construct Aj,t: Aj,t ← Aj,t−1 + τACTUALj,t .

• Store the index of the slice that the solution (λj, rj) is in:

n∗← {n|τj,n ≤ τACTUALj,t < τj,n+1}.

• Determine δ according to (1.26).

• Determine θ according to (1.27).

• Create a new boundary τNEWj between the current lower boundary τj,n∗ and
the actual mean service time τACTUALj,t : τNEWj ← θτACTUALj,t + (1− θ)τj,n∗ .

• Construct T addj,t+1: T addj,t+1 ←
{
τj,n ∈ Tj,t : τj,n ≤ τACTUALj,t , n ∈ {1, . . . , n∗}

}
+

τNEWj +
{
τj,n ∈ Tj,t : τj,n > τACTUALj,t , n ∈ {n∗ + 1, . . . ,mj + 1}

}
.
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Table F.2: FSE: FSEREM
gr

1. Inputs and Required Parameters

- ψtot = maximum total number of boundaries to keep across all group.

- ψgr = maximum number of boundaries to keep for each group.

- {T addj,t }= ordered list of boundaries with the newly generated boundary for iter-
ation t (See Table F.1).

- {Aj,t}= set of actual service times generated from iteration 1 to iteration t.

2. Output

- {Tj,t+1}= ordered list of boundaries for iteration t+ 1.

3. Main Algorithm

- For each group j, initialize T remj,t , ordered list of boundaries for iteration t after

removing boundaries: T keepj,t ← T addj,t ∀j.

- For each group j:

• If ψgr >
∣∣∣T keepj,t

∣∣∣, then remove one boundary from group j and update T keepj,t

(See FSEREM
bnd in Table F.3).

- If ψtot >
∑

j

∣∣∣T keepj,t

∣∣∣, then,

• Use equation (1.28) to calculate Gapj.

• Sort groups from smallest to largest according to their Gapj and store the
result in the ordered list Sort.

- Repeat until ψtot ≤
∑

j

∣∣∣T keepj,t

∣∣∣:
• From the top of the list, Sort, pick jtop and remove it from Sort.

• If jtop has four or more boundaries, then remove two boundaries and update

T keepjtop,t
(See FSEREM

bnd in Table F.3 and use ToRemove = 2);

• else if jtop has exactly four boundaries, then remove one boundary and update

T keepjtop,t
(See FSEREM

bnd in Table F.3 and use ToRemove = 1);

• else, do not remove any boundary.

- Construct the boundary list for iteration t+ 1 and terminate: Tj,t+1 ← T keepj,t ∀j.
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Table F.3: FSE: FSEREM
bnd

1. Inputs and Required Parameters

- {T addj,t }= ordered list of boundaries with the newly generated boundary for iter-
ation t (See Table F.1).

- {Aj,t}= set of actual service times generated from iteration 1 to iteration t.

- ToRemove= Number of boundaries that should be removed.

2. Output

- {T keepj,t }= ordered list of boundaries for iteration t after removing ToRemove
boundaries.

3. Main Algorithm

Initialize removed: removed← 0.

- Scoring the boundaries of T addj,t :

• Reset scores for all the boundaries in T addj,t : S(τj,n)← 0, ∀n.

• For each boundary τj,n ∈ T addj,t calculate its score (See equation (1.29)).

- Initialize a list for boundaries that we keep:

T keepj,t ← {τMIN
j , τNEWj , τMAX

j }.

- Initialize a list for boundaries that we can remove: T tempj ← T addj,t \ T
keep
j .

- Form a set for boundaries with a score of zero: T zeroj ← {τj,n ∈ T tempj |S(τj,n) = 0}.

- While |T zeroj | > 0 and removed < ToRemove:

• Randomly choose one boundary called τ from T zeroj .

• Remove the selected boundary, τ , from T zeroj and T tempj :

T tempj ← {T tempj } \ τ and T keepj ← {T keepj } \ τ

• Update removed: removed← reomoved+ 1.

- While |T keepj,t | ≤ |T addj,t | − ToRemove+ removed:

• Calculate cumulative scores for boundaries in T tempj (See equation (1.30)).

• Generate a uniform random number rand (See equation (1.31)).

• Select boundary τj,n ∈ T tempj such that Scum(τj,n−1) ≤ rand < Scum(τj,n).

• Remove the selected boundary from T tempj and add it to T keepj,t (See equation
(1.32)).

- Return T keepj,t and terminate.
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H Math Programs (RL3) and (RS3)

In the following we introduce relaxed problem (RL3).

(RL3) max
∑
j∈J

λj

s.t. Constraints (1.2), (1.3), (1.9), (1.10), (1.11), (1.12), (1.19), (1.20),

(1.21), (1.22), (1.23), (1.24), (1.25), (1.23),(1.24), (1.25),∑
j∈J

∑
n∈Nj

λjnSL(λjn, τj,nλjn) ≥ αSLavg
∑
j∈J

λj,

In problem (RL3) we underestimate the workload rj by τj,nλj,n in slice n. On the other

hand, in problem (RS3) we overestimate the workload rj by τj,n+1λj,n in slice n.

(RS3) max
∑
j∈J

λj

s.t. Constraints (1.2), (1.3), (1.9), (1.10), (1.11), (1.12), (1.19), (1.20),

(1.21), (1.22), (1.23), (1.24), (1.25), (1.23),(1.24), (1.25),∑
j∈J

∑
n∈Nj

λjnSL(λjn, τj,n+1λjn) ≥ αSLavg
∑
j∈J

λj,

I Proof of Proposition 2.3.1: Binding Coverage for

EWtot

Assume that for the optimal solution
{
x∗ij
}

with the corresponding arrival rate
{
λ∗j
}

and

workload
{
r∗j
}

the minimum coverage imposed in Constraint (2.12) is not binding, i.e.,

∑
j∈J

λ∗j > CF
∑
i∈I

di.
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Construct binding solution {x̄ij} with corresponding
{
λ̄j
}

and {r̄j} as follows,

x̄ij = βx∗ij ∀(i, j) ∈ F,

where,

β =
CF

∑
i∈I di∑

j∈J λ
∗
j

.

Note that 0 ≤ β < 1 and
∑

j∈J λ̄j = CF
∑

i∈I di. Then,

λ̄j =
∑
i∈I

x̄ij =
∑
i∈I

βx∗ij = βλ∗j < λ∗j ∀j ∈ J, (I.9)

r̄j =
∑
i∈I

τijx̄ij =
∑
i∈I

τijβx
∗
ij = βr∗j < r∗j ∀j ∈ J, (I.10)

and

τ̄j =
r̄j
λ̄j

=
βr∗j
βλ∗j

= τ ∗j ∀j ∈ J.

Lemma I.1 (which follows) prove that EW (λ, r) is strictly increasing in λ and r with fixed

τ > 0. Thus,

EW (λ̄j, r̄j) < EW (λ∗j , r
∗
j ) ∀j ∈ J.

Using inequalities (I.9) and (I.10), the following inequality follows,

EW avg =

∑
j∈J λ̄jEW (λ̄j, r̄j)∑

j∈J λ̄j

=

∑
j∈J λ

∗
jEW (λ̄j, r̄j)∑
j∈J λ

∗
j

<

∑
j∈J λ

∗
jEW (λ∗j , r

∗
j )∑

j∈J λ
∗
j

= EW ∗
avg,
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which contradicts the optimality assumption for solution
{
x∗ij
}

with objective value EW ∗
avg.

Lemma I.1. Expected waiting time EW (λ, r) is strictly increasing in λ and r with fixed

τ > 0.

Proof. Lee & Cohen (1983) have proved that Erlang-C formula EC(k, r) is strictly increasing

in workload r. Also, τ/(k − r) is positive and strictly increasing in r with fixed τ . Thus,

EW (λ, r) as a product of two positive strictly increasing functions is positive and strictly

increasing in r. Fixing τ > 0 drives λ linear in r = τλ. Thus, EW (λ, r) is jointly increasing

in λ and r with fixed τ .

J Proof of Proposition 2.3.2: Convexity of EWtot

Proof. According to Little’s law (i.e., queue length = arrival rate × waiting time), for each

group j the corresponding term λjEW (λj, rj) is the expected queue length (denoted by

E[L]) for that group, i.e.,

E[Lj] = λjEW (λj, rj) = EC(kj, rj)[rj/(kj − rj)],

where Lj is the random number of jobs in the group j’s queue. Grassmann (1983) proved

that expected queue length E[Lj] is convex in traffic intensity ρj and since rj = ρjkj, E[Lj]

is convex in workload rj with fixed kj. Since sum preserves the convexity,
∑
j∈J

E[Lj] =∑
j∈J

λjEW (λj, rj) is convex in rj’s. Note that E[Lj] is a function of rj and variables τj and

λj do not appear in E[Lj].
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K OptXRand Map and the Corresponding Static Rout-

ing Map

In the OptXRand policy, when an incident in block group i occurs it is randomly routed to

j ∈ FKi according to the xij’s. We use xij’s to build new zones where each zone is either

not covered or is assigned to exactly one fire station. In this new map there is no random

assignment as opposed to the original OptXRand. We divide the block groups according to

the xij’s to build a new map with new arrival rates. For example, let the demand at block

group A be 2, i.e., dA = 2. Also, assume that we route xA1 = 0.8 to station 1 and xA2 = 1.2

to station 2, i.e., we don’t block jobs upon arrival. We divide block group A into two zones, B

and C with areas proportional to xA1/(xA1 +xA2) = 0.4 and xA2/(xA1 +xA2) = 0.6. Zone B

is entirely assigned to group 1 with the new arrival rate equal to xB1 = xA1, zone C is entirely

assigned to group 2 with the arrival rate equal to xC2 = xA2, and xB2 = xC1 = 0. With

this mapping the routings are predetermined and all the incidents in a zone are assigned

to a fixed station with no randomization. Moreover, the new routing map has the same

performance as its corresponding OptXRand policy, because the arrival rates to the fire

stations are preserved under this new map.

We build a routing map for Irvine fire stations based on the OptXRand policy (See Figure

2.10). As depicted in Figure 2.10 block group i is linked to station j ∈ FKi, if xij is strictly

positive. There are multiple ways to split a block to multiple zones and Figure K.1 shows

one static routing map corresponding to the map in Figure 2.10. In Figure K.1 each zone is

linked to at most one station.
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Figure K.1: Static routing map corresponding to the OptXRand map in Figure 2.10

103



L Simulation results

Tables L.8, L.9 and L.10 list simulation results. In these tables we compare the performance

of routing policies in terms of the expected waiting time that jobs experience, namely, EWtot

or EWavg. Notice that the optimal (or, minimum) EWavg is equivalent to the optimal

EWtot since EWavg =
∑

j∈J λjEWtot, and the coverage constraint on
∑

j∈J λj is binding at

optimality (see proposition 2.3.1). We run simulations on a total of 20 instances: 14 non-

planar instances (to resemble call center applications), and 6 planar instances (to resemble

transportation systems).
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